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ABSTRACT
Due to the recent growth in the number of on-chip cores
available in today’s multi-core processors, there is an in-
creased demand for memory bandwidth and capacity. How-
ever, off-chip DRAM is not scaling at the rate necessary for
the growth in number of on-chip cores. Stacked DRAM last-
level caches have been proposed to alleviate these bandwidth
constraints, however, many of these ideas are not practical
for real systems, or may not take advantage of the features
available in today’s stacked DRAM variants.

In this paper, we design a last-level, stacked DRAM cache
that is practical for real-world systems and takes advantage
of High Bandwidth Memory (HBM) [1]. Our HBM cache only
requires one minor change to existing memory controllers
to support communication. It uses HBM’s built-in logic die
to handle tag storage and lookups. We also introduce novel
tag/data storage that enables faster lookups, associativity,
and more capacity than previous designs.

1 INTRODUCTION
Commodity DRAM is hitting the memory/bandwidth wall.
Caching has traditionally avoided this wall by alleviating
the pressure on off-chip memory. Cache is not only faster
than off-chip memory, but reduces the number of requests
going to DRAM. However, modern workloads are demanding
hundreds of megabytes of last level cache (LLC) [3, 4].
This is a problem because there is a large capacity gap

between existing LLC’s and off-chip memory. The capacity
gap can be to four orders of magnitude, while bandwidth
and latency can see a gap of up to one order of magnitude.
Many different ideas have been proposed in an effort to close
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these gaps. Simply architecting a larger, traditional SRAM
cache is the most trivial solution. However, SRAM caches
are low density, power hungry, and costly. Another option
is to construct LLC’s using DRAM since it is higher den-
sity, less power hungry, and low cost. Despite these benefits,
the relatively long latency of conventional DRAM prevents
it from being an effective cache. Even other technologies
such as eDRAM [6] and STT-MRAM [7] are infeasible due to
their limited capacity. However, 3D stacked DRAM has been
shown to provide more bandwidth and less latency than con-
ventional off-chip DRAM [5], while maintaining a capacity
that is acceptable for LLC’s in modern workloads. Effectively,
stacked DRAM is able to close the bandwidth, latency, and
capacity gaps currently exhibited between existing LLC’s
and off-chip memory, all while maintaining acceptable den-
sity levels, power consumption, and cost. For this reason,
stacked DRAM LLC’s have emerged as the best proposed
solution to this problem, the best of which have shown up
to 21% system performance improvement [2].

However, many of these proposed solutions are not prac-
tical for real systems, requiring major changes to existing
hardware and DRAM standards. In addition, the proposed
solutions may not take advantage of the many features avail-
able in today’s stacked DRAM variants. To that end, this
paper makes the following contributions:
(1) We design a stacked DRAM LLC using HBM [1]. This

cache is practical for real systems and takes advantage
of the available logic die in HBM to accomplish cache
management, tag storage, and tag lookups in memory.

(2) We introduce a novel way to store the cache tags and
data inside the stacked DRAM. Our method uses sub-
array level parallelism (SALP) [8] in order to achieve
fully concurrent tag and data accesses. This promotes
faster lookups, enables associativity, and increases the
usable capacity compared to prior work.

Figure 1: Multiple HBM stacks on the interposer [10]
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2 BACKGROUND
HBM is designed as a series of stacked DRAM dies which sit
atop a base-layer logic die that can be customized and used
for processing in memory (PIM). A visual representation of
this architecture can be seen in Figure 1.

Each HBM stack contains 8 completely independent mem-
ory channels. Each channel has a 128-bit data interface that
provides 32GB/s bandwidth. This means that, given a sys-
tem with 4 HBM stacks, each with 8 channels, the maximum
theoretical bandwidth would be 1TB/s. The capacity of each
HBM stack can range from 1 to 32 GB. Each channel is sim-
ilar to a standard DDR interface and requires traditional
DRAM controller command sequences. There are 16 banks
per channel, but each channel also can be split into two
“pseudo-channels” each with an independent 64-bit I/O line.
Effectively, the pseudo-channel mode doubles the amount of
channels, but halves the column width of each bank.

