
Synthesis of Approximate Parametric Circuits for
Variational Quantum Algorithms
Blake Burgstahler1, Ellis Wilson1, Scott Pakin2, Frank Mueller1

fmuelle@ncsu.edu
1 North Carolina State University, 2 Los Alamos National Laboratory

Abstract
This work presents a novel approach to synthesize approx-
imate circuits for the ansatze of variational quantum algo-
rithms (VQA) and demonstrates its effectiveness in the con-
text of solving integer linear programming (ILP) problems.
Synthesis is generalized to produce parametric circuits in
close approximation of the original circuit and to do so off-
line. This removes synthesis from the (online) critical path
between repeated quantum circuit executions of VQA. We
hypothesize that this approach will yield novel high fidelity
results beyond those discovered by the baseline without syn-
thesis. Simulation and real device experiments complement
the baseline in finding correct results in many cases where
the baseline fails to find any and do so with on average 32%
fewer CNOTs in circuits.

1 Introduction
Variational quantum algorithms (VQAs) [11, 14] are a promis-
ing approach to solve relevant quantum chemistry [6, 14]
and optimization problems algorithmically [4] on quantum
computers. A VQA comprises a classical loop that repeatedly
executes a parameterized quantum kernel alternating with
classical optimization on the kernel’s output to identify new
parameters to consider.

VQAs, like other quantum algorithms, are limited in prac-
tice on contemporary hardware due to their sensitivity to
noise, such as stray particles striking the system and dis-
rupting the quantum state and leading to decoherence. The
longer a program runs, the more susceptible it is to noise and
to producing erroneous output. Because quantum comput-
ers typically observe higher error rates for two-qubit gates
than for single-qubit gates, quantum algorithms are best
expressed with circuits using as few two-qubit gates as possi-
ble. This constrains their application to the modeling of only
small molecular systems or small optimization problems in
terms of both ansatz and problem Hamiltonians.

Circuit-synthesis approaches [2, 19, 21, 22] can find
shorter circuits with fewer two-qubit gates that approxi-
mately implement a given Hamiltonian, but circuit synthesis
is a very time-consuming process. Synthesis, in essence, is
a nonlinear optimization problem that aims to approximate
a given fixed circuit, not a generalized parametric circuit.
Because VQAs are iterative and use different parameters

(single-qubit rotation angles) each iteration, invoking cir-
cuit synthesis on a per-iteration basis would dominate any
performance gains from the use of a quantum computer.

The state of the art in integrating VQA with circuit synthe-
sis requires parameter optimization and circuit generation to
be applied in series [2, 13]: After the VQA parameters are op-
timized, an approximation is synthesized with an objective
of reducing both the depth of the synthesized circuit and the
number of two-qubit gates. This procedure repeats for each
iteration, and the synthesized circuit is discarded after each
iteration. Therefore, the major questions we ask are: 1. If syn-
thesis across iterations were to reveal a common pattern for
the ansatz, how could such knowledge be exploited? 2. Can
this common pattern be found after a handful of iterations
and result in fewer CNOTs (and therefore less susceptible to
noise) circuits than naive gate replacement/substitution rules
without incurring the cost of synthesis at every iteration?

This work develops a novel approach for VQAs with the
ability to produce circuits with fewer CNOTs than naive
gate replacement rules and by attempting to find and ex-
ploit a new QAOA ansatz pattern across iterations without
incurring the cost of synthesis at every iteration. By exploit-
ing synthesis, a latent parametric structure of the ansatz is
sought. This parametric ansatz is instantiated at run time
with low cost overhead between VQA iterations, effectively
taking synthesis out of the run-time loop. This makes it feasi-
ble to dedicate a quantum device to a VQA execution across
all iterations, as both classical optimization and ansatz instan-
tiation impose low overheads as opposed to circuit synthesis.

Our work demonstrates the feasibility of such an approach
by offline synthesis of approximate and parametric circuits
for the ansatz of VQA. The proposed approach is imple-
mented in the context of an existing quantum-programming
framework, NchooseK [20]. Experiments assess our ap-
proach’s effectiveness in simulation with and without noise
and also on physical quantum devices. Our work makes the
following contributions: 1. Circuit synthesis is generalized
to produce parametric circuits in close approximation of the
original circuit. 2. Synthesis is performed offline, and the
resulting circuit replaces the QAOA ansatz, removing it from
the critical path. 3. Simulation and real device experiments re-
sult in novel results beyond those discovered by the baseline
without synthesis, i.e., our approach produces valid solutions
when the baseline could not. 4. These benefits reduce CNOT
counts by up to 45% with an average reduction of 32%.

1

2 Background
For brevity, we omit much of the basics of the gate model
of quantum computing introduced by Deutsch [3] and in-
clude only some of the most relevant pieces to this work.
Please reference the cited works for additional details on the
ommitted basics.

2.1 Quantum Computing Basics
A single-qubit gate is encoded as a 2×2 matrix. In its most
general form it can be represented as a continuous function
of three parameters:

U3(𝜃, 𝜙, 𝜆) =
(

cos 𝜃
2 −𝑒𝑖𝜆 sin 𝜃

2
𝑒𝑖𝜆 sin 𝜃

2 𝑒𝑖 (𝜆+𝜙) cos 𝜃
2

)
(1)

For example, the Hadamard gate is represented by
𝐻 = U3(𝜋2 , 0, 𝜋) = 1√

2

(1 1
1 −1

)
. (2)

Two-qubit gates are encoded as 4×4 matrices. For example,
the controlled-NOT (CNOT) gate flips the target qubit iff the
control qubit has value |1⟩. CNOT has the following unitary
representation:

CNOT =

©­­­«

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®¬
(3)

In short, a quantum program inputting and outputting 𝑛
qubits can be represented by a single 2𝑛×2𝑛 complex matrix.
The power of a quantum computer is that it does not need
to store nearly that much data.

A practical challenge is how to express a quantum pro-
gram or subroutine in terms of single- and two-qubit gates,
typically drawn from a hardware-specific set. Ideally, this
decomposition should require as few time steps and as few
two-qubit gates as possible. Although finding an optimal
decomposition is NP-hard, Sec. 2.4 discusses heuristics for
producing “good enough” quantum circuits.

