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Abstract

Many embedded systems are subject to temporal con-

straints that require advance guarantees on meeting dead-

lines. Such systems rely on static analysis to safely bound

worst-case execution (WCET) bounds of tasks. Designers of

these systems are forced to avoid state-of-the-art processors

due to their inherent architectural complexity (such as out-of-

order instruction scheduling) that results in non-determinism.

This work addresses this problem by providing novel

pipeline analysis techniques for characterizing the worst-case

behavior of real-time systems on modern processor architec-

tures. We introduce methods to capture (“snapshot”) pipeline

state and to subsequently perform a “merge” of previously

captured snapshots. We prove that our pipeline analysis cor-

rectly preserves worst-case timing behavior on out-of-order

(OOO) processor pipelines. We further specifically show that

anomalous pipeline effects, effectively dilating timing, are

preserved by our method. To the best of our knowledge, this

method of pipeline analysis and interactions between hard-

ware/software for obtaining WCET bounds on OOO proces-

sors is the first of its kind.

1. Introduction
Each year, billions of microprocessors are used in embed-

ded systems [15]. This is in sharp contrast to a few hun-

dred million desktop processors that are sold in the same time

frame. From automobiles to medical equipment, thermostats

to space shuttles, embedded systems are all around us yet de-

signers of such systems are inhibited in the type of processors

they can use. They are often forced to use older, less sophis-

ticated microprocessors, even when their application domain

has high computational requirements and would profit from

state-of-the-art architectures. Microarchitectural complexity

and lack of analysis tools for contemporary processors are of-

ten to blame for this condition. The situation is exacerbated

in many embedded systems that have strict timing constraints

(often expressed in the form of “deadlines”) on task execution.

Such systems are often referred to as “real-time systems.”

Real-time systems require advance knowledge of the

worst-case behavior of constituent tasks. This is to aid in the

process of offline schedulability analysis. Various techniques

exist to obtain worst-case execution times (WCETs) for real-

time tasks. These techniques are often categorized as being
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either static timing analysis techniques [10, 19] or dynamic

timing analysis techniques [4,17]. Complex architectural fea-

tures, such as out-of-order (OOO) processing [11] and branch

prediction [13], are often beyond the reach of static analyses,

mainly due to the fact that they introduce non-determinism

into the task code. These issues cannot be resolved at com-

pile time forcing real-time system designers to completely

avoid the use of such processors. Dynamic timing analysis,

on the other hand, has been shown to be dangerous because

it may result in underestimations in WCET estimation, which

can lead to fallouts dangerous to users, the environment or

both [18].

In recent work, we introduced the notion of “hybrid” tim-

ing analysis [9] called the CheckerMode infrastructure. This

method combines the best features of both static and dy-

namic analysis to obtain accurate WCET estimates for real-

time tasks running on modern microprocessors. A “checker

mode” is added to processors that, on demand, captures infor-

mation in the form of “snapshots” of processor state. When

timing alternate paths, information from a previously captured

snapshot is “restored” onto the processor function units to re-

flect the state of the system when the choice between the paths

was made.

In this paper, we (a) more formally define the semantics

of a snapshot; (b) explain how the information in a snap-

shot is obtained; (c) illustrate how two or more snapshots are

“merged”, which occurs when multiple control paths “join”

together and (d) prove that the mechanisms for capturing and

merging snapshots are correct in that they retain all worst-case

pipeline effects. We also explain how our mechanisms to cap-

ture and merge snapshots are able to correctly handle “timing

anomalies” [2, 7]. To the best of our knowledge, these tech-

niques to capture/merge pipeline information, coupled with

hardware/software interactions to accurately gauge the worst-

case execution times of real-time tasks and techniques for cor-

rect handling of timing anomalies are, the first of their kind.

The remainder of this paper is organized as follows: Sec-

tion 2 lists the assumptions under which we operate. Sec-

tion 3 gives a brief overview of the CheckerMode infrastruc-

ture. Section 4 introduces our notion of snapshots while Sec-

tion 5 shows a generic example and the pipeline model that

forms the basis for the analysis. Section 6 details how a snap-

shot is captured. Section 7 explains the techniques used to

capture the behavior of instructions in the pipeline. This is

mainly aimed at capturing structural and data dependencies in

an accurate manner. Section 8 elaborates on how these snap-

shots are used. Section 9 discusses how two or more snapshots

are merged (before a join point in the control flow). Section



10 proves that pipeline effects modifying timing will be re-

tained post-merge. Section 11 develops a simple mechanism

to merge register files. Section 12 discusses implementation

details. Section 13 compares this work to related work. Sec-

tion 14 summarizes the work.

2. Assumptions
(a) We constrain ourselves to analyzing the unpredictable

nature of out-of-order (OOO) instruction execution in con-

temporary, high-end embedded processor pipelines.

(b) Other complexities, such as memory hierarchies (which

includes caches), dynamic branch prediction, etc. are beyond

the scope of this initial work and will be addressed in the fu-

ture.

(c) Tasks are assumed to execute in isolation.

(d) The issue of preemption delays (including cache-related

preemptions delays) is orthogonal to this work, but exist-

ing [12] and future techniques to handle these issues can be

incorporated (with minimal changes) into our framework.

(e) We assume that there are no loops in the tasks being an-

alyzed. We are currently in the process of finalizing a fixed-

pointmethod to capture the behavior of loops in the task code.

Since we only consider the worst-case effects of instruc-

tions executing through the pipeline, the only factor that needs

to be accounted for is the execution time for the various paths

that make up the task. Data-dependent instructions can also

affect the execution times for each path and, hence, the worst-

case time for the entire task, but such instructions fall into two

categories: (a) their input values are known at compile time;

(b) input values are not known at compile time. The execu-

tion times for instructions in case (a) can be calculated accu-

rately. In case (b), we assume that input values are unknown

and that the instruction execution exhibits the worst-case be-

havior (largest number of cycles).

Note: The process of timing analysis in our framework

amounts to timing sequences of paths coupled with saving and

restoring processor context (captured in the form of “snap-

shots”) in a co-ordinated fashion. This process is independent

of program inputs. This is an offline task to be performed

during systems design and/or validation. Hence, cost is sec-

ondary and does not affect the dynamic, run-time behavior of

the system after it has been deployed. In practice, such exten-

sive verification is generally only warranted after either ex-

tensive code changes (development, upgrades, software de-

ployment, etc.) or when the hardware itself must be reconfig-

ured/upgraded.

