
Improving WCET by Applying Worst-Case Path

Optimizations ∗

Wankang Zhao, William Kreahling, David Whalley

Computer Science Department, Florida State University

{wankzhao,kreahling,whalley}@cs.fsu.edu

Christopher Healy

Computer Science Department, Furman University

chris.healy@furman.edu

Frank Mueller

Computer Science Department, North Carolina State University

mueller@cs.ncsu.edu

Abstract

It is advantageous to perform compiler optimizations that attempt to lower the worst-case

execution time (WCET) of an embedded application since tasks with lower WCETs are easier

to schedule and more likely to meet their deadlines. Compiler writers in recent years have used

profile information to detect the frequently executed paths in a program and there has been

considerable effort to develop compiler optimizations to improve these paths in order to reduce

the average-case execution time (ACET). In this paper, we describe an approach to reduce the

WCET by adapting and applying optimizations designed for frequent paths to the worst-case

(WC) paths in an application. Instead of profiling to find the frequent paths, our WCET path

optimization uses feedback from a timing analyzer to detect the WC paths in a function. Since

these path-based optimizations may increase code size, the subsequent effects on the WCET due

to these optimizations is measured to ensure that the worst-case path optimizations actually

improve the WCET before committing to a code size increase. We evaluate these WC path

optimizations and present results showing the decrease in WCET versus the increase in code

size.

Keywords: WCET, Path-based Optimizations, Embedded Systems

∗A preliminary version of this paper entitled “Improving WCET by Optimizing Worst-Case Paths” appeared in

the 2005 Real-Time and Embedded Technology and Applications Symposium.

1

1 Introduction

Embedded applications often have to meet timing constraints. If these timing constraints are not

met, even only occasionally in a hard real-time system, then the system may not be considered

functional. The worst-case execution time (WCET) must be calculated to determine if the execution

time of an embedded application can always meet its deadline.

Embedded systems are often deployed on digital signal processors (DSPs). Kernels for DSP

applications have been historically written and optimized by hand in assembly code to ensure high

performance (Eyre and Bier, 1998). However, assembly code is less portable, harder to develop,

debug, and maintain. Many embedded applications are now written in high-level programming

languages, such as C, to simplify their development. In order for these applications to compete

with the applications written in assembly, aggressive compiler optimizations are used to ensure high

performance.

Traditional path-based compiler optimizations are used to reduce the average case execution

time (ACET), the typical execution time along the frequently executed path. Since the frequently

executed paths may not be the worst-case (WC) paths, we propose applying path optimizations on

WC paths to reduce the WCET of a task. An improvement in the WCET may enable an embedded

system to meet timing constraints that were previously infeasible.

WCET constraints can impact energy consumption as well. In order to conserve energy, one can

determine the WC number of cycles required for a task and lower the clock rate and still meet the

timing constraint. A lower clock rate allows a developer to use lower voltage and save additional

energy, which is valuable for mobile applications. In contrast, conservative assumptions concerning

WCET may require the processor to be run at a higher clock rate, which consumes more energy.

Many researchers use profiling to identify the frequently executed paths. However, we need to

identify the WC paths in a function. For our experiments, we integrated a timing analyzer with

a compiler so the WCET path information of the current function can be calculated on demand.

Figure 1 shows how the compiler obtains the WCET information. The compiler sends information

about the control flow and the current instructions that have been generated to the timing analyzer.

Predictions regarding the WCET path information are sent back to the compiler from the timing

analyzer. We use the VPO (very portable optimizer) compiler (Benitez and Davidson, 1988; Benitez,

1994; Benitez and Davidson, 1994) for this research. To assess the impact of performing these

optimizations on the WCET, we retargeted both VPO and our timing analyzer to the StarCore

SC100 processor, a DSP used in embedded systems.

2

Compiler
Analyzer

Timing

Control Flow and
Instruction Information

Files

Assembly

Files

Source

WCET Path Information

Figure 1: WCET Aware Compilation Process

The remainder of the paper is organized in the following fashion. In Section 2, we present work

related to this research, including traditional path-based optimizations and prior work on compiler

optimizations used to reduce WCET. The underlying architecture of this research is the StarCore

SC100 processor. Therefore, in Sections 3 and 4, we introduce the StarCore SC100 processor and

show how we retargeted our timing analyzer to it, respectively. In Section 5, we discuss how to

integrate the timing analysis with the compiler. In Section 6, we describe the WC path optimizations

used in this research. In Section 7, we illustrate how these path optimizations can enable other

optimizations. In Section 8, we analyze the experimental results. In Section 9, we describe future

work in this area and, in Section 10, we present our conclusions.

2 Related Work

Path-based compiler optimizations are typically used to reduce the execution time along the fre-

quently executed paths to reduce the ACET of a program. This section summarizes the prior

research on path-based compiler optimizations and WCET reduction techniques.

2.1 Prior Work on Path Optimizations

There has been a significant amount of work over the past few of decades on developing optimizations

to improve the performance of frequently executed paths. Each technique involves detecting the

frequently executed path, distinguishing the frequent path using code duplication, and applying a

variety of other code-improving transformations in an attempt to improve the frequent path, often

at the expense of less frequently executed paths and an increase in code size.

Much of this work was motivated by the goal of increasing the level of instruction-level parallelism

in processors that can simultaneously issue multiple instructions. Some of the early work in this area

involves a technique called trace scheduling, where long traces of the frequent path are obtained via

loop unrolling and the trace is compacted into VLIW instructions (Fisher, 1981). A related technique

that was developed later is called superblock formation and scheduling (Hwu et al., 1993). This

approach uses tail duplication to make a trace that has only a single entry point, which makes trace

3

compaction simpler and more effective, though this typically comes at the expense of an additional

increase in code size compared to trace scheduling.

Path optimizations have also been used to improve code for single issue processors. This includes

techniques to avoid the execution of unconditional jumps (Mueller and Whalley, 1992) and con-

ditional branches (Mueller and Whalley, 1995) and to perform partial dead code elimination and

partial redundancy elimination (Gupta et al., 1997).

2.2 Other Prior Work on Reducing WCET

While there has been much work on developing compiler optimizations to reduce execution time

and, to a lesser extent, to reduce space and energy consumption, there has been very little work

on compiler optimizations to reduce WC performance. Marlowe and Masticola outlined a variety

of standard compiler optimizations that could potentially affect the timing constraints of critical

sections in a task (T. Marlowe, 1992). They proposed that some unsafe or dangerous transformations

may even lengthen the execution time for some sets of inputs. These optimizations should be

used with caution for real-time programs with timing constraints. However, no implementation

was described in this paper. Hong and Gerber developed a programming language with timing

constructs to specify the timing constraints and used a trace scheduling approach to improve code

in critical sections of a program (Hong and Gerber, 1993). Based on these code-based timing

constraints, they attempt to meet the WCET requirement for each critical section when performing

code transformations. However, no empirical results were given since the implementation did not

interface with a timing analyzer to serve as a guide for the optimizations or to evaluate the impact

on reducing WCET. Both papers outlined strategies that attempt to move code outside of critical

sections within an application that have been designated by a user to contain timing constraints. In

contrast, most real-time systems use the WCET of an entire task to determine if a schedule can be

met. Lee et al. used WCET information to choose how to generate code on a dual instruction set

processor for the ARM and the Thumb (Lee et al., 2004). ARM code was generated for a selected

subset of basic blocks that can impact the WCET while Thumb code was generated for the remaining

blocks. In this way, they can reduce the WCET while minimizing code size. In contrast, we use

compiler optimizations to improve the WCET on a single instruction set processor.

