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Abstract

Performance modeling for scientific applications is impottfor
assessing potential application performance and systeocsine-
ment in high-performance computing (HPC). Recent progoess
communication tracing opens up novel opportunities for iwam
nication modeling due to its lossless yet scalable trackedaton.
Estimating the impact of scaling on communication efficiesiill
remains non-trivial due to execution-time variations ardosure
to hardware and software artifacts.

This work contributes a fundamentally novel modeling sckem
We synthetically generate the application trace for largeibers
of nodes by extrapolation from a set of smaller traces. Wésdev
an innovative approach for topology extrapolation of singfo-
gram, multiple data (SPMD) codes with stencil or mesh conimun
cation. The extrapolated trace can subsequently be (ayeglto
assess communication requirements before porting ancagiph,
(b) transformed to auto-generate communication benclsriark
various target platforms, and (c) analyzed to detect conication
inefficiencies and scalability limitations.

To the best of our knowledge, rapidly obtaining the communi-
cation behavior of parallel applications at arbitrary soaith the
availability of timed replay, yet without actual executiofhthe ap-
plication at this scale is without precedence and has thengiat to
enable otherwise infeasible system simulation at the elasevel.

Categories and Subject Descriptors  D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming; D.4.8
[Operating Systems]: Performance—Modeling and prediction

General Terms Measurement, Performance
Keywords High-Performance Computing, Message Passing, Trac-
ing, Performance Prediction

1. Introduction

Scalability is one of the main challenges for scientific &ailons
in HPC. A host of automatic tools have been developed by both
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academia and industry to assist in communication gathexrim
analysis for MPI-style message passing [7]. Most of thesésto
either obtain lossless trace information at the price ofrsmal-
ability [13] or preserve only aggregated statistical traderma-
tion to limit the size of trace files as in mpiP [22]. Recent kon
communication tracing and time recording made a breakgirou
in this realm. ScalaTrace introduced an effective commnaiidn
trace representation and compression algorithm [14]. hagad
to preserve the structure and temporal ordering of eveatsngin-
tains traces in a space-efficient representation. How&eala-
Trace needs to be linked to the original application and @egton

a high-performance computing cluster ofji@en number of com-
pute nodes to obtain a trace. Due to the often long application ex-
ecution times and limited availability of cluster resowgder large
numbers of nodes, obtaining the trace information of a lasgge
parallel application remains costly.

An alternative to obtaining communication traces is to nhode
and predict application behavior [9, 10]. Generally, thpmach
takes a number of machine and application parameters at inpu
It utilizes a set of formulae to assess the impact of scalinghe
system characteristics and predict performance in termsatif
clock runtime of an application. Similarly, this approaatoyides
only overall statistics for an application on a particulachatec-
ture. Without a detailed application trace, more sophaséid static
analysis is impossible. In addition, measuring the systathap-
plication performance parameters is also non-trivial gitree com-
plexity of supercomputers and large-scale scientific appbns.

Contributions: This paper contributes a set of algorithms and
techniques to extrapolate full communication traces aret@ion
times of an application at larger scale with informationhgaed
from smaller executions. Since extrapolation is based @iytan
cal processing of smaller traces with mathematical transditions,
this approach can be performed on a single workstation, riruch
contrast to analysis or visualization of large traces intemporary
tools .g., Vampir Next Generation [3]). It thus enables, for the first
time, the instant generation of trace information of an iagion
at arbitrary scale without necessitating time-consumixegetion.
Specifically, we extrapolate two aspects of the applicatiemavior,
namely the (1) communication trace events with parametet$2)
timing information resembling computation. The extrapiola of
the communication trace is based on the observation thataiy
regular SPMD stencil and mesh codes, communication paeasmet
and communication groups are related to the sizes and diomsns
of the communication topology. Thus, extrapolation of camin
cation traces becomes feasible with the detection of contaun
tion topologies and the analysis of communication pararadte
infer evolving patterns. The extrapolation of timing infaation in-
volves a process of analytical modeling. In order to mitgtt-
ing fluctuations under scaling, we employ statistical mésh&uch
extrapolations are facilitated by ScalaTrace’s compogsscheme



that preserves application structure. In contrast, egtedion with
other trace formats, such as OTF [11], would be far more tedio
and time/space consuming as structure is neither estatilstross
nodes nor retained after binary-level compression.

information and temporal ordering. ScalaTrace utilizes KPI

profiling layer (PMPI) to intercept MPI calls of HPC programs
Extended regular section descriptors (RSDs) are used twdec
the parameters and information of a single MPI event nested i

This trace extrapolation approach has been implemented ina loop. Power-RSDs (PRSDs) recursively specify RSDs nésted

the ScalaExtrap tool, which we utilize to evaluate our eata-
tion approach with a microbenchmark and several NAS Paralle
Benchmark codes [1]. We utilize up to 16,384 nodes of a 73,728
node IBM Blue Gene/P supercomputer to generate commuaicati
traces for extrapolation and verification. Experiments evper-
formed to assess both the correctness of communicatioapextr
lation and the accuracy of the timing extrapolation. Experital
results demonstrate that our topology detection algorighoapa-
ble of identifying and characterizing stencil/mesh andemive
communication patterns. Upon topology detection, the camim
cation trace extrapolation algorithm correctly extrapedaall com-
munication events, parameters and communication groups at
arbitrary target size for both stencil/mesh point-to-pa@nd col-
lective communication. The experiments also demonsthatethe
extrapolation of timing information resembles the runniimge of
the original parallel application. Compared to the runriinge of
the original application, the accuracy of replay times @ torre-
sponding extrapolated trace is, in the majority of caseghédrithan
90%, sometimes as high as 98%. Given the difficulty of extrapo
lating application execution time with only the time infaation
obtained from several small executions, our approach eehien-
precedented accuracy that is sufficient for modeling, peroent
and analysis tasks.

