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Abstract—A method for mapping quadratic unconstrained
binary optimizations expressed as nearest neighbor stencils onto
contemporary quantum annealing machines is developed. The
method is shown to be scalable in providing higher utilization
of annealing hardware resources than prior work. Applying the
technique to the problem of determining an effective fuel loading
pattern for nuclear reactors shows that densely mapped quantum
stencils result in higher fidelity solutions of optimization problems
then the sparser default solutions. These results are likely to
generalize to quadratic unconstrained binary optimizations that
can be expressed as dense quantum stencils, thereby improving
optimization results obtained from noisy quantum devices.

Index Terms—quantum annealing, noisy intermediate-scale
quantum computing, topology graph embeddings

I. INTRODUCTION

Quantum computing has been realized on a set of first-
generation hardware devices with systems that are publicly
accessible. Two paradigms dominate the field: (1) gate-based
quantum computers from manufacturers such as the IBM Q,
Rigetti’s Aspen, or IonQ, using superconducting transmons
or ion tube technology [1], [2]; and (2) quantum annealing
devices from D-Wave using RF-Squids [3]. Both types of sys-
tems are available in the cloud and can be programmed using
Python, e.g., via IBM’s Qiskit in the IBM Q Experience [4],
Rigetti’s Forest DSK in their Quantum Cloud Services [2],
Ion Q’s API, and D-wave’s Ocean Software [5] accessible via
the cloud through D-Wave Leap [6]. The latter three are also
accessible via AWS through Amazon Braket [7].

It has been shown that adiabatic quantum computing, in
its general form, can solve the same problems as gate-based
(universal) quantum computing. However, this requires at least
two degrees of freedom for 2-local Hamiltonians [8]–[10]. D-
Wave supports 2-local Ising Hamiltonians with a single degree
of freedom in their system, which restricts its application area.
Nonetheless, computationally hard optimization problems can
be expressed as 2-local Isings, which has the potential to
solve problems orders of magnitude faster than classical algo-
rithms [11], [12]. A diverse range of applications from com-
puter science to chemistry has been utilizing these capabilities
for computationally hard problems [12]–[16]. Any problem
first has to be transformed into a 2-local Ising Hamiltonian and
then to a quantum unconstrained binary optimization (QUBO)
before it is subsequently mapped onto a qubit annealing
topology with couplers between qubits [17], [18]. This process
of embedding a QUBO representation of dependent variables
onto a quantum topology of interconnected qubits is itself
a challenging graph mapping problem that is NP hard, such

that heuristic algorithms often require long computation time
before they find a solution [19]. The scalability of applying
optimization problems to quantum annealing is often limited
by the inefficiency of such mapping problems.

This work contributes a novel approach for embedding
QUBO structures into annealer topologies for a specific class
of problems. When the Ising formulation itself is highly
regular, certain properties of the target embedding graph can be
exploited to provide a hierarchical approach. A novel method
is develop to specifically target “quantum stencils”. First, a
local subset of the problem is embedded in a highly connected
“unit cell” of the target topology. Second, the higher-order
dependencies are systematically resolved by constructing a
regular pattern connecting unit cells symmetrically with each
other. The key to success is often a dual “unit cell” that fuses
these steps together, i.e., unit cells with alternating mappings
(or even alternating rows of coupler mappings) are realized.
The resulting embedding has the potential to scale up to full
topology size depending on the relation of problem shape vs.
target topology shape.

This work further contributes a novel application area of
quantum annealing. As a nuclear reactor operates, the fuel
depletes and a portion of the core must be replaced peri-
odically. During the refueling, the placement and number of
fuel assemblies greatly affects the operation and economics
of the reactor core. The problem here is to determine the
placement of fuel assemblies to meet design constraints and
maximize output efficiency. This problem is formulated as a
2-local Ising Hamiltonian in this paper and then transformed
into a QUBO before being subjected to quantum annealing
to obtain close to optimal results with low computational
overhead. The resulting QUBO is exposed to D-Wave’s default
embedding algorithm, which fails to find a solution. Instead,
the newly developed quantum stencil embedding is shown
to provide a space efficient solution. Subsequent quantum
annealing provides operationally efficient fuel replacement
patterns as indicated by the overall energy of the annealing
process.

Overall, the novel approach of quantum stencil embeddings
has the potential to generalize to other stencil patterns and
different target topologies of quantum qubit interconnects. Its
application to the fuel loading problem may further provide
an alternative to solve another optimization problem with low
computational complexity.



II. QUANTUM ANNEALING STENCILS

The idea of quantum stencils bears a similarity to particle
simulations performed via finite differencing. Particle simu-
lations are defined by modeling force interactions between
particles in a multi-dimensional space over time. An evolving
system of particles can be discretely simulated by express-
ing these force interactions as a transfer function using the
finite difference method. The transfer function has a spatial
component, referred to as a stencil (shape), and a temporal
component as it evolves over time.

