
Hybrid Timing Analysis of Modern Processor Pipelines via Hardware/Software

Interactions ∗

Sibin Mohan and Frank Mueller

Dept. of Computer Science, Center for Efficient, Secure and Reliable Computing,

North Carolina State University, Raleigh, NC 27695-7534, mueller@cs.ncsu.edu

Abstract

Embedded systems are often subject to constraints that

require determinism to ensure that task deadlines are met.

Such systems are referred to as real-time systems. Schedu-

lability analysis provides a firm basis to ensure that tasks

meet their deadlines for which knowledge of worst-case ex-

ecution time (WCET) bounds is a critical piece of informa-

tion. Static timing analysis techniques are used to derive

these WCET bounds. A limiting factor for designing real-

time systems is the class of processors that can be used. Typ-

ically, modern, complex processor pipelines cannot be used

in real-time systems design. Contemporary processors with

their advanced architectural features, such as out-of-order

execution, branch prediction, speculation, prefetching, etc.,

cannot be statically analyzed to obtain tightWCET bounds

for tasks. This is caused by the non-determinism of these

features, which surfaces in full only at runtime.

In this paper, we introduce a new paradigm to per-

form timing analysis of tasks for real-time systems running

on modern processor architectures. We propose minor en-

hancements to the processor architecture to enable this pro-

cess. These features, on interaction with software modules,

are able to obtain tight, accurate timing analysis results for

modern processors. We also briefly present analysis tech-

niques that, combined with our timing analysis methods, re-

duce the complexity of worst-case estimations for loops. To

the best of our knowledge, this method of constant interac-

tions between hardware and software to calculate WCET

bounds for out-of-order processors is the first of its kind.

1. Introduction

Embedded systems are increasingly deployed in safety-

critical applications and environments. Examples include

avionics, power plants, automobiles, etc. The software used,

in general, must be validated. This traditionally amounts to

checking the correctness of the tasks, and in particular, the

input/output relationship.Many embedded systems also im-

pose timing constraints, which, if violated, may result in

∗ This work was supported in part by NSF grants CCR-0310860, CCR-
0312695 and CNS-0720496.

fallouts that are dangerous to the environment. Such sys-

tems are typically referred to as real-time systems. They im-

pose timing constraints (termed “deadlines” ) on computa-

tional tasks to ensure that results are available on time. Of-

ten, approximate results provided on time are more useful

than correct results provided late (past the deadline). One

critical piece of information required by real-time systems

designers is the worst-case execution time (WCET) for each

task. This is used to verify that tasks meet their deadlines.

Static timing analysis [6, 11, 15, 20, 26–28, 30, 36] pro-

vides bounds on the WCET of tasks. The tighter that

these bounds are relative to the actual worst-case times,

the greater the value of the analysis. Of course, even tight

bounds must be safe in that the true WCET must never be

underestimated; the WCET bound may at most match or

otherwise overestimate the true WCET.

A serious handicap in performing static timing analy-

sis is the complexity of modern processors and their func-

tional units. Various features that decrease average execu-

tion times for tasks are often detrimental for worst-case

timing analysis. Out of order (OOO) processing [29] and

branch prediction [33] are two important features in mod-

ern processors that introduce non-determinism to task exe-

cution, which cannot be resolved at compile time [4, 9, 16].

Hence, designers of real-time systems are often forced to

use less complicated, older and inherently less powerful

processors. In this paper, we attempt to bridge this gap by

means of our CheckerMode infrastructure, which combines

the best features of both, static and dynamic analysis, to cre-

ate a novel hybrid mechanism for WCET analysis.

We propose minor enhancements to the micro-

architecture of future processors that will aid in the process

of obtaining accurate WCET bounds. A “checker mode”

is added to processors that will, on demand, capture vary-

ing levels of information as “snapshots” of the processor

state. This information is communicated to a software mod-

ule that stores the various snapshots and also drives the ex-

ecution of instructions in the processor along statically de-

termined paths. Accurate timing information for each path

is then captured. These snapshots are also used to backtrack

to an earlier state and then restart along a different path. Ex-

ecution times obtained for each path are analyzed and then

combined by the software driver to calculate an accurate

WCET for the entire program/function.



Decisions on where to obtain snapshots, the level of de-

tail required for each snapshot, etc. are made by the soft-

ware controller (“driver”). Timing results for each straight-

line path are then fed back to the software module. The soft-

ware module (similar to a static/numeric timing analyzer),

then combines the timing results for individual paths to ob-

tain a bound on WCET for the entire task. The cache states,

the state of the branch predictor, the pipeline, etc., for each

of the paths, are also considered while performing these cal-

culations. To time an alternate path, the information from

the previous snapshot is restored onto the processor func-

tion units to reflect the state of the system when the choice

between the paths was made.

The ability to capture these snapshots is disabled during

normal execution, so as to not interfere with regular pro-

gram execution. We evaluate this approach by implement-

ing additional micro-architectural functionality (the ability

to capture snapshots, to restore a previous snapshot on to

the processor function units and the ability to obtain accu-

rate timing results for parts of the program) on a customized

SimpleScalar [8] framework that is configured in a manner

similar to modern processor pipelines. We also introduce

techniques to reduce the complexity of analysis for loops to

ensure that the analysis overhead is independent of the num-

ber of loop iterations. To the best of our knowledge, this

method of using a hardware/software co-design technique

to obtain accurate WCETs for modern out-of-order proces-

sors is a first of its kind.

