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Abstract
Cache coherent non-uniform memory architectures (ccNUMA)
constitute an important class of high-performance computing plat-
forms. Contemporary ccNUMA systems, such as the SGI Altix,
have a large number of nodes, where each node consists of a small
number of processors and a fixed amount of physical memory. All
processors in the system access the same global virtual address
space but the physical memory is distributed across nodes, and
coherence is maintained using hardware mechanisms. Accesses to
local physical memory (on the same node as the requesting pro-
cessor) results in lower latencies than accesses to remote memory
(on a different node). Since many scientific programs are memory-
bound, an intelligent page-placement policy that allocates pages
closer to the requesting processor can significantly reduce number
of cycles required to access memory. We show that such a policy
can lead to significant savings in wall-clock execution time.

In this paper, we introduce a novel hardware-assisted page
placement scheme based on automated profiling. The placement
scheme allocates pages near processors that most frequently access
that page. The scheme leverages performance monitoring capabil-
ities of contemporary microprocessors to efficiently extract an ap-
proximate trace of memory accesses. This information is used to
decide page affinity, i.e., the node to which the page is bound. Our
method operates entirely in user space, is widely automated, and
handles not only static but also dynamic memory allocation.

We evaluate our framework with a set of multi-threaded bench-
marks from the NAS and SPEC OpenMP suites. We investigate the
use of two different hardware profile sources with respect to the
cost (e.g., time to trace, number of records in profile) vs. the ac-
curacy of the profile and the corresponding savings in wall-clock
execution time. We show that long-latency loads provide a better
indicator for page placement than TLB misses.

Our experiments show that our method can efficiently improve
page placement, leading to an average wall-clock execution time
saving of more than 20% for our benchmarks, with a one-time pro-
filing overhead of 2.7% over the overall original program wallclock
time. To the best of our knowledge, this is the first evaluation on a
real machine of a completely user mode interrupt-driven profile-
guided page placement scheme that requires no special compiler,
operating system or network interconnect support.
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1. Introduction
Cache-coherent non-uniform memory architectures (ccNUMA)
constitute an important subset of current high performance comput-
ing platforms. Contemporary ccNUMA platforms, such as the SGI
Altix, consist of a large number nodes, where each node has a small
number of processors and a fixed amount of physical memory. All
processors can access the same global virtual address space, but the
physical memory is distributed across the entire system and coher-
ence is maintained using hardware mechanisms.

In a ccNUMA system, accesses to virtual memory mapped on
the same node as the requesting processor typically experience
much shorter latencies than accesses to physical memory on a
different node. We constructed an OpenMP micro-benchmark to
evaluate access latency on our target platform, the SGI Altix. The
program counts the processor cycles required to access physical
memory on the local and remote nodes. The results are shown in
Table 1. We see that, on average, it takes more than twice as long
to load from remote memory than from memory on the local node.

Table 1. Access latencies on the SGI Altix
Access Type Average Latency Standard Deviation

(Cycles)
Local Node Memory 207 121

Remote Node Memory 430 176

In this paper, we focus on multi-threaded OpenMP benchmarks.
Many of these programs are memory bound i.e., the overall wall-
clock execution time of the program is significantly affected by the
performance of the memory hierarchy. If the physical page place-
ment is sub-optimal, i.e., the bulk of the accesses are to pages
whose physical memory has been allocated on a remote node, the
program will take much longer to execute. On the other hand, an
intelligent page-placement scheme, that allocates physical memory
on nodes closer to the processors with most frequent accesses to a
page, can reduce the average access latency leading to potentially
significant wallclock time savings.

To effect this intelligent page placement, we must efficiently
determine the overall memory access pattern of the program. In
practice, even for reasonably-sized programs, it is difficult for pro-
grammers to know the best page placement for each page. Further-
more, on systems using “first-touch” page allocation, compulsory
initialization of data elements (e.g., from a file) in one thread can
cause the page to be allocated permanently on a particular node.
We have encountered OpenMP programs that have not been specif-
ically tuned for ccNUMA environments and often initialize all data
elements in the master OpenMP thread. This causes the bulk of
the data space to be allocated in physical memory on only a single
node, thereby drastically increasing the number of memory load in-
structions that access remote memory. Finally, even programs that
specifically initialize (“touch”) data in parallel on multiple threads
can still achieve sub-optimal page allocation. This commonly oc-
curs when the number of accesses to a particular page during the
stable execution phase (e.g., a single timestep) of the program may
indicate a better page placement than the one effected by the paral-
lel initialization with multiple threads.



To tackle these problems, we need an efficient whole-program
analysis tool that considers the overall run-time memory access
pattern of the program during its stable execution phase and uses
this information to decide the best page placement. In this paper,
we contribute precisely such a scheme.

Our scheme works as follows. First, we execute a truncated one-
timestep version of the program. We use the performance moni-
toring capabilities in existing microprocessors to efficiently extract
an approximate trace of the memory accesses from all the active
processors during this partial (truncated) run. We then use this ac-
cess information to decide the best page placement, i.e., the phys-
ical node on which a particular virtual page should be allocated
(“affinity hints”). Finally, we run the complete program and use the
affinity hints to allocate pages on the assigned physical node. The
allocation is achieved by “touching” the target page from a proces-
sor on the assigned node, i.e., by leveraging the default “first-touch”
page allocation policy of the operating system. Our method handles
both statically defined and dynamically allocated regions of mem-
ory. For statically defined memory regions (in the bss segment),
the page touch takes effect at startup. For dynamically allocated
regions, we delay the page touch till the region has been allocated.

Overall, we show that long-latency loads provide a better indica-
tor for page placement than TLB misses and result in average wall-
clock execution time savings of greater than 20% over all bench-
marks, with a average one-time profiling overhead of 2.7% over
the wallclock time for the complete original program. These results
may make automatic page placement a cheap commodity without
requiring user intervention.