(a) Spatial Domain

(b) Temporal Domain

Fig. 1: Five-point Stencil

Figure 1 depicts such a discretization in a two-dimensional
domain with a five-point stencil (spatially) and a three-deep
time dependence (temporally). A corresponding transfer func-
tion is given by

ei,j,t+1 = αi,jei,j,t − βi,jei,j,t−1 + fi,j + γi−1,jei−1,j,t +

γi+1,jei+1,j,t + γi,j−1ei,j−1,t + γi,j+1ei,j+1,t,

where e denotes the energy of a particle and f denotes an
optional external force field discretized over the 2D domain
indexed by i, j and time t. More complex stencils in space
(d-dimensional with p-point stencils with wider ii/jj ranges)
and time (dt-deep dependencies) can be expressed as

ei,j,t+1 = αi,jei,j,t −
∑t−dt
tt=t−1 βi,jei,j,tt + fi,j +∑

ii=w(i)

∑
jj=h(j) γii,jjeii,jj,t,

where functions w and h define the width and height of the
stencil, optionally with some γii,jj = 0 (e.g., for the five-point
case).

We constrain ourselves to the simple case for d = 2, p =
5, dt = 1. This is due to practical limitations when considering
quantum devices, as discussed later. Further, instead of evolv-
ing a particle system for a fixed number of time steps, our
objective is to find a stable state with an overall energy close
to the minimum. In this sense, we are interested in solving an
optimization problem with the objective of finding a (close to)
minimal overall energy H of the 2D (m×n) system described
by

H = min

m∑
i=1

∑
j=1..n

(αi,jei,j+

m∑
ii=1

n∑
jj=1

βi,j,ii,jjei,jeii,jj). (1)

Minimizing this objective is computationally intractable
(NP-hard) in the classical sense [20]. As this objective function
describes a two-local Hamiltonian H , our objective is to
assess the feasibility to exploit quantum computing to obtain a
solution. We can obtain a quantum solution on contemporary
quantum devices using the Quantum Approximate Optimiza-
tion Algorithm (QAOA) on gate-based quantum devices [21],
or we can exploit quantum annealing to directly represent
Hamiltonians on annealing devices [22]. In this work, we as-
sess the latter as we are interested in solving large optimization
problems with many “particles”. In fact, adiabatic quantum
computing relies on the dynamic evolution of a quantum state
exploiting the tunneling effect, where the state is controlled
by a Hamiltonian and changes occur adiabatically [23]. Given
that quantum devices are fraught with noise today for adiabatic
and gate devices [24]–[39], we can hope to obtain a close
approximation of a minimum energy state for a given problem,
but there is no guarantee that the minimum has been found.

A. Maximal Five-local Mapping onto D-Wave Chimera Topol-
ogy

In the following, we further constrain ourselves to the
equivalent of five-point stencils, i.e., two-local Hamiltonians,
where ii = i − 1, i + 1, jj = j − 1, j + 1) in Eq. 1.
These Hamiltonians can be mapped directly onto the Chimera
topology of qubits of a D-Wave 2000Q annealing device with
up to 2,048 qubits depicted in Fig. 2. Let us first consider
D-Wave’s 8-qubit “unit cell”, which forms a K(4, 4) local
bi-partite graph, i.e., two sets (called “parts”) of four qubits
each that are completely connected with one another across
the sets (but not within each set), as depicted in the red box
within Fig. 2. Qubits (nodes) have associated weights α and
are connected by couplings (edges) to neighboring qubits —
in directions north, south, east, west — with strengths β of
Eq. 1.

The objective is to provide a dense mapping of a five-point
Hamiltonian H onto the Chimera graph that maximizes the
number of qubits included in the resulting embedding. To this
end, we first consider an embedding of particles with energy e
within the K(4, 4) unit cell. We observe that within each part
(left set and right set), qubits are not connected. This means
that particles have to be represented by qubits of different parts
of the unit cell, e.g., alternating left and right. Furthermore,
we need to map the five-point stencil shape beyond the unit
cell, horizontally (east/west) and vertically (north/south) to
other particles, where other unit cells with particle embeddings
reside. However, any qubit has either vertical or horizontal
connections, but not both. Hence, we result in a technique
of transforming H to build “chains” of (physical) qubits that
represent a (logical) particle.

