
Highly Efficient and Predictable Group Communication
over Multi-core NoCs ∗

Karthik Yagna, Frank Mueller
North Carolina State University

kyagna@ncsu.edu, mueller@cs.ncsu.edu

ABSTRACT
Massive multi-core embedded processors with network-on-chip
(NoC) are becoming common in real-time systems. These archi-
tectures benefit real-time scheduling of tasks and provide higher
processing capability due to abundance of cores. The core-to-core
communication can be leveraged by adopting message passing to
further increase system scalability. Despite these advantages, mul-
ticores pose predictability challenges.

In this work, we develop efficient and predictable group com-
munication using message passing specifically designed for large
core counts in 2D mesh NoC architectures. We have implemented
the most commonly used collectives in such a way that they incur
low latency and high timing predictability making them suitable
for real-time systems. Experimental results on the TilePro64 hard-
ware platform show that our collectives can significantly reduce
communication times by up to 95% for single packet messages. In
addition, the primitives have significantly lower variance compared
to prior work, thereby providing better real-time predictability.

1. INTRODUCTION
The future of computing is rapidly changing as multicore proces-

sors are becoming ubiquitous. Massive multi-core platforms with
NoC architectures are being employed for real-time systems. These
architectures provide a significant advancement due to an abun-
dance of cores. This allows a large number of cooperating tasks
to be scheduled together. These tasks can employ group communi-
cation via message passing over the NoC to achieve scalability and
reduced latency.

However, poor group communication implementations can result
in increased and highly variant latency due to NoC contention and
results in loss of predictability. Consider the case where tasks on
different cores are performing an all-to-all communication using
message passing. One way to implement all-to-all is to have one
task send its message to all other tasks, followed by the next one
and so on. This implementation is not efficient and can be improved
by allowing multiple partners to communicate in each round. Yet,
such an optimization may lead to contention. For example, con-
sider 9 cores taking part in all-to-all communication as in Figure 1.
The task on core 3 is trying to send to the task on core 8, and the
task on core 4 is trying to send to the task on core 2. This results in
2 messages, one from 3→ 8 and another from 4→ 2. When sent at
the same time, contention on link 4→ 5 results in a delay for one of
these messages due to arbitration within the NoC hardware routers.
Such situations can be avoided using intelligent scheduling of each
round of message exchanges.

Additionally, implementations that do not leverage underlying
NoC capabilities result in under utilization of the NoC hardware.
Typically, NoC architectures provide multiple message queues and
networks. On the TilePro64 [3], there are 4 distinct message queues
and 2 distinct networks types available for users. One of them is
∗This work was supported in part by NSF grants 0905181 and
1239246.

Figure 1: NoC Contention

called User Dynamic Network (UDN), and the other one is called
Static Network (SN). UDN uses dynamic routing to forward mes-
sages from source core to destination. SN, on the other hand, uses
statically configured routes to forward packets received on each
link. SN is faster than UDN in terms of packet forwarding speed,
but is difficult to program and has route setup overhead. Hence,
UDN is used for all core-to-core communication purposes, leav-
ing SN unused. Implementations which can leverage such unused
hardware features can intelligently extract additional hardware per-
formance.

In our implementation, we employ algorithms to reduce com-
munication overheads and try to use available hardware features to
provide better performance. We have currently implemented four
commonly used group communications namely Barrier, Broadcast,
Reduce and Alltoall [5]. Alltoallv and Allreduce can be built on
top of these collectives. Efficient implementation of Alltoall is par-
ticularly challenging. Our implementation uses a bottom-up ap-
proach in which the communication proceeds from smaller seg-
ments to larger segments, but it does not require dividing the grid
into smaller submeshes [6]. Other approaches require either dy-
namic route calculations of offline pre-calculations to store large
routing tables [4]. In contrast, our implementation exploits simple
pattern-based communication, common in MPI [5] runtime system
implementations, to send messages concurrently, yet without con-
tention, to reduce communication latency. This neither requires
dynamic computation of a routing schedule nor incurs scheduling
overhead or memoization of large routing tables. Our implemen-
tation uses message passing over the NoC of a TilePro64, but is
generic enough to be adopted to any 2D mesh based NoC architec-
ture.

