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Abstract
Performance modeling for scientific applications is important for
assessing potential application performance and systems procure-
ment in high-performance computing (HPC). Recent progresson
communication tracing opens up novel opportunities for commu-
nication modeling due to its lossless yet scalable trace collection.
Estimating the impact of scaling on communication efficiency still
remains non-trivial due to execution-time variations and exposure
to hardware and software artifacts.

This work contributes a fundamentally novel modeling scheme.
We synthetically generate the application trace for large numbers
of nodes by extrapolation from a set of smaller traces. We devise
an innovative approach for topology extrapolation of single pro-
gram, multiple data (SPMD) codes with stencil or mesh communi-
cation. The extrapolated trace can subsequently be (a) replayed to
assess communication requirements before porting an application,
(b) transformed to auto-generate communication benchmarks for
various target platforms, and (c) analyzed to detect communication
inefficiencies and scalability limitations.

To the best of our knowledge, rapidly obtaining the communi-
cation behavior of parallel applications at arbitrary scale with the
availability of timed replay, yet without actual executionof the ap-
plication at this scale is without precedence and has the potential to
enable otherwise infeasible system simulation at the exascale level.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming; D.4.8
[Operating Systems]: Performance—Modeling and prediction

General Terms Measurement, Performance

Keywords High-Performance Computing, Message Passing, Trac-
ing, Performance Prediction

1. Introduction
Scalability is one of the main challenges for scientific applications
in HPC. A host of automatic tools have been developed by both
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academia and industry to assist in communication gatheringand
analysis for MPI-style message passing [7]. Most of these tools
either obtain lossless trace information at the price of poor scal-
ability [13] or preserve only aggregated statistical traceinforma-
tion to limit the size of trace files as in mpiP [22]. Recent work on
communication tracing and time recording made a breakthrough
in this realm. ScalaTrace introduced an effective communication
trace representation and compression algorithm [14]. It managed
to preserve the structure and temporal ordering of events, yet main-
tains traces in a space-efficient representation. However,Scala-
Trace needs to be linked to the original application and executed on
a high-performance computing cluster of agiven number of com-
pute nodes to obtain a trace. Due to the often long application ex-
ecution times and limited availability of cluster resources for large
numbers of nodes, obtaining the trace information of a large-scale
parallel application remains costly.

An alternative to obtaining communication traces is to model
and predict application behavior [9, 10]. Generally, this approach
takes a number of machine and application parameters as input.
It utilizes a set of formulae to assess the impact of scaling on the
system characteristics and predict performance in terms ofwall-
clock runtime of an application. Similarly, this approach provides
only overall statistics for an application on a particular architec-
ture. Without a detailed application trace, more sophisticated static
analysis is impossible. In addition, measuring the system and ap-
plication performance parameters is also non-trivial given the com-
plexity of supercomputers and large-scale scientific applications.

Contributions: This paper contributes a set of algorithms and
techniques to extrapolate full communication traces and execution
times of an application at larger scale with information gathered
from smaller executions. Since extrapolation is based on analyti-
cal processing of smaller traces with mathematical transformations,
this approach can be performed on a single workstation, muchin
contrast to analysis or visualization of large traces in contemporary
tools (e.g., Vampir Next Generation [3]). It thus enables, for the first
time, the instant generation of trace information of an application
at arbitrary scale without necessitating time-consuming execution.
Specifically, we extrapolate two aspects of the applicationbehavior,
namely the (1) communication trace events with parameters and (2)
timing information resembling computation. The extrapolation of
the communication trace is based on the observation that, inmany
regular SPMD stencil and mesh codes, communication parameters
and communication groups are related to the sizes and dimensions
of the communication topology. Thus, extrapolation of communi-
cation traces becomes feasible with the detection of communica-
tion topologies and the analysis of communication parameters to
infer evolving patterns. The extrapolation of timing information in-
volves a process of analytical modeling. In order to mitigate tim-
ing fluctuations under scaling, we employ statistical methods. Such
extrapolations are facilitated by ScalaTrace’s compression scheme



that preserves application structure. In contrast, extrapolation with
other trace formats, such as OTF [11], would be far more tedious
and time/space consuming as structure is neither established across
nodes nor retained after binary-level compression.

This trace extrapolation approach has been implemented in
the ScalaExtrap tool, which we utilize to evaluate our extrapola-
tion approach with a microbenchmark and several NAS Parallel
Benchmark codes [1]. We utilize up to 16,384 nodes of a 73,728-
node IBM Blue Gene/P supercomputer to generate communication
traces for extrapolation and verification. Experiments were per-
formed to assess both the correctness of communication extrapo-
lation and the accuracy of the timing extrapolation. Experimental
results demonstrate that our topology detection algorithmis capa-
ble of identifying and characterizing stencil/mesh and collective
communication patterns. Upon topology detection, the communi-
cation trace extrapolation algorithm correctly extrapolates all com-
munication events, parameters and communication groups atan
arbitrary target size for both stencil/mesh point-to-point and col-
lective communication. The experiments also demonstrate that the
extrapolation of timing information resembles the runningtime of
the original parallel application. Compared to the runningtime of
the original application, the accuracy of replay times of the corre-
sponding extrapolated trace is, in the majority of cases, higher than
90%, sometimes as high as 98%. Given the difficulty of extrapo-
lating application execution time with only the time information
obtained from several small executions, our approach achieves un-
precedented accuracy that is sufficient for modeling, procurement
and analysis tasks.

Overall, this work explores the potential to extrapolate com-
munication behavior of parallel applications. Several novel algo-
rithms for communication topology detection and communication
trace extrapolation are introduced. Experimental resultsdemon-
strate that rapid generation of an application’s trace information at
arbitrary size is entirely possible, which is unprecedented. In con-
trast to tedious and application-centric model development, our ap-
proach opens new opportunities for automatically derivingcommu-
nication models, facilitating communication analysis andtuning at
any scale. Our work further enables system simulation at extreme
scale based on a single file, concise communication trace repre-
sentation. More specifically, HPC simulation tools (e.g., Dimemas
or SST [12, 19, 21]), which currently cannot operate at petascale
levels, could benefit by utilizing our extrapolated single-file traces
that are just 10s of megabytes in size. Benchmark generationis im-
portant for cross-platform performance analysis due to itsstandard
and portable source code and the platform-independent nature. Our
work enables code generation at extreme scale by providing large
traces that are otherwise unavailable. Furthermore, by contributing
a set of detection techniques of communication patterns, our work
has the potential to enable the generation of flexible and stand-alone
programs that can be executed with arbitrary numbers of nodes and
any possible input.

