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ABSTRACT

Procurement and the optimized utilization of Petascalegm-
puters and centers is a renewed national priority. Susdgieefor-
mance and availability of such large centers is a key teethoital-
lenge significantly impacting their usability. Storagetsyss are
known to be the primary fault source leading to data unakaity
and job resubmissions. This results in reduced center pegiace,
partially due to the lack of coordination between 1/O atids and
job scheduling.

In this work, we proposéhe coordination of job scheduling with
data staging/offloadingndon-demand staged data reconstruction
to address the availability of job input data and to improgater-
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out having to be resubmitted as a result of a failure

| System | #Cores|  MTBF/I | Outage source |
ASCIQ 8,192 6.5 hrs Storage, CPU
ASCI White 8,192 40 hrs Storage, CPU
PSC Lemieux 3,016 6.5 hrs
Google 15,000 | 20 reboots/day| Storage, memory|
ORNL's Cray XT4 23,416 37.5hrs Storage, memory|
“Jaguar” NLCF

Table 1: Reliability statistics from several large-scale gstems,
including the top sources of hardware failures (top four lines
are from [15]). To this list, we have appended MTBF numbers

wide performance. Fundamental to both mechanisms is the ef- for the National Leadership Computing Facility at ORNL [18],

ficient management of transient data: in the way isédeduled
andrecovered Collectively, from a center’s standpoint, these tech-
niques optimize resource usage and increase its datalsexvail-
ability. From a user’s standpoint, they reduce the job trouad
time and optimize the allocated time usage.

Keywords: Data Staging, Data Scheduling, Coordinated
scheduling, Transient Data Recovery, HPC Center Perfogaan
Optimization

1. INTRODUCTION

PetaFlop (PF) computers are looming on the horizon for high-

end computing (HEC). Reliability, availability and sersability
are of rising concern with the ever-increasing scale of suqre-
puter systems. Even with today’s machines, fault toleraaca
serious problem. Table 1, from a recent study by Departmént o
Energy (DOE) researchers, reports the reliability of salvetate-
of-the-art supercomputers and distributed computingesgst[15,
18]. With such frequent system down times, expensive ressur
are sitting idle while user jobs accumulate in wait queuelusT
many petascale solicitations from federal agencies atagébr
stringent availability requirements, e.gvhen averaged over one
month, 90% of jobs submitted to the system should compléie wi
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which is No. 2 [23] in the Top500 [33] supercomputers as of
this writing. MTBF/I stands for mean time between failures or
interrupts.

Data and 1/O availability are integral to providing a noogst
continuous computing experience to applications. Tabladl- i
cates that the storage subsystem is consistently one ofithary
sources of failure on large supercomputers. The situasamly
likely to worsen in the near future, due to the growing reflasize
of the storage system forced by two trends: (1) disk perfocea
increases slower than that of CPUs and (2) users’ data needs g
faster than does the available compute power [14]. A sunfey o
DOE applications suggests that most applications requisasa
tained 1 GB/sec I/0 throughput for every TeraFlop of peak -com
puting performance. Thus, a PF computer will require 1 TB/ffe
1/0 bandwidth. Current disk performance trends suggest aueF
system in the 2008/2009 time frame may require tens of thulsa
of disk drives attached to roughly a few thousand 1/0 nodes. A
1/0 subsystem of this size makes a large parallel machie# @ad
is subject to frequent failures. Trends from commercial BfRC
centers suggest, that on average, 3% to 7% of disks, 3% to 16% o
controllers and up to 12% of SAN switches fail per year. Feirtit
is estimated that the above numbers are 10 times the ratestexip
from vendor specification sheets [12, 13].

Another side to data unavailability affecting superconepser-
vice availability is the data staging and offloading prohlddsers
typically stage their data, submit their jobs to scheduserd of-

fComputer Science and Mathematics Division, Oak Ridge Na- fload result-data, after job execution, for post processitmvever,

tional Laboratory vazhkudaiss,pikeg,cobbjw }@ornl.gov

(c) 2007 Association for Computing Machinery. ACM acknoddes that
this contribution was authored or co-authored by a cortract affiliate
of the U.S. Government. As such, the Government retains axuiusive,
royalty-free right to publish or reproduce this article, torallow others to
do so, for Government purposes only.