4

2.3 Our Prior Work on Reducing WCET

Although compiler optimizations have been used to reduce the ACET for decades, compiler optimiza-

tions that attempt to reduce WCET comprise a relatively new research area. A genetic algorithm

has been used to search for an effective optimization phase sequence that best reduces the WCET for

an application (Zhao et al., 2004). The search space is the permutation of a sequence of traditional

compiler optimization phases. After a sequence of optimization phases is applied, the WCET of

the application is used to evaluate the efficiency for this particular ordering of optimization phases.

However, this approach did not use WC path information from the timing analyzer to perform

compiler optimizations.

A WCET code positioning optimization that uses WC path information has been developed to

find an ordering of the basic blocks within a function to reduce WCET. This optimization attempts

to minimize the number of unconditional jumps and taken conditional branches that can affect the

WCET (Zhao et al., 2004). All basic blocks are treated as being initially unpositioned where every

transition from one block to another has a transfer-of-control penalty. The algorithm selects one

transition at a time in the control flow graph (CFG) and places two basic blocks, which are linked

by the transition, next to each other. This operation eliminates the transfer-of-control penalty

between two contiguous blocks. The algorithm then re-calculates the new WCET paths to guide the

selection of the next edge. WCET code positioning typically does not increase the code size. In this

paper, we present path-based compiler optimizations which reduce WCET using code duplication

and modification rather than just reordering blocks.

3 The StarCore SC100 Architecture

The StarCore SC100, a DSP used in embedded system applications, is the architecture used in this

research. There are no caches and no operating system in a SC100 system, which facilitates accurate

WCET estimations. The SC100 contains a register file with 32 registers. 16 registers are used to

store data (data registers) and 16 registers are used to store addresses (address registers). Each data

register contains 40 bits and each address register contains 32 bits. The size of instructions can vary

from one word (two bytes) to five words (ten bytes) depending upon the type of instruction, the

addressing mode used, and the register number referenced.

The SC100 has a 5-stage pipeline. The five stages are: Prefetch, Fetch, Dispatch, Address Genera-

tion and Execution. The prefetch stage in the pipeline always fetches the next sequential instruction.

5

instruction

target

control

transfer of

fetch set n+2fetch set n+1fetch set n

Figure 2: Example of a Misaligned Target Instruction

Therefore, the SC100 processor incurs a pipeline delay whenever an instruction transfers control to

a target that is not the next sequential instruction since the pipeline has to be flushed to fetch the

target instruction. A transfer of control (taken branches, unconditional jumps, calls, and returns)

results in a one to three cycle penalty depending on the type of the instruction, the addressing

mode used, and if the transfer of control uses a delay slot. In this machine, if a conditional branch

instruction is taken, then it takes three more cycles than if it was not taken. Unconditional jump

instructions take two extra cycles if they use immediate values and take three extra cycles if they

are PC-relative instructions.

Besides the pipeline delay, transfers of control on this machine also incur an extra delay if the

target is misaligned. The SC100 fetches instructions in sets of four words that are aligned on

eight byte boundaries. The target of a transfer of control is considered misaligned when the target

instruction is in a different fetch set from the transfer of control and the target instruction spans

more than one fetch set, as shown in Figure 2. In this situation, the processor stalls for an additional

cycle after the transfer of control (Star Core, 2001b).

In addition, there are no pipeline interlocks in this machine. It is the compiler’s responsibility

to insert no-op instructions to delay a subsequent instruction that uses the result of a preceding

instruction when the result is not available in the pipeline. The SC100 architecture does not provide

hardware support for floating-point data types, nor does it provide divide functionality for integer

types (Star Core, 2001b).

4 Retargeting the Timing Analyzer to the SC100

WCET path-based optimizations need WC path information from a timing analyzer. In this section

we describe a timing analyzer that was developed based on path analysis (Harmon et al., 1994;

Arnold et al., 1994; Healy et al., 1995; Ko et al., 1996; Mueller, 1997; White et al., 1997; Ko et al.,

1999; Healy et al., 1999; Healy and Whalley, 1999; White et al., 1999; Mueller, 2000; Healy et al.,

2000, 1999; Healy and Whalley, 2002) and how we retargeted it to the SC100 machine. This path

6

analysis approach for predicting WCET involves the following issues:

• architecture modeling (pipeline and cache)

• detecting the maximum number of iterations of each loop

• detecting all possible paths and identifying infeasible paths

• analyzing each path to predict its WCET

• calculating the WCET for each loop and function

• predicting the WCET for the whole program based on a timing tree

An instruction’s execution time can vary greatly depending on whether that instruction causes a

cache hit or a cache miss. The timing analyzer starts by performing worst-case cache analysis (Arnold

et al., 1994). The timing analyzer then integrates the cache analysis with pipeline analysis. Struc-

tural and data hazard pipeline information for each instruction is needed to calculate the execution

time for a sequence of instructions. Cache misses and pipeline stalls are detected when inspecting

each path (Healy et al., 1995).

When the WCET is needed for a benchmark, VPO generates the timing information for the

benchmark and passes it to the timing analyzer. The timing analyzer uses the timing information

as input to predict the WCET. Each instruction in the assembly has a counterpart in the timing

information where the instruction type and the registers sets and uses are presented. The timing

analyzer needs this information to detect pipeline hazards and find the worst-case paths. The timing

information for the SC100 also contains the size information for each instruction, which is needed

by the timing analyzer to detect the branch target mis-alignment penalties. In addition, the timing

information contains the control flow information, such as the branches and loop, for the program.

The timing analyzer takes the timing information and produces the WCET path information (Arnold

et al., 1994). Our timing analyzer calculates the WCET for all paths within each loop and the outer

level of a function. A loop path consists of basic blocks and each loop path starts with the entry

block (header) in the loop and is terminated by a block that has a transition back to the entry block

(back edge) and/or a transition outside the loop. A function path starts with the entry block to the

function and is terminated by a block containing a return. If a path enters a nested loop, then the

entire nested loop is considered a single node along that path. The WCET for each path is calculated

by the timing analyzer. This WC path information is used by the WC path optimizations.

7

Besides addressing architectural features, the timing analyzer also automatically calculates control-

flow constraints to tighten the WCET. One type of constraint is determining the maximum number

of iterations associated with each loop, including nonrectangular loops where the number of itera-

tions of an inner loop depends on the value of an outer loop variable (Healy et al., 2000). Another

type of constraint is called branch constraints. The timing analyzer uses such constraints to detect

infeasible paths through the code and the frequency of how often a given path can be executed (Healy

and Whalley, 2002). The timing analyzer uses the control-flow and constraint information, caching

categorizations, and machine-dependent information (e.g. characteristics of the pipeline) to make

its timing predictions.

The WCET of the whole program is obtained in a bottom-up fashion by following a timing tree,

where the WCET for an inner loop (or called function) is calculated before determining the WCET

for an outer loop (or calling function). Each function is treated as a loop with a single iteration.

The WCET information for an inner loop (or called function) is used when it is encountered in an

outer-level path.

Sometimes, the control flow within a loop has too many paths. For example, if there are 20 if

statements inside a loop, there can be up to 220 paths, which is beyond the capability of the timing

analyzer to evaluate within a reasonable time. The timing analyzer was modified to partition the

control flow of complex loops and functions into sections that are limited to a predefined number of

paths (Ko et al., 1999). The timing tree is also updated to include each section as a direct descendant

to the loop or function containing the section.

The architectural features of a machine, such as pipelining and caches, affect the WCET prediction

of an application. We retargeted the timing analyzer to the SC100 processor to demonstrate that

we could predict the WCET for an embedded machine. Since the SC100 does not have a memory

hierarchy (no caches or virtual memory system), the timing analyzer was updated to treat all cache

accesses as hits since instructions and data on the SC100 can in general be accessed in a single cycle

from both ROM and RAM, respectively.

