Avoiding Conditional Branches by Code Replication

FRANK MUELLER

Fachbereich Informatik
Humboldt-Universitat zu Berlin
Unter den Linden 6
10099 Berlin, Germany

SUMMARY

On-chip instruction caches are increasing in size. Com-
piler writers are exploiting this fact by applying a vari-
ety of optimizations that improve the execution perfor-
mance of a program at the expense of increasing its
code size. This paper describes a new optimization that
can be used to avoid conditional branches by replicating
code. The central idea is to determine if there are paths
where the result of a conditional branch will be known
and to replicate code to exploit it. Algorithms are
described for detecting when branches are avoidable,
for restructuring the control flow to avoid these
branches, and for positioning the replicated blocks in
the restructured code. The results indicate that the
optimization can be frequently applied with reductions
in both the number of instructions executed and total
instruction cache work.

INTRODUCTION

This paper describes a new approach for avoiding
conditional branches by using code replication. This
approach is accomplished in three steps for each loop level
of a function. First, analysis is performed to determine
whether any conditional branches can be avoided. Second,
an algorithm is used to determine how the control flow can
be restructured to avoid conditional branches by replicating
basic blocks. At this point heuristics are used to determine
whether the transformation is worthwhile. Finally, new
code is replicated and the physical position of the basic
blocks is established.

RELATED WORK

There are several optimizations that have been devel-
oped in an attempt to improve performance despite the
penalty of increasing code size. Inlining replaces a call by
the body of the routine being invoked. Increased code size

DAVID B. WHALLEY

Department of Computer Science
Florida State University
Tallahassee, FL 32306-4019, U.SA.
e-mail: whalley@cs.fsu.edu
phone: (904) 644-3506

results when a routine is inlined from more than one call
site. Execution performance benefits often occur since the
call and return are avoided and more information is avail-
able for other optimizations [DaH88]. Loop unrolling
replicates the body within a loop. This optimization
reduces the number of compare and conditional branch
instructions executed by the loop and can result in more
effective scheduling of instructions within the loop body
[HeP90]. Replicating portions of basic blocks has been
performed to avoid pipeline stalls for superscalar machines
[GoR90]. Software pipelining replicates code associated
with loops to produce a revised kernel of the loop that has
fewer pipeline stalls [Jai91].

Detecting the dependences between loop iterations
has been described by Banerjee [Ban93]. This analysis has
been used to reorder loop iterations to enhance performance
for vectorization, parallelization, and caching.

Mueller and Whalley investigated avoiding uncondi-
tional jumps by code replication [MuW92]. Unconditional
jumps were replaced with a replicated sequence of instruc-
tions that either reaches a return or falls into the block that
positionally follows the original unconditional jump. The
growth in code size was minimized by choosing the short-
est path for the replacement.

A superoptimizer will generate an exhaustive set of
bounded sequences of instructions with the goal of finding
a sequence that will produce the same effect as a more
expensive sequence of instructions. The more expensive
sequence can then be recognized in a traditional optimizer
and replaced with the less expensive sequence. This tech-
nique has been used to eliminate conditional branches over
short instruction sequences in many instances on the IBM
RS/6000 [GrK92].

The optimization described in this paper can be
viewed as partial redundancy elimination (PRE) of condi-
tional branches. PRE traditionally places copies of a com-
putation at other points in the control flow to force the orig-
inal copy to become fully redundant so it can be deleted
[MoR79]. The transformation described in this paper dif-
fers since it involves restructuring the control flow by repli-
cating entire sequences of basic blocks.

The research described in the current paper was
inspired by the work of Krall [Kra94]. Similar work was
later published by Young and Smith [YoS94]. Krall often
found a high correlation between the past results of
branches and the future results of the same or different
branches in a loop. This correlation typically increased
when code was replicated in the loop to distinguish
between different loop paths. The authors of this paper sus-
pected that the high correlation observed by Krall may indi-
cate that many paths in the replicated code were not possi-
ble due to data dependencies. Thus, many branches in the
replicated code could potentially be avoided.

MOTIVATION

While it has been shown that most unconditional
jumps can be eliminated by code replication [Muw92], it is
obvious that fewer conditional branches can be avoided.
One may be inclined to believe that such transformations
would only rarely be possible. However, there are many
common instances in programs that can be improved. The
examples in this section are given in C code to more con-
cisely depict the transformations performed. The control
fow of the restructured C code segments would be compa-
rable to arestructured flow g raph of basic blocks. Note that
the actual implementation of this general optimization was
performed in the back end of a compiler and many other
types of transformation instances were applied.

l. Often, a fbg is used by a programmer to exit a loop.
For example, consider the following segments of code. The
original loop will exit if either a general condition or a fleg
is false. The code to test the f | ag variable is not within
the loop after restructuring since the replication of the code
associated with statement "C; " allows this test to be
avoided. The fag will be zero or nonzero depending upon
the initial path taken and all subsequent tests of the variable
fl ag are eliminated. Other optimizations that could be
applied to further improve the code are depicted by italiciz-
ing the code portions that can be removed. The test of
cndl after f| ag is set to zero can be removed since the

ORI G NAL AFTER RESTRUCTURI NG
I ag = flag = 1;
whi e (cndl && flag) { if (cndl && flag)
A, do {
if (cnd2) {
|f (cnd2) {
flag = 0;
} flag = 0;
C C
} if (cndl)
br eak;
br eak;
}
G

mhi?e (cndl);

result of the conditional branch has no effect. The initial
test of the f | ag variable would be avoided since the com-
parison is known to be true. In addition, the remaining
assignments to f | ag can be removed, assuming that the
value is not used after the loop. Finally, space for the local
f I ag variable would not be needed given that this was the
only place in the function in which it was used.