Plausibility of the approach: The proposed hardware

enhancements are realistic. The support for speculative ex-

ecution due to dynamic branch prediction, precise excep-

tion handling and precise hardware monitoring, and even

most of the internal buffers required by our design already

exist in modern high-end embedded processors. For exam-

ple, the ARM-11 features out-of-order execution, dynamic

branch prediction, and precise traps, which requires shadow

buffers (for registers, branch history tables etc.) [12] in or-

der to recover to a prior execution state. In addition to

these features, the Intel x86 architecture supports Precise

Event Based Sampling (PEBS) with user access to selected

shadow buffers [34]. Future processor extensions also make

heavy use of checkpoint buffers [13]. Our proposed design

makes such buffers uniformly available to the user. We also

propose enhancements to the ALU and branch logic to han-

dle the new semantics for NaN operands required by the

CheckerMode (see Section 2), which are minor modifica-

tions compared to the space and complexity of the already

existing shadow buffers. In fact, most processors already

implement a NaN representation for floating point values

(and an equivalent bottom value for integers), which is gen-

erated when undefined arithmetic (e.g., divide-by-zero) is

performed and results in an exception (trap). The sole mod-

ification suggested by us would be to gate the exception,

i.e., suppress it in CheckerMode, and proceed with arith-

metic operations in the presence of NaN values.

The process of timing analysis then amounts to timing

sequences of paths by saving and restoring snapshots of pro-

cessor state in a coordinated fashion. While this process can

be lengthy, it still remains independent of the input to the

program and can be run overnight, even in a parallelized

manner. Since this is an offline task to be performed dur-

ing system design and validation, the cost is secondary and

does not affect the dynamic, run-time behavior of the sys-

tem. In practice, such a full verification of WCET bounds is

generally only warranted after extensive code changes dur-

ing development and for each software deployment, includ-

ing system upgrades.

Another shortcoming aspect of static timing analysis ap-

proaches developed so far is given by their targeting of a

generic processor type based on vendor-supplied design de-

tails. In such an approach, each new processor design re-

quires that the timing model be manually adapted while our

method automatically adapts with changing processor de-

tails. Furthermore, such timing models are only as good as

the information provided by the vendor, which may not re-

veal all details of the design. For example, Intel’s CPU step-

ping index indicates subtle processor modifications within

the same CPU family but does not reveal all details. Our

CheckerMode infrastructure avoids this detailed level of

processor modeling and allows vendors to protect their IP

while providing a method to obtain highly accurate timing.

In fact, fabrication variability (due to smaller die sizes) in

the production processes used these days already result in

timing variability between two processors originating from

the same batch [7,22]. Access latencies within a cache may

actually differ from one line to another. Hence, generic tim-

ing analysis of a processor series becomes meaningless in

such a setting. Since our approach observes the execution

time on an actual processor, such variability is captured.

By introducing the CheckerMode concept, we widen the

scope of processors that may be used in a real-time system.

Contemporary processors with state-of-the-art functional-

ity and performance may subsequently be used in real-time

systems. We believe that this also changes the landscape

for timing analysis in that more accurate results can be ob-

tained on modern pipelines without risk of losing function-

ality. In a world of increasingly specialized components,

the idea that some processors could be designed specifi-

cally for use in real-time and embedded systems has al-

ready caught on, e.g., with designs that customize generic

core, such as the ARM-7/9/11 licensed by Qualcomm and

many others. This is especially true in the design and test-

ing phases for the real-time systems being created. These

processors would not behave any differently during normal

execution but would only have the additional characteris-

tic that more information can be gathered from them during

the analysis phase. Hence, we can be assured that the addi-

tional features will not further complicate the analysis.

This paper is organized as follows. Section 2 introduces

the CheckerMode infrastructure. Section 3 provides insights

on the techniques used to reduce the complexity and over-

heads for worst-case analysis of loops. Section 4 explains

the experimental setup. Section 5 enumerates the results of

our experiments. Section 6 discusses the related work in



timing analysis contrasts our work to prior work. Section

7 talks about future avenues for this work. Section 8 sum-

marizes the contributions.

2. CheckerMode

The CheckerMode infrastructure, detailed in this sec-

tion, provides the means to obtain accurate WCET values

for modern processor pipelines. It encompasses enhance-

ments/additions to the microarchitecture while closely in-

teracting with software to obtain WCET bounds. We pro-

pose to design embedded processors, that in addition to exe-

cuting software normally (in a so-called deployment mode),

are capable of executing in a novel CheckerMode that sup-

ports timing analysis.

Assumptions: In the following, we constrain our work

to address the unpredictable nature of out-of-order instruc-

tion execution in contemporary high-end embedded pro-

cessor pipelines. Other complexities, such as memory hi-

erarchies, including caches, dynamic branch prediction and

timing anomalies [24] are beyond the scope of this initial

work and will be addressed in the future. Tasks are ana-

lyzed in isolation. Preemptions and cache-related preemp-

tion delays, handled by orthogonal work [31], could be in-

corporated in the future and should not require any changes

to our approach since their analysis occurs at a higher level.

The CheckerMode provides cycle-accurate bounds on

the WCET by assessing alternate execution paths in a pro-

gram. In deployment mode, a processor executes along just

one path following a conditional branch; which path is ex-

ecuted may depend on the input data. In CheckerMode, a

processor no longer proceeds with conventional data-driven

execution. Instead, it executes all alternate paths, one at a

time, following each conditional branch in order to find the

path with the largest execution time. Before the execution

of each alternate path, the original execution context (in-

cluding caches, branch history tables etc.) is restored to cor-

rectly simulate the effect of alternations in isolation from

one another. These low-level WCET results are propagated

inter-procedurally in a bottom-up fashion (over the com-

bined control-flow and call graphs) until the WCET for an

entire task has been computed.

Consider a task that consists of a number of feasible ex-

ecution paths. The execution times for these paths are ob-

tained by actual execution in CheckerMode through the pro-

cessor pipeline. The execution time for each path is then

captured and stored. When conditional execution arises, all

alternate paths are timed separately on the pipeline. The

timing information as well as the “state” of the processor

(determined by the cache state, branch predictor state, reg-

ister state, etc.) are combined when alternate paths join.

The combination is performed such that the state that re-

sults from the combination must not underestimate the exe-

cution time of the alternate paths or even the future execu-

tion of the task. A set of timing schemes for individual paths

as well as combinations of paths, derived from this method-

ology, is discussed in the results section.

Prior to the execution of alternate paths, a “snapshot” of

the processor state is obtained and stored. After the execu-

tion of one of the alternate paths, its state is recorded for

later combination with other paths. Then, the state of the

processor is restored to the one that existed before the path

started executing. This is achieved by restoring the state

(e.g., of each of the parts of the pipeline) from the previ-

ously captured snapshot.