This paper is structured as follows. Section 2 summarizes re-
lated work on ScalaTrace with respect to its ability to support ex-
trapolation. Section 3 provides a detailed introduction tothe al-
gorithms designed for extrapolation. Sections 4 and 5 present the
experimental framework and results. Section 6 discusses the lim-
itations of this work and uncovers future challenges. Section 7
contrasts this work with prior research. Section 8 summarizes this
work.

2. Overview of ScalaTrace
Our work utilizes the publicly available ScalaTrace infrastructure
[14]. ScalaTrace is an MPI trace-gathering framework that gener-
ates near constant-size communication traces for a parallel applica-
tion regardless of the number of nodes while preserving structural

information and temporal ordering. ScalaTrace utilizes the MPI
profiling layer (PMPI) to intercept MPI calls of HPC programs.
Extended regular section descriptors (RSDs) are used to record
the parameters and information of a single MPI event nested in
a loop. Power-RSDs (PRSDs) recursively specify RSDs nestedin
multiple loops. For example, for the 4-point stencil code shown in
Figure 1, RSD1: <MPI Irecv, (NORTH, WEST, EAST, SOUTH)>
and RSD2: <MPI Isend, (NORTH, WEST, EAST, SOUTH)> de-
note the alternating send/receive calls to/from the 4 neighbors,
and PRSD1: < 1000, RSD1, RSD2, MPI Waitall> denotes the
a loop with 1000 iterations. In the loop’s body, RSD1, RSD2,
and a following MPIWaitall are called sequentially. During ap-
plication execution, ScalaTrace performs intra-node compression,
which captures the loop structure on-the-fly and representsMPI
events in such a compressed manner. Local traces are combined
into a single global trace upon application completion, i.e., within
the PMPI interposition wrapper for MPIFinalize. The key ap-
proaches to achieve near-constant inter-node compressionare the
location-independent encoding and communication group encod-
ing schemes detailed in the following.

neighbor[] = {NORTH, WEST, EAST, SOUTH};
for(i=0; i<1000; i++) {

for(j=0; j<4; j++) {
MPI_Irecv(neighbor[j]);
MPI_Isend(neighbor[j]);

}
MPI_Waitall();

}

Figure 1. Sample Stencil Code for RSD and PRSD Generation

• Location-independent encoding: Communication end-points in
SPMD programs differ from one node to another. By encod-
ing endpointsrelative to the index of an MPI task on a node,
a location independent denotation is created that describes
the behavior of large node sets. In a stencil/mesh topology,
only few of such distinct sets/groups tend to exist. Location-
independent encoding not only opens up opportunities for inter-
node compression to unify endpoints across different computa-
tional nodes but also enables extrapolation.

• Communication group encoding: Similarity in communication
patterns is recognized to succinctly denote sets/groups ofnodes
with common behavior. In a topological space, a communica-
tion group refers to a subset of nodes that have identical com-
munication patterns. With this encoding scheme, a communica-
tion group is represented as arank list. Using the EBNF meta-
syntax, arank list is represented as< dimension start rank
iteration length stride {iteration length stride} >,
wheredimension is the dimension of the group,start rank is
the rank of the starting node, and theiteration length stride
pair is the iteration and stride of the corresponding dimension.
As an example, consider the row-major grid topology in Fig-
ure 2. The shaded nodes form a communication group. This
group is represented asranklist <2 6 3 5 3 1>, where the tu-
ple indicates that this communication group is a 2-dimensional
area starting at node 6 with 3 iterations of stride 5 in the y-
dimension and 3 iterations of stride 1 in the x-dimension, re-
spectively. Since this encoding scheme takes node placement
into account, it naturally reflects the spatial characteristics of a
communication group.

We exploit these representations as a foundation for extrapolat-
ing communication topology.

Besides communication tracing, ScalaTrace also preservesthe
timing information of a parallel application in a scalable way [18].
Along with the intra-node and inter-node compression processes,



Figure 2. Ranklist Representation for Communication Group

“delta” times representing the computation between communica-
tion events are recorded and compressed. For the purpose of scala-
bility, delta times of a single MPI function call across multiple loop
iterations are not recorded one by one. Instead, histogramswith a
fixed number of bins for delta times are dynamically constructed to
provide a statistical view. Delta times are distinguished by not only
the call context of recorded events, but also by their path sequence,
which addresses significant variation of delta times causedby path
differences,e.g., within entry/exit paths of a loop.

Finally, ScalaReplay is a replay engine operating on the appli-
cation traces generated by ScalaTrace. It interprets the compressed
application trace on-the-fly and issues MPI communication calls
accordingly. During replay, all MPI calls are triggered over the
same number of nodes with their original parameters (e.g., mes-
sage payload size) but a randomly generated message content. This
ensures comparable bandwidth requirements on communication in-
terconnects. ScalaReplay emulates computation events in the orig-
inal application by sleeping so that the communication contention
characteristics are maintained during replay. In general,the replay
engine can be utilized for rapid prototyping and tuning, as well as to
assess communication needs of future platforms for large-scale pro-
curements in conjunction with system simulators (Dimemas/SST)
[12, 19, 21]. In this work, we use ScalaReplay to verify the correct-
ness of extrapolation results, which will be discussed later in this
paper.

3. Communication Extrapolation
This work focuses on the extrapolation of communication traces
and execution times. The respective design is subsequentlyimple-
mented in a novel tool, ScalaExtrap. The challenge of communi-
cation trace extrapolation is to determine how the communication
parameters change with node and problem scaling. The main idea
is to identify the relationship between communication parameters
and the characteristics of the communication topology,i.e., typi-
cally the sizes of each dimension. As a simple example, in Figure
2, assumenode 0 communicates withnode 4, i.e., a node at distance
of 4. If we can identify that the topological communication space
is a grid consisting of 25 nodes with 5 nodes per row, we know that
node 0 actually communicates with the upper-right node. There-
fore, when there are 1024 = 32×32 nodes, we can safely infer that
node 0 communicates withnode 31, which is still the upper-right
node.