Il. Often, conditions may be tested that will result in a
conditional branch aways branching or aways falling
through once the branch has a certain result. For instance,
consider the following code segments. The left code seg-
ment contains a simple loop that will exit when both condi-
tions are false. Assume that the variable i is only incre-
mented in the loop. If the condition i < 100 is ever
false, then it will always remain false for the remainder of
the loop. The right code segment shows the testing of the
fi rst condition can be avoided after it becomes false.

ORI G NAL
while (i < 100 || sonecnd) {
A

AFTER RESTRUCTURI NG
while (i < 100) {
A

i :H'; i ll-+;
J mhi%e (somecnd) {
A

i ’++;
}

Similar behavior may be predicted for equality and
inequality tests. Given that a variable is only incremented
or only decremented for every iteration of aloop, an equal-
ity test of that variable with a loop invariant value will only
be true a most once for the execution of the entire loop.
Likewise, atest for inequality of that variable will only be
false at most once.

I11. A programmer may also often repeat conditions in
i f statements to improve readability. For instance, check-
ing whether a pointer is not NULL may be done severa
timesin differenti f statementsin the sameloop. Consider
the following segments of code. Assume that the variable p
in the original code segment is not affected by the code in B

ORI G NAL
mhlle (somecnd) {

AFTER RESTRUCTURI NG
mhlle (somecnd) {

If (p){
(*p == vall)
B;

|f (p && *p == val 1)

else
G else
i f (p && *p == val 2)
i f (p == val 2)

else
E; else
F: goto doE
}
el se {
C;
doE: E
}
F

}

and C, but is affected by the codein Aor F. Thetest of p in
the second i f statement can be avoided by replicating the
codein C.

IV. Aninvariant condition may be tested inside of aloop.
In fact, loop invariant conditions are often generated due to
applying other optimizations. Consider the nested loops in
the following left code segment. It appears there are no
apparent invariant conditions. Yet, the inner loop will be
transformed to avoid executing an unconditional jump at
the end of the loop body on each iteration. As shown in the
middle code segment, the test condition is also tested ini-
tially before the loop is entered. This condition is loop
invariant in the outer loop and can be avoided by replicating
code as shown in the right code segment.

ORI G NAL AFTER OPTI M ZATI ON RESTRUCTURED
do { do { A
A A i =0;
for (i=0; i =0; if (0<N) {
i <N; if (0<N) goto doB;
i ++) do { do {
B; B; A
C i ++; i =0;
) R do {
while (cnd); while (i<N doB: B;
C i++
) I
while (cnd); while (i<N);
G
1
while (cnd);
el se {
goto doC;
do {
A
doC: C
}
while (cnd);
}

A more traditional technique, called unswitching,
would simply test the loop invariant condition initially and
then enter one of two loops based on the result [LRS76].
Note that the total code replicated is greater in the general
approach described in this paper than it would be for
unswitching. Thisincrease is due to only testing the invari-
ant condition when it needs to be executed. Unlike
unswitching, the general approach described in this paper
will never increase the dynamic number of conditional
branches executed.

DETERMINING WHETHER BRANCHES
CAN BE AVOIDED

Analysis is performed to determine whether the con-
ditional branches in a loop can be avoided by replicating
code. The compiler fi rst calculates the set of registers and
variables upon which a conditiona branch (and its associ-
ated compare instruction) depends. This set was calcul ated
by expanding the effects of the compare instruction associ-
ated with the conditional branch. For instance, consider the
following SPARC instructions represented as RTLsS

(Register Transfer Lists).

r{1]=H1[_gl; /* sethi %i(_g), %l */
r{8]=Rr[1]+Lq _g]]; /* Id [Yg1+% o(_g)], %0 */
| C=r[8] ?5; /* cmp %0, 5 */
PC=I C<0, L20; /* bl L20 */

The effect of the comparison can be expanded to:
| C=R[HI [_g] +Ld _g]] ?5;

In addition, for each basic block in the loop the compiler
determines the set of registers and variables that are
affected by instructions within the current block. Thus, the
compiler can determine that a basic block updating the
global variable g could affect the result of this conditional
branch. Updates to the registers r[1] (Y@1) or r[8]

(%00) would have no effect.

The compiler next attempts to determine if there
exists a path through a loop from the point immediately
after a conditional branch is encountered to the same
branch without the comparison associated with the branch
being affected. If a conditional branch is not affected in a
path in which it is encountered, then that same path could
be taken again and the result of executing the conditional
branch would not change.

There are cases where a conditional branch could be
affected in each path it is encountered, but still could be
avoided. One instance is when a basic block can affect a
conditional branch, but only if the result of the branch had
not aready been in a specifi ¢ direction (as depicted in
Example Il in the motivation section). Detecting this situa
tion requires remembering whether each branch was last
taken or not.

