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Abstract—Currently, the North American power grid uses a
centralized system to monitor and control wide-area power grid
states. This centralized architecture is becoming a bottleneck as
large numbers of wind and photo-voltaic (PV) generation sources
require real-time monitoring and actuation to ensure sustained
reliability. We have designed and implemented a distributed
storage system, a real-time distributed hash table (DHT), to
store and retrieve this monitoring data as a real-time service
to an upper layer decentralized control system. Our real-time
DHT utilizes the DHT algorithm Chord in a cyclic executive
to schedule data-lookup jobs on distributed storage nodes. We
formally define the pattern of the workload on our real-time DHT
and use queuing theory to stochastically derive the time bound
for response times of these lookup requests. We also define the
quality of service (QoS) metrics of our real-time DHT as the
probability that deadlines of requests can be met. We use the
stochastic model to derive the QoS. An experimental evaluation on
distributed nodes shows that our model is well suited to provide
time bounds for requests following typical workload patterns
and that a prioritized extension can increase the probability of
meeting deadlines for subsequent requests.

I. INTRODUCTION

The North American power grid uses Wide-Area Measure
System (WAMS) technology to monitor and control the state
of the power grid [17], [13]. WAMS increasingly relies on
Phasor Measurement Units (PMUs), which are deployed to
different geographic areas, e.g., the Eastern interconnection
area, to collect real-time power monitoring data per area.
These PMUs periodically send the monitored data to a phasor
data concentrator (PDC) via proprietary Internet backbones.
The PDC monitors and optionally controls the state of the
power grid on the basis of the data. However, the current
state-of-the-art monitoring architecture uses one centralized
PDC to monitor all PMUs. As the number of PMUs is
increasing extremely fast nowadays, the centralized PDC will
soon become a bottleneck [5]. A straight-forward solution is to
distribute multiple PDCs along with PMUs, where each PDC
collects real-time data from only the part of PMUs that the
PDC is in charge of. In this way, the PDC is not the bottleneck
since the number of PMUs for each PDC could be limited and
new PDCs could be deployed to manage new PMUs.

New problems arise with such a distributed PDC architec-
ture. In today’s power grid, real-time control actuation relies
in part on the grid states of multiple areas [16], but with
the new architecture the involved PMUs could be monitored
by different PDCs. The first problem is how to manage the
mapping between PDCs and PMUs so that a PDC can obtain
PMU data from other PDCs. The second problem is how to
communicate between these PDCs so that the real-time bounds
on control operation are still guaranteed. For simplification,
we consider these PDCs as distributed storage nodes over a
wide-area network, where each of them periodically generates
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records as long as the PDC periodically collects data from
the PMUs in that area. Then, the problem becomes how to
obtain these records from the distributed storage system with
real-time bounded response times.

Our idea is to build a distributed hash table (DHT) on these
distributed storage nodes to solve the first problem. Similar
to a single node hash table, a DHT provides put(key, value)
and get(key) API services to upper layer applications. In our
DHT, the data of one PMU are not only stored in the PDC that
manages the PMU, but also in other PDCs that keep redundant
copies according to the distribution resulting from the hash
function and redundancy strategy. DHTs are well suited for
this problem due to their superior scalability, reliability, and
performance over centralized or even tree-based hierarchical
approaches. The performance of the service provided by some
DHT algorithms, e.g., Chord [15] and CAN [18], decreases
only insignificantly while the number of the nodes in an
overlay network increases. However, there is a lack of research
on real-time bounds for these DHT algorithms for end-to-
end response times of requests. Timing analysis is the key to
solve the second problem. On the basis of analysis, we could
provide statistical upper bounds for request times. Without loss
of generality, we use the term lookup request or request to
represent either a put request or a get request, since the core
functionality of DHT algorithms is to look up the node that is
responsible for storing data associated with a given key.

It is difficult to analyze the time to serve a request
without prior information of the workloads on the nodes in
the DHT overlay network. In our research, requests follow
a certain pattern, which makes the analysis concrete. For
example, PMUs periodically send real-time data to PDCs [13]
so that PDCs issue put requests periodically. At the same time,
PDCs need to fetch data from other PDCs to monitor global
power states and control the state of the entire power grid
periodically. Using these patterns of requests, we design a real-
time model to describe the system. Our problem is motivated
by power grid monitoring but our abstract real-time model
provides a generic solution to analyze response times for real-
time applications over networks. We further apply queuing
theory to stochastically analyze the time bounds for requests.
Stochastic approaches may break with traditional views of real-
time systems. However, cyber-physical systems rely on stock
Ethernet networks with enhanced TCP/IP so that soft real-time
models for different QoS notions, such as simplex models [4],
[1], are warranted.

Contributions: We have designed and implemented a real-
time DHT by enhancing the Chord algorithm. Since a sequence
of nodes on the Chord overlay network serve a lookup request,
each node is required to execute one corresponding job. Our
real-time DHT follows a cyclic executive [11], [2] to schedule
these jobs on each node. We analyze the response time of these
sub-request jobs on each node and aggregate them to bound
the end-to-end response time for all requests. We also use a



stochastic model to derive the probability that our real-time
DHT can guarantee deadlines of requests. We issue a request
pattern according to the needs of real-time distributed storage
systems, e.g., power grid systems, on a cluster of workstations
to evaluate our model. In general, we present a methodology
for analyzing the real-time response time of requests served
by multiple nodes on a network. This methodology includes:
1) employing real-time executives on nodes, 2) abstracting a
pattern of requests, and 3) using a stochastic model to analyze
response time bounds under the cyclic executive and the given
request pattern. The real-time executive is not limited to a
cyclic executive. For example, we show that a prioritized
extension can increase the probability of meeting deadlines
for requests that have failed during their first execution. This
work, while originally motivated by novel control methods in
the power grid, generically applies to distributed control of
CPS real-time applications.

The rest of the paper is organized as follows. Section II
presents the design and implementation details of our real-
time DHT. Section III presents our timing analysis and quality
of service model. Section IV presents the evaluation results.
Section V presents the related work. Section VI presents the
conclusion and the on-going part of our research.