Characterizing a communication pattern from one or more
traces is non-trivial nonetheless. Without the knowledge of a given
node assignment scheme and topology, identifying the communica-
tion pattern from the communication graph provided by a trace file
is equivalent to solving the graph isomorphism problem, which is
known to be NP hard [24]. Therefore, instead of attempting tofind
a universal solution, we constrain our work to applicationswhere

1. nodes are numbered in a row-major fashion and

2. communication is performed in stencil/mesh point-to-point
manner or via collectives involving all MPI tasks.

In essence, our communication trace extrapolation algorithm first
identifies the nodes at the “corner” of a topological space. It then
calculates the sizes of each dimension of the topological space ac-
cordingly. Upon acquiring the topology data, we represent the com-
munication parameters,e.g., the destination rank of MPISend, as a
function of the known topology data and their undetermined coeffi-
cients. In order to calculate these coefficients, we correlate multiple
traces and construct a set of linear equations. Finally, we employ
Gaussian Elimination to solve the set of equations. With thefixed
coefficients, we can extrapolate the value of the desired communi-
cation parameter by simply substituting the topology data with their
values at the desired problem size. Since the set of linear equations
is constructed with the matching values of a communication param-
eter across traces of different node sizes, we further assume that

1. target applications are SPMD programs and

2. communication traces are compressed perfectly at both intra-
node level and inter-node level so that the traces obtained from
different node sizes are structurally identical (which only be-
comes feasible due to ScalaTrace’s structure-preserving trace
compression).

The second aspect of this work concerns the extrapolation of
program execution time. In the input trace files, computation time
and communication time between (and optionally during) MPI
communication events are preserved statistically with histograms.
When analyzing the corresponding delta time, scaling trends can
be identified across different number of nodes. Therefore, statisti-
cal curve fitting methods are utilized to model an evolving trend
and extrapolate the execution time to a desired target size.In order
to eliminate outliers, we further introduce several confidence coef-
ficients to statistically determine the best extrapolated value under
such constraints.

3.1 Topology Identification

Topology identification is the basis of communication traceextrap-
olation. In order to identify a topology, it is important to find the
nodes at the corner or on the boundary of a topological space,which
we callcritical nodes. We devised a three-step approach to identify
the communication topology.

1. We create an adjacency list of communication endpoints for
each node and group nodes according to their adjacency lists.

2. We identify critical nodes by analyzing the adjacency lists.

3. We calculate the sizes of each dimension (x, y, and z) of the
communication topology.

Figure 3. Topology Detection

First, our algorithm traverses the input trace to constructcom-
munication adjacency lists for each node. According to the relative



positions (encodings) of all the communication endpoints of each
node, nodes with same endpoint patterns are placed into the same
group. Figure 3 illustrates an example of a 2D mesh topology.In
this example, nodes on the boundaries communicate with nodes at
the opposite side in a wrap-around manner while the internalnodes
communicate with their immediate neighbors. Note that wrapping
around in the vertical direction does not lead to different endpoint
encoding. Therefore, the nodes are divided in to three groups (A,
B, and C) with group sizes 5, 10, and 5, respectively.

Next, we analyze the adjacency list of each node to identify
the critical nodes. Exploiting the row major constraint, wescan
all nodes sequentially to identify loop structures with respect to
communication adjacency list patterns. The underlying rationale is
that critical nodes define a topology. Between corresponding crit-
ical nodes, communication patterns emerge repeatedly. According
to the length of a loop structure, the sizes of the groups consist of
critical nodes,i.e., critical groups, are calculated as

critical group size =
n

length of loop
,

wheren denotes the number of nodes engaged in MPI commu-
nication. For example, in Figure 3, each row has the same group
distribution (A B B C) and is thus identified as a single iteration
of the loop structure. Since the length of such a loop iteration is 4,
the size of thecritical groups (group A and C) is20/4 = 5. Having
obtained the size of the critical groups, we then associate critical
nodes with groups by matching sizes of critical groups.

Figure 4. Boundary Size Calculation

Finally, we calculate the sizes of each dimension. Again exploit-
ing the row-major constraint, in a d-dimensional topological space,
the number of nodes at thed-th dimension is the total number of
nodes. The number of nodes at thei-th (i < d) dimension,ni, is
the inclusive range of numbers of nodes betweennode 0 (1st criti-
cal node) and the2i-th critical node. Once we have determined the
number of nodes at each dimension, the boundary size of thei-th
dimension,si, is calculated as

si =
ni

ni−1

For example, in the 3D topology of Figure 4, the number of nodes
in the1st dimension,n1=3, is the number of nodes between A and
B inclusively, the number of nodes in the second dimension,n2=12
, is the number of nodes between A and D, and the number of nodes
in the third dimensionn3 is the total number of nodes. Hence, we
have

8

<

:

x = s1 = n1/n0 = 3
y = s2 = n2/n1 = 4
z = s3 = n3/n2

3.2 Extrapolation of Communication Traces

The extrapolation of communication traces consists of the extrapo-
lation of both communication groups and communication parame-
ters to indicate who communicates and how they communicate.The
extrapolation algorithm is based on the observation that, in regular
SPMD stencil/mesh codes,strong scaling (increasing the number

of nodes under a constant input size) linearly increases/decreases
the value of communication parameters and the topological sizes.
Given several data points, a fitting curve can be constructedto ex-
trapolate the growth rate of the communication parameters and the
topology information (the sizes of each dimension) of the commu-
nication groups.

Specifically, in an n-dimensional Cartesian space, the coordi-
nates of nodeX andY are(X1, X2, ..., Xn) and(Y1, Y2, ..., Yn),
whereXi andYi ∈ [0, Si − 1] andSi is the size of thei-th dimen-
sion of the topological space(1 ≤ i ≤ n). Assuming the locations
of nodeX andY differ only in thei-th dimension, the distance be-
tweenX andY in the i-th dimension isdi = Xi − Yi. With the
assumption of linear correlation between topology size andcom-
munication parameters,di = Xi−Yi = ai×Si +bi, whereai and
bi are two constants. Furthermore, with the row-major node place-
ment assumption, the rank of an arbitrary nodeA(A1, A2, ..., An)
is

RankA =
n

X

i=1

Ai

i−1
Y

j=1

Sj .