3. CheckerMode
The CheckerMode infrastructure [9] (Figure 1) provides

the means to obtain accurate WCET values for real-time tasks

executing on modern processor pipelines. We proposed mod-

ifications to the design of embedded processors so that, in ad-

dition to the ability to execute software normally (deployment

mode), processors are capable of executing in a novel checker

mode. This is to aid in the process of timing analysis.

CheckerMode provides cycle-accurate bounds on a task’s

WCETs by analyzing alternate execution paths in a program.

All alternate paths that follow a conditional branch are exe-

cuted, one at a time. Before executing one of the (possibly)

many alternate paths, the original execution context (pipeline

Figure 1. CheckerMode Design for High-
Confidence WCET Analysis

state, register file, caches state, etc.) is restored onto the pro-

cessor to ensure that paths execute in isolation from one an-

other. Note: The “checker mode” is turned off or disabled

when the system is in deployment mode, i.e., when the sys-

tem is active and performing the tasks it was designed for.

The CheckerMode framework provides the ability to (i)

save the processor context as snapshots and (ii) reset the

processor state to a previously captured snapshots. Cap-

turing/restoring snapshots and constraining instruction flow

through the pipeline can be achieved in one of two ways (as

introduced in this paper): (a) by enhancing the fetch and re-

tire stages of the pipeline so that fine control can be exercised

on when instructions are to be fetched and from where in the

program flow as well as when they should retire; or (b) by

inserting nop instructions to cover “bubbles” in the program

flow. The latter technique is less invasive and requires hardly

any changes at the micro-architectural level. Since the driver

in the CheckerMode infrastructure has overall control of the

framework, it could periodically inject nops to maintain the

correctness of the analysis. Note: We still require minor mod-

ifications to the retire stage of the pipeline: (i) to take note

of when certain instructions retire and (ii) to ensure that in-

structions retire only at predetermined points in time, which is

similar to injecting nop instructions between retiring instruc-

tions. We also require knowledge of structural dependencies

between instructions that have been issued. This is to retain

the worst-case behavior in the pipeline. This technique used

to capture these effects is explained in more detail in Section

7.

4. Snapshots

Snapshots describe the state of the processor captured

while performing timing analysis, using our “hybrid” Check-

erMode technique [9], to obtain the worst-case execution time

for modern processor architectures. It typically consists of the

state of each functional unit of the processor at a given point

in time (t). This state includes, but is not limited to:

I. pipeline state: in a generic sense, the state of instructions in

the pipeline. Ideally, this state includes a description of which

instructions are at what stage in the pipeline at time t. It also



includes the contents of the register file.

II. cache state: the contents of the instruction and data caches

at t. This information could be either (a) the complete cache

contents or (b) incremental difference compared to the last

snapshot. It could also be a combination of the two, where

periodically we capture the state of the entire cache, but in

between we only store the incremental differences (so-called

deltas).

III. branch predictor state: similar to the cache state above:

(a) complete branch history register and branch table con-

tents; (b) delta from previous snapshot; or (c) a combination

of the two. We are not concerned with dynamic branch pre-

dictors in this work.

IV. your favorite processor unit: state from any addi-

tional/future processor units that needs to be captured to ac-

curately characterize the worst-case behavior of the proces-

sor.

In this work, we focus on capturing the pipeline informa-

tion of the processor for snapshots and not on caches, branch

predictors, etc.Analysis of instruction caches is a solved prob-

lem, and any such analysis can be plugged into our framework

to obtain better worst-case results. Analysis of data caches is

a hard problem but some analysis does exist [12, 16], results

from which can also be inserted into our framework to tighten

the WCET results. We intend to analyze the branch predic-

tor as part of future work.

While we would like to capture fine-grained details of in-

struction flow through the pipeline (defined above as “pipeline

state”), practical difficulties prevent us from doing so. Many

changes to the design and implementation of the processor

will have to be carried out to attain the ability to observe ev-

ery single stage of the pipeline, instructions in flight, data for-

warding, etc. Hence we have devised a technique to capture

pipeline information, which, in essence, achieves the effect

of characterizing the state of the pipeline at the given instant.

We call this the “drain-retire” (DR) technique. The DR tech-

nique is based on the idea that the only point of predictabil-

ity in an out-of-order pipeline is at the retire stage. Since re-

tire happens in-order, we can be sure that the retire order of

instructions is deterministic. We discuss the DR technique in

more detail in Sections 6 and 8.

5. Pipeline Model and Illustrative Example

To understand the analysis and proof presented in the later

sections, we present an illustrative example of instruction flow

through the pipeline in Figure 2(a). This figure shows a sec-

tion of the instruction stream that is executing through the

pipeline. Let Sn be the last snapshot that was captured. Let

“max” be the maximum number of instructions that can fit

into the pipeline assuming that there are no dependencies be-

tween any of them. This is the theoretical upper bound for

the pipeline capacity and is typically never achieved in prac-

tice – due to the existence of dependencies between instruc-

tions, which introduce bubbles in the pipeline.

If r is the most recent instruction that was fetched into the

pipeline, then let p be the instruction that was issued max

cycles earlier in the instruction stream. Hence, p is the far-

thest instruction in the stream that can directly affect r’s flow

(a) Sample Instruction Stream (b) Pipeline Model

Figure 2. Illustrative Example and Pipeline

Model

through the pipe. Instructions before p have retired, and any

resulting state changes have been committed.

Figure 2(b) shows the pipeline model that we assume for

this work. Fetch happens in-order, but multiple instructions

can be fetched in the same cycle. Similarly, retire also hap-

pens in-order and multiple instructions can retire in the same

cycle.

Hence, when we fetch r at time tFr (i.e., the Fetch time for

instruction r), let q be the last instruction that retired one cy-

cle earlier at time tRq (i.e., the Retire time for instruction q).

From Figure 2(a), we see that q must lie between:

p ≤ q < r

Note that q is no longer in the pipeline when r is being

fetched. Hence:

tRq = tFr − 1

6. Snapshot Capture using Pipeline Drain-

Retire (DR) Technique

Ideally, capturing a snapshot at r would involve capturing

information about which instructions are in what stage of the

pipeline and how long they have been/will be there. This re-

sembles a step curve of the instructions that are in the pipeline.

