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Abstract—To support the scalability and resilience require-
ments of distributed Wide-Area Measurement System (WAMS)
architectures, we design and implement a software infrastructure
to estimate power grid oscillation modes based on real-time
data collected from Phasor Measurement Units (PMUs). This
estimation algorithm can be deployed on a hierarchical structure
of Phasor Data Concentrators (PDCs), which calculate local
estimates and communicate with each other to calculate the
global estimate. This work contributes a resilient system to
WAMS with guarantees for (1) Quality of Service in network
delay, (2) network failure tolerance, and (3) self-recoverability.
The core component of the infrastructure is a distributed storage
system. Externally, the storage system provides a cloud data
lookup service with bounded response times and resilience, which
decouples the data communication between PMUs, PDCs, and
power-grid monitor/control applications. Internally, the storage
system organizes PDCs as storage nodes and employs a real-
time task scheduler to order data lookup requests so that urgent
requests can be served earlier. To demonstrate the resilience
of our distributed system, we deploy the system on a (1)
virtual platform and (2) bare-metal machines, where we run
a distributed algorithm on the basis of the Prony algorithm
and the Alternating Directions Method of Multipliers (ADMM)
to estimate the electro-mechanical oscillation modes. We inject
different failures into the system to study their impact on the
estimation algorithm. Our experiments show that temporary
failures of a PDC or a network link do not affect the estimation
result since the historical PMU data are cached in the storage
system and PDCs can obtain the data on demand.

I. INTRODUCTION

With the continuing large-scale deployment of PMUs, the
current centralized power grid monitor and control infrastruc-
ture of the WAMS technology is beginning to show limita-
tions [1]. First, the computation limitations of a centralized
server may result in a lag in wide-area monitoring that falls
short of real-time requirements. Second, network contention
could become severe making it hard to satisfy QoS require-
ments of monitor and control applications since a significant
number of PMUs are sending data to the centralized server
simultaneously. In response, WAMS technology is starting
to embrace a distributed architecture where multiple sets of
PDCs process PMU data to support power grid intelligence
with real-time constraints in a distributed manner. In recent
work [2], we propose a cloud computing based virtual smart
grid (vSG) framework that supports the dynamic creation
of distributed applications in clouds to connect to a set of
target PMUs and to store/process their sensor data in real-

time. This architecture distributes computation among multiple
PDCs, which addresses the aforementioned disadvantages of
a centralized architecture.

Another objective is to provide resilience to compute or
communication failures for distributed power grid monitoring.
PMUs have to maintain a communication channel with their
corresponding PDC to send monitored data to the PDC. In
case of a communication channel failure or PDC failure,
only the most recent monitored data is lost. In addition,
without regulations on how data are processed and commu-
nicated among different data sources (e.g., PDCs, WAMS
applications), distributed algorithms must by design handle
unpredictable network delays from different data sources.

We have addressed these problems in a distributed data
storage middleware that is placed in the midst of PMUs, PDCs
and WAMS applications [3], [4]. Our distributed data storage
system provides two API services: put(key, data) stores data
with a key as its index; get(key) returns the data associated with
a key. The system supports a storage abstractions where PDC
nodes create a distributed hash table (DHT). DHTs, such as
Chord [5] and CAN [6], are well suited for this problem due
to their superior scalability, reliability, and performance char-
acteristics compared to centralized or tree-based hierarchical
approaches.

Our distributed system focuses on providing resilience to
WAMS in three aspects. First, considering the real-time re-
quirements of WAMS, the network delay of communication
between PDCs must be upper bounded even if the network is
congested. To fulfill the QoS requirements of network delay,
we employ a real-time task scheduler on storage nodes to
serve data lookup requests with bounded end-to-end response
times. Second, occasional network link failures between PDCs
must not affect the WAMS algorithm. Without our distributed
system, PDCs communicate with each other via direct network
channels. This communication seizes to work when a single
network link along the channel fails. In contrast, our dis-
tributed system consists of multiple autonomous storage nodes
to decouple the tight connection between PDCs. In detail,
PDCs store their data in our distributed storage and fetch new
data from this storage system on demand. Since these storage
nodes have multiple access points, a network failure between
a PDC and a storage node does not affect the overall data
availability or consistency. This PDC can utilize an alternative



storage node to access data (network fault tolerance). Third,
our storage layer employs a DHT algorithm to implement a
distributed storage that replicates data across its nodes. As a
result, the storage system can serve requests even after node
failures without data loss (self-recoverability).