Therefore,di
′, the rank distance betweenX andY , is

di
′ = (Xi − Yi) ×

i−1
Y

j=1

Sj = (ai × Si + bi) ×
i−1
Y

j=1

Sj

In general, for two arbitrarily selected nodesM andN , their rank
distanced′ is the sum of their rank distances in each dimension,

d′ = d0
′ + d1

′ + ... + dn
′

=

n
X

i=1

(Ni − Mi)

i−1
Y

j=1

Sj =

n
X

i=1

(ai × Si + bi)

i−1
Y

j=1

Sj

= an

n
Y

j=1

Sj +

n−1
X

i=1

(ai + bi+1)
i

Y

j=1

Sj + b1 =
n

X

i=0

ci

i
Y

j=1

Sj ,

wherecn = an, c0 = b1, andci = ai + bi+1(1 ≤ i ≤ n − 1).
In order to extrapolate the rank of a communication endpoint

(src/dest), which is defined by the rank distance between nodes,
we need to identify how the topology information is related to the
communication parameter. We construct a set of linear equations
to solveci (1≤i≤n-1). In general, for an n-dimensional topology,
n+1 input traces are needed to solven+1 coefficients. We employ
Gaussian Elimination to solve the equations. Once the values of
ci(1 ≤ i ≤ n − 1) are determined, a fitting curve for the given
parameter is established. In order to extrapolate the same parameter
for a larger execution, we utilize the known coefficients andspecify
the topology information at the target task size. The desired value
is then calculated accordingly.

As an example, in a 2D space, the bottom-right node in Figure 5
communicates with itsEAST neighbor in a wrap-around manner. In
order to extrapolate the rank of the communication endpoint, three
input traces with dimensions4 × 4, 5 × 5, and6 × 6 are used to
construct the set of linear equations shown in Figure 6, andc2 = 1,
c1 = −1, andc0 = 1 are obtained as the values of the coefficients.
To extrapolate a10 × 10 mesh, we re-construct the equation with
coefficients and topology information assigned. Subsequently, the
target valueV is calculated asV = c2×10×10+c1×10+c0 = 91.

Besides the communication parameters, communication groups
are also extrapolated. The topological space of an application can
be partitioned into several communication groups according to the
communication endpoint pattern of each node. Understrong scal-
ing, partitions tend to retain their position within the topologi-
cal space but change their sizes for each dimension accordingly.
For example, Figure 7 shows the distribution of 9 communication
groups of a 2D stencil code. Despite the changing problem size,



Figure 5. Generic Representation of Communication Endpoints

8

<

:

c2 × 4 × 4 + c1 × 4 + c0 = 13
c2 × 5 × 5 + c1 × 5 + c0 = 21
c2 × 6 × 6 + c1 × 6 + c0 = 31

Figure 6. Set of Equations for Communication Endpoint Extrapo-
lation

groupsA, C, G, andI always represent corner nodes, groupsB, D,
F, andH are always the boundaries, and groupE contains the re-
maining (interior) nodes.

Figure 7. Distribution of Communication Groups of a 2D Stencil
Code

This opens up the opportunity to extrapolate communication
groups of the same application at arbitrary size. In order toex-
trapolate, we represent communication groups asrank lists, which
effectively specifies the starting node and the dimension sizes of a
group. Since the dimension sizes are defined by the distancesbe-
tween nodes (vertices), we again utilize a set of linear equations to
establish the relation between the topology information ofcommu-
nication groups and the task sizes. Extrapolation is performed for
the start rank, iteration length, and stride fields of the rank
list. The output rank list reflects the communication group at the
target size. For example, for the topology shown in Figure 7,when
the total number of nodes is 16, the rank list of groupE, as defined
in Section 2, is<2 5 2 4 2 1>, i.e., a 2D space starting fromnode
5 with x- and y-dimensions of size 2. Similarly, the rank listsof
groupE at sizes 25 and 36 are<2 6 3 5 3 1> and<2 7 4 6 4 1>,
respectively. We can thus construct the set of linear equations for
each field in the rank list to derive a generic representationof the
rank list as:

< 2 x + 1 x − 2 x x − 2 1 >.

Subsequently, assuming that we want to extrapolate for size10 ×
10, let x be 10, which yields the output rank list<2 11 8 10 8 1>
that precisely matches therank list representation of communica-
tion groupE at this problem size.

By combining the extrapolation of both communication groups
and communication parameters, we are capable of extrapolating the
communication trace for a given application at arbitrary topological
sizes.

3.3 Handling Dynamic Load Balancing

The extrapolation of communication traces requires the input traces
to be structurally identical so that the corresponding RSDscan
be matched across different traces. Being structurally identical re-
quires the traces to have the same number of RSDs and the match-
ing RSDs should be generated by the same MPI event in the origi-
nal application, though the values of the communication parameters
and the loop information can be different.

However, the NPB code IS (Integer Sort) [1] results in struc-
turally different traces due to an inherent dynamic workload bal-
ancing scheme. Specifically, in IS, each node first sorts their lo-
cal elements into buckets, then calls MPIAlltoallv to distribute
the buckets to different nodes. Since the bucket sizes are deter-
mined by the randomly generated elements, the message sizesof
MPI Alltoallv are different in each iteration both within and across
nodes. In addition, to create different program behavior, IS changes
the values of several elements every iteration, so the parameters
for MPI Alltoallv keep changing across timesteps. As a result, the
compression of MPIAlltoallv fails for both intra- and inter-node
phases, which leads to structurally different traces.

In fact, MPI Alltoallv supports different message volumes be-
tween different node pairs (in contrast to MPIAlltoall). Compres-
sion based on identical parameter values across nodes rarely suc-
ceeds. Therefore, we decided to improveScalaTrace to trade pre-
cision for a higher degree of abstraction that allows more aggres-
sive trace compression and ultimately enables extrapolation. We
observe that the total volume of data exchanged by MPIAlltoallv
across all nodes for each synchronous call represents the topology
boundary data. This boundary data volume is constant acrossall
nodes. Thus, we aggregate mismatched parameters, such as mes-
sage payload sizes, across all nodes. We subsequently record the
average value (per node) instead of actual parameter values, which
diverges only slightly from the average value. Note that this im-
provement is not just a customization for extrapolation of IS but
rather results in improved compression ofany application with
similar usage patterns of MPIAlltoallv. Given a constant overall
input data size, the message size of MPIAlltoallv in IS follows
an inverse-proportion relationship relative to the numberof nodes.
(A similar behavior is also observed for FT.) We consequently en-
hanced ScalaTrace with the ability to detect and handle curve fitting
for inverse-proportional relations,e.g., for message sizes. Utiliz-
ing this methodology, we are able to obtain perfectly compressed
communication traces for IS, which enables extrapolation through
ScalaExtrap.

