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Abstract.
Many embedded systems are constrained by limits on power consumption, which are re-

flected in the design and implementation for conserving their energy utilization. Dynamic
voltage scaling (DVS) has become a promising method for embedded systems to exploit
multiple voltage and frequency levels and to prolong their battery life. However, pure DVS
techniques do not perform well for systems with dynamic workloads where the job execution
times vary significantly. In this paper, we present a novel approach combining feedback control
with DVS schemes targeting hard real-time systems with dynamic workloads. Our method
relies strictly on operating system support by integrating a DVS scheduler and a feedback
controller within the earliest-deadline-first (EDF) scheduling algorithm. Each task is divided
into two portions. The objective within the first portion is to exploit frequency scaling for the
average execution time. Static and dynamic slack is accumulated for each task with slack-
passing and preemption handling schemes. The objective within the second portion is to meet
the hard real-time deadline requirements up to the worst-case execution time following a last-
chance approach. Feedback control techniques make the system capable of selecting the right
frequency and voltage settings for the first portion, as well as guaranteeing hard real-time
requirements for the overall task. A feedback control model is given to describe our feed-
back DVS scheduler, which is used to analyze the system’s stability. Simulation experiments
demonstrate the ability of our algorithm to save up to 29% more energy than previous work
for task sets with different dynamic workload characteristics.
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1. Introduction

Energy consumption is a major concern for today’s embedded systems due to
their limited battery capacity. The availability of services provided by mobile
devices powered by batteries is limited by the amount of power drawn from
the batteries over time. The energy consumption is also a cost factor for non-
battery powered systems since the operational costs of embedded systems
running non-stop may be significant. Contemporary embedded processors
support multiple voltage and clock frequency settings. The energy consump-
tion of a processor can be reduced by modulating voltage and frequency
dynamically because the power dissipation of a CMOS circuit is proportional
to its clock frequency and its voltage square(Chandrakasan et al., 1992). We
refer to dynamic voltage scaling (DVS) in the following whenever frequency
or voltage are changed during execution.

DVS is particularly attractive to real-time systems for two reasons. First,
real-time systems commonly execute periodic tasks, which implies that en-
tering a low-power mode such as a standby or hibernation state is usually
infeasible. The overhead associated with entering and leaving those low-
power modes often causes deadline misses. Second, real-time requirements
force system designers to choose embedded processors that are powerful
enough to meet the worst-case execution demands although these demands
may rarely occur. As a result, the system utilization is often kept at a low level
with a high energy consumption to ensure operational safety. DVS techniques
have shown their potential for real-time systems by pursuing lower energy
consumption while maintaining system real-time requirements at the same
time. This opens new opportunities for reduced operational costs for both
embedded and non-embedded applications whose operation is constrained
by battery capacity.

The potential to save energy by combining DVS techniques with operat-
ing system scheduling has been demonstrated by prior work, and significant
savings have been reported for general-purpose computing systems (Govil
et al., 1995; Grunwald et al., 2000; Krishna and Lee, 2000; Lorch and Smith,
2001; Pering et al., 1995; Weiser et al., 1994; Pouwelse et al., 2000; Gruian
and Kuchcinski, 2001) as well as real-time systems (Hong et al., 1998a; Hong
et al., 1998b; Lee and Krishna, 1999; Shin et al., 2000; Pillai and Shin,
2001; D. Shin and Lee, 2001; Mosse et al., 2000; Gruian, 2001; Aydin et al.,
2001; Kang et al., 2002). However, pure DVS techniques do not perform
well for dynamic systems where the system workloads vary significantly.
Traditionally, hard real-time scheduling relies on a priori knowledge of the
worst-case execution time (WCET) of a task to guarantee the schedulability
of the system. A safe upper bound on the WCET of a task can be provided
through static analysis, dynamic analysis or a combination of both techniques
(Puschner and Koza, 1989; Park, 1993; Harmon et al., 1992; Zhang et al.,

rtj.tex; 9/08/2006; 17:05; p.2



Feedback EDF Scheduling Exploiting Dynamic Voltage Scaling 3

1993; Lim et al., 1994; Healy et al., 1995; Arnold et al., 1994; Li et al.,
1995; Li et al., 1996; Ferdinand et al., 1997; Mueller, 2000; Wegener and
Mueller, 2001). However, experiments have shown a wide variation between
longest and shortest execution times for many actual applications. In (We-
gener and Mueller, 2001), actual execution times of real-world embedded
tasks are observed to vary by as much as 87% relative to their measured
WCET. Budgeting for the WCET may result in excessive energy consumption
even though actual utilizations are low compared to the worst case. Many
of the existing hard real-time DVS schemes are not able to adapt well to
dynamically changing workloads. For example, we compared the energy con-
sumption of Look-ahead RT-DVS (Pillai and Shin, 2001) between constant
workloads and fluctuating workloads, as depicted in Figure 1. Both work-
loads contain 3 tasks defined as T1={3,8}, T2={3,10} and T3={1,14}, where
Ti={WCET,Period} for i = 1...3, as described in (Pillai and Shin, 2001).
The constant workloads consist of tasks whose actual execution times always
equal 50% of their WCET. The fluctuating workloads consist of tasks with an
average execution time of 50% WCET, but actual execution times fluctuate
between 20% and 80% of their WCET (following variation patterns similar to
Figure 11, discussed later). Figure 1 shows that, in the worst case, Look-ahead
RT-DVS degrades up to 61% for fluctuating workloads.

The objective of our work is to develop a novel DVS technique target-
ing such dynamic changing workloads. We combine feedback control theory
with DVS for hard real-time systems. Feedback control techniques have been
shown to be a promising approach for real-time scheduling in prior work (Lu
et al., 1999; Lu et al., 2002b; Minerick et al., 2002). But all of them are for
soft real-time systems, where occasional deadline misses are acceptable. Our
work extends beyond previous work and is, to the best of our knowledge, the
first study of using feedback control techniques on DVS for hard real-time
systems. On one hand, feedback techniques enable the system to select the
right frequency/voltage settings so that energy consumption is significantly
reduced. On the other hand, feedback control helps to guarantee the timing
constraints of hard real-time tasks so that no tasks ever miss their deadlines.

This paper is structured as follows. In Section 2, we give a framework
overview of the feedback-DVS scheme. We then describe the different ele-
ments of our feedback-DVS framework in detail, i.e., the voltage-frequency
selector in Section 3 and the feedback controller in Section 4. Section 5
is an example showing how our scheme works on practical task sets. Sec-
tion 6 presents the experimental results to demonstrate the performance of
our feedback-DVS scheme under different workload conditions. Section 7
discusses related work, and Section 8 summarizes our efforts.
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Figure 1. Look-ahead RT-DVS Energy for Constant/Fluctuating Workload

2. Feedback-DVS Framework Overview

Prior research on DVS for hard real-time system was primarily concerned
with guaranteeing the schedulability of the task sets while energy con-
sumption is minimized. But in a dynamic real-time environment where the
workloads vary significantly from time to time, the DVS scheduler should not
only produce a valid processor speed for each scheduling unit, it should also
be able to adapt to the ever-changing workloads as fast as possible. One im-
portant performance metric of such a system is how fast the DVS scheme can
adjust the processor according to different workloads so that energy consump-
tion is significantly reduced. To address this issue, we propose a framework
called feedback dynamic voltage scaling (feedback-DVS). In this framework,
we consider the scheduling problem in hard real-time systems with the earli-
est deadline first (EDF) policy. The framework is based on feedback control
that incrementally corrects system behavior to achieve its targets, while the
hard real-time timing requirements are still preserved. We assume that the
processor can operate at several discrete voltage/frequency levels, which rep-
resents contemporary processor technology on support of DVS. When there
is no task running on the processor, the processor enters an idle state at a
particular voltage/frequency level, usually the lowest voltage/frequency level
on that processor.
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Figure 2. Feedback-DVS Framework

We use a periodic, fully preemptive and independent task model in our
feedback DVS framework. We assume there are n tasks in total, T1, T2, ...,
and Tn. Each task Ti is defined by a tuple (Pi, Ci), where Pi is the period
of Ti, and Ci is the measured worst-case execution time of Ti. Each task’s
relative deadline di is equal to its period, and all tasks start at time 0. The
periodically released instances of a task are called jobs. Tij is used to denote
the jth job of task Ti. Its release time is Pi ∗ (j − 1) and its deadline is
Pi ∗ j. The hyperperiod H of the task set is defined as the least common
multiple (LCM) of the tasks’ periods. The schedule repeats at the end of each
hyperperiod.