Experimental results on the TilePro hardware platform show that
our implementation has lower latencies and lower timing variabil-
ity than prior work. We used micro-benchmarks and compared the
performance of our implementation against OperaMPI, an MPI im-
plementation for the Tilera platform. Performance improvements
of up to 95% are observed in communication for single packet mes-
sages with significantly high timing predictability.

2. DESIGN
Our work assumes a generic, generalized 2D mesh NoC switch-

ing architecture similar to existing fabricated designs with high
core counts [2, 3, 7, 1]. Each core is composed of a compute core,
network switch, and local caches. The network switch uses XY

dimension-ordered routing to forward messages.

2.1 NoC Architecture
NoC architectures use the network-on-chip to replace the con-

ventional system bus or other topologies of connecting cores. This
means that all memory, messaging, and IO communication occur
over the NoC, often through physically separate networks to reduce
contention. In this work, we focus on building group communica-
tion over the messaging network.

2.2 NoC Message Layer
Our implementation provides an MPI type message passing in-

terface on top of NoC. This facilitates basic point-to-point commu-
nication used to support our group communication. The NoC mes-
sage layer implementation optionally provides flow control sup-
port. In our design, we turn off flow control when not required
by program logic to further improve performance.

2.3 Group Communication Primitives
The key ideas behind our design of group communication prim-

itives are (1) Reduce contention in NoC; (2) Exploit pattern-based
communication to exchange messages concurrently; (3) Reduce the
number of messages by aggregation; (4) Leverage hardware fea-
tures to improve performance.

We have used different approaches for each group communica-
tion primitive to demonstrate the ways a NoC-based system can
support timing reliability and reduced latency.

Alltoall
The Alltoall collective results in all the tasks in the group to ex-
change messages with each other. In our design, we exploit pattern-
based communication to concurrently exchange messages between
partners. The entire exchange is split into multiple rounds. In each
round, a subset of tasks exchange messages using Manhattan-path
(dimension-ordered) routing. The tasks in each round are sched-
uled in such a way that they do not result in link contention. In
each round, the number of hops the message is forwarded to is in-
cremented until all the tasks are covered.

Barrier
A barrier synchronizes a group of tasks. Each task, when reaching
the barrier call, blocks until all tasks in the group reach the same
barrier call. In order to provide scalable barriers, we designed tree-
based barriers that distribute the work evenly among nodes. This
also helps in minimizing the cycle differences upon barrier com-
pletion. Our design utilizes rooted k-ary trees to this end, where k
is configurable. Typically k=3 provides optimal performance.

Broadcast
A broadcast sends a message from the process with rank "root"
to all other processes in the group.Tree branches are mapped onto
the NoC in a contention-free manner. In our design, we use the
SN to implement broadcasts. We designed a tree-based broadcast
rooted at the task performing the broadcast. The static route of
each task is configured inside the broadcast primitive such that the
message from the root flows to each leaf task. To minimize the
overhead of route configuration, our design requires only a single
route configuration per task, again using contention-free paths.

Reduce
This primitive applies a reduction operation on all tasks in the group
and relays the result to one task. We designed our reduce collective
similar to the barrier. The reduction operation is performed along

the tree. Each task receives values from its children and performs
a partial reduction. Tasks then send their partial result toward the
root. The root will reduce partial results to obtain the final result.

Alltoallv and AllReduce
Alltoallv is designed as an extension to Alltoall. The AllReduce
consists of a reduce followed by a broadcast. Our design follows
the same idea.

3. IMPLEMENTATION
This section provides details on the implementation, called

NoCMsg, of each group communication primitive. Our implemen-
tation of these collectives have an MPI-like API for easy usability.

We implemented the group communication on the Tilera
TilePro64. Our implementation is generic and can be extended to
any 2D mesh NoC architectures.

3.1 Alltoall and Alltoallv
Alltoall/Alltoallv are the most demanding collectives in terms of

network contention, yet they allow flow-control elimination. Based
on the particular internal send/receive orders in these collectives, it
is possible to guarantee flow-control free communication for trans-
fers between each pair of cores. Further optimization is provided by
employing pattern-based communication, which allows several sets
of tasks to exchange messages concurrently without contention.
The entire exchange is split into multiple rounds.

The rounds are comprised of (1) direct (2) left and (3) right
rounds. In direct rounds, each task sends messages only along a
straight path to its partner task. In left rounds, each task sends mes-
sages along the X direction followed by the Y direction such that
their path follows a counter-clockwise direction. In right rounds,
each task sends messages along the X direction followed by the Y
direction such that their paths follow a clockwise direction. These
cases are depicted in Figure 2.