2.2 Quantum Approximate Optimization Algorithm
The quantum approximate optimization algorithm (QAOA)
is a VQA that attempts to solve combinatorial problems and
was first proposed by Farhi, Goldstone, and Gutmann [4].
QAOA seeks optimal parameters {𝛽,𝛾} (each in turn a list
of 𝑝 values) for which some unitary U(𝛽,𝛾) can be applied
to an initial state to arrive at a final state that encodes the
optimal solution.

This is achieved by decomposing U(𝛽,𝛾) into two indepen-
dent unitary matrices, U(𝛽) = 𝑒−𝑖𝛽HB and U(𝛾) = 𝑒𝑖𝛾Hp . The
problem Hamiltonian, H𝑃 , implements a cost function whose
minimum is sought. The mixing Hamiltonian, H𝐵 , represents
a transition from one set of possible function-minimizing
states to another such set.

The goal is to find 𝛽 and𝛾 parameters that minimize the ex-
pectation value ⟨𝜓 (𝛽,𝛾) |H𝑃 |𝜓 (𝛽,𝛾)⟩ (notation clarification:

⟨𝜙 | ≡ |𝜙⟩†). The approach is to sample ⟨𝜓 (𝛽,𝛾) |H𝑃 |𝜓 (𝛽,𝛾)⟩
repeatedly on a quantum computer, then run a classical opti-
mizer such as COBYLA [15] on the samples to propose new
{𝛽,𝛾} values that are more likely to minimize the expecta-
tion value. The whole process repeats for a target number
or iterations or until some convergence criterion is met. The
QAOA loop is depicted as the blue flow in Fig. 2.

2.3 Quadratic Unconstrained Binary Optimization
One NP-hard problem that is well-suited to QAOA solution
is the quadratic unconstrained binary optimization (QUBO)
problem:

Minimize
𝑥∈B𝑛

𝑥𝑇𝑄𝑥 , (4)

where 𝑄 ∈ R𝑛×𝑛 and 𝑥 is an 𝑛-dimensional binary vector,
which maps conveniently to a quantum state. That is, 𝑥
can be replaced with |𝑥⟩ in the objective function to yield
⟨𝑥 |𝑄 |𝑥⟩

2.4 Circuit Synthesis
Recall that quantum transformations (gates or entire circuits)
acting on 𝑛 qubits can be represented as a unitary matrix
U ∈ C𝑁×𝑁 with 𝑁 = 2𝑛 . Circuit synthesis aims to find a
decomposition of U into small, unitary operators (typically 1-
and 2-qubit gates) that, once appropriately combined, result
in a circuit encoding the same transformation as U. Many
synthesis algorithms have been proposed [2, 13, 21, 22], each
making different trade-offs among metrics such as execution
time, circuit depth, 2-qubit gate count, and fidelity to the
input circuit.

Synthesis methods use norm-based distance metrics to
assess the similarity of U to its computed replacement U′;
the methods stop when the distance becomes sufficiently
small. The distance metric can be as simple as ∥U − U′∥ ≤ 𝜖
for some tolerance 𝜖 . However, more recent approaches, such
as QUEST [13] and most algorithms included in BQSKit [22],
tend to use the Hilbert-Schmidt (HS) distance (Eq. (5)) as a
stopping criterion. This distance is induced by the HS inner-
product (Eq. (6)).

Δ(U,U′) = HSdist (U,U′) =

√︄
1 −

Tr
(
U†U′

)

2

𝑁 2 (5)

⟨U,U′⟩HS = Tr
(
U†U′

)
=
∑︁
𝑖

𝜆𝑖 (U†U′) (6)

In general, the task of synthesis has exponential complex-
ity in the number of qubits. This is remedied by partitioning
the circuit into disjoint sub-circuits of capped width. These
partitions (or blocks), once recombined, encode the same
original circuit, as illustrated by Fig. 1. With partitioning,
replacements for each block can be synthesized separately
(and concurrently) and then stitched together to approximate
the whole circuit. This process reduces computation time at
the expense of reduced accuracy. If each block is Δ = 𝜀𝑖 then
the total error of the full circuit is bounded above by the sum

2

of the errors, i.e., 𝜀total ≤
∑

𝑖 𝜀𝑖 . In practice this bound has
been found to be rather loose [21].

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Tirthak Patel, Ed Younis, Costin Iancu, Wibe de Jong, and Devesh Tiwari

Original
Block 1

Original
Block 2

Synthesized Block 1a

Synthesized Block 1z

Circuit
Partitioning

Approximate
Synthesis

using Unitary
Simulation

Synthesized Block 2a

Synthesized Block 2z

Synthesized
Full Circuit 1

Synthesized
Full Circuit N

Produce N dissimilar
circuits with low
CNOT gate countOriginal

Full Circuit

Q0

Q1

Q2

Q3

U1

U2

Dual
Annealing

Engine

Figure 2:Quest’s methodology of partitioning the circuit into smaller blocks, generating multiple approximate solutions for
each block, and selecting łdissimilarž circuits from the block search space while minimizing the CNOT gate count.

Q3

U1

U2

U = U1 x U2U

Q2

Q1

Q0

Figure 3: Example of partitioning a circuit in to multiple
blocks (represented using unitaries U1 and U2). Operations
are applied in order from left to right. Isolated squares rep-
resent one-qubit rotation gates, circles connected to another
qubit represent CNOT gates, and the squares at the end rep-
resent measurement gates.

3.2 Overview and Challenges of Circuit
Synthesis

Quantum circuit synthesis is the technique used to find a circuit

for a quantum algorithm that is mathematically close (referred to

in this paper as łexactž synthesis) to the original algorithm circuit.

Recall that an n-qubit quantum algorithm can be represented as

an N × N unitary matrix, where N = 2
n . This unitary matrix can

be calculated by taking a product of all the operations run by a

quantum algorithm. For example, if an algorithm runs K operations

one after another, and the kth operation is represented using the

unitaryUk , the unitary of the entire algorithm can be calculated as

U = UKUK−1 . . .U2U1.