We implement an earliest-deadline-first (EDF) task sched-
uler and an EDF packet scheduler to prioritize requests by their
deadlines within the real-time distributed storage abstraction.
The EDF scheduler reduces the time required for failure
recovery, since an application can increase the priority of
requests by shortening deadlines in recovery mode (after a
node/link failure).

We implement our distributed storage system on Linux
and deploy it both on bare-metal machines and a virtual
platform (ExoGENI [7]). In experiments, we deploy a dis-
tributed algorithm based on Alternating Direction Multiplier
Method (ADMM) for estimating electro-mechanical oscil-
lation modes [1] to demonstrate how the storage system
is utilized and how the design of distributed algorithms is
facilitated by our storage abstraction. In addition, we simulate
different failures and demonstrate the resilience of our system,
which current centralized wide-area monitoring and control
infrastructure cannot provide.

II. A RESILIENT DISTRIBUTED INFRASTRUCTURE

A. The Centralized Measurement System

Fig. 1 depicts the centralized measurement system infras-
tructure. A PMU transmits monitoring data periodically to
its connected local PDC. In one iteration of the ADMM
algorithm, the local PDCs run the estimation algorithm based
on their PMU data and send the local estimates to the central
PDC. Then, the central PDC estimates the global state based
on the data received from local PDCs and transmits its result
back to the local PDCs. Subsequently, the local PDCs start a
new iteration of the estimation algorithm based on the global
estimation and new PMU data. These iterations continue until
the estimation on all PDCs converge. Section III details this
algorithm. The architecture involves multiple PDCs organized
in a client/server style, where a central PDC coordinates
actions in a distributed envirnment, much in contrast to fully
distributed algorithms without any single point of failure. For
the rest of the paper, we will refer to the architecture simply
as centralized.
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Fig. 1. Centralized Measurement System Example

The general ADMM algorithm has been well studied.
However, several details have to be considered in the imple-
mentation for a real estimation system. First, the stability of
the network channel between the local PDCs and the central
PDC has a significant impact on estimation accuracy. If the
network channel between PDC1 and the central PDC has
failed, the data from the corresponding PMUs are unknown

to other PDCs. Second, the central PDC has to consider the
transmission time on each link to determine when to estimate
the global state in the current iteration. When some PDC data
has not arrived within a time threshold, it is difficult for the
central PDC to determine whether the long delay is due to a
failed PDC, a network failure, or temporary network conges-
tion. We address these challenges in our resilient distributed
infrastructure for WAMS in the next section.
B. A Resilient Real-time Storage System

Our real-time storage system is the core component of our
resilient wide-area measurement systems. As shown in Fig. 2,
the storage system acts as a middleware between local PDCs
and the central PDC to cache the estimation data.
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Fig. 2. Measurement System with Real-time Storage System

Externally, our storage system provides two fundamental
cloud services: get and put. PDCs and WAMS applications
utilize the put service to store monitoring data or intermedi-
ate power grid estimation results. They can further use the
get service to obtain relevant data from the storage system.
Thus, this distributed storage system provides an additional
protocol layer between data providers (PMUs/PDCs) and data
consumers (PDCs and WAMS applications).
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Fig. 3. PDC, PMU, and Chord Ring Mapping Example

Internally, we utilize a distributed hash table (DHT) over a
set of storage nodes (chosen to also be the PDCs) so that the
power grid data can be disseminated in a distributed manner
and subsequently accessed by monitoring and control applica-
tions. Fig. 3 illustrates how the DHT protocol organizes PDCs
as storage nodes in a virtual Chord-like ring structure [5]. This
ring structure provides a natural way to orchestrate power
estimates and, optionally, actuation tasks of disjoint PDCs
based on key/value pairs. The storage system can store raw
PMU data, memorize state and parameter estimates, and even
actuation intentions. In Fig. 3, PMUs, PDCs, and WAMS
applications logically access our distributed storage system and
coordinate actions with one another. In this example, 9 PDCs
are mapped onto the Chord ring and utilized as DHT storage
nodes. A PMU sends raw monitoring data to the storage
system via a connection with its local PDC. However, the raw
PMU data are not necessarily stored in the local PDC. Our
storage system utilizes a consistent hashing algorithm [8] to
map data to virtual nodes. For example, the data with key 14 is



located on virtual node 15 according to the Chord algorithm.
The WAMS application may send requests to any PDC in the
ring to fetch the data on demand. It is sufficient to locate any
data by maintaining the nodes in a wrap-around circular list
such that each node has a reference to its successor node,
i.e., a ring traversal can always locate the data. However, this
linear search algorithm is not scalable with increasing numbers
of PDCs. Chord utilizes finger tables to reduce the number
of intermediate nodes to log(N) level, where N denotes the
number of DHT nodes (see our previous work [3] for details).