II. DESIGN AND IMPLEMENTATION

Our real-time DHT uses the Chord algorithm to locate the
node that stores a given data item. Let us first summarize the
Chord algorithm and characterize the lookup request pattern
(generically and specifically for PMU data requests). After
that, we explain how our DHT implementation uses Chord
and cyclic executives to serve these requests.
A. Chord

Chord provides storage and lookup capabilities of
key/value pairs. Given a particular key, the Chord protocol
locates the node that the key maps to. Chord uses consistent
hashing to assign keys to Chord nodes organized as a ring
network overlay [15], [7]. The consistent hash uses a base
hash function, such as SHA-1, to generate an identifier for
each node by hashing the node’s IP address. When a lookup
request is issued for a given key, the consistent hash uses the
same hash function to encode the key. It then assigns the key to
the first node on the ring whose identifier is equal to or follows
the hash code of that key. This node is called the successor
node of the key, or the target node of the key. Fig. 1 depicts
an example of a Chord ring in the power grid context, which
maps 9 PDCs onto the virtual nodes on the ring (labels in
squares are their identifiers). As a result, PDCs issue requests
to the Chord ring to periodically store and require PMU data
from target PDCs. This solves the first problem that we have
discussed in Section I.

In Chord, it is sufficient to locate the successor node of any
given key by maintaining the nodes in a wrap-around circular
list in which each node has a reference to its successor node.
The lookup request is passed along the list until it encounters
one node whose identifier is smaller than the hash code of
the key but the identifier of the successor node is equal to or
follows the hash code of the key. The successor of the node
is the target node of the given key. Consider Fig. 1. Node N4
locates node N15 as the target node of K14 via intermediate
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Fig. 1: PDC and Chord ring mapping example
TABLE I: Finger table for N4
# start interval forward node
1 5 [5, 6) N7
2 6 [6, 8) N7
3 8 [8, 12) N9
4 12 [12, 20) N12
5 20 [20, 4) N20

nodes N7, N9, N12. However, O(N) messages are required to
find the successor node of a key, where N is the number of
the nodes.

This linear algorithm is not scalable with increasing num-
bers of nodes. In order to reduce the number of intermediate
nodes, Chord maintains a so-called finger table on each node,
which acts as a soft routing table, to decide the next hop
to forward lookup requests to. For example, assuming 5-bit
numbers are used to represent node identifiers in Fig. 1, the
finger table for N4 is given in Table I. Each entry in the table
indicates one routing rule: the next hop for a given key is the
forward node in that entry if the entry interval includes the
key. For example, the next hop for K14 is N12 as 14 is in [12,
20). The interval for the 5th finger is [20, 36), which is [20,
4) as the virtual nodes are organized in a ring (modulo 32). In
general, a finger table has logN entries, where N is the number
of bits of node identifiers. For node k, the start of the ith finger
table entry is k + 2i−1, the interval is [k + 2i−1, k + 2i), and
the forward node is the successor of key k + 2i−1.

To serve a lookup request for a given key, Chord first finds
its predecessor, which is the first node in the counter-clockwise
direction on the ring before the target node of that key, e.g.,
the predecessor of K14 is N12. To find the predecessor, N4
forwards K14 to N12 according to its finger table (shown
as the dotted line in Fig. 1). Next, N12 considers itself the
predecessor of K14 since K14 is between N12 and its successor
N15. Chord returns the successor N15 of the predecessor N12
as the target node of K14. Each message forwarding reduces
the distance to the target node to at least half that of the
previous distance on the ring. Thus, the number of intermediate
nodes per request is at most logN with high probability [15],
which is more scalable than the linear algorithm.

In addition to scalability, Chord tolerates high levels of
churn in the distributed system. which makes it feasible to
provide PMU data with the possibility that some PDC nodes
or network links have failed in the power grid environment.
However, resilience analysis with real-time considerations is
beyond the scope of this paper. Thus, our model in this paper
derives the response times for requests assuming that nodes do
not send messages in the background for resilience purposes.



B. The pattern of requests and jobs

To eventually serve a request, a sequence of nodes are
involved. The node that issues a request is called the initial
node of the request, and other nodes are called subsequent
nodes. In the previous example, N4 is the initial node; N12,
N15 are subsequent nodes. As stated in Section I, requests in
the power grid system follow a certain periodic pattern, which
makes timing analysis feasible. In detail, each node in the
system maintains a list of get and put tasks together with the
period of each task. Each node releases periodic tasks in the
list to issue lookup requests. Once a request is issued, one job
on each node on the way is required to be executed until the
request is eventually served.

Jobs on the initial nodes are periodic, since they are
initiated by periodic real-time tasks. However, jobs on the
subsequent nodes are not necessarily periodic, since they are
driven by the lookup messages sent by other nodes via the
network. The network delay to transmit packets is not always
constant, even through one packet is enough to forward a
request message as the length of PMU data is small in the
power grid system. Thus, the pattern of these subsequent jobs
depends on the node-to-node network delay. With different
conditions of the network delay, we consider two models.

(1) In the first model, the network delay to transmit a
lookup message is constant. Under this assumption, we use pe-
riodic tasks to handle messages sent by other nodes. For exam-
ple, assume node A has a periodic PUT task τ1(0, T1, C1, D1).
We use the notation τ(φ, T, C,D) to specify a periodic task
τ , where φ is its phase, T is the period, C is the worst case
execution time per job, and D is the relative deadline. From
the schedule table for the cyclic executive, the response times
for the jobs of τ1 in a hyperperiod H are known [11]. Assume
two jobs of this task, J1,1 and J1,2, are in one hyperperiod on
node A, with R1,1 and R1,2 as their release times relative to
the beginning of the hyperperiod and W1,1 and W1,2 as the
response times, respectively.