Figure 2: Alltoall Rounds

In each round, the number of hops the message is forwarded is
incremented until all the tasks are covered. To begin, each task
starts the direct round with one hop. In other words, they ex-
change messages with their immediate neighbors. Once the round
is over, they increment their hop count and exchange messages with
a neighbor 2 hops away. This is repeated until the entire width of
the grid is covered. After an exchange along the X direction is
done, the tasks start direct round 2 and send messages along the Y
direction in a similar fashion. This set of rounds is followed by left
and right rounds, thereby covering the entire grid. The logic of the
algorithm is depicted in the Figure 3.

3.2 Broadcast

Figure 3: Alltoall Algorithm
Our Broadcast implementation uses the SN of the TilePro64.

The SN is difficult to program and suffers from route setup over-
head. However, message forwarding incurs zero overhead (due to a
static route setup). Since broadcast has a single sender and multiple
receivers, the number of route configurations is low. This was the
motivation behind using SN for the broadcast implementation.

We designed a tree-based algorithm rooted at the task performing
the broadcast. The route setup in the root is such that the message
from the core is sent on its available links. All the tasks in the
same column as the root have their route configured such that they
receive from the root along the Y direction and send the message
along other available links. Tasks in other columns receive along
one X direction and send the message along the other X link.

For example, let the task with rank 5 initiate a broadcast. Then,
its routes are set up to send the message from the core to all the
links. The routes of tasks on cores in column one will be set up
such that they send out the received message along the X and Y
directions. The routes in all the other tasks will be set up in such a
way that they will receive and forward along the X direction. This
results in a broadcast tree as shown in Figure 4.

Figure 4: Broadcast Tree: Static Routes Configuration
The static route of each task is configured inside the Broadcast

call such that the message from the root flows to each leaf task. Our
current implementation requires only a single route configuration
per task.

3.3 Barriers
We utilize 3-ary tree-based barriers that distributes the work

evenly among nodes to minimize the cycle differences upon bar-
rier completion. The root of this tree is placed in the center of
the NoCMsg grid to minimize latency (hops). The process of syn-
chronization involves the children notifying their parents when they
have entered the barrier, up to the root. Once the root has received

notifications from all children, it broadcasts a notification back
down the tree by replying to its children and exits, as do the chil-
dren. Flow control is not needed in the barrier as the prerequisite
of entering into the barrier is that all outstanding sends/receives on
the local core have completed. The synchronization packet is small
enough to fit into the output queue, i.e., the core can drop an entire
synchronization packet into its output queue. It can subsequently
begin a blocking send operation that halts the core’s pipeline until
synchronization packets become available. This technique signifi-
cantly reduces synchronization costs when all cores are ready.

3.4 Reduce and AllReduce
We designed our Reduce collective similar to the barrier. The

reduction operation is performed along the tree. Each child task
sends its partial result upward toward the root. The root reduces the
partial results to obtain the final result. Our current implementation
uses a 3-ary tree rooted at the root of the reduce call.

AllReduce is an extension of Reduce. It is implemented by per-
forming a Reduce relative to the root, followed by a broadcast from
the root to all other tasks in the group.

4. EXPERIMENTAL RESULTS
We evaluated our group communication using micro benchmarks

on the Tilera TilePro64. We compare the performance of our imple-
mentation against OperaMPI, an MPI library specific to the Tilera
platform. Each experiment were conducted multiple times to get
accurate timing results and variance.

4.1 Microbenchmarks
The micro-benchmarks have a single call to the group communi-

cation. In each experiment, we determined the time elapsed in com-
pleting the group communication. The basic template of micro-
benchmark is as shown :
NoCMsg_Init(int argc, char **argv)
.........
NoCMsg_Barrier(NoCMsg_Comm comm)
NoCMsg_Timer_start(int timer_num)
NoCMsg_Bcast(void* buffer, int count,

NoCMsg_Type datatype, int root,
NoCMsg_Comm comm)

NoCMsg_Timer_stop(int timer_num)
..........

The summarized timing results are shown in Table 1 and 2. The
plots in Figure 5,7,8 and 6 are timing results for alltoall, barrier,
broadcast and reduce micro-benchmark respectively.