Overall, this work explores the potential to extrapolateneo
munication behavior of parallel applications. Severalei@aigo-
rithms for communication topology detection and commutiica
trace extrapolation are introduced. Experimental resigtsion-
strate that rapid generation of an application’s tracermftion at
arbitrary size is entirely possible, which is unprecedeénte con-
trast to tedious and application-centric model develogam ap-
proach opens new opportunities for automatically derizioghmu-
nication models, facilitating communication analysis &amiing at
any scale. Our work further enables system simulation aemme
scale based on a single file, concise communication trage-rep
sentation. More specifically, HPC simulation toatsy(, Dimemas
or SST [12, 19, 21]), which currently cannot operate at eties
levels, could benefit by utilizing our extrapolated sinfjle-traces
that are just 10s of megabytes in size. Benchmark generiation
portant for cross-platform performance analysis due tstéadard
and portable source code and the platform-independentan@ur
work enables code generation at extreme scale by providing |
traces that are otherwise unavailable. Furthermore, biribating
a set of detection techniques of communication patterrmsywork
has the potential to enable the generation of flexible amaistdone
programs that can be executed with arbitrary numbers ofsadé
any possible input.

This paper is structured as follows. Section 2 summarizes re
lated work on ScalaTrace with respect to its ability to suppg-
trapolation. Section 3 provides a detailed introductiorthie al-
gorithms designed for extrapolation. Sections 4 and 5 ptabe
experimental framework and results. Section 6 discusseéirth
itations of this work and uncovers future challenges. ®eci
contrasts this work with prior research. Section 8 summarthis
work.

2. Overview of ScalaTrace

Our work utilizes the publicly available ScalaTrace infrasture
[14]. ScalaTrace is an MPI trace-gathering framework ttesteg-
ates near constant-size communication traces for a paapfica-
tion regardless of the number of nodes while preservingsiral

multiple loops. For example, for the 4-point stencil codevsh in
Figure 1, RSD1: <MPI _lrecv, (NORTH, WEST, EAST, SOUTH)>
and RSD2: <MPI_Isend, (NORTH, WEST, EAST, SOUTH)> de-
note the alternating send/receive calls to/from the 4 rmigh
and PRSD1: < 1000, RSD1, RD2, MPI_Waitall > denotes the

a loop with 1000 iterations. In the loop’s body, RSD1, RSD2,
and a following MPIWaitall are called sequentially. During ap-
plication execution, ScalaTrace performs intra-node gesgon,
which captures the loop structure on-the-fly and represkeifts
events in such a compressed manner. Local traces are cainbine
into a single global trace upon application completion, ixgthin

the PMPI interposition wrapper for MEinalize. The key ap-
proaches to achieve near-constant inter-node compreasiotihe
location-independent encoding and communication growgoen
ing schemes detailed in the following.

nei ghbor[] = {NORTH, WEST, EAST, SOUTH};
for(i=0; i<1000; i++) {
for(j=0; j<4; j++) {

MPI _I recv(nei ghbor[]

1);
MPI _I send(nei ghbor[j]);

}
MPI _Waitall();

Figure 1. Sample Stencil Code for RSD and PRSD Generation

e |ocation-independent encoding: Communication end-points in
SPMD programs differ from one node to another. By encod-
ing endpointsrelative to the index of an MPI task on a node,
a location independent denotation is created that describe
the behavior of large node sets. In a stencil/mesh topology,
only few of such distinct sets/groups tend to exist. Loaatio
independent encoding not only opens up opportunities fer-in
node compression to unify endpoints across different caaapu
tional nodes but also enables extrapolation.

Communication group encoding: Similarity in communication
patterns is recognized to succinctly denote sets/groupedss
with common behavior. In a topological space, a communica-
tion group refers to a subset of nodes that have identicat com
munication patterns. With this encoding scheme, a comratnic
tion group is represented asank list. Using the EBNF meta-
syntax, arank list is represented as dimension start_rank
iteration_length stride {iteration_length stride} >,
wheredimension is the dimension of the grouptart_rank is

the rank of the starting node, and theration_length stride

pair is the iteration and stride of the corresponding diritans

As an example, consider the row-major grid topology in Fig-
ure 2. The shaded nodes form a communication group. This
group is represented aanklist <2 6 35 3 1>, where the tu-

ple indicates that this communication group is a 2-dimeredio
area starting at node 6 with 3 iterations of stride 5 in the y-
dimension and 3 iterations of stride 1 in the x-dimension, re
spectively. Since this encoding scheme takes node placemen
into account, it naturally reflects the spatial charactiessf a
communication group.

We exploit these representations as a foundation for eodmap
ing communication topology.

Besides communication tracing, ScalaTrace also preséhnees
timing information of a parallel application in a scalablayf18].
Along with the intra-node and inter-node compression sses,



Figure 2. Ranklist Representation for Communication Group

“delta” times representing the computation between conicadn
tion events are recorded and compressed. For the purposelaf s
bility, delta times of a single MPI function call across nipik loop
iterations are not recorded one by one. Instead, histogvathsa
fixed number of bins for delta times are dynamically cons&ddo
provide a statistical view. Delta times are distinguishgahbt only
the call context of recorded events, but also by their patueece,
which addresses significant variation of delta times cabyguhth
differencesg.g., within entry/exit paths of a loop.

Finally, ScalaReplay is a replay engine operating on théi-app
cation traces generated by ScalaTrace. It interprets timpEssed
application trace on-the-fly and issues MPI communicatialfsc
accordingly. During replay, all MPI calls are triggered ptke
same number of nodes with their original parameters (e.gs-m
sage payload size) but a randomly generated message cdrtent
ensures comparable bandwidth requirements on commuomdati
terconnects. ScalaReplay emulates computation evertis iorig-
inal application by sleeping so that the communication eotidn
characteristics are maintained during replay. In gendénelreplay
engine can be utilized for rapid prototyping and tuning, af as to
assess communication needs of future platforms for lacgée pro-
curements in conjunction with system simulators (DimeiB&3/)
[12, 19, 21]. In this work, we use ScalaReplay to verify therect-
ness of extrapolation results, which will be discussed latehis
paper.

3. Communication Extrapolation

This work focuses on the extrapolation of communicatiorcasa
and execution times. The respective design is subsequientle-
mented in a novel tool, ScalaExtrap. The challenge of conkmun
cation trace extrapolation is to determine how the comnaiitn
parameters change with node and problem scaling. The medn id
is to identify the relationship between communication paeters
and the characteristics of the communication topology, typi-
cally the sizes of each dimension. As a simple example, inr€ig
2, assumaode 0 communicates withode 4, i.e., a node at distance
of 4. If we can identify that the topological communicatiqrase

is a grid consisting of 25 nodes with 5 nodes per row, we kn@t th
node O actually communicates with the upper-right node. There-
fore, when there are 1024 = 832 nodes, we can safely infer that
node 0 communicates witmode 31, which is still the upper-right
node.