SCO07November 10-16, 2007, Reno, Nevada, USA

Copyright 2007 ACM 978-1-59593-764-3/07/0011 ...$5.00.

this workflow is mired by numerous issues. First, with uséms’
creasing data needs, input and output data sizes are gréagtey
than the size of center I/O systems. The upshot is that gfagid
offloading operations are themselves becoming large datefer
jobs, prone to failure. Second, these activities have toongmed
with the compute job itself, so the data is available wherjdbéas
ready to be scheduled. Otherwise, individual user job taunad

'High performance computing system acquisition: Towards a
petascale computing environment for science and engimgeri
NSF program solicitation 06-573.



time increases as jobs get requeued due to data unavajlabilir-
ther, there is already a significant waiting time at thesdif@as,
especially for large jobs, requesting many nodes. Stagata) \dell
in advance is also not a solution as it wastes precious ceswer
sources in terms of scratch space, which could be used fairgn
jobs or for storing data of more immediate jobs. In additiaith
the likelihood of storage system failure (mentioned egyliehis
could very well result in job resubmits. Similarly, delayeffload-
ing from scratch system renders result data vulnerable taiatary
purging, resulting in resubmissions. Thus, data stagffigéaling,
coupled with transient storage system failure, is unnecégsie-
grading supercomputer center performance.

These design constraints are widely recognized. So mudieso t
it is explicitly called out and asked to be addressed in High P
formance Computing (HPC) solicitations such as the NSFT#®-5
mentioned above. Even so, leadership-class supercorgpfatin
cilities are stymied by common pitfalls when it comes to jpdev
ing seamless data and service availability or reducinghmessr
sion rates. What is needed is a concerted effort towardsstiata
ing/offloading, job scheduling and data recovery, which signif-
icantly improve center operations.

Thematic to our approach is the recognition that job input an
output data needs to be managed more efficiently: in the wiay it
schedulecandrecovered For instance, supercomputer centers do
not schedule data transfer jobs. Instead, such data traegfer-
formed manually by the user. We propose thaomatic schedul-
ing of data staging/offloading activitie® they can better coincide
with computing. Our approach involves the explicit defimitiof
data staging and offloading in a job script, followed by itsata-
position and submission to a zero-charge data transferegquext,
most current fault-tolerance and recovery mechanismsesigaed
with “persistent data” in mind, while HPC environments pred-
nantly deal with large volumes tfansient datehat “pass through”
supercomputers. HPC jobs needstage intheir input data and
stage outtheir output data. We proposan-demand data recon-
structionthat transparently verifies the availability of the stagel
input data and fetches unavailable pieces from externalstatrces
in case of storage failures. Our approach takes advantabe ek-
istence of an external data source/sink and the immutalleenaf
job input data. Collectively, from a center standpoint,sta¢ech-
niques globally optimize resource usage and increase tésatal
service availability. From a user job standpoint, they r=djob
turnaround time and optimize the usage of allocated time.

are focused as part of an application workflow rather thart afse
HPC center integrated services.

BatchAware Distributed File System (BAD-FS [2]) constsict
a file system for large, 1/O intensive batch jobs on remote-clu
ters. BAD-FS addresses the coordination of storage and eemp
tation by exposing distributed file system decisions to aeresl,
workload-aware scheduler. The authors argue that thisoagpr
helps data placement, replica creation and reduces datamsmt
in wide-area networks. While the common goal is the coottitina
of jobs and their data, our approach is fundamentally difiefrom
this work. We attempt to inherently improve and optimize jibie
workflow in HPC environments without creating a new file syste

The importance of the timely offloading of result data, from
execution sites to their destinations, is emphasized in [BR
and Kangaroo [32]. Both provide an offloading mechanism dbase
on intermediary node staging. While IBP and Kangaroo addres
the scratch space purging problem by timely offloading ofiltes
data, they do not address the scheduling or coupling of ttig-a
ity alongside computation. Moreover, these solutions ateyet
prevalent in HPC settings and users still use simple transtds
such as hsi [11], ftp or scp. Our research, on the other haid, a
dresses the scheduling of offloading alongside computatiok)in
addition, works with existing user tools.

Commercial solutions for cluster and supercomputer sdieesiu
(such as Moab [24]) are beginning to realize the importari¢heo
data staging requirement for jobs and its effect on job towmad
time. Moab provides the ability to set staging requirementfobs
such that the computation does not commence until stagicgnis
plete. This is similar to our approach. However, for thedatgms
to work, it is required that a storage manager be associatédtve
resource manager for the scheduler to pass the commands alon
Moreover, it does not support offloading to the end user $ite-
ther, unlike our approach, there is also no support for statga
availability (e.g., retries or recovery).