The paper is structured as follows. First, we describe our page
placement mechanism in detail. Then, we evaluate the placement
mechanism with respect to the profile collection cost, the quality
of the collected profile and the performance impact on the target
program execution. We explore the use of two different profile
sources, namely TLB misses and long latency loads, and the impact
of different sampling intervals. Finally, we contrast our approach to
related work and summarize our contributions.

2. Profile-guided Page Placement
Figure 1 shows our scheme. There are 3 distinct phases — pro-
file generation, affinity decision and profile-guided page placement.
In the profile-generation phase, we run a truncated version of the
multi-threaded program (e.g., a single timestep) and collect infor-
mation about the memory access pattern for each thread. For the
experiments in this paper, we explicitly bind each OpenMP thread
to a different processor using the sched setaffinity primitive.
We also intercept and log any dynamic allocation requests gener-
ated by the program. The collected information is used during the
affinity decision phase to choose the most favorable mapping of
pages to nodes, i.e., the page affinity. Finally, we re-run the appli-
cation and use the affinity information to force allocation of pages
on their assigned affinity nodes.

We have to automated our approach extensively such that user
interaction is only required in three steps. First, a special header
file transparently wraps allocation functions like malloc with calls
to handler functions. Second, a call to an initialization function is
placed at the very start of the program. This function effects page
placement for statically-defined memory regions during profile-
guided runs and initializes the hardware performance monitor dur-
ing the profile collection run. Third, the user must identify the sta-
ble execution phase of the program and mark the phase with calls
to handler functions. For example, in time-stepped programs, the
stable execution phase is a single timestep. The idea is to collect a
snapshot of the program’s memory access patterns during a snippet
of its stable execution phase and use that to guide page placement
decisions. Next, our framework is described in more detail.

3. Profile Generation
We want to capture 2 types of profile information — memory
accesses of each thread and calls to dynamic memory allocation.

Capturing Memory Accesses: We leverage the capabilities of
the Itanium-2 performance monitoring unit (PMU) to capture an
approximate trace of the memory accesses. We use the libpfm

library to access the hardware counters of the processor [5]. The
PMU operation is described in detail elsewhere [6]. In this paper,
we use the PMU to capture two different types of memory access
data — long latency loads and data translation lookaside buffer
(DTLB) misses. A simplified view of the PMU operation for cap-
turing long latency loads is shown in Figure 2. In this mode, the
PMU supports selective tracking of load instructions based on a
latency threshold. However, the PMU does not capture all long-
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Figure 2. Simplified PMU Operation

latency loads that exceed the latency threshold. There are two rea-
sons for this. First, due to hardware restrictions, the PMU can only
track one load at a time out of potentially many outstanding loads.
Second, in order to prevent the same data cache load miss from
always being captured in a regular sequence of overlapped cache
misses, the PMU uses randomization to decide whether or not to
track an issuing load instruction. Due to these reasons, the load
miss trace that can be captured is lossy.

If a PMU-tracked load exceeds a user-configured latency thresh-
old value, it qualifies for capture, otherwise it is ignored (Filtering).
Since the access latencies increase monotonically for cache levels
further away from the processor, the latency threshold allows selec-
tive capturing of the load miss stream (L1-D misses, L2 data load
miss stream, etc.). Due to hardware limitations, the latency thresh-
old can only be set in in powers of 2, with a lower bound of 4 cycles
(i.e., valid threshold values are 4 cycles, 8 cycles, 16 cycles, etc.) .

Each filtered load increments the PMU overflow counter. By
appropriately initializing this counter, the user can vary the sam-
pling rate for the captured long-latency load stream (Sampling).
The Itanium-2 has special support to capture the exact instruction
address (IP) and the corresponding data address being loaded (EA)
for the sampled long-latency load. In contrast, counter-overflow
based sampling on other processor architectures can give mislead-
ing instruction addresses for the missing load due to superscalar
issue, deep pipelining and out-of-order execution [6].

The mechanism for capturing DTLB misses is similar, though
there is no support for the latency threshold. Various specific
sub-types of the DTLB misses can be captured (described in
more detail in [6]). In this paper, we enable all types of DTLB
misses for capture by selecting the corresponding libpfm event
DATA EAR TLB ALL. Each captured sample contains the address of
the memory access instruction that caused the TLB miss and the
accessed data address. This profile source includes DTLB misses
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caused by both loads and stores while the the long-latency capture
mechanism described earlier only monitors load instructions.

Capturing Dynamic Allocation Information: For profile-
guided page placement, we leverage the “first-touch” allocation
policy that is used by SGI’s Linux version for the Altix to allo-
cate physical memory pages. To “touch” a particular virtual page
address, we need to know the earliest point in the program at which
such an address becomes valid. This requires the logging of mem-
ory allocation calls for each OpenMP thread.

The logger intercepts the program calls to malloc, calloc and
free. We also log executions to Fortran allocate statements. The
Itanium architecture has a high-resolution timer called the “interval
timer counter” (itc). By logging the itc timestamp for each call
and knowing the skew between the itc registers of each processor,
a post-processing tool builds a unified ordering of allocation calls
across all the threads.

4. Affinity Decision
Next, the approximate memory access trace and the dynamic mem-
ory allocation information is used to determine page affinity, i.e., to
decide the node on which physical memory should be allocated for
a particular virtual memory page. The affinity decision module cur-
rently uses a simple decision criterion for mapping the page — the
page should be allocated on the node that had the maximum num-
ber of accesses to that page. The idea is that by allocating pages
closer to the most active requesting processors, the average latency
of access can be reduced.

First, the accesses are grouped by page address, and the total
accesses from all threads to each page are calculated by map2page,
as shown in Figure 1. On our target platform (SGI Altix), each node
has two processors that have identical latencies when accessing
local physical memory. So the affinity decision module groups
the accesses by each processor to calculate the per-node access
count for each page. The page is recommended for allocation on
the node with the maximum number of accesses to that page. The

affinity decisions are generated differently for statically defined and
dynamically allocated regions of memory.

Statically defined memory (i.e., the bss segment) contains
space for uninitialized global variables. The starting address and
extent of the static region is determined at link time. The affinity
decision module simply generates a per-node list of page address
offsets that have affinity to that node. The first logical processor in
a node is responsible for using these page offsets to issue the ac-
tual “first-touch” page placements during the final profile-guided
program run.