This is not practical as we are unable to capture the precise in-

formation in a pipeline without significant changes in silicon.

Instead, we use what we call a “drain-retire” mechanism to

characterize the flow of instructions in the pipeline. We take

advantage of the fact that in an out-of-order pipeline the only

point where determinism is guaranteed is at the retire stage

(instructions must retire in-order). The algorithm to capture a

snapshot using the DR mechanism is as follows:

(1) Stop fetching after r.

(2) Store tRq , the time when q retired.

(3) Let execution proceed through the pipeline until r retires

(i.e., the pipeline drains completely).

(4) Track the retire time of every instruction from q up un-

til, and including r (i.e., tRr ).

Figure 3 shows the results of applying the above algo-

rithm to the model and instructions described in Section 5.

This figure shows the step curve obtained by tracking the re-

tire times of all instructions following q until r retires. The

vertical axis represents time while the horizontal axis repre-

sents the instructions that retire. Hence, the curve is bounded,

in the time domain, by tRq and tRr with upper boundmax. Un-

like similar step curves for in-order pipelines, this curve is

multi-dimensional. The horizontal axis now encodes informa-



Figure 3. Snapshot from DR Technique

tion about groups of instructions that retire together. As the

figure shows, the horizontal parts of the “step” directly repre-

sents the order and the number of instructions retiring at that

particular point in time (i.e., multiple instructions retiring in

the same cycle). Note: we must also keep track of the exact

order of instruction retirement at any given level. All of this

information, combined with the “state” of the reservation sta-

tions (Section 7), now forms a pipeline snapshot, which is for-

mally defined in Figure 4.

7. Capturing Structural and Data Dependen-

cies using Reservation Stations

7.1. Structural Dependencies

Consider the situation shown in Figure 5(a). “a1” and “a2”

are two multi-cycle instructions that require the same execu-

tion unit (for e.g., the “floating point multiply” unit). Assume

that there is only one instance of this type of execution unit

in the pipeline. Now there exists a structural dependency be-

tween a1 and a2. Hence, a2 cannot obtain access (be issued)

to the execution unit before a1 vacates it. We must retain this

dependency across the join point (where alternate paths meet)

because it could affect the worst-case behavior of execution

that proceeds beyond it. Let us assume that path “D”’s execu-

tion time is affected by the fact that a2 has to wait. Assume

that the WCET for path “D” (wcetD) increases or decreases

by a factor δ depending on whether a2 is made to wait or not,

respectively. Let wcetE be the worst-case execution time for

path “E”. We now have the following pathological situation:

wcetD − δ < wcetE < wcetD + δ

Hence, we see that even though “E” becomes the longer

path (among “D” and “E”), it is not the worst-case path for

Sn =
{

q, tR
q ,

{

tR
{i}, {i}

}

, RES, RF, S<q

}

where,

Sn : snapshot at instruction n

q : last instruction to retire before

n was fetched

tR
q : retire cycle for q

{

tR
{i}, {i}

}

: set of tuples where,

tR
{i} : retire cycle

{i} : all instructions that retire at tR
{i}

RES : state of the reservation stations

immediately after instruction n

has retired

RF : state of the register file immediately

after instruction n has retired

S<q : link/pointer to last snapshot before q

(= ∅ if Sn is first snapshot)

Figure 4. Definition of a Snapshot

(a) Pipeline Hazards (b) Reservation Station

Figure 5. Capturing Structural Dependencies

the combination. The worst-case effects are seen when a2 ex-

periences a delay due to structural dependencies with a1, thus

delaying path “D” to exhibit a WCET of wcetD + δ. We now

need a mechanism to capture these structural dependencies

among instructions, especially those that lie on either sides of

snapshots. We introduce the concept of reservation stations

for this purpose.

Reservation stations for tracking structural dependencies,

as shown in Figure 5(b), are implemented as a table with one

entry per execution unit. It stores three values per execution

unit: (i) the instruction using that execution unit; (ii) entry

cycle: cycle/time when the instruction was issued the partic-

ular execution unit; (iii) exit cycle: cycle/time when the in-

struction exited from the execution unit.

7.2. Data Dependencies

Most modern pipeline designs use data-forwarding tech-

niques (bypass) to reduce the wait times for instructions that

are waiting on data (register values) to become ready. When

data is produced, at the end of the execution stage of certain

instructions, it can immediately be forwarded to instructions

that are waiting on them. These data values are available to

waiting instructions even before they are written into the reg-

ister file. Such data forwarding techniques and their effects

must be characterized correctly, if the CheckerMode architec-

ture is to correctly capture the worst-case behavior of tasks.

From Figure 5(a), let us now assume that a1 and a2 have

only a data dependency among them (and not structural de-

pendency as explained in the previous section) such that a2

must wait for a1 to write a result into a register (say r1) that

is a source register for a2. Assume another instruction (say

a3) on path “B” also writes to r1, but earlier than when a1

would have written to it. Since a1 and a2 reside on the oppo-

site side of a join point, the latter can gain access to the regis-

ter value (r1) earlier than it would have otherwise on path A

and can execute earlier. Hence, the worst-case behavior of the

program is not correctly preserved.

We use reservation stations for the register file to cor-

rectly track the data dependencies between instructions and

the time(s) when data becomes available and when they can be

used by dependent instructions. Each register now has an as-

sociated “reservation station” that stores the latest cycle when

the register value was available, i.e., the time of the write-back

to the register file (one cycle after the execution stage of the

instruction that produced the value and made it available due

to forwarding).

Note: The process of writing information into the reserva-

tion stations is not on the critical path. Hence, it does not af-

fect the execution of instructions in the pipeline.



8. Snapshot Usage

A snapshot captured using the DR technique in the previ-

ous section consists of information about (i) instructions, (ii)

their order of retirement, (iii) cycles between retirement of in-

structions and (iv) the last instruction that retired (q) before

the snapshot instruction (r). In this section, we elaborate on

how this information will be used.

When execution must be restarted from a snapshot, we

must start fetching from instruction q because instructions that

preceded it cannot directly affect the execution of r. While we

can start fetching from q, we do not have information about

the processor state at q. Hence, we must restore the last snap-

shot before q, which is Sn, as seen in Figure 2(a). To account

for the worst case, we must actually start from the snapshot

that precedes instruction p. Instruction p is the instruction that

is at the theoretical bound for the capacity of the pipeline,

max, relative to r. If there exists a snapshot between p and

q, then we can reduce the pessimism by starting at the snap-

shot that immediately precedes q since we know that instruc-

tion q defines the realistic capacity of the pipeline.

