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Abstract—Currency arbitrage capitalizes on price discrepan-
cies in currency exchange rates between markets to produce prof-
its with minimal risk. By employing a combinatorial optimization
problem, one can ascertain optimal paths within directed graphs,
thereby facilitating the efficient identification of profitable trading
routes. This research investigates the methodologies of quantum
annealing and gate-based quantum computing in relation to
the currency arbitrage problem. In this study, we implement
the Quantum Approximate Optimization Algorithm (QAOA)
utilizing Qiskit version 1.2. In order to optimize the parameters of
QAOA, we perform simulations utilizing the AerSimulator and
carry out experiments in simulation. Furthermore, we present
an NchooseK-based methodology utilizing D-Wave’s Ocean suite.
This methodology enables a comparison of the effectiveness
of quantum techniques in identifying optimal arbitrage paths.
The results of our study enhance the existing literature on
the application of quantum computing in financial optimization
challenges, emphasizing both the prospective benefits and the
present limitations of these developing technologies in real-world
scenarios.

Index Terms—arbitrage, annealing, profit, NchooseK, QAOA,
optimization

I. INTRODUCTION

Currency arbitrage is a trading strategy that takes advantage
of price discrepancies for the same currency pair across
different markets or exchanges. Market participants have the
opportunity to acquire a currency at one rate in one market-
place and subsequently sell it at another one. If the former
price is lower than the latter, they can realize a profit from the
price differential, otherwise a loss. A strategy to make prof-
its can take on multiple manifestations, including triangular
arbitrage, wherein traders capitalize on discrepancies among
three currencies, or through direct transactions involving two
currencies. The primary objective is to leverage market inef-
ficiencies in order to achieve profits while maintaining a low
level of risk.

The classical Bellman-Ford algorithm serves as a method
to detect arbitrage opportunities. This algorithm facilitates the
identification of negative cycles within a graph that models
currency exchange rates. It is crucial to determine the presence
of negative cycles within a graph and, if they exist, to identify
the particular segments that contribute to these anomalies [1].

The identification of currency arbitrage opportunities can
be conceptualized as an optimal path search within a di-
rected graph, wherein nodes symbolize currencies and edge
weights reflect exchange rates. This introduces a combinatorial
optimization challenge that necessitates the development of
efficient algorithms to facilitate prompt decision-making.

An algorithm following this concept is given in the
flowchart in Figure 1. We expressed the combinatorial op-
timization problem as a quadratic unconstrained binary op-
timization (QUBO) problem for resolution on the D-Wave
quantum annealer, and we devised a formulation for QAOA
to implement it on IBM quantum simulator or actual device
hardware. We additionally reshaped the problem into a com-
binatorial problem suitable for a domain-specific language,
NchooseK, and exposed its solution to quantum annealers
and gate-based quantum computers. We conducted a com-
parative study of the circuit depth associated with NchooseK
and that of QAOA for the identical problem, demonstrating
that NchooseK provides a notable enhancement over current
QAOA frameworks.

II. RELATED WORKS

Currency arbitrage has been a subject of interest in the con-
text of quantum computing. Notably, several quantum-inspired
algorithms have been applied to identify optimal arbitrage
paths. One such approach utilizes the Simulated Bifurcation
(SB) algorithm, a quantum-inspired method designed to solve
combinatorial optimization problems efficiently. Tatsumura et
al. [2] have developed a currency arbitrage machine based
on the SB algorithm capable of rapidly detecting optimal ex-
change paths among multiple currencies. This system demon-
strates the potential of SB in financial applications, particularly
in capturing short-lived arbitrage opportunities.