Synthesis is the process of finding a circuit with unitaryU ′ (with
fewer CNOT gates than the original) for U , such that the process

distance between the two is minimized. It is non-trivial to construct

an optimal U ′ (in terms of CNOT gates) in an analytical or rule-

based manner for large circuits [16, 43]. For this reason, previous

works have proposed numerical optimization solutions [10, 39, 46].

These works attempt to construct the synthesized circuit one layer

at a time (a layer typically consists of a combination of one-qubit

rotation gates and two-qubit CNOT gates). Once a layer is embedded

onto the synthesized circuit, numerical optimization methods are

used to optimize the rotation angles such that the process distance

between the unitary of the synthesized circuit (U ′) and the original
circuit (U) is minimized. If the distance is within a certain acceptable

threshold, the solution is accepted. If an acceptable solution is not

found, another layer of gates is added to the synthesized circuit and

again the numerical optimization is performed. Note that every time

a layer is added, the optimizer has increased degrees of freedom

due to the more rotation angles, getting the synthesized circuit’s

unitary closer to the original circuit’s unitary. The Hilbert-Schmidt

process distance is widely used to calculate whether the process

distance between U ′ and U is within the acceptable threshold of

ϵ [10, 18, 21]:

√
1 − ∥Tr (U †U ′)∥2

N 2 < ϵ .

However, the synthesis technique is not scalable with in-
crease in circuit size as the unitary scales exponentiallywith
the number of qubits. This makes the calculation of the process

distance during each iteration of numerical optimization exponen-

tially slower with increase in circuit size. For example, a 20-qubit

circuit requires 220×2 inner products to calculate the process dis-

tance each time. In fact, it is difficult to calculate the unitary of the

entire circuit in the first place because it requires multiplying large

quantum operation unitaries. Thus, it is infeasible to perform syn-

thesis on a full circuit unitary for large circuits. The circuit can be

divided into manageable chunks before synthesis can be performed.

This is the first step of the Quest procedure.

3.3 STEP 1: Partitioning Large Circuits
A solution to the problem of scaling the circuit synthesis approach

is to partition the circuit into blocks of smaller sizes [1]. Fig. 3 shows

how this can be achieved for an example circuit of four qubits. As-

suming that we can computationally synthesize circuits that are up

to three qubits in size, if we partition the four-qubit circuit into two

blocks of three-qubits, we can synthesize the two blocks separately

to generate circuits equivalent to their corresponding unitaries: U1

andU2. The blocks are formed such that there are no connections in

terms of two-qubit CNOT gates between the two blocks. Otherwise,

they may be entangled and cannot be synthesized separately.

In terms of our example circuit, the unitary U1 is synthesized

such that 1−

Tr (U †

1
U ′
1
)

N1
< ϵ1 and the matrixU2 is synthesized such

that 1−

Tr (U †

2
U ′
2
)

N2
< ϵ2. When the synthesized circuits are obtained

for U1 and U2, they are put together to form the full synthesized

circuit. Note that this approach is scalable because we limit the

block size to what is computationally possible. Synthesizing in this

manner does not require generating the target unitary for the full

circuit, nor does it require calculating the process distance for the

entire circuit’s unitary. However, this approach also has several

challenges, which we discuss in the following section.

517

Figure 1. Partition a circuit U into U1 and U2, each acting
on exactly 3 qubits. Image from: Patel et al. [13, Fig. 3].

2.5 Instantiation
Instantiation goes hand in hand with synthesis: rather than
generating a new unitary/circuit the goal is to find values for
a given circuit’s parameterized gates (as in Eq. (1)) to approx-
imate a given unitary. Like synthesis, instantiation attempts
to minimize the HS distance between the two matrices:

arg min
𝛼

√︄
1 −

Tr
(
U†C(𝛼))

2

𝑁 2 (7)

That is, instantiation serves to find the parameters 𝛼 such
that C(𝛼) : R𝑘 ↦→ C𝑁×𝑁 maximizes Tr

(
U†C(𝛼)) for some

unitary U ∈ C𝑁×𝑁 .

2.6 NchooseK
NchooseK [20] is a constraint-based programming model
whose implementation supports the quantum solution of
a class of integer linear programming (ILP) problems with-
out requiring any knowledge of quantum computing on
the part of the user. Programs using this framework con-
sist of Boolean variables and a set of constraints on them.
Constraints take the form, “given a collection of Boolean
variables 𝑁 , exactly 𝐾 of them must be true”, and are no-
tated nck(𝑁,𝐾). 𝐾 can be a set, in which case 𝑘 variables
must be true for some 𝑘 ∈ 𝐾 . Examples of how more com-
plex constraints may be implemented are given by Wilson
et al. [20].

NchooseK also supports soft constraints, expressed as
nck(𝑁,𝐾, soft). The NchooseK solver will satisfy all hard
(the default) constraints and as many soft constraints as pos-
sible. NchooseK has been used to encode a variety of chal-
lenging computational problems, including 3-SAT, minimum
vertex cover, maximum cut, and map coloring [20].

Because NchooseK facilitates the expression of complex
problems and because the implementation uses QAOA to
solve these problems on gate-model quantum computers,
it is a natural framework within which to implement our
proposed techniques for accelerating VQAs on quantum com-
puters.

3 Design
We now introduce our novel parameterized synthesis ap-
proach, which removes synthesis from the critical path (on-
line) by performing all optimizations offline when creating a
circuit ready for submission to quantum hardware (or simu-
lators).

Our approach takes as input a parameterized circuit with
parameters 𝛽 ∈ R𝑝 , where 𝑝 is the number of parameters. It
then selects parameters to be assigned and applies a synthesis
workflow to the circuit to produce a new parameterized cir-
cuit with parameters 𝛼 ∈ R𝑞 assigned.1 The process repeats
with the new parameters. This leads to a set of synthesized
circuits corresponding to the original circuit with particular
parameters assigned. Once this set has grown to a satisfac-
tory size, its contents can be sampled to select a template
that is representative of the original circuit.

