CheckerMode : A hybrid scheme for timing analysis of modern processor

pipelines involving hardware/software interactions

Sibin Mohan and Frank Mueller
Dept. of Computer Science, Center for Embedded Systems Research,
North Carolina State University, Raleigh, NC 27695-7534, mueller@cs.ncsu.edu

Abstract

Real-time systems often require determinism to ensure
that task deadlines are met. Schedulability analysis provides
a firm basis to ensure that tasks deadlines are met, and for
this, knowledge of bounds on worst-case execution times
(WCET) of tasks is a critical piece of information. Static tim-
ing analysis derives these bounds on WCETs. A limiting fac-
tor for real-time systems design is the class of processors
that may be used. Contemporary processors with their ad-
vanced architectural features, such as out-of-order execu-
tion, branch prediction, speculation, and prefetching, can-
not be statically analyzed to obtain WCETs for tasks because
these features introduce non-determinism to task execution,
which can only be resolved at run-time. We introduce a new
paradigm which proposes minor enhancements to modern
processor architectures, which, on interaction with software
modules, is able to obtain tight, accurate timing analysis re-
sults for modern processors. To the best of our knowledge,
this method of hardware/software interactions to calculate
WCET results for out-of-order processors is the first of its
kind.

1. Introduction

Embedded systems are increasingly deployed in safety-
critical applications and environments, such as avionics,
power plants, automobiles, efc. The software used, in gen-
eral, must be validated . This traditionally amounts to check-
ing the correctness of the input/output relationship. Many
such systems also impose timing constraints, which, if vi-
olated, may result in fallouts that are dangerous to the envi-
ronment. Such systems are typically referred to as real-time
systems. They impose timing constraints ("deadlines”) on the
computation to ensure that necessary results are provided on
time. The worst-case execution time (WCET) of each task is
one critical piece of information required by real-time sys-
tems designers to verify that tasks meet their deadlines.

Static timing analysis [3-7, 9] provides bounds on the
WCET. The tighter that these bounds are relative to the ac-
tual worst-case times, the better the value of the analysis. Of
course, any tight bound has to be safe in that it must never un-
derestimate the true WCET; it may only match or exceed it.

A serious handicap in performing static timing analysis
is the complexity of modern processors and their functional
units. Out of order (OOQO) processing [8], branch predic-
tion [10] efc. introduce non-determinism to task execution
that cannot be resolved at compile time. Hence, designers of
real-time systems are often forced to use older, less compli-
cated and inherently less powerful processors. In this paper,
we attempt to bridge this gap by the use of the CheckerMode
infrastructure.

We propose minor enhancements to the micro-
architecture of future processors that will aid the pro-
cesses of obtaining tight WCET bounds. A “checker mode”
is added to processors that will, on demand, capture vary-
ing details of the processor state (called ‘“‘snapshots”).
This information is communicated to a software mod-
ule that stores the snapshots and also drives the execution
of the processors along statically determined paths to cap-
ture accurate timing information for each of them. The
snapshots are used to track back along the various execu-
tion paths and to restart along a different path if necessary.
The execution times obtained for each of the paths is an-
alyzed and combined by the software driver to calculate
an accurate WCET for the entire module/program. Deci-
sions on where to obtain snapshots, the details required for a
snapshot, efc., are made by the software “driver”.

The CheckerMode concept (implemented on an enhanced
SimpleScalar processor simulator [2]), widens the scope of
processors that may be used in a real-time system. Contem-
porary processors with state-of-the-art functionality and per-
formance may subsequently be used in a real-time system.
We believe that this also changes the landscape for timing
analysis as more accurate results can be obtained on mod-
ern pipelines without loss of functionality. To the best of
our knowledge, this method is the first of its kind in using
a hardware/software co-design technique to obtain accurate
WCETsS for modern, out-of-order processors.

This paper is organized as follows. Section 2 discusses
the CheckerMode idea, while section 3 talks about the ex-
perimental setup and preliminary results. Section 4 summa-
rizes the work.