Another significant contribution comes from Carrascal et
al. [3], who applied the Variational Quantum Eigensolver
(VQE) algorithm to the currency arbitrage problem. The
authors implemented a Differential Evolution (DE) optimizer
as a substitute for the conventional COBYLA solver. Their
findings demonstrate that the DE-based method successfully
converges to the optimal solution in contexts where other
frequently employed optimizers, such as COBYLA, encounter



Fig. 1. Flowchart of the Algorithm

difficulties in locating the global minimum. This indicates
that the combination of evolutionary algorithms and quantum
optimization techniques may improve convergence character-
istics in intricate financial challenges. The findings highlight
the capabilities of quantum and quantum-inspired algorithms
in tackling intricate financial optimization issues, presenting
valuable opportunities for further investigation and real-world
implementations in currency arbitrage.

III. DESIGN

A. QUBO Formulation

We formulated QUBOs utilizing Python. The arbitrage
problem was reshaped as a problem in graph theory, wherein
a directed graph is constructed such that each node signifies
a currency, and each directed edge is assigned a weight
corresponding to the relevant conversion rate. Our objective
is to identify a cyclic path within an asset and exchange rate
graph that yields the maximum profit rate. The profit rate is
defined as the product of exchange rates from the ith currency
to the jth currency, denoted as (rij). A decision variable, bij ,
is defined such that it takes the value of 1 if the corresponding
edge (i, j) is included in the selected cycle and 0 if not. The
profit rate is denoted as Πr

bij
ij . This represents a polynomial

whose degree corresponds to the quantity of conversion rates,
also referred to as edges. By optimizing the logarithm of the
product, the order can be reduced to linear. We proceed to
introduce a linear cost function [4],

C =
∑
i,j

−log(rij)bij , (1)

and a penalty function for cyclic constraints [1],

P =
∑
i

∑
j ̸=j′

bi,jbi,j′ +
∑
j

∑
i ̸=i′

bi,jbi′,j . (2)

The first and second terms correspond to one incoming and
one outgoing edge per currency, respectively, to ensure a
closed arbitrage cycle. The total cost function, Ctot, is a linear
combination of C and P, namely

Ctot = C +mpP, (3)

where mp is a constraint factor. Various values of mp were
employed, and an appropriate value was selected for inclusion
in the objective function.

TABLE I
FOUR CURRENCY EXCHANGE RATES

EUR USD CHF JPY

EUR 1.0 1.13217 1.11777 120.756

USD 1/1.13403 1.0 0.98804 106.034

CHF 1/1.12005 1/0.99250 1.0 105.564

JPY 1/120.887 1/106.266 1/108.042 1.0

A sample currency exchange rate table from [2] is utilized,
encompassing four distinct currencies (see Table I). The in-
formation was subsequently encoded into a QUBO dictionary,
which was further refined to incorporate the penalty function.
We additionally utilize tables for five and six currency ex-
change rates in Tables II and III, respectively.



TABLE II
FIVE CURRENCY EXCHANGE RATES

USD EUR GBP JPY AUD

USD 1.0 0.8953 0.7682 148.76 1.5213

EUR 1.1170 1.0 0.8586 166.06 1.6993

GBP 1.3015 1.1645 1.0 193.40 1.9801

JPY 0.0067 0.0060 0.0052 1.0 0.0102

AUD 0.6572 0.5885 0.5050 97.88 1.0

TABLE III
SIX-CURRENCY EXCHANGE RATE TABLE

USD EUR GBP JPY AUD CAD

USD 1.0 0.8953 0.7682 148.76 1.5213 1.3407

EUR 1.1170 1.0 0.8586 166.06 1.6993 1.4971

GBP 1.3015 1.1645 1.0 193.40 1.9801 1.7433

JPY 0.0067 0.0060 0.0052 1.0 0.0102 0.0090

AUD 0.6572 0.5885 0.5050 97.88 1.0 0.8814

CAD 0.7457 0.6684 0.5738 111.23 1.1345 1.0

B. Translating QUBO to NchooseK

NchooseK [5] is a constraint-based programming model and
a specific type of integer linear programming (ILP). Programs
are composed of Boolean variables along with a collection
of constraints imposed on them. There are two types of
constraints, hard constraints and soft constraints. According to
the definitions in [6], “An NchooseK hard constraint, written
as nck(N,K), consists of a variable collection N and a selection
set K. It is satisfied if the cardinality of the variable collection
whose variables are TRUE equals one of the numbers in the
selection set

nck(N,K) = (
∑
n∈N

n) ∈ K, (4)

where n ∈ {0, 1} and we associate FALSE with 0 and TRUE
with 1. An NchooseK soft constraint, written as nck(N,K,soft),
acts as a desired but not required constraint.”

