curtSSCHED: Architecture-Independent
Real-Time GPU Scheduling via Statistical
Deferrable Servers

Hao Zhang[OOOO(JfOOO27254170140} and Frank Mueller[()0007(]0027025870294}

Department of Computer Science, North Carolina State University,
Raleigh, NC, United States
hzhang47@ncsu.edu
mueller@cs.ncsu.edu

Abstract. Computation-intensive tasks such as deep neural network
(DNN) training and inference utilize graphics processing units (GPUs)
to accelerate computation. However, when autonomous driving leverages
the DNN model for real-time object detection and on-board continuous
learning simultaneously access the same embedded GPU, the schedul-
ing policy on a GPU is static and cannot be altered, which presents
a problem as their non-preemptive intra-context kernel execution lacks
real-time guarantees. NVIDIA and prior work provide space partitioning
techniques, e.g., Multi-Process Service (MPS) and Multi-Instance GPU
(MIG), for better utilization of GPU resources and asymmetric partition-
ing of streaming multiprocessors (SMs). But MPS requires specific GPU
architecture support (Volta and above) and lacks support for embedded
GPUs such as NVIDIA AGX. MIG pre-allocates partial GPU resources
for instances in predefined coarse ratios but lacks the flexibility required
for fine-grained scheduling. Furthermore, both MPS and MIG also lack
any notion of real-time constraints termed time partitioning.

We present curtSCHED, a real-time scheduling framework based on a
statistical model and a dynamic deferrable server mechanism, which is
task-aware, yet architecture- and application-independent. It provides
real-time guarantees for one class of GPU kernels while supporting best-
effort execution for another class in a transparent manner and with-
out GPU architecture support, non-portable driver modifications or even
changes to the application binaries. This capability is demonstrated for
a combination of real-time inference and best-effort continual learning
tasks in an autonomous driving scenario. We demonstrate the ability
to characterize the execution behavior of kernels execution time via
model prediction for a workload that is itself composed of DNN kernels
in the profiling and learning phase, which is subsequently leveraged by
curtSCHED to ensure deadlines of GPU kernels with real-time priority
during the online scheduling phase. A curtSCHED prototype has been
implemented to control GPU execution from the CPU-triggered invoca-
tions of kernels. We also investigate the root cause of abnormally long
execution times and solve this problem on the CPU side. Experiments
show that jobs of real-time tasks meet their deadlines with negligible
utilization overhead on CPU, GPU and overall application execution.

1 Introduction

GPUs are increasingly used in practice for accelerating computational kernels
ranging from numerical kernels to machine learning (ML) algorithms. Recently,
such GPU acceleration has also been exploited under real-time constraints, such
as autonomous driving (AD). However, GPUs are inherently hardware-controlled
with non-preemptive kernel execution, which is a mismatch to preemptively
scheduled task sets under real-time static priority or dynamic deadline schedul-
ing. This work tries to bridge this divide between non-preemptive GPU kernels
and preemptive CPU scheduling generically for GPU kernels, which is demon-
strated specifically for real-time tasks related to AD.

AD relies significantly on perception with the objective of understanding the
surroundings by detecting and tracking objects in everyday driving scenarios.
The faster and more accurate information the AD system obtains from a per-
ception subsystem, the safer and more comfortable AD can be. Perception is an
ML concept based on DNNs integrated as a subsystem of the onboard self-driving
system. For example, Intel Mobileye [26], NVIDIA Drive OS [11], Volkswagen
and Daimler VWOS [36], Tesla AutoPilot [4], and Comma.ai openpilot [29] all
integrate perception in their AD systems and leverage the on-vehicle accelera-
tion, mostly via GPUs, to process large real-time sensing data, such as camera
images (2D pixel arrays) and Lidar (Light Detection and Ranging) images (3D
point coordinates).

GPUs, initially developed for video editing and gaming, have become widely
utilized for ML applications. NVIDIA offers the Jetson product line, specifically
designed for embedded or edge devices, delivering substantial computational
power while maintaining low energy consumption. E.g., the Jetson Orin delivers
200 trillion operations per second (TOPS) while consuming only 40W.

The training (aka. learning) and inference tasks involved in perception for
AD are highly computationally intensive. Perception DNN models require a mas-
sive amount of parallel calculations, such as convolution, multiplication, and
other matrix-based arithmetic computations. Model training is typically per-
formed in cloud data centers using a cluster of high-end GPUs, such as NVIDIA
A100/H100 devices, over days or even weeks. Once trained, these inference mod-
els are deployed on vehicular devices to enable AD. Models periodically receive
over-the-air (OTA) updates via cellular networks every few months as training
is repeated with additional real-world scenarios. However, these updates can lag
behind, leaving gaps in handling newly encountered challenges.

An alternative to late OTA updates would be to enable on-board self-driving
systems to learn from “near-mistakes” with current hardware capabilities via
“continual learning” (CL). For example, by reviewing image frames prior to a
near-mistake that led to a hard braking action, a self-driving car could learn
roadside features associated with similar scenarios much sooner (within minutes
or hours), such that repeated mistakes can be avoided when entering the same
intersection on consecutive days. The benefit of continual on-board learning is
apparent. Instead of waiting for periodic OTA updates from the cloud, the con-

tinually learned model improves its handling of similar driving scenarios with
much shorter turn-around time.

At first glance, it appears practical to perform training tasks on-board, given
that the volume of data required for learning is significantly smaller than the vast
datasets used for training with GPU clusters (tens of images versus hundreds
of thousands). Additionally, these training tasks are not time critical, meaning
that best-effort completion is sufficient, with model updates occurring within
minutes or hours. However, due to the nature of DNN-based training, which
involves forward and backward propagation, as well as data augmentation, con-
tinual learning is inherently far more computationally intensive than any online
inference task. Moreover, inference tasks are subject to stringent real-time con-
straints, where missing a deadline could lead to severe consequences, including
accidents that may result in damage or even loss of life. For instance, if an ob-
ject detector fails to recognize a pedestrian in time, serious bodily injury could
occur. Furthermore, when CL and real-time inference share the same GPU, a
training kernel could interfere with and delay the real-time inference kernel, com-
promising the vehicle’s ability to detect objects promptly. Hence, the deadline
of real-time tasks executing on GPUs cannot be guaranteed when non real-time
tasks also use the same GPU.

To address the challenge of scheduling mixed real-time and best-effort GPU
tasks, we present curtSCHED, a statistical model-based runtime scheduling
framework that supports mixed real-time and background (non real-time) ex-
ecution of GPU kernels with only minimal software modifications. We propose
a time-partitioning model for GPU sharing, grounded in real-time scheduling
theory, that offers finer granularity and higher precision than existing GPU real-
time scheduling approaches. We further demonstrate curtSCHED for real-time
inference and online CL tasks in AD. curt SCHED guarantees that inference tasks
meet their real-time constraints while the CL tasks make best-effort progress,
even for scenarios where only one kernel executes on a GPU at a time. The
key idea is to divide kernel execution into two phases. During the first phase,
a statistical model is leveraged to automatically “learn” the execution time of
kernels at a low-level CUDA driver interface, which is demonstrated for DNN
execution profiled on a commodity GPU. curtSCHED enables kernel-specific ex-
ecution time profiling, which covers forward and the backward propagation of
a DNN. The second phase features online GPU sharing between real-time and
background kernels, i.e., inference and training tasks in our running example.
Our proposed priority scheduling policy is based on slack management to guar-
antee a lower bound for inference speed. Experimental results show that our
framework is GPU architecture independent. With its profile-based timing anal-
ysis, inference tasks meet their deadlines while training tasks progress in their
training. In this approach, we retain the original DNN architecture, i.e., do not
apply pruning, dropout shortcuts, weights approximation, or any other tech-
niques to modify inference. Hence, our method does not suffer from performance
accuracy trade-offs, i.e., the original inference tasks remain unaffected.