The timing analyzer was also modified to address the penalty for transfers of control. When

calculating the WCET of a path, it has to be determined if each conditional branch in the path is

taken or not since non-taken branches do not have this penalty. When there is a transfer-of-control

penalty, the timing analyzer calculates the number of clock cycles of pipeline delay, which depends

on the instruction type and whether there is an extra cycle due to a target misalignment penalty.

Therefore, the size of each instruction is needed to find the SC100 fetch sets in order to calculate

the target misalignment penalty.

8

In addition, we were able to obtain a simulator for the SC100 from StarCore (Star Core, 2001a).

Many embedded processor simulators, in contrast to general-purpose processor simulators, can very

closely estimate the actual number of cycles required for an application’s execution. The SC100

simulator, which can simulate the SC100 executable and report an estimated number of execution

cycles for a program, is used to verify the accuracy of the WCET timing analyzer. This simulator

can report the size of each instruction as well, so we also used it to verify the code size obtained

from the compiler.

5 Using WCET Information in the Compiler

We use an interactive compilation system called VISTA (VPO Interactive System for Tuning Appli-

cations) (Zhao et al., 2002; Kulkarni et al., 2003) to experiment with our WCET path optimizations.

We retargeted VISTA to the SC100 architecture and integrated it with the SC100 timing analyzer.

The VPO port of the SC100 compiler takes the source code and generates the assembly and the

timing information, which is used by the timing analyzer to produce the WC path information. The

compiler performs optimizations based on the WC path information and the user can see transfor-

mations of the program graphically step by step at the machine code level. After each optimization,

the compiler automatically invokes the timing analyzer to update the WCET path information,

which is used to guide the next optimization. This allows an embedded application to be developed

at the source code level, but allows the developer to interactively tune the application at a low level

to meet design constraints of the embedded system.

The WCET for the whole program is calculated in a bottom-up fashion based on a timing analysis

tree, where each node is a loop or a function (see Section 4). The timing information of each node

includes the execution time and the lists of the basic blocks along all the paths. The timing analyzer

provides the timing information for all the nodes in the timing tree. However, the path optimizations

are performed only on the innermost loops to limit the code size growth.

Several WC path optimizations are applied to transform the code after traditional optimizations

have completed, but before some required phases such as fix entry exit, instruction scheduling, and

add noops. Fix entry exit inserts instructions at the entry and exit of the function to manage the

activation record on the run-time stack. Add noops puts a noop between two dependent SC100

instructions when the first instruction produces a result that will not be available when the second

instruction accesses it. This transformation is required since the SC100 has no pipeline interlocks.

Some transformations, such as distinguishing the WC path through superblock formation and code

9

sinking, can increase the number of instructions in a function. Since we are performing optimizations

for embedded systems, we would prefer not to increase code size unless there is a corresponding

benefit gained from decreasing the WCET. In order to obtain the WCET before and after each

path optimization, the required phases, fix entry exit, instruction scheduling, and add noops have

to be applied. As mentioned previously, VISTA has the ability to roll back previously applied

transformations. When the transformations need to be reversed, the current function, with all its

data structures, is discarded and re-initialized. A fresh instance of the function is then read from the

input file. The optimizations are re-applied up to the point before or after the WC path optimization

was applied, depending on if the optimization reduces the WCET.

The compiler invokes the timing analyzer to obtain the WCET before and after applying each

code size increasing transformation. If the transformation does not decrease the WCET, then we

restore the state of the program representation prior to the point when the transformation was

applied. Note that the timing analyzer returns the WCET of the entire program. By checking the

program’s entire WCET, the compiler discards all code size increasing transformations where the

WC path does not contribute to the overall WCET, even though the transformation may decrease

the WCET of the loop or function in which the WC path resides. This ability to discard previously

applied transformations also allows the compiler to aggressively apply an optimization in case the

resulting transformation will be beneficial.

6 WC Path Optimizations

Traditional frequent path-based optimizations are performed based upon the path frequency infor-

mation gathered from profiling. In contrast, WC path optimizations need to be applied on the paths

in a function that have the highest WCET. To obtain this information, we integrated the timing ana-

lyzer with the compiler. Therefore, path optimizations, such as superblock formation, can be applied

along the worst-case paths. In this section, we introduce three WC path-based optimizations.

6.1 Superblock Formation

A superblock is a sequence of basic blocks in the control-flow graph (CFG) where the control can

only enter at the top but there may be multiple exits. Each block within the superblock, except

for the entry block, can have at most one predecessor. Although superblock formation can increase

code size due to code duplication, it can also enable other optimizations to reduce the execution

time along the superblock.

10

Figure 3 illustrates the WC superblock formation process. Figure 3(a) depicts the original control

flow of a function. Assume that the timing analyzer indicates that the WC path through the loop

is 2→3→5→6→8. Note that the blocks and transitions along the WC path are shown in bold font.

We start at the beginning of the WC path and duplicate code from the point where other paths have

an entry point (join block) into the WC path. In this example, block 5 is a join block. Figure 3(b)

shows the control flow after duplicating code along the WC path. At this point there is only a single

entry point in the WC path, which is the loop header at block 2. Blocks 5’, 6’, and 8’ are duplicates

of blocks 5, 6, 8, respectively. Although block 5’ forks into block 6’ and block 7, there is no join block

along the WC path. To eliminate transfer of control penalties within the superblock, the compiler

makes the blocks within the WC path contiguous in memory, which eliminates transfers of control

within the superblock. After superblock formation some blocks can be merged. For instance, blocks

3 and 5’ and blocks 6’ and 8’ can both be merged into one block. The compiler then attempts other

code improving transformations that may exploit the new control flow and afterwards invokes the

timing analyzer to obtain the new WCET.

4

7

9

1

2

5

8

3

6

1

2

9

3 4

7

55’

66’
8’

8

(b)(a)

Figure 3: Example Illustrating Superblock Formation

6.2 Path Duplication

Figure 4 shows the control-flow graph from Figure 3(b) after path duplication to duplicate the WC

path. The number of taken conditional branches, which result in a transfer of control penalty on the

SC100, are reduced in the WC path within a loop by duplicating this path. For instance, regardless

11

of how the nonexit path 2→3→5’→6’→8’ in Figure 3(b) is positioned, it would require at least one

transfer of control since the last transition is back to block 2. If path duplication duplicates the

WC path once, one iteration of the worst-case path after duplication is equivalent to two iterations

before the duplication. Now the path 2→3→5→6’→8’→ 2’→3’→5”→6”→8”→2 in Figure 4 can

potentially be traversed with only a single transfer of control. In contrast, at least two transfers of

control would be required before path duplication to execute the code that is equivalent to this path.

In addition, WC path duplication forms one superblock consisting of code from two loop iterations

which can enhance the opportunities for other optimizations.

1

2’

7

4

3’
5’’

6’’
8’’

5
5’

6
6’

8

8’

3

2

9

Figure 4: WC Path Duplication of Graph in Figure 3(b)

WC path duplication presents interesting challenges for the timing analyzer and the compiler

since some acyclic paths, such as 2→3→...→8” in Figure 4, represent two iterations of the original

loop and others, such as 2→4→...→8, represent a single iteration. We annotated the duplicated

loop header, block 2’ in Figure 4, so that the timing analyzer counts an extra iteration for any path

containing it. We also modified the compiler to retain the original number of loop iterations before

WC path duplication and count two original loop iterations for each path containing the duplicated

loop header.

12

6.3 Loop Unrolling

Loop unrolling reduces the loop overhead by duplicating the whole loop body. It is different from

path duplication, where only the WC path is duplicated. We investigate performing limited loop

unrolling followed by superblock formation and associated other compiler optimizations to exploit

the modified control flow. For this study, only the innermost loops of a function are unrolled by

a factor of two since we wished to limit the code size increase. Some approaches that perform

unrolling require a cleanup loop to handle exits from the superblock and this cleanup loop can be

unstructured. We did not use such an approach since our timing analyzer requires that all loops be

structured for the analysis and this approach would result in a larger code size increase.