Consider Table I again. We observe that to obtain a closed
arbitrage path, exactly one edge (ri,j) from each row and
column is assigned a true decision variable bi,j = 1. This is
implemented as a hard constraint, ensuring that each currency
node has precisely one outgoing edge and one incoming edge.
However, this formulation only identifies all possible arbitrage
cycles without prioritizing the most profitable one. To address
this, soft constraints are introduced to bias the solution towards
maximizing profit. The logarithmic value of each currency
pair’s exchange rate is mapped to the soft constraint weight
associated with its decision variable. These soft constraints are
added to encourage the selection of edges corresponding to
higher profit rates. The scaling factor, applied to the logarith-
mic profit bias, determines the number of times the soft con-
straints are reinforced. In the implementation, the algorithm
iteratively composes soft constraints by repeating them based

on the calculated profit bias. This process effectively integrates
the soft constraints with the hard constraints to form the
overall optimization formulation. The higher the profit bias of
a currency pair, the stronger the influence of its corresponding
soft constraint, increasing the likelihood of including the edge
in the final solution. The constrained problem is subsequently
solved using the ocean.solver() function, which utilizes the D-
Wave Ocean Solver (D-Wave Advantage V4.1) for quantum
annealing. This process identifies the most profitable arbitrage
cycle under the given constraints.

C. Translating QUBO to IBM Quantum native format

With the QUBO generated, we can translate it into the
IBM Quantum Qiskit native representation. This translation
is crucial as it ensures compatibility with IBM’s quantum
computing framework. The resulting native QUBO will then
serve as input for the QAOA Ansatz.

Employing the QAOA Ansatz, a QAOA quantum circuit
will be developed, aimed at effectively navigating the solution
space delineated by the QUBO. It is possible to develop
a custom QAOA Ansatz capable of accommodating a sub-
stantial number of variables, which is expected to yield a
quantum circuit. The circuit will subsequently be executed on
IBM Quantum devices, which are superconducting gate-based
systems specifically designed for the execution of quantum
algorithms such as QAOA.

After execution, the output will be obtained in the form
of binary bitstrings, representing the optimal or near-optimal
solutions to the original problem. These results can then be
analyzed and interpreted after the fact, allowing for insights
into the best configurations of the selected variables. Overall,
this process illustrates the seamless integration of classical
optimization methods with cutting-edge quantum technology
paving the way for solving complex problems that are other-
wise intractable.

Next, we define a cost function that reflects the profitabil-
ity of completing a cycle, which transforms multiplicative
relationships into an additive format for easier optimization.
We evaluate the efficiency of QAOA in solving this problem
by conducting a comparative study with quantum annealing
solutions. This study aims to assess the performance of both
quantum formulations in identifying the optimal cycle by
analyzing factors such as computation time, accuracy, and
scalability to determine which approach yields superior results
in the context of currency arbitrage.

IV. IMPLEMENTATION

We began by formulating the QUBO problem to maximize
arbitrage profits. Utilizing D-Wave’s Leap service, we sub-
mitted the QUBO to the quantum annealer by conducting
experiments with 1,000 shots (repeated experiments with a
measurement outcome) per run to ensure statistical signifi-
cance.