3.4 Handling Unique Communication Patterns

While the above extrapolation algorithm applies to stencil/mesh
topologies, which characterize communication of a large number of
parallel applications, we also observed a more complex communi-
cation pattern that required explicit communication information for
extrapolation. As an example, consider the communication topol-
ogy of NPB CG in Figure 8. The primary communication pattern
is repeated across each row. For a single node, both the amount
and the distance of endpoints changes with the number of nodes.
Specifically, when there are a total ofn = x2(x = 1, 2, 4, ...)
nodes, each node will havelgx communication endpoints with dis-
tance

d = (−1)
⌊ r

2i
⌋ × 2i,

where0 ≤ i ≤ lgx andr is the rank of the node. Moreover, there
is a secondary communication pattern along the diagonals inwhich
nodes at symmetric positions communicate.

In order to detect the communication topology of CG, we im-
proved the topology detection algorithm so that communications
originating from different locations in the source code aredifferen-



Figure 8. CG Communication Topology

tiated by their distinct call stacks. This enables us to handle applica-
tions with multiple interleaved communication topologies. Without
the interference of diagonal communication, the loop detection pro-
cess is able to identify the primary row-wise communicationpat-
tern and thus calculate the boundary sizesx = y =

√
n. The com-

munication pattern of CG, however, is not linearly correlated with
the topology sizes (which is beyond the scope of this work). We
thus manually provide information to facilitate the extrapolation.
In future work, we plan to enhance ScalaExtrap to support user-
plugins that specify communication patterns. With this functional-
ity, unique communication patterns can be analyzed by ScalaExtrap
exploiting its extrapolation capability.

3.5 Extrapolation of Timing Information

Besides the communication traces, we also extrapolate the timing
information of the application. ScalaTrace preserves the “delta”
time for each communication event and for the computation be-
tween two communication events. For a single MPI function call
across multiple loop iterations,i.e., for a RSD, the delta times are
recorded in multi-bin histograms. These histograms contain the
overall average, minimum, and maximum delta time, the distribu-
tion of the delta execution times represented as histogram bins, and
the average, minimum, and maximum delta time for each histogram
bin. To extrapolate timing information, we utilize curve fitting to
capture the variations in trends of the delta times with respect to
the number of nodes,i.e., t=f(n), wheret is the delta execution time
andn is the total number of nodes. Hence, the target delta timete is
calculated aste = f(ne) , wherene is the total number of nodes at
a given problem size. While we can extrapolate only the aggregated
average delta time per RSD, to restrain the statistics of delta time,
extrapolation is performed for each field of a histogram. Currently,
we implemented four statistical models based on curve fitting for
each extrapolation. We use a deviation-based metric to determine
the best of these models to fit to a given curve.

1. Constant: This method captures constant time,i.e., t=f(n)=c.
Before calculating the constant time, the input timeto with the
largest absolute value of deviation is excluded from the input
times to mitigate the influence of outliers (which can be caused
by either unstable system state or an empty bin). Subsequently,
the average value of the remaining input times reflects the
constant timec, andd1=std. dev./average is used to evaluate
this fitting curve among the remaining values.

2. Linear: This method captures linearly increasing/decreasing
trends, i.e., t=f(n)=an+b. We use the least-squares method
to fit the curve. In order to avoid mis-classifications, such
as a constant time relationship as a linear relationship with
a near-zero slope, we define a threshold slopesmin=0.2
such that∀a < smin t=f(n)=b. For curve evaluation,d2 =√

residual/average is used, whereaverage refers to the aver-
age value of the estimated running times.

3. Inverse Proportional: This method captures inverse-proportional
trends,i.e., t=f(n)=k/n. We observe this trend in the NAS Paral-
lel Benchmark IS, where MPIAlltoallv dynamically rebalances
the per-node workloads even though the collective workload
over all nodes is constant. Letti be the input times,ni be the
corresponding number of nodes, andki = ti ×ni. We extrapo-
late the constantk as the average value ofki. Again, we exclude
the outlierko, which has the largest absolute value within the
deviation. To evaluate this fitting curve, we calculate the stan-
dard deviation ofki and then divide by the average value ofki,
i.e., d3=std. dev./average is used for comparison.

4. Inverse Proportional + Constant: This method captures the ex-
ecution time consisting of an inverse proportional phase and a
constant phase,i.e., t=f(n)=k/n+c. Instead of directly extrap-
olating t, we utilize the least-squares method to extrapolate
t′ = tn = cn + k and used4 =

√
residual/average for the

curve evaluation. With an extrapolatedc andk, t is subsequently
calculated ast = t′/n = k/n + c.

Having obtained the deviations for each curve-fitting process,
we compare the values to determine the curve that best fits. For
a closer approximation, we define a threshold valuedt = 0.05,
such that if and only ifdmin + dt < di holds for all di other
thandmin will the corresponding candidate curve be selected as
the fitting curve. Otherwise, the extrapolation for the current field
is postponed until we have processed all the fields in the same
histogram. Since every field in the histogram should have thesame
variation trend, we finalize the pending extrapolation according to
the decisions of the remaining fields.

4. Experimental Framework
Our extrapolation methodology for communication traces was im-
plemented as the ScalaExtrap tool that generates a synthetic trace
for a freely selected number of nodes. The extrapolation is based on
traces obtained from application instrumentation with ScalaTrace
on a cluster. For both base traces generation and results verifica-
tion, we use a subset of JUGENE, an IBM Blue Gene/P with 73,728
compute nodes and 294,912 cores, 2 GB memory per node, and the
3D torus and global tree interconnection networks. We performed
experiments with (a) one MPI task per node and (b) one per core.
We report the results for the former because this configuration pro-
vides more memory per MPI task, which enables larger scale runs.
Nonetheless, configurations (a) and (b) show equally accurate and
correct results.