We can now restore information from this snapshot to bring

the processor into a consistent state. We restart fetching from

the instruction that immediately follows Sn and let execution

proceed until the new/current snapshot, Sr (at instruction r),

is reached. Once instruction q retires, we look up the informa-

tion about subsequent instructions from Sr to see how much

time elapses, if any, between their retirement. Each instruc-

tion starting from r can now retire only after the a number of

cycles has elapsed, as determined by the information in Sn.

Hence, instructions can retire at or after the number of cycles

recorded for it in the snapshot, but never before. From Fig-

ure 3, we see that two instructions following q can retire at

the same time, but no earlier than 1 cycle after q. The next in-
struction can only retire 2 cycles after the previous 2 instruc-
tions have retired, and so on.

A similar process is employed for the issue stage of the

pipeline. We use the reservation stations to control what in-

structions are issued, when and into what execution unit. From

Figure 5(b), we see that an instruction that wishes to use an

execution unit (say the integer multiplier), cannot gain access

to it before cycle 104, and once it has been given access, an-
other instruction cannot obtain it until the previous instruction

exits (which, in this case, will be cycle 110). This process en-
sures that structural dependencies between instructions on ei-

ther side of the snapshot are still retained.

Similarly, instructions that depend on certain register val-

ues to be ready cannot proceed with their execution until the

cycle stored in that register’s reservation station comes to

pass. This ensures that instructions that have data dependen-

cies among them still retain the correct dependency informa-

tion post-merge.

We see that the semantic meaning associated with snap-

shots, initially constrained to static aspects only, has been en-

hanced by dynamic information. This has an effect on the

instruction flow through the pipeline. Hence, a snapshot is

now defined as information that affects the flow of instruc-

tions through the pipeline when the “snapshot instruction” (r

in the above case) is fetched. Snapshots are able to affect the

pipeline behavior by allowing instructions captured in them to

// DRM Algorithm to merge two snapshots

drm merge( snapshot Sa, snapshot Sb ) {

Sm ← NULL; // merged snapshot

do{

t1 ← get next retire cycle in Sa ;

I1 ← get instructions retiring at t1 in Sa ;

t2 ← get next retire cycle in Sb ;

I2 ← get instructions retiring at t2 in Sb ;

Sm ← { max( t1, t2 ), I1 ∪ I2 };

} while( not empty(Sa) and not empty(Sb));

Sm ← remaining retire times and instructions

from non-empty snapshot;

Sm ← older( Sa.q, Sb.q );

Sm ← older( Sa.prev snapshot, Sb.prev snapshot ) ;

Sm ← merge res stations( Sa.RES, Sb.RES ) ;

Sm ← merge reg file state( Sa.RF, Sb.RF ) ;

return Sm;

} Figure 6. Snapshot Merge Algorithm (DRM)

retire only with predetermined delays (i.e., at or after the re-

tire times captured in the snapshot) or gain access to execu-

tion units based on constraints enforced by the reservation sta-

tions, etc.. Modifications to the retire stage, mentioned in Sec-

tion 3, as well as the issue stage (to look up the reservation sta-

tions) are useful in aiding the process of restoring snapshots

by providing the ability to exercise fine control on when cer-

tain instructions (captured in the snapshot) are allowed to be

issued or to retire.

9. Merging Pipeline Snapshots

When alternate paths meet, snapshots from both sides must

be merged so that instructions that follow see a consistent

state of the pipeline. Also, the merged state must inherit the

worst-case behavior from either side. Another requirement is

that pipeline effects resulting from anomalous behavior [7]

must still be retained post-merge. In this section, we present

a merge technique that handles all of the above effects cor-

rectly. We shall refer to this merge technique as “drain-retire

merge” (DRM). Section 10 will present a proof showing that

timing anomalies are retained after applying DRM.

9.1. Merging Two Snapshots

The algorithm to perform a merge of two snapshots (DRM)

is illustrated in Figure 6. The intuition behind this algorithm

is that the worst-case behavior of the program, independent

of the path where such behavior originates, must be carried

forward post-merge. Hence, corresponding information from

both snapshots is compared and the merged snapshot retains

the information so that this worst-case behavior is exhibited.

This includes (but is not limited to) the retire times for instruc-

tions, the state of the reservations stations and the pointer to

the previous snapshot. Hence, the drm merge algorithm pro-

ceeds by simultaneously retrieving snapshots from the top of

each stack, extracting information and comparing it pairwise

before composing a merged state and storing it in a new snap-

shot (Sm).

Remark: We pick the older “starting point” (q) from the

two snapshots and also the older “last snapshot” (S<q). This

is to ensure that the state of the processor is correct when the

merged snapshot state is restored within the processor.



To understand how this algorithm works, consider exam-

ples of snapshots shown in Figure 7. Snapshot “A” has three

instructions (a, b, c) while snapshot “B” has four (f , g, h and

i). Instructions d and j are not part of the snapshot. They are

the first instructions that follow the snapshot. To perform the

merge, we go through the following steps:

(1) Start from the first (earliest) instruction in both snapshots.

(2) Combine all instructions at the same cycle (level) into the

new, merged snapshot. Hence, a, f , g and h will be combined

so that they retire during the same cycle.

(3) Compare instructions in both snapshots to find the snap-

shot with the longer number of cycles until the next retire oc-

curs. From the figure, we see that b and c from “A” retire later

than i from “B”.

(4) Set the retire time for all instructions on both paths to the

longer delay. Hence, b, c and i will now retire at cycle 3.
(5) Repeat for all remaining instructions/retire times in both

snapshots.

Figure 8(a) shows the results of applying the DRM merge

algorithm. After the merged snapshot is restored, we follow

the instruction stream immediately after the join point. Also,

for the sake of obtaining the WCET of the program, we must

pick the longer path and its WCET for our analysis. If the path

that provided snapshot “B” (PB) is longer, then we use its in-

structions and WCET. The problem of finding the WCET for

the entire program is then reduced to finding the longest path

in short sections of code and using their WCETs for future

calculations.