Characterizing a communication pattern from one or more
traces is non-trivial nonetheless. Without the knowledig given
node assignment scheme and topology, identifying the camtau
tion pattern from the communication graph provided by agifile
is equivalent to solving the graph isomorphism problem,clvhis
known to be NP hard [24]. Therefore, instead of attemptinfinic
a universal solution, we constrain our work to applicatiaiere

1. nodes are numbered in a row-major fashion and

2. communication is performed in stencil/mesh point-taapo
manner or via collectives involving all MPI tasks.

In essence, our communication trace extrapolation alyaoriiirst
identifies the nodes at the “corner” of a topological spacéhdn
calculates the sizes of each dimension of the topologictepc-
cordingly. Upon acquiring the topology data, we represeatcom-
munication parameters,g., the destination rank of MP$end, as a

function of the known topology data and their undeterminaeffc-

cients. In order to calculate these coefficients, we caeetaultiple
traces and construct a set of linear equations. Finally, wel@y
Gaussian Elimination to solve the set of equations. Withfittex
coefficients, we can extrapolate the value of the desirechaaomi
cation parameter by simply substituting the topology dath their

values at the desired problem size. Since the set of linestens

is constructed with the matching values of a communicateram-
eter across traces of different node sizes, we further asshian

1. target applications are SPMD programs and

2. communication traces are compressed perfectly at bati-in
node level and inter-node level so that the traces obtaimmed f
different node sizes are structurally identical (whichyohe-
comes feasible due to ScalaTrace’s structure-preservaog t
compression).

The second aspect of this work concerns the extrapolation of
program execution time. In the input trace files, computatime
and communication time between (and optionally during) MPI
communication events are preserved statistically wittogimms.

When analyzing the corresponding delta time, scaling serah

be identified across different number of nodes. Therefdetiss-
cal curve fitting methods are utilized to model an evolvirentt
and extrapolate the execution time to a desired targetisizeder
to eliminate outliers, we further introduce several confiteecoef-

ficients to statistically determine the best extrapolai@de under

such constraints.

3.1 Topology Identification

Topology identification is the basis of communication treaggap-
olation. In order to identify a topology, it is important tondi the
nodes at the corner or on the boundary of a topological spateh

we callcritical nodes. We devised a three-step approach to identify

the communication topology.

1. We create an adjacency list of communication endpoints fo
each node and group nodes according to their adjacency lists

2. We identify critical nodes by analyzing the adjacencislis

3. We calculate the sizes of each dimension (X, y, and z) of the
communication topology.

Figure 3. Topology Detection

First, our algorithm traverses the input trace to constcoch-
munication adjacency lists for each node. According to étative



positions (encodings) of all the communication endpoiriteazh
node, nodes with same endpoint patterns are placed intathe s
group. Figure 3 illustrates an example of a 2D mesh topolbgy.
this example, nodes on the boundaries communicate withsnaide
the opposite side in a wrap-around manner while the interodés
communicate with their immediate neighbors. Note that ywitagp
around in the vertical direction does not lead to differemdmoint
encoding. Therefore, the nodes are divided in to three gréap
B, and C) with group sizes 5, 10, and 5, respectively.

of nodes under a constant input size) linearly increasesgdees
the value of communication parameters and the topologizaks
Given several data points, a fitting curve can be constructect-
trapolate the growth rate of the communication parameteistze
topology information (the sizes of each dimension) of thenow-
nication groups.
Specifically, in an n-dimensional Cartesian space, thedioor

nates of nodeX andY are(X1, Xo, ..., X») and(Y1, Yz, ..., Y3),
whereX; andY; € [0, .S; — 1] andS; is the size of theé-th dimen-

Next, we analyze the adjacency list of each node to identify sion of the topological spadd < ¢ < n). Assuming the locations

the critical nodes. Exploiting the row major constraint, s@an
all nodes sequentially to identify loop structures withpest to
communication adjacency list patterns. The underlyingnaie is
that critical nodes define a topology. Between correspanditt-
ical nodes, communication patterns emerge repeatedhordicg
to the length of a loop structure, the sizes of the groupsisbok
critical nodesj.e,, critical groups, are calculated as
n

critical group size = m,

wheren denotes the number of nodes engaged in MPI commu-

of nodeX andY differ only in thei-th dimension, the distance be-
tweenX andY in thei-th dimension isd; = X,; — Y;. With the
assumption of linear correlation between topology size -
munication parameterd; = X; —Y; = a; X S; +b;, wherea; and
b; are two constants. Furthermore, with the row-major nodeesla
ment assumption, the rank of an arbitrary notled:, Ao, ..., As)

IS
n i—1
I%ankA ::jz:fh II‘ST
i=1  j=1

nication. For example, in Figure 3, each row has the samepgrou Therefored;’, the rank distance betweefiandY’, is

distribution (A B B C) and is thus identified as a single iteat
of the loop structure. Since the length of such a loop iterais 4,
the size of theeritical groups (group A and C) i0/4 = 5. Having
obtained the size of the critical groups, we then associdtieat
nodes with groups by matching sizes of critical groups.

