Scalable Compression and Replay of Communication Traces ~ Pepartment of Computer Science,
in Massively Parallel Environments

North Carolina State University, Raleigh, NC NC State U

“Lawrence Livermore National Laboratory,

Michael Noeth’, Frank Muellerf, Martin Schulz®, Bronis R. de Supinski” CASC, Livermore, CA
Problem Motivation Cross node merge example >NAS PB experiments, codes fall into 3 classes:
Before After .
» How can communication traces be gathered in peta-scale computing? Sequence 1] [sequence 4 1. Constant size traces: EP, IS and DT
— need scalable, loss-less approach - objective: near constant-size traces Qoo [Pt fartica Gums [0 Trace file size: Near constant size Memory Usage: Near constant size
— help understanding communication patterns - not easy! 10'5 s min NAS benchmark £P

= average
max.

— assist in procurement - rapid prototyping of communication needs

9 10" =node 0

» Current communication analysis tools fall in 2 classes: Sequence 1| |Sequence 2 [seaence 2
1. aggregation methods > lossy (e.g., mpiP) Shave|Parey el pari partcipants| Sleve fparicy , S
2. flat traces - loss-less but not scalable (e.g., Vampir) L \— A g
£

Our Approach >Temporal cross node reordering R -l -l
— Requirement: queue maintains order of operation tmertceus Mamber o CPL
>Record Traces MPL Application —Unmatched sequences in slave queue always moved to master 2. Sub-linear traces: MG, LU

— Use MPI profiling layer / —Results in lower compression rate

— Compress at task level 1 Functon Gl —Solution: only move operations that must be moved
— Compress at node level —Intersect task participation lists of matched & unmatched operations

»>Replay Traces —Intersection empty - no dependency

— Inverse of merging algorithm —Otherwise >ops must be removed

‘ Task-Level Framework ‘ MPI Library

Trace file size: sub-linear Memory Usage: Sub-linear

10° 1 s min NAS benchmark MG

= average
max

10"+ = node 0

‘Trace size in byges
Memory usage in bytes

»>Task level compression framework
— Umpire: PMP| wrapper generator

»>Replay Mechanism
— Motivation: Possible to replay traces on any architecture

—Initialization wrapper —Useful for rapid prototyping>procurement * umbarotcpus * oo
—Tracing wrapper Vaske X Operation Queue —Communication tuning (Miranda -- SC’05)
__Termination wrapper s 3. Non-scalable traces: FT, BT, CG
—Task-level compression of MPI calls e —Replay Design Trace file size: not (yet) scalable Memory Usage: Non-Scalable
— AU e el —Replays comprehensive trace produced by recording framework — Still 2-4 orders of magn. smaller
—Interoperable w/ cross-node J . Due t | t
framework P —— —Parses trace, loads task-level op queues (inverse of merge algorithm) = JsilolcompeXicOMM PITInS
—Replay on-the-fly (inverse of compression algorithm) along diagonal of 2D layout
= — Could be improved
>Cross-Node Framework Interoperability Experi mental Results e NAS benchmark F 1
o ’ = v
SlnglelProlgram, WMITEIE Da‘ta (FEIANIS) GELrRD G A GRites »>Near constant size for fully compressed traces
— Maintain structure of calling sequences 8
— stack walk signatures Trace File size — 3D Stencil (Log scale) Trace File size — Raptor (Linear scale) H
— Match operations across tasks by manipulating parameters 100000000 17 e — oo = 3
— Source / destination offsets l:::m;d MHllrege £
— Request handles 1000000077 (S

pression:

— Event aggregation
—Special handling of MPI_Waitsome

1000000

128
Number of CPUs Number of CPUs.
100000

Size of trace (bytes)

»Cross-Node Compression Framework 10000

NAS PB Codes — Output times
— Invoked after application termination

1000

80000000 1
70000000 1
G so000000 1
8
2
& 50000000
o
N 40000000 |
[}
30000000 = ~
20000000 1
10000000

A 2 o 125 216 - s2 o EP, IS, DT - near constant MG, LU sub-linear FT, BT, CG - Non-scalable
— Merges operation queues produced by task-level framework (3x3x3) (4xdxd) (5x5%5) (BxBxB) (TX7x7) (88xE) 128 26 512 to24 Sometimes fast cross node compr Still fastest cross-node compr. Non-competitive (better write
—Job size scalability Processors Processors

node compressed)

NAS bencnmark 1

02 NAS benchmark MG

NAS benchmark MG

»>Reduction over binary radix tree
— Cross-node framework merges
operation queues of each task
— Merge algorithm supports merging two
queues at a time
— Radix layout facilitates compression
(constant stride b/w nodes)
—Need a control mechanism to order
merging process

3 3

»>Near constant memory consumption (per node) for fully compressed traces
» max ~ task 0, min = leaves, avg = middle layer (decr. w/ node #)
»Average memory consumption decreases w/ more processors

Memory Consumption — 3D Stencil Memory Consumption — Raptor

0o

[Max memusage
W Min memusage

10000000 [Avg memusage
| ITasko

Contributions and Future Work

L »>Scalable approach to capture full trace of communication
»>Scalable replay mechanism

- »>Trace analysis > determine inefficient MPI usage

»>Assist in procurement via rapid replay

»>Use to address task mapping problem

1000000

Size (bytes)

Memory (bytes)

100000 B

10000

27 o s 28 e s
o)) (66) (G66) (0x7) (@) 1 Supported in part by NSF CVS-0310203, CCF-0429653, CAREER CCR-0237570

128 256 512 1024

Processors Processors * Performed under auspicies of US DOE by UC California LLNL contract # W-7405-Eng-48, UCRL-POST-225759