Let the network latency, δ, be constant. The subsequent
message of the job J1,1 is sent to node B at time R1,1+W1,1+
δ. For a sequence of hyperperiods on node A, the jobs to handle
these subsequent messages on node B become a periodic task
τ2(R1,1 +W1,1 + δ,H,C2, D2). The period of the new task is
H as one message of J1,1 is issued per hyperperiod. Similarly,
jobs to handle the messages of J1,2 become another periodic
task τ3(R1,2 +W1,2 + δ,H,C2, D2) on node B.

(2) In the second model, network delay may be variable,
and its distribution can be measured. We use aperiodic jobs
to handle subsequent messages. Our DHT employs a cyclic
executive on each node to schedule the initial periodic jobs and
subsequent aperiodic jobs, as discussed in the next section.

We focus on the second model in this paper since this
model reflects the networking properties of IP-based network
infrastructure. This is also consistent with current trends in
cyber-physical systems to utilize stock Ethernet networks with
TCP/IP enhanced by soft real-time models for different QoS
notions, such as the simplex model [4], [1]. The purely periodic
model is subject to future work as it requires special hardware
and protocols, such as static routing and TDMA to avoid
congestion, to guarantee constant network delay.

C. Job scheduling

Each node in our system employs a cyclic executive to
schedule jobs using a single thread. The schedule table L(k)
indicates which periodic jobs to execute at a specific frame
k in a hyperperiod of F frames. L is calculated offline
from periodic task parameters [11]. Each node has a FIFO
queue of released aperiodic jobs. The cyclic executive first
executes periodic jobs in the current frame. It then executes
the aperiodic jobs (up to a given maximum time allotment for
aperiodic activity, similar to an aperiodic server). If the cyclic
executive finishes all the aperiodic jobs in the queue before the
end of the current frame, it waits for the next timer interrupt.
Algorithm 1 depicts the work of the cyclic executive, where f
is the interval of each frame.

Data: L, aperiodic job queue Q, current job
1 Procedure SCHEDULE
2 current← 0
3 setup timer to interrupt every f time, execute

TIMER_HANDLER when it interrupts
4 while true do
5 current job← L(current)
6 current = (current+ 1)%F
7 if current job 6= nil then
8 execute current job
9 mark current job done

10 end
11 while Q is not empty do
12 current job← remove the head of Q
13 execute current job
14 mark current job done
15 end
16 current job← nil

17 wait for next timer interrupt
18 end
19 Procedure TIMER_HANDLER
20 if current job 6= nil and not done then
21 if current job is periodic then
22 mark the current job failed
23 else
24 save state and push current job back to the

head of Q
25 end
26 end
27 jump to Line 4

Algorithm 1: Pseudocode for the cyclic executive

In addition to jobs that handle request messages, our DHT
uses a task to receive messages from other nodes. The cyclic
executive schedules this receiving task as just another periodic
task. This receiving task periodically moves the messages from
the buffer of the underlying network stack to the aperiodic job
queue. This design avoids the cost of context switches between
the cyclic executive and another thread to receive messages,
which could interrupt the cyclic executive at a random time
whenever a message arrives. As a side effect, messages can
only be scheduled in the next frame affects the periodic
receiving jobs executing. This increases the response times
of aperiodic jobs. Since the frame size is small (in the level
of milliseconds), this delay is acceptable for our application
domain.



TABLE II: Types of Messages passed among nodes
Type 1 Parameters 2 Description
PUT :key:value the initial put request to store (key:value).
PUT DIRECT :ip:port:sid:key:value one node sends to the target node to store (key:value). 3

PUT DONE :sid:ip:port the target node notifies sender of successfully handling the PUT DIRECT.
GET :key the initial get request to get the value for the given key.
GET DIRECT :ip:port:sid:key one node sends to the target node to get the value.
GET DONE :sid:ip:port:value the target node sends the value back as the feed back of the GET DIRECT.
GET FAILED :sid:ip:port the target node has no associated value.
LOOKUP :hashcode:ip:port:sid the sub-lookup message. 4

DESTIN :hashcode:ip:port:sid similar to LOOKUP, but DESTIN message sends to the target node.
LOOKUP DONE :sid:ip:port the target node sends its address back to the initial node.

1 Message types for Chord fix finger and stabilize operations are omitted.
2 One message passed among the nodes consists of its type and the parameters, e.g, PUT:PMU-001:15.
3 (ip:port) is the address of the node that sends the message. Receiver uses it to locate the sender. sid is unique identifier.
4 Nodes use finger tables to determine the node to pass the LOOKUP to. (ip:port) is the address of the request initial node.

D. A Real-time DHT

Our real-time DHT is a combination of Chord and a cyclic
executive to provide predictable response times for requests
following the request pattern. Our DHT adopts Chord’s algo-
rithm to locate the target node for a given key. On the basis of
Chord, our DHT provides two operations: get(key) and put(key,
value), which obtains the paired value with a given key and
puts one pair onto a target node, respectively. Table II describes
the types of messages exchanged among nodes. Algorithm 2
depicts the actions for a node to handle these messages. We
have omitted the details of failure recovery messages such as
fix finger and stabilize in Chord, also implemented as mes-
sages in our DHT. node.operation(parameters) indicates
that the operation with given parameters is executed on a
the remote node, implemented by sending a corresponding
message to this node.

Example: In order to serve the periodic task to get K14
on node N4 in Fig. 1, the cyclic executive on N4 schedules
a periodic job GET periodically, which sends a LOOKUP
message to N12. N12 then sends a DESTIN message to N15
since it determines that N15 is the target node for K14. N15
sends LOOKUP DONE back to the initial node N4. Our
DHT stores the request detail in a buffer on the initial node
and uses a unique identifier (sid) embedded in messages to
identify this request. When N4 receives the LOOKUP DONE
message from the target node, it releases an aperiodic job to
obtain the request detail from the buffer and continues by
sending GET DIRECT to the target node N15 as depicted
in the pseudocode. N15 returns the value to N4 by sending
a GET DONE message back to N4. Now, N4 removes the
request detail from the buffer and the request is completed.