As explained in Section 8, restarting execution at a snap-

shot means restarting from an instruction that originates from

before the particular snapshot (e.g., instruction q in Figure 4).

If PB is the longer path, then q belongs to the mix of in-

structions that constitutes PB . Even if PB is very short and

q happens to lie before the branch condition, we must pick

the longer path to execute through the pipeline to reach the

merged state, which will eventually pass through PB in this

case. Hence, at any point in time, only instructions from one

path (PA or PB) will execute through the pipeline.

9.2. Incorrect Merge Technique

Figure 8(b) shows an incorrect way of performing the

merge. In contrast to Figure 8(a), each instruction now retires

at its original time. If we used the information from Figure

8(b), we would always retire i at cycle 2 and not account for
the fact that “A” could carry over some worse behavior where

instructions b and c retire one cycle later.

While this alternate method may result in fewer cycles for

Figure 7. Snapshot Candidates for DRM Merge

(a) Correct

(b) Incorrect

Figure 8. Merge Results

the WCET, it does not safely capture effects due to the exe-

cution of alternate paths and the influence they may have on

each other. The problem arises because we are searching for

paths that show worst-case behavior locally. If effects from

one part of the program affect the worst-case behavior of in-

structions that are at a large distance, then using this incorrect

merge technique will result in wrong WCET estimates.

Consider the situation shown in Figure 11(a). Let paths

PA and PB be the paths that produced snapshots “A” and

“B”, respectively. Let the result of merging them be as de-

picted in Figure 8(b). Let us further assume that PB has the

largerWCET. As explained before, only instructions from PB

will exist in the pipeline when this newly merged snapshot

is encountered. Now let us assume that there exists a timing

anomaly in this section of the program and the source of this

anomaly is at point (I). Let us also assume that only certain

instructions in path PA (point (II) in the figure) depend di-

rectly on the instructions that form the anomaly. Instruction b

in Figure 8(b) has its retire time increased due to this anomaly.

Let other instructions following the merge (point (III) in the

figure) depend indirectly (due to instructions at (II)) on the

anomaly. Path PB is not affected by the anomaly. If we use

the retire times shown in Figure 8(b), then the effects of the

anomaly will not be felt post-merge, because we do not carry

over the time dilation effects that resulted in an increase in

(say) b’s retire time. This would have otherwise dilated the

execution/retire times for instructions at point (III). Hence,

by using the overly aggressive, incorrect merge we may not

be handling worst-case pipeline effects (in particular timing

anomalies) correctly. As shown above, there exists a distinct

possibility that future instructions (post-merge) will not exe-

cute based on the worst-case behavior as anomalous behav-

ior can affect what is the worst-case and what is not. Incorrect

merge techniques, such as the one presented here, can result

in an underestimation of the WCET estimates if such anoma-

lies are not properly accounted for and their effects are not

carried forward correctly.



merge res stations( Sa.RES, Sb.RES ) {

for each ( execution unit entry E ){

Emerged res station entry cycle =

max(Ea.entry cycle,Eb.entry cycle);

Emerged res station exit cycle =

max(Ea.exit cycle, Eb.exit cycle);

}

for each ( register entry R ){

Rmerged register cycle =

max(Ra.cycle,Rb.cycle);

}

return merged res station ;

} Figure 9. Merging Reservation Stations

9.3. Merging Reservation Stations

Merging more than two snapshots is a simple extension of

the same techniques. The steps to perform a merge for reser-

vation stations are shown in Figure 9. While merging reser-

vation stations for the execution units, we pick the later of

the two entry cycles as well as the later exit cycle. This en-

sures that the worst-case behavior of the program is carried

forward post-merge.

The merge for register reservation stations is similar in that

a max of the reservation station entries from both paths is
stored as the new value for that particular register. This en-

sures that instructions that execute post-merge cannot gain ac-

cess to the register values until the cycle which is stored in the

reservation station for that particular register. While the reg-

ister values might be written earlier (from an alternate path),

they cannot be used until the reservation station allows it.

9.4. Merge for More than Two Snapshots

The DRM algorithm can be extended to merge more than

two snapshots. In such situations, we can call it recursively, as

shown in Figure 10.

10. Proof of Correctness

The term “timing anomaly” refers to an anomaly in the

execution of code in dynamically scheduled processors [7].

It was later generalized by others [2]. It denotes counter-

intuitive results in timings, e.g., a cache hit may result in

longer execution times than a miss for a given path due to

overlapped structural resource conflicts. These anomalous ef-

fects show up as pipeline effects, where execution times for

instructions are dilated in ways that cannot be predicted eas-

ily. They prevent accurate modeling of out-of-order proces-

sors and thus prevent us from obtaining accurate estimates

of worst-case execution times for such processors. Instead,

we show how such effects can be safely bounded. Hence, any

pipeline state merge algorithm must ensure that the effects in

the pipeline due to such anomalies are retained, i.e., the merge

must not remove these anomalies from the pipeline and sub-

sequent analysis.

Assumptions: We are only interested in pipeline effects

in this work. Hence, any architectural/execution artifact that

merge n(S1...Sn) {

if( only two snapshots Sx, Sy)

return drm merge( Sx, Sy ) ;

return merge n( merge n(S1...Sn−1), Sn ) ;

} Figure 10. Merge for Multiple Snapshots

(a) Effects of Incorrect Merge (b) Anomaly Effects

Figure 11. Merge effects

results in changes to the passage of instructions through the

pipeline is considered. The causes could be internal (e.g.,

data dependencies) or external (e.g., cache hits/misses) to the

pipeline. The causes for the effects could have occurred at a

much earlier stage or just immediately before time dilation in

the pipeline. Effects on other parts of the processor, includ-

ing caches and branch predictors, are not yet considered here

as they are subject to future work.

Theorem 1. Correctness of Merging Two Snapshots: The

DRM merge algorithm (Figure 6) retains all worst-case

pipeline timing effects, including timing anomalies.

Proof. (I) Consider the situation shown in Figure 11(b). It

shows two alternate paths (X and Y with WCETs CX and CY

respectively), each of (possibly) different lengths. A snap-

shot is captured at the beginning (say Sbranch) when the two

paths diverge. Two snapshots are captured (say SX and SY ),

one for each path, before the paths meet. These two snap-

shots are “merged” using the DRM algorithm to obtain

the new, single snapshot (say Sm) that is used to initial-

ize the state of the processor before execution proceeds.