Figure 4. Boundary Size Calculation

Finally, we calculate the sizes of each dimension. Agairaitp
ing the row-major constraint, in a d-dimensional topolagj&pace,
the number of nodes at theth dimension is the total number of
nodes. The number of nodes at ki (i < d) dimension,n;, is
the inclusive range of numbers of nodes betweente O (1st criti-
cal node) and the’-th critical node. Once we have determined the
number of nodes at each dimension, the boundary size dftthe
dimensions;, is calculated as

T
S =

Ni—1
For example, in the 3D topology of Figure 4, the number of sode

in the 1st dimension1 =3, is the number of nodes between A and
B inclusively, the number of nodes in the second dimensigr,12

, i1s the number of nodes between A and D, and the number of nodes

in the third dimensioms is the total number of nodes. Hence, we
have

r=s1=n1/no=3

y=s2=n2/n1 =4

z = s3 =mn3/n2

3.2 Extrapolation of Communication Traces

The extrapolation of communication traces consists of K&apo-
lation of both communication groups and communication ipara
ters to indicate who communicates and how they communiTate.
extrapolation algorithm is based on the observation thaggular
SPMD stencil/mesh codestrong scaling (increasing the number

i—1 i—1
d' = (Xi = Y) x [[ S5 =(aix Si+b:) x [[ S
j=1 j=1
In general, for two arbitrarily selected nodés and N, their rank
distanced’ is the sum of their rank distances in each dimension,

d=do +di +..+d,

n i—1 n i—1
=> Ni=M)[]S =D (@ xSi+b) ]S
=1 Jj=1 =1 Jj=1

n n—1 i n g
=an [[S+ D (@+bi) [[Si+b1=> ]S
j=1 i=1 j=1 i=0 j=1

wherec, = an, co = b1,ande; = a; + bi+1(1 <i<n-—1).

In order to extrapolate the rank of a communication endpoint
(src/dest), which is defined by the rank distance betweemrs)od
we need to identify how the topology information is relatedte
communication parameter. We construct a set of linear et
to solvec; (1<i<n-1). In general, for an n-dimensional topology,
n+1input traces are needed to solve- 1 coefficients. We employ
Gaussian Elimination to solve the equations. Once the salifie
ci(1 < i < n — 1) are determined, a fitting curve for the given
parameter is established. In order to extrapolate the sanaengter
for a larger execution, we utilize the known coefficients apédcify
the topology information at the target task size. The ddsiedue
is then calculated accordingly.

As an example, in a 2D space, the bottom-right node in Figure 5
communicates with itEAST neighbor in a wrap-around manner. In
order to extrapolate the rank of the communication endptince
input traces with dimensions x 4, 5 x 5, and6 x 6 are used to
construct the set of linear equations shown in Figure 6,cand 1,
c1 = —1, andcy = 1 are obtained as the values of the coefficients.
To extrapolate d0 x 10 mesh, we re-construct the equation with
coefficients and topology information assigned. Subseityyehe
target valuéd/ is calculated a¥ = c2 x 10x 10+c¢1 X 104-co = 91.

Besides the communication parameters, communicatiorpgrou
are also extrapolated. The topological space of an apjaitaan
be partitioned into several communication groups accgrtbrthe
communication endpoint pattern of each node. Urstleng scal-
ing, partitions tend to retain their position within the topgilo
cal space but change their sizes for each dimension acgbydin
For example, Figure 7 shows the distribution of 9 commuivcat
groups of a 2D stencil code. Despite the changing problee siz
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Figure 5. Generic Representation of Communication Endpoints

coX4dx4d+c1 x44+co=13
CoXDHXb+e1 XH+co=21
o X6X6+c X6+ c =31

Figure 6. Set of Equations for Communication Endpoint Extrapo-
lation

groupsA, C, G, andl always represent corner nodes, grogp®,
F, andH are always the boundaries, and grdtigontains the re-
maining (interior) nodes.

'0l0 " 0i0"
| 010 -+ 0O
00 - 0i0
010 O{0;

Figure 7. Distribution of Communication Groups of a 2D Stencil
Code

This opens up the opportunity to extrapolate communication
groups of the same application at arbitrary size. In ordeexto
trapolate, we represent communication groupsaak lists, which
effectively specifies the starting node and the dimensinessof a
group. Since the dimension sizes are defined by the distdreees
tween nodes (vertices), we again utilize a set of linear &opgto
establish the relation between the topology informatiocasfimu-
nication groups and the task sizes. Extrapolation is pewéor for
the start_rank, iteration_length, and stride fields of the rank
list. The output rank list reflects the communication grotiphe
target size. For example, for the topology shown in Figunetyen
the total number of nodes is 16, the rank list of gréms defined
in Section 2,is<25242 1>, i.e, a 2D space starting fromode
5 with x- and y-dimensions of size 2. Similarly, the rank lisfs
groupE at sizes 25 and 36 are2 6353 1> and<2746 4 1>,
respectively. We can thus construct the set of linear egusitior
each field in the rank list to derive a generic representaifaine
rank list as:

<2 z+1 x-—2 1>.

Subsequently, assuming that we want to extrapolate for size
10, letz be 10, which yields the output rank list2 11 8 10 8 1>
that precisely matches thank list representation of communica-
tion groupE at this problem size.

By combining the extrapolation of both communication greup
and communication parameters, we are capable of extrapptae
communication trace for a given application at arbitrapaiogical
sizes.

r r—2

3.3 Handling Dynamic Load Balancing

The extrapolation of communication traces requires thetitraces

to be structurally identical so that the corresponding R8Bs

be matched across different traces. Being structurallytical re-
quires the traces to have the same number of RSDs and the-match
ing RSDs should be generated by the same MPI event in the origi
nal application, though the values of the communicatioaipeters

and the loop information can be different.

However, the NPB code IS (Integer Sort) [1] results in struc-
turally different traces due to an inherent dynamic workldwal-
ancing scheme. Specifically, in IS, each node first sorts thei
cal elements into buckets, then calls MilItoallv to distribute
the buckets to different nodes. Since the bucket sizes as-de
mined by the randomly generated elements, the messageo$izes
MPI_Alltoallv are different in each iteration both within andrass
nodes. In addition, to create different program behavi®gHanges
the values of several elements every iteration, so the peem
for MPI_Alltoallv keep changing across timesteps. As a result, the
compression of MPAlltoallv fails for both intra- and inter-node
phases, which leads to structurally different traces.

In fact, MPLAlltoallv supports different message volumes be-
tween different node pairs (in contrast to MRIlltoall). Compres-
sion based on identical parameter values across nodey saiel
ceeds. Therefore, we decided to imprd@salaTrace to trade pre-
cision for a higher degree of abstraction that allows moigres;
sive trace compression and ultimately enables extrapolaiive
observe that the total volume of data exchanged by_KiRballv
across all nodes for each synchronous call represents bty
boundary data. This boundary data volume is constant aalbss
nodes. Thus, we aggregate mismatched parameters, suchsas me
sage payload sizes, across all nodes. We subsequently ridseor
average value (per node) instead of actual parameter yalinésh
diverges only slightly from the average value. Note thas -
provement is not just a customization for extrapolation ®fbut
rather results in improved compression afy application with
similar usage patterns of MRAlltoallv. Given a constant overall
input data size, the message size of Mfltoallv in IS follows
an inverse-proportion relationship relative to the nuntfarodes.