Dynamically allocated regions pose an additional challenge
since the starting address of the allocated region can and does
change over multiple runs of the same program. For the bench-
marks evaluated, two distinct dynamic memory allocation patterns
were observed. Many programs had a small number of calls, each
of which allocated a large chunk of contiguous memory. For such
cases, we adjust the affinity page offsets relative to the starting ad-
dress of the region. During the profile-guided run, just after the
region is allocated, the affinity offsets will be used to “touch” the
pages on the appropriate nodes.

Other programs had a large number of calls clustered in time,
each allocating a very small region of memory (e.g., NAS-2.3 MG).
For such cases, we rely on the fact that these regions will most often
be allocated contiguously in space. Since the memory access trace
is lossy, we observe in practice that we do not have even a single
access record for many small allocated regions (“silent regions”).
But we still handle these regions correctly because physical mem-
ory is allocated on page granularity, and we have trace records for
other small regions whose page tends to include the silent region.

5. Profile-guided Page Placement
In this final phase, we re-run the original program and use the affin-
ity information we generated in the earlier phase to guide our page
placement decisions. At the time of writing, the operating system
(SGI’s Linux version for the Altix) does not support dynamic page



migration at all. Instead, we leverage the existing “allocate-on-first-
touch” policy to effect our page placement. This policy allocates
physical memory for the virtual page on the node that first accesses
(“touches”) a data element on that specific node. Thus, to force
page placement on a particular node, we “touch” the page by ex-
ecuting a load followed by a store to an address in the particular
page from a processor on that node.

For this mechanism to succeed, we must touch the page before
any other processor accesses that page. For static regions of mem-
ory, each processor reads its static affinity file on program startup
and touches all the page address offsets listed in that file, as shown
in Figure 1. All processors synchronize at a barrier after the touch-
ing phase, to ensure that no processor accesses a statically-defined
page before the affinity hint for the page has been applied. Since
the static allocation is done only once, at startup, it has minimal
execution overhead.

The process for dynamically allocated regions is similar, except
that we must delay the page touch till the target memory region
is allocated. In this case, we know that, in a legal program, no
other processor can access the allocated region before the alloca-
tion function (e.g. malloc) has completed. We take advantage of
this to ensure that our first-touch scheme will effect the page al-
location we want before any other processor touches the memory
region. The idea is to insert a wrapper around the allocation call.
The behavior of the wrapper is controlled by an environment vari-
able. During unoptimized runs of the program, the wrapper does
no work. During the profiling phase, the wrapper records the allo-
cation request parameters (size of region, starting address, thread
id, timestamp). The affinity generation phase tags each allocation
request with affinity hints. Finally, during the profile-guided runs,
the wrapper uses affinity hints to effect page allocation as follows.

When the wrapper is invoked, it first calls the real alloca-
tion function. The dynamic affinity hints provide information
about which parts of this dynamically allocated regions should
be allocated on which target processors. This information con-
sists of a list of processor identifiers and the address offsets that
need to be touched on these processors. For each such proces-
sor, the current thread reschedules itself on the target proces-
sor by using the sched setaffinity function call. When the
sched setaffinity call returns, the thread is now executing on
the target processor. Then the touch mechanism “touches” the given
list of address offsets, thereby causing page allocation on the phys-
ical memory in the target processor’s node. After all affinity hints
for all processors for the dynamic region are processed, the thread
re-schedules itself on its original processor.

This scheme is completely transparent to the user-level pro-
gram, except for the addition of the wrapper function. However,
it has high execution overhead. For every allocation request for
which there are affinity hints for n processors, there are n+1 con-
text switches (one switch to every target processor, and the final
switch back to the original processor). We found during our eval-
uation (Section 6) that this scheme has substantial execution over-
head, which erases the gain due to reduction in remote accesses for
several benchmarks. The overhead can be reduced by a less trans-
parent scheme that involves more effort on part of the user. A sim-
ple way to reduce overhead would be to group the touching effort
for multiple dynamically allocated regions. For each group, there
would be only one context switch for each processor in the list of
affinity hints. The user would also need to insert additional syn-
chronization to ensure that no thread begins accessing the dynami-
cally allocated region before the touching has occurred (to prevent
inadvertent page allocation). We leave this idea for future work.

There is one additional issue for dynamically allocated regions.
In the benchmarks we evaluate, programs allocate memory only
at the start of the program and do not free it till the end of ex-

ecution. If, on the other hand, programs repeatedly allocate and
free memory in the stable execution phase, then the effectiveness
of the “first-touch” scheme would be reduced. This occurs because
portions of the virtual address space may be “recycled” by the al-
location function after they were initially freed, but the physical
memory will only be allocated once on the node where the page of
virtual memory was first touched. This is a limitation of using the
first-touch mechanism. This issue could be solved if our operating
system (Linux) supported dynamic page migration, which is not
available at the present time.1 With migration support, the virtual
pages in the dynamically allocated region could be simply migrated
to the target processor given by the affinity hint.

6. Evaluation Framework
We described the scheme for profile-guided page placement in the
previous section. In the following we present a cost versus benefit
analysis as we vary the configurable parameters shown in Figure 1.

There are two configurable parameters that we shall vary —
the choice of the profile source and the sampling interval for cap-
turing memory access samples. The hardware provides two pro-
file sources — long-latency loads and DTLB misses. The sampling
interval provides a method to trade-off sampling overhead vs. the
amount of profile data collected. For each profile source, we exper-
iment with different sampling interval values (Sections 7 and 8).

As we vary these two parameters, the amount and type of profile
information that we collect will change. How good are the affinity
hints generated using these profiles? How effective are the affin-
ity hints in reducing the overall wallclock execution time? To an-
swer these questions, we need to compare the performance of these
profiles with respect to the performance of affinity hints based on
a reference profile. We call this reference profile the “maximum
information profile”. The reference profile answers this question:
What affinity hints will be generated, if we knew as much as pos-
sible about the memory access pattern of the program? How much
improvement in performance can be achieved using these hints? By
comparing our profiles against the results achieved with the maxi-
mum information profile, we can clearly evaluate the tradeoff be-
tween profile collection cost and the optimization benefit.