For gate-based quantum computing, we employed QAOA,
recognized for its efficiency in combinatorial optimization.
Using Qiskit, we executed the algorithm on IBM’s quantum



Fig. 2. Quantum Circuit with Optimal Parameters, with 1 Layer

simulator (or actual device hardware), determining optimal
parameters through iterative refinement and performing mea-
surements in the Z-basis to extract meaningful results.

The NchooseK algorithms were developed using Python’s
NchooseK domain-specific language (DSL), facilitating the
expression of combinatorial constraints inherent in the cur-
rency arbitrage problem. To ensure compatibility with our
problem requirements, we adapted our implementation to an
earlier version of Qiskit, aligning with the specific function-
alities needed for our approach.

Upon completing all experiments, the outputs (represented
as bit-strings) were post-processed to identify the optimal
currency arbitrage paths that maximize profit. This post-
processing involved interpreting the bit-strings to determine
specific sequences of currency exchanges corresponding to
profitable cycles. By analyzing these sequences, we could
pinpoint arbitrage opportunities that exploit discrepancies in
exchange rates across different markets. This approach ensures
that the derived trading strategies are both actionable and
aligned with the goal of achieving maximum profit through
arbitrage.

V. EXPERIMENTAL SETUP

We tried to solve this problem with D-Wave Quantum An-
nealer, NchooseK solver, and IBM Quantum’s Qiskit package.
The flowchart demonstrating this methodology is given in
Figure 1.

Utilizing the dimod package, we created a QUBO objective
function that incorporated the cost function and the penalty
function for the constraints. We then solved it using the D-
Wave EmbeddingComposite sampler with 1,000 shots per run.
The sampler subsequently returned the solution with the lowest
energy. Next, we extract the currency exchange path in a
closed-cycle format. If the calculated profit exceeds 1, the
arbitrage path is printed; otherwise, the output indicates that
there is no optimal arbitrage path.

In the NchooseK Ocean Solver, we employed 1,000 shots
and allocated 200 microseconds of annealing time. This en-
ables the algorithm to navigate the landscape more com-
prehensively. The soft constraint weight scaling factor was
established at 100. This experiment was repeated 6 times to
ensure accuracy of the results. The best results are discussed
in the results section.

In our implementation of QAOA, we utilized 1,024 shots
and employed the AerSimulator for running the quantum
circuit. We also aimed to execute the QAOA circuit on real

quantum hardware. However, when running on the AerSim-
ulator in noiseless settings, we observed suboptimal results.
For classical optimization of parameters within the QAOA
circuit, we employed the COBYLA optimizer of the SciPy
framework. While Quantum Gradient Descent could have been
an alternative, it would have significantly increased the circuit
depth.

The COBYLA optimizer aids in the convergence of param-
eters within QAOA by iteratively refining them over repeated
subcircuits. In this case, the optimizer required 92 iterations to
converge and determine the optimal parameters for the given
objective and constraints. While the convergence was relatively
slow during the initial iterations, the process ultimately yielded
suboptimal results after 100 iterations. The objective was to
minimize the cost function, and the optimized value achieved
was -29.242109307796706.

A simplified QAOA circuit with just 1 layer is shown
in Figure 2, whereas the actual circuit consists of 4 such
layers, significantly increasing its depth, size, and width. In
comparison, 100 iterations would correspond to a variational
optimization loop where the QAOA parameters (2 angles per
layer) are updated iteratively to improve the solution quality.
The number of circuit layers (4 in this case) determines the
circuit depth in a single iteration, while the 100 iterations refer
to the classical optimization steps applied to the parameters
across multiple runs of the circuit. Thus, the two metrics —
layers and iterations — are distinct but interdependent, as
deeper circuits typically require more iterations to converge
to an optimal solution.

We determined the characteristics of the QAOA circuit after
mapping it to simulators and refining its parameters. The
finalized configuration is as follows: The circuit has a depth
of 44 parallel gates along the critical path for a total of 234
gates over 30 qubits. These parameters, while reflecting the
circuit’s structure, also pose significant challenges.