The processing of a block may also make the result
of a conditional branch known at that point. This situation
may occur as the result of updating a variable or register (as
depicted in Example | in the motivation section) or when
the result of one conditional branch subsumes another (as
shown in Example 111 in the motivation section). The com-
piler needs to detect if the conditional branch can be
reached from this block without being affected again.

The algorithm for determining which branches can
be potentially avoided is shown in Figure 1. Each block
will have an in and an out state indicating the branches
whose results are known at the beginning and end of the
block.! A branch result can become known at a point in the
fow graph due to the branch being executed, another
branch being executed whose result subsumes the branch,
or the effects of a block. A known branch can become

! The actual algorithm is a bit more complicated. Two in and out
states were actually calculated for each block. Some effects will only
make a branch result unknown if the branch result had been in a specifi ¢
direction. In these situations, only the out state of the block associated
with the specifi c direction affected will be the one updated.

unknown due to an effect within a block. A branch is
potentially avoidable if it isin the block’s in state and is not
affected within the block (or is made known due to an
effect within the same block).

DO
FOR each block B in the loop DO
B->in:= NULL.
FOR each immediate predecessor P of B DO
B->in := B->in 0 P->out.
IF P contains a branch THEN
B->in := B->in O (any branches that
the transition from P to B subsumes).
END IF
END FOR
B->out := B->in.
B->out := B->out - (the branches that B affects).
B->out := B->out 0 (the branches made known
by the effectsin B).
IF B contains abranch THEN
B->out := B->out [] B.
END IF
END FOR
WHILE any changes

Figure 1: Finding Avoidable Branches Algorithm

An exampleis given in Figure 2 to illustrate the algo-
rithm. Figure 2 (a) depicts the origina loop. Blocks 2, 3,
and 7 have a conditional branch. Block 4 affects the condi-
tional branch in block 3 and block 6 affects the conditional
branch in block 2. The conditional branch in block 7 is
affected by other instructions in the same block. Figure 2
(b) shows the branches that are potentially known at the
entry and exit point of each basic block. The branches for
blocks 2 and 3 are avoidable since they are in the in states
and not affected within their own blocks. While the branch
in block 7 isin the in state for that block, the branch is not
avoidable since it is affected within block 7. Figures 2 (c)
and 2 (d) will be discussed later in the paper.

RESTRUCTURING THE CONTROL FLOW
TO AVOID BRANCHES

Once it has been determined that one or more condi-
tional branches in a loop can be avoided, the control fow
within the loop can be restructured. An algorithm to
accomplish the restructuring is based on keeping a state in
each block for each avoidable conditional branch in the
loop. A block can inherit its state from a predecessor block
or change its state due to an effect within the block or due
to being an immediate successor of an avoidable condi-
tional branch. A state associated with a conditional branch
can have one of three values: unknown, fall-through, or
branch.

An unknown state indicates that it is not known
whether or not the branch will be taken. A block will typi-
caly have this state for a conditional branch if the branch

(a) Original Loop

(b) Potentially Known Branches

2in: 2,3,7
3in: 2,3,7
4in: 2,3,7
5in: 2,3,7
6in: 2,3,7
7in: 2,3,7

2out: 2,3,7
3out: 2,3,7
4 out: 2,7
5out: 2,3,7
6 out: 3,7
7 out: 2,3,7

(c) Restructured Control Flow (d) Positioned Code

Y
[=~ o

Figure 2: Restructuring a Loop to Avoid Branches

has not been encountered previously in the control fow. A

block will also have an unknown state for a conditional
branch if the block affects the conditional branch in a man-
ner where the result of executing the branch cannot be pre-
dicted. The state for a conditional branch within a block
will be set to fall-through or branch if the immediate prede-
cessor was the block containing the conditional branch.
The state to be set depends upon whether the successor is a
fall through or target of the branch.

The state for a conditional branch can also be set to a
fall-through or branch when an effect in another portion of
the loop causes the result of the comparison to be known.
Table 1 shows three such examples. Case | shows another
block setting one of the operands of the expanded compari-
son to a constant. Thus, the result of the conditional branch
can be determined to be fall-through at that point. Case Il
illustrates that the state of a conditional branch may not be
changed even though a variable or register within the asso-
ciated expanded comparison is updated. The other block

Case Decidable Effect

Avoidable | | C=r[8] ?0; /* cmp %0, 0 */

| Branch PC=I C==0, L1; /* be L1 */

’ Other r{8]=-1, /* move -1, %0 */
Block

Avoidable | 1 C=r[2]?50; /* cnmp %92, 50 */

" Branch PC=1C0,L2; [/* bg L2 */

' Other r[2]=r[2]+1; /* add 1, %2, %g2 */
Block

Avoidable | 1 C=r[2]?76; [/* cnp %92, 76 */

" Branch PC=I C0, L4; /* bg L4 */

’ Other IC=r[2]?83; /* cnp %2, 83 */

Block PC=I C<=0,L3; /* ble L3 */

Table 1: Decidable Effects on Branches

will have no effect on the result of the conditional branch
when the state is already branch. Case Il depicts a situa-
tion where one conditional branch may aso subsume
another conditional branch. In other words, the direction
taken by one conditional branch may indicate the direction
taken by another conditional branch in the same loop.
Assume the instructions in the other block are executed and
the branch is not taken. The avoidable conditional branch
will betaken if r [2] is not affected between the execution
of the two branches since the value in r [2] is guaranteed
to be greater than 83. Note that the conditional branch can-
not be avoided if the conditional branch in the other block
istaken.