In this work, we use one HBM stack of 4 DRAM dies with
a total capacity of 4GB and 16 pseudo-channels of 8 banks
each for a maximum theoretical bandwidth of 256GB/s.
3 RELATEDWORK
There aremany existing proposals for stackedDRAMLLC’s [2,
9, 11, 12] but none of these use processing in memory, which
is available by using HBM’s built-in logic die. In most prior
work, tag and data access takes two memory transactions
from the memory controller. Additionally, the memory con-
troller must be modified to perform tag comparisons and
implement all other cache management logic.

Cache Tag Storage: As the size of a cache grows, so does
the size of the tags and other metadata needed for it to func-
tion. In practice, the most popular, practical, and often sim-
plest solution is to store the tags in the stacked DRAM [13]so
that access to the tag and data can happen serially or in par-
allel. A serial access has long latency, but ensures that data
is accessed only if necessary. A parallel access saves latency,
but since the tag and data access happen at the same time,
there are some situations where the data access was unnec-
essary and wasteful. When optimizing for performance, the
parallel access scheme is preferred.

Alloy Cache: The Alloy Cache [2] is a latency-optimized
cache architecture that is currently seen as the “best can-
didate for an off-chip Giga-scale DRAM cache” [11] with
a 21% performance increase over a baseline that does not
have a stacked DRAM cache. It is implemented as the sole
DRAM cache model in the NVMain simulator and used as
an aggressive baseline in multiple studies [11, 12]. For these
reasons it is also the baseline for our work.
The Alloy Cache is designed to reduce hit latency for

stacked DRAM caches. To this end, the Alloy Cache is direct
mapped, eliminating the latency incurred by multiple tag
comparisons and replacement policies. Additionally, cache

tags are “alloyed” with the corresponding data in the stacked
DRAM to create a tag-and-data (TAD) unit. One TAD unit
is streamed out on every cache access, which avoids a time-
consuming serial tag/data access and simplifies the wasteful
parallel tag/data access.

The 72 byte TAD (8B tag and 64B data) takes 5 bus cycles
to transfer as opposed to the standard 4 cycles for DRAM.
Not only does this require a major change to existing mem-
ory controller designs and DRAM standards, but due to the
unusual size, it sacrifices capacity in the DRAM cache (Fig-
ure 2). For a Giga-scale DRAM cache, this amounts to tens of
megabytes being wasted. Also, the experimental configura-
tion for the Alloy Cache study does not seem to specifically
model any of the existing stacked DRAM variants.

Figure 2: Alloy Cache row-buffer organization using
tag-and-data (TAD) units [2]

Intel’s Knights Landing processor [9] uses a 16 GB
MCDRAM LLC with a reported 500 GB/s bandwidth. The
LLC is known to be direct mapped, but other specifics of the
design are not detailed, i.e., additional cache management
strategies and tag/data organization are unknown.

4 HBM CACHE DESIGN
The design of our HBM cache is similar to a traditional cache.
It is direct mapped with a write-back, write allocate policy,
and a cache block size of 64B with tags to uniquely identify
blocks of data. However, our design differs in two novel
ways. First, tag operations (including comparisons, lookups,
and storage), address/command translations, and all other
cache management is done in-memory on the HBM logic
die, resulting in a self-managed cache. Second, our design
uses a novel way of storing tags and data within the stacked
DRAM. Finally, we assume the HBM cache is accessed via a
single memory controller (i.e., no NUMA support).