III. ANALYSIS

As a decentralized distributed storage system, the nodes in
our DHT work independently. In this section, we first explain
the model used to analyze the response times of jobs on a
single node. Then, we aggregate these times to bound the end-
to-end time for all requests.
A. Job response time on a single node

Let us first state an example of job patterns on a single
node to illustrate the problem. Let us assume the hyperperiod
of the periodic requests is 30ms, and the periodic receiving
task is executed three times in one hyperperiod at 0ms (the
beginning of the hyperperiod), 10ms, and 20ms, respectively.
The timeline of one hyperperiod can be divided into three slots
according to the period of the receiving task. In every slot, the

cyclic executive utilizes the first 40% of its time to execute
periodic jobs, and the remaining time to execute aperiodic jobs
as long as the aperiodic job queue is not empty. Since aperiodic
jobs are released when the node receives messages from other
nodes, we model the release pattern of aperiodic jobs as a
homogeneous Poisson process with 2ms as the average inter-
arrival time. The execution time is 0.4ms for all aperiodic jobs.
The problem is to analyze response times of these aperiodic
jobs. The response time of an aperiodic job in our model
consists of the time waiting for the receiving task to move
its message to the aperiodic queue, the time waiting for the
executive to initiate the job, and the execution time of the job.

An M/D/1 queuing model [8] is suited to analyze the
response times of aperiodic jobs if these aperiodic jobs are
executed once the executive has finished all periodic jobs in
that time slot. In our model, the aperiodic jobs that arrive at
this node in one time slot could only be scheduled during the
next time slot, as these aperiodic jobs are put into the job queue
only when the receiving task is executed at the beginning of
the next time slot. The generic M/D/1 queuing model cannot
capture this property. We need to derive a modified model.

Formally, Table III includes the notation we use to de-
scribe our model. We also use the same notation without
the subscript for the vector of all values. For example, U is
(U0, U1, . . . , UK), C is (C0, C1, . . . , CM ). In the table, C is
obtained by measurement from the implementation; H,K, ν, U
are known from the schedule table; M is defined in our DHT
algorithm. We explain λ in detail in Section III-B.

Given a time interval of length x and arrivals g in that
interval, the total execution time of aperiodic jobs E(x, g) can
be calculated with Equation 1. Without loss of generality, we
use notation E and E(x) to represent E(x, g).

E(x, g) =
M∑
i=1

Ci ∗ gi with probability
M∏
i=1

P (gi, λi, x) (1)

We further define Ap as the time available to execute aperiodic
jobs in time interval (ν0, νp+1).

Ap =
p∑
i=0

(1− Ui) ∗ (νi+1 − νi), 0 ≤ p ≤ K. (2)

However, the executive runs aperiodic jobs only after
periodic jobs have finished in a frame. We define W (i, E)
as the response time for an aperiodic job workload E if these
jobs are scheduled after the ith receiving job. For 1 ≤ i ≤ K,



1 Procedure GET(key) and PUT(key, value)
2 sid← unique request identifier
3 code← hashcode(key)
4 address← ip and port of this node
5 store the request in the buffer
6 execute LOOKUP(address, sid, code)
7 Procedure LOOKUP(initial-node, sid, hashcode)
8 next← next node for the lookup in the finger table
9 if next = target node then

10 next.DESTIN(initial-node, sid, hashcode)
11 else
12 next.LOOKUP(initial-node, sid, hashcode)
13 end
14 Procedure DESTIN(initial-node, sid, hashcode)
15 address← ip and port of this node
16 initial-node.LOOKUP_DONE(address, sid)
17 Procedure LOOKUP_DONE(target-node, sid)
18 request← find buffered request using sid
19 if request = get then
20 target-node.GET_DIRECT(initial-node, sid,

request.key)
21 else if request = put then
22 target-node.PUT_DIRECT(initial-node, sid,

request.key, request.value)
23 else if request = fix finger then
24 update the finger table
25 end
26 Procedure GET_DIRECT(initial-node, sid, key)
27 address← ip and port of this node
28 value← find value for key in local storage
29 if value = nil then
30 initial-node.GET_FAILED(address, sid)
31 else
32 initial-node.GET_DONE(address, sid, value)
33 end
34 Procedure PUT_DIRECT(initial-node, sid, key, value)
35 address← ip and port of this node
36 store the pair to local storage
37 initial-node.PUT_DONE (address, sid)
38 Procedure PUT_DONE, GET_DONE, GET_FAILED
39 execute the associated operation

Algorithm 2: Pseudocode for message handling jobs

W (i, E) is a function of E calculated from the schedule table
in three cases:

(1) If E ≤ Ai − Ai−1, which means the executive can
use the aperiodic job quota between (νi, νi+1] to finish the
workload, we can use the parameters of the periodic job
schedule in the schedule table to calculate W (i, E).

(2) If ∃p ∈ [i + 1,K] so that E ∈ (Ap−1 − Ai−1, Ap −
Ai−1], which means the executive utilizes all the aperiodic job
quota between (νi, νp) to execute the workload and finishes
the workload at a time between (νp, νp+1), then W (i, E) =
νp − νi +W (p,E −Ap−1 +Ai−1).

(3) In the last case, the workload is finished in the next
hyperperiod. W (i, E) becomes H−νi+W (0, E−AK+Ai−1).
W (0, E) indicates that one can use the aperiodic quota before
the first receiving job to execute the workload. If the first

TABLE III: Notation
Notation Meaning
H hyperperiod
K number of receiving jobs in one hyperperiod
νi time when the ith receiving job is scheduled 1,2

Ui utilization of periodic jobs in time interval (νi, νi+1)
M number of different types of aperiodic jobs
λi average arrival rate of the ith type aperiodic jobs
Ci worst case execution time of the ith type aperiodic jobs
gi number of arrivals of ith aperiodic job
E(x, g) total execution time

for aperiodic jobs that arrive in time interval of length x
W (i, E) response time for aperiodic jobs

if they are scheduled after ith receiving job
P (n, λ, x) probability of n arrivals in time interval of length x,

when arrival is a Poisson process with rate λ
1 νi are relative to the beginning of the current hyperperiod.
2 For convenience, ν0 is defined as the beginning of a hyperperiod, νK+1

is defined as the beginning of next hyperperiod.

receiving job is scheduled at the beginning of the hyperperiod,
this value is the same as W (1, E). In addition, we require that
any workload finishes before the end of the next hyperperiod.
This is accomplished by analyzing the timing of receiving
jobs and ensures that the aperiodic job queue is in the same
state at the beginning of each hyperperiod, i.e., no workload
accumulates from previous hyperperiods (except for the last
hyperperiod).