2. CheckerMode

We use hardware/software interactions to perform WCET
analysis of contemporary processors. We propose enhance-
ments to embedded processors that, in addition to executing
software normally (in “deployment” mode), are capable of
executing in a novel CheckerMode that supports timing anal-
ysis. The CheckerMode provides cycle-accurate bounds on
the WCET by assessing alternate execution paths in a pro-
gram. In deployment mode, a processor executes along just
one path following a conditional branch depending on in-
put data. In CheckerMode a processor executes all alternate
paths, one at a time, following each conditional branch in or-
der to find the path with the largest execution time. Before the
execution of each alternate path, the original execution con-
text, named “snapshot” (caches, branch history tables etc.),
is restored to correctly simulate the effect of alternations in
isolation from one another. The timing information as well

Stop PC || Latest Chcckpoink

Driver

@ Tuning Knob
Start PC || path Exec Time
| - - -

| WCET

Timing Analyzer

Software Side

Checkpoint

[

-oa[[[|FP oo

Start/Stop PCs| [] Pipeline

\J
E
ROB

Current PC

Exec Cycles

CheckerMode

|

Checkpoint |

PC A

Checkpoint |
PC X

Checkpoint Manage

Hardware Side

Figure 1. CheckerMode Design for High-Confidence WCET Analysis

as the “state” of the processor are combined when alternate
paths join. The combination (“merge”) is performed such
that the state that results from the combination must not un-
derestimate the execution time of the alternate paths, or even
the future execution of the task. These low-level WCET re-
sults are propagated inter-procedurally in a bottom-up fash-
ion until the WCET for an entire task has been computed.

We will represent input-dependent register values as
“NaN” (not-a-number) values. Operations on unknown val-
ues are straightforward: if any input is unknown then the out-
put is also unknown, even for condition codes at the bit level.
A branch condition based on an unknown value then indi-
cates a need to consider alternate paths. Conversely, concrete
(known) values are evaluated as always, and input-invariant
branches will result in timing of only the taken execution
path. We will alter the semantics of execution (for instruc-
tions that depend on input-dependent or memory-loaded op-
erations) in CheckerMode to include this NaN value. E.g.,
addition will now be rewritten as:

NalN
Tresult = o + T
a

if ro = NaN \/ r, = NaN
otherwise

Hence, any operation with NaN as one of the operands
will result in NaN (unless the result is independent of that
particular operand, for e.g., multiplication with 0 will always
result in 0).

2.1. Overview of the framework

The hardware-supported CheckerMode is complemented
by software analysis to govern execution (Figure 1). The
analysis controller (or driver) steers execution along dis-
tinct execution paths, i.e., it indicates which direction a
branch along the path should take till all paths have been tra-
versed. The timing information and the states of the proces-
sor obtained for each possible path are then used by a “tim-
ing analyzer” to obtain the WCET for the entire task (or even
certain code sections).

Processor enhancements: The embedded hardware is
also enhanced to support access to the unit-level context of
hardware resources, which can be saved and restored. The
analysis phase restores a context prior to examining a path
and then saves the newly composed context at the end of a

path, together with the timing of the path. The novel Check-
erMode unit of the processor supports the following func-
tions (right-hand side of Figure 1): (a) Capture snapshots of
the processor state and communicate them to the software
controller. Snapshots capture the current state of the pipeline,
functional units, caches, ROB, etc. (b) Reset the processor to
a previously saved state. The state of the pipeline, caches,
functional units, efc., is overwritten with information from
the stored checkpoint. (c) Start and stop execution between
arbitrarily provided program counter (PC) values. This in-
cludes support to calculate the number of cycles elapsed be-
tween the execution of the given start and stop PCs. The
CheckerMode tracks the execution time for a given path (de-
lineated by start and stop PCs) and is controlled by the driver
on the software side.