The width of 30 qubits can strain the capacity of current
quantum hardware. Ensuring high-fidelity operations on all
these qubits is critical, but noise and limited connectivity in
hardware can degrade solution quality. Similarly, the depth
of 44 highlights the sequential constraints on operations,
which increases the likelihood of decoherence and cumulative
gate errors during execution. The total number of 234 gates,
roughly half of which are two-qubit gates with much higher
noise influx than single-qubit gates, adds to the computational
complexity and further amplifies noise susceptibility.

These factors collectively hinder the quality of the solution



TABLE IV
CURRENCY ARBITRAGE EXPERIMENTAL RESULTS ACROSS DIFFERENT QUANTUM COMPUTING FRAMEWORKS

Sr. No. Currencies Experiment mode Currency Arbitrage Path Profit Rate
1. 4 D-Wave QUBO Solver EUR → JPY → USD → CHF → EUR 1.002424106050562
2. 4 NchooseK Ocean Solver EUR → JPY → USD → CHF → EUR 1.002424106050562
3. 4 NchooseK qiskit Solver GBP→AUD → CAD →INR →GBP 0.9976094869628244
4. 4 Qiskit QAOA ran on IBM Q simulator EUR→USD → EUR 0.9983598317504827
5. 5 D-Wave QUBO Solver USD → EUR → AUD → JPY → GBP → USD 1.002309461549003
6. 5 NchooseK Ocean Solver USD→EUR → JPY →GBP →AUD →USD 1.0005744453979277
7. 5 NchooseK Qiskit Solver USD →JPY → USD 1.009
8. 6 D-Wave QUBO Solver USD → EUR → AUD → CAD → JPY → GBP → USD 1.0039286603299495
9. 6 NchooseK Ocean Solver USD→JPY → GBP →AUD →USD 1.0011564702289195

by introducing errors that propagate throughout the circuit.
As depth and size increase, the reliability of results decreases,
especially on near-term quantum devices with limited error
correction. Balancing these metrics is crucial to achieving a
feasible and accurate implementation. Exploring techniques
such as circuit optimization, noise mitigation, or targeting
hardware with advanced error correction could help improve
the solution quality despite these constraints.

We determined the optimal parameters for each pair of γ
and β for a 4-layer QAOA circuit as:

γ1 = 1.569 β1 = 1.522
γ2 = 2.811 β2 = 2.556
γ3 = 1.555 β3 = 2.696
γ4 = 1.544 β4 = 1.591

These parameters were derived from the optimization tech-
niques designed to minimize the cost function of the problem.
Once the optimal solution was obtained, it was mapped to the
currency pairs to identify the most efficient arbitrage path.

VI. RESULTS

Table IV depicts the results of the D-Wave QUBO Solver
and the NchooseK Ocean Solver, both of which use the same
quantum annealing device. Upon executing the problem using
NchooseK, the program returned degenerate solutions that
exhibited identical lowest energy levels. The frequency of
these results was assessed, and the profit for each solution
was calculated as depicted in Figures 3, 4, and 5. The best
solution is indeed included within the degenerate solution
space. For the four currencies case, the minimum energy level
was associated with 44 shots (out of 1,000), of which 16
represent the optimal cycle. When we increased the number
of currencies (five and six), the performance deteriorated with
increasing degeneracy. For five currencies, merely 3 out of
the 37 shots at the lowest energy levels reveal the profitable
paths, with only 1 aligning with the optimal path. For six
currencies, 11 out of 17 shots at the lowest energy levels
yield profitability, with 2 identified as optimal. Although an
increase in currency yields fewer shots for the optimal path
in the degenerate energy shots, the fraction of profitable
paths increases, thereby presenting the opportunity to exploit
various profitable paths as the combinatorial problem increases
exponentially in complexity. The frequency of the degenerate
minimum energy solutions varied in each experiment iteration.