The template circuit is selected heuristically by first con-
sidering if any of the generated circuits have identical struc-
ture, favoring shallower circuits in the presence of multiple
duplicates. If a structure is repeated, it is likely that it closely
approximates the original parameterized circuit. If no struc-
ture is repeated, the circuit with the lowest two-qubit gate
count is selected (favoring fewer single-qubit gates in the
case of ties) in order to keep noise low. With the template
selected, its parameters can be optimized and improved fur-
ther. By selecting the template circuit in this manner, we
attempt to create a circuit with fewer CNOTs than simply
using gate replacement rules while still approximating the
core QAOA ansatz.

Algorithm 1 extends QAOA with our parameterized-
synthesis approach. It generates a set of synthesized circuits
using the hybrid optimization scheme to guide the choice of
initial parameters. For every improving choice of parameters
we expect that the resulting synthesized circuits also will
improve. Finally, the algorithm selects a template using the
heuristic mentioned above and then optimizes the circuit,
e.g., by applying standard QAOA techniques to optimize all
parameters. This parametrized synthesis loop is depicted as
the green flow in Fig. 2.

As mentioned previously, synthesis is computationally
intensive. We attempt to reduce the number of circuits that
need to be synthesized by adding a condition on the syn-
thesis as shown in Algorithm 2. This condition checks if a
previously synthesized circuits can be instantiated such that
the HS distance between it and the original circuit is within
some threshold. If so, the instantiated circuit is accepted
as the template circuit for that iteration. In other words,
new circuits are synthesized only when it is not possible to
instantiate any existing circuit to sufficient accuracy. The
instantiation loop is depicted as the red flow in Fig. 2.

1𝑝 and 𝑞 are allowed to differ because each circuit may require a different
number of parameters. Even if they require the same number of parameters,
they may not have identical gate placements.

3

Figure 2. Flow chart representation of Base QAOA and Algorithms 1 and 2. The color scheme is standardized throughout
the remainder of the Figures: Baseline/QAOA in blue, Synthesis in green, and Instantiation in red. It is worth noting that all
methods are based on the core of QAOA and synthesis is inserted at each offline iteration of QAOA in order to generate a set
of candidate structures to select from to replace the standard QAOA circuit.

Algorithm 1:
Parameterized Synthesis in a QAOA Context

Input: Parameterized circuit |𝜓 (𝛽,𝛾)⟩
𝛽,𝛾 ← 1, 1
Ψ← ∅
repeat

Prepare |𝜓 (𝛽,𝛾)⟩ (assign parameters)
Use synthesis to generate parameterized circuit
𝜓 (𝛼) (≈ 𝜓 (𝛽,𝛾))
Ψ← Ψ ∪ {𝜓 (𝛼)}
for a suitably large number of repetitions do

Compute ⟨𝜓 (𝛼) |H𝑃 |𝜓 (𝛼)⟩ on a quantum
computer

Find 𝛽new, 𝛾new with classical optimization
𝛽,𝛾 ← 𝛽new, 𝛾new

until 𝛽,𝛾 no longer improving
Select𝜓opt (𝛼) from Ψ

Apply QAOA to𝜓opt (𝛼) to find optimal 𝛼
Output: Optimal circuit (fixed parameters)

4 Implementation
We leverage existing software tools to implement Algo-
rithms 1 and 2. First, NchooseK [12] serves as a means to
generate problem-specific circuits and as a baseline against
which to compare results for correctness. The Qiskit devel-
opment kit [16] is used for execution of these circuits on
simulators and on quantum hardware. Additionally, Qiskit
provides a wrapper to the SciPy Python package for many
classical optimization approaches, as well as many of its
own implementations of optimizers. Finally, the Berkeley
Quantum Synthesis Toolkit (BQSKit) [22] is leveraged to
efficiently tackle both synthesis and instantiation problems
while providing methods for converting to and from Qiskit-
based circuits.

Algorithm 2:
Parameterized Synthesis with Instantiation

Input: Parameterized circuit |𝜓 (𝛽,𝛾)⟩
𝛽,𝛾 ← 1, 1��𝜓temp

〉 ← new synthesized circuit
Ψ←

��𝜓temp
〉

repeat
Prepare |𝜓 (𝛽,𝛾)⟩
if ∃𝛼opt 𝑠 .𝑡 . Δ

(|𝜓 (𝛽,𝛾)⟩ , ��𝜓temp (𝛼opt)
〉)

< 10−10

then
𝜓 (𝛼) ← 𝜓temp (𝛼opt)

else
𝜓 (𝛼) ← new synthesized circuit

𝜓temp (𝛼) ← 𝜓 (𝛼)
...

𝛽,𝛾 ← 𝛽new, 𝛾new
until 𝛽,𝛾 no longer improving
Select𝜓opt (𝛼) from Ψ

Apply QAOA to𝜓opt (𝛼) to find optimal 𝛼
Output: Optimal Circuit (fixed parameters)

NchooseK generates a QUBO from user-specified con-
straints and then maps this QUBO to a parameterized quan-
tum circuit for use as a QAOA problem Hamiltonian. We
enhanced NchooseK as follows. First, we construct a param-
eterized quantum circuit with as many qubits as the QUBO
has variables. A Hadamard gate is applied to every qubit,
followed by phase rotations 𝑅𝑍 (𝛽) (single-qubit) and 𝑅𝑍𝑍 (𝛽)
(two-qubit) gates according to the QUBO’s linear and qua-
dratic terms. Each gate is assigned a scale factor derived from
the QUBO’s coefficients. Finally, an 𝑅𝑋 (𝛾) gate is applied to
each qubit.

A cost matrix𝑄 ∈ R𝑁×𝑁 is derived from the QUBO objec-
tive function such that that the function we aim to minimize

4

each iteration can be expressed as ⟨𝜓 |𝑄 |𝜓 ⟩ (the expected
value of the circuit outputs). However, since𝜓 collapses upon
measurement we approximate it by averaging over many𝜓
realizations (simulator or hardware shots). The generated
circuit, together with the objective function to encode the
problem Hamiltonian, serve as inputs to the baseline QAOA
as well as our methods as described in Algorithms 1 and 2.