Table 1: OperaMPI Execution Times [µsec]
Num tasks 4 9 16 25 36 49

Alltoall 69.57 146.29 250 483.71 759.1 2027.4
Barrier 84.57 174.86 398.57 478.29 679.1 1003

Broadcast 76.29 200.14 337.85 657.43 1026.5 1380.4
Reduce 112.86 232.86 477.71 657.4 955.8 1269.5

Table 2: NoCMsg Execution Times [µsec]
Num tasks 4 9 16 25 36 49

Alltoall 32.28 38.86 114.71 221.29 428.43 761.71
Barrier 3.43 4.43 5.71 10.29 14.17 17.29

Broadcast 3 4 4.43 5.57 7.57 9.14
Reduce 12.57 39.43 27.43 46.83 68.17 87.71

The experimental results follow a similar trend. With increase
in number of tasks, the execution time of group communication
increases. In case of Opera, the increase in runtime is significant for
larger number of task. In comparison, our implementation is highly
efficient and increase in runtime is gradual. Our implementation

Figure 5: Timing Results for Alltoall

Figure 6: Timing Results for Reduce
significantly reduced communication time by up to 95% for single
packet messages.

The execution time variance for different micro-benchmark in
case of OperaMPI and NocMsg are shown in Table 4 and 3. The
variance of timing results for our implementation is several order
lower than that of Opera. The difference is significantly large for
Alltoall, Broadcast and Barrier case. The lower variance of our
implementation results in better real-time predictability making our
implementation ideal for real-time applications.

Table 3: NoCMsg Execution Time Variance
Num tasks 4 9 16 25 36 49

Alltoall 0.7 0.4 0.7 5.6 1.3 1.6
Barrier 0.5 0.8 0.4 1.6 1.1 5.6

Broadcast 0 0 0.2 0.24 0.53 0.12
Reduce 11.95 311.39 1.10 183.13 418.13 21.34

Table 4: OperaMPI Execution Time Variance
Num tasks 4 9 16 25 36 49

Alltoall 2.81 983.9 18.2 2276.8 133329.8 622903
Barrier 750.2 302.9 29384.5 1838.2 2910.7 32117

Broadcast 7.3 56.9 259.2 4540.8 3003.7 3869
Reduce 25.2 154.1 19422 4540 12560.9 3725

5. CONCLUSION
We have designed a set of efficient and predictable group com-

munication primitives using message passing utilizing NoC archi-
tectures to improve performance and timing predictability specifi-
cally design for high-confidence real-time systems. Our implemen-
tation of the most commonly used collectives reduced the commu-
nication time over a reference MPI implementation by up to 95%
for single packet messages. Additionally, the variance of execu-
tion times for our implementation is several orders of magnitude
lower than that of the reference MPI implementation, making our
implementation ideal for real-time applications.

Figure 7: Timing Results for Barrier

Figure 8: Timing Results for Broadcast
6. REFERENCES
[1] Single-chip cloud computer.

blogs.intel.com/research/2009/12/sccloudcomp.php.
[2] Tera-scale research prototype: Connecting 80 simple sores on

a single test chip.
ftp://download.intel.com/research/platform/terascale/tera-
scaleresearchprototypebackgrounder.pdf.

[3] Tilera processor family.
www.tilera.com/products/-processors.php.

[4] Florian Brandner and Martin Schoeberl. Static routing in
symmetric real-time network-on-chips. In Proceedings of the
20th International Conference on Real-Time and Network
Systems, RTNS ’12, pages 61–70, New York, NY, USA, 2012.
ACM.

[5] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara
Angskun, Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sahay,
Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine,
Ralph H. Castain, David J. Daniel, Richard L. Graham, and
Timothy S. Woodall. Open MPI: Goals, concept, and design
of a next generation MPI implementation. In European
PVM/MPI Users’ Group Meeting, pages 97–104, September
2004.

[6] Young-Joo Suh and Sudhakar Yalamanchili. All-to-all
communication with minimum start-up costs in 2d/3d tori and
meshes. IEEE Trans. Parallel Distrib. Syst., 9(5):442–458,
May 1998.

[7] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei
Bao, Bruce Edwards, Carl Ramey, Matthew Mattina,
Chyi-Chang Miao, John F. Brown III, and Anant Agarwal.
On-chip interconnection architecture of the tile processor.
IEEE Micro, 27:15–31, 2007.