The extrapolation process is run on a single workstation and
requires only 1 or 2 seconds, irrespective of the target number of
nodes for extrapolation. This low overhead is due to the linear time
complexity of our algorithm with respect to the total numberof
MPI function calls in an application. Results from extrapolation are
subsequently compared to traces and runtimes of an application at
the same scale, where runtimes for extrapolated traces are obtained
via ScalaReplay (see Section 2).

We conducted extrapolation experiments with the NAS Paral-
lel Benchmark (NPB) suite (version 3.3 for MPI) with class D and
E input sizes [1]. We report our extrapolation results for BT, EP,
FT, CG, LU, and IS. These benchmarks have either a stencil/mesh
communication pattern or collective communication, both of which
are applicable to our extrapolation algorithm. Among thesebench-
marks, IS originally exhibited imperfect compression resulting in
non-scalable trace sizes due to its dynamic load re-balancing via
workload exchange through the MPIAlltoallv communication col-
lective. In order to utilize our extrapolation techniques,we en-
hanced ScalaTrace such that minor differences in MPIAlltoallv
parameters caused by load re-balancing are eliminated as explained
in Section 3.3. The communication trace extrapolation for CG is



facilitated by manually specifying the communication pattern as a
plugin function (see Section 3.4). The extrapolation of timing in-
formation does not require any extra information.

5. Experimental Results
Experiments were conducted with respect to two aspects, namely
the correctness of communication traces and the accuracy oftiming
information, both for extrapolations under strong scaling, i.e., when
varying the number of nodes. Notice that strong scaling is actually
aharder problem under extrapolation as it tends to affect communi-
cation parameters such as message volume size. In contrast,weak
scaling (increasing the number of nodes and problem sizes atthe
same rate) is easier as it tends to preserve message volumes sizes
irrespective of the number of nodes.

5.1 Correctness of Communication Trace Extrapolation

We first evaluated our communication trace extrapolation algorithm
with microbenchmarks and the NPB BT, EP, FT, CG, LU, and IS
codes. We assessed the ability to retain communication semantics
across the extrapolation process for these benchmarks at the target
scale. The microbenchmarks perform regular stencil-style/torus-
style communication in topological spaces from 1D to 3D. The
NPB programs exercise both collective and point-to-point commu-
nication patterns. We verified the extrapolation results inmultiple
ways.

1. The extrapolated trace fileTe0
was compared with the trace file

obtained from an actual execution at the same scaleTtarget on
a per-event basis (Exp1 in Figure 9).

2. The extrapolated traceTe0
was replayed such that aggregate

statistical metrics about communication events could be com-
pared to those of a corresponding original application run at the
same problem size and node size (Exp2 in Figure 9).

3. After extrapolation, tracesTe1
, Te2

, ..., Tei
were collected

in a sequence of replays to obtain a fixed point in the trace
representation (Exp3 in Figure 9).

Figure 9. Correctness of Trace Extrapolation and Replay

First, the per-event analysis of trace files showed that ex-
trapolated MPI parameters and communication groups perfectly
matched those of the application trace for all benchmarks ex-
cept one (Exp1 in Figure 9). In BT, the message volume of
non-blocking point-to-point sends and receivesapproximates an
inverse-proportional relationship with respect to the number of
nodes. However, it diverges slightly from an inverse-proportional
approximation for extrapolating the message volume due to inte-
ger division (discarding the remainder) inherent to the source code.
This inaccuracy is later amplified in the extrapolation process and
results in message volumes that are about 13% smaller than the
actual ones at a given scaling factor in the worst case. As impre-
cisions remain localized to certain point-to-point messages, this
effect is shown to be contained in that resulting timings aredeemed

accurate within the considered tolerance range for extrapolation
experiments (see timing results below). Such imprecisionshave no
side-effect on semantic correctness (causal order) of trace events
whatsoever. Overall, the results of static trace analysis show that
our synthetically generated extrapolation trace is equivalent to the
trace obtained from actual execution of the same application at the
same scaling level.

Second, we replayed the extrapolated traceTe0
to assess if the

MPI communication events are fully captured (see Exp2 in Fig-
ure 9). For this experiment, ScalaReplay is linked with mpiP[22],
which yields frequency information of each MPI call distinguished
by call site (using dynamic stackwalks). During replay, allMPI
function calls recorded in the synthetically generated extrapolation
trace were executed with the same number of nodes and their origi-
nal payload size. For comparison, we instrumented the original ap-
plication with mpiP and executed it at extrapolated sizes (problem
and node sizes). We compared theAggregate Sent Message Size re-
ported by mpiP between the original application and the replayed
extrapolated trace. Results show that the total send volumes of these
experiments are identical, except forMPI Isend in BT as discussed
above. We also compared the total number of MPI calls recorded in
the mpiP output files. The results allowed us to verify that the num-
ber of communication events in the actual and extrapolated traces
match,i.e., the correctness of communication trace extrapolation is
preserved.

Third, we evaluated the correctness of ScalaReplay by replay-
ing the generated trace file in sequence until a fixed point is reached
(see Exp3 in Figure 9). The fixed point approach is a well estab-
lished mathematical proof method that establishes conversion, in
this case of the trace data. In this experiment, instead of instrument-
ing ScalaReplay with mpiP, we interposed MPI calls through Scala-
Trace again. As ScalaReplay issues MPI function calls, ScalaTrace
captures these communication events and generates a trace file for
it, just as would be done for any other ordinary MPI application. We
start by replaying the extrapolated trace fileTe0

and obtain a new
traceTe1

. This trace differs fromTe0
in that call sites of the original

program have been replaced by call sites from ScalaReplay. This
affects not only stackwalk signatures but also the structure of trace
files due to the recursive approach of replaying trace files inplace
over their internal (PRSD) structure without decompressing it. We
then replay traceTe1

to obtain another traceTe2
and so on forTei

.
We then compare pairs of trace filesTei

, Tei+1
. If two such traces

match, a fixed point has been reached. In these experiments, we
verified that pairs of trace files, baring syntactical differences, are
semantically equivalent to each other. In other words, ScalaReplay
neither adds nor drops any communication events during replay,
i.e., by obtaining a fixed point it was shown that all MPI communi-
cation calls are preserved during replay.