We create a customized synthesis workflow within BQSKit
to control exactly how the synthesis is performed. This work-
flow is described by Algorithm 3. The algorithm first uses

Algorithm 3:
Implementation of Instantiation Algorithm

Given an NchooseK environment, generate initial
parameterized circuit and associate objective
Ψ← ∅
repeat

Bind parameters to Qiskit circuit
Convert circuit to BQSKit
Attempt to instantiate existing template
if template exists AND instantiation within error
bound then

Use the template
else

Use BQSKit to synthesize a new template
circuit using CNOT and U3 gates

Convert template to Qiskit
Ψ← Ψ ∪ template circuit
Compute expected value of simulated counts
Classically improve initial parameters

until COBYLA optimizer terminates
Heuristically select𝜓opt from Ψ
Classically optimize expected value of𝜓opt (𝛼) to find
optimal 𝛼

Output: Optimal circuit (fixed parameters)

BQSKit’s QuickPartitioner to create the blocks necessary for
improving synthesis time. This partitions the circuit by iterat-
ing over all gates and binning them together in a topological
order [22]. Then, for each of these partitions the algorithm
performs a pass of QSearch synthesis [2] followed by a gate-
removal pass. In the gate removal pass, a gate is removed if
the circuit can be instantiated within Δ = 10−10 of its initial
state. Finally, the blocks are reconstructed into a full cir-
cuit with an “Unfold” pass. Additionally, prior to all of these
passes, the algorithm employs a “Set Random Seed” pass to
fix a random seed over all randomizers within any of the
passes to ensure reproducibility. This also increases the like-
lihood that structurally identical subcircuits are generated
that differ only by rotational angles. All other operations use
existing functions provided by Qiskit and BQSkit.

5 Framework
In experiments to compare our parametric synthesis ap-
proach with non-parametric non-synthesis NchooseK/QAOA
circuits, we utilize a subset of the benchmarks from Wilson
et al. [20]. During experiments, the objective is to generate
circuits that return valid solutions to these problems (both
graph-based and satisfiability problems) with high proba-
bility using each of the three aforementioned approaches
(baseline QAOA and Algorithms 1 and 2).

To this end, a number of input graphs are generated for
solving respective graph problems. These graphs are gener-
ated using three vertices in fully connected subgraphs. As
more of these subgraphs are added, at least two edges are
added to connect the new subgraph to the exiting graph. In
this way, we can generate graphs with vertices in any multi-
ple of three and use them to create NchooseK environments
for maximum cut (max cut) and minimum vertex cover (min
vert cover) as specific test cases.

For maximum cut, we aim to produce a partition of the
vertices such that we maximize the number of edges between
the partitions. This is accomplished in NchooseK by encod-
ing soft constraints such that adjacent vertices should be in
unique sets. The solution is a partition that maximizes the
satisfaction of the number of soft constraints.

For minimum vertex cover, we aim to produce the smallest
set of vertices for which the set of all edges incident to these
vertices includes all edges within the graph. This is encoded
within NchooseK as a hard constraint that one or both ver-
tices incident to each edge are selected. An additional soft
constraint searches for the minimum subset of vertices that
satisfies all hard constraints.

For both graph algorithms, each vertex in a graph cor-
responds to a qubit in the generated graph, and each edge
constraint corresponds to a two-qubit interaction within the
circuit.

Further, we consider a modified form of the 3-SAT satisfia-
bility benchmarks also used in NchooseK. Namely, we create
3-SAT problems over a set of variables, which we vary in
size from 3 to 7. From these variables, we generate 3-SAT
constraints by randomly selecting 3 variables and assigning a
negation to each of them with a probability of 0.5. Therefore,
the qubit counts in these problems do not scale as directly
as they did for the graph-based problems. For example, it is
possible for the problem with 3 variables to have 9 qubits:
one for each of the non-negated variables, one for each of the
negated variables, and an ancilla for each constraint. By lim-
iting the size of these problems, we ensure that the problems
can fit on the target quantum computer.

Using this framework, we generate problems ranging from
3 to 21 qubits and compare the solution sets generated by our
algorithms to the solutions generated by Microsoft’s classical
Z3 theorem prover [18]. However, we do not compare these
results directly as Z3 provides only a single solution while

5

Figure 3. Histogram of counts returned for a 5 qubit max-cut problem whose corresponding graph is overlayed on the
histogram. The results from 1024 shots on a simulator with a noise profile from the IBM Hanoi machine for each approach
(baseline: typical QAOA [blue]; synthesis: as described in Algorithm 1 [green]; instantiation: as described in Algorithm 2 [red])
are shown. For this particular example, our synthesis based methods first produced 30 candidate structures. Each approach
optimized its parameters for 1000 COYBLA iterations. Notice that our approaches heavily favor valid solutions while the
baseline yields much more spread out (sub-optimal) results.

our generated circuits result in multiple solutions together
with the approximated probability that each correct solution
is found. With this in mind, we compare the most likely
solutions generated to the solution provided by Z3 in two
steps: 1. Is the candidate solution feasible? 2. Is the candidate
solution “as good as” the Z3 solution?

The former is confirmed by validating that all hard con-
straints within the NchooseK environment are satisfied; the
latter is confirmed by ensuring the solution satisfies at least
as many soft constraints as the Z3 solution. This way, we
never have to solve the underlying NP-hard QUBO created
by NchooseK but rather verify generated solutions in lin-
ear time by comparing them in terms of their constraints.
Furthermore, the above verification framework will be ap-
plied to results produced by the following executions of the
generated circuits:

1. Ideal Simulation: using IBM’s QASM Simulator;
2. Noisy Simulation: adding the hardware noise model

from IBM’s Hanoi machine to the simulator;
3. Real hardware: Transpile and submit to IBM’s Hanoi

machine.
Ideal simulation is used to confirm theoretical differences

between each of the approaches, while the introduction of
noise in simulation is used to characterize the efficacy of
each approach in practice. Finally, real hardware is used in
experiments to show the efficacy of this offline circuit gener-
ation to improve results. For noisy simulation and hardware
computations, we utilize the IBM Hanoi device, which hosts
a 27 qubit Falcon r5.11 processor. Additionally, since the
QASM simulator natively supports ZZ gates, in order to get

a valid depth comparison to our synthesis approaches, we
first transpile exclusively to CNOT and U3 gates.