In general, a conditional branch can only be poten-
tially subsumed by another conditional branch when one
argument of each comparison is identical and the other
argument of each comparison is a constant or the same
invariant value. Table 2 depicts the different cases when
the result of one conditional branch subsumes another
branch.2 Column 1 shows a known result from one condi-
tional branch. This result is determined by not only the
operands of the comparison and the branch relational oper-
ator, but also by whether or not the branch was taken. For
instance, the known result after the conditional branch was
not taken in the other block of Case Il in Table 1 would be
r{2] > 83. The second column in Table 2 depicts the
condition associated with the branch to be subsumed. For
instance, the subsumable condition associated with avoid-
able branch in Case I1l of Table 1 would ber[2] > 76.
The third and fi fth columns of Table 2 defi ne the require-
ments for the avoidable branch to jump or fall through,
respectively. A conditional branch with the condition

2 Note determini ng that a branch can be avoided when it is encoun-
tered and not affected in a path (as shown in Figure 2) isrealy a case of
the branch subsuming itself.

r[2] > 76 will jump when it is known that r[2] >
83, as indicated by the jump requirement in the third row
from the bottom of Table 2.

The restructuring algorithm shown in Figure 3 will
produce a dummy graph to effi ciently represent the revised
control fow of the loop. If it is later determined that the
restructuring is worthwhile, then the dummy graph will be
used to modify the actual control fow of the function. The
central idea of the algorithm in Figure 3 is that a new node
will be added when no current node for that block exists
with the same set of states for the avoidable branches. Note
that since each branch can have 3 states, the upper bound
for the code size increase is O(3"), where n is the number
of branches that can be avoided. In practice, such increases
have not been observed. However, to avoid an excessive
code increase, a heuristic was used to limit the value of nin
asingle loop. If more than n branches could be avoided in
a loop, then n branches are chosen based on the likelihood
of being reached from the loop header. A conditional
branch in a node that has a known (fall-through or branch)
state for that conditional branch will be eliminated in the
restructured code. Note that the associated comparison and
other dead instructions may be eliminated as well.

Set theinitial dummy node to be the header of the original loop
with a state of unknown for all avoidable branches.
Set the current dummy node to be thisinitial node.
WHILE there are dummy nodes to process DO
FOR each successor of the current dummy node DO
Calculate the state of the successor.
IF anode associated with the successor exists with the
same exact state for all avoidable branches THEN
Connect the current dummy node
to that existing node.
ELSE
Create a new dummy node with this state,
connect the current dummy node to it, and
append it to list of dummy nodes.
END IF
END FOR
Advance to the next dummy node to be processed.
END WHILE

Figure 3: Restructuring Algorithm

Figure 2 (c) shows the restructured control flow
(dummy graph). The state is given to the left of each block,
which is depicted with the block number of the conditional
branch and whether it fell through (F) or jumped (J) in the
origina loop. For instance, 2F3J indicates that the condi-
tional branch in block 2 will fall through next time and the
branch in block 3 will jump. A basic block represented
with a dashed box indicates that the conditional branch
(and typicaly its associated comparison) is unnecessary
and will not be placed in the restructured code.

known subsumable jump fall through
- example - example
result branch requirement requirement
v=cl v=c2 cl=c2 v=10 - v=10 cl#c2 v=10 - =(v=15)
since 10 =10 since 10 # 15
V£ 2 cl#c2 v=10 - v#15 cl=c2 v=10 - =(v#10)
since 10 # 15 since 10 =10
vrel2 c2 clrel2c2 v=10 - v<20 =(cl rel2 c2) v=10 - =(v>20)
since 10 < 20 since —(10 > 20)
v#cl v=c2 N/A N/A cl=c2 vZ10 - =(v=10)
since 10 = 10
vV #C2 cl=c2 vz10 - v£10 N/A N/A
since 10 =10
vrellcl vrel2 c2 addeq(rell) = addeq(rel2) | v=11 - v>10 || opp(noeq(rell), noeq(rel2)) | v=10 - =(v<10)
&& since ">’ =2’ && since opp(’>’, ’<’)
cl* addeq(rell) c2* && 11>10+1 =(c1* addeq(rel2) c2*) && =(10 < 10-1)
v=c2 N/A N/A c1 noeq(rell) c2 v=20 - =(v=10)
since 20 > 10
vV # 2 ¢l noeq(rell) c2 v=20 - v£10 N/A N/A
since 20 > 10
where
(1) visavariable
(2) cisaconstant

(3) relis’<’,’<’, > or >’
(4)
(%)
(6)
@)

opp(rell, rel2) returns true when (x relly) && (x rel2 y) can never both be true (e.g. X >y && x <)
noeq(rel) returns the relational operator without any equality (e.g. noeg(’=") and noeq(’>’) both return ’>")
addeq(rel) returns the relational operator with an equality (e.g. addeq(’=") and addeq(’>") both return ’=>")
C* is a constant that is adjusted by 1 in the appropriate direction if addeq(rel) != rel

Table 2: Subsumption Requirements

Note that if block 3 is reached, then the conditional branch
in block 2 need never be executed for the remainder of the
loop. Likewise, if block 5 is reached, then both the condi-
tional branches in blocks 2 and 3 can be subsequently
avoided.