5.2 Accuracy of Extrapolated Timings: Timed Replay

We further analyzed the timing information of extrapolatedtraces
for the NPB BT, EP, FT, CG, and IS codes with a total number
of nodes of up to 16,384. For CG, EP, and FT, we used class D
input sizes. For BT, class E was used so that a sufficient workload
is guaranteed at 16,384 nodes. For IS, we modified the input size to
adapt it for 16,384 nodes (the original NPB3.3-MPI providesonly
class D problem size and supports a maximum of 1024 nodes).
These problem sizes and node sizes were decided based on the
memory constraints (for some benchmarks, memory constraints
compel us to generate the base traces already at large scales, which
in turn leaves fewer target sizes for evaluation) and the availability
of computational resources to assess the effects and limitations of
our timing extrapolation approach.

In this set of experiments, we first generated 4 trace files for
each benchmark as the extrapolation basis. From these base traces,
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(a) Replay Time Accuracy for Class-E BT
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Figure 10. Replay Time Accuracy for Benchmarks

an extrapolated trace was constructed next using ScalaExtrap, in-
cluding extrapolated delta time histograms. We then assessthe tim-
ing accuracy by replaying the extrapolated traces. During replay,
ScalaReplay parses the timing histograms of the computation peri-
ods in the trace files. It simulates computation by sleeping to delay
the next communication event by the proper amount of time. Inthis
context, the effect of load imbalance is preserved by ScalaTrace.
The timing histogram records not onlymin, max, avg, std.dev val-
ues, but also thefrequency for each timing bin, and these statistics
are also extrapolated by ScalaExtrap. During replay, the sleeping
time is generated according to these statistics and the unbalanced
timing behavior is thus reproduced. Communication is simply re-
played with the same extrapolated end points and payload sizes but
a random message payload. We do not impose any delays on com-
munication as published results indicate better accuracy with just
delays for computation only [14], which we also confirmed. Inthis
experiment, ScalaReplay is linked to neither ScalaTrace nor mpiP
to avoid additional overhead caused by the instrumentationlayer of
these tools. Hence, the output of ScalaReplay in this experiment is
the total time to replay a trace. For each extrapolated trace, we run
the corresponding application at the same problem size and record
its overall execution time for comparison.

Figure 10 depicts the extrapolation accuracy of BT, EP, FT, IS,
and CG, respectively, for a varying number of nodes. We show the
extrapolation results of CG in separate figures because theyhave
different communication topologies and thus a different extrapo-
lation basis. As shown in Figure 10, the timing extrapolation ac-
curacy is generally higher than90%, sometimes even higher than
98%, where accuracy is defined as

Accuracy =
|Replay T ime − App T ime|

App T ime
.

For BT, we observed slightly lower accuracy when the total number
of nodes approaches 16,384. At such sizes the computationalwork-
load becomes so small that the influence of non-deterministic fac-

tors, such as system overheads or performance fluctuation ofMPI
collectives caused by different process arrival patterns [6], become
dominant. Compared to the other benchmarks, IS shows a con-
stantly lower accuracy (66%-83%). Two reasons may explain this
phenomenon: (a) Although IS dynamically rebalances the work-
load across all nodes, the execution time of the application’s sort-
ing algorithm on each process still takes a different amountof time.
Hence, collective MPI calls take unpredictable time to synchronize
as the arrival times of processes at collectives varies significantly
due to load imbalance. Since the degree of imbalance is determined
by randomly determined delta times from histograms, it is difficult
to predict/extrapolate this behavior. (b) Source code analysis shows
that the most computationally intensive code section in IS consists
of two phases, namely (i) an inverse-proportional phase (runtime is
inverse-proportional to the number of nodes), and (ii) a relatively
short constant phase (runtime does not change significantlywith
node sizes). When the node size is small, the inverse-proportional
phase almost solely determines the computation time. As a result,
our algorithm fails to uncover a small constant factor that con-
tributes to timing for larger node sizes. ScalaExtrap instead treats
it as a pure inverse-proportional timing trend. Without theshort
constant factor in the timing curve, the extrapolated runtime drops
slightly faster than the real runtime leading to a constantly shorter
replay time. However, since we are able to capture the dominating
inverse-proportional timing trend, we still obtained an acceptable
timing prediction accuracy.

In large, minor inaccuracies during replay stem from imprecise
curve fitting for the extrapolation of computation times. For the
simulation of communication duration, ScalaReplay depends only
on the communication parameters such as end points and payload
sizes, which are shown to be correctly extrapolated in Section 5.1.
Overall, the extrapolated timing information precisely reflects the
runtime of the original application at the target problem size and
node size.



6. Discussion and Future Work
This work explored the extrapolation of the communication behav-
ior of parallel applications, which is unprecedented. For the extrap-
olation of communication traces, the detection of communication
topology is vital but non-trivial. We currently focus on stencil/mesh
topology with nodes arranged in a row-major fashion. While alarge
amount of parallel applications fall into this category, weobserved
more complex communication topologies that are hard to detect
with a generic approach, which thus limits the applicability of this
work. In future work, we plan to support user plugins so that the
extrapolation of complicated and unique communication patterns
can be facilitated by user-supplied information.

Extrapolation of timing information of parallel applications is
another objective of this work. Currently, we capture four cate-
gories of the most commonly seen timing trend. However, the pre-
diction of more complicated timing trends,e.g., the detection of the
combination of multiple types of timing trends, may requiremore
sophisticated algorithms.

7. Related Work
ScalaTrace is an MPI trace-gathering framework that generates
near constant-size communication traces for a parallel application
regardless of the number of nodes while preserving structural in-
formation and temporal ordering [14, 18] (see Section 2. Ourex-
trapolation work builds on the trace representation of ScalaTrace.

Xu et al. construct coordinated performance skeletons to es-
timate application execution time in new hardware environments
[23, 24]. They detect dominant communication topologies bycom-
paring an application communication matrix against a predefined
set (library) of reference patterns. In this work, complicated com-
munication patterns, such as the NAS benchmark CG, are handled
by manually provided specifications of the new patterns. Moreover,
the graph spectrum analysis and graph isomorphism tests utilized
in this work lack scalability in terms of time complexity andthus
limit the applicability of this work at large sizes. Most significantly,
their work does not capture all communication events.