(A similar behavior is also observed for FT.) We consequyeel-
hanced ScalaTrace with the ability to detect and handlexditting
for inverse-proportional relationg,g., for message sizes. Utiliz-
ing this methodology, we are able to obtain perfectly corsped
communication traces for IS, which enables extrapolatimaugh
ScalaExtrap.

3.4 Handling Unique Communication Patterns

While the above extrapolation algorithm applies to stémakh
topologies, which characterize communication of a largaimer of
parallel applications, we also observed a more complex aamymn
cation pattern that required explicit communication infiation for
extrapolation. As an example, consider the communicatbpolt
ogy of NPB CG in Figure 8. The primary communication pattern
is repeated across each row. For a single node, both the amoun
and the distance of endpoints changes with the number ofshode
Specifically, when there are a total af = 2?(x 1,2,4,...)
nodes, each node will havgz communication endpoints with dis-
tance

d=(-1)l=) x 2!,
where0 < i < Igx andr is the rank of the node. Moreover, there
is a secondary communication pattern along the diagonalich
nodes at symmetric positions communicate.
In order to detect the communication topology of CG, we im-
proved the topology detection algorithm so that commuiooat
originating from different locations in the source code @ifferen-
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Figure 8. CG Communication Topology

tiated by their distinct call stacks. This enables us to leagplica-
tions with multiple interleaved communication topologiééthout
the interference of diagonal communication, the loop d&te@ro-
cess is able to identify the primary row-wise communicatat-
tern and thus calculate the boundary sizes y = /n. The com-
munication pattern of CG, however, is not linearly correthtvith
the topology sizes (which is beyond the scope of this workg. W
thus manually provide information to facilitate the exwkgtion.

In future work, we plan to enhance ScalaExtrap to suppont-use
plugins that specify communication patterns. With thisctional-

ity, unique communication patterns can be analyzed by Sgalap
exploiting its extrapolation capability.

3.5 Extrapolation of Timing Information

Besides the communication traces, we also extrapolatérttiegt
information of the application. ScalaTrace preserves teta”

time for each communication event and for the computation be

tween two communication events. For a single MPI functiolh ca
across multiple loop iterationgg., for a RSD, the delta times are
recorded in multi-bin histograms. These histograms contaé
overall average, minimum, and maximum delta time, the iBistr
tion of the delta execution times represented as histogiasy and
the average, minimum, and maximum delta time for each hiatog
bin. To extrapolate timing information, we utilize curvetifig to
capture the variations in trends of the delta times with eespo
the number of nodes.e., t=f(n), wheret is the delta execution time
andn s the total number of nodes. Hence, the target delta tine
calculated as. = f(n.) , wheren. is the total number of nodes at
a given problem size. While we can extrapolate only the aggesl
average delta time per RSD, to restrain the statistics ¢édiehe,
extrapolation is performed for each field of a histogram.r€uity,
we implemented four statistical models based on curve ditfom
each extrapolation. We use a deviation-based metric tardete
the best of these models to fit to a given curve.

1. Constant: This method captures constant tines, t=f(n)=c.
Before calculating the constant time, the input titpevith the
largest absolute value of deviation is excluded from theaitinp
times to mitigate the influence of outliers (which can be edus
by either unstable system state or an empty bin). Subsdguent

the average value of the remaining input times reflects the

constant timec, and d;=std. dev./average is used to evaluate
this fitting curve among the remaining values.

2. Linear: This method captures linearly increasing/dasirey
trends, i.e, t=f(n)=an+b. We use the least-squares method

to fit the curve. In order to avoid mis-classifications, such

as a constant time relationship as a linear relationship wit
a near-zero slope, we define a threshold slepg,=0.2
such thatVa < sm., t=f(N)=b. For curve evaluationd, =
Vresiduallaverage is used, whereverage refers to the aver-
age value of the estimated running times.

3. Inverse Proportional: This method captures inversggmtnal
trends,.e., t=f(n)=k/n. We observe this trend in the NAS Paral-
lel Benchmark IS, where MPAlltoallv dynamically rebalances
the per-node workloads even though the collective workload
over all nodes is constant. Let be the input timesy; be the
corresponding number of nodes, and= ¢; x n;. We extrapo-
late the constark as the average value bf. Again, we exclude
the outlierk,, which has the largest absolute value within the
deviation. To evaluate this fitting curve, we calculate ttans
dard deviation of; and then divide by the average valueof
i.e, ds=std. dev./average is used for comparison.

4. Inverse Proportional + Constant: This method captureexa
ecution time consisting of an inverse proportional phaskan
constant phasa,e., t=f(n)=k/n+c. Instead of directly extrap-
olating t, we utilize the least-squares method to extrapolate
t' = tn = cn + k and usel, = Vresiduallaverage for the
curve evaluation. With an extrapolatedndk, tis subsequently
calculated as =¢'/n = k/n+c.

Having obtained the deviations for each curve-fitting pssce
we compare the values to determine the curve that best fits. Fo
a closer approximation, we define a threshold value= 0.05,
such that if and only ifdmin + d: < d; holds for alld; other
than d...» will the corresponding candidate curve be selected as
the fitting curve. Otherwise, the extrapolation for the eutrfield
is postponed until we have processed all the fields in the same
histogram. Since every field in the histogram should haveanee
variation trend, we finalize the pending extrapolation adicw to
the decisions of the remaining fields.

4. Experimental Framework

Our extrapolation methodology for communication traces &
plemented as the ScalaExtrap tool that generates a synttete

for a freely selected number of nodes. The extrapolatioaset on
traces obtained from application instrumentation with|&taace

on a cluster. For both base traces generation and resuifeaer
tion, we use a subset of JUGENE, an IBM Blue Gene/P with 73,728
compute nodes and 294,912 cores, 2 GB memory per node, and the
3D torus and global tree interconnection networks. We peréal
experiments with (a) one MPI task per node and (b) one per core
We report the results for the former because this configumatio-
vides more memory per MPI task, which enables larger scale ru
Nonetheless, configurations (a) and (b) show equally atearzd
correct results.