Figure 5(a) shows the control flow from Figure 3(a) after unrolling by a factor of two when the

original loop had an even number of iterations. Figure 5(b) shows how our compiler uses a less

conventional approach to perform loop unrolling by an unroll factor of two and still not require an

extra copy of the loop body when the original number of loop iterations is an odd number. Each

WC loop path (blocks and transitions) in these figures is again depicted in bold. Note that the WC

loop path in Figure 5(b) starts at block 2’, the loop header, and ends at block 8. In both Figure 5(a)

and 5(b) the compare and branch instructions in block 8 are eliminated, reducing both the ACET

and WCET. However, the approach in Figure 5(b) does not result in any merged blocks, such as

blocks 8 and 2’ in Figure 5(a), which may result in fewer other compiler optimizations being enabled.

Figure 5(c) show superblock formation after loop unrolling. As illustrated in Figures 4 and 5, path

duplication results in less code duplication than loop unrolling. However, loop unrolling can result

in a greater reduction in WCET than path duplication.

7 Enabling Other Optimizations

Superblock formation, path duplication, and loop unrolling may enable other compiler optimizations.

For instance, consider Figure 6(a), which shows the source code for a program that finds the index

of the element for the maximum value in an array and counts the number of times that the index

for the maximum element was updated. Figure 6(b) shows the corresponding control flow after

unrolling the loop by a factor of two so that the loop overhead (compares and branches of the loop

variable i) can be reduced. The WC path (blocks and transitions) is depicted in bold. While the

code in this figure is represented at the source code level to simplify its presentation, the analysis is

performed by the compiler at the assembly instruction level after compiler optimizations have been

13

1

2’

5’

8’

2

5

8

1

2

5

8

3

6

4

7

2’

5’

8’

3’

6’

4’

7’

(b) Unrolling for

1

2

4

9

76

3’

5’

6’ 7’

8’

2’
8

5

4’

(c) After Performing(a) Unrolling
the Loop in
Figure 2(a)

an Odd Number
of Iterations

Superblock Formation
on Figure 5(a)

3’

6’

3

6

9

4’

7’

4

7

9

6’’
8’’

3’’

2’’

5’’’

6’’’

5’’
3

8’’’

Figure 5: Unrolling Followed by Superblock Formation

applied to allow more accurate timing predictions. The conditions have been reversed in the control

flow to represent the condition tested by a conditional branch at the assembly level.

Figure 6(c) enumerates the four different paths through the loop. Transfer of control penalties

are initially assessed between each pair of basic blocks. Path A is the current WC path in the loop

because it contains the most instructions. However, when the array contains random values, path

D would likely be the most frequent path executed since not finding a new maximum is the most

likely outcome of each iteration. In this example, the frequent path and the WC path are different.

We attempt WC path optimizations on the WC path in the innermost loops of a function or at

the outer level if the function has no loops to limit the code size increase. The innermost loops

and functions with no loops are the leaves of the timing tree which are often comprise most of the

execution time. Once the WC path is identified, we attempt superblock formation on that path.

This means that code is duplicated so that the path is only entered at the head of the loop. Consider

Figure 6(d), where superblock (2→3→4’→5’→ 6’) representing path A now is only entered at block

2. Blocks 4’, 5’, and 6’ are duplicates of blocks 4, 5, and 6, respectively. Note that there are still

multiple exits from this superblock, but there is only a single entry point. Distinguishing the WC

14

updates += 2;

m = i+1;

F
5’

4’
a[m] >= a[i+1]

F

F

i < 1000

i += 2;

F

6
i < 1000

i++;

5
T

F

T

a[m] > a[i]

T

T

T

1

i = 0;

updates = 0;

m = 0;

2

6’
i < 1000

i++;

T

i++;

T

T T

4

updates++;

m = i+1;

a[m] >= a[i]

(f) After Dead Assignment
Elimination and

Instruction Selection

updates++;

m = i;

6’
i < 1000

i += 2;

a[m] >= a[i] 2

1

i = 0;

updates = 0;

m = 0;

F

F

6’
i < 1000

i++;

6
i < 1000

i++;

5
T

F

4

updates++;

m = i;

a[m] >= a[i]

a[m] >= a[i] 2

1

(d) After Superblock

F

T

T

i++;

i++;

T

F
3

updates++;

m = i;

F
5’

4’

updates++;

m = i;

a[m] >= a[i]

Formation of the WC Path

i = 0;

updates++;

m = i+1;

a[m] >= a[i]

F

updates++;

m = i;

(e) After Sinking Code in the Superblock

5’

i++;

m = i;

updates++; T

updates++;

m = i;

F

4’
a[m] >= a[i+1]

4

updates = 0;

m = 0;

T

T

6’’

6’’

i++;

i++;

F

i < 1000

i++;

F

6
i < 1000

i++;

5
T

F
updates++;

m = i;

a[m] >= a[i]

updates++;

m = i;

7

i++;

i = 0;

updates = 0;

m = 0;

i++;

T

T

F

F

6

5

4

3

i < 1000

432

7

5

(c) Loop Paths

D: 642
C: 6542
B: 6432
A: 6

1

7
7

(a) Source Code

updates = 0;

 if (a[m] < a[i]) {

 m = i;

 updates++;

 }

m = 0;

for (i=0; i<1000; i++)

T

(b) Control Flow after Unrolling

a[m] >= a[i] 2

Figure 6: Illustrating WCET Superblock Formation and Associated Optimizations

path may enable other compiler optimizations. In Figure 6(d), blocks 3 and 4’ and blocks 5’ and 6’

are merged together. Removing joins (incoming transitions) to the WC path may also enable other

optimizations.

Path duplication is performed after superblock formation since superblock formation eliminates

the join transitions along the WC paths. Superblock formation also makes it possible for an opti-

mization called code sinking on instructions along the WC path to reduce the WCET. When it is

beneficial, coding sinking moves instructions inside a block downward following the control-flow into

its successor blocks. The instructions being pushed down can sometimes be merged with instructions

in the successor block along the worst-case path. However, if a block has more than one succes-

sor, the moved instructions have to be duplicated for each successor, which potentially increase the

code size. The two assignments in block 3 of Figure 6(d) and the increment of i from block 4’ in

Figure 6(d) are sunk after the fallthrough transition of block 4’ into the top portion of block 5’ in

Figure 6(e). Likewise, these assignments have to be duplicated after the taken transition of block 4’

in the top portion of block 6”. Due to the high cost of SC100 transfers of control, code duplication

is performed until another transfer of control is encountered when code sinking leads to assignments

being removed off the WC path, as shown by the duplicated code in the bottom portion of block

15

6”. This additional code duplication avoids introducing an extra unconditional jump at the end of

block 6”, which decreases the WCET of the path containing that block.

Initially it may appear that there is no benefit from performing code sinking. Figure 6(f) shows

the updated code after performing dead assignment elimination, instruction selection, and common

subexpression elimination. The first assignment to m in block 5’ of Figure 6(e) is now dead since its

value is never used and this assignment is deleted in Figure 6(f). Likewise, the multiple increments

to the updates variable in block 5’ of Figure 6(e) are combined into a single instruction in block

5’ of Figure 6(f). In addition, the two pair of increments of i in blocks 5’ and 6’ and in block

6” are combined into single increments in blocks 6’ and 6”. Finally, the movement of the ”i++;”

statement past the assignment ”m = i;” statement in block 5’ causes the source of that statement

to be modified. Other optimizations, such as constant propagation, copy propagation, and strength

reduction, are also re-applied to exploit the superblock.