Contributions: First, to the best of our knowledge, this is the first model-
based time-partitioning scheduling at the kernel invocation level, designed specif-
ically for real-time AD tasks concurrently accessing a single GPU. Second, we
develop a technique employing a statistical model capable of dynamically pre-
dicting kernel execution times, which are managed by the low-level CUDA driver.
Third, our framework is applicable to arbitrary applications and even closed-
source GPU software stacks, as it neither requires support from the hardware nor
relies on non-portable modifications of GPU drivers, in contrast to prior work.
In fact, not even application changes are required. We implement curtSCHED
based on C/C++ and ELF (executable and linkable format) binary intercep-
tion to conduct an extensive evaluation on various GPU architectures. Fourth,
we investigate the root cause of abnormally long end-to-end kernel execution
times and solve this problem by leveraging CPU-side memory pools. Lastly, we
perform a comprehensive evaluation of state-of-the-art space-partitioning tech-
niques for GPUs [7]. The results demonstrate that our framework successfully
meets real-time constraints with a guarantee rate of 99.85%. In contrast, the
related work achieved only a 98.4% success rate, corresponding to a frame-drop
rate of 1.6% for object detection tasks.

2 Related Work

Several methods for GPU sharing among concurrent applications have been ex-
plored by multiplexing multiple kernels either temporally [19,32,31,38,2] or
spatially [3, 30,20, 40,27, 7]. Such techniques have been also applied for multi-
DNN workloads [42, 41, 46]. Cusched [33] proposes hardware extensions to Kepler-
like GPUs by adding thread-block—level preemption and in-GPU schedulers
(FCFS, priority queues, token) to enable concurrent multi-process execution
and improve throughput /fairness in multiprogramming settings. In contrast, our
curtSCHED is a user-space framework that intercepts cuLaunchKernel() calls,
predicts per-kernel runtimes, and enforces real-time guarantees via a deferrable
server—without hardware or driver changes—whereas CUsched even frames soft-
RT only through hardware preemption at thread-block granularity.

GPU scheduling problem for real-time tasks has been explored with different
solutions. Fractional GPUs [14] proposes a software-based mechanism to allow
multiple applications to run in parallel on a single GPU while still maintaining
isolation by space partitioning compute and memory resource among these ap-
plications. In this way, memory interference among applications is reduced and
runtime predictability is increased for the real-time application. Another ap-
proach [28] is to reverse engineer the closed scheduling mechanisms deployed in
NVIDIA GPUs to infer the scheduling hierarchy of GPUs by analyzing runtime
resource occupation, which enables schedulability for latency-sensitive applica-
tions. Applying dynamic scheduling (EDF) enables preemption on GPU but
requires non-portable NVIDIA driver modifications [9].

Another approach is to adapt the DNN application to meet real-time con-
straints. Kang et al. [18] propose a fine-grained resource allocation model that

schedules the DNN task at the level of layers on both CPUs and GPUs. It com-
promises on bit accuracy to speed up processing time of the DNN task on the
CPU. To meet a deadline, Subflow [21] dynamically drops neurons within the
DNN to reduce the volume of the computation, thereby completing the DNN
task in time. Jiang et al. [15] present a flexible framework for high-resolution
object detection on edge devices. This framework splits the image into disjoint
areas and applies different object detection models to associated partitions. How-
ever, this incurs high memory consumption when multiple DNN models need to
be loaded. Furthermore, the fast but reduced accuracy model to meet timing
constraints compromises inference accuracy. Hence, this approach is not suit-
able for the autonomous driving platforms where on-board resources are limited
and safety cannot be compromised. Kang et al. [17] also split the DNN task,
but unlike [15], they divide the task into subtasks with different safety crit-
ical levels and schedule these subtasks based on priority levels. All of these,
including [13], sacrifice accuracy to meet timing constraints of real-time tasks
by modify the DNN application. In contrast, our work retains the original DNN
architecture/application code without loss of accuracy for inference tasks while
ensuring that online training tasks make progress.

Han et al [12] leverage the idempotency of DNN kernel calls, i.e., a DNN call
for some input produces the same output if called repeatedly without any side
effects on global state. They devise a preemption scheme that launches a real-
time kernel on the GPU, which aborts a currently running GPU kernel mid way
and reissues the aborted one at a later time. However, this mechanism requires
patches on the binary representation of the GPU driver, i.e., it is not portable
across driver versions and across different hardware generations. Furthermore,
it incurs overhead when stopping the kernel execution mid way. In contrast, our
approach does not require any software or driver modifications, nor application
changes, and is not constrained by idempotency of kernels.

Yi et al. [43] design a pseudo-preemption mechanism on a single GPU for
concurrent DNN-based augmented reality (AR) applications. RT-mDL [24] is
a framework to support mixed real-time deep learning (DL) tasks on edge plat-
forms with heterogeneous CPU and GPU resources. It scales down DL models
to reduce small storage cost, which enables fast detection of traffic sign classes
but loses 1.7% accuracy. Both works’ scheduling unit is layer-wise or partitions
the DNN. In contrast, we schedule at the granularity of kernel functions, which
is application independent, i.e., generalizes beyond DNNs. Prior works [43, 24]
aim at scheduling multiple DNN inference tasks combined with offloading partial
workloads to CPU cores, while our work targets computationally more demand-
ing online DNN training combined with real-time inference. The training time
on each image is typically 5X longer than that of inference [45].

Continual Learning as a Background Workload As continual learning
(CL) gains momentum in deep learning, its industrial and real-world appli-
cations, including autonomous driving (AD), are being actively explored. For
object detection, [45] investigates online, on-vehicle CL and proposes an ML ar-

chitecture tailored to AD. For perception beyond detection, [16] adapts seman-
tic segmentation to a CL setup and evaluates it on the CLAD benchmark [35].
Additional AD use cases studied under a CL paradigm include road-surface clas-
sification [10], velocity control [39], and traffic forecasting [34]. Complementary
work such as [45] further explores continual adaptation in AD settings.

These contributions develop CL algorithms and pipelines. However, they are
largely orthogonal to our focus on runtime predictability when CL (treated here
as a best-effort, event-driven workload) shares a single GPU with real-time per-
ception. curtSCHED addresses this systems problem via kernel-level intercep-
tion, execution-time prediction, and a deferrable-server policy for time parti-
tioning.

PipeSwitch [5] leverages the layering structure of DNN models with its layer-
by-layer computation pattern to pipeline model transmission over the PCle bus
by executing and tasks on the GPU. This work aims to improve the GPU clus-
ter utilization and reduce the context switch overhead of multiple DNN appli-
cations (learning and inference). Yet, it lacks support for real-time constraints
of DNN tasks on GPUs, which is required by real-time inference and, in our
case, combined with online learning on board a self-driving vehicle. Prophet [25]
proposes a timing model on per-image processing granularity and coordinates
multiple DNN tasks (object and lane detection) to estimate real-time perception
execution time. The timing information is profiled per DNN layer and requires
application adaption.

3 Background and Motivation

Orin Ampere GPU

] GPC

TPC TPC TPC TPC
SM

i
|
|

SM SM

>
n
o
=

SM

SM SM SM SM
192KB L1 192KB L1 192KB L1 192KB L1

>
n)
o
=

= .