The extrapolation process is run on a single workstation and
requires only 1 or 2 seconds, irrespective of the target rurob
nodes for extrapolation. This low overhead is due to thealiniene
complexity of our algorithm with respect to the total numioér
MPI function calls in an application. Results from extragi@n are
subsequently compared to traces and runtimes of an appticat
the same scale, where runtimes for extrapolated tracedbtamed
via ScalaReplay (see Section 2).

We conducted extrapolation experiments with the NAS Paral-
lel Benchmark (NPB) suite (version 3.3 for MPI) with class imla
E input sizes [1]. We report our extrapolation results for, EP,

FT, CG, LU, and IS. These benchmarks have either a stensifime
communication pattern or collective communication, bdtiioich
are applicable to our extrapolation algorithm. Among thesech-
marks, IS originally exhibited imperfect compression fgsg in
non-scalable trace sizes due to its dynamic load re-balgnga
workload exchange through the MRIltoallv communication col-
lective. In order to utilize our extrapolation techniquesg en-
hanced ScalaTrace such that minor differences in _KiRballv
parameters caused by load re-balancing are eliminategbesreed

in Section 3.3. The communication trace extrapolation f& i€



facilitated by manually specifying the communication pattas a
plugin function (see Section 3.4). The extrapolation ofirignin-
formation does not require any extra information.

5. Experimental Results

Experiments were conducted with respect to two aspectselyam
the correctness of communication traces and the accurdiyiofy
information, both for extrapolations under strong scalirey, when
varying the number of nodes. Notice that strong scaling tisaly
aharder problem under extrapolation as it tends to affect communi-
cation parameters such as message volume size. In comiesst,
scaling (increasing the number of nodes and problem siz#®eat
same rate) is easier as it tends to preserve message voliregs s
irrespective of the number of nodes.

5.1 Correctness of Communication Trace Extrapolation

We first evaluated our communication trace extrapolatigorahm
with microbenchmarks and the NPB BT, EP, FT, CG, LU, and IS
codes. We assessed the ability to retain communicationrgersa
across the extrapolation process for these benchmarks tartet
scale. The microbenchmarks perform regular stencil-4oyies-
style communication in topological spaces from 1D to 3D. The
NPB programs exercise both collective and point-to-podmmu-
nication patterns. We verified the extrapolation resultmirdtiple
ways.

1. The extrapolated trace file., was compared with the trace file
obtained from an actual execution at the same sEalg;e: on
a per-event basis (Expl in Figure 9).

. The extrapolated tracg., was replayed such that aggregate
statistical metrics about communication events could bma-co
pared to those of a corresponding original application tihe
same problem size and node size (Exp2 in Figure 9).

. After extrapolation, trace§e,, T.,, ..., Te, were collected
in a sequence of replays to obtain a fixed point in the trace
representation (Exp3 in Figure 9).

ScalaReplay
(mpiP)

mpiP

@ ScalaTrace

Figure 9. Correctness of Trace Extrapolation and Replay

First, the per-event analysis of trace files showed that ex-
trapolated MPI parameters and communication groups pgbrfec
matched those of the application trace for all benchmarks ex
cept one (Expl in Figure 9). In BT, the message volume of
non-blocking point-to-point sends and receiaggproximates an
inverse-proportional relationship with respect to the bhemof
nodes. However, it diverges slightly from an inverse-prtipoal
approximation for extrapolating the message volume duete i
ger division (discarding the remainder) inherent to thesegode.
This inaccuracy is later amplified in the extrapolation psscand
results in message volumes that are about 13% smaller tlean th
actual ones at a given scaling factor in the worst case. Asemp
cisions remain localized to certain point-to-point messaghis
effect is shown to be contained in that resulting timingsdeemed

accurate within the considered tolerance range for extaéipo

experiments (see timing results below). Such imprecisi@mve no
side-effect on semantic correctness (causal order) oé tesents
whatsoever. Overall, the results of static trace analysisvsthat
our synthetically generated extrapolation trace is edgmiato the
trace obtained from actual execution of the same applicaidthe
same scaling level.

Second, we replayed the extrapolated trageto assess if the
MPI communication events are fully captured (see Exp2 in Fig
ure 9). For this experiment, ScalaReplay is linked with mgi#,
which yields frequency information of each MPI call distirighed
by call site (using dynamic stackwalks). During replay, MPI
function calls recorded in the synthetically generatedagdlation
trace were executed with the same number of nodes and tiggir or
nal payload size. For comparison, we instrumented ther@igip-
plication with mpiP and executed it at extrapolated sizeskfiem
and node sizes). We compared fuggregate Sent Message Szere-
ported by mpiP between the original application and theaysgd
extrapolated trace. Results show that the total send vaaftbese
experiments are identical, except fdPI_Isend in BT as discussed
above. We also compared the total number of MPI calls recorde
the mpiP output files. The results allowed us to verify thatribm-
ber of communication events in the actual and extrapolatesbs
match,i.e., the correctness of communication trace extrapolation is
preserved.

Third, we evaluated the correctness of ScalaReplay byyepla
ing the generated trace file in sequence until a fixed poirtshed
(see Exp3 in Figure 9). The fixed point approach is a well estab
lished mathematical proof method that establishes coiorers
this case of the trace data. In this experiment, insteadstftiment-
ing ScalaReplay with mpiP, we interposed MPI calls througal&
Trace again. As ScalaReplay issues MPI function calls,eéScate
captures these communication events and generates a teafoe fi
it, just as would be done for any other ordinary MPI applicatiWe
start by replaying the extrapolated trace file and obtain a new
traceT., . This trace differs fronT.,, in that call sites of the original
program have been replaced by call sites from ScalaReplay. T
affects not only stackwalk signatures but also the strectditrace
files due to the recursive approach of replaying trace filgdaoe
over their internal (PRSD) structure without decompreg$inWe
then replay tracé, to obtain another tracg., and so on fofl, .
We then compare pairs of trace filés,, T,  , . If two such traces
match, a fixed point has been reached. In these experimeats, w
verified that pairs of trace files, baring syntactical défeces, are
semantically equivalent to each other. In other words, &aplay
neither adds nor drops any communication events duringayepl
i.e., by obtaining a fixed point it was shown that all MPI communi-
cation calls are preserved during replay.