Feedback control is one of the fundamental mechanism for dynamic sys-
tems to achieve equilibrium. In a feedback system, some variables, i.e.,
controlled variables, are monitored and measured by the feedback controller
and compared to their desired values, so-called set points. The differences
(errors) between the controlled variables and the set points are fed back to
the controller for further actions. Corresponding system states are usually
adjusted according to the differences to let the system variables approximate
the set points as closely as possible.

Figure 2 depicts the framework of our feedback-DVS scheme. It consists
of a feedback controller, a voltage-frequency selector, and an EDF scheduler.
The feedback controller calculates the error from the difference between the
actual execution time of a task and CA, the execution time of the first portion
of each task (detailed in the task-splitting scheme in the next section). The
voltage-frequency selector chooses a voltage/frequency level according to the
error and the maximal schedule profile. The error is used to adjust the esti-
mation of the execution time for the next task. The maximal schedule profile
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includes a running scenario of the task set from the start time 0 to the end
of a hyperperiod. It is generated offline assuming each task’s actual execu-
tion time always equals its worst-case execution time. The voltage-frequency
selector uses the information in the maximal schedule profile to choose the
right voltage-frequency level without causing any deadline misses. As long
as a voltage/frequency level is determined, the EDF scheduler schedules the
next ready task at the specific processor speed. Tasks are scheduled according
to EDF policy, i.e., the task with the earliest deadline is given the highest
priority. The actual execution time of each task is further fed back to the
feedback controller for later decision making. The next two sections detail
the mechanism of the voltage-frequency selector and the feedback controller
in our feedback-DVS frame.

3. Voltage-Frequency Selector

The voltage-frequency selector is responsible for selecting a voltage-
frequency pair each time a task is scheduled. Since power consumption
increases proportionally to the processor frequency and to the square of the
voltage in CMOS circuits (Ishihara and Yasuura, 1998), the minimal energy
consumption is obtained by running every task at a uniform processor speed.
But this is only a statically optimal solution. In a dynamic environment where
a task’s actual execution time is unknown until the task completes, it is not
possible to derive the optimal uniform speed in advance. Our objective is to
approximate a close-to-optimal solution by monitoring the actual execution
time of each task. The start point of our scheme is the following inequa-
tion, which is a modification of the standard EDF (Liu and Layland, 1973)
schedulability test:

α−1 Ck

Pk

+
∑

i∈{1,...,n}\{k}

Ci

Pi
≤ 1 (1)

where α is a scaling factor defined as the ratio of the current processor
frequency to the maximal available frequency, i.e., α = fk/fm. Instead of
scaling at a single speed for all tasks, only the highest priority task (the
task with the earliest deadline under EDF) is scaled. All remaining tasks are
modeled to execute at the maximum frequency fm in the future with a scaling
factor of 1. The motivation of scaling only the current task comes from the
observation that a greedy scheme usually gives a near-optimal result when
optimal solutions are unavailable. In the following, we explain in detail the
schemes used in our voltage-frequency selector to set the speed of a task.
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3.1. TASK SPLITTING

For each task, its α value depends on the total available slack when the task
is scheduled. For example, at time 0, the available slack for the first task T1

is derived from Inequation 1 as P1(1 −
∑n

i=2
Ci

Pi
). Its α value is calculated

as: α = C1

P1(1−
∑

n

i=2

Ci

Pi
)
. In order to obtain an even lower speed for each task

Tk and to make feedback control available for hard real-time systems, our
scheme goes beyond that by splitting each task into two subtasks TA and TB .
These two subtasks are allowed to execute at different frequency and voltage
levels. As shown in Figure 3, TB always executes at the maximum frequency

TBTA

CA/a CB
t

fm

Figure 3. Task Splitting

level fm, while TA is able to execute at a lower frequency level than it could
without task splitting. We expect that a task can finish its actual execution
within TA while reserving enough time in TB to meet the deadline if it re-
quires its full WCET. With this scheme, we can safely scale the frequency of
TA using available slack while TB executes at maximum frequency following
a last-chance approach (Chetto and Chetto, 1989). In the next section, we can
also see that such a task splitting scheme is necessary for applying feedback
control on hard real-time systems. By splitting each task into at most two
subtasks, we add at most one additional speed change to each task and keep
the impact of voltage and frequency switching overhead of our scheme to a
minimum. Task splitting is supported by the operating system in a manner
transparent to users. It can be implemented as a timer handler, triggered at
the end of TA, that changes frequency and voltage. The timer is set up upon
dispatching TA. If execution completes within TA or a preemption occurs, the
timer can be canceled and no additional overhead will the incurred. Only if
execution cannot complete in TA will the timer go off and trigger the DVS
switch prior to executing the remainder of the task in TB .

Let Ck, CA and CB be the worst-case execution cycles of task Tk and
its two subtasks TA and TB , and sk be the slack available to Tk when Tk is
scheduled. From

Ck = CA + CB ,
CA

α
+ CB = Ck + sk (2)
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we derive

α =
CA

CA + sk

(3)

Equation 3 shows that when task splitting is used, the scaling factor α
depends not only on the amount of available slack (sk), but also on the number
of execution cycles assigned to TA.

3.2. STATIC SLACK UTILIZATION

The type of slack available during the scheduling of a real-time system falls
into two categories. One is static slack due to under-utilized system work-
loads. The other one is dynamic slack due to early completion of tasks. In
order to exploit these two types of slack, we consider an actual schedule and
a maximal schedule. The maximal or worst-case schedule is the schedule pro-
duced by a standard EDF algorithm when the execution time of every tasks’
job has its maximum value given by the WCET. The actual schedule is the
actual execution scenario produced by our feedback-DVS algorithm where
the execution time of every tasks’ jobs may be scaled. The maximal schedule
is constructed offline in O(N) complexity, where N is the total number of jobs
executed in a hyperperiod H. The static slack is exploited by adding an idle
task, Tn+1, into the original task set to fill the gap between the actual utiliza-
tion and 100% utilization. The idle task distributes the static slack throughout
the entire hyper-period. Hence, static slack is not monopolized by a single
task but evenly distributed. This also facilitates the online computation of the
static slack. The idle task has a non-zero WCET but its actual execution time
is always zero. The WCET and the period of the idle task are chosen in such
a way that the total utilization of the new task set becomes 100%. In other
words,

Pn+1 = P1, Cn+1 = Pn+1(1− U), cn+1 = 0. (4)

Notice that any other choice of idle task periods is legal. Most notably,
the shortest period of any task P1 and the longest one Pn are interesting
choices. We consider these options since they affect the amount of static slack
available for other tasks. We choose the shortest task period in the task set as
the idle task’s period to ensure that there is at least one idle task being released
between any actual task’s invocation to provide static slack for that task. The
total static slack generated by idle task Tn+1 in the interval [t1..t2] is denoted
by:

idle(t1...t2) = Σ
t1..t2

idle slots (5)
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Figure 4. Dynamic Slack Passing

3.3. DYNAMIC SLACK PASSING

Dynamic slack passing is a technique to reduce the online complexity of cal-
culating the amount of dynamic slack. It is based on the observation that slack
generated by a task is usually not exhausted during the task’s execution even
if the processor speed has been reduced. Instead of computing each task’s
slack from the scratch, we let a previous task pass its unused amount of slack
to the succeeding task. That slack is further augmented by any static idle task
slots between the deadline of the previous task and the succeeding task.

When preemption does not exist, we express dynamic slack passing in
terms of the release time rij of a task Tij in the actual schedule, and the
initiation time Ipk and the worst case completion time Fpk of the immediately
previous task Tpk in the maximal schedule. The slack sij available to Tij is
defined as:

sij =







Cp − cpk if rij ≤ Ipk + cpk

Fpk − rij if Ipk + cpk < rij < Fpk

0 if rij ≥ Fpk

(6)

An example is depicted in Figure 4. Let task T1 with WCET C1 and
deadline t8 execute its jth invocation with an actual execution time of c1j .
Assume that when T1 was invoked at time t2, it inherited a total slack of
S from its previous tasks. T1 was then scaled to a suitable level with that
slack and completed at time t4. The difference between C1 and c1j is the
new slack dynamically generated by T1. So the total slack available at t5 is
S = S + C1 − c1j . Note the fact that the actual execution time c1j may be
less than, equal to, or greater than the worst-case execution time C1 because
of task scaling. If C1 > c1j , Equation 6 just adds the slack produced by
the early completion of T1 into the total slack. If C1 < c1j , Equation 6,
in fact, reduces the total slack because the task exceeded its WCET in the
maximal schedule (it is feasible under DVS as long as the available slack is
not exceeded as well). The adjusted total slack is passed in full or in part to
the next task T2 depending on T2’s release time and deadline. Slack beyond
T2’s release time and deadline cannot be used by T2 and therefore will not be
passed on to it.
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When task preemption exists in the schedule, slack passing needs to be
handled specially. In the next section, we derive formulas to compute the
slack available for a preempting task.