Initially, we experimented with a software memory tracing tool
to capture all memory loads and then used this access trace as the
maximum information profile. However, this method had too much
execution overhead for the benchmarks we evaluated. Instead, we
configure the PMU with the lowest latency threshold setting (4 cy-
cles) and the highest sampling frequency (1) and use the collected
trace as the maximum information profile. Since the L1 cache hit
access latency is 1 cycle, this corresponds to capturing a fraction of
all accesses that miss in the L1 data cache.

In the discussion below, the “reference results” refers to the
affinity hints generated using the maximum information profile.
Similarly, the “target profile results” denote the affinity hints gen-
erated by the profile being evaluated.

Our evaluation has three aspects - the profiling cost, the quality
of the collected profile, and the resulting execution benefits. The
profiling cost is the cost of collecting the access trace, which is
determined by the size of the profile and by the execution overhead
inflicted on the benchmark during the profile collection phase. As
the sampling interval is increased, both the profile size and the
profiling overhead are expected to decrease.

For evaluating the quality of the profile, we shall compare the
target profile results to the reference results using three different
metrics. Coverage denotes the fraction of the pages in the reference
results for which we have an affinity hint in the target profile results.

1 Draft APIs for manual page migration have been proposed, and are ex-
pected to be available with future Linux systems.



The affinity node values for the page do not need to be the same
between the reference and target profile results. Accuracy denotes
the fraction of the pages in the target profile results that have
the same affinity hint node value as the reference results. If the
coverage value is low, it indicates that for large number of pages
we simply do not have enough information in the target profile
to generate an affinity hint. If the coverage value is high, we are
confident that the target profile contains affinity hints for almost the
same number of pages as the reference profile (though the affinity
node values might be different).

In contrast, accuracy measures the stand-alone usefulness of the
target profile. It answers the question: If the target profile were to be
used to generate affinity hints, what fraction of the affinity hints are
identical to those present in the reference results? If the accuracy
value is high, it indicates that the target profile is as useful as the
reference profile (though at a potentially much reduced overhead).
On the other hand, a low accuracy value indicates that the target
profile is potentially misleading in the sense that the affinity hints
do not match the hints in the reference results.

Finally, the Useful Fraction metric combines the information
from these two metrics. It measures the fraction of the affinity hints
in the target profile that are not only present in the reference trace,
but also have the same affinity node value.

The coverage, accuracy and useful fraction are computed as
follows. Let

Ref = # hints in reference results;
Targ = # hints in target profile results;
C = # hints in target profile results that are also present in the

reference results (though the affinity node values might not match);
A = # hints in target profile results that are also present in the

reference results AND the affinity node values match. Then,
Coverage= C

Ref
∗ 100%

Accuracy=
A

Targ
∗ 100%

UsefulFraction=
A

Ref
∗ 100%

These three metrics each provide a different understanding of
the profile characteristics. For example, a high accuracy value
might still not indicate an effective profile if the coverage is low.
This is because we simply will not have affinity hints for many
pages (low coverage), but the few hints that we do generate are ac-
curate (high accuracy). Similarly, a low useful fraction value could
be either due to low coverage or to low accuracy of the hints. Thus,
there is the need for all three metrics.

So far, we have seen the metrics for cost and profile quality. For
assessing profile benefit, we measure two things - the net reduction
in remote accesses and the reduction in wallclock execution time.
The net reduction is compared by taking the difference between the
metric values (remote accesses, wallclock execution time) between
the original unmodified program run and the program run with our
profile-guided page placement scheme.

The evaluation process works as follows. First, the target pro-
gram is run for one time step and profile data is collected. This
profile data is used to compute the affinity hints and the entire pro-
gram is re-run using this profile data. Thus, the profile cost is the
cost to capture the samples over one timestep of the program. On
our platform, there is no easy way to measure the number of remote
memory accesses generated by the program. Instead, we present an
approximate measure of the reduction in remote memory accesses
as follows. We set the PMU latency threshold to 512 cycles2 and
count the number of accesses that exceeded this threshold for the
original program. The high latency threshold ensures that almost
all loads that hit in cache or in local memory will be filtered out

2 Due to PMU limitations, the latency threshold can only be set in powers
of 2. The next lower threshold (256 cycles) would not filter out a significant
fraction of local memory loads, as indicated by the latencies in Table 1.

(though some remote loads may also be filtered out, as indicated by
the latencies in Table 1). Then, we run the program with our page
placement scheme and count the number of accesses exceeding the
latency threshold (512) as before. The difference between the two
values provides an approximate measure of the net reduction in re-
mote memory accesses. In practice, we have found this value to be
quite consistent across multiple runs.

When comparing wallclock execution time, we compare the
wallclock time for the complete run of the original program to the
wallclock time of the program with profile-guided page placement,
including the overhead of the page touching mechanism. During
our experiments, we noticed that the execution time of the program
varied measurably across runs. This may be due to several reasons.
First, the difference in scheduler allocation of processors for the
batch runs affects the degree of benefit obtained with profile-guided
page placement (the benefit will be less if the allocated processors
are closer). Second, all operating system calls on the Altix must go
through a small collection of CPUs in the interactive login partition.
Thus, the load on the interactive nodes affects the performance of
the jobs running on the batch nodes. This is especially significant
for the dynamic page touching mechanism, which potentially in-
volves multiple context switches for a single affinity hint.

In order to account for this variability in execution time, we
ran each benchmark for 6 times (5 times for BT). Each time, the
profile-guided runs and the non-profile guided runs were executed
on the same scheduler-assigned processor allocation. The wallclock
execution time graphs show the average benefit obtained with each
sampling interval. The error bars denote the confidence interval
range for a 95% confidence interval.