6 Results
The first experiment features a max-cut problem of the graph
depicted in the top-center of Fig. 3. Bars indicate the number
of times (counts, y-axis) a certain cut in the graph was indi-
cated in noisy simulation for (a) the baseline QAOA circuit
generated by NchooseK (blue), (b) its approximate counter-
part resulting from synthesis (green) and (c) the instantiated,
parametric circuit (red).

The x-axis labels indicate the associated objective value
(which is being minimized) as well as the vertices belonging
to one partition. All other vertices lie in the other partition.
We observe that the baseline approach finds not only the cor-
rect solutions but also many incorrect ones, many observed
with a higher probability than the correct ones. Synthesis
and instantiation peak at both correct solutions while tal-
lying small counts for all incorrect solutions. This example
illustrates the potential of our parametric approaches, and
it demonstrates that the two methods both provide good
results.

The next experiments focus on the benchmarks referenced
in Sec. 5. Each set of benchmarks was allowed to run for
up to 12 hours with each approach to complete as many
cases as possible. In the cases of both the baseline QAOA
and synthesis, all test cases completed and produced results.
However, instantiation becomes intractably slow beyond 6
qubits due to scaling of the number of parameters involved in
the optimization. For example, for a circuit instance with 100

6

(a) Ideal Simulation Top 5 (b) Noisy Simulation Top 5 (c) Hardware Top 5

(d) Ideal Simulation Soft Constraints (e) Noisy Simulation Soft Constraints (f) Hardware Soft Constraints

(g) Ideal Simulation Hard Constraints (h) Noisy Simulation Hard Constraints (i) Hardware Hard Constraints

Figure 4. Minimum Vertex Cover with 𝑝 = 3. x’s mark solutions that failed to meet at least one hard constraint. The dotted
lines include these x’s in averages and the solid lines exclude them from the average. Instantiation results are omitted beyond
6 qubits as they did not finish within the time limit.

U3 gates, there will be 300 parameters that must be selected
by the instantiation method, dramatically increasing the
complexity of Eq. (7).

Fig. 4 depicts results for minimum vertex cover. Figs. 4(a)
to 4(c) indicate via bar charts (top row) the probability (y-
axis) of one of the top 5 solutions being “as good as” the result
reported by the classical Z3 solver for different graph sizes,
indicated by the number of qubits (x-axis). Any such result
is first checked to confirm that (1) all hard constraints and
(2) at least as many soft constraints as the classically found
Z3 solution are met. Results are reported for (a) noise-free

simulation (left), (b) noisy simulation (center), and (c) hard-
ware execution (right). The horizontal line at 𝑦 = 0 serves
as a reference point as some experiments completed with-
out any valid results, in particular for the baseline (blue).
For the simulations in 4(a) and 4(b), we observe that the
baseline QAOA circuits rapidly deteriorate at higher qubit
counts, whereas our parametric methods consistently outper-
forms the baseline by improving fidelity significantly. While
the baseline fails to find acceptable solutions, our methods
consistently find them. When run on hardware in 4(c), we
observe a different trend. We see improvements only for 3
qubits while the baseline outperforms others at 6 qubits. This

7

(a) Ideal Simulation Top 5 (b) Noisy Simulation Top 5 (c) Hardware Top 5

(d) Ideal Simulation Soft Constraints (e) Noisy Simulation Soft Constraints (f) Hardware Soft Constraints

Figure 5. Maximum Cut with 𝑝 = 3 repetitions of its circuit. The line is the average over all cases. These problems only have
soft constraints. Instantiation results beyond 6 qubits omitted as they did not complete within the time limit.

rapid falloff likely is caused by the increased complexity of
vertex cover problems as they contain both hard and soft
constraints.

Figs. 4(d) to 4(f) indicate if soft constraints are met (y-axis)
relative to classical Z3 solving. Above 1.0, more constraints
are met, and below 1.0, fewer are met. Lines average over the
top 5 solutions, where dashed lines include and solid lines
exclude any solutions that violate hard constraints (plotted as
×s). Often, both lines overlap (only solid visible). We observe
that the synthesized and instantiated solutions are able to
satisfy as many if not more soft constraints than the baseline.
This is consistently the case for ideal and noisy simulation
as well as for hardware runs.

Figs. 4(g) to 4(i) plot the ratio of hard constraints (x-axis) in
the same manner. In Fig. 4(g) we see that the baseline QAOA
succeeds at satisfying hard constraints for all problems of 6 or
more qubits while our methods are able to satisfy only 80% of
hard constraints on average. We see similar trends in Fig. 4(h):
the baseline consistently satisfies hard constraints while our
approaches lag slightly behind at around 80% satisfaction.
Finally, Fig. 4(i) shows hardware trends. Now the baseline
begins not to consistently satisfy all hard constraints but still
tends to satisfy more hard constraints than our methods.

Considering all the results, more hard constraints are bro-
ken by our parametric methods. Yet, by violating hard con-
straints we enable satisfaction of significantly higher num-
bers of soft constraints under simulation. On hardware, the
baseline begins to break hard constraints as well. Given the
current state of noisy quantum hardware, it is to be expected
that hardware results are of lower fidelity than simulation.

Fig. 5 depicts results for max cut with similar graphs.
Figs. 5(a) to 5(c) indicate results for the baseline up to 9
qubits (ideal) and a single results for 12 qubits (hardware).
Our parametric methods consistently deliver correct results
up to 6 qubits, even on hardware, but then do not fall off
as fast as in the vertex cover, because max cut has reduced
complexity and involves only soft constraints.

Max cut has only soft constraints. Figs. 5(d) to 5(f) indicate
about the same number of soft constraints being broken
across all methods compared to Z3 classical solving.