Consider the simple control-flow graph (CFG) in Fig-

ure 1. The CFG contains two possible paths – if the branch

is taken, it follows path 1 → 2 → 4; if it is not taken, it

follows path 1 → 3 → 4. When CheckerMode execution

reaches basic block 1, a snapshot (snapshot 0) of the proces-

sor state is captured and stored. The amount of information

to be captured can vary depending on the type of analysis

required and can be made configurable. Execution then pro-

ceeds down one side of the CFG – say, the taken path. When

execution of the path is complete, at basic block 4, another

snapshot (snapshot 1) of the processor state is captured and

stored. The time taken to execute this path is also measured

and sent to the timing analyzer. The program counter is then

reset to basic block 1 (the branch condition) to trace exe-

cution down the other side (not-taken) and to subsequently

capture the execution time for that path. Before execution

proceeds along the not-taken path, the state of the proces-

sor is restored to the previously saved snapshot (snapshot

0). This isolates the effects of execution of one path from

that of another. Once the processor state from snapshot 0 is

written back, execution from basic block 1 proceeds down

the not-taken path (1 → 3 → 4) before the processor state

(snapshot 2) and execution time are captured once again.

Only then can the CheckerMode unit shift its focus to the

code that follows basic block 4. For execution to proceed

from basic block 4, the processor must be set to a consis-

tent state. At this point, we perform a merge of the snap-

shots from the two paths. The merge must be performed

such that the worst-case behavior of the subsequent code

is preserved. Hence, we must merge the state of all proces-

sor units captured in preceding snapshots. Once a merge has

been performed, the new state must be written back to the

processor and execution continues from that point on.

The hardware-supportedCheckerMode is complemented

by software analysis to govern checker execution (see Fig-

ure 2). The analysis controller (or driver) steers checker

execution along distinct execution paths, i.e., it indicates

which direction a branch along the path should take till all

paths have been traversed. The timing information and the

Figure 1. CheckerMode in Action



Figure 2. CheckerMode Design

states of the processor obtained for each possible path are

then used by a “timing analyzer” to obtain the WCET for

the entire task (or even certain code sections). Each of these

is explained in the following sections.

2.1. Processor Enhancements

In our work, the embedded hardware is enhanced to sup-

port explicit access to the unit-level context of hardware

resources, which can be saved and restored. The analysis

phase restores a context prior to examining a path and then

saves the newly composed context at the end of a path, to-

gether with the timing for the path.

Hence, the novel CheckerMode unit of the processor

supports the following functions:

(a) Capture snapshots of the processor state and commu-

nicate them to the software controller. A snapshot captures

the current state of the processor pipeline, associated func-

tional units and caches, ROB, etc.

(b) Reset the processor to a previously saved state. Given an

earlier snapshot, the state of the processor pipeline, caches,

functional units, etc., is overwritten with information from

the stored snapshot.

(c) Start and stop execution between any two program

counter (PC) values. This includes support to calculate the

number of cycles elapsed between the execution of the

given start and stop PCs.

The right-hand side of Figure 2 shows the details of the

hardware side of the design. The CheckerMode unit must

be able to read and write to the various functional units of

the processor. The CheckerMode unit is controlled by the

driver (or controller) on the software side.

2.2. Software Overview

The left-hand side of Figure 2 illustrates the various

components that make up the software side of the design.

It consists of the following components:

Timing Analyzer (TA): The TA breaks down the task code

into a control-flow graph (CFG) and then extracts path in-

formation from it. Using this information, the TA is able

to determine the start of alternate execution flows – points

where snapshots must be obtained. It also provides the start

and stop PCs to the driver and obtains the WCET and pro-

cessor state for that particular path from the driver.

Snapshot Manager (SM): The SMmaintains various snap-

shots that have been captured as well as the PCs at which

they were obtained. SM abstractions can be integrated into

the processor as depicted in Fig. 2, or, alternately, into the

driver within the software controller.

Driver: The driver controls the hardware side of the sys-

tem. It instructs the hardware on when to start and stop ex-

ecution, when snapshots must be captured, and when the

state of the processor must be reset to a previous snapshot,

as detailed below.

The input to the TA is the executable of a task. Assem-

bly information is extracted (with PCs) from an executable

and then converted to internal representations as combined

control-flow and call graphs. The start and stop PCs pro-

vided by the TA encapsulate a single path. The TA, the

driver, and the SM interact to decide which snapshot cor-

responds to which path, which PC, etc., and thereby control

program execution.

The TA is responsible for obtaining the final WCET for

the entire program as well as various program segments

(functions/scopes). It “combines” the information from var-

ious paths (execution time, pipeline state, etc.) for this pur-

pose. The driver, also part of the software system, is de-

scribed in more detail below.

2.3. Driver/Analysis Controller and Tuning

The driver is responsible for controlling processor oper-

ations. Besides directing the execution of the code on the

pipeline, it relays instructions from the TA such as when

to capture/restore snapshots. The driver represents the in-

terface between the hardware and software components of

the CheckerMode design. The driver contains information

about the start and stop PCs that define the start/end points

of the path to be timed. It also stores the latest captured



snapshot. The driver maintains information about which in-

struction is a branch and where snapshots need to be cap-

tured. It also relays information in the other direction – from

the hardware to the timing analyzer – e.g., the path execu-

tion time.

2.4. False Path Identification and Handling

A principal component of the analysis controller is a

queue of saved processor contexts guiding path exploration.

In some cases, not all paths need to be considered, as im-

plied by these contexts. For example, a path can be dropped

if static analysis concludes that this execution path cannot

be executed (i.e., it is a “false path”). Similarly, if a path can

be shown to be shorter than some other paths that have al-

ready been explored, then again this path can be dropped

from the queue.