This storage system improves the stability of the overall
system in three ways. First, since the data are disseminated in
a distributed manner on these storage nodes, any network link
failure between a PDC and a storage node will not result in the
data loss that a centralized measurement system experiences.
Instead, the PDC chooses an alternative node to put/get data.
We further adopt a real-time task scheduler on storage nodes
so that the response time of data transmission is predictable.
Third, since these storage nodes run autonomously and create
replicas of data in different storage nodes, a single storage
node failure will not result in data loss.

Data security needs to be considered in the storage system
since the data are disseminated among different storage nodes.
Since the put and get provided by our storage system are
general cloud services without any requirement for the format
of the data content, PDCs can easily integrate a public-key
cryptography with the storage system to secure data. For
example, PDCs can utilize RSA, an asymmetric encryption
algorithm, to encode data before transmitting it to storage
nodes. Then only the central PDC, which has the correspond-
ing private key, can decode the data.

One important part of our distributed storage system is to
provide QoS for the response time of any data access. To
this end, we adopt a hybrid EDF scheduler so that urgent
data requests are served at higher priority, i.e., ahead of
lower priority requests that were issued earlier but have not
yet been processed. This hybrid EDF scheduler includes two
components: the EDF task scheduler, which schedules data
requests in EDF order, and the EDF packet scheduler, which
transmits IP packets that carry data request messages in EDF
order. As a result, the deadlines carried in data messages are
considered at the application layer as well as the network layer
of the storage abstraction.

We have extended the Linux kernel to implement this hybrid
EDF scheduler. Since the Linux traffic control layer does not
support task deadlines embedded in data messages, which
are encapsulated by the application layer, we extended the
data structure for IP packets in the Linux network stack by
adding new fields to store timestamps. We also extended the
setsockopt system call so that it supplies these timestamps
upon request. The most significant changes to Linux to support
this functionality are as follows:

(1) We added a new field in the kernel data structure to store
the deadline of a socket transmission. (2) We extended the ker-
nel function sock setsockopt with option SO DEADLINE,
so that applications can specify message deadlines associated

with messages via setsockopt in user mode. (3) When the
application transmits a message, the kernel stores the message
data including the deadline of the socket. After this, the
deadline of the message is passed down to the transport
layer. (4) We implemented an EDF packet scheduler, which
provides the standard interface of Linux traffic control queue
disciplines [9]. The EDF packet scheduler utilizes a prioritized
queue to maintain messages in a min-heap data structure as a
linked list.

These novel extensions provide the capability of specifying
message deadlines for real-time tasks (applications). With
these provision, our EDF packet scheduler utilizes the message
deadlines to transmit packets in EDF order.

III. WAMS ON REAL-TIME DISTRIBUTED STORAGE

We next show how the electro-mechanical mode estimation
algorithm proposed in our recent paper [1] can be integrated
with real-time storage to deposit/retrieve data and communi-
cate between PDCs.
A. Prony and ADMM Algorithms

The problem of estimating the electro-mechanical oscil-
lation modes can be cast in discrete-time domain as least-
squares estimation of the common characteristic polynomial of
the transfer functions between the incoming disturbance input
and the measured outputs available from PMUs. For example,
consider a set of N PMUs. The following recurrence equation
can be derived from the transfer functions:

yi(n)
yi(n+ 1)

...
yi(n+ `)


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−b1
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...
−bn


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b

(1)

where yi(t) are the sample data available at time t =
0, 1, . . . ,M for PMU i, i = 0, 1, . . . , N . ` is an integer
satisfying n + ` ≤ M − 1, where M − 1 is the time index
of the most recent measurement. The problem is to compute
the vector b, and thereafter solve the roots of the characteristic
polynomial (whose coefficients are given by the entries of b)
to obtain the desired oscillation modes.