Zhaiet al. collect MPI communication traces and extract appli-
cation communication patterns through program slicing [26]. This
work utilizes a set of source code analysis techniques to build a pro-
gram slice that only contains the variables and code sections related
to MPI events, and then executes the program slice to acquirecom-
munication traces. While removing the computation in the original
application enables a fast and cheap trace collection, it also causes
the loss of temporal information that is essential for characteriz-
ing the application runtime behavior. In addition, the lackof trace
compression limits its feasibility for large-scale application tracing.
Based on the FACT framework, Zhaiet al. employ a deterministic
replay technique to predict the sequential computation time of one
process in a parallel application on a target platform [25].The main
idea is to use the information recorded in the trace to simulate the
execution result of MPI calls when there is actually only oneMPI
process, and utilize the deterministic data replay to simulate the
runtime of the computation phases on the target platform. While
this approach manages to predict the computation time, it fails to
capture the communication related effects. In addition, this work
focuses on cross-platform performance prediction but cannot pre-
dict the application performance on a cluster that is largerthan the
available host platform.

Dimemas is a discrete-event-based network performance simu-
lator that uses Paraver traces as input [15]. It simulates the applica-
tion behavior on the target platform with specified processor counts
and network latency. However, Dimemas simulations are infeasible
for peta-/exascale simulations due to a lack of hardware resources
to generate the input trace and the sheer size of traditionalapplica-

tion traces. Our work, in contrast, focuses on the trace extrapolation
for larger platforms that applications have not yet been ported to or
even future platforms (exascale). The extrapolated tracescan then
be either replayed with ScalaReplay (former case) or used asthe
input trace for simulators (Dimemas/SST) in the latter casefor per-
formance prediction.

Preisslet al. extract communication patterns,i.e., the recurring
communication event sets, from MPI traces [16]. They first search
for repeating occurrences of identical events in the trace of each
individual process and then iteratively grow them into global pat-
terns. The output of this algorithm can be used to identify potential
bottlenecks in parallel applications. Preisslet al. further utilize the
detected communication patterns to automate source code trans-
formations such as automatic introduction of MPI collectives [17].
Our method, in contrast, focuses on the spatial aspect of communi-
cation events,i.e., the identification and extrapolation of communi-
cation topology.

Eckert and Nutt [4, 5] extrapolate traces of parallel shared-
memory applications. They take as input the traces collected on an
existing architecture and extrapolate them to a target platform with
different architectural parameters, without re-executing the original
application. This work analyzes the causal event stream. Itfocuses
on the correctness of the extrapolated trace given the existence
of program-level non-determinism,e.g., the interleaving of events
or modifications in the actual set of events caused by moving
the trace across different architectures. In contrast, ourwork is
based on deterministic application execution. We also preserve the
causal ordering of communication events but our focus is on the
communication behavior at arbitrary problem sizes.

Performance modeling has traditionally taken the approachof
algorithmic analysis, often combined with tedious source code in-
spection and hardware modeling for floating-point operations per
second, memory hierarchy analysis from caches over buses tomain
memory and interconnect topology, latency and bandwidth consid-
erations. In particular, Kerbysonet al. present a predictive perfor-
mance and scalability model of a large-scale multidimensional hy-
drodynamics code [9]. This model takes application, system, and
mapping parameters as input to match the application with a tar-
get system. It utilizes a multitude of formulae to characterize and
predict the performance of a scientific application. Snavely et al.
model and predict application performance by 1) characterizing
a system with machine profiles, namely single processor perfor-
mance and network latency and bandwidth, 2) collecting the oper-
ations in an application to generate application signatures, and 3)
mapping signatures to profiles to characterize performance[2, 21].
Ïpek et al. follow a completely different approach by utilizing arti-
ficial neural networks (ANNs) to predict the performance when ap-
plication configuration varies [8]. This approach employs repeated
sampling of a small number of points in the design space that are
statistically determined through SimPoint [20]. Only these points
are then simulated and results are utilized to teach the ANNs, which
are subsequently utilized to predict the performance for other de-
sign points. In contrast, our work explores the potential ofextrapo-
lating the application runtime according to its evolving trend across
increasing problem sizes. Since this method requires neither mea-
surement of performance metrics nor intense computation, it pro-
vides a simple and highly efficient approach to study the effect of
scaling across a large numbers of compute nodes. In contrastto
all of the above approaches, our ScalaExtrap does not just simu-
late communication behavior at scale but allows such behavior to
be observed in practice through replaying on a target platform with
large numbers of nodes, even if the corresponding application itself
has not been ported yet.



8. Conclusion
Scalability is one of the main challenges of scientific applications
in HPC. Advanced communication tracing techniques achieveloss-
less trace collection, preserve event ordering and encapsulate time
in a scalable fashion. However, estimating the impact of scaling on
communication efficiency is still non-trivial due to execution time
variations and exposure to hardware and software artifacts.

This work contributes a set of algorithms and analysis tech-
niques to extrapolate communication traces and execution times of
an application at large scale with information gathered from smaller
executions. The extrapolation of communication traces depends on
an analytical method to characterize the communication topology
of an application. Based on the observation that problem scaling
increases/decreases communication parameters and topology at a
certain rate, we utilize a set of linear equations to capturethe rela-
tion between communication traces for changing number of nodes
between traces and extrapolate communication traces accordingly.
For the extrapolation of timing information, we utilize curve fitting
approaches to model trends in delta times over traces with vary-
ing number of nodes. Statistical methods are further employed to
mitigate timing fluctuations under scaling. Experiments were con-
ducted using an implementation through our ScalaExtrap tool and
with the NAS Parallel Benchmark suite. We utilized up to 16,384
nodes of a 73,728-node IBM Blue Gene/P. Experimental results
show that our algorithm is capable of extrapolating stencil/mesh
and collective communication patterns. Extrapolation of timing in-
formation is further shown to provide good accuracy.

We believe that extrapolation of communication traces for par-
allel applications at arbitrary scale is without precedence. Without
porting applications, communication events can be replayed and
analyzed in a timed manner at scale. This has the potential toen-
able otherwise infeasible system simulation at the exascale level.
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