Let us assume an aperiodic job J of execution time Cm
arrives at time t relative to the beginning of the current
hyperperiod. Let p+ 1 be the index of the receiving job such
that t ∈ [νp, νp+1). We also assume that any aperiodic job that
arrives in this period is put into the aperiodic job queue by
this receiving job. Then, we derive the response time of this
job in different cases.

(1) The periodic jobs that are left over from the previous
hyperperiod and arrive before νp in the current frame cannot
be finished before νp+1. Equation 3 is the formal condition for
this case, in which HLW is the leftover workload from the
previous hyperperiod.

HLW + E(νp)−Ap > 0 (3)

In this case, the executive has to first finish this leftover
workload, then any aperiodic jobs that arrive in the time
period [νp, t), which is E(t − νp), before executing job J .
As a result, the total response time of job J is the time
to wait for the next receiving job at νp+1, which puts J
into the aperiodic queue, and the time to execute aperiodic
the job workload LW (νp) + E(t − νp) + Cm, which is
W (p+1, HLW+E(t)−Ap+Cm), after the (p+1)th receiving
job. The response time of J is expressed in Equation 4.

R(Cm, t) = (νp+1 − t) +
W (p+ 1, HLW + E(t)−Ap + Cm) (4)

(2) In the second case, the periodic jobs that are left over
from the previous hyperperiod and arrive before νp can be
finished before νp+1; the formal condition and the response
time are given by Equations 5 and 6, respectively.

HLW + E(νp) ≤ Ap (5)

R(Cm, t) = (νp+1 − t) +W (p+ 1, E(t− νp) + Cm) (6)

The hyperperiod leftover workload HLW is modeled as
follows. Consider three continuous hyperperiods, H1, H2, H3.
The leftover workload from H2 consists of two parts. The



first part, E(H − νK), is comprised of the aperiodic jobs that
arrive after the last receiving job in H2, as these jobs can
only be scheduled by the first receiving job in H3. The second
part, E(H + νK)− 2AK+1, is the jobs that arrive in H1 and
before the last receiving job in H2. These jobs have not been
scheduled during the entire aperiodic allotment over H1 and
H2. We construct a distribution for HLW in this way. In
addition, we can construct a series of distributions of HLW,
where sequences of hyperperiods with different lengths are
considered. This series converges (after three hyperperiods) to
a distribution subsequently used as the overall HLW distribu-
tion for this workload. However, our evaluation shows that two
previous hyperperiods are sufficient for the request patterns.

This provides the stochastic model R(Cm, t) for the re-
sponse time of an aperiodic job of execution time Cm that
arrives at a specific time t. By sampling t in one hyperperiod,
we have obtained the stochastic model for the response time
of aperiodic jobs that arrive at any time.
B. End-to-end response time analysis

We aggregate the single node response times and network
delays to transmit messages for the end-to-end response time
of requests. The response time of any request consists of
four parts: (1) the response time of the initial periodic job
— this value is known by the schedule table; (2) the total
response time of jobs to handle subsequent lookup messages
on at most logN nodes with high probability [15], where
N is the number of nodes; (3) the response time of ape-
riodic jobs to handle LOOKUP DONE, and the final pair
of messages, e.g., PUT DIRECT and PUT DONE; (4) the
total network delays to transmit these messages. We use a
value δ based on measurements for the network delay, where
P (network delay ≤ δ) ≥ T , for a given threshold T .

To use the single node response time model, we need to
know the values of the model parameters of Table III. With the
above details on requests, we can obtain H,K, v, U from the
schedule table. λ is defined as follows: let T be the period
of the initial request on each node, then N

T new requests
arrive at our DHT in one time unit, and each request issues
at most logN subsequent lookup messages. Let us assume
that hash codes of nodes and keys are randomly located on
the Chord ring, which is of high probability with the SHA-
1 hashing algorithm. Then each node receives logN

T lookup
messages in one time unit. The arrival rate of LOOKUP
and DESTIN messages is logN

T . In addition, each request
eventually generates one LOOKUP DONE message and one
final pair of messages these messages, the arrive rate is 1

T .
C. Quality of service

We define quality of service (QoS) as the probability that
our real-time DHT can guarantee requests to be finished before
their deadlines. Formally, given the relative deadline D of
a request, we use the stochastic model R(Cm, t) for single
node response times and the aggregation model for end-to-end
response times to derive the probability that the end-to-end
response time of the request is equal to or less than D. In this
section, we apply the formula of our model step by step to
explain how to derive this probability in practice.

The probability density function ρ(d,Cm) is defined as
the probability that the single node response time of a job
with execution time Cm is d. We first derive the conditional

density function ρ(d,Cm|t), which is the probability under the
condition that the job arrives at time t, i.e., the probability that
R(Cm, t) = d. Then, we apply the law of total probability to
derive ρ(d,Cm). The conditional density function ρ(d,Cm|t)
is represented as a table of pairs π(ρ, d), where ρ is the
probability that an aperiodic job finishes with response time
d. We apply the algorithms described in Section III-A to build
this table as follows. Let p + 1 be the index of the receiving
job such that t ∈ [νp, νp+1).