We use linear regression to calculate the coefficients b, i.e.,
we calculate the b that results in the least sum of squares, as
expressed in Equation 2:

min
b

1

2
||Hib− ci||2 (2)
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Fig. 4. PDC Tree Topology Example
Next, following [1], we enhance the centralized algorithm

by replacing the centralized PDC with multiple distributed
PDCs organized in tree topology. In the distributed algorithm,



regional PMUs transmit a data stream to their local PDCs.
PDCs at the same level in the tree topology estimate the
oscillation modes using the data within their own domains.
Thus, this problem becomes a global consensus problem over
a network of N regional utility companies, which can be
estimated via distributed protocols with one central indepen-
dent system operator (ISO) performing a supervisory step to
guarantee convergence. This ISO is the root PDC in the tree
topology. Fig. 4 depicts the tree topology of distributed PDCs.

We use the ADMM algorithm [10] to solve this global con-
sensus problem. To this end, PMUs and PDCs communicate
in steps as follows:

1) Regional PMUs send raw data to local PDCs periodically.
This transmission channel is marked as bold lines in Fig. 4.

2) Local PDCs update the local coefficients bi via the
calculations of Equations 1 and 2. PDCs send the estimation
results to parent PDCs in the tree (e.g., PDC1, PDC2, and
PDC3 send results to PDC7).

3) The central ISO-level PDC gathers the values bi and
broadcasts their mean b̄ back to regional PDCs. The mean
coefficients are used in the next iteration of coefficient esti-
mations at local PDCs.

ADMM guarantees that b̄ will eventually converge to the
solution of the centralized problem. The desired eigenvalues
can then be found by solving for the roots of the characteristic
polynomial given by b̄.
B. Prony and ADMM using a Distributed Storage System

The Prony and ADMM algorithms described in Sec-
tion III-A do not tolerate network failures. For example,
estimation results in the region monitored by PDC7 in Fig. 4,
which includes sub-regions monitored by PDC1, PDC2, and
PDC3, could not be sent to the central PDC (C-PDC) at the
ISO if the network channel between PDC7 and C-PDC fails.
The coupling of PMUs and PDCs in a tree topology reduces
its resilience. Thus, we enhance the algorithm by utilizing our
distributed storage system as a middleware to transmit data.
Fig. 3 illustrates the new architecture, where PDCs are used
as storage nodes and organized as a Chord ring to construct a
cloud storage service.

This distributed storage system decouples the strong de-
pendency between PDCs in the tree topology. In the new
architecture, each PDC maintains the IP addresses of a list of
storage nodes. In case of a network channel failure, another
storage node in the list can be picked as the gateway for
requests to the cloud storage service. Since data in the storage
system are distributed among storage nodes and redundant data
are stored in different nodes, the storage system can increase
the resilience of the Prony and ADMM algorithms.

In this scenario, the different steps of the ADMM algorithm
are modified as follows: 1) PMUs send raw data to their local
PDCs. 2) Local PDCs update the local coefficients bi and send
the estimation results to the storage system. 3) The C-PDC
gathers the values bi from the storage and sends their mean
b̄ back to the storage. The C-PDC sets up a delay threshold
(i.e., a deadline for data requests) when gathering the bi’s of
all local PDCs. If the deadline expires before the C-PDC gets

a bi of a particular local PDC from the storage system, the
previous bi of that local PDC is used to calculate the mean
b̄. (4) The mean coefficients b̄ are fetched by local PDCs
to engage in the next iteration of coefficient estimations. We
update the convergence condition in the centralized system
to ignore the impact of using previous data, which always
has a difference of zero. Equation 3 depicts the convergence
condition. b̄′ is the average coefficient estimate of the previous
iteration. Z is the number of new local PDC data that are used
to calculate b̄. δ is the convergence threshold.

1

Z
||b̄− b̄′||2 ≤ δ (3)

In addition, if the C-PDC fails, any one of the other PDCs
can turn into a C-PDC to perform the supervisory step to
guarantee convergence (as long as all PDCs agree on the same
new C-PDC, which is known as the leader-election problem
in Computer Science).

IV. EVALUATION
In this section, we present experimental comparing the

centralized measurement system with the resilient measure-
ment system, where the latter uses the distributed storage. We
inject network failures in our experiments to demonstrate the
advantage of the distributed storage.
A. Experimental Setup

In our experiment, 4 nodes simulate local PDCs and 1 node
simulates the central PDC. Each local PDC is associated with
one PMU, which provides real-time data (sample rate 60Hz).
This section provides the result of simulations running on
Linux on bare metal machines.