Next, we will discuss related efforts in data recovery. We
are interested in improving the availability of staged dalzata-
availability schemes have been built with persistent datanind,
whereas data in HPC is usually transient. Data-intensbg ijosu-
percomputer environments prefer a high-performance cenaar-
allel file system for their aggregate 1/0 bandwidth. Thisasch
storage is precious and maintained using quotas. Replicéia
commonly used technique for persistent data availabilify, [9].
However, in this setting, it consumes precious storageuress

We have designed mechanisms for the specification and Sehedu and increases complexity in the need to maintain consisegtit

ing of data jobs and have integrated our techniques with H&C ¢

ter resource and job management tools. We have implemented o

demand recovery schemes into parallel file systems so tpitap
tions can seamlessly utilize available storage elemenisre3ults,
by means of real-system benchmarking experimentation mplsa
systems and trace driven simulations, show that the avevaijeg
time of jobs can be significantly reduced.

2. RELATED WORK

Coscheduling of data and computation has been thrust to the

forefront due to the increasing need to stage large datanadtee
computation sites. Stork [16], a scheduler for data placemaetiv-
ities in a grid environment, is closely related to our apptoaStork,
along with Condor [20] and DAGMan [8], is used to scheduleadat
and computation together in the face of vagaries in the ghd.
[28], the authors, using simulation analysis, argue th&d-dware
scheduling on the grid improves job response time. Sinyil&bn-
dor [20] and SRM [31] are coupled in [29] to schedule jobs on
compute nodes, where data is available. However, all of bogea

cas.

RAID [26] reconstruction is a commonly used technique te sus
tain access to data and recover redundancy levels in thenme ®f
disk failures. Even staged, transient data on supercompatel-
lel file systems are likely to be stored on RAID systems. Hauev
RAID recovery is insufficient for the following reasons. §tireven
when hot spare disks are available for RAID reconstructiokidk
in automatically, the latency of such native reconstructizethods
is high (reconstruction time for a 160-GB disk takes on thaeonf
dozens of minutes.) During this time, the application isjecibto
storage performance degradation, at best. The reconstiuane
is proportional to drive size, load and the number of drivesi
RAID group. This time is bound to get worse with storage sys-
tems on petascale machines. Further, RAID recovery is iragai
when there are controller failures or multiple disk failsinithin
the same group. When hot spares are not available, the teoons
tion requires manual intervention by the system admirntistrand
will typically take longer. Second, data reconstructiorsdsh on
hardware RAID does not help when there are 1/0 node failures.



Petascale systems will likely employ thousands of /0O nodlesre their favorite transfer tools. This operation should be pteted be-
are two classes of parallel file systems, namely those whasé a fore the job script is submitted, as it is always possibletiarjob
tectures are based on I/O nodes/servers managing dataemtiydir  to be scheduled immediately. In most cases, there exisffi@est
attached storage devices (such as PVFS [5] and LUSTRE [6]]) an gap between stage-in operations and the corresponding ¢ole-

those with centralized, shared storage devices that aredtyy cution — especially on busy systems — which increases thie-pro
all I/0 nodes (such as GPFS [30]). For the former categorgieno  ability of data unavailability, either due to storage systerrors or
failure implies that a partition of the storage system isvailable. due to purging. Therefore, this approach incurs high maapat-
Since parallel file systems usually stripe datasets foeb#® per- ational and storage space costs. Implicitly, the resubaristue to

formance, failure of one node may affect a large portion @frus  data unavailability incurs waiting time cost and the ouffiaia loss
jobs. Moreover, unlike specialized nodes/servers sucheiadata due to human errors (late stage-out) implies wasted contjynége
servers, token servers, etc., 1/0 nodes in parallel fileesgstmay With the scripted staging approach, users embed data gtagth
not be routinely protected through failover. 1/O node fadodoes offloading commands in their job scripts. This way, data nnoset
not help when the underlying RAID recovery is impaired (asime is performed before and after a job’s execution. Intuiiyéhis ap-
tioned above) as the data is seldom replicated. Our on-d&éman proach significantly reduces the human operational costang