Figure 3(a) depicts a unit cell embedding of four particles,
each represented by two qubits, in a horizontal subset (shown
as a gray subset). This provides the means to fully connect
particles with one another within the unit cell, as well as
horizontally and vertically with neighboring unit cells within
the Chimera graph. Figure 3(b) depicts the five-point stencil



Fig. 2: 3x3x8 Chimera Graph

connections within such a unit cell mapping. Horizontal con-
nections (red/black/blue) denote couplings building the chains
to embed a particle within two qubits. Diagonal connections
(green) depict the vertical north/south connections between
particles.

(a) particle placement (b) intra couplers (c) dual couplers

Fig. 3: Chimera Unit Cell

The challenge now lies in finding a dense mapping to
combine unit cells. Horizontally, such connections can be
trivially constructed as depicted in Figure 4. Unfortunately,
vertical connections between the top and bottom qubits of
two adjacent unit cells do not exist. However, top-to-top and
bottom-to-bottom connections exist. To exploit these couplings
for vertical connections, we provide a “dual” mapping into
the unit cell, as depicted in Figure 3(c). The (formally top)

red set and (bottom) blue set are swizzled to stretch from
top to bottom diagonally crossing within the unit cell. This
now provides additional freedom on the connections with ver-
tically neighboring unit cells: Red (formally top) can connect
up (north) via qubit 3 (bottom); conversely, blue (formally
bottom) can connect down (south) via qubit 0 (top).

Fig. 4: Horizontal Inter-Cell Couplers

The resulting embedding with connections across unit cells
is depicted in Figure 5. We observe that odd rows of unit
cells utilize a horizontal internal embedding (from Figure 3(b))
while even rows feature the dual mapping (from Figure 3(c)).
The overall embedding utilizes all qubits, i.e., it is maximal in
density due to the vertical constraints of the unit cell within
(as discussed before).

Fig. 5: Vertical Inter-Cell Couplers

B. Five-local Mapping onto D-Wave Pegasus Topology

D-Wave’s Advantage QPUs (with up to 5,640 qubits) utilize
a Pegasus graph depicted in Figure 6 with its components. The
unit cell (Figure 6a) has additional local connections within
pairs of cells (black edges in Figure 6b). However, there are
no lateral edges connecting four qubits between cells; instead,
edges are crossing (e.g., red and blue). This prevents a one-
to-one mapping between logical particles and physical qubits
locally within the unit cell, i.e., the crossings would result in
reversed north/south (or east/west) connections. Thus, we can



(a) Unit Cell Representation (b) Inter-Cell Couplings (c) Compressed Abstraction

Fig. 6: Pegasus Graph

again only represent four particles using chaining within a cell,
just as in the Chimera topology. (Had red and blue edges not
been crossing, eight particles would have fit into one cell.)

Our mapping here is for 2 × 2 particles 2D grid-wise
connected (pink edges) using local cell edges (see Fig. 7). Ad-
ditionally, chains (black edges) extend the east-facing particles
to qubits but swizzle their position internally. Between cells,
east/west connections now are realized via red/blue edges to
utilize global couplings for the lateral links. Pairs of global
north/south connections utilize green/orange edges to medial
cells via global couplings. These color codings correspond
the those in Figure 6b. When considering the east/west axis
(diagonal row) as a reference, odd rows use green/orange
north/south edges, respectively, while even rows have the
opposite pattern of orange/green for north/south, respectively
(figure omitted). This provides a larger area that the 2D grid
can be projected onto within the Pegasus graph.

Fig. 7: Pegasus Inter-Cell Embedding

C. Comparing Topologies

Figure 8 depicts a 5× 5× 3× 8 Pegasus graph in terms of
the compressed units from Figure 6(c). The mapping onto a
diagonal placement constrains the largest 2D grid within the
actual 15× 15× 3× 8 Pegasus graph (9X that of the depicted
figure) for the current D-Wave devices to 42×34 (not using any
unit cells outside this square), i.e., 1, 428 particles for a 38%

utilization of qubits within the device. The largest quadratic
problem that can be represented has 36×36 = 1, 296 particles.

Fig. 8: 5x5x3x8 Pegasus Graph of Compressed Units

In contrast, the Chimera topology can accommodate 64 ×
16 × 4 = 1, 024 particles in the said shape, where each unit
cell holds 4 particles and all qubits are utilized; the largest
quadratic problem that can be represented is 16x16 = 256.
An alternate Chimera embedding can be constructed, where
the unit cell holds a square of 2×2 particles, which allows for
a 32×32 = 1, 024 square problem representation (also relying
on a dual cell), but the Pegasus graph still outperforms in terms
of problem size by a factor of ≈1.4X for a rectangular grid
and ≈1.3X for a quadratic one. Considering that the Pegasus
topology has 2.75X the number of qubits, these factors are
rather moderate, which can again be attributed to the red/blue
crossings preventing a more efficient 2D layout.