I I Stream Scheduler é’ 192KB L1 192KB L1 192KB L1 192KB L1

I|:|| _aca SM SM SM SM
ol 1 I ,—lﬁ_' S 192KB L1 192KB L1 192KB L1 192KB L1
E| N —| ¥

I I block % GPC

il:h § TPC TPC TPC TPC

o
[=
|

r
|

|

SM SM SM SM
192KB L1 192KB L1 192KB L1 192KB L1

4MB L2 cache

Fig.1: AGX Orin Ampere Scheduling Hierarchy

3.1 Non-preemptive and Black-box Scheduling on GPUs

A GPU kernel, once invoked, is executed non-preemptively until completion.
Stream priorities via CUDA library API cudaStreamCreateWithPriority() do
not enable true preemption of running kernels (e.g., forcibly interrupt a kernel
mid-execution). The related work [44] establishes a scheduling order for multiple
jobs by suspending execution at warp boundaries with block execution. It cannot
support runtime interruption due to lack of hardware support, i.e., their tech-
nique is non-preemptive up to warp execution and will incur sometimes shorter,
sometimes longer delays until a long-latency memory reference is encountered.
This is a mismatch for contemporary preemptive real-time scheduling policies.
While there is research focused on enabling preemption on GPUs [9] to sup-
port dynamic priority task scheduling or non-preemption GPU execution [19]
to support static priority, these works are either poised by proprietary code re-
strictions, or they require an open-source driver or a modified proprietary GPU
driver, generally without vendor support and guaranteed support for future soft-
ware releases.

Scheduling in NVIDIA GPUs is a hierarchical arbitration mechanism. We
use the latest embedded GPU platform AGX Orin as an example to illustrate
GPU scheduling. This Ampere GPU consists of two Graphic Processing Clusters
(GPCs), eight Texture Processing Clusters (TPCs), 16 Streaming Multiproces-
sors (SMs), 192 KB of L1-cache per SM, and 4 MB of L2 Cache. There are 128
CUDA cores per SM. As shown in Figure 1, from left to right, the hierarchi-
cal order involves an application scheduler, stream scheduler, and thread block
scheduler. The application scheduler is at the top of the hierarchy. A detailed
description of the scheduling policy at the highest level of the GPU arbitration
mechanism has been presented in [9]. The remaining schedulers including the
warp scheduler are at the level of the GPU firmware or hardware. At the driver-
level, each application seeking GPU resources opens a number of channels, which
are inserted in a ready queue. Each entry in the ready queue is characterized by
a timeslice length and a priority value. This mechanism is work-conserving using
TDMA (Time Division Multiple Access) among channels, where each channel
can be assigned multiple slots within the queue, according to its priority value,
thus shaping the sequence of slots for the TDMA round.

However, how these firmware schedulers divide application streams, arrange
execution orders, and execute on the warp is not open sourced and remain en-
tirely proprietary. Previous research work [28,1] has unveiled some underlying
details by performing black-box testing with GPU micro benchmarks, e.g., in-
dicating that the stream scheduler is in the FIFO queue based on the stream
operation submission time.

The characteristics of the stream scheduler provide the opportunity of break-
ing down CUDA operations as scheduling units before sending them to the GPU.
CUDA’s API is divided into two layers: the high-level runtime API and the low-
level driver API. Both are in user space and provide an interface for managing
the GPU. The low-level driver API interprets the high-level runtime API, sub-
divides the kernel defined in the runtime API, and launches kernel execution on

the GPU. The crux of the problem is to find a portable mechanism that allows
us to schedule the execution order of low-level APIs on the CPU before it is sent
to the FIFO queue of the stream scheduler on GPU, which is beyond user/CPU
host control.

3.2 Background Workloads Sharing the GPU (Case: Continual
Learning)

Many deployments co-locate non-real-time background workloads on the same
GPU as real-time (RT) perception or control. Examples include continual /training-
style updates, mapping/SLAM back-ends, data compression, or batch analytics.
In our case study, continual learning (CL) is representative as it is event-driven,
compute-intensive (forward+backward passes, augmentation), and lacks hard
deadlines, which fits the best-effort (BE) class. Prior work has surveyed CL
methods [37], but the specifics of catastrophic forgetting are orthogonal to our
contribution.

The key systems problem is concurrency on a single GPU: BE kernels
can delay RT kernels absent explicit time partitioning and priority control. This
motivates curtSCHED’s design (Section 4): intercept kernel launches, predict
per-call execution time, and allocate BE work only within slack via a deferrable
server, which preserves RT guarantees while allowing BE progress. We evaluate
this with CL as one BE instance (Section 5), but the mechanism applies to any
BE workload sharing the GPU.

4 Design and Implementation

4.1 curtSCHED Design

The goal of curtSCHED is to provide a generic, application-agnostic GPU schedul-
ing framework capable of enforcing real-time guarantees for selected tasks while

ensuring best-effort progress for others. The framework operates entirely in user

space and requires no modifications to GPU hardware, firmware, or driver bina-

ries. While our evaluation in Section 5 uses an autonomous driving (AD) scenario

as a case study, the underlying mechanisms apply to any CUDA-based workload

that launches GPU kernels through the CUDA driver API.

Figure 2 illustrates the high-level architecture of curtSCHED, and Figure 3
shows its anchoring point in the GPU driver layer. Regardless of the applica-
tion, all CUDA kernels are ultimately launched through the driver-level function
cuLaunchKernel (). curtSCHED intercepts these calls in user space, without
modifying application binaries, GPU drivers, or hardware.

curt SCHED operates in two distinct phases: Profiling €& Model Fitting and
Online Scheduling. In the first phase, only the timing model is enabled, learning
GPU kernel execution times from collected data samples. In the second phase, the
real-time scheduler and deferrable server leverage the timing model’s predictions
to schedule multiple RT and BE jobs. Upon interception, the framework extracts

Job 3] [Job3] . Real time task

[
{ |:| Best effort task
Timing Defer
[RTScheduler] [Model] [Server]

\ cuSched Framework /

time

scheduling frame

Fig.2: curtSCHED: A Statistical Model-driven Deferrable Server-based GPU
scheduling framework

a kernel call signature (function ID, launch configuration, parameters) and passes
it to the timing model. In Phase 1, the recorded execution time is used as ground
truth for model training. In Phase 2, the execution time is predicted by the timing
model. The scheduler then decides whether to

1. launch RT kernels immediately based on priority, and to

2. place BE kernels in a deferrable server queue before dispatching them if the
remaining execution budget in the current frame can accommodate their
predicted runtime.

This design offers several benefits. First, fine-grained scheduling at the kernel-
call level maximizes GPU utilization and reduces the probability of RT deadline
misses. Second, the interception mechanism applies uniformly to all CUDA ap-
plications and libraries (e.g., cuDNN) without requiring application source code
changes, which makes the framework entirely application-independent. Third,
the design is portable across GPU architectures and does not require architecture-
specific features or driver modifications [3]|. Finally, because all logic resides on
the CPU side, curtSCHED imposes negligible GPU overhead. The CPU-side in-
terception adds only minimal CPU cycles per kernel launch, which remain fully
preemptive under the host OS scheduler.