Software controller: The left-hand side of Figure 1 il-
lustrates the various components that make up the software
side of the design. It consists of the following components:
(a) Timing Analyzer (TA): breaks down the task code into
a control-flow graph (CFG) and then extracts path informa-
tion from it. It is able to determine the start of alternate ex-
ecution flows — points where snapshots must be obtained. It
also provides the start and stop PCs to the driver and obtains
the WCET and processor state for that particular path from
the driver.(b) Checkpoint Manager (CM): maintains vari-
ous snapshots that have been captured as well as the PCs at
which they were obtained. CM abstractions can be integrated
into the processor as depicted in Fig. 1, or, alternatively, into
the driver within the software controller.(c) Driver: controls
the hardware side of the system. It instructs the hardware on
when to start and stop execution, when snapshots must be
captured, and when the state of a processor must be reset to
a given snapshot.

The input to the TA is the executable of a task, which is
then converted to internal representations. Start and stop PCs
provided by the TA encapsulate a single path. The TA, the
driver, and the CM interact to decide which checkpoint cor-
responds to which path, which PC, efc., and thereby con-
trol program execution. The TA is responsible for obtain-
ing the final WCET for the entire program as well for var-
ious program segments (functions/scopes). It “combines”
the information from various paths (execution time/pipeline

\ | Path [SimIO] delta [SuplO] delta [000] delta |
| BB1 82 BB1-BB0=56 66 BB1-BB 0=4 47 BB1-BB0O=1
\“‘ BB1,2 | 114 BB1,2-BB1=32 94 BB1,2-BB1=28 | 59 | BBI1,2-BB1=12
i BB1,3 | 241 | BBI1,3-BB1=159 | 131 | BB1,3-BB1=65 | 92 | BB1,3-BB1=45
@ BB1,2,4| 151 |BB1,2,4-BB1,2=37| 97 |BB1,2,4-BB1,2=3| 61 | BB1,2,4-BB2=2
Rl BB1,3,4| 278 |BB1,3,4-BB1,3=37| 134 |BB1,3,4-BB1,3=3| 94 |BB1,3,4-BB1,3=2

(a)C G

(b)Measured Cycles for Aggregate Technique

Figure 2. Control Flow Graph and Measured Cycles for Aggregate Technique

state/etc.) for this purpose.

Driver / analysis controller and tuning: The driver is
responsible for controlling processor operations. Besides di-
recting the execution of the code on the pipeline, it relays
instructions from the TA, such as when to capture/restore
checkpoints. The driver represents the interface between the
hardware and software components and provides reconfig-
urability in terms of the amount of information to capture
for the pipeline state and the state of associated functional
units. We propose to provide a virtual “knob” that will al-
low real-time systems designers to tune the analysis, thereby
trading off accuracy with overhead. We intend to explore the
full design space of tuning options to assess which processor
state information is more vital for WCET accuracy (and anal-
ysis performance) than some others. The more information
is checkpointed, the tighter and more accurate WCET val-
ues will be. Conversely, less information will lead to a looser
and more conservative WCET bound. Of course, greater de-
mands on the amount of information being captured will lead
to a slower WCET analysis whereas less information speeds
up the analysis.

Reducing analysis overheads: We can reduce the com-
plexity of determining WCETs by partial execution of
loops such that the analysis overhead is independent of the
number of loop iterations. Using our prior approach of a fix-
point algorithm to determine a stable execution time for the
loop body [1], we can steer loop executions such that paths
of a loop body are repeatedly executed until a stable value
is reached. The controller records the decaying execution
times for each iteration up to the fixpoint using the hard-
ware CheckerMode. When reaching the fixpoint, the WCET
of the remainder of loop iterations up to the loop bound is
calculated by a closed formula based on the fixpoint value.
Typically, loops reach a fixpoint after only 2—4 iterations,
which implies that this partial execution can reduce the over-
head of WCET analysis significantly. Thus, the complexity
of WCET analysis is independent of the number of itera-
tions, i.e., it does not depend on the actual execution time of
analyzed code.