4.1 Self-Managed Cache
The HBM spec provides for a logic die, which we use to ac-
complish cache management in-memory, without the need
for a specialized memory controller. This means that the
system memory controller can treat our HBM cache as an
ordinary DRAM device, using all of the ordinary DRAM
commands. There is no need for tag comparisons, etc. at the
memory controller level. With this design, we can guaran-
tee synchronous operations, just like the HBM spec, but it
may require extra cycles for all the logic and buffer opera-
tions. Since the HBM spec does not specify certain timing
parameters, we can extend traditional DRAM timing by a
few cycles.



Architecting HBM as a ... Last-Level Cache PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA

The memory controller needs to be modified so that an
access to the HBM cache results in either a hit or a miss.
Depending on the outcome, the memory controller needs
to react in a different way. Namely, it needs to decide if a
further access to the system memory is necessary and what
to do with any data returned from the HBM cache. E.g., in
the case of a read hit, there is no further memory access
necessary and the returned data is valid. In case of a write
miss, the returned data is dirty and must be written to system
memory.
In order to make this decision, we modify the memory

controller to receive a “cache result signal”.This is a one-bit
signal sent over HBM’s reserved for future use (RFU) pin.
The signal is sent over multiple cycles and aligned with the
data burst, allowing for multiple different bit combinations
to be sent. Each combination corresponds to different cache
results, which include, but are not limited to, hit, clean miss,
dirty miss, invalid, etc. Using the standard burst length of
4 for HBM, it is possible to send up to 16 unique cache re-
sult signals. Possible other signals could include coherence
information for multi-node systems.

This self-managed cache has important advantages. First,
performing the cache management in-memory reduces the
total time for each memory access compared to a system that
performs cache management within the memory controller.
This performance gain is due to a reduction in the amount of
data traveling over the memory bus and a reduction in the
amount of communication going off-chip. Second, there is
no need for major changes to existing memory controllers.

Figure 3 depicts the duties of the logic die. E.g., when HBM
needs to write some data, a write command and address is
put on the CA bus, and the data is put on the DQ bus. First,
the data is put into the Data Buffer. The write command
and address is translated by the Command Translator and
the Address Translator into a read command for the corre-
sponding tag and a read command for the corresponding
data. These two commands are sent to the scheduler and
the Address Translator puts the expected tag into the Tag
Comparator. The tag is fetched from the Stacked DRAM and
is also put into the Tag Comparator while the data is fetched
and put into the Data Buffer. The Tag Comparator compares
the tags. If the tags match, a cache hit signal is sent back to
the memory controller using the RFU pin, and the data in
the Data Buffer is written to the Stacked DRAM. If the tags
do not match, there are two possibilities:

• Invalid/Clean Miss: The tag indicates that the cache
line is invalid, or that it is valid, but clean. An invalid/clean-
miss signal is sent back to the memory controller using
the RFU pin, the data in the Data Buffer and the new
tag are written to the Stacked DRAM.

• Dirty Miss: The tag indicates that the cache line is
valid and dirty. A dirty-miss signal is sent back to the

memory controller using the RFU pin and the dirty
data in the Data Buffer is sent back on the DQ bus.
The new data in the Data Buffer and the new tag are
written to the Stacked DRAM.

These steps implement a traditional caching algorithm,
yet with the notable difference that a single DRAM com-
mand from the memory controller can result in multiple
DRAM commands for the Stacked DRAM, generated by the
Command Translator and Address Translator. In the above
data write example, one DRAM command from the memory
controller could result in up to four DRAM commands for
the Stacked DRAM.

Figure 3: Logic die with in-HBM cache manager
4.2 Tag and Data Storage
Unlike the Alloy cache where tags are alloyed with the data,
we choose to store tags separately from the data. Our design
reserves one pseudo-channel for tag storage, and the other
15 pseudo-channels for data storage. This enables parallel
access to the tags and data and also wastes less capacity
than the Alloy cache. Accessing the tags and data in par-
allel means that there are unnecessary and wasteful data
accesses, but since our HBM cache is self managed, these
unnecessary accesses are internal to HBM, are not using
the memory bus, and are therefore not as wasteful. Recall
that the Alloy cache wastes 32 bytes per row of DRAM for a
total of 64MB of wasted cache capacity. By storing the tags
separately from the data, we are able to completely fill the
DRAM rows storing data without wastage here.