Chimera may result in higher qubit utilization (100% of
the qubits), yet Pegasus uses fewer physical qubits as not all



cells are utilized and 2 qubits per cell remain unused. For
noisy hardware devices, utilizing fewer resources to represent
a problem has the potential to reduce error, which would give
Pegasus an advantage. However, if problem domains are not
quadratic but resemble a rhombus relative to the diagonals
of the Pegasus graph, all cells may even be used for a total
qubit utilization of 75%. Notice that the four additional local
couplings within the unit graph were key for Pegasus to
provide an advantage over Chimera.

III. APPLICATION TO OPTIMIZING FUEL LOADING WITHIN
NUCLEAR REACTORS

We apply our quantum stencil embedding method to a real-
world problem encountered in optimization of fuel loading
patterns in nuclear reactors. We first describe the problem,
and then provide a QUBO formulation of it.

A. The Fuel Loading Problem for Pressurized Water Reactors

When refueling nuclear reactors, the location of fuel assem-
blies within the core determines the power distribution in the
core, the cycle lifetime, and the economics of the fuel cycle.
Efficient core designs, that meet all of the design constraints
and reduce the number of fresh fuel assemblies needed, can
save the utility millions of dollars in fuel costs at each cycle.

For this study, we consider a reactor core based on the
APR1400 pressurized water reactor (PWR) design [40]. The
core consists of 241 fuel assemblies arranged on a circular
grid, as shown in Figure 9. The core is designed with quarter-
core rotational symmetry, so only 61 of the 241 possible
locations are unique.

Fig. 9: APR1400 reactor core layout.

We will consider a simplified problem where there are only
two fresh fuel types allowed in the core, either low enrichment
or high enrichment. In addition, we will assume that the center
assembly is always low enrichment, so there are a total of 60
degrees of freedom in our problem. It is desirable to have an
even split of 30 low and 30 high enrichment fuel assemblies
to support subsequent fuel cycles. (In the next cycle, the low
enriched bundles will be discharged, and new high enriched
bundles will be added.) Even with the constraint of only using

fresh fuel with two enrichments, there are over 1017 potential
valid loading patterns to evaluate. Optimization algorithms,
such as Simulated Annealing [41], have been applied to solve
this problem, but significant room for improvement exists.

The selection of a loading pattern is motivated by a desire
to 1) minimize the maximum local power peaking factor
(with a hard upper limit of 2.2) and 2) maximize the cycle
length. Thus, the cost function that the loading pattern seeks
to minimize can be stated as

E = −0.12Bu+ Fq + 2H(Fq − 2.2),

where H is the Heaviside step function, Bu is the cycle
exposure in units of GWd

MT and Fq is the maximum local power
peaking factor.

The SIMULATE-3 reactor core simulator [42] is a high-
fidelity multiphysics solver that can be used to model the
reactor and determine the cost function for each loading
pattern. However, given the large number of available loading
patterns, it is not feasible to perform a brute force search of
all possible loading patterns; thus, optimization methods are
desired.

The specific physics of loading pattern optimization for light
water reactors (LWRs) is a good match for stencil optimization
problems. By formulating it as a 2D Ising model, with only
nearest-neighbor connectivity and at most 2nd order terms, it
can map efficiently to D-Wave. The sparse connectivity and
lack of need for representation of higher order terms allows for
the entire 60 degrees of freedom to be mapped to the D-Wave
architecture.

B. Ising Formulation

The 2D Ising model is considered a potentially appropriate
model for the problem due the short neutron mean free path in
LWRs. A fuel assembly is approximately 10 mean free paths
across, so the interactions between assemblies are dominated
by short-term effects. Thus, ground state solutions generated
on D-Wave may correspond to optimal loading patterns as
determined by the core simulator.

The 2D Ising model energy (physics sign convention) is

E = −
N∑
i

hisi −
N∑
i<j

Jijsisj .

Reformulated as a 2D Ising problem with an inverted sign
convention, D-Wave can solve for this problem as

E =

N∑
i

hisi +

N∑
i<j

Jijsisj .

The 2D Ising to be embedded onto D-Wave was generated
using several steps. First, 15,000 random loading patterns
with 30-30 fuel assembly design splits (30 high enrichment
and 30 low enrichment fuel assemblies) in the quarter-core
geometry were processed in SIMULATE-3 for a single cycle
depletion calculation. Next, 3,000 target loading patterns with



30-30 fuel assembly splits were simulated with SIMULATE-
3. In the case of the targeted samples, each loading pattern
differed by a small (2, 4, 6, 8 or 10) or large (50, 52, 54, 56,
58 or 60) number of assembly placements compared to the
previous sample. The targeted samples allow for the problem
ruggedness to estimate for an arbitrary number of spin flips
(assembly swaps). Next, all 18,000 samples were used to
train the 2D Ising model. The training algorithm implemented
was an adaptation from [43]. This training algorithm seeks to
reconstruct the Boltzmann distribution of spin configurations
from which the samples were drawn.