3.4. PREEMPTION HANDLING

Preemption handling follows a greedy scheme in that we try to pass as much
slack as possible to scale the running task. We speculate on its early comple-
tion to aggregate more slack for following tasks. When preemption occurs,
the preempted task will relinquish its remaining slack and pass it on to the
next task, just as it does when a task completes. But there are two differences
here. First, the preempted task itself cannot generate any slack based on its
own execution at the preemption point since the task’s completion time is
unknown. Hence, no additional slack is added to its inherited total slack.
Second, the preempted task still needs some time to complete its execution in
the future. The remaining execution time must be reserved in advance to avoid
future deadline misses caused by over-exploiting slack from other tasks. At
the preemption point, the worst case remaining execution time leftij of the
preempted task is:

leftij = Ci − cij × α−1 (7)

where cij is the actual execution time up to the preemption point. Our slack
passing scheme promises that the preempted task will not miss its deadline
by reserving the worst case remaining execution time from its slack:

sk,r = sk − leftij (future slots) (8)

where sk is derived from Equation 6 and the resulting slack sk,r can be
passed to the next task.

Future slot allocation in this manner is essential to ensure the feasibility
of the schedule under DVS. Future slots will be allocated only if the max-
imal schedule does not include sufficient slots for the preempted task’s job
between the preemption point and its deadline. We devised multiple schemes
for reserving these slots.

− Forward sweep: When a task T1 is preempted and requires left1j future
slots, the preempting task T2 deducts this amount from its available slack
s. If left1j > s, then T2 remains without slack. If another task T3 is
initiated, the calculation repeats itself.

− Backward sweep: Future slots of T1 are allocated in idle slots within
the maximal schedule from its deadline d1 backwards. Any of these
idle slots become unavailable for slack generation, i.e., these slots are
excluded in Equation 6.
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An example is depicted in Figure 5. The upper time line of idle slots
presents a excerpt of the maximal schedule that depicts idle task allocations,
only. The lower time line shows the dynamic schedule of tasks. Upon release
of T2 at t2, T1 is preempted. Let us assume that T1 does not have sufficient
static slots (three slots) beyond t2 to finish its execution. Hence, it has to
rely on future idle slots. During T2’s execution, T3 is released. Both T2 and
T3 have smaller deadlines than T1 (d2 < d3 < d1). Subsequently, T1 only
resumes some time after T3 completes.

...

t1 t2 d2 d3 d1

id
le

id
le

id
le

id
le

id
le

id
le

id
le

T2 T3T1
preempted

T1
cont.

Figure 5. Future Slot Reservation

Future slot allocation of T1 then depends on the chosen scheme. The for-
ward sweep results in zero idle slack for T2 and T3 since idle slots during the
tasks’ periods are not sufficient to cover T1’s future needs of three slots at the
respective invocation times. The backward sweep, on the other hand, reserves
the last 3 idle slots (from d1 backwards), such that T2 and T3 may consume at
least two and one idle slots for scaling, respectively, even if they use up their
time quantum in full.

Overall, the forward sweep is not as greedy as the backward sweep in the
sense that earlier tasks may not be scaled due to T1’s future slots. A forward
sweep is likely to result in zero slack for the preempting task T2 if P2 << P1,
i.e., if its period is much shorter. There are simply fewer idle slots available,
which may not suffice to cover T1’s future requirements. More idle slots past
d2 will be required in this case. The backward sweep always results in the
most greedy approach in delaying the needs of T1 as long as possible. This
is consistent with the observation that early completion is likely to generate
slack for each task, a property inherent to our algorithm.

4. Feedback Controller

Equation 3 shows that the scaling factor α depends not only on the amount
of available slack but also on CA, the number of execution cycles assigned
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to the first subtask TA. Static slack utilization and dynamic slack passing,
as described in the previous section, helps to determine the amount of slack
available for each task. In this section, we focus on another key issue, i.e., how
to determine the value of CA. Since CA is based on the estimated worst-case
execution time of the first subtask TA, our objective is to let CA approximate
Tij’s actual execution time cij so that Tij can be completed before it gets
into the second subtask TB . If CA was not exceeded by Tij’s actual execution
time cij , the entire part of Tij could execute at the low frequency level corre-
sponding to α. It would not be necessary for Tij to switch to the maximum
processor frequency. Hence, a near-optimal energy-aware schedule can be
obtained.

In real-time applications, the actual execution time cij of each task Ti

often experiences fluctuations over different intervals. Different jobs of a cer-
tain task usually present different actual execution times requirements. The
fluctuations may result in tendencies leading to higher processing demands
up to some point and receding demands after that peak point. Past work
in dynamic real-time scheduling has demonstrated that adaptive techniques
derived from control theory can enhance a schedule by reacting to tendencies
in execution time fluctuations (Lu et al., 1999). In order to devise a DVS
algorithm adaptive to such a dynamic environment, we integrate a closed-loop
feedback controller into our DVS systems.

Feedback control is one of the fundamental mechanisms for dynamic sys-
tems to achieve equilibrium. PID-feedback control is a continuous feedback
controller capable of providing sophisticated control response. The controlled
variable can usually reach its set point and stabilize within a short period. A
PID controller consists of three different elements, namely, proportional con-
trol, integral control, and derivative control. Proportional control influences
the speed of the system adapting to errors, which is defined as the difference
between the controlled variable and the set point, by a pure proportional gain
item. Integral control is used to adjust the accuracy of the system through the
introduction of an integrator on past error histories. Derivative control usually
increases the stability of the system through the introduction of a derivative
of the errors.

The PID feedback controller can be described in three major forms: the
ideal form, the discrete form and the parallel form. Although the discrete
form is often used in digital algorithms to keep tuning similar to electronic
controllers, the parallel form is the simplest one. The integral and derivative
actions are also independent of the proportional gain in the parallel form.
We choose the following parallel form as the base of our PID feedback
implementation:

output = KP ∗ εi + 1
KI

∫

εi dt + KD
dεi

dt (9)
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where KP , KI and KD are the proportional, integral and derivative parame-
ters, respectively, and εi is the system error. The transfer function of the PID
controller in the Laplace-domain (s-domain) is given by:

GP (s) = KP + KI

s
+ sKD (10)

We integrated the above PID controller into our DVS scheme to control
the number of execution cycles assigned to CA. According to the objective
described above, our system is presented as a multiple-input multiple-output
(MIMO) control system. For every task Ti in the system, its CAi value is
chosen as the controlled variable while its actual execution time cij is chosen
as the set point. The system error is defined as the difference between the
controlled variable and the set point, i.e.,

εi = cij − CAi. (11)
The error is measured periodically by the PID controller. Its output is fed

back to the feedback-DVS scheduler to adjust the value for CAi. For n tasks in
the task set, there are altogether n feedback inputs (εi, i=1...n ) and n system
outputs (CAi, i=1...n). Let CAij be the estimated CA value for the jth job of
a task Ti. For each task Ti, the following discrete PID control formula is used
in our feedback-DVS scheduler:

∆CAij = KP ∗ εi + 1
KI

∑

IW εi + KD
εi−εi(t−DW )

DW

CAi(j+1) = CAij + ∆CAij

(12)

where KP , KI and Dd are proportional, integral, and derivative parameters,
respectively. εi is the monitored error. The output ∆CAij is fed back to the
scheduler and is used to regulate the next anticipated value for CAi. IW
and DW are tunable window sizes such that only the errors from the last
IW (DW) task jobs will be considered in the integral (derivative) term. We
use DW = 1 to limit the history, which ensures that multiple feedback
corrections do not affect one another. The three control parameters KP , KI

and KD adjust the control response amplitude and its dynamic behavior with
great versatility. It is therefore important to choose and tune these parame-
ters for the controller. The process of adjusting the control parameters is a
compromise among different system performance metrics. For example, the
system may be tuned to have either a stable but slow control response, or
an instable but dynamic control response. What is preferred in our system
is a sufficiently rapid and stable control output during the entire scheduling
process. Due to the MIMO property of the feedback system proposed above,
multiple inputs need to be manipulated and multiple outputs need to be con-
trolled simultaneously. The system behavior depends on interactions upon
those multiple variables. It adds substantial complexity into the theoretical
analysis and implementation of the feedback scheduling system. Given the
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14 Yifan Zhu and Frank Mueller

difficulty of precisely characterizing the dynamic behavior of such MIMO
control systems, we chose to tune those PID parameters by trial and error in
our simulation experiments. As seen in Section 6, it gave us a satisfactory
system performance as long as the parameters were accurately tuned. But
such an approach usually requires a large amount of experiments before the
final parameters can be determined.