2.5. Analysis Overhead

We can reduce the complexity of determining theWCET

by partial execution of loops such that the analysis overhead

is independent of the number of loop iterations. Using our

prior approach of a fixpoint algorithm to determine a sta-

ble execution time for the loop body [3], we can steer loop

executions such that paths of a loop body are repeatedly ex-

ecuted till a stable value is reached. The controller records

the decaying execution times for each iteration, up to the

fixpoint, using the CheckerMode hardware. When reaching

the fixpoint, the WCET of the remaining loop iterations up

to the loop bound is calculated by a closed formula based

on the fixpoint value. Typically, loops reach a fixpoint af-

ter only 2–4 iterations, which implies that this partial exe-

cution can reduce the overhead of WCET analysis signifi-

cantly. Thus, the complexity of WCET analysis is indepen-

dent of the number of iterations, i.e., it does not depend on

the actual execution time of analyzed code.

2.6. Input Dependencies

In CheckerMode, input-dependent register values are

deemed unknown, which is internally represented in a man-

ner similar to NaN (not-a-number) values already existing

in floating point units (and similarly for integer ALUs). Op-

erations on unknown values are straightforward: if any input

is unknown then the output is also unknown. It is necessary

to represent the known/unknown status of condition codes

at the bit level. A branch condition based on an unknown

value then indicates a need to consider alternate paths. Con-

versely, concrete (known) values are evaluated as always

and input-invariant branches will result in timing of only

the taken execution path.

We alter the semantics of execution in CheckerMode to

include this NaN value. E.g., addition will now be rewritten

as:
rresult =

{

NaN if ra = NaN
∨

rb = NaN

ra + rb otherwise
Hence, any operation with NaN as one of the operands

will result in NaN (unless the result is independent of that

particular operand, e.g., multiplication with 0 will always

result in 0). We developed similar enhancements for other

instructions that depend on input-dependent or memory-

loaded operands.

Benchmark Function

ADPCM adaptive pulse code modulation

CNT Sum and count of positive and negative

numbers in an array.

FFT Finite Fourier Transform

LMS Least Mean Square Filter

MM Matrix Multiplication

SRT Implementation of Bubble Sort.

Table 1. Subset of C-Lab Benchmarks

3. Reduction of Analysis Overhead for Loops

Analysis of loops, especially static analysis, increases

the complexity of our analysis for various reasons. All it-

erations of the loop may have to be enumerated or sym-

bolically executed to determine the worst-case execution

bounds for the entire loop. This is not always a trivial task.

Further complexities arise if the loop body consists of multi-

ple alternating paths. Also, actual execution bounds for the

loop may not be known statically due to input dependen-

cies thus preventing us from determining the actual execu-

tion bounds for the loop.

The complexity of loop analysis is reduced by partial ex-

ecution of loops so that the analysis overhead is independent

of the number of loop iterations. Based on prior work that

utilizes a fixed-point algorithm to determine stable execu-

tion times for loop bodies [3], we steer loop executions such

that the paths in a loop body are executed repeatedly till a

stable value is reached. A controller records the monotoni-

cally decreasing execution times for each iteration (up to the

fixed point). Once the fixed point is reached, the WCET of

the remaining loop iterations (up to the loop bound) is cal-

culated using a closed formula. Experimental results in sec-

tion 5 indicate that loops reach a fixed point after only 3 iter-

ations to account for pipeline effects, and, another two itera-

tions are required on average in the presence of caches. The

details are beyond the scope of this paper (see [25]). This

implies that this technique of partial executions can signif-

icantly reduce the overhead of WCET analysis. Thus, the

complexity of WCET analysis is independent of the num-

ber of iterations. It does not depend on the dynamic execu-

tion time of the analyzed code.

4. Experimental Framework

We have implemented the key components of our design

in the SimpleScalar processor simulator [8]. This cycle-

accurate simulator can be configured for the various pro-

cessor and branch prediction schemes.

1

2 3

4

(a) CFG

Path Cycles

SimIO SupIO OOO

bb 1 36 20 20

bb 2 8 4 20

bb 3 38 13 29

bb 4 15 5 22

bb 4’ 15 5 16
(b) Cycles (Short Technique)

Figure 3. Benchmark and Measured Cycles



Path SimIO delta SupIO delta OOO delta

BB1 82 BB1-BB0=56 66 BB1-BB 0=4 47 BB1-BB0=1

BB1,2 114 BB1,2-BB1=32 94 BB1,2-BB1=28 59 BB1,2-BB1=12

BB1,3 241 BB1,3-BB1=159 131 BB1,3-BB1=65 92 BB1,3-BB1=45

BB1,2,4 151 BB1,2,4-BB1,2=37 97 BB1,2,4-BB1,2=3 61 BB1,2,4-BB2=2

BB1,3,4 278 BB1,3,4-BB1,3=37 134 BB1,3,4-BB1,3=3 94 BB1,3,4-BB1,3=2

Figure 4. Measured Cycles (Aggregate Technique) for Synthetic Benchmark

We used SimpleScalar in three configurations:

(1) Simple-IO (SimIO) simulates a simple, in-order (IO)

processor pipeline (pipeline width 1, instruction issue in

program order);

(2) Superscalar-IO(SupIO) with a pipeline width (from

fetch to retire) of 16 and in-order instruction execution; and

(3) Out-of-order (OOO) execution with the same pipeline

width as in Superscalar-IO.

We used the C-Lab benchmarks [10] enumerated in Ta-

ble 1 for our experiments. We also conducted experiments

on a synthetic benchmark whose control-flow structure is

depicted in Figure 3(a).

Execution time for paths is measured using four different

techniques, extending from the use of basic blocks (BB) [1]

to paths (sequences of consecutive BBs):

(1) Short measures the execution time of a single BB, start-

ing from the time that any instruction in the BB/path moves

into the execute stage of the pipeline and finishing when the

last instruction of the BB/path exits from the retire stage.

(2) Path-Short captures the execution time for paths (con-

catenated BBs) using the “short” technique so that timing

starts at the first BB and ends with the last BB in the path.

(3) Path-Aggregate captures the time for concatenated paths

so that timing starts at the first BB of the first path and ends

with the last BB of the last path.