φ is the potential time dilation produced during the exe-

cution of path X due to pipeline effects (such as timing

anomalies). Such dilation could lead to one of the follow-

ing three cases related to the retire time of some instruc-

tions inX :

Case 1: φ causes some instructions to retire later, i.e., it in-

creases the execution times for some (or all) instructions, thus

resulting in an increase in CX . These instructions also en-

ter and leave their respective reservation stations later

than they would have otherwise. They also produce re-

sults (and write them to register files) later.

Case 2: φ causes some instructions to retire earlier, i.e., it de-

creased the execution times for some (or all) instructions,

thus resulting in a decrease in CX . Hence, they are able to en-

ter/exit reservation stations, as well as produce results (to be

written into registers) earlier than before.

Case 3: φ does not affect the retire times or reservation sta-

tion usage for any instructions in the snapshot, i.e., it nei-

ther increased nor decreased CX .

(II) Consider the case of an arbitrary instruction k (part

of path X) with its original reservation station times ([En-

try, exit]) denoted as [E, e]k, its retire time tRk which is part

of snapshot SX . Let RFk be the time when the instruc-

tion writes its results (if any) into the register. Hence, RFk

is the time stored in the reservation station associated with

the register that was written into by k. Let SX also be af-



fected by an anomaly. Hence, the time(s) of k and the WCET

ofX are now,

[E, e]′k = [E ± φ, e ± φ]k
t′k = tRk ± φ

RF ′
k = RFk ± φ

C′
X = CX ± φ

As part of the DRM process, k, its reservation sta-

tion state and its retire time (t′k) will be compared with in-

structions from the snapshot on the the alternate path (SY ).

Let [E, e]{i} and RF{i} be the state of the reservation sta-

tions and tR{i} be the retire time that [E, e]′k and t′k are being

compared with (from the other snapshot), where {i} repre-
sents the sequence of corresponding instructions from the

other snapshot.

(III) Case 1: (a) φ increased the retire times for k. Hence,

[E, e]′k = [E + φ, e + φ]k
t′k = tRk + φ

(i) If t′k > tR{i} then the merged snapshot (Sm) will store

t′k as the retire cycle for all instructions k ∪ {i}. Hence, from
the equation above and from Figure 12, we see that the in-

crease in time to retire for an arbitrary instruction k results

in changes to the snapshot (instructions retire later). The re-

tire time stored in the snapshot will be the longer time, i.e., t′k,

thus ensuring that the pipeline effect propagates beyond Sm.

Figure 12. Case 1 (a) (i) t′k is greater than tR{i}

Remark: These effects on Sm will materialize regardless

of whether tRk < tR{i} (seen in Figure 12) or t
R
k > tR{i}.

(ii) If t′k < tR{i} then the merged snapshot (Sm) will store

tR{i} as the retire cycle for all instructions k ∪ {i}. Figure 13

shows these effects. The new retire time for k (i.e., t′k) is still

less than the longer retire time for tR{i}. Hence, the increase in

the retire time for k did not affect the snapshot.

The retire time for k (tRk ) would never have affected the

merged snapshot because the larger tR{i} value would have

been picked anyways. This is due to the fact that we are try-

ing to estimate the worst-case behavior of the program. We

can also conclude that the pipeline effect would be contained

within Sbranch and Sm in this case because the retire time for

the instructions affected are not part of the worst-case behav-

ior of the path.

Remark: This situation can only occur if tRk < tR{i} to be-

gin with as shown in Figure 13. If tRk was larger, then it would

default to case III (a) (i).

Case 1: (b) φ increased the WCET ofX . Hence,

C′
X = CX + φ

Figure 13. Case 1 (a) (ii) t′k is less than tR{i}

(i) If C′
X > CY , then the WCET for the entire construct

will now be C′
X . Hence, the effects of φ will be included in

the estimation of the total, increased WCET of the program.

Again, this is regardless of whether CX > CY or CX < CY .

(ii) If C′
X < CY then the WCET for the entire construct

will now be C′
Y . This result means that the effects of φ would

never have affected theWCET estimation of the program any-

ways as Y was always the longer path.

Remark: This result is only possible if CX < CY to start

with, else we would default to case III (b) (i).

(IV) Case 2: (a) φ decreased the retire times for k.

Hence,

t′k = tRk − φ

(i) If t′k < tR{i} then the merged snapshot (Sm) will store

tR{i} as the retire cycle for all instructions k∪{i}. If tRk < tR{i},

then this change due to φ did not matter anyways, as k’s retire

time was not contributing to the worst-case state to be seen by

future instructions.

If, on the other hand, tRk > tR{i}, then the effect of the

anomaly is that it changed the worst-case behavior of instruc-

tions in path X . Figure 14 shows that while tRk was larger

than tR{i} without the anomaly, the effect of the anomaly is to

reduce it below tR{i}. The significance of this effect is that in-

structions in the other path will contribute to the worst-case

state that is carried forward beyond Sm, and the worst-case

retire cycle is now tR{i}, which is less than the original t
R
k .

Hence, the anomaly has changed the worst-case behavior of

the entire program.

Figure 14. Case 2 (a) (i) t′k is less than tR{i}

(ii) If t′k > tR{i}, then the merged snapshot (Sm) will store

t′k as the retire cycle for all instructions k ∪ {i}. Hence, we
see that the decrease in retire time for k results in changes to

the snapshot. Instructions that previously retired at tRk now re-

tire earlier (at t′k) as seen in Figure 15. The figure shows that

the execution time for the path on the left with retire time tRk
now retires earlier (at t′k). Thus, the effect of the anomaly was

to reduce the execution times for the entire program by reduc-

ing it for this particular path. Consequently, the pipeline ef-

fect will propagate beyond Sm. The worst-case path is still

the left path.



Figure 15. Case 2 (a) (ii) t′k is greater than tR{i}

Remark: This condition holds only if tRk > tR{i}; other-

wise, we would default to case IV (a) (i).

Case 2: (b) φ decreased the WCET ofX . Hence,

C′
X = CX − φ

(i) If C′
X < CY then the WCET for the entire construct

will now be C′
Y . If CX > CY , then φ has already affected

the WCET of the program. Where CX would have been cho-

sen originally for the WCET of the construct in Figure 11(b),

CY is now chosen. Of course, if CX < CY , then the anomaly

limits its effects between Sbranch and Sm. It does not affect

the WCET for the two alternate paths becauseCY would have

been chosen anyways.