Fig. 3. 4-Currencies’ Frequency of Annealing Shots vs. Profit of Degenerate
Energy Solutions in NchooseK Ocean Solver. Notice that the Best Solution
is included in the Solution Space.

Fig. 4. 5-Currencies’ Frequency of Annealing Shots vs. Profit of Degenerate
Energy Solutions in NchooseK Ocean Solver.

We also obtained the experimental results using Qiskit
version 1.2.0, but the “solutions” did not satisfy the specified
constraints. The best solution provided by QAOA on Qiskit for
four currencies suggested trading between only two currency
pairs, EUR and USD, with the profit = 0.9983598317504827,
which is suboptimal, i.e., a net loss. This limitation might
be addressed by running the algorithm on a real quantum
processing unit (QPU) with the implementation of error cor-
rection mechanisms. After all, if results where suboptimal
under simulation, we cannot expect them to improve on current



Fig. 5. 6 Currencies’ Frequency of Annealing Shots vs. Profit of Degenerate
Energy Solutions in NchooseK Ocean Solver.

superconducting devices considering their level of noise.

VII. FUTURE WORKS

In this study, we illustrate that the formulation of a QUBO
and its resolution using D-Wave Quantum Annealers yielded
the most efficient solution in the least amount of time. Nev-
ertheless, this methodology presents certain difficulties as the
QUBO formulation is dependent on a sophisticated mathemat-
ical framework that lacks inherent intuitiveness. Furthermore,
the efficacy of the solution is significantly affected by variables
including the quantity of shots and the prioritization of penalty
constraints.

Similarly, the application of the QAOA algorithm to tackle
this issue revealed challenges regarding the convergence of
classical solvers from the Scipy package. This issue aligns with
findings from Carrascal et al. [3] who adopted a genetic algo-
rithm technique for parameter optimization in VQE. Adopting
a similar technique for QAOA could improve parameter opti-
mization and overall results.

The NchooseK approach offers a formulation that is both
intuitive and straightforward; however, it is impeded by degen-
erate minimum energy solutions as a result of its dependence
on soft constraint penalties. In the future, we intend to improve
the NchooseK algorithm by dynamically modifying parame-
ters, including soft constraint penalties, D-Wave shot counts
and annealing times to attain more optimal outcomes.

Due to limited computational resources, the experiment was
conducted using only 4, 5, and 6 currency pairs. However,
there is potential to extend the algorithm to larger sets of
currencies, which could uncover more profitable currency
arbitrage opportunities.

VIII. CONCLUSION

We effectively implemented quantum computing method-
ologies to address the currency arbitrage problem employing
both D-Wave quantum annealers and gate-based quantum
computers in conjunction with QAOA. The results of our
experiments indicate that D-Wave annealers exhibited a rapid

convergence to optimal solutions. In contrast, the implemen-
tation of QAOA utilizing the most recent iteration of Qiskit
demonstrated a tendency to become trapped in local minima,
leading to trading paths that were suboptimal. Furthermore, it
was noted that QAOA encountered difficulties in meeting con-
straints both under NchooseK and standard versions, resulting
in an insufficient examination of currency pairs and, at times,
yielding erroneous outcomes.

A significant challenge in this study was the effective execu-
tion of the QUBO model on both D-Wave quantum annealers
and gate-based quantum computers, such as IBM’s quantum
processors. Implementing the QUBO on D-Wave’s hardware
required the application of optimal embedding techniques to
effectively map our problem onto the machine’s qubit connec-
tivity, thereby ensuring minimal error rates and maximizing
solution accuracy. Similarly, the implementation on gate-based
quantum computers necessitated the efficient decomposition of
the QUBO into circuits designed to minimize noise and gate
errors. Successfully navigating these challenges will facilitate
a comparative analysis of the outcomes from both platforms,
thereby enabling an assessment of the viability, scalability, and
accuracy of each methodology.
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