Benchmarks: We use a set of 9 OpenMP benchmarks. This
includes 7 out of the 8 NAS-2.3 benchmarks (excluding EP). The
NAS benchmarks are C versions of the original NAS-2.3 serial
benchmarks [2], provided by the Omni Compiler group [1]. We
do not evaluate EP since it does not have significant sharing of data
[7]. In addition, we also evaluate the 320.equake and 332.ammp
benchmarks from the SPEC OMPM2001 benchmark set. These
benchmarks have significant dynamic memory allocation, thereby
putting our dynamic touching mechanism to the test.

All programs were compiled at the -O2 optimization level. All
NAS benchmarks use Class C data sets, while the SPEC bench-
marks use the reference data set. All experiments were carried out
on a non-interactive (batch) allocation of eight processors. On our
current platform, there are two processors per node. A total of
four nodes were used. All programs were run with eight OpenMP
threads. Each thread is bound to a separate processor using the
sched setaffinity primitive. OpenMP thread scheduling was
set to static. Our hardware platform has Itanium-2 processors run-
ning at 1.5GHz, each with a 6 MB L3 cache, 256 KB L2 cache and
16 KB L1D cache.

For each program, we inserted markers delineating the start and
end of the timestep. For 332.ammp, we disabled the pre-existing
round-robin allocation of the “atom” element for the profile-related
runs. However, we still compare the benefit metrics (wallclock
time, number of remote accesses) against the original program. For
the IS benchmark, we perform a one-time dynamic allocation for
the prv buff1 array since the program failed to execute with the
default stack allocation for this variable.

Out of the 9 benchmarks, 4 benchmarks — MG, 332.ammp,
320.equake, IS — utilize dynamic memory allocation. The remain-
ing benchmarks operate with statically declared global arrays.

7. Evaluation with Long-latency Load Profiling
We evaluated the performance of our page-placement scheme with
long-latency loads as the profile source. Figure 3 shows the perfor-
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(b) Cost: Profile Time
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(c) Quality: Coverage
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(d) Quality: Accuracy
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(e) Quality: Useful Fraction
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(f) Benefit: Reduction in Remote Accesses Over Original Program
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(g) Benefit: Reduction in Wallclock Time Over Original Program

Figure 3. Evaluation with Latency threshold=128, Profile Source=Long Latency Loads

mance using the cost / quality / benefit approach that was described
in the last section.

For these experiments, we fix the latency threshold in the PMU
to 128 cycles. This filters out most of the load accesses that hit in
the L1D, L2 and L3 caches. We select sampling intervals of 1, 10,
50, 100, 200 (OV-1 to OV-200 in the graphs).

Profiling Cost: The graph for cost comparison shows the cost
for the “maximum information profile” (denoted as FULL in the
graphs) and the results for each of the reduced sampling intervals.
The reduced sampling results are normalized to the FULL profile
values.

Number of Captured Samples: The number of accesses cap-
tured at OV-1, depicted in Figure 3(a), is about an order of magni-
tude lower than the FULL profile for most benchmarks (except IS).
By keeping the latency threshold much higher (128 cycles instead
of 4 cycles for the FULL profile) we filter out most of the loads that
hit in cache. These loads can be ignored since they do not propa-

gate past the cache to memory. Hence, they will not be affected by
page placement.

With increasing sampling intervals, the total number of samples
captured decreases linearly. At OV-200, the average number of
accesses in the trace has been reduced by 1000 times over the FULL
trace.

Profiling Execution Overhead: The absolute execution over-
head for profiling is extremely low, since it is sufficient to only a
single timestep for the benchmarks that we considered, i.e., the par-
tial execution saves significant overhead over an execution of the
entire benchmark without any loss in accuracy for the benchmarks
studied.

On average, over all benchmarks, we measured the execution
overhead for profiling a single timestep at OV-1 to be 2.7% of the
overall original program execution time.

The relative profiling execution overhead (compared to FULL)
is shown in Figure 3(b). We see that the overhead flattens out
with increasing sampling intervals. This indicates that the profile



collection cost does not dominate the time to execute the timestep.
The results show that OV-1 or OV-10 are the “sweet spot” values for
the sampling interval, since increasing sampling intervals beyond
that point does not reduce overhead by much.

On average, profiling execution overhead at OV-1 is about 20%
of the FULL profile cost, with the exceptions of SP and IS that have
lower savings.

Profile Quality: As the sampling intervals increase, the size of
the profile collected will tend to decrease. This has an effect on
the quality of the profile, i.e., the coverage, accuracy and useful
fraction metrics. The maximum values of all these metrics is 100%.

Coverage: Figure 3(c) depicts the coverage results for different
sampling intervals. At OV-1, the average coverage is 99% indicat-
ing that we have affinity hints for almost all of the FULL profile
pages. The OV-10 coverage still remains high at 94%. After that,
we observe a noticeable decline in coverage at sampling intervals
of OV-50 and beyond. The average coverage falls from 94% at OV-
10 to 76% at OV-50 and finally to 47% at OV-200. Thus, at OV-50
and higher, we simply do not have enough profile data to generate
affinity hints for page placement for a significant number of pages.

Accuracy: The accuracy values, depicted in Figure 3(d), are
very close across sampling intervals for each benchmark. Also, ac-
curacy remains uniformly high across increasing sampling intervals
for all benchmarks (except for LU). This is very encouraging as it
indicates that even with a reduced number of accesses, the affinity
node recommendations match the recommendations given by the
FULL profile for most of the affinity hints generated. LU’s behav-
ior is explored in more detail later.

Useful Fraction The useful fraction is the fraction of the FULL
profile affinity hints that are present and have the same affinity node
value in the target profile results. A high useful fraction indicates
that we are obtaining almost the same results as the FULL profile
results, with much smaller profile input data.

The average useful fraction, depicted Figure 3(e),is high for OV-
1 (93%) and OV-10 (87%). From OV-50 to OV-200, the metric de-
grades from 68% to 40% on average. This trend occurs because
the coverage values fall with increasing sampling intervals while
the accuracy remains steady. The degradation is much more pro-
nounced for benchmarks like IS, FT and MG whereas there is almost
no degradation for CG.