4.2 Task Model and Scheduling:

curtSCHED adopts a mixed workload model of periodic real-time (RT) tasks and
aperiodic best-effort (BE) tasks. This model supports multiple tasks requesting

DNN Inference task (RT) DNN learning task (BE)

CUDA Runtime / CuDNN APIs

cudnnCovlutionforward()
cudnnConvlutionbackward()
axpy<<<m, n, k>>>(args)

CUDA Driver APIs

cuLaunchKernel (scal_kernel, %, y, z)
cuLaunchKernel (gemm, x, v, z)

culaunchKernel
(cudnn_dgrad_engine)

Intercept low-level CUDA driver calls
culaunchKernel (func, input size, problem size)

Schedule calls based on task type

GPU device

Fig. 3: curtSCHED interception workflow for DNN Tasks

concurrent access to the GPU and is generic to many domains. Our evaluation
(Section 5) uses an autonomous driving (AD) scenario as a case study.

A periodic RT task T; is defined by the tuple (p;, e;, d;), where p; is the period,
e; is the worst-case execution time (WCET), and d; is the relative deadline. An
execution instance of T; is denoted as job j;. In contrast, BE tasks are aperiodic
(non-real-time) and have no fixed period or strict deadline. They are triggered
by events such as the availability of new data for processing.

Time is divided into frames following the cyclic executive model [6], adapted
here for GPU kernel scheduling. In a cyclic executive, the system operates in a
repeating sequence of fixed-length time slots, with each job assigned a specific
slot. Scheduling decisions are made only at frame boundaries, so there is no
preemption within a frame.

As shown in the top half of Figure 4, in the theoretical model the RT tasks
(blue) Ty and Ty are released periodically, and the deferrable server task T
(orange) reserves a portion of the frame’s execution budget for BE tasks. Multiple
BE jobs can share the reserved bandwidth within the frame. The bottom half of
Figure 4 illustrates a real-world execution trace, where kernel execution times
vary between invocations.

The frame size f must be large enough so that every job can start and
complete within the frame, yet small enough to keep the schedule table compact.
As per [6], f should satisfy:

2f —ged(ps, f) < D;. (1)

In our case study, to meet a 30 FPS RT requirement, the frame size is set
to 1/30s (=~ 33.3ms). The schedule is static and clock-driven, i.e., RT jobs are
released and scheduled at fixed times regardless of events.

At runtime, synchronization ensures orderly GPU access. Each RT job pro-
cesses one data unit (e.g., an image) per period. RT jobs are always given priority
to guarantee deadlines, and any slack time within the frame is used to execute
BE jobs from the aperiodic queue via the deferrable server. This design assumes
that GPU capacity is sufficient to meet RT demand in isolation. Under this
assumption, executing RT jobs first in each frame ensures their deadlines are
met (see Equation 3). In practice, actual execution times vary between kernel
invocations, even for the same kernel signature, due to runtime factors such as
GPU memory contention. The next section describes how curt SCHED addresses
this variability.

Theoretical

T‘I(S: 1! 3)
T,4(5, 2, 4)
AN
TS{S, 1} time
Realworld
h [11111
Real-time time
Aperiodic job Q |:| Deferrable server

Fig. 4: Theoretical vs. real world scheduling

In our autonomous driving case study, we instantiate the task model with
two real-time tasks of different criticality levels. Task T (RT_high) performs
detection of vehicles and vulnerable road users (VRUs) including pedestrians
and cyclists, while task 7o (RT_low) handles traffic sign recognition. Given
that collision avoidance is more time-critical than sign recognition for immediate
safety, T} is assigned higher priority (P; > P,). This priority ordering aligns with
the ASIL (Automotive Safety Integrity Level) requirements in ISO 26262, where
VRU detection typically requires ASIL-D (highest) while traffic sign recognition
may be classified as ASIL-B. Both tasks must meet their respective deadlines

Dy and D5 within each frame period, with Time-Demand Analysis (Equation 3)
ensuring schedulability under the fixed-priority scheme.

4.3 Two-Phased Framework

Having established the task model and scheduling constraints in Section 4.2, we
now describe how curtSCHED implements its two-phased approach to enforce
these real-time guarantees. curtSCHED divides kernel execution interception
into two distinct phases: (1) Profiling & Model Fitting and (2) Online Scheduling.
In the first phase, the framework collects and summarizes GPU kernel execution
times as descriptive statistics. From these collected samples, a statistical model
learns to predict execution times for individual kernel calls at the low-level CUDA
driver interface. Profiling is performed on a per-kernel call signature basis, which
includes the caller’s address and launch parameters (e.g., grid/block dimensions,
shared memory usage, and problem size). This allows curtSCHED to distinguish
between calls to the same kernel with different characteristics and to associate
each with its own profiling record.

In the second phase, curtSCHED uses the trained model to make per-call
execution time predictions and schedules tasks based on priority and available
execution budget. Real-time (RT) kernels are guaranteed precedence, while best-
effort (BE) kernels are dispatched only if their predicted runtime fits within
the current frame’s remaining budget. The real-time priority policy ensures a
bounded interference from background execution.

The mode switch, illustrated in Figure 2, enables the timing model only dur-
ing the profiling phase, while all modules (including the scheduler and deferrable
server) are enabled in the online phase.

First Phase: Profiling & Model Fitting The framework records execution
times of intercepted cuLaunchKernel () calls for each unique call signature and
summarizes these in a fixed-size sliding window. Continuous operation could
generate unbounded memory requirements for timing data and impose significant
CPU overhead for statistical updates. cart SCHED addresses this by maintaining
a rolling set of samples using a sliding window with an LRU replacement policy.
When the window is full, the oldest sample is removed to accommodate the
newest one. Within each window, the framework tracks

— minimum and maximum execution times,
— rolling mean and variance, and
— histogram of observed times.

Each profiling sample records the tuple (f, gx, gy, gz, bx, by, bz, t), where
f identifies the intercepted low-level kernel function, (gx, gy, gz) and (bx, by,
bz) represent the grid and block dimensions respectively, and t is the measured
execution time in microseconds. For instance, profiling Yolo yields samples such
as (scale_kernel, 512, 22, 1, 201, 1, 1, 32), (upsample kernel, 512, 57, 1, 241,
1, 1, 1444), and (add_bias_kernel, 512, 21, 1, 344, 1, 1, 361), where the final

value represents execution time. The multiple linear regression (MLR) model
treats the first seven components as feature vectors and learns the mapping to
execution time, enabling runtime prediction for scheduling decisions in the online
phase.

Profiling data are stored in an in-memory hash map with O(1) access time
cost. The primary table maps a kernel function ID to a secondary table keyed
by launch parameters, which holds the associated timing statistics. Within each
histogram bin, a binary search tree (BST) stores the samples in sorted order,
enabling efficient calculation of confidence intervals during scheduling.

Once sufficient samples are collected, curtSCHED fits a MLR model,

y260+51$1+"'+5n$n+67 ENN(0702)7

where the z; are feature vectors derived from the kernel call signature and prob-
lem dimensions. The training process takes only seconds on modern CPUs, as
the model complexity is intentionally kept low for runtime efficiency. The trained
model is then serialized and loaded during system initialization for the online
phase. The fitted model provides execution time predictions with configurable
confidence bounds.

Second Phase: Online Scheduling The online phase uses the timing model
to drive a deferrable server [22] for BE task execution while preserving RT dead-
lines. The deferrable server maintains a replenishable execution budget per frame
for BE jobs without impacting the schedulability of RT jobs.

When a BE job reaches the head of its queue, curtSCHED

1. retrieves the predicted execution time from the model,
2. compares it to the remaining budget in the current frame, and
3. executes the job if it fits; otherwise, defers it to the next frame.