reconstruction for job input data mitigates these situeiby ex- mizes the storage usage of each job (duration of storageyet,
ploiting the source copies of user job input data. in current systems, the data movement time (multiplied leynttm-
ber of processors used by the job) will be charged againstsbes
3. MOTIVATION AND METHODOLOGY computation allocation. Meanwhile, by serializing dataveraent
Our target environment is that of shared, large, supercompu 2and job execution, this approach wastes other system resoand
ing centers. In this setting, vast amountgrahsientjob data rou- increases average job waiting time. ,
tinely passes through the scratch space, hosted on pditallsys- Recognizing the above limitations, we propose a novel jab ex
tems. Supercomputing jobs, mostly parallel time-step nioak cution environment, wherein data staging is scheduledraegiy,
simulations, typically initialize their computation wighsignificant Yt in coordination with job dispatching. With this new soie
amount of staged input data. Their output data is often margfet, data staging operatlons aaatomaticallyextracted from job scr.lpts
containing intermediate, as well as final simulation resufthis and executed in a separatata queue Dependencies are assigned
data needs to be offloaded from the scratch space in a timgtly fa P€tween input data staging, computation, and offloading jrim
ion. Today, users are faced with two options for data staginan- the same user script to ensure correctness. Periodic dzitalality
ual staging or embedding staging commands in job scripteergk checks and transpargnt data reconstruction is performptbtect
layers of user-visible costs may be incurred with these atjmsts. the staged data against storage system failures. Compaed t

isting approaches, this technique incurs minimum useratjoeral

cost, low storage usage cost, and no computation time dadsd

reduces the average job waiting time of the entire systemirand

creases overall center throughput and service. Desigilsietaur

e Computation time charge: Supercomputer users obtain ~Proposed mechanisms as it relates to the scheduling systeralla
compute time to conduct their analyses through rigorous as the file system will be presented in the following sections
peer review of their proposals. However, slow—and of-

ten sequential—data staging operations embedded inscript 4. COORDINATING DATA AND COM-

might be charged against the user. Worse yet, the charge *

is often calculated as a product of the wall clock time of I/O PUTE OPERATIONS

staging completion times the number of processors alldcate Our approach involves the explicit definition of data stagamd
offloading in a job script, followed by its decomposition atepen-
dency setup. This infrastructure allows us to schedule amdage
data jobs, resulting in better coordination with the coragion.
Figure 1 presents an overview of our architecture.

Specification of /0 Activities: HPC users are already accli-
matized to using sophisticated data transfer tools forr thteiging
and offloading operations. Many times, these operation®m@re
e Storage space:When aggregated, the cost of scratch space bedded as part of the job script. However, these operatiensat

is a significant fraction of HPC center acquisition and op- explicitly scheduled like compute jobs. As a first step talgathe

erations budgets. The scratch space is shared and usuallyscheduling of data transfers, we have enabled the speimficat
managed with a forced purge policy. When data resides in these operations using “STAGEIN” and “STAGEOUT" directve
scratch space for a long time.{), more than seven days), These data directives can be embedded within the job scriphm
shared storage resources are wasted. Furthermore, the-prob like resource manager directives (e.g., “#PBS” [25]). Sacipec-
bility of losing input data before the job even starts inses ification allows a parser to extract the data staging/ofileg:dom-
over time. Similarly, output data could also be lost if kept mands to compose individual “data jobs” that can then bedsche
on scratch space for a long time before it is transferred or uled. In our implementation, we have instrumented a stahB&S
archived. In addition, many supercomputer centers are al- job script [25]. Below is a simple example of a job script withta
ready charging for storage usage besides just computation. directives to stage-in data from the HPSS archival systéifufing

Thus, an unnecessarily early stage-in or delayed stage-outthe hsi interface [11]) and to stage-out data (using scp).

could prove more expensive to users even without data loss.  #PBS -N myjob

. . N . #PBS -l nodes=128, walltime=12:00
With the manual approach, job data staging is done in anBut-o #STAGEIN any parameters here

band fashion as follows. Users manually move their data peisu #STAGEIN -retry 2
computer scratch space from remote archives or home ar@as us #STAGEIN hsi -q -A keytab -k my_keytab_file

e Human operational cost: Users have to manually perform
data movement, as well as the coordination between data
movement and job execution.