In order to get around the complexity brought by the MIMO control
system, we transform the above MIMO control problem into a single-input
single-output (SISO) control model in the following and give an analysis to
our system’s stability.

4.1. A SIMPLIFIED CONTROL DESIGN

We now present a simplified design for the system model. Instead of choosing
CAi(i = 1...n) as the controlled variable for each task Ti, we define a single
variable r as the controlled variable for the entire system:

r =
1

n

n
∑

i=1

CAij − cij

cij
(13)

where j is the index of the latest job of task Ti before the sampling point.
Our objective is to make r approximate 0 ( i.e., the set point). The system
error becomes

εi = r − 0. (14)

εi is fed back to the PID scheduler to regulate the controlled variable r.
The PID feedback controller is now defined as:

∆rj = KP εi + 1
KI

∑

IW εi + KD
εi−εi(t−DW )

DW

rj+1 = rj + ∆rj

(15)

For each rj , we adjust the CA value for task Ti by CAi(j+1) = rjcij +
cij . The transfer function Gr between r and CA can be derived by taking
derivative of both sides of equation 13:

Gr(s) = Ms (16)

where M = 1
n

∑n
i=1

1
ci

. The block diagram of the whole model is shown in
Fig. 6. Its transfer function is

GP (s)Gr(s)

1 + GP (s)Gr(s)
=

MKP s + MKI + MKDs2

1 + MKP s + MKI + MKDs2
(17)

Such a transformation simplifies the control system so that there is only
one system input εi and one system output r. It eases the analysis and im-
plementation of the feedback controller in our scheduler. But a drawback of
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+

−

r0 r
sMrKp+Ki/s+sKd CA

Figure 6. Control Loop Model

the model is that it does not provide direct feedback of the CA value for
each individual task. A zero value of r may not necessarily imply that every
task’s CA has approximated its actual execution time. It is only an imprecise
description of the original scheduling objective and may take longer to get
the system into a stable status. But we expect that this model still captures
the characteristics of the overall system behavior and leads to acceptable
performance, which has been confirmed in our experiments. In the following,
we analyze the system to assess the stability of our control model.

4.2. STABILITY ANALYSIS

According to control theory, a system is stable if and only if all the poles
of its transfer function are in the negative half-plane of the s-domain. From
equation 17 we get the poles of our system as

−MKP ±
√

MK2
P − 4MKD(MKI + 1)

2MKD
(18)

Note that −MKP +
√

MK2
P − 4MKD(MKI + 1) is still less than 0

when MK2
P−4MKD(MKI +1) > 0. All the poles are hence in the negative

half-plan of the s-domain. Therefore, the stability of our system is ensured.
Due to the task splitting scheme, all tasks can still meet their deadline,

even if the PID feedback controller does not adjust the CAij value close
enough to cij . For example, if CAij ≤ cij , the task will enter its second
portion and start TB at the maximal frequency level. The feedback scheme,
together with the task splitting scheme, guarantees the deadline requirements
of real-time tasks.

5. Example

Combining all the techniques illustrated above, we now turn to a description
of the entire algorithm. Our algorithm starts with an offline construction of the
static maximal EDF schedule within the interval of the hyper-period. Figure
7(i) shows an example of such a maximal EDF schedule based on a task
set from Pillai et al. (Pillai and Shin, 2001). The set consists of three tasks
T1={3,8}, T2={3,10} and T3={1,14}, where Ti = {Ci, Pi} for i = 1...3,
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16 Yifan Zhu and Frank Mueller

with worst-case execution times and periods Ci and Pi for task Ti, respec-
tively. An idle task I={1,4} is also presented in the maximal schedule to
fill underutilized processor time niches. Every task’s actual execution time
is 1 except the first job of T1, which has an actual execution time of 2. All
scheduling events (task release, preemption, resumption, and completion) of
the maximal EDF schedule are stored in a look-up table to reduce time com-
plexity. We assume that four relative frequency levels are available, namely,
25%, 50%, 75% and 100% of the maximal frequency.

100%

50%
75%

25%

5 10 15 20 25 30
t

0

T1T2T3T1T2T1T3T2T1 T2I I I I I I I

2 idle for T1 1 idle for T2

(i) Static Worst-Case EDF Schedule with Idle Task I

100%

50%
75%

25%

5 10 15 20 25 30
t

0

T2T1

2 
id

le

1 
id

le

1 slack
T3 T1 T2 T1.A T1.B T3 T2 T1 T3

(ii) Our Feedback DVS at Beginning of 1st Hyperperiod
Figure 7. Discrete Scaling Levels for 3 Tasks

Next, the task set is scheduled according to our algorithm (without the idle
task). As shown in Figure 7(ii), when T1,0 (with a deadline of 8) is activated
at time 0, no previous slack is passed on to T1,0 because T1 is the first task
being scheduled. The value of idle(0..d1) is 2, which is obtained from the
pre-calculated maximal EDF schedule. Hence the total slack s1,0 available
for T1,0 is 2. T1,0’s initial CA is set to 1.5, which is 50% of its WCET. In
fact, the initial CA can be any values in (0,WCET). It does not need to be
accurate enough because later one the feedback scheme will adjust CA to
make it approximate the task’s actual execution time. Finally, a frequency
scaling factor α is set according to Equation 3: α = CA/(CA + s1,0) =
1.5/(1.5+2) = 0.428. The CPU frequency is then set to 50% of the maximal
frequency, which is the closest available level to 0.428. Since T1,0’s actual
execution time is only 2, it completes at time 4 and passed on one unit of
unused slack to the next task T2,0 according to Equations 7 and 8. Its CA

is also updated at that time according to the feedback scheme. T2,0’s slack
is again determined by Equation 6. Besides of the slack from the idle task,
T2,0 also gets one unit of slack from T1,0. Its frequency level is determined in
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Procedure Initialization

for each Tk ∈ {T1, T2, . . . , Tn} do

CAk ← Ck/2
leftk0 ← Ck

ti ← 0
U ← C1

P1

+ C2

P2

+ . . . + Cn

Pn

Pn+1 ← P1

Cn+1 ← P1 × (1− U)
cn+1 ← 0
slack ← 0

Procedure TaskCompletion(Tij)
slack ← slack − cij + Ci

ε← cij − CAij

∆CAij ← KP ∗ ε(ti)+
1

KI

∑

IW ε(ti)+

KD
ε(ti)−ε(ti−DW )

DW

CAi(j+1) = CAij + ∆CAij

ti ← ti + 1
lefti(j+1) = Ci

if reserveij > 0 then

release idle(now..dij)+
completed(now..dij)

up to |reserveij |
Procedure SetInterrupt(Tij,CA)

Set timer interrupt for Tij ,
triggered CA time units later

Procedure SetFrequency(α)
f ← α× fm

Procedure TaskActivation(Tij)
if processor was idle for t then

slack ← slack − t
if Tpk preempted/interrupted then

leftpk = Cp − cpk × α
slack ← slack − idle(dij ..dpk)
if leftpk > slots(Tpk, now..dpk)
then

reservepk ← leftpk−
slots(Tpk, now..dpk)

allocate reservepk in
idle(now..dpk)+

completed(now..dpk)
slack ← slack − reservepk

else (Tpk completed execution)
if now > dpk then

slack ← slack−
idle(dpk, now)

slack ← slack + idle(dpk..dij)

α′ ← min{ f1

fm
, . . . , fm

fm
|

fi

fm
≥ CAij

CAij+slack
}

if (α = 1) then

CA ← 0
else

CA ← slack × α/(1− α)
SetInterrupt(Tij, CA/α)
SetFrequency(α)

Figure 8. Pseudocode of Feedback DVS Scheme

a similar way as the first task. For later task instances, the feedback scheme
chooses CA to approximate the task’s actual execution time. Hence, the entire
task is scaled at a low frequency level. Preemption handling, as described in
Section 3.4, is also applied but not shown here to simplify the example.

An algorithmic description of our feedback-DVS scheme integrated with
the PID feedback control is given in Figure 8. This algorithm is a refine-
ment of our previous work (Dudani et al., 2002) and integrates the PID
feedback scheme and preemption handling with future slot reservation. Only
the MIMO control model is presented in the pseudocode, because the SISO
model can be implemented in a similar way.