(ii) If C′
X > CY then the WCET for the entire construct

will now be C′
X . Hence, φ has resulted in a reduction of the

WCET of the program from the original CX .

Remark: This condition is true only if CX > CY , else we

revert to the situation in case IV (b) (i).

(V) Case 3: (a) φ did not affect the retire times of any in-

structions in the snapshot. Hence,

t′k = tRk
The effects of φ are completely encapsulated within the

boundary between the two snapshots (i.e., between Sbranch

and SX ). Hence, we need not consider the anomaly as it

will not affect the execution of future instructions (beyond

the merge point) because the effects of the anomaly on the

pipeline have been dissipated/absorbed before the instructions

in snapshot SX reach the retire stage.

Figure 16 shows these effects. While φ did show up on the

path on the left, its effects were completely contained within

that path, and, hence, the retire times, tRk , were not affected.

The effects of the anomaly are not carried forward beyond the

merge point, which is the expected, correct behavior.

(Figure).

Figure 16. Case 3 (a) neither t′k nor t
R
{i} change

Case 3: (b) φ did not change the execution time of X (Fig-

ure 16). Hence,

C′
X = CX

(VI) Case 1: φ increased the [Entry,exit] for k. Hence,

[E, e]′k = [E + φ, e + φ]k
(i) If e′k > e{i}, then the merged reservation station state

will have an entry cycle of max(E′
k, E{i}) and an exit cy-

cle of max(e′k, e{i}) = e′k. Hence, we see that instruc-

tions may gain access to the execution unit later than they

would have (if E′
k > E{i}). They are also not allowed to va-

cate the unit until later (e′k). These effects are due to the

increase in time by φ.

(ii) If e′k < e{i}, the merged reservation station state

will have an entry cycle of max(E′
k, E{i}) and an exit cy-

cle of max(e′k, e{i}) = e{i}. We see that the exit times for

the merged state is not affected by this change. This is sim-

ilar to the situation in II, Case (1)(a)(ii) where the effects

of the anomaly would not have propagated since the reser-

vation station state of the path comprising k does not re-

flect the worst-case behavior. Depending on whether E′
k

or E{i} is greater, the instruction may or may not gain ac-

cess to the reservation station earlier.

Case 2: φ decreased the [Entry,exit] for k. Hence,

[E, e]′k = [E − φ, e − φ]k
(i) If e′k < e{i}, the merged reservation station state will

have an entry cycle of max(E′
k, E{i}) and an exit cycle of

max(e′k, e{i}) = e{i}. If ek < e{i}, then the change did not

matter since k’s reservation station state was not contribut-

ing to the worst-case state of the merged snapshot. If, on the

other hand, ek > e{i}, then the effect of the anomaly was to

modify the worst-case behavior of instructions in the path. In-

structions from the other path (with their corresponding state

of reservation stations) will contribute to the worst-case be-

havior for the task. Hence, the effect of the anomaly is seen.

Instructions that execute post-merge gain access to execution

units earlier than they would have, thus reducing overall exe-

cution time, hence retaining the original effect of the anomaly.

Instructions that are a part of the snapshot also gain ac-

cess to the reservation stations at a later time, depending on

whether E′
k or E{i} is greater.

(ii) If e′k > e{i}, the effect of the anomaly was to re-

duce the time taken for instructions to be issued to exe-

cution units. The state of the merged reservation station

will be, [max(E′
k, E{i}), e′k]. Without reservation sta-

tions, instructions would have been able to exit from the

execution units at ek. Due to the presence of reservation sta-

tions, they now exit at time e′k < ek. Hence, the effect of the

anomaly in reducing the execution time is carried forward be-

yond the merge.

(VII) Case 1: φ increased the RF entry for k. Hence,

RF ′
k = RFk + φ

(i) If RF ′
k > RF{i}, then the merged register reservation

station state will store the value, RF ′
k. Hence, we see that in-

structions that depend on the register corresponding to RFwill

gain access to the execution unit later than they would have

due to the increase in time by φ.

(ii) If RF ′
k < RF{i}, the merged register reservation sta-

tion state will will store the value RF{i}. This is simi-

lar to the situation in II, Case (1)(a)(ii) and VI Case (1) (a)

(ii), where the effects of the anomaly would not have prop-

agated since the register reservation station state of the path

comprising k does not reflect the true worst-case behav-

ior.



Case 2: φ decreased the RF for k. Hence,

RF ′
k = RFk − φ

(i) If RF ′
k < RF{i}, the merged register reservation sta-

tion state will have a cycle of RF{i}. If RFk < RF{i}, then

the change did not matter since k’s register reservation sta-

tion state was not contributing to the worst-case state of the

merged snapshot. If, on the other hand, RFk > RF{i}, then

the effect of the anomaly was to modify the worst-case be-

havior of instructions in the path. Instructions from the other

path (with their corresponding state of reservation stations)

will contribute to the worst-case behavior for the task. Hence,

the effect of the anomaly is seen. Instructions that execute

post-merge are allowed to access the data written into the reg-

ister file earlier than they would have, thus reducing overall

execution time and, hence, retaining the original effect of the

anomaly.

(ii) If RF ′
k > RF{i}, the effect of the anomaly was to

reduce the time taken for instructions to gain access to the

data (they depend on) from the register file. The state of the

merged register reservation station will be,RF ′
k. Without reg-

ister reservation stations, instructions would have been able to

read the required data values at RFk. Due to the presence of

reservation stations, they now get the required inputs (from

the register) at RF ′
k < RFk. Hence, the effect of the anomaly

in reducing the execution time is carried forward beyond the

merge.

Cases (I) – (VII) we proved that pipeline effects due to

timing anomalies (or whatever other reasons) will be retained

post-merge if the merge is based on the DRM algorithm. If

the pipeline effects resulted in increases or decreases (execu-

tion time/retire cycles/etc.), then these effects are carried over

if these effects changed the worst-case behavior of the path.

Hence, this proof holds for merging any two snapshots.

Theorem 2. Correctness of Merging Multiple Snapshots: The

algorithm in Figure 10 is correct with respect to preserving

worst-case timing effects in the pipeline when merging multi-

ple snapshots.