The Boltzmann distribution requires a minimal ground
state value of E = 0. Thus, the initial cost function must
be adjusted. The left-hand-side of the cost function appears
Gaussian while the right-hand-side is skewed. It was assumed
that the ground state is reached for the value of the cost
function corresponding to 10-17. The ground state of the initial
cost function was found to be -3.99. Thus, the cost function
was adjusted to

E = −0.12Bu+ Fq + 2H(Fq − 2.2) + 3.99.

The probability distribution of the updated cost function
can be seen in the kernel density estimate (KDE) depicted
in Figure 10. Due to the large uncertainty in estimating the
ground state value, future approaches to solving the loading
optimization problem should not attempt to reconstruct the
Boltzmann distribution.

Fig. 10: The cost function KDE is skewed right but approx-
imately Gaussian prior to reaching its maximum between 1
and 2.

Next, each of the 18,000 samples was compared to each
other in terms of 1) the number of spin flips (i.e., the number
of differences in assembly placement in the input) and 2)
the difference in SIMULATE-3 prediction of an output (total
cost function or its cycle exposure and maximum local peak-
ing power constituents, respectively, depicted in Figures 11
and 12).

Typical values of the cycle exposure are on the order of
20GWd

MT , which corresponds to approximately 18-24 months.

Fig. 11: Ruggedness of the cycle exposure

Fig. 12: Ruggedness of the maximum local power peaking
factor

Typical values of the maximum local power peaking factor
(Fq) are 2. Thus, while from Figures 11 and 12 both metrics
show comparable changes as a function of the number of spin
flips, the maximum local power peaking factor is far more
sensitive to changes in the loading pattern. This is expected as
the cycle exposure represents a globally averaged value (across
all assemblies) while the power peaking is a local quantity. In
general, from both Figures 11 and 12, the magnitude in the
change of each metric increases with a larger number of spin
flips between loading patterns, but there is large variation in
this behavior. Thus, is it feasible to claim that the problem’s
cost function landscape is favorable to quantum annealing.
The problem is defined as many local minima divided by thin
energy barriers of arbitrary height. The cost function is nearly
random with respect to the input loading pattern. In this case,
the problem ruggedness is largely driven by the ruggedness of
the local maximum power peaking. Local values (maximum
values) are typically used when evaluating the safety limits of
an engineering design.

Once the cost function has been updated, the values of
the qubit biases and qubit coupling biases can be computed



from a modified training algorithm. The (modified, re-weighs
to posterior Boltzmann distribution) training algorithm (which
assumes the physics sign convention) seeks to minimize what
is known as an interaction screening operator (ISO, S) at each
vertex given the set of M = 18, 000 samples.

Si(Ji, hi) =

M∑
m=0

e−βEme−
∑

j 6=i Jijsisj−hisi

(Ĵi, ĥi) = [lnSi(Ji, hi) + λ ‖Ji‖ 1]

An analysis of the original algorithm showed that the
closer the tuning parameter λ was to 1, the fewer samples
the algorithm would need to ensure accuracy, but that the
closer the tuning parameter was to 0, the more likely the
quadratic coefficients would not vanish. It was determined that
a selection of λ = 0 was appropriate: An analysis of the first
3,000 samples followed by analyses with each additional batch
of 3,000 samples showed that for this particular model, the
values were somewhat insensitive to the number of samples.
Additionally, raising the tuning parameter even as high as
λ = 0.1 caused the coupling coefficients to vanish. This
was deemed unacceptable due to the desire to capture the
interaction effect between adjacent assemblies.

For the training process, conventions of s = −1 for
the lower-enrichment fuel assembly and s = +1 for the
higher-enrichment fuel assembly were assumed. For inverse
temperatures of β = 1 and β = 10 the 2D Ising was
trained. These relatively low values for β were selected in
order that the recovered Boltzmann distribution have physical
meaning. In reality, the appearance of a spin configuration
is more likely for those closer to the ground state energy.
Only when the temperature is very high, is a random sampling
procedure justified. Random sampling must be performed as
the associated energy of a loading pattern is not known a priori.
In order to account for the observed differences in energy
levels, the factor e−βEm was added to the original ISO term.

For β = 1 the magnitude of the error in the 2D Ising
surrogate cost function compared with SIMULATE-3 was on
average 2.44 while for β = 10 it was 5.78. In addition to the
larger error, a cursory examination of the 2D Ising model map
for β = 10 appears to show saturation/clipping of parameter
values. An optimal value for the inverse temperature was
searched for. For β = 2.5 the average error magnitude was
1.15.