5.2 Accuracy of Extrapolated Timings: Timed Replay

We further analyzed the timing information of extrapolateates
for the NPB BT, EP, FT, CG, and IS codes with a total number
of nodes of up to 16,384. For CG, EP, and FT, we used class D
input sizes. For BT, class E was used so that a sufficient wadkl
is guaranteed at 16,384 nodes. For IS, we modified the inpeitai
adapt it for 16,384 nodes (the original NPB3.3-MPI providey
class D problem size and supports a maximum of 1024 nodes).
These problem sizes and node sizes were decided based on the
memory constraints (for some benchmarks, memory congtrain
compel us to generate the base traces already at large, sehiels
in turn leaves fewer target sizes for evaluation) and théahilty
of computational resources to assess the effects and tiiomsaof
our timing extrapolation approach.

In this set of experiments, we first generated 4 trace files for
each benchmark as the extrapolation basis. From theserbass,t
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Figure 10. Replay Time Accuracy for Benchmarks

an extrapolated trace was constructed next using Scakgktr-
cluding extrapolated delta time histograms. We then ashegsn-
ing accuracy by replaying the extrapolated traces. Durapay,
ScalaReplay parses the timing histograms of the computpgoi-
ods in the trace files. It simulates computation by sleeprdetay
the next communication event by the proper amount of timéhimn
context, the effect of load imbalance is preserved by Scatzl
The timing histogram records not onfgin, max, avg, std.dev val-
ues, but also th&requency for each timing bin, and these statistics
are also extrapolated by ScalaExtrap. During replay, teepshg
time is generated according to these statistics and thelamizal
timing behavior is thus reproduced. Communication is sympt
played with the same extrapolated end points and payload bizt

tors, such as system overheads or performance fluctuatibtiPof
collectives caused by different process arrival pattedhsjecome
dominant. Compared to the other benchmarks, IS shows a con-
stantly lower accuracy (66%-83%). Two reasons may explas t
phenomenon: (a) Although IS dynamically rebalances thekwor
load across all nodes, the execution time of the applicatisort-
ing algorithm on each process still takes a different amotitime.
Hence, collective MPI calls take unpredictable time to $yonize
as the arrival times of processes at collectives variedfgigntly
due to load imbalance. Since the degree of imbalance isdigted
by randomly determined delta times from histograms, it fadilt

to predict/extrapolate this behavior. (b) Source codeyaimshows
that the most computationally intensive code section indiSsists

a random message payload. We do not impose any delays on comef two phases, namely (i) an inverse-proportional phasgifne is

munication as published results indicate better accuratly just
delays for computation only [14], which we also confirmedtHis
experiment, ScalaReplay is linked to neither ScalaTracampP
to avoid additional overhead caused by the instrumentéaiger of
these tools. Hence, the output of ScalaReplay in this exyari is
the total time to replay a trace. For each extrapolated traeeaun
the corresponding application at the same problem sizeeoutd
its overall execution time for comparison.

Figure 10 depicts the extrapolation accuracy of BT, EP, BT, |
and CG, respectively, for a varying number of nodes. We sihaw t
extrapolation results of CG in separate figures becausehaey
different communication topologies and thus a differertrapo-
lation basis. As shown in Figure 10, the timing extrapolati-
curacy is generally higher tha9%, sometimes even higher than
98%, where accuracy is defined as

|Replay Time — App Time|

Accuracy = App Time

For BT, we observed slightly lower accuracy when the totahber
of nodes approaches 16,384. At such sizes the computationkd
load becomes so small that the influence of non-determndrfest-

inverse-proportional to the number of nodes), and (ii) atietly
short constant phase (runtime does not change significauiitthy
node sizes). When the node size is small, the inverse-piopal
phase almost solely determines the computation time. Asudtre
our algorithm fails to uncover a small constant factor than-c
tributes to timing for larger node sizes. ScalaExtrap mdteeats
it as a pure inverse-proportional timing trend. Without #fert
constant factor in the timing curve, the extrapolated rastdrops
slightly faster than the real runtime leading to a consyasitiorter
replay time. However, since we are able to capture the ddinma
inverse-proportional timing trend, we still obtained arcegutable
timing prediction accuracy.

In large, minor inaccuracies during replay stem from imgec
curve fitting for the extrapolation of computation times.r Floe
simulation of communication duration, ScalaReplay depesdy
on the communication parameters such as end points andagiaylo
sizes, which are shown to be correctly extrapolated in S8e&il.
Overall, the extrapolated timing information preciselfleets the
runtime of the original application at the target problemesand
node size.



6. Discussion and Future Work

This work explored the extrapolation of the communicatiehd-
ior of parallel applications, which is unprecedented. Rerextrap-
olation of communication traces, the detection of commati
topology is vital but non-trivial. We currently focus on sté/mesh
topology with nodes arranged in a row-major fashion. Whikrge
amount of parallel applications fall into this category, eeserved
more complex communication topologies that are hard toctiete
with a generic approach, which thus limits the applicapitif this
work. In future work, we plan to support user plugins so tht t
extrapolation of complicated and unique communicatioriepas
can be facilitated by user-supplied information.

Extrapolation of timing information of parallel applicafis is
another objective of this work. Currently, we capture foates
gories of the most commonly seen timing trend. However, tiee p
diction of more complicated timing trendsg., the detection of the
combination of multiple types of timing trends, may requinere
sophisticated algorithms.

7. Related Work

ScalaTrace is an MPI trace-gathering framework that géeera
near constant-size communication traces for a paralldicgbion
regardless of the number of nodes while preserving stralcinf
formation and temporal ordering [14, 18] (see Section 2. &ur
trapolation work builds on the trace representation of &balce.

Xu et al. construct coordinated performance skeletons to es-
timate application execution time in new hardware envirenta
[23, 24]. They detect dominant communication topologiesdy-
paring an application communication matrix against a piedd
set (library) of reference patterns. In this work, compkchcom-
munication patterns, such as the NAS benchmark CG, areéddndl
by manually provided specifications of the new patterns.édwoer,
the graph spectrum analysis and graph isomorphism tetitzedti
in this work lack scalability in terms of time complexity atftus
limit the applicability of this work at large sizes. Most gificantly,
their work does not capture all communication events.