Prior to invoking the timing analyzer after performing each WC path optimization, we also per-

form instruction scheduling, WCET code positioning, insertion of no-ops to address data hazards

(the SC100 has no pipeline interlocks), and WCET target alignment. Much of the WCET improve-

ment that was previously obtained from WCET code positioning may now be achieved by superblock

formation and WC path duplication due to the resulting contiguous layout of the blocks in the WC

path.

8 Results

This section describes the results of a set of experiments to illustrate the accuracy of the SC100

timing analyzer and the effectiveness of improving the WCET by using WCET path optimizations.

All of the optimizations described in the previous sections were implemented in our compiler and

the measurements were automatically obtained after applying these optimizations. Table 1 shows

the benchmarks and applications used to test the WCET reduction optimizations. These include

benchmarks or programs used in previous studies by various groups (FSU, SNU, Uppsala) working

on WCET timing analysis. These benchmarks in Table 1 were selected since they have conditional

constructs, which means the WCET and ACET input data may not be the same.

The benchmark findmax contains the code similar to the example shown in Figure 6. For the

example in Figure 6, the initial value of i in the for loop is 0, so the loop has an even number of

the loop iterations, which simplifies the example since loop unrolling can use the approach shown

in Figure 5(a). However, in the benchmark findmax, we assigned the initial value for i in the for

16

Table 1: Benchmarks Used in the Experiments
Program Description

bubblesort performs a bubble sort on 500 elements
findmax finds the maximum element in a 1000 element array
keysearch performs a linear search involving 4 nested loops for 625

elements
summidall sums the middle half and all elements of a 1000 integer

vector
summinmax sums the minimum and maximum of the corresponding

elements of two 1000 integer vectors
Small sumnegpos sums the negative, positive, and all elements of a 1000

integer vector
sumoddeven sums the odd and even elements of a 1000 integer vector
sumposclr sums positive values from two 1000 element arrays and

sets negative values to zero
sym tests if a 50x50 matrix is symmetric
unweight converts an adjacency 100x100 matrix of a weighted

graph to an unweighted graph

bitcnt five different methods to do bit-count
diskrep train communication network to control low-level

hardware equipments
Larger fft 128 point complex FFT

fire fire encoder
sha secure hash algorithm
stringsearch Pratt-Boyer-Moore string search

loop to be 1 instead of 0 since the first iteration of the loop is unnecessary. The loop has an odd

number of iterations. Thus, when applying loop unrolling for this benchmark, the compiler uses the

approach shown in Figure 5(b).

All input and output was performed by reading from and writing to global variables, respectively,

to avoid having to estimate the WCET of performing actual I/O. If the input data for the original

benchmark was from a file, then we modified the benchmark so that a global array is initialized with

constants. Likewise, output is written to a global array.

In order to verify the accuracy of the worst-case timing analyzer, the SC100 simulator from

StarCore is used to obtain the execution time driven by the WC input data. Table 2 shows the

baseline measurements of the experiments. The measurements are taken after all optimizations

have been applied except for those that are performed to improve the WC paths. WCET cycles

are obtained from the timing analyzer and observed cycles are obtained from the SC100 simulator.

WCET cycles should be larger than or equal to the observed cycles since the WCET is the upper

bound for the execution time and it should never be underestimated. The WC input data has to be

meticulously determined since the WC paths were often difficult to detect manually due to control-

flow penalties. Therefore, these benchmarks are classified into two categories: Small and Larger

benchmarks. The WC input data can be detected manually for Small benchmarks. Therefore, the

17

Table 2: The Baseline Code Size, Observed Cycles, and WCET

Code Size Lines of Observed WCET WCET

Category Benchmarks (bytes) Source Cycles Cycles Ratio

bubblesort 145 93 7,372,782 7,623,795 1.034

findmax 58 21 19,997 20,002 1.000

keysearch 186 537 30,667 31,142 1.015

summidall 56 23 19,513 19,520 1.000

Small summinmax 60 47 23,009 23,015 1.000

sumnegpos 45 20 20,010 20,015 1.000

sumoddeven 78 51 22,025 23,032 1.046

sumposclr 81 35 31,013 31,018 1.000

sym 97 40 55,343 55,497 1.003

unweight 79 23 350,507 350,814 1.001

small
average 89 89 794,487 819,785 1.010

bitcnt 354 170 39,616 55,620 1.404

diskrep 388 500 9,957 12,494 1.255

Larger fft 631 220 73,766 73834 1.001

fire 247 109 8,813 10,210 1.159

sha 907 253 691,045 769,493 1.114

stringsearch 333 237 147,508 194,509 1.319

larger
average 477 248 161,784 186,027 1.208

overall
average 234 149 557,223 582,126 1.084

WCET from the timing analyzer is close to the execution time obtained from the simulator. However,

the WC input data is more difficult to manually detect for the Larger benchmarks. Therefore, the

WCET from the timing analyzer may be much larger than the execution time obtained from the

simulator for these larger benchmarks. This does not necessarily imply that the timing analyzer

is inaccurate, but rather that the input data is not causing the execution of the WC paths. The

WCET ratios show that these predictions are reasonably close for Small programs, but much larger

on average than the observed cycles for the larger benchmarks. We did not obtain the observed cycles

after WCET path optimizations since this would require new WCET input data due to changes in

the WCET paths. Table 2 also shows the instruction code size and the lines of source code for these

benchmarks. The instruction code size of the Larger benchmarks is no less than 250 bytes while the

code size is under 200 bytes for each of Small benchmarks.

Two sets of experiments were performed to assess the effectiveness of applying WC path op-

timizations. The first experiment invokes superblock formation along the worst-case path. Path

duplication is then performed to duplicate the superblock to reduce the number of transfer of con-

trol along the worst-case path. The second experiment applies loop unrolling on the innermost

loop. Superblock formation is then performed to create a superblock along the worst-case path.

18

After each set of WC path optimizations, other optimizations, such as code sinking, merging basic

blocks, dead assignment elimination, and instruction selection, are invoked to reduce the execution

time along these worst-case paths. Finally, WCET code positioning is invoked to further reduce the

WCET (Zhao et al., 2004).

Table 3 shows the effect on WCET after performing superblock formation, WC path duplication,

and WCET code positioning. Note these WC path optimizations are applied after all other con-

ventional code-improving optimizations have been performed. For each of these optimizations, the

transformation was not retained when the WCET was not improved. Thus, the code size was not

increased unless the WCET was reduced. The results after superblock formation were obtained by

applying superblock formation followed by a number of compiler optimizations to improve the code

due to the simplified control flow in the superblock. Only five of the ten Small benchmarks and

five of the six Larger benchmarks improved. There are several reasons why there is no improvement

on WCET after superblock formation. Sometimes, there are multiple paths in the benchmark that

have the same WCET. In these cases improving one path does not reduce the WCET since the

WCET for another path with the same WCET is not decreased. The WC path is also often already

positioned with only fall through transitions, which occurs when if-then statements are used instead

of if-then-else statements. There is no opportunity to change the layout in this situation to reduce

the number of transfer of control penalties in the WC path. Finally, other optimizations often had

no opportunity to be applied after superblock formation due to the path containing code for only a

single iteration of the loop.

The results after WC path duplication shown in the middle portion of Table 3 were obtained by

performing superblock formation followed by WC path duplication. If the WCET did not improve,

then we discarded the transformations. In contrast to superblock formation alone, WC path duplica-

tion after superblock formation was more successful at reducing the WCET. First, assignments were

often sunk across the duplicated loop header of the new WC path and other optimizations could be

applied on the transformed code. Second, there was typically one less transfer of control after WC

path duplication for every other original iteration. Eliminating a transfer of control is almost always

beneficial on the SC100.