AVOIDING BRANCHES NOT
WITHIN INNERMOST LOOPS

The algorithm shown in Figure 3 was also extended
to avoid branches that are not in the innermost loops of a
program. The loops of a function are processed in decreas-
ing order of their nesting level. Once an inner loop has
been processed, the effects of all of its blocks are unioned
before processing the next outer level loop. While process-
ing the next outer loop, the inner loop is treated as if it were
a single block. The outermost level of a function is treated
as a loop with no backedges. Only branches at the current
loop level are considered candidates for being avoided.
Furthermore, the effects of an inner loop are not currently
used to make the states of branches at outer loop levels
known.

COMPRESSING THE RESTRUCTURED GRAPH

Occasionally, unnecessary nodes are introduced by
the restructuring algorithm. For instance, consider the con-
trol flow o f a function depicted in Figure 4 (a). Assume the
conditional branch in block 2 subsumes the conditional
branch in block 7. If the branch in block 2 jumps to block
7, then it is known that the branch in block 7 will transfer
control to block 8. Likewise, if block 2 falls through to
block 3, then the branch in block 7 will transfer control to
block 9. However, the execution of block 6 affects the
branch in block 7. Figure 4 (b) shows the restructured con-
trol flow u sing the algorithm in Figure 3. Duplicate nodes
for blocks 3, 4, and 5 are generated since they have a differ-
ent state for the branch in block 7. But these duplicate
nodes are unnecessary since the state of the branch will be
unknown upon transition to block 6.

Once the loop has been restructured, the dummy
graph is then compressed to eliminate any unnecessary
nodes. The algorithm for compressing the graph is shown
in Figure 5. The central idea is that the state of a branch in
a node will become unknown unless it can reach a node
containing that branch with that state. Figure 4 (c) shows

(a) Original Control Flow (b) Restructured Control Flow

Figure 4: Eliminating Unnecessary Dummy Graph Nodes

the control fow o f Figure 4 (b) after compressi on3

REPLICATION AND POSITIONING
FOR THE RESTRUCTURED CODE

Given the revised control fow represented in the
dummy graph, the replication and positioning for the
restructured code is accomplished in multiple stages. First,
a set of heuristics are applied to determine if avoiding the
conditional branches should be performed. Second, the
blocks of the original loop are replicated. Third, the blocks
are positionally ordered to reduce the number of uncondi-
tional jumps in the replicated code. Finally, a number of
optimizations are reapplied to the function in order to
exploit the ssimplifi ed control flow in the restructured code.

31t may be possible to perform this analysis on the control fow as-
sociated with the original loop and adjust the states of the dummy nodes as
they are produced in the algorithm shown in Figure 3. Thus, the last loop
in Figure 5 would not be required if unnecessary nodes are never intro-
duced.

FOR each node in the dummy graph DO
IF the node contains a branch and has a known state
for that branch THEN
Mark the node as reaching that branch.
END IF
END FOR
DO
FOR each node in the dummy graph DO
IF the node has a known state for a branch and
an immediate successor reaches that branch THEN
Mark the node as reaching that branch.
END IF
END FOR
WHILE any changes
FOR each node in the dummy graph DO
Set the state of the node as unknown for any branch
that is not marked as having been reached.
IF another instance of the node exists
with the same state THEN
Delete the node and adjust the transitions in the graph.
END IF
END FOR

Figure 5: Compression Algorithm

The fi rst stage estimates the increase in size of the
restructured code. The number of additional instructions
for a loop was limited to avoid a signifi cant increase in
code size. When this limit was exceeded, the analysis was
reinvoked with a decremented number of avoided branches
to further reduce the amount of replicated code.

During the second stage, the restructured code is gen-
erated by replicating the corresponding blocks of the origi-
nal loop and adjusting the control fow according to the
dummy graph representing the revised control fow. This
includes the elimination of avoidable branches and adjust-
ing the control-fow transitions to enter and leave the
restructured code instead of the original loop.

During the third stage, the loop information within
the revised control fow i s calculated. This information is
subsequently used to adjust the positional order within the
restructured code by calling the procedure order, which is
shown in Figure 6. This recursive procedure is initialy
invoked with an empty list, the first block of the restruc-
tured code, and another empty list as parameters. The out-
put of the algorithm is a list of blocks corresponding to a
positional order such that unconditional jumps are avoided
when possible. The algorithm attempts to reduce the num-
ber of unconditional jumps via code positioning. While the
restructured control fow r educes the number of conditional
branches, it also introduces replicated blocks within new
loops. It isimperative to find a‘*good’” positioning of these
blocks or the benefi t of avoided conditional branches may
well be outweighed by the introduction of unconditional
jumps to adjust the replicated control flow.