The prediction interval at confidence level (1 —) is

§Etsar - se/ 1+ x5 (XTX) 1xq, 2)

where ta g is the {-distribution critical value, s. is the standard error, df =
N —n—1,and xo = [1,21,22,...,7,]7.

When the deferrable server has the lowest priority in a fixed-priority system,
higher-priority RT tasks are unaffected. The Time-Demand Analysis (TDA) for

an RT task T; is
t
Wilt)=ei+ Y. [w ej, (3)
jenp(i) | P
where e; is the WCET of T;, HP(¢) is the set of higher-priority tasks, and p;
and e; are the period and WCET of a higher-priority task ;. TDA ensures

schedulability for all RT tasks under the assumption that GPU capacity meets
their demand.

Algorithm 1 deferrable server thread vs. main thread

procedure DEFERRABLE SERVER procedure cURTSCHED(Task _ Type, func__args)
while true do if Task Type = Higher RT then
Lock defer_mutex while —turn_ for _high do
Wait on defer_cond with defer_mutex Wait on rt_sem
held REAL _CULAUNCHKERNEL(func_args)
while defer queue is not empty do high done + 1 -
args <— DEQUEUE(defer queue) turn_ for high < 0
if time_remaining > Post 7t sem
model_predict(args) then else if Task Type = Lower RT then
REAL cULAUNCHKERNEL(args) while turn for high do
defer_queue.pop() Wait on 7t sem
else -

REAL _CULAUNCHKERNEL(func_args)
low _done <+ 1
turn_for _high + 1
Post rt_sem
elseBest Ef fort
Lock defer _mutex
while QUEUE _1s_ FuLL(defer _queue) do
Wait on defer _cond with
defer mutex held
ENQUEUE(defer _queue, func_ args)
Unlock defer mutex
if high done A low _done then
high _done < 0

Wait on defer_cond with
defer_mutex held
Unlock defer_mutex

curtSCHED.config:

mode <— model train | schedule low _done <+ 0

period % second L’ock defer_vmutez

real time task ids + RT THREAD time _remaining <— GET _FRAME__IDLE
best effort task ids < BE THREAD Broadcast defer_cond

confidence < 0.95 - Unlock defer mutex

CFP + CFP on GPU wait _for _next_frame < 0

In the case study, inference tasks (RT) always take precedence over train-
ing tasks (BE). This priority assignment reflects the safety-critical nature of
real-time perception, while training proceeds only when spare GPU capacity is
available.

4.4 Implementation

We utilize synchronization to control and coordinate concurrent accesses from
disjoint tasks to the GPU and employ a frame-based schedule to accommodate
the non-preemptive execution of GPU kernels. As shown in Algorithm 1, for each
frame in our schedule, an intercepted low-level CUDA kernel call corresponding
to any real-time or best-effort job (e.g., the CL training thread) is being blocked
at the kernel level. Any higher priority RT job executes before lower priority
jobs, the latter of which only run after all RT jobs have completed within the
current frame. This is accomplished by putting concurrent BE jobs into the defer
queue of fixed size, which also blocks BE jobs when queue is full.

After all the RT jobs have completed within a frame, the remaining time
in this frame is calculated and the deferred server thread is woken up. On the
deferred server side, fine-grained jobs of only BE tasks are executed conditionally

considering their model-predicted execution time vs. the remaining time budget
in the frame. If sufficient slack remains within the frame, the lower priority BE
jobs issues the call on GPU immediately; otherwise, it defers until the next
frame. We employ a simple parser at the initial stage to make our framework
user friendly and to provide flexibility for experimental setups. The parser reads
the curtSCHED.config file and extracts values that define the characteristics of
tasks and scheduling information. These include the mode (indicating whether
the framework is used for model fitting or online scheduling), the scheduling
period/frame for all tasks, the confidence score for model prediction, and the
call function path (CFP) ID corresponding to the specific GPU on which the
experiment is running. (The CFP ID refers to a function in the code, which is
automatically identified later.)

The use of a deferrable server enhances GPU utilization by capitalizing on
idle time and offers flexible management of aperiodic tasks. While challenges
may include potential budget inefficiencies (small unused idle periods due to
conservative predictions of WCET) and minor interference with real-time tasks,
these are effectively mitigated by assigning the lowest priority to aperiodic tasks
and employing a statistical model for precise execution time predictions. This
approach ensures minimal disruption, thereby realizing a balanced and optimized
scheduling strategy.

5 Evaluation

The objectives of the experiments are threefold. First, we evaluate whether the
curt SCHED framework meets real-time constraints, i.e., if it ensures each image
frame is processed within the deadline imposed by the frame rate (e.g., 30 FPS),
while concurrently allowing the best-effort training tasks to progress by utilizing
the available deferrable server. Second, we assess the general applicability of
curtSCHED across various NVIDIA GPUs. Third, we perform a comparative
evaluation of curtSCHED against related scheduling frameworks.

Experimental Setup: We evaluated curtSCHED on various commodity
GPUs (see Table 1). curtSCHED is responsible for scheduling both real-time
and best-effort tasks, which involves executing long sequences of GPU kernel
calls to implement higher-level ML functionality using the Yolov4 object de-
tection model [8], based on Darknet and written in C/C++. A real-time task
involves object detection inference, where each job processes every single image
frame. During the profiling phase, we observed that the number of low-level ker-
nel calls varies across GPUs, CUDA versions, and DNN structures. (as shown
in the last column of Table 1). Allocator optimization. Before running any
experiments reported in this section, we enabled a memory pool optimization in
the application to eliminate sporadic long latencies from dynamic allocation/free
(see Section 5.3 for root-cause analysis). Unless otherwise stated, all results were
obtained with the memory pool enabled. The optimization does not change ap-
plication semantics and reduces timing variance observed during preliminary
profiling.

Table 1: CPU+GPU Hardware Platforms and Generations (gen.),
CPF=calls_per frame (CUDA 11.2 w/ YOLOv4)

CPU architecture cores CPU Memory NVIDIA GPU GPU Memory GPU gen. GPU cores CUDA gen. CPF
Intel Sandy bridge 16 16GB DDR3 1600 RTX 2070 8GB GDDR6 Turing 2,304 SM_75 586
Intel Cascade Lake 16 192GB DDR4 2666 RTX 3060Ti 8GB GDDR6 Ampere 4,864 SM_86 554
AMD Epyc Rome 16 128GB DDR4 3200 RTX A4000 16GB GDDR6 Ampere 6,144 SM_86 554
AMD Epyc Rome 16 128GB DDR4 3200 A100 80GB HBMe2 Ampere 6,912 SM_80 637
ARM v8.2 64bit 8 32GB LPDDRA4x (shared) AGX Jetson Xavier 32GB LPDDR4x Volta 512 SM_72 646
ARM Cortex-AT8AE 6 32GB LPDDRS5 (shared) AGX Jetson Orin 32GB LPDDR5 Ampere 1,024 SM_87 555

Evaluation metrics: The inference speed measures if the inference task can
predict objects within an image before the deadline, while the training speed
indicates how quickly the training task makes progress. We measure these two
metrics at the application side based on end-to-end latency. E.g., if the deadline
is 50 ms, the inference speed should be greater than or equal to 20 FPS.

Additionally, we calculated the deadline miss rate of the real-time task, which
indicates how many real-time jobs processing a single image failed to complete
before their deadline.