The following notations are used in our algorithmic description:

− Tij : the j-th job of task Ti
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18 Yifan Zhu and Frank Mueller

− ij, pk : indices for the current and previous tasks relative to Tij

− now: the current time
− Pi: the Period of Ti

− dij : the deadline of Tij

− Ci: the WCET of Ti (without scaling)
− cij : the actual execution time of Tij up to now (with scaling)
− KP ,KI ,KD: the PID parameters
− IW,DW : the integral and derivative window size
− leftij: the worst case remaining execution time of Tij (without scaling)
− slack: system current slack
− idle(t1..t2): the amount of idle slots between times [t1,t2]
− completed(t1..t2): slots of already completed tasks between times

[t1,t2]
− slots(Tij, t1..t2): the amount of time slots reserved for Tij in the worst

case between times [t1,t2]
− f : the processor frequency
− fm: the maximal processor frequency
− α: the frequency scaling factor
− CA: the execution time of the TA subtask

The effect of the PID feedback scheme is shown in the following example.
Consider a task set of three tasks T1={12,32}, T2={12,40} and T3={4,65}.
Let the actual execution times of different jobs of a task fluctuate according to
the execution time pattern 1, as depicted in Figure 11. Figure 9(a) is a snap-
shot of the feedback-DVS schedule for this task set without PID-feedback.
Figure 9(b) depicts the feedback-DVS schedule for the same task set using
feedback with PID parameters KP =0.9, KI=0.08 and KD=0.1.

We can see from the figures that the first job of Tx3 and the second
job of T2 are scheduled to run at a much lower frequency in the PID feed-
back schedule than the one without PID-feedback. The first job of T3 with
an actual execution time of 2.57 starts at time 524 in the schedule without
PID-feedback, and starts at time 520 in the PID feedback schedule. The
PID feedback scheme gets an execution time of 3.06 for its CA according
to Equation 4. With the closer approximation of cij , the PID scheduler is
able to scale the task more aggressively than the one without PID-feedback.
Similarly, the non-feedback schedule only gets an average execution time of
5.26 for the second job of T2, which has an actual execution time of 7.07.
But the PID feedback scheme obtains a CA = 6.76, which is again closer to
T2’s actual execution time. This demonstrates the superiority of our feedback-
DVS scheme in adapting to dynamic workloads resulting in additional energy
savings.
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100%

50%
75%

25%

480 500 520

Ca Cb

T1 T2 T1 T3 T2

t

25%
50%
75%

100%

480

Ca Cb

T1 T1 T2T3

t

(b) DVS−EDF Schedule with PID Feedback

(a) DVS−EDF Schedule without PID−Feedback

500 520 540

540

T2

Figure 9. Schedules: Simple and PID Feedback

In traditional EDF scheduling, any job’s actual start time si is less than
or equal to its worst-case start time in the maximal schedule. But this is no
longer the case in our feedback-DVS schedule. Because feedback-DVS may
scale a job’s execution time to be larger than its WCET value, a job’s actual
start time may be later than its start time in the maximal schedule. The next
example shows a case where a job’s actual start time exceeds its worst-case
start time.

Consider the task set in Figure 10(a). Its worst-case schedule with an idle
task and its actual schedule under feedback-DVS are shown in Figure 10(b)
and Figure 10(c), respectively. When task T3’s second job starts at time 12
in the actual schedule, its absolute deadline is at time 18. There is only one
idle slot between time 12 and time 18, which can be used to scale T3 at a
50% frequency level. Since T3’s actual execution time equals its worst-case
execution time, it runs for 2 time units and ends at time 14 with an actual
execution time of 2. When T4 starts execution at time 14, it has been delayed
by one time unit relative to its start time in the worst-case schedule.

We show the correctness of our feedback-DVS algorithm, by the following
theorem.

THEOREM 1 (Correctness). The feedback-DVS algorithm results in a feasi-
ble schedule for a set T of tasks with periods equal to their relative deadlines
if a feasible schedule exists for T under preemptive EDF.
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Task Ti WCET Ci Period Pi ci ri

1 3 ms 8 ms 3 ms 0 ms
2 3 ms 10 ms 3 ms 4 ms
3 1 ms 14 ms 1 ms 4 ms
4 1 ms 20 ms 1 ms 0 ms

idle 1 ms 5 ms 1 ms 0 ms

(a) Task Set

100%

50%
75%

25%

T1

t
0 10 20151413125

T1 T1T1T2 T2 T2 T2T3 T4I I I I

25%
50%
75%
100%

t
5 10 12 14 15

T1 T2 T1 T3 T4

20

(b) Worst−Case Schedule with Idle Task I

(c)Actual DVS−EDF Schedule

T4 is delayed!

Figure 10. Delayed Start of Tasks due to Scaling

A detailed proof is presented in the Appendix.

6. Experiments

We evaluated the performance of our schemes in a simulation environment
that supports feedback-DVS scheduling. In order to make a comparison with
our algorithm, Pillai and Shin’s Look-ahead RT-DVS algorithm was also im-
plemented (Pillai and Shin, 2001). We assume a processor model capable of
operating at four different voltage and frequency levels, as depicted in Table I.
Comparable frequency and voltage setting were also used in the Look-ahead
RT-DVS work (Pillai and Shin, 2001) and the experimental work with Stron-
gARM processors (Pouwelse et al., 2000). The results discussed hereafter
are also consistent in their trends for savings with a concrete DVS-capable
architecture, albeit the details of these experiments are beyond the scope of
the paper (Zhu and Mueller, 2004b). In our simulations, the processor enters
an idle state and operates at the lowest frequency and voltage level when
no tasks are ready. We use a simplified energy model in our experiment as
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E =
∫ t
0 fV 2. Energy values reported in the following experiments were

normalized for ease of comparison.

Table I. Processor
Model for Scaling

frequency voltage

25% 2 V
50% 3 V
75% 4 V
100% 5 V

Altogether, 50 task sets were generated, each consisting of either 3 or
10 tasks. In our experiments, we first investigated the performance of our
scheme over fluctuating workload patterns. The objective in studying differ-
ent patterns is to assess the sensitivity of feedback DVS to different types
of execution time fluctuations, which have been observed in interrupt-driven
systems (Mächtel and Rzehak, 1996). Since it is not practical to examine
every possible type of fluctuation, we constructed three synthesized execution
time patterns based on our observation of some typical real-time applications,
as shown in Figure 11.

Pattern 1

Pattern 3

Pattern 2

50%WCET

50%WCET

10%WCET

50%WCET

WCET

WCET

WCET

Figure 11. Task Actual Execution Time Pattern
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In the first pattern, the actual execution time of a job starts at 50% of the
task’s WCET before spiking to a peak value cm every 10th job. The peak
value cm is randomly generated for each spike from a uniform distribution
between 50% of WCET and 100% of WCET. After the peak value is reached,
the actual execution time of the following jobs drops exponentially (modeled
as ci = 1/2(t−cm)) until it reaches 50% of the WCET again. This pattern
simulates event-triggered activities that result in sudden, yet short-term com-
putational demands due to complex inputs often observed in interrupt-driven
systems. In the second execution time pattern, the peak execution time cm still
follows a random uniform distribution between 50% of WCET and 100% of
WCET. But the actual execution time of the following jobs initially drops
more gradually, modeled as ci = cmsin(t + π/2). This pattern simulates
events resulting in computational demands in a phase of subsequent complex
inputs (with a decaying tendency). In the third execution pattern, the actual
execution time of the jobs alternates between positive and negative peaks
every 10 jobs. Both the peak values in either direction are randomly generated
from a uniform distribution between 50% of WCET and 100% of WCET.
The actual execution time of the jobs following the peak value is modeled
as ci = cmsin(t) and ci = −cmsin(t). This pattern represents periodically
fluctuating activities with gradually increasing and decreasing computational
needs around peaks. For each execution time pattern, the task sets’ WCETs
were uniformly distributed in the range [10,1000]. When tasks’ WCETs were
generated, each task’s period was chosen so that the worst case utilization of
the task set (i.e.,

∑ WCETi

Pi
) varies from 0.1 to 1.0 in increments of 0.1.

Both of the original MIMO feedback control model and the simplified
SISO feedback control model were evaluated in our experiment. The corre-
sponding feedback-DVS schedulers are referred to as MF-DVS and SF-DVS,
respectively. Different combinations of PID coefficients were investigated
in our experiments. It was observed that both increasing or decreasing the
proportional coefficient resulted in less accurate system estimations for CA.
The derivative item is less significant compared to the other two parameters.
Increasing the integral window size improves the energy saving effect in the
very beginning, but when IW becomes larger than 10, no dramatic system
performance improvements were observed. We restrict ourselves here to re-
port results based on the PID coefficients of KP = 0.9, KI = 0.08, KD =
0.1. The derivative and integral window size were 1 and 10, respectively.