Proof. The DRM algorithm is effectively applied recursively

to perform merges on multiple snapshots. The “drm merge”

algorithm is called on two snapshots at a time to obtain a

merged state, which is then merged with the next snapshot

and so on. We have shown above that pipeline effects are

not lost when merging two snapshots at a time. Since merg-

ing multiple snapshots occurs two at a time, we can infer that

the pipeline effects will be retained across merging multiple

snapshots if the said effects alter the worst-case behavior of

the paths. Hence, the proof hold true for merging an arbitrary

number of snapshots.

11. Merging Register Files

To perform a merge on the register file state (“RF” from

Figure 4) we use a simple technique on each register:

(a) If the register value is unchanged across the snapshots,

then the merged state will retain that value in the register;

(b) If the register value is different, then set the merged value

to a Not-A-Number (NaN ) [9]. This is to handle input-

dependent values that will not be known until run-time. This

is safe due to the conservative semantics of any operation

of NaN that, by definition, results in a conservative value

(NaN unless trivial arithmetic rules apply, such as multipli-

cation with zero) and in conservative temporal requirements

(worst-case number of cycles for this operation under the

given operands). Note: A merge on register files deals with

the actual register values and is different from merging reser-

vation stations for register files (Section 9.3).

The ability to extract and/or write back register file state

can be realized by simple modifications of existing microar-

chitecture features, i.e., the Precise Event-Based Sampling

(PEBS) with user-selected access to selected shadow buffers

[14] present in the Intel X86 architecture. Our design makes

buffers used in this and other architectural techniques uni-

formly available to the user.

12. Implementation

The CheckerMode infrastructure has been implemented on

an enhanced SimpleScalar processor simulation framework

[5]. It has the ability to model a variety of processor configu-

rations (SMT, CMP, etc.). We had previously [9] enhanced the

simulator by adding the ability to start/stop execution at given

arbitrary program counter (PC) values as well as the ability

to capture timing information for the given range of PCs. We

have now further enhanced it to include the process of captur-

ing the state of the processor during the issue stage (i.e., using

the concept of reservation stations introduced in this paper).

We also have the ability to capture and merge snapshots and

to reset the state of the the pipeline to a given snapshot as de-

tailed in this paper. The following, specific, components were

added to the CheckerMode framework:

• A snapshot manager was added that decides when to
capture snapshots and also stores previously captured

snapshots.

• Reservation stationswere added to capture structural and
data dependencies, as explained in Section 7.

• The ability to capture snapshotswas added to the Check-
erMode framework.

• The ability to restore previously captured/merged snap-
shots to the processor was added.

• The ability to examine snapshots was added to the entire
framework.

13. Related Work

Methods to estimate WCETs range from dynamic analy-

sis [4, 17] to static analysis methods [10, 19] and from some

hybrid methods [3, 6, 8] to hardware-related methods [1, 7].

Dynamic methods may produce unsafe results while static

and hybrid methods tend to be extremely pessimistic and typ-

ically overestimate the WCETs so that the bound is not tight.

Many methods are incapable of handling advanced micro-

architectural features, such as OOO execution. Our work is

able to fill this gap and contributes to high confidence in em-

bedded systems design for time-critical software.

Our work is closest to Lundqvist et. al. [7] who use sym-

bolic execution with tightly integrated path and timing analy-

sis to obtain WCET estimates for modern architectures. Their



work is similar to ours in that they use the concept of “un-

known” values to represent register values and addresses that

are input dependent. They also capture processor state at

branches and perform “merge” operations on previously cap-

tured state. However, their work differs from ours in signifi-

cant ways. Their analysis is based on performing static timing

analysis within an architectural simulator using in-order ex-

ecution. They still require detailed modeling of the pipeline

and other functional units within the processor. Their merge

mechanism requires intricate knowledge of instruction flow

through the pipeline – which instruction occupies/releases

what resources, etc. Our approach avoids such costly and of-

ten impossible modeling of complicated pipeline structures

using reservation stations. This technique avoids the detailed

modeling of structural and data hazards, but is still able to ac-

curately account for their worst-case effects in the pipeline. In

fact, the inability to accurately model state-of-the-art proces-

sor pipelines is the core issue why the process of timing anal-

ysis for such processors is extremely difficult. We avoid larger

overheads by introducingminormodifications to existing pro-

cessor features that assist timing analysis. Another important

problem with modeling is that processor vendors might be re-

luctant to share exact details about internal architectural de-

tails required for accurate conventional static WCET analy-

sis. With our method, the vendors themselves can build the

“checker mode” into their processors so that analysis can be

performed without risk of divulging their intellectual prop-

erty.

One other serious issue with analyzing dynamically sched-

uled processors was also pointed out by Lundqvist et. al. –

that of timing anomalies. We have shown in this and related

work [9] that problems associated with timing anomalies can

be handled in our framework because we do not intend to cre-

ate models for processor behavior. Instead, we resort to the ac-

tual processor execution itself. This, coupled with the fact that

our pipeline analysis is able to retain all pipeline effects (in-

cluding timing anomalies) while retaining the ability to cap-

ture accurate worst-case execution times, means that we do

not face the same problems with timing anomalies that other

techniques have. Our analysis and merge techniques are able

to deal with out-of-order pipelines at a finer granularity (in-

struction level) without the overheads of modeling or signifi-

cant micro-architectural changes.

14. Conclusion

In this paper, we outlined a sophisticated pipeline analysis

scheme that is able to estimate the worst-case behavior of out-

of-order pipelines in a safe manner. We also show that we are

able to correctly deal with timing anomalies. We are able to

conduct our analysis in ways that are minimally invasive with

respect to the processor. More specifically, we suggest minor

changes to existing micro-architectural features that extends

contemporary monitoring techniques already present in hard-

ware. This work, when integrated with our CheckerMode in-

frastructure, utilizes interactions between hardware and soft-

ware to make contemporary processors predictable and ana-

lyzable. Such processors may now be safely used in real-time

systems, thus moving the state-of-the-art forward. We believe

that this work will enhance the design choices that are avail-

able to designers of embedded and real-time systems, partic-

ularly on the high-end of computational requirements. To the

best of our knowledge, the analysis methods presented in this

paper are the first of their kind that deal with out-of-order pro-

cessing and timing anomalies.
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