Profile Benefits: We explore the impact of the page placement
scheme on two metrics: (1) the number of remote accesses gener-
ated by the program and (2) the wallclock execution time of the
program.

Reduction in Remote Accesses: Figure 3(f) shows the net re-
duction in the number of remote accesses for the full-program run
using automatic profile-guided page placement vs. the original pro-
gram. The figure compares the reduction in remote accesses using
the FULL profile, vs. the reduction achieved at latency threshold
128, and the different sampling intervals.

For all but one case (LU:FULL profile), there is a net reduction
in the number of remote accesses. Almost all the remote accesses
for CG and MG are eliminated as shown by a 98% and 97%
reduction at OV-1 for CG and MG, respectively.

Other benchmarks also have significant reduction in remote ac-
cesses. The average reduction at OV-1 is 60% and decreases signif-
icantly from OV-50 (48%) to OV-200 (28%). OV-10 appears to be
the sweet spot. The average reduction is, in fact, slightly higher for
OV-10 (55%) than OV-1 (54%). Only LU shows a 28% increase in
remote accesses when using the full profile. This anomaly of LU is
discussed in more detail later.

Reduction in Wallclock Execution Time: This is the most im-
portant measure to assess the overall benefit as it indicates the per-
formance improvement of an application with profile-guided place-
ment compared to the original unmodified program. Figure 3(g)

shows the improvement in wallclock time. As described before, the
error bars represent the 95% confidence interval range. The ranges
for MG, LU and IS are large, indicating that these programs have
more variable execution times.

Except for IS, every other benchmark shows a reduction in
wallclock execution time. The average reduction is 21% at OV-
1. CG achieves exceptionally large savings with over 73% shorter
executions at OV-1. Many other benchmarks (SP, FT, MG, Equake)
also achieve greater than 15% reductions.

With increasing sampling interval, the wallclock improvements
tend to decrease, though the magnitude of decrease is program-
dependent. CG does not show much degradation with increasing
sampling intervals, but there is a noticeable degradation with SP
between OV-10 and OV-200.

IS represents an exceptional case where the wallclock execution
time increases with profile-guided page placement. We determined
that the cause of the degradation is the cost of the page-touching
mechanism for dynamically allocated regions. Each hint on a dy-
namically allocated region potentially represents at least two con-
text switches — one to switch to the target processor and “touch”
the page and the other to switch back to the processor that orig-
inally requested the allocation. (Note that we bind each OpenMP
thread to a different processor. Hence, we refer to processors in-
stead of threads here.) With increasing sampling intervals, fewer
dynamic hints are generated (as coverage falls). This reduces the
overall overhead on the target. Thus, we see less degradation in
wallclock execution time for IS with increasing sampling intervals.

Similar to IS, the potential wallclock savings for other programs
with dynamic memory allocation (MG, Equake, AMMP) are also
affected by the overhead of the touching mechanism. Given that
over 98% of the remote accesses for MG are eliminated by page
placement, the wallclock reductions for MG would increase even
further with a more optimized touch mechanism.

The LU Anomaly: LU represents an anomalous case. For this
benchmark, the affinity hints generated by the full profile do not
match the affinity hints generated by the other profiles (OV-1 to
OV-200). This causes low accuracy and useful fraction values, as
seen in Figures 3(d) and 3(e). Furthermore, using the full profile
leads to an increase in the number of remote accesses (Figure 3(f))
while OV-50 leads to a 10% decrease in remote accesses. The cor-
responding wallclock time reduction is higher for OV-50 (8% im-
provement) than that of the full-profile results (0% improvement).

The underlying cause is as follows. The affinity node values dif-
fer between the full profile and the OV-1 profile (and higher sam-
pling interval profiles) for parts of the large rsd global static array.
The full profile uses the lowest possible latency of 4 cycles to sam-
ple the address trace. This captures all possible loads, irrespective
of whether the loads hit in cache or not. For the pages of the rsd

array that have different affinity hints in the full and OV-1 profiles,
most of the accesses on the affinity node given in the full-profile
are hits in the local caches. Hence, the affinity decision is different
from the OV-1 profile-based decision (which filters out the cache
hits). First, we observe that loads which are hits in cache will not
be affected by page placement decisions. Second, the full-profile
based page placement, in fact, worsens the average access latency
for cache misses since the corresponding pages are allocated on a
node that only has infrequent cache misses for those pages. This ex-
plains the increase in the average number of remote accesses for the
full-profile results compared to the OV-1 based experiment. Thus,
the average wallclock time improvement is lower for full-profile
than for OV-50 in this case.

Conclusions: Long-Latency Profiling: 1) Overall, we observe
that the size of the profile data at OV-1 is one-tenth the size
of the FULL profile on average. With increasing sampling inter-
vals (OV-1 to OV-200), the profile size decreases linearly. 2) For



most benchmarks, the execution overhead of profile collection de-
creases sharply from FULL to OV-1, yet it does not decrease sig-
nificantly with larger sampling intervals (OV-10 to OV-200). Thus
OV-1 or OV-10 appears to be the sweet spot for profile collection.
3) With increasing sampling intervals, the coverage drops signifi-
cantly, which indicates insufficient profile information to generate
affinity decisions for many pages. 4) Nevertheless, the accuracy
of the profile information does not degrade significantly with in-
creasing sampling intervals. 5) A significant reduction in the wall-
clock execution time and the number of remote accesses is pos-
sible with profile-guided page placement. However, for programs
with dynamic allocation, the page touching mechanism is expen-
sive and adversely affects wallclock execution time. A more op-
timized touching scheme should lead to even better wallclock re-
ductions for these programs. 6) For one benchmark (LU), using
the reference profile (FULL) actually resulted in a degradation of
performance. For this benchmark, the filtering effect of the high la-
tency threshold used by the target profiles (128 cycles) removed
loads that hit in the cache and resulted in a more accurate picture of
which pages are frequently accessed by which processors. Thus, us-
ing the full memory access trace may actually result in sub-optimal
page placement in rare cases. For all other benchmarks, the refer-
ence profile almost always had the maximum (or close to maxi-
mum) performance benefits, i.e., reduction in remote accesses and
wallclock time.