The curtSCHED framework records and calculates the number of missed
cases and their rates during the online scheduling phase. Equation 4 shows the
calculation for the miss rate:

) > missed_cases
miss_rate = —

(4)

> processed _image’

5.1 curtSCHED Evaluation

We evaluate both the logical and temporal correctness of our framework. Since
curtSCHED does not apply pruning, dropout shortcuts, weights approximation,
nor other techniques to modify higher-level inference, ML metrics for logical
correctness remain the same as the origin application. This work focuses on the
real-time characteristics of ML execution. Nonetheless, we use these metrics to
check logical correctness on all testing devices (see Table 1).

The ML application measures the inference and training speed. By analyzing
the source code of the application, the rate is calculated as an average, i.e.,
counting the total number of images completed over a constant time interval.
The average speed indicates a coarse end-to-end latency for the task. It also
checks if the majority of real-time jobs finished their computation on time.

In addition to application-side speed monitoring, we measure the number of
missed deadlines per scheduled frame within the framework by leveraging the
system-wide real-time clock (CLOCK REALTIME). This fine-grained metric
provides detailed timing analysis for our framework.

The purpose of the real-time inference task is to provide object detection
outputs per image frame, subsequently used in autonomous driving scenarios.
curtSCHED schedules image processing tasks on a per-frame basis, adhering to
the specified target frame rate. In contrast, the training task processes images

in batches cached in memory without real-time deadlines; its performance is
measured by throughput rather than latency.

Experiments without curt SCHED We compare the inference speed between
the real-time task exclusively accessing a single GPU in the presence of both the
real-time and the best-effort (training) tasks that are concurrently accessing the
same GPU. We do so for a variety of GPUs listed in Table 1 to also expose
hardware capabilities and limitations.

Figure 5(a) shows result samples of the inference task with key statistical
measures over each x-axis data point (GPU architecture) when the task exclu-
sively occupies the GPU. The computational ability of a GPU directly impacts
the median inference speed, with higher computational ability resulting in faster
speeds. The results for the NVIDIA AGX Xavier are intentionally omitted here,
as its speed of 22.1 FPS does not meet the minimum real-time requirement of
30 FPS. The embedded GPU AGX Orin has the lowest speed among all tested
GPUs, with 33.9 FPS and a standard deviation of 5.52. The high-end A100 GPU
has an average inference speed of 95.6 FPS with a standard deviation of 11.08.

Figure 5(b) represents the FPS rate for the inference task when the training
task is concurrently accessing the same GPU without using curtSCHED. In
this case, the average speed slows down to less than half speed compared to
Figure 5(a). We observe that the standard deviation becomes lower across all
GPU devices compared to the former data series. We also observe a trend of more
powerful GPUs resulting in higher standard deviation. Initially, we suspected
that the reason for this was due to context switch overhead at the application
side, which incurs a worst-case spike when the CPU switches between threads.
However, after thorough analysis on both the CPU and GPU side, we located the
root cause as originating from the application. We enhanced the application’s
performance by employing a sophisticated memory pool optimization (discussed
in 5.3).

On the A100, running both the inference and training tasks simultaneously
still results in a inference speed meeting the minimum requirements of 30 FPS.
However, it is questionable if such an expensive and power-intensive GPU (300W
peak) will ever be deployed on a vehicle, although future hardware generations
may provide such computational capabilities at lower power, as has been the
case in the past. Nonetheless, we also observe that when two or more best-effort
training tasks are deployed in the background, real-time constraints of 30 FPS
for the inference task can no longer be guaranteed.

Experiments with curtSCHED We evaluate curtSCHED with the multi-
task configuration described in Section 4.2, where RT _high (vehicle and VRUs
detection) and RT low (traffic sign recognition) execute concurrently with best-
effort continual learning tasks. Figure 6a depicts in bars both inference (RT
tasks) and training (BE tasks) speeds in terms of frame rate.

Deadline misses primarily result from inaccuracies in WCET predictions. Al-
though our model achieves high-confidence predictions, perfect (100%) accuracy

a. inference only

b. inference & training on same GPU

160

140 4

120 A

100 A

80

60

160 -

140 4

120

100

80

60 4

40 %I 40 - ==
(o]
_— o —
E 204 o] 20 = %
‘u—-’ o)
AGX‘Orm RTX ‘2070 RTX 3‘060Ti A4600 Albo AGX‘Orm RTX‘ED?O RTX 3‘060Ti A4(I)OD Albo
c. inference only w/ mempool d. both tasks on same GPU w/ mempool
8 160 o 160
Q. 140 4 140 1
wn

120 A

100 4

120 A

100 ~

80 = 80 1 =
60 — 60 1
==
w0 —=— 0 == 5
=
204 20 4 ===5
0 : : . : : 0 : : : . :
3 0 \ 0 3] \ Q
PG* O‘“'\v:(+ 201 " 3(360" PB‘OO ploo : ok O‘“\Qﬂ " 201 o ,5060‘ N:s,()o p\.ﬂo
® «
NVIDIA GPUs

Fig. 5: Inference speed comparison

is practically not achievable, but the method suffice if high accuracy with oc-
casional overruns are acceptable. Under the same stipulation, another source of
deadline misses occasionally arises from resource contention due to mutexes and
locks shared across multiple tasks. Such contention can introduce unexpected
delays, causing tasks to exceed their deadlines.

We start from single RT and BE tasks. Figure 6b depicts both inference and
training speeds as bars in terms of frame rate (left y-axis) as well as a red line
for the deadline miss rate (right y-axis). Compared to the multiple tasks for
both RT and BE categories, the converged frame speed matches the target value
incurring a maximum missed rate of 0.15%.

The occasional deadline misses can be tolerated in autonomous driving, as
each frame is highly correlated with its neighbor frames. As a result, the real-
time frame rate is only reduced slightly (e.g., from 30 to 27.6 frames per second)
when frames are dropped due to missed deadlines. As long as these misses are

bounded, i.e., by ensuring at most k frames are dropped within a sliding window
of n frames, this behavior can be explicitly accommodated within the safety
requirements. We use the COCO [23] dataset to perform inference on RT tasks
with around 11k images. Based on the results, the minimum detection speed
is 27.085 FPS with an average speed of 27.64 FPS. Thus, a k = 3 out of n =
30 fraction is guaranteed in practice. That is, this framework ensures safety
standards remain satisfied despite minor inaccuracies and task contention in
practice.

0.60%

! 21 inference speed

» 33| [IID learning speed 0.50%

~—~ 30

7" @ 0.40% o

T2 w25 4@

T e 0.30%
(7} =

g & 0.20% £

2

=
5

0.10%

o w

e et

0.00%

(a) Multiple RT and BE w/ curtSCHED (b) Speed and miss rate w/ curtSCHED

Fig. 6: Timing results

5.2 Comparison with Space Partitioning and MIG

We aimed to compare curtSCHED with the time-partitioning approach in [2], but
the public code repository lacks the specific commit and key implementation de-
tails needed for replication. As an alternative, we reproduced a space-partitioning
method [7] and use it as a baseline in our evaluation.

As shown in Figure 7, we reproduced the results of a space partition method [7]
on an RTX2070 GPU. This requires modifications of Nvidia header files and ex-
posing undocumented control of the mask bits of SMs. Applications then have
the capability to select SMs before running GPU kernels. Figure 7(a) depicts
results where only the real-time task accesses the GPU, while Figure 7(b) shows
results for both types of tasks on the same GPU. The x-axis indicates how many
SMs are used for the real-time task. In Figure 7(b), the training task uses the re-
maining disjoint SMs on the same GPU. We observe interference on the real-time
task when multiple tasks share the GPU seen by comparing Figures 7(a) and
(b). This aligns with the results shown in Figure 14 in [7], where both inference
speeds fluctuated.

