
POSTER TITLE

Rate Adjustable Bivariate Bicycle Codes for Quantum Error
Correction

POSTER AUTHORS

Ming Wang: mwang42@ncsu.edu
Frank Mueller (main contact): fmuelle@ncsu.edu

POSTER ABSTRACT

This work (1) proposes a novel numerical algorithm to
accelerate the search process for good Bivariate Bicycle (BB)
codes and (2) defines a new variant of BB codes suitable for
quantum error correction. In contrast to vanilla BB codes,
where parameters remain unknown prior to code discovery,
the rate of the proposed code can be determined before the
search by specifying a factor polynomial. A number of new
BB codes found by this algorithm are reported. In particular,
by using the proposed construction of BB codes, we found
a number of surprisingly short to medium-length codes that
were previously unknown.

POSTER RELEVANCE

• Quantum computing
• Quantum error-correction and mitigation



Rate Adjustable Bivariate Bicycle Codes for
Quantum Error Correction

Ming Wang, Frank Mueller
Department of Computer Science
North Carolina State University

Raleigh, NC 27695, USA
Email: {mwang42,fmuelle}@ncsu.edu

Abstract—This work (1) proposes a novel numerical algorithm
to accelerate the search process for good Bivariate Bicycle (BB)
codes and (2) defines a new variant of BB codes suitable for
quantum error correction. In contrast to vanilla BB codes, where
parameters remain unknown prior to code discovery, the rate
of the proposed code can be determined before the search by
specifying a factor polynomial. A number of new BB codes
found by this algorithm are reported. In particular, by using
the proposed construction of BB codes, we found a number of
surprisingly short to medium-length codes that were previously
unknown.

A. Introduction: Quantum Error Correction (QEC) is the
cornerstone of advancing from the current Noisy Intermediate-
Scale Quantum (NISQ) era to the era of fault-tolerant quantum
computing. Among the various QEC codes, quantum Low-
Density Parity-Check (qLDPC) codes stand out due to their
lower-weight stabilizers, which require fewer gate operations.
Unlike surface codes, which also feature low-weight stabiliz-
ers, qLDPC codes support more logical qubits. In particular,
one type of qLDPC code, BB codes [1], known for their
high threshold and low overhead, have received much attention
recently.

In this work, we proposed a numerical algorithm to search
for good BB codes. In addition, a new construction of BB
codes is proposed that allows us to customize the code rate
before performing a search, much in contrast to prior search
techniques that identified the rate only after returning a new
code as a search result.

B. Preliminaries: Let Sm and Im be the circulant per-
mutation matrix and identity matrix, respectively, of size m.
Furthermore, let x = Sl ⊗ Im, and y = Il ⊗ Sm. It is easy
to verify that xy = yx. The BB codes can be defined by
two polynomials, a(x, y) and b(x, y), where each monomial
can be expressed as a matrix. Thus, the polynomials a(x, y)
and b(x, y) have a natural matrix representation, A and B,
respectively. In [1], the authors restricted the polynomials as
follows:

a(x, y) = xa + yb + yc

b(x, y) = yd + xe + xf .
(1)

Each polynomial has 3 terms and can be written as A = A1+
A2 + A3 and B = B1 + B2 + B3 in matrix form. Besides,
AT = AT

1 + AT
2 + AT

3 = A−1
1 + A−1

2 + A−1
3 as Ai is the

power of x or y, which are permutation matrices. It is easy to

see that the weight of the stabilizers, i.e., the row weight of
parity-check matrices, is 6. In the rest of the paper, we will
focus on codes with row-weight 6 because they are easier to
implement in hardware.

C. Numerical Acceleration of Searches: In this section,
we will introduce a technique to numerically perform an
exhaustive search for BB codes under certain constraints to
reduce the search space. First, we want to exclude equivalent
codes. It is easy to prove that these four codes

C1 : HX = [A|B], HZ = [BT |AT ]

C2 : HX = [AT |BT ], HZ = [B|A]

C3 : HX = [B|A], HZ = [AT |BT ]

C4 : HX = [BT |AT ], HZ = [A|B]