PROCEDURE order(List, B, S-List)
IF B not marked as done AND
none of the members of S-List dominate B THEN
IF B is header of loop L AND there exists an
unmarked successor of an exit block in L THEN
B := unmarked successor of this exit block in L.
END IF
Mark B as done.
Sist := successors of B ordered by loop frequency.
WHILE S-list not empty DO
S:=head of S-list.
Slist :=tail of Sist.
order(List, S, S-ist).
END WHILE
Insert B at the head of List.
END IF
END PROCEDURE

Figure 6: Positioning Algorithm

The algorithm works as follows. The recursive proce-
dure order terminates when all blocks are marked as done.
The dominator check forces the recursion to backtrack
along the control fow w hen a block is encountered that is
dominated by an unprocessed sibling block. The dominator
check provides the means to position if-then-else state-
ments (even nested ones) before any blocks following the
if-then-el se construct.

When a loop header is found, the algorithm follows
the control fow b ackwards to an exit block of the loop. It
then processes an unmarked successor of the exit block
fi rst. Thus, the algorithm attempts to process the exit block
lagt, i.e. the exit block is positioned at the bottom of the
loop. This avoids an unconditional jump at the bottom of
the loop.

The successor list Slist of the current block is
ordered in monotonically increasing loop frequency of the
blocks. On a tie of frequency, a block outside the current
loop (that includes block B) appears first in the list. This
ordering ensures that the recursion is invoked on lower-
frequency successor blocks first, thereby inserting these
blocks in List before any higher frequency blocks. (Notice
the post-recursion action to insert block B at the head of
List.)

As an example, consider the restructured control-flow
graph in Figure 2 (c). This graph contains a sequence of
blocks, 5-7-2-3, in a separate loop. If block 3 was position-
ally the last block in the loop, it would contain an uncondi-
tional jump to block 5. The above algorithm will eventually
result in acall to order(listl, 5, list2). The procedure deter-
mines that 5 is a loop header. It then follows the control
fow b ackwards inside the loop to fi nd block 2, a successor
of exit block 7. This results in a sequence of calls to order
with blocks 3, 5, and 7, following the control fbw f or-
wards. On the post-recursion action, these blocks are

collected to yield the List = {2, 3, 5, 7}. This positiona
order avoids any unconditional jumps inside the loop. The
resulting positioned loop is shown in Figure 2 (d). The
dashed boxes indicate basic blocks where conditional
branches were eliminated. Notice that there are uncondi-
tional jumps following two instances of block 7 to block 8
as indicated by the dotted transitions. These jumps cannot
be eliminated, but they have been moved outside of any
loop within the restructured code. Thus, their execution
frequency will be much less on average compared to any
instruction inside a loop.

During the last stage, a number of standard optimiza-
tions are reapplied to the replicated code. This allows the
compiler to take advantage of the simplifi ed control fow
due to the elimination of conditional branches. The absence
of a branch and it's comparison operation often results in
the elimination of a register assignment if the register was
dead after the comparison. The more effective reapplied
optimizations include: dead code elimination (to delete
dead assignments), branch chaining (to minimize the over-
head of branches from within the replicated code to it's sur-
rounding code), global register allocation, common subex-
pression elimination, and code motion. The latter optimiza
tions are applied to take advantage of the new loop struc-
tures within the replicated code. The effectiveness of
avoiding conditional branches can only be fully exploited
when these optimizations are reapplied.

At an earlier stage of this work, other basic block
reordering algorithms were tested. It was found that the
benefi t of avoided conditional branches (and their corre-
sponding compares) was sometimes outweighed by intro-
ducing unconditional jumps on frequently executed paths.
Thus, an increase in the number of executed instructions
occasionally occurred. The algorithm described in Figure
6, on the other hand, yielded the best results for programs
with different replication patterns by introducing fewer
unconditional jumps.

RESULTS

The optimization to avoid conditional branches was
implemented in the compiler back-end VPO (Very Portable
Optimizer) [BeD88]. The analysis and replication were
performed after all other optimizations had been initially
applied, except for fi lling delay slots, to maximize the bene-
fit of the traditional optimizations fi rs Measurements
were collected on code generated by the compiler using
EASE (Environment for Architectural Study and Experi-
mentation) [Daw9l] on the SPARC architecture for a

4 Unstructured loops can be introduced in the restructured code.
Thus, loop optimizations should be initially applied before the restructur-
ing optimization.