Nvidia introduced the MIG mode in the A100, which enables space parti-
tioning of GPU resources. The A100 offers fixed configurations to select from,
namely 1g/10gb, 2¢/20gb, 3g/40gb, and 4g/40gb (both compute/memory). The
entire GPU has 7g compute and a total of 80gb memory. We tested the real-time

70

60

10 1

task both individually and with both tasks (real-time and best-effort) running
on the A100. The inference speed (real-time task) in both cases is consistent

inference task only

inference \w training on remaining SMs

70

—— == ==
o o 60)
__e__ 50
° 0 o
40 H
4.8.7
ol 30 4
——
— 20 4
[o]
== f
:l é 1‘2 fG 2‘0 t‘l é 1‘2 l|6 2‘0
of SMs dedicated for inference

Fig.7: Space partition results

and does not show any interference when the two tasks are co-scheduled (Fig-

ure 8(a)). Since MIG slices both compute and memory, it provides full isolation

for each partition.

curtSCHED, based on the cyclic executive time partition, is more suitable for

real-time tasks than space partitioning and MIG. Compared to space partition,
curtSSCHED guarantees real-time constraints via time partitioning. Additionally,
curtSCHED provides flexibility in tuning the deadline. The results in Figure 8(b)

show that the configured deadline is met on the RTX 2070 GPU with significantly

lower variability (tight boxes) in execution time and only few outliers.

Speed (FPS)
5 B 8 8 8 3

o

MIG result on A100

curtSCHED w/ background learning

s

80 1

70 4

60

50

401 ——
== == 30 —e ¢
201 ——
10 1 —&—
T T T 0 T T T T T
‘ﬂ@fé\ 09 }35\\,(9 09 » Y ni‘?g ured 3;peed (FPS)
@ e <09 o

Fig.8: MIG (left) and curtSCHED (right) results

5.3 Root Cause of Missed Deadline Cases

In the early stage of evaluation, we found that the missed deadline rate ranged
from 1% to 3.2%, varying by GPU. We investigated the root cause of dead-
line misses using an empirical method: We obtained execution times by adding
instrumental code to the framework, application, and GPU kernel execution.
The cause was not related to GPU glitches incurring long execution times, as
observed and analyzed in related work [2].

We located the root cause on the application side. The running example
involves loading images from files, copying them to memory, and dynamically
allocating and freeing memory during runtime. As shown in Algorithm 2, the
original procedure of the Darknet-based Yolo loads images from files, copies them
to allocated memory, and frees memory after image processing completes. Upon

Algorithm 2 Yolo Image Loading Procedure

1:i«+o0

2: while i < n;mages do

THREAD __JOIN

X ¢ GET_NEXT_ IMAGE

START _ LOADIMAGETHREAD(next file — memory)
Y < prEDICT(X)

11+ 1

FREE(X)

iterating over testing for n images on the Yolo Model, the image loading thread
is started prior to the while loop. Within the loop, the program waits for the
image matrix X to be extracted from the file and predicts the result Y based
on X, while starting another loading thread in the meantime. When prediction
is done, the program frees the image. We observed that the C library function
free() could sometimes have exceptionally long execution times (due to free list
traversals and TLB misses on page walks), which are 2-3 orders of magnitude
longer than the average running time.

To address this issue, we implemented our own memory pools to avoid fre-
quent calls to free(). Memory pools are commonly used in production software
systems such as performance-critical, embedded, and real-time systems. The
application is optimized by pre-allocating a fixed-sized memory pool and asso-
ciating memory locations with a bitmap, indicating whether the corresponding
memory space is available or not. Figures 5(c) and (d) plot the results for in-
ference only and both inference+training tasks on various GPUs without the
curtSCHED framework. Compared to (a) without the memory pool, the infer-
ence speeds are higher and incur less variation in time over all GPUs.

6 Conclusion

This work contributes curtSCHED, a runtime GPU scheduling framework de-
signed for managing real-time and best-effort tasks. The framework employs

fine-grained scheduling strategies tailored specifically to these task types. By
leveraging user-space interception, curtSCHED achieves task awareness while
remaining application- and GPU architecture-independent, ensuring seamless
forward portability as new hardware and software versions emerge. We have val-
idated the curtSCHED framework with high-level machine learning workloads
relevant to autonomous driving across a range of GPU devices. Furthermore, the
static priority scheduling provided by curtSCHED ensures that real-time tasks
reliably meet soft real-time constraints, while simultaneously enabling best-effort
tasks to continue progressing effectively.

Acknowledgment

This work was funded in part by NSF grants CISE-2521121, CISE-1747555, and
CISE-1813004.

References

1. Amert, T., Otterness, N., Yang, M., Anderson, J.H., Smith, F.D.: Gpu scheduling
on the nvidia tx2: Hidden details revealed. In: 2017 IEEE Real-Time Systems
Symposium (RTSS). pp. 104-115. IEEE (2017)

2. Amert, T., Tong, Z., Voronov, S., Bakita, J., Smith, F.D., Anderson, J.H.: Time-
wall: Enabling time partitioning for real-time multicore+ accelerator platforms. In:
2021 IEEE Real-Time Systems Symposium (RTSS). pp. 455-468. IEEE (2021)

3. Ausavarungnirun, R., Miller, V., Landgraf, J., Ghose, S., Gandhi, J., Jog, A., Ross-
bach, C.J., Mutlu, O.: Mask: Redesigning the gpu memory hierarchy to support
multi-application concurrency. ACM SIGPLAN Notices 53(2), 503-518 (2018)

4. Tesla autopilot. https://www.tesla.com/autopilot (2015)

5. Bai, Z., Zhang, Z., Zhu, Y., Jin, X.: Pipeswitch: Fast pipelined context switching for
deep learning applications. In: 14th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 20). pp. 499-514 (2020)

6. Baker, T., Shaw, A.: The cyclic executive model and ada. In:
Proceedings. Real-Time Systems Symposium. pp. 120-129 (1988).
https://doi.org/10.1109/REAL.1988.51108

7. Bakita, J., Anderson, J.H.: Hardware compute partitioning on nvidia gpus. In: 2023
IEEE 29th Real-Time and Embedded Technology and Applications Symposium
(RTAS). pp. 54-66. IEEE (2023)

8. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: Optimal speed and accuracy
of object detection. arXiv preprint arXiv:2004.10934 (2020)

9. Capodieci, N., Cavicchioli, R., Bertogna, M., Paramakuru, A.: Deadline-based
scheduling for gpu with preemption support. In: 2018 IEEE Real-Time Systems
Symposium (RTSS). pp. 119-130. IEEE (2018)

10. Cudrano, P., Bellusci, M., Macino, G., Matteucci, M.: Continual cross-dataset
adaptation in road surface classification. In: 2023 IEEE 26th International Confer-
ence on Intelligent Transportation Systems (ITSC). pp. 4278-4284. IEEE (2023)

11. Nvidia drive os. https://developer.nvidia.com/drive/driveos (2019)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

Han, M., Zhang, H., Chen, R., Chen, H.: Microsecond-scale preemp-
tion for concurrent GPU-accelerated DNN inferences. In: 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
22). pp. 539-558. USENIX Association, Carlsbad, CA (Jul 2022),
https://www.usenix.org/conference/osdi22 /presentation/han

Heo, S., Cho, S., Kim, Y., Kim, H.: Real-time object detection system with multi-
path neural networks. In: 2020 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). pp. 174-187. IEEE (2020)