Fig. 13: Inverted 2D Ising model, β = 1

Figures 14 and 16, which reflect the shape of the bottom-
right quartile of the fuel core, represent the 2D Ising surrogate

Fig. 14: 2D Ising surrogate (for SIMULATE-3) accuracy, β =
1

Fig. 15: Figure 6. Inverted 2D Ising model, β = 2.5

prediction (cell weights blue, inter-cell couplings green) com-
pared to actual SIMULATE-3 result while Figures 13 and 15
present a graphical representation of the 2D Ising model map
with the signs flipped (to the D-Wave sign convention) from
the traditional physics convention. From Figures 14 and 16
both the low-fidelity and high-fidelity results are correlated up
to a SIMULATE-3 cost function value of about 9 and then
afterwards they remain correlated, but less so. This change
in behavior may be due to imposing a hard constraint of

Fig. 16: Figure 7. 2D Ising surrogate (for SIMULATE-3)
accuracy, β = 2.5



Fq = 2.2. Lastly, for both inverse temperature values the
surrogate tends to underpredict the actual value of the cost
function. Thus, the inability to estimate the cost function
ground state prevents the construction of a high accuracy
surrogate for lower energies.

On the other hand, from Figures 13 and 15, while the 2D
Ising does not capture the problem in great detail, some of
its qualitative features align with traditional loading pattern
designs. The qubit coupling terms are nearly strictly positive.
Thus, the reactor system is by and large antiferromagnetic. The
coupling terms also tend towards 1 closer to the center of the
reactor core. This is consistent with traditional loading pattern
design. The reactor core being antiferromagnetic corresponds
to dissimilar assemblies being placed adjacent to each other
— a checkerboard design. Checkerboard patterns are also
typically preferable closer to the center of the core, away from
the problem boundary. Checkerboard patterns help to reduce
power peaking, which is especially of concern closer to the
center of the core as the boundary effect of some assemblies
not being entirely surrounded by other assemblies vanishes.
Additionally, from both Figures 13 and 15 the qubit bias terms
are positive at the center of the core, trends towards 0 and the
negative further from the center of the core and then trends
towards flipping back to positive on the outermost periphery
of the core. The linear coefficient behavior on the outermost
ring of the reactor indicates a preference for lower-enrichment
fuel at that location. This is as expected in order to improve
(i.e., reduce) the neutron leakage (and thus increase the cycle
length). Additionally, the behavior on the interior of the core,
favoring lower-enrichment closer to the center and favoring
higher-enrichment fuel closer to the core periphery (but not
on the periphery itself), is consistent with traditional IN-OUT
loading patterns. These patterns balance the higher-enrichment
fuel assemblies with increased geometric attenuation further
from the core center. This allows again for the flattening of
the core power profile.

C. QUBO Formulation

The trained 2D Ising coefficients must be converted to the
correct quadratic unconstrained binary optimization (QUBO)
problem format. First, as stated before, all of the signs on both
linear and quadratic coefficients are flipped. Next, all of the
quadratic coefficients are generated:

Qij = 4Jij

Then (slightly more complex) all of the linear coefficients
are generated:

Qi = 2hi −
1

2

∑
i<j

Qi

Now, the QUBO problem may be solved:

f(x) =
∑
i

Qixi +
∑
i<j

Qijxixj

This conversion is fairly straightforward. Discrete problems
with higher-order terms or denser connectivity may also be
converted to QUBOs with an increased number of qubits.
As earlier, future attempts to the loading pattern optimization
problem should use higher order terms to increase surrogate fi-
delity. Additionally, the D-Wave solution will be unconstrained
with no guarantee of a 30-30 split in the fuel assembly designs.
In order to introduce an energy penalty for designs that do
not meet this constraint, a fully-connected graph would be
required [44]. However, we decided to assess if training the
2D Ising model with only 30-30 batch splits would implicitly
guide ground state solutions towards this constraint.

IV. IMPLEMENTATION

Our embeddings of the quantum annealing stencils for
the reactor core loading problem were realized on a D-
Wave 2000Q device (DW 2000Q 6). This specific device,
as many others, has manufacturing defects in terms of dead
qubits, specifically seven qubits at the time of experimentation.
These qubits and any of their couplers need to be excluded
from an embedding. By default, D-Wave uses the minor
miner algorithm to find an embedding on the subset of good
qubits [18]. Unfortunately, this algorithm failed to produce
any valid mapping for our fuel loading QUBO of 60 fuel
assemblies. The minor miner algorithm uses a set of heuristics
with seed randomization to greedily place edges and qubits one
by one such that “some space” is left for future placement
of more edges/qubits. Apparently, this results in mapping
attempts that are too sparse to fit within the subset of good
qubits on the DW 2000Q 6 device.