The results after WCET positioning for the final column in Table 3 were obtained by performing

superblock formation, WC path duplication, and WCET code positioning. Sometimes superblock

formation and/or WC path duplication did not improve the WCET, but applying WCET code

positioning in addition to these transformations resulted in an improvement. The combination of

applying all three optimizations was over 4% more beneficial on average than applying WCET code

19

Table 3: Results after Superblock Formation and WC Path Duplication
Superblock Formation Path Duplication Code Positioning

Program WCET Size WCET Size WCET Size
Ratio Ratio Ratio Ratio Cycles Ratio Ratio

bubblesort 0.984 1.007 0.951 1.586 7,248,051 0.951 1.586
findmax 1.000 1.000 1.000 1.000 18,010 0.900 1.655
keysearch 1.000 1.000 0.811 1.247 24,958 0.801 1.312
summidall 0.949 1.018 0.929 1.821 16,325 0.836 1.804
summinmax 1.000 1.000 1.000 1.000 20,021 0.870 1.067
sumnegpos 1.000 1.000 1.000 1.000 18,021 0.900 1.133
sumoddeven 0.718 1.051 0.718 1.410 16,546 0.718 1.013
sumposclr 0.968 1.420 0.968 1.951 26,024 0.839 2.222
sym 1.000 1.000 0.934 1.598 50,603 0.912 1.660
unweight 0.915 1.089 0.915 1.633 300,920 0.858 1.684

small
average 0.953 1.058 0.923 1.425 773,948 0.859 1.514

bitcnt 0.998 1.003 0.910 1.164 49,023 0.881 1.161
diskrep 1.000 1.000 1.000 1.000 11,905 0.953 1.021
fft 0.994 0.998 0.961 1.580 70,891 0.960 1.583
fire 0.948 1.105 0.934 1.765 9,395 0.920 1.789
sha 0.987 1.000 0.953 1.218 733,450 0.953 1.225
stringsearch 0.998 1.039 0.894 1.447 167,893 0.863 1.432

larger
average 0.987 1.024 0.942 1.362 173,760 0.922 1.369

overall
average 0.966 1.046 0.930 1.401 548,877 0.882 1.459

positioning alone. While superblock formation or WC path duplication did not always provide the

best layout for the basic blocks, WCET code positioning in the final stage usually results in a better

layout with an additional improvement.

The effect on ACET after applying superblock formation, path duplication, and code positioning

to improve WCET is shown in Table 4. After superblock formation, the average ACET is reduced

by 3.2%. After path duplication, the average ACET is reduced by 6.9%. The average ACET of

these benchmarks is also reduced after code positioning. The benefit to WC paths will help ACET

if the random input data drives the WC path. Sometimes, the WC path optimization is not applied

for some benchmarks shown in Table 4 if there is no improvement on WCET. However, it also

causes no improvement on ACET. Overall, the improvement on ACET is comparable to the WCET

improvement.

Table 5 shows experimental results for the second experiment. First, the effect on WCET and code

size after unrolling innermost loops by a factor of two is shown. Second, the results after superblock

formation (as depicted in Figure 5) are depicted. Finally, the results after WCET code positioning

are given. As expected, loop unrolling reduced WCET for all benchmarks. If typical input data

was available for these benchmarks, then comparable benefits for ACET would be obtained. Six

20

Table 4: ACET Results after Superblock Formation and WC Path Duplication
Default Superblock Formation Path Duplication Code Positioning

Program ACET ACET Ratio ACET Ratio ACET Ratio

bubblesort 5,086,177 5,025,915 0.988 4,891,925 0.962 4,889,039 0.961
findmax 19,991 19,991 1.000 19,991 1.000 17,006 0.851
keysearch 11,067 11,067 1.000 9,173 0.829 9,016 0.815
summidall 19,511 18,514 0.949 17,913 0.918 16,122 0.826
summinmax 23,009 23,009 1.000 23,009 1.000 20,018 0.870
sumnegpos 18,032 18,032 1.000 18,032 1.000 15,042 0.834
sumoddeven 14,783 11,098 0.751 11,098 0.751 11,097 0.751
sumposclr 28,469 27,255 0.957 26,416 0.928 24,795 0.871
sym 107 107 1.000 107 1.000 107 1.000
unweight 340,577 315,517 0.926 305,510 0.897 290,939 0.854

small
average 556,172 547,051 0.957 532,317 0.928 529,318 0.863

bitcnt 39,616 39,517 0.998 37,215 0.939 36,015 0.909
diskrep 9,957 9,955 1.000 9,955 1.000 9,566 0.961
fft 73,766 73,318 0.994 70,855 0.961 70,802 0.960
fire 8,813 8,280 0.940 8,151 0.925 8,067 0.915
sha 691,045 683,046 0.988 648,892 0.939 648,896 0.939
stringsearch 147,508 147,339 0.999 125,222 0.849 125,057 0.848

larger
average 161,784 160,243 0.986 150,048 0.935 149,734 0.922

overall
average 408,277 401,998 0.968 388,967 0.931 386,974 0.885

out of ten Small benchmarks and five out of six Larger benchmarks improved after superblock

formation was performed following loop unrolling. We found that eliminating one of the loop

branches after unrolling enabled other optimizations to be applied after superblock formation. WCET

code positioning also improved the overall WCET for half of the benchmarks, beyond what could be

accomplished by unrolling and superblock formation alone. The results in Table 5 show that loop

unrolling reduces WCET more than WC path duplication.

While the WCET is reduced by applying WC path optimizations, there is an accompanying

substantial code size increase, as shown shown in Tables 3 and 5. For small benchmarks, the

duplicated blocks from applying superblock formation, WC path duplication, and loop unrolling

comprise a significant percentage of the total code size. Performing these optimizations on larger

applications results in smaller code size increases. We anticipate applications that are even larger

will exhibit progressively smaller code size increases since the paths on which the transformations

are performed will represent a smaller percentage of the total code size. As expected, loop unrolling

followed by superblock formation results in a greater code size increase than superblock formation

followed by WC path duplication. The type of WC path optimization that should be applied depends

on the timing constraints and code size limitation that should be met.

21

Table 5: Results after Loop Unrolling and Superblock Formation
Loop Unrolling Superblock Formation Code Positioning

Program WCET Size WCET Size WCET Size
Ratio Ratio Ratio Ratio Cycles Ratio Ratio

bubblesort 0.951 1.359 0.935 1.724 7,122,301 0.934 1.717
findmax 0.900 1.379 0.801 1.983 16,014 0.801 1.983
keysearch 0.924 1.435 0.795 1.242 24,767 0.795 1.242
summidall 0.846 1.411 0.846 1.411 14,728 0.755 2.143
summinmax 0.913 1.533 0.913 1.533 19,021 0.826 1.600
sumnegpos 0.850 1.400 0.850 1.400 16,021 0.800 1.533
sumoddeven 0.871 1.500 0.740 1.782 15,548 0.675 1.782
sumposclr 0.936 1.642 0.903 2.765 27,024 0.871 2.802
sym 0.912 1.546 0.912 1.546 49,372 0.890 1.546
unweight 0.943 1.620 0.887 2.177 311,017 0.887 2.177

small
average 0.904 1.483 0.858 1.756 761,581 0.823 1.853

bitcnt 0.912 1.113 0.885 1.121 47,720 0.858 1.113
diskrep 0.968 1.242 0.968 1.242 11,713 0.937 1.258
fft 0.995 1.203 0.978 1.192 72,178 0.978 1.197
fire 0.969 1.255 0.901 1.696 9,184 0.900 1.704
sha 0.953 1.092 0.926 1.086 712,467 0.926 1.093
stringsearch 0.956 1.330 0.949 1.417 179,578 0.923 1.441

larger
average 0.959 1.206 0.935 1.293 172,140 0.920 1.301

overall
average 0.925 1.379 0.887 1.582 540,541 0.860 1.646

The effect on ACET after WCET path optimization for the second experiment is shown in Table 6.