Name Description Static Instructions Dynamic Instructions Cache Information
Total Restruct Total Restruct Branch | HitRatio Change Work
banner banner generator +18.24% +170.59% -4.43% -543% -10.51% 98.97% -0.34% -1.77%
cacheall cache simulator +3.08% +21.89% -2.23% -1858% -23.48% 76.21% +0.03% -2.30%
ca calendar generator +21.51% +120.97% -3.20% -12.48% -40.13% 99.80% -0.35% -0.21%
ctags C tags generator +10.53% +35.49% -1.67% -2.07% -5.91% 98.92% -0.40% +1.54%
dhrystone | integer benchmark +8.60% +18.23% -1.06% -7.44% -20.00% 84.62% -0.70% +1.56%
join relational join fi les +6.65% +17.09% -7.91% -9.87% -6.37% 98.15% -0.79% -2.28%
od octal dump +36.32% +129.09% -957% -12.18% -12.99% 95.56% +1.60% -18.89%
sched instruction scheduler | +34.25% +87.02% -5.55% -839% -10.29% 96.00% +1.22% -13.15%
sdiff side-by-side fi le diffs +1.25% +3.78% -4.15% -9.01% +0.00% 97.45% +0.09% -4.78%
wc word counter +39.22% +172.73% | -11.11% -12.82% -22.15% 99.89% -0.07% -10.52%
whetstone | FP benchmark -0.89% -8.74% -6.81% -59.18% -75.00% | 100.00% -0.00% -6.45%
average +16.25% +69.83% -5.24% -14.31% -20.62% 95.05% +0.03% -5.21%

Table 3: Measurements

number of C programs, which included benchmarks, UNIX
utilities, and user applications.

Table 3 shows the measurements for these programs.
Each program was tested with and without avoiding condi-
tional branches. The numbers in the table represent the per-
centage of change after applying the new optimization.
Column 3 refers to the change in program size. Column 4
shows the increased percentage of static instructions only
within the restructured code portions (loop or function
level). Column 5 depicts the decrease in the total number
of executed instructions. Column 6 illustrates the reduction
of executed instructions only within the restructured code.
Column 7 reveals the dynamic change of branch instruc-
tions. Columns 8 and 9 report the total hit ratio before the
new optimization and the change in the hit ratio after apply-
ing the new optimization, respectively. Finally, column 10
refers to the effect on cache work for a direct-mapped 1kB
instruction cache with a 16 byte line size. The cache work
is calculated by the formula: cache work = cache hits +
cache misses * miss penalty. The miss penalty was esti-
mated at 10 cycles and a hit at 1 cycle [Smi82]. The cache
work is a better measurement than the hit ratio for the eval-
uation of optimizations when the number of executed
instructions changes [DaH92].

The static measurements show that replication results
in an increase of code size of about 16%, depending on
how many conditional branches could be avoided. The
original code portions increased by about 70% on average
when they were restructured.

The dynamic measurements indicate a savings of
executed instructions of about 5% on average.5 The

® The whetstone benchmark was reduced in code size due to a chain
of unconditional jumps in whet1(), accompanied by sets and tests of the
same local variable. These chains were greatly simplifi ed by the new qti-
mization. Furthermore, the code positioning algorithm eliminated uncon-

restructured code resulted in about 14% fewer instructions
executed compared to their original loops and 20% fewer
executed conditional branches. The numbers indicate that
the local savings of this new optimization can be substantial
when the origina code portion is compared with the
restructured code. The overall savings for a program
depend on the execution frequency of the restructured loop.
It was surprising to fi nd that even kenchmark programs,
such as dhrystone and whetstone, contained opportunities
for the new optimization with respectable savings.

The hit ratio and it's change provides a general idea
of the test programs caching performance. However, for
reasons mentioned previously, the cache work is a better
indicator to evaluate the new optimization. The cache work
indicates that the reduced number of executed instructions
outweighs the increase in code size on average, even for a
relatively small cache size of 1kB. These results improved
with larger cache sizes. Due to changes in the layout of
basic blocks, the cache measurements may vary from pro-
gram to program. Thus, the average results seem more
conclusive than the cache work of any single program.

Figure 7 shows the proportional benefi t of the differ-
ent techniques employed to avoid conditional branches.
Not affected indicates branches that were encountered and
not affected when reached on a subseguent loop iteration
(as shown in Figure 2). These cases account for about 1/3

ditional branches (due to gotos) in the restructured code. This resulted in
an overall reduction of code size even after replication. For sdiff, the num-
ber of compares and branches did not change. This was due to input data
that never resulted in executing the restructured code portions where con-
ditiona branches were avoided. The dynamic savings were due to the ex-
ecution of fewer unconditional jumps. It was observed that restructuring
the code provided new opportunities to avoid unconditional jumps via
code positioning.

of the avoided branches. Subsumption means avoiding
branches whose direction can be inferred from the result of
other branches (as depicted in Case Il of Table 1) and
accounts for over 1/5 of the savings. Branches avoided due
to constant comparisons imply that an expanded compari-
son was known due to an effect along a control-flow p ath
(see Case | of Table 1) and are responsible for over 40% of
the savings. In a few cases, branches will follow the same
direction since the result of the comparison can no longer
be affected (as portrayed in Case Il of Table 1).

35.65% Not Affected

20.71% Subsumption

3.34% Same Direction

40.30% Constant Comparison
Figure 7: Sources for Avoiding Branches

A number of programs beyond the set in Table 3
were tested and it was found that some conditional
branches could be avoided in every one of these programs.
Yet, about 1/3 of the programs resulted in an execution ben-
efit of 1% or less. It was also observed that the effec-
tiveness of avoiding conditional branches is highly data
dependent. If branches are avoided in loops with high
execution frequencies, then the benefits can be quite high.
This observation would suggest that avoiding conditional
branches could be selectively applied where profiling data
indicates that high benefits are more likely.