3. Experimental setup and Results

We have prototyped some of the key components of our
design in the SimpleScalar processor simulator [2]. This
cycle-accurate simulator can be configured for the various
processor and branch prediction schemes mentioned in the
previous section. Current enhancements include path-level
timing capabilities and snapshot/restore of selected state in-
formation within the processor.

We used SimpleScalar in three configurations:(a) Simple-

10 (SimIO) simulates a simple, in-order (IO) processor
pipeline with pipeline width 1, instruction issue in program
order); (b) Superscalar-IO(SuplO) with a pipeline width
(from fetch to retire) of 16 and in-order instruction execution;
(c) Out-of-order (OOO) execution with the same pipeline
width as in Superscalar-10.

Notice that instructions are retired in order, even for OOO.
Execution time for paths is measured using four different
techniques, extending a basic block (BB) to paths (sequences
of consecutive BBs): (a) Short measures the execution time
for a singular BB, starting from the time that any instruction
in the BB moves into the execute stage of the pipeline and fin-
ishing when the last of instruction of the BB exits from the
retire stage; (b) Path-Short captures the execution time for
paths (concatenated BBs) using the “short” technique so that
timing starts at the first BB and ends with the last BB in the
path; (¢) Program-Aggregate includes the time from the start
of the execution (main function) to the end of a BB in the path
being timed, starting when the first instruction in the main
function is fetched and finishing when the last of the path ex-
its from the retire stage; (d) Path-Aggregate captures the time
for concatenated paths using the aggregate technique so that
timing starts at the first BB and ends with the last BB of path.

The results obtained for the “short” and “path-short” tech-
niques (numerical details omitted due to space) show that
timings for the processor modes SimIO and SuplO accu-
rately reflect the actual WCET bounds, both for single BBs
and paths. However, the OOO results exceed those of Su-
plO, due to early out-of-order execution of some instructions
in parallel to other instructions from prior BBs in the path.
Even timing multiple BBs of a path in sequence does not al-
leviate this problem. In contrast, the “aggregate” technique
(Figure 2(b)) reflects the time from instruction fetch (instead
of execute), which addresses the above problem of early ex-
ecution by some instructions. It shows a strict ordering of
SimIO > SuplO > OOOQO, as expected by the amount
of instruction parallelism, since time is measured from the
first fetch of an instruction. The differences between paths
(“delta”) provide a bound on the number of cycles for the
tail BB in the path excluding any pipeline overlap with prior
BBs. Hence, these delta values can be used to assess the
amount of cycles attributed to specific BBs. They also ad-
here to the same strict ordering. In general, such timings are
only valid in the same execution context / path, i.e., differ-
ent BB sequences of one path may influence a subsequent
BB in the control flow.

Our objective is to leverage path timings under the “path-
aggregate” technique as a refinement to the “aggregate” tech-
nique discussed so far. Consider the construct depicted in

Path SimIO SuplO 000

+ | 0 | 1) | + | 0 | 1 | + | 0 | 1)
LLL |[453({443(101291|193|98|/ 183|123 |60
LLR {| 580|570 |10 32823098 || 216|156 |60
LRL {|580(570| 101|328 |230|98(|216|156 |60
LRR || 707|697 | 10| 365 [267 | 98 || 249 | 189 | 60
RLL {| 580|570 |10 32823098 || 216|156 |60
RLR || 707|697 | 10| 365 [267 | 98 || 249 | 189 | 60
RRL || 707|697 | 10| 365 [267 |98 || 216 | 189 | 60
RRR |[834 {824 |10 (| 402|304 |98 || 282 [222 | 60

Table 1. Program-Aggregate Cycles (3 ltera-
tions)

Figure 2(a) embedded within a loop (dashed vertex) such that
consecutive executions of paths can be assessed. E.g., within
one iteration, the L-left (BB 1,2,4) and R-right (BB 1,3,4)
paths are timed; within two iterations, concatenations of all
permutations for these paths are timed (L-L/L-R/R-L/R-R);
and so on for three and four iterations. Since this search space
grows exponentially with the number of alternate paths and
loop iterations, we propose to devise a bounded technique to
limit the path space in depth and breadth.