For the benchmarks in Table 6, loop unrolling reduces both ACET and WCET since it duplicates

all paths. WC superblock formation and WCET code positioning reduce ACET when the input

data causes the program to traverse the WC path. The average ACET is reduced by 7.5% after loop

unrolling, 10.8% after WC superblock formation, and 13.4% after WCET code positioning. As in the

first experiment, the average benefit on ACET is slightly less than the average benefit on WCET

since WC paths are targeted during WC path optimizations.

The time ratio columns in Tables 7 and 8 indicate the compilation overhead from performing these

optimizations. Most of this overhead is due to repeated calls to the timing analyzer. There were

several factors that resulted in longer compilation times. First, the applied optimizations increased

the number of basic blocks and paths in the program, which increased time for needed for timing

analysis and required additional invocations of the timing analyzer for WCET code positioning.

Second, we had to perform required phases (fixing the entry/exit of the function to address calling

conventions and instruction scheduling to address the lack of pipeline interlocks) before invoking the

timing analyzer. These transformations were discarded after invoking the timing analyzer by reading

in the intermediate file and reapplying the transformations up to the desired point in the compilation.

22

Table 6: ACET Results after Loop Unrolling and Superblock Formation
Default Loop Unrolling Superblock Formation Code Positioning

Program ACET ACET Ratio ACET Ratio ACET Ratio

bubblesort 5,086,177 4,721,255 0.928 4,703,142 0.925 4,699,933 0.924
findmax 19,991 17,498 0.875 16,005 0.801 16,005 0.801
keysearch 11,067 10,353 0.935 8,913 0.805 8,913 0.805
summidall 19,511 16,511 0.846 16,511 0.846 14,746 0.756
summinmax 23,009 20,509 0.891 20,509 0.891 19,018 0.827
sumnegpos 18,032 15,031 0.834 15,031 0.834 13,541 0.751
sumoddeven 14,783 13,442 0.909 11,431 0.773 10,426 0.705
sumposclr 28,469 25,969 0.912 25,636 0.900 24,544 0.862
sym 107 105 0.981 105 0.981 102 0.953
unweight 340,577 315,480 0.926 300,366 0.882 300,366 0.882

small
average 556,172 515,615 0.904 511,765 0.864 510,759 0.827

bitcnt 39,616 36,816 0.929 35,916 0.907 34,716 0.876
diskrep 9,957 9,527 0.957 9,525 0.957 9,358 0.940
fft 73,766 72,990 0.989 72,166 0.978 72,114 0.978
fire 8,813 8,413 0.955 7,796 0.885 7,785 0.883
sha 691,045 650,957 0.942 636,354 0.921 636,360 0.921
stringsearch 147,508 146,618 0.994 146,387 0.992 146,045 0.990

larger
average 161,784 154,220 0.961 151,357 0.940 151,063 0.931

overall
average 408,277 380,092 0.925 376,612 0.892 376,873 0.866

The extra I/O to support this feature had a large impact on compilation time. The ability to discard

previously applied transformations is not a feature that is available in most compilers. In contrast,

WCET code positioning is performed after these required phases. Thus, there is no need to discard

and reapply transformations after performing WCET code positioning.

As mentioned previously, a significant portion of the benefit from the WC path optimizations

(superblock formation and WC path duplication) is obtained by the contiguous layout of the WC

path. One should note that the WC path optimizations presented in this paper are computation-

ally much less expensive than WCET code positioning, which requires an invocation of the timing

analyzer after each time an edge is selected to be contiguous. Thus, the WCET code positioning

requires many more invocations of the timing analyzer when it is performed. As shown in Tables 7

and 8, WCET code positioning has a much greater impact on compilation time.

9 Future Work

In this paper, we performed WC path optimizations based on the WC path information from the

timing analysis. There are many areas of future work that can be investigated to enhance these

23

Table 7: Time Ratio After Superblock Formation and WC Path Duplication
Program Superblock Formation Path Duplication Code Positioning

bubblesort 1.40 2.40 5.47
findmax 1.29 2.14 5.43
keysearch 1.17 2.08 5.83
summidall 1.43 2.57 6.71
summinmax 1.33 2.33 5.22
sumnegpos 1.43 2.29 6.71
sumoddeven 1.63 2.38 4.50
sumposclr 1.27 2.18 6.09
sym 1.30 2.50 5.90
unweight 1.38 2.13 5.88

small
average 1.36 2.30 5.77

bitcnt 1.56 3.44 7.78
diskrep 1.75 3.38 17.44
fft 1.36 3.86 15.24
fire 1.67 4.00 15.33
sha 2.15 12.33 39.96
stringsearch 2.03 5.41 15.34

larger
average 1.75 5.40 18.51

overall
average 1.51 3.46 10.55

Table 8: Time Ratio After Loop Unrolling and Superblock Formation
Program Loop Unrolling Superblock Formation Code Positioning

bubblesort 1.00 2.20 5.33
findmax 1.14 3.00 5.57
keysearch 1.08 1.75 3.75
summidall 1.29 2.57 9.29
summinmax 1.56 4.67 11.89
sumnegpos 1.14 5.57 20.00
sumoddeven 1.88 4.88 10.25
sumposclr 4.82 5.73 15.55
sym 1.10 1.90 4.20
unweight 1.25 2.88 6.50

small
average 1.63 3.51 9.23

bitcnt 1.06 2.61 5.22
diskrep 2.38 11.75 29.69
fft 1.07 2.00 5.60
fire 1.22 4.00 19.78
sha 1.06 4.08 14.42
stringsearch 1.25 4.19 14.19

larger
average 1.34 4.77 14.81
overall
average 1.52 3.99 11.33

24

WCET path optimizations.

The compiler and the timing analyzer are currently separate processes and they exchange data

via files. If we could merge the compiler and the timing analyzer into one process, then it would

speed up the compilation since most of the compilation time is spent on timing analysis.

Currently, the compiler performs WC path optimizations on the innermost loops since they are

considered to have the best impact on WCET for the smallest code size duplication. The timing

analyzer has the ability to identify the critical code portion of a program. The compiler could

concentrate on the code portion that has the most impact on WCET, instead of always attempting

optimizations on the innermost loop since some inner loops may be in paths that will not affect on

the WCET.

Path optimizations reduce the WCET at the expense of an increase in code size. Currently, the

compiler discards the code duplication if there is no improvement on WCET. However, it sometimes

commits a large code size increase for small reductions on WCET. We could enhance the compiler

to automatically weight the code size increase and WCET reduction to obtain the best choice.

Alternatively, a user could specify the ratio of the code size increase to the WCET decrease that

he/she is willing to accept.

10 Conclusions

In this paper we have described how the WCET of a program can be reduced by optimizing the WC

paths. Compiler transformations that improve the performance of paths typically use profile data to

find the frequent paths in a program. In contrast, our compiler automatically uses feedback from the

timing analyzer to detect the WCET paths through a function. We show that traditional frequent

path optimizations can be applied to WC paths and improvements in the WCET can be obtained.

In addition, we developed new optimizations, such as WC path duplication and loop unrolling for

an odd number of iterations without overhead, to improve WCET while minimizing code growth.

Code sinking and other conventional optimizations are applied on the WC path to further reduce

its execution time. WCET code positioning is also performed at the final stage to further reduce

the WCET. Since path optimizations may increase the code size, it was critical to obtain WCET

feedback from the timing analyzer to ensure that each code size increasing transformation improves

the WCET before allowing it to be committed. Finally, we were able to show that these WC path

optimizations improve ACET as well as WCET.