Figure 12 compares the energy consumption between our feedback-DVS
scheme and the Look-ahead RT-DVS scheme under the execution time pat-
tern 1. When the task set utilization is less than 0.3, it is observed that all
schemes consume the same amount of energy. This is because task sets with
low utilization usually have enough slack and idle slots, so that all jobs are
able to be scaled to the lowest speed level. In this case the processor always
operates at the 25% frequency level and consumes the same amount of energy

rtj.tex; 9/08/2006; 17:05; p.22



Feedback EDF Scheduling Exploiting Dynamic Voltage Scaling 23

�

���

���

���

���

�

���

��� ��� ��� ��� ��� ��� ��	 ��� ��
 �
���������������

�
���

���
��
��
���
��
��

 !�"#�$%&'()
 !�"#�)%&'()
*��+&�,����-�&'()

Figure 12. Execution Time Pattern 1

for all schemes. With the increase of the worst-case utilization, our feedback-
DVS scheme started saving more energy than Look-ahead RT-DVS. MF-DVS
adapts to the changing workload better than Look-ahead RT-DVS and costs
8% to 24% less energy than it. The maximal energy savings (24%) can be ob-
served at 80% utilization. SF-DVS works almost as well as MF-DVS, which
shows that the simplified model still captures the dynamic system behavior
and adapts to the changing workload efficiently. Similar results can be ob-
served for execution time pattern 2 and 3, as depicted in Figures 13 and 14.
The maximal energy savings of MF-DFS, 22% and 16%, are at 0.5 and 0.9
utilizations, respectively. Its average energy saving over Look-ahead RT-DVS
is around 15%. SF-DVS costs a little more energy than MF-DVS in some
cases because SF-DVS usually takes longer to respond to tasks’ execution
time variations than MF-DVS does. But overall, SF-DVS still saves up to 20%
and 19% energy over Look-ahead under pattern 2 and pattern 3, respectively.
These experiments show that our feedback-DVS scheme is not sensitive to
these three execution time patterns.

In order to further observe the scalability of our algorithm, we generated
three task sets following execution time pattern 1, but with different baseline
values. While the pattern depicted in Figure 11 has a 50% WCET baseline,
the other two task sets have baselines of 75% and 25% WCET, respectively.
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Figure 13. Execution Time Pattern 2

Shifting the baseline among different task sets also results in a change of their
actual utilization. Figure 15 and Figure 16 compare the energy consumption
between our feedback-DVS and Look-ahead RT-DVS for these three task
sets. The energy values are normalized to the maximal point of the 75%
WCET baseline task set. The result shows that our scheme is able to scale to
task sets with different baselines very well. MF-DVS saved up to 20% more
energy than Look-ahead RT-DVS for the baseline of 75% WCET case. When
the baseline is 25% of the WCET, up to 29% more energy savings are ob-
served. The maximal energy saving appears in the task set with 25% WCET
baseline since it provides the largest range for execution time fluctuation.
Similar results can also be observed for SF-DVS. A maximum energy saving
of 26% over Look-ahead are observed at the 50% WCET baseline case. Both
our schemes, MF-DVS and SF-DVS, are able to adapt to workloads with
baseline variations.

Figure 17 illustrates the performance of our feedback-DVS scheme by
varying the number of tasks in the task sets. We compared the energy con-
sumption between our algorithm and Look-ahead RT-DVS for task sets with
10 and 3 tasks. All energy values are normalized to the maximal point of
Look-ahead RT-DVS in the 10-task set case. We notice that there is little
effect of varying the number of tasks on our scheme. Both MF-DVS and SF-
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Figure 14. Execution Time Pattern 3

DVS are able to save roughly the same percentage of energy over Look-ahead
RT-DVS between 10-task sets and 3-task sets. However, a larger number of
tasks tends to result in lower overall energy consumption.

Besides the execution time patterns listed in Figure 11, we also inves-
tigated task sets with random execution characteristics, i.e., tasks’ actual
execution times are derived from a random uniform distribution. We per-
formed this experiment in order to assess the worst-case behavior of our
algorithm for task sets with highly fluctuating execution time patterns. Our
feedback-DVS scheme resulted in similar energy savings as Look-ahead
DVS. Random execution times do not give additional benefits to our algo-
rithm because the algorithm cannot supply any useful history information to
the feedback controller. This is a limitation of feedback schemes in general.
Nonetheless, even in this worst case, our feedback-DVS algorithm behaves
no worse than Look-ahead DVS.

Overall, our Feedback feedback-DVS algorithm is able to exhibit consid-
erable energy savings for different task sets. The simplified feedback control
model, SF-DVS, captures the characteristics of the overall system behavior
and leads to acceptable performance comparable with MF-DVS. Feedback
control in conjunction with DVS scheduling makes the system more adaptive
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Figure 15. MF-DVS, Varying Baseline

to dynamically changing workloads, and achieves lower energy consumption
levels than other less adaptive schemes.

7. Related Work

There have been a number of efforts of applying feedback techniques on
general-purpose control systems. But only recently did researchers begin to
incorporate feedback control to real-time scheduler with timing constraints
(Lu et al., 1999; Lu et al., 2002a). Lu at al. proposed a feedback control
real-time scheduling framework for unpredictable dynamic real-time systems
where task execution times diverge from their worst case (Lu et al., 2002a).
Real-time system performance specifications are analyzed and satisfied sys-
tematically through a control theory-based methodology. Dynamic models of
real-time systems are developed to identify different categories of real-time
applications with different feedback control algorithms. While their feedback
control framework is mainly used to satisfy general purpose real-time system
requirements, our scheme focuses on exploiting feedback control schemes to
reduce energy consumption.

Our work is more closely related to the ones in (Lu et al., 2002b) and
(Minerick et al., 2002). Lu et al. describe a formal feedback control algo-
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Figure 16. SF-DVS, Varying Baseline

rithm combined with dynamic voltage/frequency scaling technologies for
multimedia systems (Lu et al., 2002b). Both continuous and discrete DVS
settings are exploited in a scheme to reduce energy consumption while still
guaranteeing real-time requirements. An adaptive set-point is used to achieve
fast responses with a stable multimedia throughput. Both their work and our
approach exploit feedback control to DVS/DFS technologies. They target
soft real-time/multimedia systems, while we focus on hard real-time systems
where timing constraints must not be violated.

A general energy management scheme with feedback control was pro-
posed by Minerick at al. (Minerick et al., 2002). An average energy usage is
achieved by continuously adjusting the voltage/frequency of a processor to
meet the energy consumption goal. A PI (proportional and integral) feedback
controller is used to adapt the proper power setting based on previous energy
consumptions without the prediction of future system workloads. While their
objective is to obtain low energy consumption for general purpose systems,
we target hard real-time systems with deadline requirements.

Dynamic voltage scaling has been studied by many previous researchers.
Saewong et al. (Saewong and Rajkumar, 2003) proposed a series of voltage
scaling schemes targeting different hardware configurations and task set char-
acteristics. Their results showed that some non-optimal schemes may be more
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Figure 17. 10-task vs. 3-task under Pattern 1

suitable than optimal schemes when the system has a high voltage scaling
overhead. Lee et al. (Lee and Krishna, 2003) presented a branch-and-bound
algorithm to statically determine the operating frequency of real-time task
sets. But due to the complexity of the algorithm, only two frequency levels are
assumed in their model. Ishihara et al. (Ishihara and Yasuura, 1998) proved
that on a processor with a small number of discretely variable voltages the
energy consumption is minimized when the voltage scheduling contains at
most two voltage levels. But the two-speed schedule is only optimal when a
task’s actual execution time can be determined statically, which is generally
not possible. When actual execution time varies from instance to instance, a
multiple-speed schedule can result in lower energy than a dual-speed sched-
ule. The algorithm proposed in (Liu and Mok, 2003) derives optimal speed
functions between an upper bound and a lower bound of processor cycles.
Their online algorithm reclaims unused execution cycles to further reduce
energy consumption. The algorithms in (Pillai and Shin, 2001; Aydin et al.,
2001; Gruian, 2001) are more closely related to ours. Pillai and Shin (Pillai
and Shin, 2001) proposed a set of dynamic DVS algorithms based on tradi-
tional hard real-time mechanisms, namely rate-monotone (RM) scheduling
and EDF scheduling. They extended the schedulability test of RM and EDF
algorithms to incorporate CPU frequency scaling. Unlike our algorithm that
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applies frequency scaling to only the current task, they assumed a unified
frequency scaling factor upon all tasks. In their most aggressive variant, the
look-ahead technique is used to achieve extensive energy savings by deferring
as much work as possible. However, the frequency value obtained in their
algorithm is not always the lowest possible frequency for a single task, as
shown in (Dudani et al., 2002).