Fig. 6 depicts results for 3-SAT problems, which have
only hard constraints. Figs. 6(a) to 6(c) indicate that our
approaches outperform the baseline, except for an outlier
on hardware at 17 qubits where the baseline delivers. Both
Figs. 6(a) and 6(b) show that for lower qubit counts, our meth-
ods succeed in finding a valid solution while the baseline
fails. Figs. 6(d) to 6(f) show that fewer hard constraints are
being met by these methods than by Z3 yet more solutions

8

(a) Ideal Simulation top 5 (b) Noisy Simulation top 5 (c) Hardware top 5

(d) Ideal Simulation hard constraints (e) Noisy Simulation hard constraints (f) Hardware hard constraints

Figure 6. 3-SAT results for 𝑝 = 3. These only include hard constraints and follow the same formatting as Fig. 4

(a) Minimum Vertex Cover (b) Maximum Cut (c) 3-Sat

Figure 7. CNOT count, a proxy for circuit depth, for each template circuit from each problem type.

are still being found by our approaches compared to the
baseline.

Let us consider the percentage of hard constraints satisfied
by the three methods. Since 3-SAT problems have only hard
constraints, this directly gives us a measure of how close to
the optimal solution we are. In each of Figs. 6(d) to 6(f) we
see that the average of our methods trends closer to optimal
across all test cases. In each plot, the solid line shows the
average percentage of hard constraints satisfied for solutions
that failed to satisfy all constraints. The dotted lines show the
same average but also include solutions that satisfy the hard

constraints as well. In an ideal simulation, our approaches
satisfy more hard constraints on average in all cases. In
noisy simulation and hardware runs, the same general trend
continues, but the baseline outperforms our approaches at
11 qubits in noisy simulation and 17 qubits in the hardware
runs.

Fig. 7 depicts the number of CNOT gates (y-axis) per num-
ber of qubits (x-axis), which is relevant for decoherence as
CNOT count directly correlates to depth. We observe that
our approaches produce circuits with the same or a reduced

9

number of CNOTs. At low qubit counts, our methods per-
form on par with the baseline. Beyond that, the benefits
of our approach become clearer for circuits of larger qubit
count, where we can see up to a 45% reduction in CNOT gate
count and an average reduction of 32%.

Discussion: We believe that the absence of correct so-
lutions at larger numbers of qubits stems from two main
sources. First, at this scale we introduced enough partitions
through synthesis that the compounding errors from each
block may become significant as the number of qubits is
increased. This effect compounds further when using repeti-
tions of the synthesized ansatz in place of the standard QAOA
ansatz and, unfortunately, seems to counteract any gains that
may have been achieved by reducing CNOT counts. Prior
works [2, 13] benchmark their synthesis approaches with
some QAOA circuits, but neither use a QAOA circuit larger
than 10 qubits so they have not established any precedent
in terms of the scalability limitations of the baseline QAOA.
Furthermore, since each of our approaches seeks to improve
upon QAOA results by synthesizing approximations, it is
reasonable to expect that if neither baseline QAOA yields
valid solutions, nor will approximations of it especially when
using a local search optimizer. In other words, when QAOA
is close to a correct solution, our approach can improve upon
it even further.

7 Related Work
7.1 Synthesis Methods
Our work relies on BQSKit [22] for circuit synthesis. Prior
approaches using BQSKit exhibit a number of objectives.
QUEST tries to reduce the CNOT gate count during synthe-
sis to reduce noise [13]. QSearch [2] iterates over generated
synthetic circuits using heuristics and the HS metric com-
bined with subcircuit partitioning via QFAST. An algorithm
for parameterized circuit instantiation is used to reduce noise
in an optimization and gate-set retargeting approach [21].
Heuristics for reducing the number of CNOTs and consider-
ing topologies to avoid swaps are utilized via A* search for
synthesis [1]. These instantiation and retargeting methods
differ from our work in that we aim to find parametric cir-
cuits in an iterative manner, which removes synthesis from
the critical path within VQA methods.

7.2 Circuit Parameterization
Previous works [7, e.g.] promote parameterized compilation
techniques without the use of synthesis. Their techniques
focus on reducing compilation time beyond the existing opti-
mization levels available in Qiskit. Our work expands on this
by introducing synthesis as the parameterization technique
rather than manipulating the compiled (hardware ready)
circuit.

Precompilation techniques [17] use a template that they
adapt to a particular problem type and subsequently to a

particular problem instance. Our templates are not formed
as generic catch-alls for problem types, but rather are specif-
ically generated for each instance via circuit synthesis.

7.3 NchooseK
NchooseK [12, 20] was designed to provide a domain-specific
language to easily specify problems that can then be solved
on classical computers, quantum annealers, and circuit-based
quantum computers. It is based on the idea that a wide vari-
ety of constraints can be formulated as “𝐾 of these𝑁 Boolean
values must be true”. NchooseK enables the user to access the
power of quantum computers solely through the expression
of classical constraints. It relies on a QAOA-based quantum
solver, but in the form used in the experiments it returns
only the single most likely solution. Our work expands on
NchooseK to focus on the generation of a circuit that re-
sults in a high probability for potentially multiple optimal
solutions and very low probability for suboptimal solutions.

7.4 Other QAOA-based Work
The prevailing issue in QAOA is appropriate selection of the
parameters. Some work [5, 9] considers ways to improve
the formulation of the QAOA ansatz by iteratively fixing
parameters or by introducing additional angles to optimize
the ansatz. Their aim is to exploit structure as a means of
improving performance. Other work explores gradient-free
optimizers, which can handle the additional difficulties that
come with the presence of noise and the requirement of a
“black-box” evaluation of objective functions [8].

Work is being done to improve the performance of QAOA
algorithms on hardware [10, 19]. The focus here is on op-
timal ways to map these problems onto hardware, namely
by reducing the number of swaps necessary to execute the
circuit while increasing parallelism.

Our work is orthogonal to these approaches as it concerns
efficient QAOA circuit synthesis to improve noise resiliency
while removing synthesis from the critical path between
successive job executions of VQA methods.

8 Conclusions
We introduced and surveyed the current state of VQA ap-
proaches before presenting two novel circuit synthesis-based
algorithms for producing quantum circuits that increase
the probability of finding problem solutions. We show that
these algorithms can be applied in the context of QAOA and
confirm their viability over traditional QAOA. Generally, if
QAOA finds a solution, our algorithms increase the likeli-
hood of identifying either a better solution or an alternative
one. Sometimes, our methods find solutions when baseline
QAOA does not. Other times, our methods complement base-
line QAOA with additional solutions. These results are all
obtained with reduction in CNOT gate counts compared to
the baseline when transpiled to the same gate set.