e \Waiting time: From users’ perspective, supercomputer job
queue wait times (typically minutes to days) have a direct
impact on the usability of the system. Unavailability of pre
staged job input data, due to storage system failure, sesult
increased waiting time, job turnaround time or even resub-
missions.
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-I user “get /scratch/user/destination_file
input_file”

mpirun -np 128 ~/programs/myapp

#STAGEOUT any parameters here

#STAGEOUT scp /scratch/user/output/
user@destination_host:/home/user/

Of course, more complex staging and offloading logic can be
constructed as long they are prefixed with the appropriatetive
tags. Staging and offloading can also specify retry attemits
the “-retry” option. For a compute job several other pararet
such as expected run time, priority, etc., are specified énjol
script as resource manager directives. Similar parametaralso
be specified for a data activity so they can be propagatedeto th
resource manager.

"Zero Charge" Data Transfer Queue: Fundamental to the
scheduling of data staging and offloading activities is thatment
of these operations as “data jobs”. To achieve this, we Fe@Ss-
tablishing a separate queue (“dataxfer”) for data stagethstage-
out jobs (Figure 1). Doing so enables scheduler control tiver
staging and offloading activities. Itis common practiced@uper-
computer center to setup multiple queues to manage thesdiyer
in user jobs. For instance, a computer center might setdprdif
ent queues to handle all high-priority jobs, high throughjolbs
(long running) or jobs requiring access to specific resauggch
as tapes. Multiple queues, in general, help service userljetier.

In our case, setting up separate queues for data and conopstis]
a step towards streamlining data operations by having theice

itly scheduled and managed. Further, it allows better doatibn

of staging and computing activities.

In center operations, data transfers are not currently getthr
(the network and I/O bandwidth are not chargeable resowregs
which is also the reason why manual staging operations inour
cost. Storage allocations, on the other hand, are begirtoirg
charged. However, if this is s0, it is a cost that users negayan
any case. Now, the center can setup a “zero charge” data gizeue
which staging and offloading jobs can be queued. The dataequeu
should be scheduled based on the same scheduling policytaised

proach enables this since we propagate parameters abaijbbat
from the job script to the resource manager. Finally, quguip
and scheduling data jobs separately also has the addedthibaefi
these activities could be charged, if need be, in the future.

To ensure that the dataxfer queue is not used by users far othe
computational jobs, we can limit access to the queue based on
ACLs, which are supported by modern resource managers f4].
instance, queue attributes such as host-based ACLs careti¢als
control the machines that can submit jobs to the dataxfeuegue
Based on this, the scheduler on the head node can setup an ssh
connection to a data job submission node (or I/0 node) to gubm
stag-in and stage-out jobs to the dataxfer queue.

Planning and Orchestration: We now have a way to specify
and distinguish 1/0 activities such as staging and offlogditong-
side job scripts. Further, we have a dedicated data queeptiog
transfer jobs. The next step is to devise a “plan” for exaguti
To this end, we have built a planner that accepts a PBS joptscri
(shown above) and decomposes it into computing, staging&nd
floading jobs and their associated dependencies (see Hiyuret
us say the compute, stage-in and stage-out jobs are stagjicgm-
pute.pbs and stageout.pbs, respectively. The staginqulis las
follows:

#PBS any parameters here

retry looping construct here...

hsi -q -A keytab -k my_keytab file -l user “get
/scratch/user/destination_file : input_file”

The stagout.pbs looks as follows:

#PBS any parameters here

scp /scratch/user/output/
user@destination_host:/home/user/

The compute.pbs looks as follows:

#PBS -N myjob

#PBS -l nodes=128, walltime=12:00

mpirun -np 128 ~/programs/myapp

The planner then sets up dependencies between these jobs and
submits them to their respective queues using standarding@so
manager primitives. For example, an execution plan for tieve
three jobs might comprise the following steps.

manage the compute queue. For instance, if the compute queue staginJobid=‘qsub -q dataxfer stagein.pbs*

uses priority-based scheduling, it makes sense for the afatee
high priority job to arrive before the data for other jobs. rGap-

computeJobid=‘qsub -W depend=afterok:$staginJobid
-q batch compute.pbs’



gsub -W depend=afterok:$computeJobid -q dataxfer
stageout.pbs

Here, we have used standard PBS primitives to set up depen-

dencies and have used “gsub” to submit the jobs to the ragpect
queues (batch and dataxfer). By explicitly specifying l&\aties
and scheduling them along side compute jobs, we have enthated
the data will have arrived when the job is ready to be schedule
Likewise, upon job completion, the offload data job is schedlto
transfer the data to its destination, thereby avoidingmgfurged,
waiting for manual intervention. Note, however, that oupEach
only ensures the timely initiation of the staging activitydacannot
guarantee its completion due to other end-to-end issues/grie
vagaries and other storage issues). However, we do sumioesr
of staging and offloading. If the staging activity failedetbom-
pute job will not be scheduled. This way, the user, at leastschot
waste his compute time waiting for data to become available.