8. Evaluation with Data TLB Misses Profiling
Figure 4 depicts the results using data TLB misses as the profile
source obtained with PMU support. We evaluate results for sam-
pling intervals values of 1, 2, 4, 8 and 16 (denoted OV-1 to OV-16
in the graphs). For the discussion below, we shall refer to the results
presented in the last section using long-latency loads as the profile
source as the load-based results. In the following, we describe the
DTLB miss results and contrast them with the load-based results.

Profile Cost: As before, the cost metrics are compared against
the cost incurred for the “maximum information profile” (denoted
as FULL in the graphs).

Number of Captured Samples: The average number of sam-
ples captured at OV-1 is less than one-tenth of the number of sam-
ples in the full profile, as seen in Figure 4(a). With increasing sam-
pling intervals (OV-1 to OV-16), the number of captured samples
decreases almost linearly.

In contrast to the load-based results, the difference between
FULL and OV-1 tends to be program-dependent. Ammp and MG
have more than 1000 times less profile data at OV-1 compared to
FULL while IS has almost the same number of samples as FULL.

Profiling Execution Overhead: The results for the relative pro-
file overhead, depicted in Figure 4(b), are similar to load-based re-
sults. The average execution overhead for trace collection at OV-1
is 18% of the FULL profile’s cost. With increasing sampling inter-
vals (OV-1 to OV-16), the execution overhead is not significantly
reduced.

Profile Quality: As before, we evaluate the three quality met-
rics of coverage, accuracy and useful fraction shown in Figures
4(c), 4(d) and4(e), respectively.

Coverage: The average coverage at OV-1 (74%) is sharply
lower than the average coverage at OV-1 in the load-based results
(99%), as depicted in Figure 4(c). This is due to significantly lower
coverage values for FT, MG, LU, Equake and Ammp, as compared
to the load-based results. With increasing sampling intervals, the
coverage begins to degrade significantly, except for LU. Coverage
falls from 74% at OV-1 to 35% at OV-16.

The low coverage values indicate that we have insufficient in-
formation to generate page affinity hints for a significant number of
pages. The problem is more acute for the DTLB case than for the

load-based results, as indicated by the lower coverage values. Low
coverage lessens the effectiveness of the page-placement scheme
resulting in a reduced potential for performance benefits.

Accuracy: The results in Figure 4(d) indicate that accuracy is
benchmark-dependent. For most benchmarks (except Equake and
Ammp), the accuracy values for increasing sampling intervals are
similar. This indicates that accuracy is less sensitive to reduction in
the size of the profile trace.

We also observe sharply lower accuracy for FT, BT, LU and
AMMP compared to the load-based results. This indicates that
page-affinity decisions based on DTLB misses do not agree with
affinity decisions based on the FULL trace or long-latency load-
based results.

Useful Fraction: Due to the sharply lower coverage (FT, MG,
LU, Equake, Ammp) and lower accuracy (FT, BT, LU), the useful
fraction values are also significantly lower than for the load-based
results. The average value at OV-1 is 58% compared to 93% at OV-
1 with long-latency loads as the profile source.

With increasing sampling intervals, the useful fraction value
tends to fall significantly for most benchmarks. The average useful
fraction degrades from 58% at OV-1 to 22% at OV-16.

Profile Benefits: We have seen that the coverage, accuracy and
useful fraction for DTLB-based results are significantly lower than
their load-based counterparts for most benchmarks. This will im-
pact the performance benefits obtainable with profile-guided page
placement. Figures 4(f) and 4(g) show the reductions in remote ac-
cesses and overall wallclock execution time, respectively.

Reduction in Remote Accesses: As before, the reduction in
remote accesses using profiles obtained at different sampling inter-
vals is compared to the reduction obtained with results based on the
full profile (marked FULL) seen in Figure 4(f).

Two benchmarks, BT and LU, experience an increase in remote
accesses with DTLB-guided page placement. The increases are
significant (more than 30%) and occur with all sampling intervals.
In comparison to the load-based results, the reduction in remote
accesses is much lower for many benchmarks, especially for MG
(98% vs. 67%) and Equake (69% vs. 20%). The average reduction
of remote accesses is 29% at OV-1, which is much lower than the
54% average reduction at OV-1 for the load-based results.

Reduction in Wallclock Execution Time: As with remote ac-
cesses, the DTLB miss-based scheme generally performs worse
than the long-latency load-based mechanism. The average wall-
clock reduction at OV-1 is 11% for DTLB misses (see Figure 4(g))
vs. 20.6% for the load-based results.

IS, LU and BT show an increase in execution time with DTLB-
guided feedback. CG has the maximum improvement (67%), while
improvements reduce sharply for MG (17% vs. 7%), Ammp (18%
vs. 6%) compared to load-based results at OV-1.

Conclusions for DTLB-Profiling: 1) Overall, the cost of pro-
file collection is similar for both DTLB misses and long-latency
load-based schemes. 2) The coverage and accuracy for DTLB-
based results are significantly lower for DTLB-based results com-
pared to the long-latency load-based results. 3) Due to sharply
lower coverage and accuracy, the useful fraction values are also
low. This indicates that DTLB-based affinity decisions are not rep-
resentative of decisions that would be made with the full profile. 4)
The performance benefits (reduction in remote accesses and wall-
clock time) are also much lower for DTLB-based results. 5) The
profile costs for both DTLB misses and long-latency loads are sim-
ilar, but the quality of the profile and the resulting performance ben-
efits are much larger for long-latency load-based profiles compared
to the DTLB miss based profiles.