(1) We need to know when to apply Equations 4 and
6. This is determined by the probability χ that condition
HLW + E(νp, g) ≤ Ap holds. To calculate χ, we enumerate
job arrival vectors g that have significant probabilities in
time (0, νp) according to the Poisson distribution, and use
Equation 1 to calculate the workload E(νp, g) for each g.
The term significant probability means any probability that is
larger than a given threshold, e.g., 0.0001%. Since the values
of HLW and E(νp, g) are independent, the probability of
a specific pair of HLW and arrival vector g is given by
simply their product. As a result, we build a condition table
CT (g, ρ), in which each row represents a pair of vector g,
which consists of the numbers of aperiodic job arrivals in time
interval (0, νp) under the condition HLW + E(νp, g) ≤ Ap,
and the corresponding probability ρ for that arrival vector.
Then, χ =

∑
ρ is the total probability for that condition.

(2) We construct probability density table π2(ρ, d) for
response times of aperiodic jobs under condition HLW +
E(νp) ≤ Ap. In this case, we enumerate job arrival vectors g
that have significant probabilities in time (0, t− νp) according
to the Poisson distribution. We use Equation 1 to calculate their
workload and Equation 6 to calculate their response time for
each g. Each job arrival vector generates one row in density
table π2.

(3) We construct probability density table π3(ρ, d) for
response times of aperiodic jobs under condition HLW +
E(νp) > Ap. We enumerate job arrival vectors g that have
significant probabilities in time (0, t) according to the Poisson
distribution. We use Equation 4 to calculate response times.
Since time interval (0, t) includes (0, νp), arrival vectors
that are in condition table CT must be excluded from π3,
because rows in CT only represent arrivals that results in
HLW + E(νp) ≤ Ap. We normalize the probabilities of the
remaining rows. By normalizing, we mean multiplying each
probability by a common constant factor, so that the sum of
the probabilities is 1.

(4) We merge the rows in these two density tables to build
the final table for the conditional density function. Before
merging, we need to multiply every probability in table π2
by the weight χ, which indicates the probability that rows in
table π2 are valid. For the same reason, every probability in
table π3 is multiplied by (1− χ).

Now, we apply the law of total probability to derive
ρ(d,Cm) from the conditional density functions by sampling
t in [0, H). The conditional density tables for all samples
are merged into a final density table

∏
(ρ, d). The samples

are uniformly distributed in [0, H) so that conditional density
tables have the same weight during the merge process. After
normalization, table

∏
is the single node response time density

function ρ(d,Cm).

We apply the aggregation rule described in Section III-B
to derive the end-to-end response time density function on the



1 Procedure UNIQUE (π)
2 πdes ← empty table
3 for each row (ρ, d) in π do
4 if row (ρold, d) exists in πdes then
5 ρold ← ρold + ρ
6 else
7 add row (ρ, d) to πdes
8 end
9 end

10 return πdes

11 Procedure SUM (π1, π2)
12 π3 ← empty table
13 for each row (ρ1, d1) in π1 do
14 for each row (ρ2, d2) in π2 do
15 add row (ρ1 ∗ ρ2, d1 + d2) to π3
16 end
17 end
18 return UNIQUE(π3)

Algorithm 3: Density tables operations

basis of ρ(d,Cm). According to the rule, end-to-end response
time includes the response time of the initial periodic job,
network delays, and the total response time of (logN + 3)
aperiodic jobs of different types. In order to represent the
density function of the total response time for these aperiodic
jobs, we define the operation SUM on two density tables π1
and π2 as in Algorithm 3. The resulting density table has one
row (ρ1∗ρ2, d1+d2) for each pair of rows (ρ1, d1) and (ρ2, d2)
from table π1 and π2, respectively. That is, each row in the
result represents one sum of two response times from the two
tables and the probability of the aggregated response times.
The density function of the total response time for (logN +3)
aperiodic jobs is calculated as Equation 7 (SUM on all πi),
where πi is the density function for the ith job.

ρ(d) =
logN+3∑
i=1

πi (7)

The maximum number of rows in density table ρ(d) is
2(logN + 3)Hω, where 2H is the maximum response time
of single node jobs, and ω is the sample rate for arrival time
t that we use to calculate each density table.

Let us return to the QoS metric, i.e., the probability that
a request can be served within a given deadline D. We first
reduce D by the fixed value ∆, which includes the response
time for the initial periodic job and network delays (logN +
3)δ. Then, we aggregate rows in the density function ρ(d) to
calculate this probability P (D −∆).

P (D −∆) =
∑

(ρi,di)∈ρ(d),di≤D−∆

ρi (8)

IV. EVALUATION

We evaluated our real-time DHT on a local cluster with
2000 cores over 120 nodes. Each node features a 2-way SMP
with AMD Opteron 6128 (Magny Core) processors and 8
cores per socket (16 cores per node). Each node has 32GB
DRAM and Gigabit Ethernet (utilized in this study) as well as
Infiniband Interconnect (not used here). We apply workloads
of different intensity according to the needs of the power

grid control system on different numbers of nodes (16 nodes
are utilized in our experiments), which act like PDCs. The
nodes are not synchronized to each other relative to their start
of hyperperiods as such synchronization would be hard to
maintain in a distributed system. We design experiments for
different intensity of workloads and then collect single-node
and end-to-end response times of requests in each experiment.
The intensity of a workload is quantified by the system
utilization under that workload. The utilization is determined
by the number of periodic lookup requests and other periodic
power control related computations. The lookup keys have less
effect on the workload and statistic results as long as they
are evenly stored on the nodes, which has high probability
in Chord. In addition, the utilization of aperiodic jobs is
determined by the number of nodes in the system. The number
of messages passing between nodes increases logarithmically
with the number of nodes, which results in an increase in the
total number of aperiodic jobs. We compare the experimental
results with the results given by our stochastic model for each
workload.

In the third part of this section, we give experimental
results of our extended real-time DHT, in which the cyclic
executive schedules aperiodic jobs based on the priorities of
requests. The results show that most of the requests that have
tight deadlines can be finished at the second trial under the
condition that the executive did not finish the request the first
time around.