However, our design does waste a small amount of space
in its tag storage. Given a total cache capacity of 4GB, each
pseudo-channel can hold 256MB of tags or data. With 15
pseudo-channels for data storage and a 64B cache line size,
we have 60M cache lines, and need to store 60M tags. With
256MB of tag storage, we have enough space for tags to
be 4B (which is much greater than the 17 bits required for
a 15 bit tag, a valid bit, and a dirty bit). However, storing
60M, 4B tags only requires 240MB, wasting a total of 16MB
cache capacity. In comparison, our tag/data organization can
store 4.2 million more cache lines than the Alloy cache TAD
organization, while avoiding the elongated burst length of
the Alloy cache.
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One additional problem arises in our tag/data storage solu-
tion. Since tags are 16x smaller than the data they correspond
to, accessing data in parallel may cause bank conflicts for
the corresponding tags. Figure 4 shows that Data H0 and
Data H1 can be accessed in parallel, but their respective
tags are stored in the same bank, causing a bank conflict
and requiring a serial bank access. The solution to this is to
use subarray level parallelism (SALP) [8]. With SALP, each
bank is divided into 16 subarrays, which can be accessed in
parallel. Each tag is stored in a different subarray, thereby
avoiding a serial access due to bank conflicts and enabling
full parallelism.

Figure 4: Without SALP, a bank conflict can occur
4.3 Cache Configurations
Given our two modifications to a traditional cache, we pro-
pose three cache configurations for evaluation: (1, “Alloy”) A
traditional host-managed Alloy cache, our baseline, that does
not use HBM’s logic die and will have the tag/data stored
as a TAD; (2, “Alloy-like”) a self-managed cache, that still
uses the TAD style tag/data storage; (3, “SALP”) a cache, also
self-managed, but uses SALP to enable our novel tag/data
storage organization. Figure 5 highlights the differences per
configuration. With (1), the memory controller must handle
both the tag and the data. With the self-managed style of
(2) and (3), the tag is local to the logic die and DRAM stack
and never crosses over the memory bus to the memory con-
troller. In (2), a TAD unit is still transferred between the logic
die and DRAM stack, while (3) replaces this with a parallel
tag/data access. The self-managed style of (2) and (3) also
introduces the cache result signal.

(a) (b) (c)
Figure 5: Different cache configurations

4.4 Theoretical Results
For these configurations, one can derive theoretical perfor-
mance limits. The theoretical capacity, bandwidth, and la-
tency values for each cache configuration are depicted in

Figures 6, 7, and 8, respectively. The effective cache capacity
corresponds to usable capacity for storing data, excluding
metadata. The theoretical bandwidth corresponds to band-
width for data, excluding metadata. In Figure 6, the effective
capacity of SALP is greater than the Alloy and Alloy-like
because of our novel tag/data storage organization. The total
capacity of our HBM stack is 4GB. In Figure 7, the bandwidth
of SALP is increased because of the elimination of possible
bank conflicts through the use of SALP. The maximum possi-
ble bandwidth of our HBM stack is 256GB/s. In Figure 8, the
latency of a read hit is slightly reduced in SALP due to the
shorter data burst length. The latency of a write hit is reduced
significantly in Alloy-like and SALP configurations because
of the self-managed cache. Additionally, the write hit latency
is slightly lower in SALP due to the shorter data burst length.
These latency values were calculated based on Samsung’s
DDR4 8GB spec to estimate HBM timing parameters.
5 EXPERIMENTAL METHODS
Simulator Configuration: In order to evaluate and test our
design ideas, we used the GEM5 [14] simulation software
integrated with NVMain [15].
Each of these simulators can be configured with parame-

ters such as:
• Number of CPUs, frequency, bus width, bus frequency;
• Cache size, associativity, hit latency, frequency;
• DRAM timing parameters, architecture (banks, ranks,
channels, rows, cols), energy/power parameters.