Our embedding explicitly utilizes a dense and dual mapping
into the unit cell, and then globally connects unit cells of four
particles with one another. This local/global embedding com-
bined with the idea of dual embeddings is key to success. It
is also an indication that D-Wave may benefit from geometric
embeddings within local unit cells before global embeddings
are considered for structured QUBOs, i.e., where two-local
interactions follow a common pattern.

Our embedding further takes into account the list of dead
qubits available via the Ocean API. We search for a con-
secutive range of rows within the Chimera graph with only
good qubits large enough to fit our dense embedding. A 8x9
embedding (or 2x9 in terms of unit cell rows/columns) suffices
to fit our problem. For our dense mapping, a single dead qubit
renders an entire cell with its corresponding row and column
useless. In other words, routing around dead qubits (and their
unit cell) is infeasible with our dense Chimera embedding as
we utilize all qubits of a unit cell.

In case of the DW 2000Q 6 device, three pairs of dead
qubits belong to the same cell for a total of four unusable cells
and two failed cells in the same row. This amounts to a total
loss of three rows and four columns or (3+ 4)× 16− 4 = 63
cells with eight qubits each, i.e., almost 25% of their cells
cannot be utilized.

In general, sparser embeddings with symmetry and duality
can be constructed to address this problem. In fact, our Pegasus



mapping is sparser as it only utilizes 75% of the qubits in a
unit cell, and these qubits can be relocated within a cell, i.e.,
cells with one or sometimes two dead qubits can still be used.
However, if multiple global connectors are affected, routing
around an entire unit cell has prohibitive cost for our relatively
dense embeddings, and symmetry would render an entire cell
row and column useless. Notice that alternate algorithms exist
to consider dead qubits and couplers, but they tend to consider
specialized graphs rather symmetric graph structures [45].

V. EVALUATION

We performed evaluations of our models on the D-Wave
2000Q platform with the inverted 2D Ising model (β = 2.5)
formulated as a QUBO. We specified the maximum number
of samples (10,000) for the experiment and then searched the
result space for 50%/50% load patterns (equivalent to 30/30
low/high enriched assemblies). These runs provided results
with about 5% meeting the 30/30 constraint, for repeated
runs, with lowest energies of −7.3948,−7.6917,−7.5793,
respectively. These best balanced loading patterns in terms of
power efficiency of the nuclear reactor have very similar shape,
depicted as a 2D layout in Fig. 17, where 0/1 denote low/high
fuel enrichments.

0 1 0 0 0 1 0 1 1
1 0 0 0 1 0 1 1 1
0 0 0 1 0 1 0 1 1
0 0 0 0 1 0 1 1 0
0 0 1 0 0 1 0 1
1 1 0 1 1 0 1 1
0 0 1 0 1 1 0
1 1 1 1 1 0
1 0 0 0

(a) E=-7.3948

0 1 0 1 0 1 0 1 1
1 0 0 0 0 0 1 1 1
0 0 0 1 0 1 0 1 1
1 0 0 0 1 0 1 1 0
0 1 0 1 0 1 0 0
1 0 1 0 1 1 1 0
0 1 0 1 1 1 0
1 1 1 1 0 1
1 0 0 0

(b) E=-7.6917

Fig. 17: Lowest Energy for 50%/50% Patterns of 2 Runs

In general, the energy of the QUBO solution varies between
-5 and -7, with the lowest energy pattern depicted in Figure 18,
which has an unbalanced load pattern. The idea of balancing
patterns is an economical one to aid in the fuel loading of
subsequent cycles. All patterns have in common that there are
generally lower-enriched fuel assemblies towards the center
of the core (the upper left corner of the quarter core) and
also dissimilar fuel placed next to each other more often than
similar fuel. Both of these design characteristics will tend to
decrease the core power peaking (Fq in the cost function).
It is not clear if at the very periphery of the core lower-
enrichment fuel is preferred; this design choice reduces the
neutron leakage and thus extends the cycle length.

VI. RELATED WORK

Early work on qubit embeddings generically considered
simple graph topologies [46] and resulted in the development
of an embedding algorithm, TRIAD, specifically geared at
triangular clique embeddings [17]. D-Wave’s minor miner

0 1 0 1 0 1 0 1 1
1 0 0 0 0 0 1 1 1
0 0 0 1 0 1 0 1 0
1 0 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0
1 0 1 0 1 0 1 0
0 1 0 1 1 1 0
1 1 1 1 1 0
1 0 0 0

Fig. 18: Pattern for a 33/27 Low/High Split with E=-7.9014

embedding algorithm places an edge/vertex at a time leaving
“enough space” for future placements, combined with initial
randomization, to provide a sparse enough partial mapping
that future placements are likely to succeed [18]. Other work
exploits maximal minor embeddings to support cliques, which
is very specific in terms of combining dense local and global
constraints, and has even been developed to “patch” connec-
tions around dead qubits [45]. Another approach utilizes a
greedy algorithm that considers a biclique virtual topology
abstraction as a mapping target, which realizes odd cycles
cleverly that can only be realized with ancillas for Chimera
graphs [47]. The Pegasus graph supports odd cycles without
ancillas, i.e., it is not clear if the biclique virtual topology
provides a benefit here. In contrast to these approaches, our
work focuses an a dense hierarchical embedding strategy,
where local unit graphs are first regularized, often with dual
mappings, before they a stitched together globally. It is not
greedy but rather follows a constructive structural design
pattern that scales well.