(4) Program-Aggregate includes the time from the start of

the execution (main function) to the end of a BB in the path

being timed, starting when the first instruction in the main

function is fetched and finishing when the last of the path

exits from the retire stage.

5. Results

The results obtained for the “short” technique (Table

3(b)) show that timings for the processor modes SimIO and

SupIO accurately reflect the actual WCET bounds, both

for single BBs and paths. However, the OOO results ex-

ceed those of SupIO, due to early out-of-order execution of

some instructions in parallel with other instructions from

Benchmark SimIO SupIO % Savings OOO % Savings

ADPCM 1340 486 63.7 367 72.6

CNT 356 197 44.6 76 78.7

FFT 1047 439 58.1 288 72.5

LMS 839 457 45.6 236 71.9

MM 161 144 10.6 58 64.0

SRT 330.2 198 40.1 93 71.8

Table 2. Averaged WCECs for C-Lab Bench-
marks

prior BBs in the path. Timing is started when any instruc-

tion in the relevant path comes into the execute stage of the

pipeline, which could very well happen even when the pre-

vious path is not complete due to the inherent nature of

out-of-order execution. Since timing only stops when the

last instruction in the current path retires, the total execu-

tion time includes some time from execution of instruction

in the previous path. Hence, the observed execution time in-

cludes cycles for instructions from earlier paths, which were

not supposed to be timed. Even timing multiple BBs of a

path in sequence (“path-short” technique) does not allevi-

ate this problem. bb4 and bb4’ represent the same code –

the difference is the path taken to get to basic block 4. In

the first case, the “then” case of the branch was selected and

in the second case, then “else” case was followed.

In contrast, the “aggregate” technique (Figure 4) reflects

the time from instruction fetch (instead of execute) and also

times longer paths. This addresses the above problem of

early execution by some instructions because in the long

run, timing longer paths reduces the inaccuracies from in-

teractions between individual instructions . Results show a

strict ordering of execution cycles for SimIO ≥ SupIO ≥

OOO, as expected by the amount of instruction parallelism,

since time is measured from the first fetch of an instruction.

The differences between paths (“delta”) provide a bound on

the number of cycles for the tail BB in the path, thus exclud-

ing any pipeline overlap with prior BBs. Hence, these delta

values can be used to assess the amount of cycles attributed

to specific BBs alone. They also adhere to the same strict or-

dering. In general, such timing results are only valid in the

same execution context/path, i.e., different BB sequences of

one path may influence subsequent BBs in the control flow.

5.1. C-Lab Benchmark Results

We extracted all paths from each of the C-lab bench-

marks and then timed them independently using our Check-

erMode framework in each of the three configurations

(SimIO, SupIO and OOO). Figures 5 and 6 summarize our

results for the ADPCM, LMS and SRT benchmarks, re-

spectively. ADPCM is the largest benchmark in the C-lab

suite, with 14 functions and 60 paths, while LMS and SRT

are smaller benchmarks with 10 paths each. Results are

sorted in ascending order based on the timing results for

the SimIO configuration. From all three graphs, we see the

SimIO ≥ SupIO ≥ OOO ordering except for one path

in the SRT benchmark, which we will explain later.

Figure 5(a) shows the timing results for the ADPCM

benchmark, while Table 5(b) lists the various functions in

ADPCM as well as the number of instructions and paths in

each function. These results show the strict ordering for the



0

500

1000

1500

2000

2500

3000

3500

4000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
Path Id

C
y
cl

es

SimIO

SupIO

OOO

(a) Execution cycles for each Path

Function Number of Instructions Number of Paths

abs 18 2

filtep 35 1

logsch 36 2

logscl 37 2

filtez 48 2

uppol1 49 8

uppol2 58 8

quantl 65 6

main 88 4

upzero 122 5

decode 317 4

encode 330 16
(b) Number of Instructions and Paths for each function in ADPCM bench-
mark

Figure 5. Timing Results for the ADPCM Benchmark

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10
Path Id

C
y
cl

es

SimIO

SupIO

OOO

(a) LMS benchmark

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10
Path Id

C
y
cl

es

SimIO

SupIO

OOO

(b) SRT benchmark

Figure 6. Measured execution cycles for C-Lab Benchmarks

three configurations, with SimIO results being the largest

and OOO being the smallest. From the same graph, we

see that the timing results for SimIO increase significantly

around path 42. This is because paths 42 – 61 originate from

the “encode” and “decode” functions of the ADPCM bench-

mark and contain a larger number of instructions and, in the

case of encode, a large number of paths as well. While there

is enough parallelism in the code for SupIO and OOO to

exploit, the SimIO configuration, with its in-order behav-

ior and single width pipeline, is unable to scale as well as

the other two configurations. This also shows that the num-

ber of dependencies between instructions in the two func-

tions is not very high, as OOO is able to scale well to han-

dle the larger instruction load.

The graph for LMS (Figure 6(a)) shows that all three

configurations scale in a similar fashion for larger paths. It

is interesting to note that the timing results for SupIO are

approximately half of that for SimIO. Similarly, the timing

results for OOO are approximately half that of SupIO. We

see similar results for the SRT benchmark as well (Figure

6(b)), except for the shortest path (path 1). This path is so

short that the effects we described at the beginning of Sec-

tion 5 become apparent – i.e., timing is started when the first

instruction of the program is fetched and stopped when the

final instruction is retired. Hence, the first instruction has to

wait for a while before it is dispatched. When the paths are

very short, the pipeline contains a large number of instruc-

tions that do not belong to the particular path being timed,

hence bloating the results for pipelines with larger width.

The single width IO configuration does not suffer from this

problem as the instruction is dispatched immediately after

being fetched.

The FFT and MM benchmarks also show similar results.

The results of all six benchmarks are summarized in Ta-

ble 2. The second, third and fifth columns are the worst-

case number of cycles for each benchmark averaged across

all paths. The fourth and the sixth columns show the aver-

age savings for each benchmark for the preceding config-

uration (preceding row in the table) as compared to SimIO

(column 2). Specifically, the fourth column shows the av-

erage savings for SupIO over SimIO, and the sixth column

shows the average savings for OOO over SimIO. These sav-

ings are based on the average across all paths.