FUTURE WORK

There are several areas that could be explored to pro-
vide more opportunities for avoiding conditional branches.
The effects at each exit of an inner loop are not currently
used to avoid branches in outer loops. Yet, the results of
inner loops are often tested in conditions in outer loops.
The authors are considering applying the optimization to
the control flow o f an entire function all at once, rather than
one loop at a time. Thus, the optimization could also be
applied to functions containing unstructured loops. In addi-
tion, loops containing indirect jumps and associated jump
tables are not currently restructured.

Opportunities for avoiding conditional branches
would increase if more information was available. For
instance, flags are often declared as global variables. A call
to many functions, such as pri ntf, would not affect a
global flag. However, the current analysis, which does not
perform interprocedural analysis, has to assume any global
variable could be affected in an unknown manner whenever

-10-

any function is invoked. In addition, it was assumed that
any variable could be updated whenever a store through a
pointer was encountered. Interprocedural and pointer anal-
ysis would provide additional opportunities for avoiding
branches.

CONCLUSIONS

This paper described a general approach for avoiding
conditional branches by replicating code. The restructured
code often contains simplified control flow that allows other
optimizations to be applied more effectively. Vectorizing
and parallelizing compilers, in particular, may benefit from
loops with fewer conditional branches. The optimization
could often be applied and resulted in significant perfor-
mance improvements for the code portions on which the
transformations were applied. The benefits of this opti-
mization will improve as instruction cache sizes continue to
increase. There are also promising future improvements
that could be made to allow a greater number of conditional
branches to be avoided.

ACKNOWLEDGEMENTS

The authors thank Jack Davidson for allowing vpo to
be used for this research. Ricky Benitez developed the
ability in vpo to expand the effects of an RTL for use in
other optimizations. This ability was used to expand the
effects of compare instructions, which proved quite useful
for determining the set of registers and variables upon
which a conditional branch depends. Brad Calder, Emily
Ratliff, Randy White, and the anonymous reviewers pro-
vided several helpful suggestions that improved the quality
of the paper.

REFERENCES

U. Banerjee, Loop Transformations for
Restructuring Compilers: The Foundations,
Kluwer Academic Publishers, Norwell, MA
(1993).

M. E. Benitez and J. W. Davidson, “A Portable
Global Optimizer and Linker,” Proceedings of
the SIGPLAN ’88 Symposium on Programming
Language Design and Implementation, pp.
329-338 (June 1988).

J. Davidson and A. Holler, “A Study of a C
Function Inliner,” Software—Practice & Expe-
rience 18(8) pp. 775-790 (August 1988).

J. W. Davidson and A. M. Holler, “Subprogram
Inlining: A Study of its Effects on Program
Execution Time,” IEEE Transactions on Soft-
ware Engineering 18(2) pp. 89-102 (February
1992).

[Ban93]

[BeD88]

[DaH88]

[DaH92]

[Dawo1]

[GOR90]

[GrK92]

[HePoO0]

[Jai91]

[Krag4]

[LRST76]

[MOR79]

[MUW92]

[Smig2]

[YoS94]

J. W. Davidson and D. B. Whalley, “A D esign
Environment for Addressing Architecture and
Compiler Interactions,” Microprocessors and
Microsystems 15(9) pp. 459-472 (November
1991).

M. C. Golumbic and V. Rainish, “Instruction
Scheduling beyond Basic Blocks,” IBM Jour-
nal of Research and Development 34(1) pp.
93-97 (January 1990).

T. Granlund and R. Kenner, “Eliminating
Branches using a Superoptimizer and the GNU
C Compiler,” Proceedings of the SSGPLAN '92
Conference on Programming Language Design
and Implementation, pp. 341-352 (June 1992).

J. Hennessy and D. Patterson, Computer Archi-
tecture; A Quantitative Approach, Morgan
Kaufmann, San Mateo, CA (1990).

S. Jain, “Circular Scheduling: A New Tech-
nigque to Perform Software Pipelining,” Pro-
ceedings of the SGPLAN 91 Symposium on
Programming Language Design and Imple-
mentation, pp. 219-228 (June 1991).

A. Kral, “Improving Semi-static Branch Pre-
diction by Code Replication,” Proceedings of
the SGPLAN ’* 94 Symposium on Programming
Language Design and Implementation, pp.
97-106 (June 1994).

P. M. Lewis, D. J. Rosenkrantz, and R. E.
Stearns, Compiler Design Theory, Addison-
Wesley, Reading, MA (1976).

E. Morel and C. Renvoise, “Global Optimiza-
tions by Suppression of Partial Redundancies,’
Communications of the ACM 22(2) pp. 96-103
(February 1979).

F. Mueller and D. B. Whalley, “Avoiding
Unconditional Jumps by Code Replication,”
Proceedings of the SGPLAN '92 Conference
on Programming Language Design and Imple-
mentation, pp. 322-330 (June 1992).

A. J. Smith, “Cache Memories,” Computing
Surveys 14(3) pp. 473-530 (September 1982).

C. Young and M. D. Smith, “Improving the
Accuracy of Static Branch Prediction Using
Branch Correlation,” Proceedings of the Sxth
International Conference on Architectural Sup-
port for Programming Languages and Operat-
ing Systems, pp. 232-241 (November 1994).

-11-