10

Acknowledgments
We would like to acknowledge contributions by Rohit Mohan
to the initial proof of concept on small max-cut problems as a
part of Dr. Mueller’s Quantum Computing course. Research
presented in this paper was supported by the Laboratory
Directed Research and Development program at Los Alamos
National Laboratory under project number 20210397ER.
Los Alamos National Laboratory is operated by Triad Na-
tional Security, LLC for the National Nuclear Security Ad-
ministration of the U.S. Department of Energy (contract
no. 89233218CNA000001). This work was also supported
in part by LANL subcontract 725530 and by NSF awards
PHY-1818914, PHY-2325080, MPS-2120757, CISE-2217020,
and CISE-2316201. Released under LA-UR-24-28597.

References
[1] Marc G. Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan Siddiqi,

and Costin Iancu. Heuristics for quantum compiling with a continuous
gate set. In 3rd International Workshop on Quantum Compilation as
part of the International Conference On Computer Aided Design 2019,
Dec 2019.

[2] Marc G. Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan Siddiqi,
and Costin Iancu. Towards optimal topology aware quantum cir-
cuit synthesis. In 2020 IEEE International Conference on Quantum
Computing and Engineering (QCE), pages 223–234, 2020.

[3] David Elieser Deutsch. Quantum computational networks. The Royal
Society London, 425:73–90, September 8, 1989.

[4] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum
approximate optimization algorithm, 2014.

[5] Rebekah Herrman, Phillip C Lotshas, James Ostrowski, Travis S. Hum-
ble, and George Siopsis. Multi-angle quantum approximate optimiza-
tion algorithm. Scientific Reports, 12(6781), 2022.

[6] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita,
Markus Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient
variational quantum eigensolver for small molecules and quantum
magnets. Nature, 549(7671):242–246, 2017.

[7] A. M. Krol, K. Mesman, A. Sarkar, M. Möller, and Z. Al-Ars. Efficient
parameterised compilation for hybrid quantum programming, 2022.

[8] Wim Lavrijsen, Ana Tudor, Juliane Müller, Costin Iancu, and Wibe
de Jong. Classical optimizers for noisy intermediate-scale quantum
devices. In 2020 IEEE International Conference on Quantum Computing
and Engineering (QCE), pages 267–277, Oct 2020.

[9] Xinwei Lee, Yoshiyuki Saito, Dongsheng Cai, and Nobuyoshi Asai.
Parameters fixing strategy for quantum approximate optimization al-
gorithm. In 2021 IEEE International Conference on Quantum Computing
and Engineering (QCE), pages 10–16, Oct 2021.

[10] Phillip C Lotshaw, Thien Nguyen, Anthony Santana, Alexander Mc-
Caskey, Rebekah Herrman, James Ostrowski, George Siopsis, and
Travis S Humble. Scaling quantum approximate optimization on
near-term hardware. Scienticic Reports, 2(12388), 2022.

[11] Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow,
Andrew Cross, Daniel J Egger, Stefan Filipp, Andreas Fuhrer, Jay M
Gambetta, Marc Ganzhorn, et al. Quantum optimization using varia-
tional algorithms on near-term quantum devices. Quantum Science
and Technology, 3(3):030503, 2018.

[12] Scott Pakin and Ellis Wilson. NchooseK. https://github.com/lanl/
NchooseK, 2023.

[13] Tirthak Patel, Ed Younis, Costin Iancu, Wibe de Jong, and Devesh
Tiwari. QUEST: Systematically approximating quantum circuits for
higher output fidelity. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’22, page 514–528, New York, NY, USA,
2022. Association for Computing Machinery.

[14] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung,
Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien.
A variational eigenvalue solver on a photonic quantum processor.
Nature communications, 5(1):4213, 2014.

[15] M. J. D. Powell. A Direct Search Optimization Method That Models
the Objective and Constraint Functions by Linear Interpolation, pages
51–67. Springer, Dordrecht, Netherlands, 1994.

[16] Qiskit contributors. Qiskit: An open-source framework for quantum
computing. https://qiskit.org/, 2023.

[17] Nils Quetschlich, Lukas Burgholzer, and Robert Wille. Reducing the
compilation time of quantum circuits using pre-compilation on the
gate level, 2023.

[18] Microsoft Research. Z3: an efficient theorem prover, 2023.
[19] Bochen Tan and Jason Cong. Optimal layout synthesis for quan-

tum computing. In Proceedings of the 39th International Conference
on Computer-Aided Design, ICCAD ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[20] Ellis Wilson, Frank Mueller, and Scott Pakin. Combining hard and
soft constraints in quantum constraint-satisfaction systems. In SC22:
International Conference for High Performance Computing, Networking,
Storage, and Analysis, pages 161–174, November 2022.

[21] Ed Younis and Costin Iancu. Quantum circuit optimization and tran-
spilation via parameterized circuit instantiation. In 2022 IEEE Inter-
national Conference on Quantum Computing and Engineering (QCE),
pages 465–475, Sep. 2022.

[22] Ed Younis, Costin C Iancu, Wim Lavrijsen, Marc Davis, and Ethan
Smith. Berkeley quantum synthesis toolkit (BQSKit) v1. https://bqskit.
lbl.gov/, April 2021.

11

https://github.com/lanl/NchooseK
https://github.com/lanl/NchooseK
https://qiskit.org/
https://bqskit.lbl.gov/
https://bqskit.lbl.gov/

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum Computing Basics
	2.2 Quantum Approximate Optimization Algorithm
	2.3 Quadratic Unconstrained Binary Optimization
	2.4 Circuit Synthesis
	2.5 Instantiation
	2.6 NchooseK

	3 Design
	4 Implementation
	5 Framework
	6 Results
	7 Related Work
	7.1 Synthesis Methods
	7.2 Circuit Parameterization
	7.3 NchooseK
	7.4 Other QAOA-based Work

	8 Conclusions
	Acknowledgments
	References