5.2. Partial Analysis of Loops

Our objective is to leverage path timings under the

“program-aggregate” technique as a refinement to the “ag-

gregate” technique discussed so far. Consider the construct

depicted in Figure 3(a) embedded within the loop (dashed

vertex). We must assess consecutive executions of paths

within the loop. ForE.g., within one iteration, the L-left (BB

1,2,4) and R-right (BB 1,3,4) paths are timed; within two it-

erations, concatenations of all permutations for these paths



are timed (L-L/L-R/R-L/R-R); and so on for three and four

iterations. Since this search space grows exponentially with

the number of alternate paths and loop iterations, we pro-

pose to devise a bounded technique to limit the path space

in depth and breadth.

Table 3 depicts the results for 3 iterations of this loop

around the left (L) and right (R) paths for the 3 processor

models. It also distinguishes path compositionwithout over-

lap (+) and with overlap (o), where the former is equivalent

to draining the pipeline while the latter captures continuous

execution. The difference between the compositions is de-

picted as δ. The table depicts constant δ values for all pro-

cessor models regardless of the paths being executed (D-

caches are disabled here.) More significantly, early results

from our experimentation environment indicate that three it-

erations are sufficient to reach a fixed point for the δ values

while considering only pipeline effects. Beyond that point,

concatenation of another iteration results in a constant in-

crease in cycles for this path, and this behavior does not

change for the remainder of the loop. For instance, a 2-path

experiment (omitted here) resulted in exactly half the δ val-

ues of the 3-path experiment, which reinforces the claim

about reaching a fixed point.

Tables 4 and 5 depict the two and three level composi-

tions for the FFT benchmark. The first column depicts the

loop ID while the second column shows the particular com-

bination of paths being timed. For example, “0 1 0” repre-

sents a three-way combination of paths “0”, “1” and “0”.

As before, the “+’ ’ represents path timing without overlap

while the “o” represents path times with overlap. These ta-

bles indicate that the loops reach a fixed point within 2-3 it-

erations. For example, the δ values for the “0 0” path com-

bination of loop 1 from Table 4 is exactly half that of the

corresponding δ values for the “0 0 0” combination of the

same loop (Table 5). More detailed loop analyses are pre-

sented elsewhere [25]. Other C-Lab benchmarks show sim-

ilar results. They are omitted here due to space considera-

tions.

We exploit this behavior to limit the search depth. In ad-

dition, we limit the breadth of the search by limiting tim-

ings to k consecutive splits in the control flow; this bounds

the growth due to consecutive conditionals (alternating joins

and splits in the control flow). Such restrictions may re-

Path SimIO SupIO OOO

+ o δ + o δ + o δ

LLL 453 443 10 291 193 98 183 123 60

LLR 580 570 10 328 230 98 216 156 60

LRL 580 570 10 328 230 98 216 156 60

LRR 707 697 10 365 267 98 249 189 60

RLL 580 570 10 328 230 98 216 156 60

RLR 707 697 10 365 267 98 249 189 60

RRL 707 697 10 365 267 98 216 189 60

RRR 834 824 10 402 304 98 282 222 60

Table 3. Path-Aggregate Cycles (3 Iterations)

for the Synthetic Benchmark

Id Path SimIO SupIO OOO

+ o δ + o δ + o δ

0 0 0 1684 1646 38 668 628 40 594 529 65

1 0 0 574 536 38 420 312 108 226 193 33

1 0 1 1268 1231 37 661 553 108 423 390 33

1 1 0 1268 1231 37 661 565 96 423 390 33

1 1 1 1962 1924 38 902 806 96 620 587 33

2 0 0 1684 1646 38 836 712 124 642 553 89

3 0 0 574 536 38 414 309 105 330 245 85

3 0 1 1268 1231 37 655 550 105 527 442 85

3 1 0 1268 1231 37 655 562 93 527 442 85

3 1 1 1962 1924 38 896 803 93 724 639 85

Table 4. Path-Aggregate Cycles (2 Iterations)
for the FFT benchmark

sult in pessimism when path overlap can only be loosely

bounded (instead of timing it in the CheckerMode).

6. Related Work

Knowledge of worst-case execution times (WCETs) is

necessary formost hard real-time systems. TheWCETmust

be known or safely bound a priori so that the feasibil-

ity of scheduling task sets in the system may be deter-

mined based on a scheduling policy (e.g., rate-monotone

or earliest-deadline-first scheduling [23]). Methods to ob-

tain upper bounds on execution time range from dynamic

(but unsafe) observation to static analysis (safe but not al-

ways tight) [38]. Past work mainly focuses on static timing

analysis techniques [6, 11, 15, 20, 26–28, 30, 36].