Table 1 depicts the results for 3 iterations of this loop
around the left (L) or right (R) paths for the 3 processor mod-
els. It also distinguishes path composition without overlap
(+) and with overlap (o), where the former is equivalent to
draining the pipeline while the latter captures continuous ex-
ecution. The difference between the compositions is depicted
as ¢ and indicates constant ¢ values for all processor mod-
els regardless of the paths executed. (D-caches are disabled
here.) More significantly, early results within our experimen-
tation environment indicate that 2-4 iterations generally suf-
fice to reach a fix point. After that point, concatenation of an-
other iteration results in a constant increase in cycles for this
path that does not change for the remainder of the loop. For
instance, a 2-path experiment (omitted here) resulted in ex-
actly half the § values of the 3-path experiment, which rein-
forces the claim about reaching a fix point.

4. Conclusion

We have outlined a “hybrid” mechanism for perform-
ing timing analysis that utilizes interactions between hard-
ware and software. This “CheckerMode” concept provides
the foundation to make contemporary processors predictable
and analyzable. These higher-end microprocessors can safely
be used in real-time systems. Current trends in microproces-
sor features indicate that our proposed hardware modifica-
tions are realistic [11]. Once fully implemented within the
SimpleScalar simulator, the CheckerMode unit will have the
ability to drive execution along given program paths and also
capture and writeback processor state to/from snapshots. It
will also be able to accurately gauge the execution time for
a given program path. We believe this work will enhance the
choices available to real-time systems designers. The Check-
erMode concept will provide them with the ability to use cur-
rent and future microprocessors in their systems and utilize
a hybrid of static and dynamic timing techniques to validate

WCETs.

References

[1] R.Arnold, F. Mueller, D. B. Whalley, and M. Harmon. Bound-
ing worst-case instruction cache performance. In IEEE Real-
Time Systems Symposium, pages 172—181, Dec. 1994.

[2] D.Burger, T. M. Austin, and S. Bennett. Evaluating future mi-
croprocessors: The simplescalar tool set. Technical Report
CS-TR-1996-1308, University of Wisconsin, Madison, July
1996.

[3] C. A. Healy, R. D. Amold, F. Mueller, D. Whalley, and M. G.
Harmon. Bounding pipeline and instruction cache perfor-
mance. IEEE Transactions on Computers, 48(1):53-70, Jan.
1999.

[4] S. Malik, M. Martonosi, and Y.-T. S. Li. Static timing anal-
ysis of embedded software. In Proceedings of the 34th Con-
ference on Design Automation (DAC-97), pages 147-152, NY,
June 1997. ACM Press.

[5] S. Mohan, F. Mueller, W. Hawkins, M. Root, C. Healy, and
D. Whalley. Parascale: Expoliting parametric timing analysis
for real-time schedulers and dynamic voltage scaling. In /[EEE
Real-Time Systems Symposium, pages 233-242, Dec. 2005.

[6] S.Mohan, F. Mueller, D. Whalley, and C. Healy. Timing anal-
ysis for sensor network nodes of the atmega processor family.
In IEEE Real-Time Embedded Technology and Applications
Symposium, pages 405414, Mar. 2005.

[7]1 F. Mueller. Timing analysis for instruction caches. Real-Time
Systems, 18(2/3):209-239, May 2000.

[8] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. In ISCA, pages 206-218,
1997.

[9] P.Puschner and C. Koza. Calculating the maximum execution
time of real-time programs. Real-Time Systems, 1(2):159—
176, Sept. 1989.

[10] Smith, J. E. A study of branch prediction strategies. In
Proc. 8" International Symposium on Computer Architec-
ture, pages 135-148, Minneapolis, 1981.

[11] B. Sprunt. Pentium 4 performance monitoring features. 2002.