VII. CONCLUSION

This work contributes a novel, scalable method for map-
ping QUBOs onto topological qubit structures of quantum
annealing devices, theoretically up to full topology size. Opti-
mization problems specified as quantum stencils are shown to
be efficiently mapped onto contemporary quantum annealing
devices.

The work further provides a solution to the fuel loading
problem of nuclear reactors. When formulated as an optimiza-
tion problem matching a two-local Ising Hamiltonian, a QUBO
formulation is derived that matches the quantum stencil shape.
Experiments with a 2000Q D-Wave device show that efficient
solutions for such problem domains can be obtained with
our topological embedding method while default embedding
algorithms fail to provide a solution.

Quantum stencils are particularly appealing for regular,
repeating global structures. Global embeddings benefit from
geometric similarity to the problem shape, otherwise density is
sacrificed but flexibility is gained to route around dead qubits,
as seen for the Pegasus topology. These findings provide inspi-
ration for improving D-Wave’s current embedding approach,
i.e., by providing a more constructive geometric approach
as an alternative. The findings may also provide inspiration
for consideration of future graph topologies of RF-Squids



or even for connecting superconducting transmons, e.g., by
trading off the amount of crossing and non-crossing couplers,
which support remote, multi-hop chains vs. local connectivity,
respectively.

VIII. FUTURE WORK

Quantum stencils generalize in that they provide embed-
dings for QUBOs of arbitrary problem domains. The nuclear
reactor fuel loading problem itself features a 2D problem
abstraction that provides a natural representation mapping onto
D-Wave topologies. 3D problems would be harder to map to
current topologies, i.e., a 3D interconnect would be preferable,
particularly one that extends beyond a depth of three as
given by the Pegasus graph. Qubit utilization could further be
improved for 2D and 3D mappings with small changes in the
intra- and inter-cell routing, but without increasing the degree
of connectivity per qubit (see Section II). Furthermore, the fuel
loading problem is simplified as global constraints are omitted
in the quantum model and only checked classically within the
solution space provided by the quantum device. Supporting
global constraints natively within the quantum device would
require a second interconnect, where most (if not all) qubits are
connected to a single “central” qubit, which may not easily be
realized with superconducting transmons, but might be more
feasible with ion traps.

Further work must take place to evaluate the methodology
established here with traditional approaches. First, it should be
remembered that the 2D Ising is ultimately a surrogate for the
real problem and that eventually, all solutions to the 2D Ising
should be evaluated using the higher-fidelity SIMULATE-3
code system. Next, alternate solvers to the 2D Ising should be
investigated and have their solution quality compared to that of
D-Wave, given an equal number of generated solutions [48].
With consideration given to the cost of creation of the 2D
Ising surrogate, 2D Ising solvers should be compared with
traditional engineering approaches that directly manipulate the
SIMULATE-3 input and do not require the creation of a 2D
Ising surrogate model.

Extensions to other types of reactor designs should also be
investigated. While it may be obvious that D-Wave’s perfor-
mance in designing loading patterns for MOX-fueled reactors
would be equal to its performance for UO2-fueled reactors
as presented here, it is not. The effect of vanishing quadratic
(coupling) coefficients could be significant due to the smaller
neutron mean free path in MOX-fueled reactors. Additionally,
denser connectivity (such as diagonal interactions between as-
semblies) and higher-order terms (such as interactions centered
at the corners rather than the sides of assemblies that may
require quadratic or cubic terms, which need to be decomposed
to quadratic terms) should be considered in surrogate modeling
fidelity. Lastly, efforts should be made to investigate reactor
re-loading problems requiring a very dense connectivity (such
as in many fast reactor designs, where the neutron mean
free path is on the order of the size of fuel assemblies) and
reloading patterns that feature more than two fuel levels (this
is more realistic), which requires solving the generalized Potts

model [49]. Modeling of boiling water reactors (BWRs) on D-
Wave will likely require a computational cost intermediate of
PWRs and fast reactors due to the still small neutron mean
free path combined with the fuel assemblies being of larger
number and smaller size.
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