Recently, hybrid methods have been proposed [6, 17] as

well as hardware-related methods [2,24]. Yet, none of these

approaches capture advanced hardware features transpar-

Id Path SimIO SupIO OOO

+ o δ + o δ + o δ

0 0 0 0 2526 2450 76 1002 922 80 891 761 130

1 0 0 0 861 785 76 630 414 216 339 273 66

1 0 0 1 1555 1481 74 871 655 216 536 470 66

1 0 1 0 1555 1480 75 871 667 204 536 470 66

1 0 1 1 2249 2174 75 1112 908 204 733 667 66

1 1 0 0 1555 1480 75 871 667 204 536 470 66

1 1 0 1 2249 2174 75 1112 908 204 733 667 66

1 1 1 0 2249 2175 74 1112 920 192 733 667 66

1 1 1 1 2943 2867 76 1353 1161 192 930 864 66

2 0 0 0 2526 2450 76 1254 1006 248 963 785 178

3 0 0 0 861 785 76 621 411 210 495 325 170

3 0 0 1 1555 1481 74 862 652 210 692 522 170

3 0 1 0 1555 1480 75 862 664 198 692 522 170

3 0 1 1 2249 2174 75 1103 905 198 889 719 170

3 1 0 0 1555 1480 75 862 664 198 692 522 170

3 1 0 1 2249 2174 75 1103 905 198 889 719 170

3 1 1 0 2249 2175 74 1103 917 186 889 719 170

3 1 1 1 2943 2867 76 1344 1158 186 1086 916 170

Table 5. Path-Aggregate Cycles (3 Iterations)
for the FFT benchmark



ently while providing tight bounds. Our work fills this gap

and contributes to high confidence in embedded systems de-

sign for time-critical missions. While static timing analysis

methods, such as our past work [18, 26–28] or abstract in-

terpretation methods [35, 36], can provide reasonably tight

bounds for branches that can be statically analyzed, they are

not able to provide tight bounds for execution along spec-

ulatively predicted branch directions at runtime or out-of-

order instruction-issue pipelines. The complexity and over-

head of modeling the behavior of even moderately complex

pipelines [19] and interactions of instructions within them is

high for any of these methods. As detailed in the introduc-

tion, each new processor design requires that the model be

manually adapted and cannot reflect fabrication-level tim-

ing variability within a processor batch. Ourmethod, in con-

trast, automatically adapts with changing processor details,

including timing variations due to fabrication.

Our CheckerMode is related to two prior approaches.

First, Bernat et. al. used probabilistic approaches to ex-

press execution bounds down to the granularity of basic

blocks, which could then be composed to form larger pro-

gram segments [6]. Second, the VISA framework [2] sug-

gested architectural enhancements to gauge the progress of

execution by sub-task partitioning and exploiting intra-task

slack with DVS techniques. Our work combines the benefits

of these two prior approaches without their shortcomings.

While performing analysis on paths, cycles are measured

in a special execution mode of the processor that supports

checkpoint/restart and unknown value execution seman-

tics to reflect proper architectural state and path coverage.

While Bernat struggled with considerable timing perturba-

tion from instrumentation, the CheckerMode is much less

intrusive. Instead of a VISA-like virtual processor around

a complex core, we promote the CheckerMode as a real-

istic feature building on existing internal processor buffers

widely used for speculation / precise event handling. Hence,

ourmethod is able to providemore precise results compared

to Bernat’s work. In contrast to VISA, is able to support hy-

brid timing analysis on the actual processor core.

Lundqvist et al. [24] use symbolic execution with a tight

integration of path analysis and timing analysis to obtain

accurate WCET estimates. They use the concept of an “un-

known” value to account for register values and addresses

that cannot be statically determined, just as the Checker-

Mode does. However, their work did not utilize a fixed-

point approach but rather required each iteration of a loop

to be symbolically executed. Furthermore, they did not pro-

pose any architectural modification, it focused on static tim-

ing analysis over the entire program within an architectural

simulator using in-order execution without dynamic branch

prediction etc. The term “timing anomaly”, i.e., an anomaly

in the execution of code in dynamically scheduled proces-

sors, stems from their work. It was later generalized by oth-

ers [5, 24, 32]. Anomalies denote counter-intuitive results

in timings, e.g., a cache hit may result in longer execu-

tion times than a miss for a given path due to overlapped

structural resource conflicts. We contend that the instruc-

tion window may be large enough that even if instructions

get blocked due to anomalies, other instructions, which are

ready,may execute, thus reducing the overall execution time

of the program. Thus, by taking a larger context (path) into

account, we will provably compensate for localized anoma-

lies at a larger scale within the CheckerMode.

Some early work has suggested probabilistic analysis

[6, 14, 21, 37] for handling WCET variations due to soft-

ware factors (such as data dependency and history de-

pendency). However, these prior approaches for statistical

WCET analysis did not model hardware execution time

variations caused by process variations.

Our approach with the CheckerMode combines the best

features of static and dynamic analysis required for obtain-

ing WCET bounds for modern processors. Section 2 intro-

duced our hybrid timing analysis technique that obtains ac-

tual execution times for short paths on the actual hardware

and then combines these intermediate worst-case bounds,

offline, using a static tool.

7. Future Work

We intend to focus on out-of-order processor pipelines

and branch prediction. Although we already capture some

processor state as “snapshots”, we intend to find good so-

lutions to capture state for the out-of-order pipeline and

branch predictor features. We will further investigate meth-

ods to merge timing and state information for alternate

paths. We also intend to study on how to copy state infor-

mation from a previously captured/newly merged snapshot

back onto the processor.

8. Conclusion
We have outlined a “hybrid” mechanism for performing

timing analysis that utilizes interactions between hardware

and software. The CheckerMode concept provides the foun-

dation to make contemporary processors predictable and an-

alyzable so that they may be safely be used in real-time

systems. Current trends in microprocessor features indicate

that our proposed hardware modifications are realistic [34].

Once fully implemented within the SimpleScalar simula-

tor, the CheckerMode unit will have the ability to not only

drive execution along given program paths but also to cap-

ture and write back processor state to/from snapshots. This

will enable us to accurately gauge the execution time for

a given program path. We believe this work will enhance

the design choices available to real-time systems engineers.

The CheckerMode concept will provide them with the abil-

ity to use current and future state-of-the-art microproces-

sors in their systems and utilize a hybrid of static and dy-

namic timing techniques to validate WCETs.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers – Princi-

ples, Techniques, and Tools. Addison-Wesley, 1986.

[2] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and

F. Mueller. Enforcing safety of real-time schedules on

contemporary processors using a virtual simple architecture

(visa). In IEEE Real-Time Systems Symposium, pages 114–

125, Dec. 2004.



[3] R. Arnold, F. Mueller, D. B. Whalley, and M. Harmon.

Bounding worst-case instruction cache performance. In

IEEE Real-Time Systems Symposium, pages 172–181, Dec.

1994.

[4] I. Bate and R. Reutemann. Worst-case execution time analy-

sis for dynamic branch predictors. In Euromicro Conference

on Real-Time Systems, pages 215–222, 2004.

[5] C. Berg. PLRU cache domino effects. In 6th Intl. Workshop

on Worst-Case Execution Time (WCET) Analysis, 2006.

[6] G. Bernat, A. Colin, and S. Petters. Wcet analysis of proba-

bilistic hard real-time systems. In IEEE Real-Time Systems

Symposium, Dec. 2002.