A. Low workload
In this experiment, we implement workloads of low uti-

lizations as a cyclic executive schedule. A hyperperiod (30ms)
contains three frames of 10ms, each with a periodic followed
by an aperiodic set of jobs. The periodic jobs include the
receiving job for each frame and the following put/get jobs:
In frame 1, each node schedules a put request followed by
a get request; in frame 2 and 3, each node schedules a
put request, respectively. In each frame, the cyclic executive
schedules a compute job once the periodic jobs in that frame
have been executed. This compute job is to simulate periodic
computations on PDCs for power state estimation, which is
implemented as a tight loop of computation in our experiments.
As a result, the utilizations of periodic jobs in the three frames
are all 40%. Any put/get requests forwarded to other nodes in
the DHT result in aperiodic (remote) jobs. The execution time
of aperiodic jobs is 0.4ms. The system utilization is 66.7%
(40% for periodic jobs and 26.7% for aperiodic jobs) when
the workload is run with 4 DHT nodes.

Results are plotted over 3,000 hyperperiods. Fig. 2 depicts
the single-node response times. The red dots forming a cloud-
like area in the figure are measured response times of jobs.
Since our stochastic model derives a distribution of response
times for jobs arriving at every time instance relative to the
hyperperiod, we depict the mathematical expectation and the
maximum value for each time instance, which are depicted
as blue (in middle of the red clouds) and black (top) lines
in the figure, respectively. The figure shows that messages
sent at the beginning of each frame experience longer delays
before they are handled by corresponding aperiodic jobs with
proportionally higher response times. The reason for this is
that these messages spend more time waiting for the execution
of the next receiving job so that their aperiodic jobs can
be scheduled. The modeled average times (blue/middle of



clouds) follow a proportionally decaying curve delimited by
the respective periodic workload of a frame (4ms) plus the
frame size (10ms) as the upper bound (left side) and just the
periodic workload as the lower bound (right side). The figure
shows that the measured times (red/clouds) closely match this
curve as the average response time for most of the arrival
times.

Maximum modeled times have a more complex pattern.
In the first frame, their response times are bounded by 18ms
for the first 4ms followed by a nearly proportionally decaying
curve (22ms-18ms response time) over the course of the next
6ms. The spike at 4ms is due to servicing requests that arrived
in the first 4ms, including those from the previous hyperperiod.
Similar spikes between frames exist for the same reason,
where their magnitude is given by the density of remaining
aperiodic jobs and the length of the periodic workload, which
also accounts for the near-proportional decay. This results in
aperiodic jobs waiting two frames before they execute when
issued during the second part of each frame.
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Fig. 2: Low-workload single-node response times (4 nodes)
Fig. 3 depicts the cumulative distributions of single-node

response times for aperiodic jobs. The figure shows that 99.3%
of the aperiodic jobs finish within the next frame after they
are released under this workload, i.e., their response times
are bounded by 14.4ms. Our model predicts that 97.8% of
aperiodic jobs finish within the 14.4ms deadline, which is a
good match. In addition, for most of the response times in the
figure, our model predicts that a smaller fraction of aperiodic
jobs finish within the response times than the fraction in the
experimental data as the blue (lower/solid) curve for modeled
response times is below the red (upper/dashed) curve, i.e., the
former effectively provides a lower bound for the latter. This
indicates that our model is conservative for low workloads.
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Fig. 3: Low-workload single-node resp. times distr. (4 nodes)
Fig. 4 depicts the cumulative distributions of end-to-end

response times for requests (left/right two lines for 4/8 nodes),
i.e., the time between a put/get request and its final response
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Fig. 4: Low-workload end-to-end response times distribution
after propagating over multiple hops (nodes) within the DHT.
This figure shows that measured response times for four nodes
have three clusters centered around 35ms, 45ms, and 55ms.
Every cluster has a base response time (about 35ms) due to
the LOOK DONE and the final pair of messages as discussed
in Section III-B. In addition, different clusters indicate that
requests contact different numbers of nodes to eventually serve
the requests. One more intermediate node contacted increases
the response time by around 10ms, which is the average single-
node response time as depicted in Fig. 3. Approximately 10%
of the requests are served without an intermediate node. This
happens when the initial node of a request is also the target
node. In this case, our current DHT implementation sends a
LOOKUP DONE message directly to itself. Our QoS model
considers the worst case where logN nodes are required, which
provides a probabilistic upper bound on response times. In
addition, this figure shows that our QoS model is conservative.
For example, 99.9% of the requests are served within 62ms in
the experiment, while our model indicates a 93.9% coverage
for that response time.

In addition, we evaluate our model with the same request
pattern with 8 DHT nodes. The system utilization becomes
72% as the utilization for aperiodic jobs increases because
of the additional nodes in the DHT. Fig. 4 (right-most lines)
depicts the cumulative distributions of end-to-end response
times for requests. Four clusters of response times are shown
in this figure for our measurements is the black/right stepped
curve. Here, the base value is larger between 40ms and 45ms
as the utilization has increased. One more intermediate node is
contacted for a fraction of requests compared to the previous
experiment with 4 DHT nodes.

B. High workload
In this experiment, we increase the utilization of the work-

loads for the cyclic executive. A hyperperiod (40ms) contains
four frames of 10ms, each with a periodic followed by an
aperiodic set of jobs. The periodic jobs include a receiving
job and two put/get jobs for each frame. Any put/get requests
forwarded to other nodes in the DHT result in aperiodic jobs.
The execution time of aperiodic jobs are 0.4ms. The system
utilization is 88.0% when the workload is run with 8 DHT
nodes, which includes 40% for periodic jobs and 44.0% for
aperiodic jobs.