data about data source and transfer protocols used fongtagi
addition, we need sophisticated recovery mechanisms it
parallel file systems. In the rest of this section, we willaése au-
tomatic recovery metadata extraction and the instrumiematf a
parallel file system as an instance of how to achieve thisesmashd
data recovery.

5.1 Metadata: Recovery Hints

To enable on-demand data recovery, we first propose to ex-
tend the parallel file system’s metadata wrdtovery informa-
tion, which can be intelligently used to improve fault tolerance
and data/resource availability. Staged input data hasspens ori-
gins. Source data locations, as well as information regarthe
corresponding data movement protocols, can be recordeg-as o
tional recovery metadata (using the extended attributsife) on
file systems. For instance, the location can be specified a$-a u

The scheduling of both data and compute operations poses theform resource index (URI) of the dataset, comprised of the pr
question: When should a job in the data queue be executed to en ool URL, port and path (e.g., “http://sourcel/Stagedth or

able “just-in-time” staging? This can be addressed by ltpesti-
mates of queue wait times (using tools like NWS [35]) at theeti
of job submission and data transfer times, both of which aexu
as a measure to decide when to initiate staging. To start détta
transfer estimates can be specified by the user in much the sam
way estimated job run times are specified. Estimates of daa-t
fer times can also be obtained between any two sites usingféa
predictions (our earlier work [34]). This way, we can moresaly
tie the staging with the compute job. This also reduces thly ea
stagein of the dataset and its associated pitfalls. Howthisiis be-
yond the scope of this paper and will be addressed in futur&.wo
Finally, to address the potential unavailability of prgsd data,
due to storage system failure, before the job is scheduledhave
developed recovery stubs that perform data reconstrudtioac-
essary (discussed in the next section). Since these rgceidrs
are a means to cope with center failure, they will incur nat ¢os
users’ allocated time. Thus, the coordinated schedulirgshen-
prove center performance by mitigating the detrimentat@# of
failure.

5. DATA RECOVERY AT NO COST TO AL-
LOCATED TIME

As mentioned earlier, recovery operations are necessarg-to
construct pre-staged data in the event of storage systéunefdie-
fore the job is scheduled. These operations are performeéras
odic checks to ensure data availability for any given jobrtifer,
recovery is performed as part of system management evemebefo
the job is scheduled. Therefore, its cost is not chargechagtie
users’ compute time allocation. In the absence of recocisbm
user jobs are left to the mercy of traditional system recpeemput
back in the queue for rescheduling.

To start with, this mode of recovery is made feasible due & th
transient nature of job data and the fact that they have irabeit
persistent copies elsewhere. Next, many high-performalate
transfer tools and protocols (such as hsi[11] and GridFTPsE8-
port partial data retrieval, with which disjoint segmentsrissing
file data—specified by pairs of start offset and extent—canebe
trieved. Finally, the costs of network transfer is decregsinuch
faster than that of disk-to-disk copy. Collectively, thesasons
enable and favor on-demand recovery.

A staged job input data on the scratch parallel file system may
have originated from the “/home” area or an HPSS archive [7]
in the supercomputer center itself or from an end-user site.
achieve proactive data reconstruction, however, we neadweta-

“gsiftp://mirror/Stagedinput”). In addition to URIs, usereden-
tials, such as GSI (Grid Security Infrastructure) certifésa needed
to access the particular dataset from remote mirrors cankedsn-
cluded as metadata so that data recovery can be initiatedadfb
of the user. Simple file system interface extensions (suc¢hase
using extended attributes) would allow the capture of thesadata.
We have built mechanisms for the recovery metadata to be auto
matically stripped from a job submission script’s stagaffidading
commands, facilitating transparent data recovery. Onartdge of
embedding such recovery-related information in file systeata-
data is that the description of a user job’s data “source”amk”
becomes an integral part of the transient dataset on thecampe
puter while it executes. This allows the file system to recate
egantly without manual intervention from the end users gni§i
cant code modification.