These parameters are easily modified to support rapid hard-
ware re-configuration and evaluation. We used projected
HBM timing numbers based on DRAMSpec [16] and JEDEC
DDR4 [17]. We project PCM timing numbers based on work
done by Tschirhart [18]. Figure 9 gives a system overview
and Table 1 shows the configuration used in our study.

Workloads:We used multiple benchmarks from the PAR-
SEC [19] and NAS [20] benchmark suites, each of which was
simulated for at least 1 billion instructions. The benchmarks
were selected to have a variety of memory access patterns.
6 RESULTS
Our simulations compare our self-managed HBM cache to
the baseline Alloy Cache with regard to bandwidth and exe-
cution time.

Figures 10 and 11 depict the performance benefit (y-axis)
in terms of percentage change (higher is better) per bench-
mark (x-axis). Some benchmarks perform very well under
our design (dedup, ft, mg), and a large number exhibit simi-
lar performance. Some benchmarks (e.g., streamcluster, flu-
idanimate) performed worse with our design. These are not
included in the reported results because in future work, we
plan to dynamically select SALP only when benchmarks can
be predicted to benefit from our cache configuration.

It is worth noting that these results were obtained using a
close-page memory policy along with a coarse-grained (bank



Architecting HBM as a ... Last-Level Cache PDSW-DISCS’17, November 12–17, 2017, Denver, CO, USA

Figure 6: Theoretical capacity
for a 4GB array

Figure 7: Theoretical band-
width

Figure 8: Theoretical latency

Figure 9: Simulated system overview

Table 1: Simulator Configuration
Processors

Number of cores 4
Frequency 4.0 GHz

Caches
L1 (private) 32 KB, 8-way, 4 cycles
L2 (shared) 8 MB, 16-way, 44 cycles
Stacked DRAM LLC 4 GB, direct mapped

Stacked DRAM
Bus frequency 800 MHz (DDR 1.6 GHz)
Pseudo-Channels 16
Ranks 1 per channel
Banks 8 per rank
Row buffer size 2048 bytes
Bus width 64 bits per channel

Off-Chip Memory (PCM)
Bus frequency 800 MHz (DDR 1.6 GHz)
Channels 1
Ranks 2 per channel
Banks 8 per rank
Row buffer size 2048 bytes
Bus width 64 bits per channel

first) address mapping scheme. Six different combinations
were tested: coarse-grained (channel first), coarse-grained
(bank first), and fine-grained, each with both open-page and
close-page. None of the other configurations performed bet-
ter than the reported results in Table 2.

Figure 10: Bandwidth Performance Benefit

Figure 11: Execution Time Performance Benefit
Table 2: Performance Relative to the Alloy Cache

Bandwidth Execution Time
Alloy-like SALP Alloy-like SALP

Minimum -0.30% -0.72% -0.20% -0.42%
(UA) (Dedup) (IS) (UA)

Maximum 25.53% 7.07% 4.26% 6.59%
(Swaptions) (FT) (FT) (FT)

Arithmetic Mean 3.10% 1.22% 0.92% 1.73%
Geometric Mean 2.89% 1.19% 0.93% 1.76%

7 CONCLUSIONS
Based on our results, using HBM as a self-managed last-level
cache can be beneficial in certain cases. Since our theoretical
results indicate that there should be a tangible performance
benefit in the best case (streaming access pattern), working
towards categorizing benchmarks that will perform well
with an HBM cache is our primary future goal. From this,
a benchmark analysis could be performed to dynamically
decide the optimal cache configuration and then allow ad-hoc
selection of the best policy, which is particularly attractive
in software managed HBMs (e.g., for Intel’s KNL).
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