(2)

have the same parameters. Thus, we can reduce the search
space to 1/4 by ignoring codes with polynomials like
C2, C3, C4. We further note that the two codes C1 : HX =
[A|B], HZ = [BT |AT ] and C5 : HX = [AT |B], HZ =
[BT |A] do not always have the same parameters. For example,
when l = 6,m = 12, the code constructed by a(x, y) =
x4 + y2 + y6 and b(x, y) = y5 + x3 + x4 is a [[144, 8, 10]]
code, whereas the code constructed by a(x, y) = x2+y6+y10

and b(x, y) = y5 + x3 + x4 is a [[144, 8, 8]] code.
In [1], the authors used BP-OSD [2] algorithms to estimate

the distance of codes during searches. To accelerate this
process, we use two thresholds, τk and τd, to discard bad
codes. Any code with k < τk or the estimated distance d̂ < τd
will be discarded immediately without further investigation.
Besides finding known prior code, some of the prior unknown
codes we found using this algorithm are listed in Table I.

D. Coprime-BB Codes: Based on the commutativity of
matrices x and y, one can choose different polynomial forms
and construct valid CSS codes. But we need to perform an ex-
tensive search to find codes with good k, d using polynomials
of the shape given in Eq. (1). Here, we propose the coprime-
BB codes that can provide codes for a pre-determined k.

Let l,m be two coprime numbers. As xl = ym = I , it
is easy to verify that ⟨xy⟩ generates a cyclic group, and any
monomial {xiyj |0 ≤ i < l, 0 ≤ j < m} can be expressed
as a power of xy. Thus, let π = xy, any polynomial in
F2[x, y]/(x

l+1, ym+1) can be expressed in F2[π]/(π
lm+1).



Algorithm 1: An algorithm to search BB codes
Data: l,m, τk, τd
Result: codes of parameters [[2lm, k, d̂]]
Generate all polynomial pairs of the specified form
L← [(a1(x, y), b1(x, y)), ...];

Remove codes with the same parameters:
L′ ← remove_equivalent(L);

for i← 1 to |L′| do
if is_connected(ai(x, y), bi(x, y))) then

HX , HZ = BB_matrices(ai(x, y), bi(x, y)));
k ← 2lm− 2rank(HX);
if k < τk then

continue ;
else

d̂← distance_bound(HX , HZ , τd);
end

else
continue ;

end
end

TABLE I
NOVEL CODES FOUND BY ALGORITHM 1

l m a(x, y) b(x, y) [[n, k, d]]
7 7 x3 + y5 + y6 y2 + x3 + x5 [[98, 6, 12]]
3 21 1 + y2 + y10 y3 + x+ x2 [[126, 8, 10]]
5 15 1 + y6 + y8 y5 + x+ x4 [[150, 16, 8]]
3 27 1 + y10 + y14 y12 + x+ x2 [[162, 8, 14]]
6 15 x3 + y + y2 y6 + x4 + x5 [[180, 8, 16]]

Let g(π) = GCD(a(π), b(π), πlm + 1), then the code defined
by a(π) and b(π) has k = 2deg g(π).

The proof is similar to Proposition 1 in [3]. Given
colsp(HX) = {HXx|x ∈ F2lm

2 } = {Au + Bv|u,v ∈
Flm
2 }, the column space can be expressed as polynomi-

als, colsp(HX) = {a(π)u(π) + b(π)v(π)|u(π), v(π) ∈
F2[π]/(π

lm + 1)}. Since F2[π]/(π
lm + 1) is a univariate

polynomial ring, a(π)F2[π]/(π
lm+1) and b(π)F2[π]/(π

lm+
1) are principal ideals. Thus, colsp(HX) = {a(π)u(π) +
b(π)v(π)|u(π), v(π) ∈ F2[π]/(π

lm + 1)} is a principal ideal
generated by g(π) and rank(HX) = dim colsp(HX) =
lm − deg g(π). Thus, the number of logical qubits k =
2lm− rank2(HX) = 2lm− 2(lm− deg g(π)) = 2 deg g(π).

Using the proposed algorithm 2, we find a number of
interesting coprime-BB codes shown in Table II.

E. Conclusion/Future Work: We developed an algorithm
for fast numerical searches for the discovery of BB codes.
Furthermore, we proposed a novel construction of BB codes
that enables us to set the rate before constructing them.
Simulations should be done in order to compare the error rates
of the newly found codes and to assess how well these codes
map onto architectural constraints of existing quantum device
technologies.
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     * The rest are the same as Algorithm 1

Approach
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