In the direct channel mode, these five PDCs communicate
directly via TCP (described in Section III-A). In contrast, in
the distributed storage mode, our storage system utilizes the
PDC nodes as the storage nodes to provide the cloud storage
service (see Section III-B).

We inject two types of network failures. For the first type,
we inject intermittent failures by probabilistically dropping the
data on the TCP channel between the PDCs and the C-PDC
for the direct mode and between the PDCs and the access
points of the storage system for the distributed mode. For the
second type, we inject long-term link failures by dropping
the data on the link after certain iterations. In the direct link
mode, the C-PDC has to use the historical data to calculate
the new coefficients while in the storage mode, an alternative
access point to the storage system provides the correct data.
For distributed storage, data becomes unavailable only if all
channels between a PDC and all access points of the storage
system are broken.

We compare the convergence speed and, more importantly,
the estimation accuracy of both modes when we inject proba-
bilistic failures. The convergence speed is represented by the
number of iterations that the algorithm performs to calculate
the global minimum coefficients b̄. Fewer iterations indicate
faster convergence. Then, we use the global minimum coef-
ficients to calculate the eigenvalues of the state matrix with
the Prony algorithm. The estimation accuracy is calculated as
the relative error between the calculated eigenvalues of the



state matrix and the actual eigenvalues (known as a priori
in our evaluation). Since the injected network failures may
cause the PDCs to use historical data instead of the recent
data, the ADMM algorithm can converge at different minimum
coefficients, which result in different estimation accuracies.
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Fig. 5. Convergence without Injected Failures

Fig. 5 depicts the imaginary part of one principal eigenvalue
in every 5 iterations when no failures were injected in the
experiments. The red line (for direct channel mode) matches
the blue line (for storage mode) and b̄ converged in both
modes after 63 iterations. When it converges, the imaginary
part of the principal eigenvalue is 5.5684. The relative error
is 0.072% (the actual value is 5.5644). In this experiment,
we used a threshold value of 0.00012 to stop the iteration
(see Eq. 3). When we injected failures (10% probability to
break a channel in each communication), the convergence
speed and accuracy in the storage mode, as shown in Fig. 6,
stayed the same since the PDCs can utilize another entry
points to the storage system to access data. By comparison,
the direct channel mode converged earlier (after iteration 15)
with the same stopping threshold as depicted by the black
line. However, it resulted in an inaccurate estimation (with
imaginary part of the principal eigenvalue 5.6974), which has
a relative error of 2.390%. The accuracy of the direct channel
mode decreases when failures where injected because of the
data loss. When we decrease the stopping threshold for the
direct channel mode, the number of iterations increases and
the accuracy increases. However, as shown in the red line, it
resulted in a less accurate estimation (relative error 3.127%)
than the storage mode even when it required more iterations.
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Fig. 6. Convergence with Injected Failures

Table. I presents the estimation accuracy when we injected
long-term failures to different numbers of PDCs (stop thresh-
old 0.00012). We calculate the relative error of the principal
eigenvalue and the L2 norm of all eigenvalues. The accuracy
of the storage mode is not impacted while the direct channel
mode has larger errors for long-term failures.

TABLE I
COMPARISON OF ACCURACY WITH LONG-TERM FAILURES

Mode # Failures Principal Eigenvalue Error L2-norm Error

Storage Mode 1 0.072% 0.105%
2 0.072% 0.105%
3 0.072% 0.105%

Direct Channel 1 2.237% 1.961%
2 2.346% 2.071%
3 2.448% 2.144%

V. CONCLUSIONS
In this paper, we present our resilient distributed software

infrastructure for Wide-Area Measurement Systems. As the
core component of our software infrastructure, our real-time
distributed storage system can satisfy the network QoS require-
ments of WAMS with failure tolerance and self-recoverability.
We integrated wide-area monitoring algorithms with our stor-
age system to demonstrate the benefit that our storage system
can provide to the oscillation modes estimation algorithm. As
a trade-off, our storage system runs as a middleware between
PDCs, which increases the time for a single communication.
However, our experimental results show that even when net-
work failures occur, the algorithms can use alternative access
points of the storage system to store/obtain data. Without our
storage system, the algorithms have to use historical data,
which decreases the accuracy and speed of convergence.
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