Some of the other aggressive real-time DVS schemes exploit early com-
pletion of task executions based on statistical information of the workload
under dynamic scheduling (Aydin et al., 2001) or static priority scheduling
(Gruian, 2001). The algorithm proposed in (Aydin et al., 2001) was based on
early completion of tasks and idle time up to the next task’s activation. The
feedback scheme in our algorithm adapts even to dynamically changing exe-
cution demands, not just statistical information. We exploit both the idle time
prior to the next task’s activation and any idle slots up to the deadline of the
task in the maximal schedule. We show in other work that Aydin’s algorithm
only outperforms Pillai’s approach for large task sets with extremely low or
high utilizations (Zhu and Mueller, 2004b).

The idea of deriving a feasible dual-level DVS schedule from an ideal case
was first proposed by Gruian (Gruian, 2001; Gruian and Kuchcinski, 2001).
It combines off-line and on-line scheduling at both task level and task-set
level. Stochastic data was used to derive energy-efficient schedules. Multiple
frequency levels may be assigned to a single task. In our approach, we assign
at most two different frequencies for each task, and the highest frequency is
always assigned to the second subtask. A single frequency, as dominant in
our algorithm, results in lower energy consumption than multiple frequen-
cies as advocated by Gruian. Our algorithm also targets dynamic scheduling
(EDF) while Gruian restricts his approach to fixed-priority static scheduling.
Dual speed scheduling was also proposed in two other approaches. First,
Zhang et al. switch the processor speed between high and low whenever
non-preemption blocking occurs among tasks that share resources (Zhang
and Chanson, 2002). Second, Lee et al. assume an architecture model where
only two physical speed levels exist (Lee and Krishna, 2003). Our approach
considers a more general case where multiple frequency and voltages lev-
els are chosen by subsequent jobs of the same task or even different tasks,
although for a single job, only two speeds are used. Last-chance scheduling
without energy considerations goes back at least to Chetto and Chetto (Chetto
and Chetto, 1989). We apply this philosophy in a DVS context. We develop
a novel variant based on task splitting with exactly two parts. Such a dual-
subtask approach aggressively reduces power consumption if the first subtask
is fully utilized while the second subtask never executes. Our feedback ap-
proach triggers this behavior, which is superior to Gruian’s step-wise increase
of frequencies using stochastic approach.
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8. Conclusion

This paper presents a novel scheduling approach combining DVS with feed-
back control schemes, which extends EDF in a most aggressive manner. The
technique relies strictly on operating system support to implement both the
real-time scheduler and the feedback controller. Our contributions include
techniques for slack exploiting, preemption handling and feedback control
schemes for hard real-time systems with dynamically fluctuating workload
characteristics, where execution times of a periodic task vary significantly.
Early scaling at a low frequency capitalizes on the probability of a task behav-
ior when it completes execution without exhausting its worst-case execution
budget. A last-chance approach is used if a task does not complete at a certain
point in time with a low frequency. The remainder of the task continues at a
higher frequency to ensure its deadline requirement. A feedback scheme is
applied on the system to make it capable of selecting the right frequency and
voltage settings for the first potion, as well as guaranteeing hard real-time
requirements for the overall task. For predictable fluctuating execution time
patterns, our feedback DVS scheme is able to adapt to dynamically fluctuating
workloads better than previous work and saves up to 29% additional energy.
The scheme is not sensitive to particular workload characteristics, i.e., the
execution time patterns, and is capable of scaling for task sets with different
number of tasks.
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Appendix

A. Correctness

Theorem The feedback-DVS algorithm results in a feasible schedule for a set
T of tasks with periods equal to their relative deadlines if a feasible schedule
exists for T under EDF.

We call the schedule produced by our feedback-DVS algorithm the actual
schedule, where the execution time of a task is variable for different task
instances (jobs). We call the schedule under EDF where each task’s actual
execution time always equals its WCET the maximal schedule. Let si and s+

i

be Ti’s absolute start times in the actual and the maximal schedule, respec-
tively. (We use the simplified shortcut Ti to denote a certain jth job Tij of
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task Ti). Similarly, let fi and f+
i be the absolute completion times of Ti in the

actual and the maximal schedule, respectively. In order to prove the theorem,
we first prove the following lemma:
LEMMA 1. The difference between a task’s start time in the actual sched-
ule and the maximal schedule is bounded in feedback-DVS by the following
inequation:

si − s+
i ≤ idle(f+

i−1, di−1) +
∑

Tl∈[f+

i−1
,di−1];dl>di

Cl (19)

where idle(f+
i−1, di−1) is the length of all idle slots existing between

[f+
i−1, di−1] in the maximal schedule. Cl is the WCET of any task Tl in the

maximal schedule with a priority lower than Ti. f+
i−1 and di−1 are the com-

pletion time and absolute deadline of task Ti−1, which is the most recently
executed task before Ti.

di

Ih
dhf+i

t
di−1s+i

Ti

Preempted

(a)  Maximal Schedule

di

Ik+Ik+1+Tk IpIh

tThTi

fi
si

Ti−1

Preempted

(b)  Actual Schedule

Ti ( cont.)

IkTi ( cont.) Ik+1 IpTkTh

Figure 18. Maximal vs. Actual Schedule

Proof:
We will use induction to prove the lemma. First, consider the highest pri-

ority task T1 as the base case. Since T1 always starts execution immediately
at its release time under both the actual schedule and the maximal schedule,
we have,

s1 − s+
1 = 0. (20)

Hence, the lemma holds for T1.
Now assume that a certain task Ti satisfies the lemma. We need to show

that Ti+1, the task with the next lower priority than Ti, also satisfies the
lemma. We only need to consider the case where si+1 > s+

i+1, since this
is where feedback-DVS diverges from conventional EDF. The only reason
for Ti+1 to be delayed is that some higher priority tasks are still running
at time s+

i+1. Without loss of generality, we assume that in the maximal
schedule there are m (m ≥ 0) idle slots and q (q ≥ 0) lower priority tasks
in [f+

i−1, di−1], namely, Ik, Ik+1,...,Ik+m−1 and Tk, Tk+1,...,Tk+q−1. Their
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WCETs are denoted by Ik, Ik+1,...,Ik+m−1 and Ck, Ck+1,...,Ck+q−1, respec-
tively. We have

∑k+m−1
l=k Il = idle(f+

i−1, di−1). Let Ih = idle(di−1, dh) and
Ip = idle(dh, di). It is also possible that Ti be preempted by a certain higher
priority task Th during its execution. Figure 18 shows a simplified case where
only Ik,Ik+1 and Tk are shown before di−1. Since both Ti−1 and Th have
priorities higher than Ti, we have di ≥ di−1 and di ≥ dh. We note that at the
time s+

i in the maximal schedule, all other tasks with priorities higher than Ti

must have completed, and all other lower priority tasks will not be scheduled
before f+

i . Only newly released high priority tasks can execute in [s+
i , f+

i ]
and may preempt Ti. Since the lemma holds for Ti, we have :

si − s+
i ≤

k+m−1
∑

l=k

Il +
k+q−1
∑

l=k

Cl = idle(f+
i−1, di−1) +

∑

Tl∈[f+

i−1
,di−1];dl>di

Cl (21)

Our feedback-DVS scheme moves Ik, Ik+1,...,Ik+m−1 and Tk backward
to s+

i , and moves the corresponding portion of Ti forward. These transfor-
mations are legal since Ti still resides within [ri, di]. The high priority task
Th is left untouched, because it can always preempt Ti at s+

h in the actual
case, i.e., sh = s+

h . When Ti is preempted at time sh, the forward slack
reservation scheme in feedback-DVS reserves Ci − (sh − si), the worst-
case remaining execution time left for Ti, from Tk, Ik+m−1,...forward. The
backward slack reservation scheme reserves the above amount of time from
the Ip, Ih,...,backward. In either case, we denote the total execution time of
reserved slots by CR. At time s+

h , the frequency scaling decision is made
for Th. The scheduler collects all available idle slots and early completion
of low priority task slots in [s+

h , dh] in the maximal schedule excluding any
slots reserved for future resumption of preempted tasks. The final amount
of slack available for Th equals to

∑k+m−1
i=k+1 Ii + Ih +

∑k+q−1
l=k Cl − CR.

Th uses the slack to scale itself to a lower frequency and voltage level. It
is equivalent to the transformations that move the non-reserved portion of
Ik+1,...,Ik+m−1,Ih and Tl backward and move the corresponding portion of
Ti forward. The result is shown in Figure 18(b). When Ti resumes execution,
it can be scaled again exploiting slack from the idle slots and early-completed
task slots before di. Similar transformations apply when moving Ip backward
and Ti forward. Ti releases all its unused slack when it completes and passes
it on to following tasks.