During the course of this research, we found that path optimizations applied on the WC path to

25

reduce WCET will in general be less effective than reducing ACET when applied on the frequent

path. One path within a loop may be executed much more frequently than other paths in the

loop. In contrast, the WC path within a loop may require only slightly more execution time than

other paths. Performing optimizations on the WC path may quickly lead to another path having

the greatest WCET, which can limit the benefit that can be obtained. However, we were able to

show that reasonable WCET improvements can still be achieved by optimizing the WC paths of an

application.

11 Acknowledgements

We thank StarCore for providing the software (assembler, linker, simulator, etc.) and documentation

that were used in this project. This research was supported in part by NSF grants EIA-0072043,

CCR-0208892, CCR-0312493, CCR-0312531, and CCR-0312695.

References

Arnold, R., Mueller, F., and Whalley, D. 1994. Bounding worst-case instruction cache

performance. In Proceedings of the Fifteenth IEEE Real-time Systems Symposium. IEEE Computer

Society Press, San Juan, Puerto Rico, 172–181.

Benitez, M. 1994. Retargetable register allocation. Ph.D. thesis, University of Virginia, Char-

lottesville, VA.

Benitez, M. E. and Davidson, J. W. 1988. A portable global optimizer and linker. In Proceed-

ings of the SIGPLAN’88 conference on Programming Language design and Implementation. ACM

Press, Atlanta, Georgia, 329–338.

Benitez, M. E. and Davidson, J. W. 1994. The advantages of machine-dependent global opti-

mization. In Proceedings of the 1994 International Conference on Programming Languages and

Architectures. 105–124.

Eyre, J. and Bier, J. 1998. Dsp processors hit the mainsteam. IEEE Computer 31, 8 (Aug.),

51–59.

Fisher, J. 1981. Trace scheduling: A technique for global microcode commpaction. IEEE Trans-

actions on Computers 30, 7 (July), 478–490.

26

Gupta, R., Berson, D., and Fang, J. 1997. Path profile guided partial dead code elimination

using prediction. In Proceedings of the International Conference on Parallel Architecture and

Compilation Techniques. ACM Press, San Francisco, California, 102–115.

Harmon, M., Baker, T., and Whalley, D. 1994. A retargetable technique for prediction

execution time of code segments. Real-Time Systems , 159–182.

Healy, C., Arnold, R., Mueller, F., Whalley, D., and Harmon, M. 1999. Bounding pipeline

and instruction cache performance. IEEE Transactions on Computers 48, 1 (Jan.), 53–70.

Healy, C., Sjodin, M., Rustagi, V., Whalley, D., and van Engelen, R. 2000. Supporting

timing analysis by automatic bounding of loop iterations. Real-Time Systems 18, 2 (May), 121–

148.

Healy, C. and Whalley, D. 1999. Tighter timing predictions by automatic detection and ex-

ploitation of value-dependent constraints. In Proceedings of the IEEE Real-Time Technology and

Applications Symposium. IEEE Computer Society Press, Vancouver, Canada, 79–99.

Healy, C. and Whalley, D. 2002. Automatic detection and exploitation of branch constraints

for timing analysis. IEEE Transactions on Software Engineering 28, 8 (August), 763–781.

Healy, C., Whalley, D., and Harmon, M. 1995. Integrating the timing analysis of pipelining

and instruction caching. In Proceedings of the Sixteenth IEEE Real-time Systems Symposium.

IEEE Computer Society Press, Pisa, Italy, 288–297.

Healy, C., Whalley, D., and van Engelen, R. 1999. A general approach for tight timing

predictions of non-rectangular loops. In WIP Proceedings of the IEEE Real-Time Technology and

Applications Symposium. IEEE Computer Society Press, Vancouver, CA, 11–14.

Hong, S. and Gerber, R. 1993. Compiling real-time programs into schedulable code. In Proceed-

ings of the SIGPLAN’93. ACM Press, Albuquerque, New Mexico, 166–176.

Hwu, W., Mahlke, S., Chen, W., Change, P., Warter, N., Ouellette, R. B. R., Hank,

R., Kiyohara, T., Haab, G., Holm, J., and Lavery, D. 1993. The superblock: An effective

technique for vliw and superscalar compilation. Journal of Supercomputing 7, 1 (Mar.), 229–248.

Ko, L., Al-Yaqoubi, N., Healy, C., Ratliff, E., Arnold, R., Whalley, D., and Harmon,

M. 1999. Timing constraint specification and analysis. Software Practice & Experience 29, 1

(Jan.), 77–98.

27

Ko, L., Healy, C., Ratliff, E., Arnold, R., Whalley, D., and Harmon, M. 1996. Support-

ing the specification and analysis of timing constraints. In Proceedings of the IEEE Real-Time

Technology and Application Symposium. IEEE Computer Society Press, Boston, Massachusetts,

170–178.

Kulkarni, P., Zhao, W., Moon, H., Cho, K., Whalley, D., Davidson, J., Bailey, M.,

Paek, Y., and Gallivan, K. 2003. Finding effective optimization phase sequences. In ACM

SIGPLAN Conference on Languages, Compilers, and Tools for Embedded Systems. ACM Press,

San Diego, California, 12–23.

Lee, S., Lee, J., Park, C., and Min, S. 2004. A flexible tradeoff between code size and wcet

using a dual instruction set processor. In International Workshop on Software and Compilers for

Embedded Systems. Springer, Amsterdam, Netherlands, 244–258.

Mueller, F. 1997. Timing predictions for multi-level caches. In ACM SIGPLAN Workshop on

Language, Compiler and Tool Support for Real-time Systems. ACM Press, Las Vegas, Nevada,

29–36.

Mueller, F. 2000. Timing analysis for instruction caches. Real-Time Systems 18, 2 (May), 209–

239.

Mueller, F. and Whalley, D. 1992. Avoiding unconditional jumps by code replication. In Pro-

ceedings of the SIGPLAN ’92 Conference on Programming Languages Design and Implementation.

ACM Press, San Francisco, California, 322–330.

Mueller, F. and Whalley, D. 1995. Avoiding conditional branches by code replication. In Pro-

ceedings of the SIGPLAN ’95 Conference on Programming Languages Design and Implementation.

ACM Press, La Jolla, California, 55–56.

Star Core, I. 2001a. Sc100 simulator reference manual.

Star Core, I. 2001b. Sc110 dsp core reference manual.

T. Marlowe, S. M. 1992. Safe optimization for hard real-time programming. In Special Session

on Real-Time Programming, Second International Conference on Systems Integration. 438–446.

White, R., Mueller, F., Healy, C., Whalley, D., and Harmon, M. 1999. Timing analysis

for data caches and wrap-around-fill caches. Real-Time Systems 17, 1 (Nov.), 209–233.

28

White, R. T., Mueller, F., Healy, C., Whalley, D., and Harmon, M. 1997. Timing analysis

for data caches and set-associative caches. In Proceedings of the IEEE Real-Time Technology and

Application Symposium. IEEE Computer Society Press, Montreal, Canada, 192–202.

Zhao, W., Cai, B., Whalley, D., Bailey, M., van Engelen, R., Yuan, X., Hiser, J.,

Davidson, J., Gallivan, K., and Jones, D. 2002. Vista: A system for interactive code

improvement,. In ACM SIGPLAN Conference on Languages, Compilers, and Tools for Embedded

Systems. ACM Press, Berlin, Germany, 155–164.

Zhao, W., Kulkarni, P., Whalley, D., Healy, C., Mueller, F., and Uh, G. 2004. Tuning the

wcet of embedded applications. In Proceedings of the IEEE Real-Time and Embedded Technology

and Applications Symposium. IEEE Computer Society, Toronto, Canada, 472–480.

Zhao, W., Whalley, D., Healy, C., and Mueller, F. 2004. Wcet code positioning. In Pro-

ceedings of the IEEE Real-Time Systems Symposium. IEEE Computer Society, Lisbon, Portugal,

81–91.

29