We conclude that DTLB misses are not a good candidate to
decide page placement. This shows that, for the benchmarks we
considered, DTLB misses do not correlate well with the relative



�������

������

�����

����

���

�

���� ���� ���	 ���
 ���� �����

�
��

���
��

���
��

���
���

��
��

���
��

 

!� �"
�# $%
�% &#
�� '(�)*'
)$$" )�+%

(a) Cost: Number of Captured Samples
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(b) Cost: Profile Time
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(c) Quality: Coverage
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(d) Quality: Accuracy
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(e) Quality: Useful Fraction
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(f) Benefit: Reduction in Remote Accesses Over Original Program
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(g) Benefit: Reduction in Wallclock Time Over Original Program

Figure 4. Evaluation with Profile Source=Data TLB Misses

volume of loads from a processor to a particular memory page. This
could occur, for example, if the program has few DTLB misses
but a large number of cache misses going to memory. Then, the
information about the frequency of accesses to each page is lost if
we only consider the DTLB misses (since repeated accesses to the
same page will tend to hit in the DTLB). 3

9. Related Work
Tikir and Hollingsworth describe a dynamic user-level page migra-
tion scheme based on an approximate trace of memory accesses
obtained by sampling the network interconnect [11]. This is the
closest related work. The trace is used for deciding page affinity.
Pages are dynamically migrated using the madvise system call. In

3 Another possible scenario is a large number of DTLB misses with few
cache misses going to memory. In this case also, the DTLB trace will not
be representative of the relative distribution of load requests to a page from
each processor.

contrast, we focus on profile-guided page placement leveraging the
simpler “first-touch” page allocation policy of the operating sys-
tem. 4

Our method uses a different profile source (long-latency loads
or DTLB misses) with varying sampling intervals. Our method is
simpler in that it is processor-centric. More specifically, we not
require special network instrumentation support, we only rely on
the ability of the PMU to time load accesses. Because their ap-
proach is network-centric, i.e., the hardware counters are embed-
ded in the network interconnect and do not distinguish between
different processes, only one application can use them at a time. In
contrast, there is no such restriction with our approach. In addition,
our mechanism is interrupt-driven, i.e., the PMU raises an interrupt
only when the sampling counter overflows and generates virtual

4 In the future, our approach can be extended in a straightforward way to
eliminate the need for a separate profiling run by migrating pages. This
depends on proposed future extensions in Linux to support dynamic page
migration under user control.



addresses directly. In contrast, their method must poll the network
interconnect counters to collect a trace of physical addresses, which
must subsequently be mapped to virtual addresses using a separate
system call.

Finally, our page hints are abstracted, i.e., they are relative to
the starting address of the region (static or dynamic). Touching is
deferred till the region is actually allocated. Thus, the affinity hints
are potentially portable across platforms in that hints generated on
one platform can be used on another if it supports first-touch page
placement. We intend to explore this potential in future work.

Nikolopoulos et al. describe a user-level dynamic page migra-
tion scheme that uses per-page hardware reference counters that
capture the frequency of accesses from each node to a particular
page [8, 9]. The method depends on the compiler for identifying
the pages of virtual memory using whole program analysis. In con-
trast to our method, they do not handle dynamic memory allocation.
In addition, we don’t require any compiler or operating system sup-
port, and our page-placement mechanism is completely transparent
to the target program (i.e., no explicit calls are necessary for page
placement).

Verghese et al. describe a simulation-based kernel-level imple-
mentation of dynamic page migration [12]. They consider both
number the of load-misses to a page and the number of data TLB
misses as profile sources. In our work, we found data TLB misses
to be less effective for deciding the best page placement, which
confirms results presented in their work.

Other approaches to kernel-level dynamic page migration and
replication are discussed in Noordergraaf et al. [10] and in Bolosky
et al. [3]. In contrast, we operate completely in user-space and
leverage the simpler first-touch page allocation policy to steer page
placement at region initialization.

Bull and Johnson study the tradeoffs between page migration,
replication and data distribution for OpenMP applications on the
Sun WildFire system [4]. In their study, they find that page repli-
cation performs better than page migration and static data distribu-
tion.

Lastly, the hardware mechanism for capturing long-latency
loads and DTLB misses is described in the Itanium-2 manual [6].
In previous work, we used this facility in conjunction with soft-
ware rewriting to efficiently obtain a lossy load/store trace and ex-
ploit its information to analyze the coherence behavior of OpenMP
programs [7].

10. Conclusion
In this work, we developed and evaluated a low-cost whole-
program analysis tool that considers the overall run-time memory
access pattern of the program during its stable execution phase.
It uses this information to decide the best page placement. The
novelty of our work also lies in the exploration of hardware-
assisted performance monitoring techniques, completely in user
mode, without any special compiler, operating system or network
interconnect support.

Our technique operates as follows. First, we execute a truncated
one-timestep version of the program. We leverage performance
monitoring capabilities in existing microprocessors to efficiently
extract an approximate trace of the memory accesses from all the
active processors during this partial (truncated) run. We then use
this access information to decide the best page placement, i.e., the
physical node on which a particular virtual page should be allocated
(“affinity hints”). Finally, we run the complete program and use
the affinity hints to allocate pages on the assigned physical node.
The allocation is achieved by “touching” the target page from a
processor on the assigned node, i.e., by leveraging the default “first-
touch” page allocation policy of the operating system. Our method
handles both statically defined and dynamically allocated regions

of memory. For statically defined memory regions (i.e., the bss

segment), the page touch is effected at startup. For dynamically
allocated regions of memory, we delay the page touch till the region
has been allocated.

Our framework is currently constrained to work with the “first-
touch” page placement policy, as dynamic page migration is not
supported on Linux at the present time. Due to this, we cannot
do effective page allocation for programs whose memory access
patterns change over time, e.g., adaptive mesh refinement (AMR)
codes, and programs with multiple execution phases. Also, the first-
touch based scheme would lose effectiveness on programs which
frequently allocate and free memory during the stable execution
phase (none of the programs in this study show this behavior).
When page migration support is added to Linux, we shall overcome
both these limitations.

Overall, we show that long-latency loads provide a better in-
dicator for page placement than TLB misses that results in av-
erage wall-clock execution time savings of more than 20% over
all benchmarks. with an average one-time profiling cost of 2.7%
over the overall original program wallclock time. The low overhead
may make automatic automatic page placement a cheap commodity
without requiring user intervention.
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