Except for the idle slots and early completion of lower priority tasks, there
are no other cases where Ti will be moved forward and thus be delayed during
the above transformations. Hence, the following inequation holds:

fi − f+
i ≤ idle(f+

i , di)− CR +
∑

Tl∈[f+

i
,di]; dl>di+1

Cl (22)

Because di ≥ di−1 and di ≥ dh, the aforementioned transformations never
move Ti forward beyond di. Hence, Ti will not miss its deadline after these
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transformations. If the start time of Ti+1 is delayed in the actual schedule by
Ti, we have: si+1 = fi and s+

i+1 ≥ f+
i . From the above equation we get:

si+1 − s+
i+1 ≤ fi − f+

i ≤ idle(f+
i , di) +

∑

Tl∈[f+

i
,di]; dl>di+1

Cl (23)

Hence, inequation 19 also holds for Ti+1, and we proved the lemma.
This lemma, in fact, describes a worst-case scenario. It shows that no

matter how aggressively previous tasks T1, T2,...Ti are scaled, the start time
of the next task Ti+1 will not be delayed for more than the interval of
idle(f+

i , di) +
∑

Tl∈[f+

i
,di]; dl>di+1

Cl. In such a worst case scenario, the
feedback-DVS scheduler will always set Ti+1’s speed to maximal so that
Ti+1’s actual execution time will not exceed Ci+1. Since in the maximal
schedule we always have:

s+
i+1 + Ci+1 + idle(f+

i , di) +
∑

Tl∈[f+

i
,di]; dl>di+1

Cl ≤ di+1 (24)

using inequation 23 and 24, we get:
si+1 + Ci+1 ≤ s+

i+1 + Ci+1 + idle(f+
i , di) +

∑

Tl∈[f+

i
,di]; dl>di+1

Cl ≤ di+1 (25)

which shows that Ti+1 meets its deadline. Thus, our feedback-DVS always
results in a feasible schedule. The theorem is proved.

References

Arnold, R., F. Mueller, D. B. Whalley, and M. Harmon: 1994, ‘Bounding Worst-Case
Instruction Cache Performance’. In: IEEE Real-Time Systems Symposium. pp. 172–181.

Aydin, H., R. Melhem, D. Mosse, and P. Mejia-Alvarez: 2001, ‘Dynamic and Agressive
Scheduling Techniques for Power-Aware Real-Time Systems’. In: IEEE Real-Time
Systems Symposium.

Chandrakasan, A., S. Sheng, and R. W. Brodersen: April, 1992, ‘Low-power CMOS digital
design’. In: IEEE Journal of Solid-State Circuits, Vol. 27, pp. 473-484.

Chetto, H. and M. Chetto: 1989, ‘Some Results of the Earliest Deadline Scheduling Algo-
rithm’. IEEE Transactions on Software Engineering 15(10), 1261–1269.

D. Shin, J. K. and S. Lee: 2001, ‘Intra-Task Voltage Scheduling for Low-Energy Hard Real-
Time Applications’. In: IEEE Design and Test of Computers.

Dudani, A., F. Mueller, and Y. Zhu: 2002, ‘Energy-Conserving Feedback EDF Scheduling for
Embedded Systems with Real-Time Constraints’. In: ACM SIGPLAN Joint Conference
Languages, Compilers, and Tools for Embedded Systems (LCTES’02) and Software and
Compilers for Embedded Systems (SCOPES’02). pp. 213–222.

Ferdinand, C., F. Martin, and R. Wilhelm: 1997, ‘Applying Compiler Techiniques to Cache
Behavior Prediction’. In: ACM SIGPLAN Workshop on Language, Compiler, and Tool
Support for Real-Time Systems. pp. 37–46.

Govil, K., E. Chan, and H. Wasserman: 1995, ‘Comparing algorithms for dynamic speed-
setting of a low-power CPU’. In: 1st Int’l Conference on Mobile Computing and
Networking.

rtj.tex; 9/08/2006; 17:05; p.33



34 Yifan Zhu and Frank Mueller

Gruian, F.: 2001, ‘Hard real-time scheduling for low energy using stochastic data and DVS
processors’. In: Proceedings of the International Symposium on Low-Power Electronics
and Design ISLPED’01.

Gruian, F. and Kuchcinski: 2001, ‘LEneS: task scheduling for low-energy systems using
variable voltage processors’. In: Proceedings of ASP-DAC.

Grunwald, D., P. Levis, C. M. III, M. Neufeld, and K. Farkas: 2000, ‘Policies for dynamic
clock scheduling’. In: Symp. on Operating Systems Design and Implementation.

Harmon, M., T. P. Baker, and D. B. Whalley: 1992, ‘A Retargetable Technique for Predicting
Execution Time’. In: IEEE Real-Time Systems Symposium. pp. 68–77.

Healy, C. A., D. B. Whalley, and M. G. Harmon: 1995, ‘Integrating the Timing Analysis of
Pipelining and Instruction Caching’. In: IEEE Real-Time Systems Symposium. pp. 288–
297.

Hong, I., M. Potkonjak, and M. Srivastava: 1998a, ‘On-line scheduling of hard real-time tasks
on variable voltage processor’. In: Int’l Conference on Computer-Aided Design.

Hong, I., G. Qu, M. Potkonjak, and M. Srivastava: 1998b, ‘Synthesis techniques for low-
power hard real-time systems on variable voltage processors’. In: 19th Real-Time Systems
Symposium.

Ishihara, T. and H. Yasuura: 1998, ‘Voltage scheduling problem for dynamically variable
voltage processors’. In: Proceedings of the 1998 international symposium on Low power
electronics and design. pp. 197–202, ACM Press.

Kang, D., S. Crago, and J. Suh: 2002, ‘A Fast Resource Synthesis Technique for Energy-
Efficient Real-time Systems’. In: IEEE Real-Time Systems Symposium.

Krishna, C. and Y. Lee: 2000, ‘Voltage clock scaling adaptive scheduling techniques for
low power in hard real-time systems’. In: 6th Real-Time Technology and Applications
Symposium.

Lee, Y. and C. Krishna: 1999, ‘Voltage clock scaling for low energy consumption in real-
time embedded systems’. In: 6th Int’l Conf. on Real-Time Computing Systems and
Applications.

Lee, Y.-H. and C. M. Krishna: 2003, ‘Voltage-Clock Scaling for Low Energy Consumption in
Fixed-Priority Real-Time Systems’. Real-Time Syst. 24(3), 303–317.

Li, Y.-T. S., S. Malik, and A. Wolfe: 1995, ‘Efficient Microarchitecture Modeling and Path
Analysis for Real-Time Software’. In: IEEE Real-Time Systems Symposium. pp. 298–397.

Li, Y.-T. S., S. Malik, and A. Wolfe: 1996, ‘Cache Modeling for Real-Time Software: Beyond
Direct Mapped Instruction Caches’. In: IEEE Real-Time Systems Symposium. pp. 254–
263.

Lim, S.-S., Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin, and C. S.
Kim: 1994, ‘An Accurate Worst Case Timing Analysis for RISC Processors’. In: IEEE
Real-Time Systems Symposium. pp. 97–108.

Liu, C. and J. Layland: 1973, ‘Scheduling Algorithms for Multiprogramming in a Hard-Real-
Time Environment’. J. of the Association for Computing Machinery 20(1), 46–61.

Liu, Y. and A. K. Mok: 2003, ‘An integrated approach for applying dynamic voltage scaling
to hard real-time systems’. In: Proceedings of the ninth IEEE Real-Time and Embedded
Technology and Applications Symposium.

Lorch, J. and A. J. Smith: 2001, ‘Improving dynamic voltage scaling algorithms with PACE’.
In: Proceedings of the ACM SIGMETRICS 2001 Conference.

Lu, C., J. Stankovic, G. Tao, and S. Son: 1999, ‘Design and evaluation of a feedback control
EDF scheduling algorithm’. In: IEEE Real-Time Systems Symposium.

Lu, C., J. A. Stankovic, G. Tao, and S. H. Son: 2002a, ‘Feedback Control Real-Time
Scheduling: Framework, Modeling, and Algorithms’. Real-Time Syst. 23, 85–126.

rtj.tex; 9/08/2006; 17:05; p.34



Feedback EDF Scheduling Exploiting Dynamic Voltage Scaling 35

Lu, Z., J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadron: 2002b, ‘Control-Theoretic
Dynamic Frequency and Voltage Scaling for Multimedia Workloads’. In: Conference on
Compilers, Architecture and Synthesis for Embedded Systems. pp. 156–63.
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