Fig. 5 depicts the single-node response times. The red
dots/cloud in the figure depict measured response times of
jobs. The blue/within the cloud and black/top lines are the
mathematical expectation and maximum response times for



each sample instance given by our model, respectively. Com-
pared with Fig. 2, a part of the red/cloud area at the end of
each frame, e.g., between 8ms to 10ms for the first frame,
moves up indicating response times larger than 14.4ms. This
is due to a larger fraction of aperiodic jobs during these
time intervals that are scheduled after the next frame (i.e.,
in the third frame) due to the increase of system utilization.
Our model also shows this trend as the tails of blue lines
curve up slightly. Figures 6 and 7 depict the cumulative
distributions of single-node and end-to-end response times
under this workload, respectively. Compared with Figures 3
and 4, the curves for higher utilization move to the right.
This suggests larger response times. Our model provides an
upper bound on response times of 99.9% of all requests. Fig. 7
(right-side/dotted lines) also depicts the cumulative distribution
of end-to-end response times of requests running on 16 DHT
nodes. Our model also provides reliable results for this case
as the curves for the experimental data are slightly above the
curves of our model.
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Fig. 5: High-workload single-node response times (8 nodes)
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Fig. 6: High-workload single-node resp. times distr. (8 nodes)
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Fig. 7: High-workload end-to-end response times distribution

These experiments demonstrate that a stochastic model can
result in highly reliable response times bounds, where the
probability of timely completion can be treated as a quality
of service (QoS) property under our model.

C. Prioritized queue extension

We extend our real-time DHT to use prioritized queues
to schedule aperiodic jobs. Our current stochastic model does
not take prioritized queues into consideration, so we compare
the results with that of the real-time DHT without prioritized
queue for the low workload executed on 4 DHT nodes.

In this extension, the system assigns the lowest priority to
jobs of requests that are released for the first time and sets
a timeout at their deadline. If the system fails to complete
a request before its deadline, it increases the priority of its
next job release until that request is served before its deadline.
To implement this, all the messages for a request inherit
the maximum remaining response time, which is initially the
relative deadline, to indicate the time left for that request to
complete. This time is reduced by the single node response
time (when the aperiodic job for that request is finished) plus
the network delay δ if a request is forwarded to the next
node. When a node receives a message that has no remaining
response time, the node simply drops the message instead of
putting it onto aperiodic job queues. Cyclic executives always
schedule aperiodic jobs with higher priority first (FCFS for the
jobs of same priority).

In the experiment, we set the relative deadline of requests to
55ms, which is the duration within which half of the requests
with two intermediate nodes can be served.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 20  30  40  50  60  70  80

C
u
m

u
la

ti
v
e 

D
is

tr
ib

u
ti

o
n
 F

u
n
ct

io
n

Response Time (ms)

FIFO Queue
Prioritized Queue

Fig. 8: End-to-end response times distribution comparison
The purple/left curve in Fig. 8 depicts the cumulative

distribution of end-to-end response times of requests served
by the prioritized implementation. Requests that require three
intermediate nodes have higher probability to miss the 55ms
relative deadline at first. By increasing the priorities of re-
quests that failed the first time, we observe that prioritized
requests never fail again. As a result of prioritization, the
response times of requests with lower priorities increases. For
example, compared to the red/right curve, which is for the
implementation without prioritized queues (FIFO queues), a
larger proportion of requests have response times between
40ms and 50ms. In addition, requests with response times
in the same cluster (e.g., centered around 45ms) could have
larger numbers of intermediate nodes (hops) in the prioritized
vioson since prioritized requests have smaller response times
per sub-request job.



V. RELATED WORK

Distributed hash tables are well known for their perfor-
mance and scalability for looking up keys on a node that stores
associated values in a distributed environment. Many existing
DHTs use the number of nodes involved in one lookup request
as a metric to measure performance. For example, Chord
and Pastry require O(logN) node traversals using O(logN)
routing tables to locate the target node for some data in a
network of N nodes [15], [19], while D1HT [14] and ZHT [10]
requires a single node traversal at the expense of O(N)
routing tables. However, this level of performance analysis
is not suited for real-time applications, as these applications
require detailed timing information to guarantee time bounds
on lookup requests. In our research, we focus on analyzing
response times of requests by modeling the pattern of job
executions on the nodes.

We build our real-time DHT on the basis of Chord. Each
node maintains a small fraction of information of other nodes
in its soft routing table. Compared with D1HT and ZHT, where
each node maintains the information of all other nodes, Chord
requires less communication overhead to maintain its routing
table when nodes or links have failed in the DHT. Thus, we
believe a Chord-like DHT is more suitable for wide-area power
grid real-time state monitoring as it is more scalable in the
numbers of PDCs and PMUs.

In our timing analysis model, we assume that node-to-node
network latency is bounded. Much of prior research changes
the OSI model to smooth packet streams so as to guarantee
time bounds on communication between nodes in switched
Ethernet [9], [6]. Software-defined networks (SDN), which
allow administration to control traffic flows, are also suited to
control the network delay in a private network [12]. Distributed
power grid control nodes are spread in a wide area, but use a
proprietary Internet backbone to communicate with each other.
Thus, it is feasible to employ SDN technologies to guarantee
network delay bounds in a power grid environment [3].

VI. CONCLUSION

We have designed and implemented a real-time distributed
hash table (DHT) on the basis of Chord to support a deadline-
driven lookup service at upper layer control systems of the
North American power grid. Our real-time DHT employs a
cyclic executive to schedule periodic and aperiodic lookup
jobs. Furthermore, we formalize the pattern of a lookup
workload on our DHT according to the needs of power grid
monitoring and control systems, and use queuing theory to
analyze the stochastic bounds of response times for requests
under that workload. We also derive the QoS model to measure
the probability that the deadlines of requests can be met
by our real-time DHT. Our problem was motivated by the
power grid system but the cyclic executive and the approach
of timing analysis generically applies to distributed storage
systems when requests follow our pattern. Our evaluation
shows that our model is suited to provide an upper bound on
response times and that a prioritized extension can increase
the probability of meeting deadlines for subsequent requests.

Our current analysis does not take node failures into
consideration. With data replication (Chord stores data not only
at the target node but in the nodes on the successor list [15]),
requested data can still be obtained with high probability even

if node failures occur. Failures can be detected when jobs on
one node fail to send messages to other nodes. In this case,
the job searches the finger table again to determine the next
node to send a data request message to, which increases the
execution times of that job. In future work, we will generalize
executions time modeling so that node failures are tolerated.
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