Jain, S., Baek, I., Wang, S., Rajkumar, R.: Fractional gpus: Software-based com-
pute and memory bandwidth reservation for gpus. In: 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). pp. 29-41. IEEE
2019

F]iang,) S., Lin, Z., Li, Y., Shu, Y., Liu, Y.: Flexible high-resolution object detection
on edge devices with tunable latency. In: Proceedings of the 27th Annual Interna-
tional Conference on Mobile Computing and Networking. pp. 559-572 (2021)
Kalb, T., Roschani, M., Ruf, M., Beyerer, J.: Continual learning for class-and
domain-incremental semantic segmentation. In: 2021 IEEE Intelligent Vehicles
Symposium (IV). pp. 1345-1351. IEEE (2021)

Kang, W., Chung, S., Kim, J.Y., Lee, Y., Lee, K., Lee, J., Shin, K.G., Chwa, H.S.:
Dnn-sam: Split-and-merge dnn execution for real-time object detection. In: 2022
IEEE 28th Real-Time and Embedded Technology and Applications Symposium
(RTAS). pp. 160-172. IEEE (2022)

Kang, W., Lee, K., Lee, J., Shin, I., Chwa, H.S.: Lalarand: Flexible layer-by-layer
cpu/gpu scheduling for real-time dnn tasks. In: 2021 IEEE Real-Time Systems
Symposium (RTSS). pp. 329-341. IEEE (2021)

Kato, S., Lakshmanan, K., ~Rajkumar, R., Ishikawa, Y., et al.:
{TimeGraph}:{GPU} scheduling for {Real-Time}{Multi-Tasking} environ-
ments. In: 2011 USENIX Annual Technical Conference (USENIX ATC 11)
2011

iee7 1\2[., Song, S., Moon, J., Kim, J., Seo, W., Cho, Y., Ryu, S.: Improving gpgpu re-
source utilization through alternative thread block scheduling. In: 2014 IEEE 20th
International Symposium on High Performance Computer Architecture (HPCA).
pp. 260-271. IEEE (2014)

Lee, S., Nirjon, S.: Subflow: A dynamic induced-subgraph strategy toward real-time
dnn inference and training. In: 2020 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). pp. 15-29. IEEE (2020)

Lehoczky, J.P., Sha, L., Strosnider, J.K.: Enhanced aperiodic responsiveness in
hard real-time environments. In: Unknown Host Publication Title, pp. 261-270.
IEEE (1987)

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740-755. Springer (2014)

Ling, N., Wang, K., He, Y., Xing, G., Xie, D.: Rt-mdl: Supporting real-time mixed
deep learning tasks on edge platforms. In: Proceedings of the 19th ACM Conference
on Embedded Networked Sensor Systems. pp. 1-14 (2021)

Liu, L., Dong, Z., Wang, Y., Shi, W.: Prophet: Realizing a predictable real-time
perception pipeline for autonomous vehicles. In: 2022 IEEE Real-Time Systems
Symposium (RTSS). pp. 305-317. IEEE (2022)

Intel mobileye. http://www.mobileye.com (1999)

Nvidia: Nvidia multi-processes service (mps) (2021),
https://docs.nvidia.com/deploy /mps/index.html

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Olmedo, I.S., Capodieci, N., Martinez, J.L., Marongiu, A., Bertogna, M.: Dissecting
the cuda scheduling hierarchy: a performance and predictability perspective. In:
2020 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). pp. 213-225. IEEE (2020)

openpilot. https://www.comma.ai/openpilot (2023)

Pai, S., Thazhuthaveetil, M.J., Govindarajan, R.: Improving gpgpu concurrency
with elastic kernels. ACM SIGARCH Computer Architecture News 41(1), 407—
418 (2013)

Park, J.J.K., Park, Y., Mahlke, S.: Chimera: Collaborative preemption for mul-
titasking on a shared gpu. ACM SIGARCH Computer Architecture News 43(1),
593-606 (2015)

Tanasic, I., Gelado, I., Cabezas, J., Ramirez, A., Navarro, N., Valero, M.: Enabling
preemptive multiprogramming on gpus. ACM SIGARCH Computer Architecture
News 42(3), 193-204 (2014)

Tanasic, I., Gelado Fernandez, 1., Cabezas, J., Navarro, N., Ramirez Bellido, A.,
Valero Cortés, M.: Cusched: multiprogrammed workload scheduling on gpu archi-
tectures (2013)

Tsai, M.J., Cui, Z., Liu, C., Yang, H., Wang, Y.: An incremental learning-based
framework for non-stationary traffic representations clustering and forecasting. In:
2022 IEEE 25th International Conference on Intelligent Transportation Systems
(ITSC). pp. 3237-3242. IEEE (2022)

Verwimp, E., Yang, K., Parisot, S., Hong, L., McDonagh, S., Pérez-Pellitero, E.,
De Lange, M., Tuytelaars, T.: Clad: A realistic continual learning benchmark for
autonomous driving. Neural Networks 161, 659-669 (2023)

Volkswage VW.0S. https://www.volkswagenag.com/en/news/fleet-
customer/2021/01 /transformers.html (2021)

Wang, L., Zhang, X., Su, H., Zhu, J.: A comprehensive survey of continual learning:
Theory, method and application (2023). arXiv preprint arXiv:2302.00487 1(5)
Wang, Z., Yang, J., Melhem, R., Childers, B., Zhang, Y., Guo, M.: Simultaneous
multikernel gpu: Multi-tasking throughput processors via fine-grained sharing. In:
2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA). pp. 358-369. IEEE (2016)

Wei, D., Xing, J., Yang, S., Lu, Y., Huang, Y.: Continual reinforcement learning
for autonomous driving with application on velocity control under various envi-
ronment. In: 2023 7th CAA International Conference on Vehicular Control and
Intelligence (CVCI). pp. 1-8. IEEE (2023)

Wu, B., Chen, G., Li, D., Shen, X., Vetter, J.: Enabling and exploiting flexible task
assignment on gpu through sm-centric program transformations. In: Proceedings
of the 29th ACM on International Conference on Supercomputing. pp. 119-130
(2015)

Xiang, Y., Kim, H.: Pipelined data-parallel cpu/gpu scheduling for multi-dnn real-
time inference. In: 2019 IEEE Real-Time Systems Symposium (RTSS). pp. 392—
405. IEEE (2019)

Yang, M., Wang, S., Bakita, J., Vu, T., Smith, F.D., Anderson, J.H., Frahm, J.M.:
Re-thinking cnn frameworks for time-sensitive autonomous-driving applications:
Addressing an industrial challenge. In: 2019 IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS). pp. 305-317. IEEE (2019)

Yi, J., Lee, Y.: Heimdall: mobile gpu coordination platform for augmented real-
ity applications. In: Proceedings of the 26th Annual International Conference on
Mobile Computing and Networking. pp. 1-14 (2020)

44.

45.

46.

Zahaf, H.E., Lipari, G.: Design and analysis of programming platform for acceler-
ated gpu-like architectures. In: Proceedings of the 28th International Conference
on Real-Time Networks and Systems. pp. 1-10 (2020)

Zhang, H., Mueller, F.: Claire: Enabling continual learning for real-time au-
tonomous driving with a dual-head architecture. In: 2022 IEEE 25th Interna-
tional Symposium On Real-Time Distributed Computing (ISORC). pp. 1-10. IEEE
(2022)

Zhou, H., Bateni, S., Liu, C.: S” 3dnn: Supervised streaming and scheduling for
gpu-accelerated real-time dnn workloads. In: 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). pp. 190-201. IEEE (2018)