Zhaiet al. collect MPI communication traces and extract appli-
cation communication patterns through program slicind.[Z6is
work utilizes a set of source code analysis techniques td bugro-
gram slice that only contains the variables and code sect&ated
to MPI events, and then executes the program slice to accuoiine
munication traces. While removing the computation in thgioal
application enables a fast and cheap trace collectiorsadt @uses
the loss of temporal information that is essential for cbemaz-
ing the application runtime behavior. In addition, the latkrace
compression limits its feasibility for large-scale apption tracing.
Based on the FACT framework, Zhetial. employ a deterministic
replay technique to predict the sequential computatioe tfone
process in a parallel application on a target platform [Z&f main
idea is to use the information recorded in the trace to sitaulz
execution result of MPI calls when there is actually only /el
process, and utilize the deterministic data replay to siteuthe
runtime of the computation phases on the target platformilé@Vh
this approach manages to predict the computation timeilst tfa
capture the communication related effects. In additiors, ¥ork
focuses on cross-platform performance prediction but aapre-
dict the application performance on a cluster that is latigen the
available host platform.

Dimemas is a discrete-event-based network performanag sim
lator that uses Paraver traces as input [15]. It simulatsayiplica-
tion behavior on the target platform with specified processants
and network latency. However, Dimemas simulations aresifde
for peta-/exascale simulations due to a lack of hardwareuress
to generate the input trace and the sheer size of traditapmica-

tion traces. Our work, in contrast, focuses on the tracapgtation
for larger platforms that applications have not yet beergubio or
even future platforms (exascale). The extrapolated treaaaghen
be either replayed with ScalaReplay (former case) or usetieas
input trace for simulators (Dimemas/SST) in the latter dasper-
formance prediction.

Preisslet al. extract communication patterrisg.,, the recurring
communication event sets, from MPI traces [16]. They firarce
for repeating occurrences of identical events in the trdoeach
individual process and then iteratively grow them into gliopat-
terns. The output of this algorithm can be used to identifyeptal
bottlenecks in parallel applications. Preiasél. further utilize the
detected communication patterns to automate source cads-tr
formations such as automatic introduction of MPI colleesiy17].
Our method, in contrast, focuses on the spatial aspect ofrzoriA
cation eventsi.e, the identification and extrapolation of communi-
cation topology.

Eckert and Nutt [4, 5] extrapolate traces of parallel shared
memory applications. They take as input the traces colieatean
existing architecture and extrapolate them to a targetqohatwith
different architectural parameters, without re-exeauthre original
application. This work analyzes the causal event streafocilises
on the correctness of the extrapolated trace given theegxist
of program-level non-determinisre,g., the interleaving of events
or modifications in the actual set of events caused by moving
the trace across different architectures. In contrast,veark is
based on deterministic application execution. We alsogpvesthe
causal ordering of communication events but our focus ishen t
communication behavior at arbitrary problem sizes.

Performance modeling has traditionally taken the apprasdch
algorithmic analysis, often combined with tedious souroéecin-
spection and hardware modeling for floating-point operatiper
second, memory hierarchy analysis from caches over buseaito
memory and interconnect topology, latency and bandwidtisich
erations. In particular, Kerbyscet al. present a predictive perfor-
mance and scalability model of a large-scale multidimerediby-
drodynamics code [9]. This model takes application, sysi@m
mapping parameters as input to match the application witr-a t
get system. It utilizes a multitude of formulae to charaeteand
predict the performance of a scientific application. Snaeelal.
model and predict application performance by 1) charagteyi
a system with machine profiles, namely single processooperf
mance and network latency and bandwidth, 2) collecting reg-0
ations in an application to generate application signatusad 3)
mapping signatures to profiles to characterize performghci].
Ipek et al. follow a completely different approach by utilizing arti-
ficial neural networks (ANNS) to predict the performance whe-
plication configuration varies [8]. This approach employgaated
sampling of a small number of points in the design space tieat a
statistically determined through SimPoint [20]. Only thgmints
are then simulated and results are utilized to teach the ANNEgh
are subsequently utilized to predict the performance foete-
sign points. In contrast, our work explores the potentiahdfapo-
lating the application runtime according to its evolvingrid across
increasing problem sizes. Since this method requires eveitiea-
surement of performance metrics nor intense computatigrpt
vides a simple and highly efficient approach to study thecefié
scaling across a large numbers of compute nodes. In contrast
all of the above approaches, our ScalaExtrap does not just- Si
late communication behavior at scale but allows such behawi
be observed in practice through replaying on a target platfoith
large numbers of nodes, even if the corresponding appic#self
has not been ported yet.



8. Conclusion

Scalability is one of the main challenges of scientific agations
in HPC. Advanced communication tracing techniques acHasse
less trace collection, preserve event ordering and entzpsime
in a scalable fashion. However, estimating the impact dirsgan
communication efficiency is still non-trivial due to exeiout time
variations and exposure to hardware and software artifacts

This work contributes a set of algorithms and analysis tech-

niques to extrapolate communication traces and executig@stof
an application at large scale with information gatherechfsmnaller
executions. The extrapolation of communication tracegdep on
an analytical method to characterize the communicatiooltgy
of an application. Based on the observation that probleringca
increases/decreases communication parameters and dgEti@
certain rate, we utilize a set of linear equations to captueaela-
tion between communication traces for changing number déso
between traces and extrapolate communication tracesdiaghby
For the extrapolation of timing information, we utilize gerfitting

approaches to model trends in delta times over traces with va

ing number of nodes. Statistical methods are further enegoldp
mitigate timing fluctuations under scaling. Experimentseveon-
ducted using an implementation through our ScalaExtralpaiod
with the NAS Parallel Benchmark suite. We utilized up to 83,3

nodes of a 73,728-node IBM Blue Gene/P. Experimental result

show that our algorithm is capable of extrapolating stémekh
and collective communication patterns. Extrapolatiorirofrig in-
formation is further shown to provide good accuracy.

We believe that extrapolation of communication traces for p
allel applications at arbitrary scale is without preceaerwithout
porting applications, communication events can be replaymed
analyzed in a timed manner at scale. This has the potentei-to
able otherwise infeasible system simulation at the exadesél.
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