[7] S. Borkar. Designing reliable systems from unreliable com-

ponents: The challenges of transistor variability and degra-

dation. IEEE Micro, 25(6):10–16, Nov/Dec 2005.

[8] D. Burger, T. M. Austin, and S. Bennett. Evaluating future

microprocessors: The simplescalar tool set. Technical Re-

port CS-TR-1996-1308, University of Wisconsin, Madison,

July 1996.

[9] C. Burguiere and C. Rochange. A contribution to branch

prediction modeling in wcet analysis. In Design, Automa-

tion and Test in Europe, pages 612–617, 2005.

[10] C-Lab. Wcet benchmarks. Available from http://www.c-

lab.de/home/en/download.html.

[11] K. Chen, S. Malik, and D. I. August. Retargetable static tim-

ing analysis for embedded software. In Proceedings of the

International Symposium on System Synthesis (ISSS), Octo-

ber 2001.

[12] D. Cormie. The ARM11 microarchitecture. 2002.

[13] A. Cristal, O. Santana, M. Valero, and J. Martinez. Toward

kilo-instruction processors. ACM Trans. Archit. Code Op-

tim., 1(4):389–417, 2004.

[14] S. Edgar and A. Burns. Statistical analysis of WCET for

scheduling. In 22nd IEEE Real-Time Systems Symposium,

pages 215–224, 2001.

[15] J. Engblom. Processor Pipelines and Static Worst-Case Exe-

cution Time Analysis. PhD thesis, Dept. of Information Tech-

nology, Uppsala University, 2002.

[16] J. Engblom. Analysis of the execution time unpredictability

caused by dynamic branch prediction. In IEEE Real-Time

Embedded Technology and Applications Symposium, page

152, 2003.

[17] A. Hamann, M. Jersak, K. Richter, and R. Ernst. Design

space exploration and system optimization with symta/s -

symbolic timing analysis for systems. In IEEE Real-Time

Systems Symposium, pages 469–478, Dec. 2004.

[18] C. A. Healy, R. D. Arnold, F. Mueller, D. Whalley, and M. G.

Harmon. Bounding pipeline and instruction cache perfor-

mance. IEEE Transactions on Computers, 48(1):53–70, Jan.

1999.

[19] R. Heckmann, M. Langenback, S. Thesing, and R. Wilhelm.

The influence of processor architecture on the design and

the results of WCET tools. Proceedings of the IEEE, pages

1038–1054, July 2003.

[20] A. Hergenhan and W. Rosenstiel. Static timing analysis of

embedded software on advanced processor architectures. In

DATE, pages 552–559, 2000.

[21] X. S. Hu, Z. Tao, and E. H. M. Sha. Estimating probabilistic

timing performance for real-time embedded systems. Very

Large Scale Integration (VLSI) Systems, IEEE Transactions

on, 9(6):833–844, 2001. 1063-8210.

[22] P. Hurat, Y.-T. Wang, and N. Vergese. Sub-90 nanometer

variability is here to stay. EDA Tech Forum, 2(3):26–28,

Sept. 2005.

[23] C. Liu and J. Layland. Scheduling algorithms for multipro-

gramming in a hard-real-time environment. J. of the Associ-

ation for Computing Machinery, 20(1):46–61, Jan. 1973.

[24] T. Lunqvist. A WCET Analysis Method for Pipelined Mi-

croprocessors with Cache Memories. PhD thesis, Chalmers

University, 2002.

[25] S. Mohan and F. Mueller. Fixed-point loop analysis for high-

end embedded processor pipelining via hardware/software

interactions. In preparation for LCTES, page (to be submit-

ted), 2008.

[26] S. Mohan, F. Mueller, W. Hawkins, M. Root, C. Healy, and

D. Whalley. Parascale: Expoliting parametric timing analy-

sis for real-time schedulers and dynamic voltage scaling. In

IEEE Real-Time Systems Symposium, pages 233–242, Dec.

2005.

[27] S. Mohan, F. Mueller, D. Whalley, and C. Healy. Timing

analysis for sensor network nodes of the atmega processor

family. In IEEE Real-Time Embedded Technology and Ap-

plications Symposium, pages 405–414, Mar. 2005.

[28] F.Mueller. Timing analysis for instruction caches. Real-Time

Systems, 18(2/3):209–239, May 2000.

[29] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-

effective superscalar processors. In ISCA, pages 206–218,

1997.

[30] P. Puschner and C. Koza. Calculating the maximum ex-

ecution time of real-time programs. Real-Time Systems,

1(2):159–176, Sept. 1989.

[31] H. Ramaprasad and F. Mueller. Tightening the bounds on

feasible preemption points. In IEEE Real-Time Systems Sym-

posium, pages 212–222, Dec. 2006.

[32] J. Schneider. Combined Schedulability and WCET Analysis

for Real-Time Operating Systems. PhD thesis, Universitaet

des Saarlandes, 2002.

[33] Smith, J. E. A study of branch prediction strategies. In

Proc. 8th International Symposium on Computer Architec-

ture, pages 135–148, Minneapolis, 1981.

[34] B. Sprunt. Pentium 4 performance monitoring features.

2002.

[35] H. Theiling and C. Ferdinand. Combining abstract interpre-

tation and ilp for microarchitecture modelling and program

path analysis. In IEEE Real-Time Systems Symposium, pages

144–153, Dec. 1998.

[36] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona,

M. Langenbach, R. Wilhelm, and C. Ferdinand. An Abstract

Interpretation-Based Timing Validation of Hard Real-Time

Avionics. In Proceedings of the International Performance

and Dependability Symposium (IPDS), June 2003.

[37] G. D. Veciana, M. Jacome, and J.-H. Guo. Assessing prob-

abilistic timing constraints on system performance. Design

Automation for Embedded Systems, 5(1):61–81, 2000.

[38] J. Wegener and F. Mueller. A comparison of static analysis

and evolutionary testing for the verification of timing con-

straints. Real-Time Systems, 21(3):241–268, Nov. 2001.