5.2 Data Reconstruction Architecture

In this section, we present a prototype recovery managee Th
prototype is based on the Lustre parallel file system [6],civhis
being adopted by several leadership-class supercomputerss-
tre file system comprises of the following three key compadsien
Client, MDS (MetaData Server) an@SS(Object Storage Server).
Each OSS can be configured to host sev®&Tls (Object Storage
Target) that manage the storage devices (e.g., RAID stanaggs).

The reconstruction process is as follows. 1) Recovery laibtsit
the staged data are extracted from the job script. Releesuivr
ery information for a dataset is required to be saved as ergov
metadata in the Lustre file system. 2) The availability ofeth
data is periodically checked (i.e., check for OST failurghis is
performed after staging and before job scheduling. 3) Data-i
constructed after OST failures. This involves finding spa&Ts
to replace the failed ones, orchestrating the parallelnsiraction,
fetching the lost data stripes from the data source, usiogvesy
hints and ensuring the metadata map is up-to-date for fuaore
cesses to the dataset.

Extended Metadata for Recovery Hints: As with most par-
allel file systems, Lustre maintains file metadata on the MBS a
inodes. To store recovery metadata for a file, we have added a
field in the file inode named “recov”, the value of which is askt
URIs indicating permanent copies of the file. The URI is a abar
ter string, specified by users during data staging. Maimgithis
field requires little additional storage (less than 64 byl min-
imal communication costs for each file. We have also develope
two additional Lustre commands, naméty setreco\andlfs getre-
covto set and retrieve the value of the “recov” field respectiviey



making use of existing Lustre system calls. data source, using the protocol specified in the URI, to paéath
I/0 Node Failure Detection: To detect the failure of an OST,  chunk of data in the array dfof fset, size} pairs. These are then
we use the corresponding Lustre feature with some extesislon written to the object on OST;,. We have built mechanisms so that
stead of checking the OSTs sequentially, we issue commands t the file reconstruction process can be conducted from the: iede
check each OST in parallel. If no OST has failed, the probgrnst or from the individual OSS nodes (to exploit parallelismgpend-
quickly. Otherwise, we wait for a Lustre-prescribed timeofi25 ing on transfer tool and Lustre client availability.
seconds. This way, we identify all failed OSTs at once. Thisok Patching Session: At the beginning of each patching opera-
is performed from the head node, where the scheduler also run  tion, a session is established between the patching ndueséad
File Reconstruction: The first step towards reconstruction node or the individual OSS nodes) and the data source. Maay da
is to update the stripe information of the target file, whish i  sources assume downloads occur in an interactive sessibimth
maintained as part of the metadata. Each Lustreffile striped cludes authentication, such as GridFTP [3] servers usingy&JEP
in a round-robin fashion over a set oty OSTs, with indices client [1] and HPSS [7] using hsi [11]. In our implementation
Ty = {to,t1,...,tm,}. Let us suppose OST; is found to we use Expect [19], a tool specifically geared towards autioga
have failed. We need to find another OST as a substitute from interactive applications, to establish and manage thesesaictive
the stripe list,7y. To sustain the performance of a striped file ac- sessions. We used Expect so that authentications and signgeq
cess, it is important to have a distinct set of OSTs for eaeh fil partial retrieval requests to the data source can be peerover

Therefore, in our reconstruction, an OST that is not oritjynia a single stateful session. This implementation mitigateseffects
T will take OST f;'s position, whenever at least one such OST of authentication and connection establishment by amogithese
is available. More specifically, a list. of indices of all avail- large, one-time costs over multiple partial file retrievadjuests.

able OSTs is compared withi; and an index, is picked from
the setL — T;. We are able to achieve this, since Lustre hasa §, PERFORMANCE
global index for each OST. The new stripe list for the dataset

T} = {to,t1,. .., tim1, tir, i, ... stm, }. When a client opens 6.1 Experimenta| Setup

a Lustre file for the first time, it will obtain the stripe listdm the L .
. N Our performance evaluation involves the following two step
MDS and create a local copy of the list, which it will use fobsa- . . !
First, we assess the effect of storage node failures andilitses

quent read/write calls. In our reconstruction scheme, lieatcthat quent data reconstruction overhead on a real cluster usiveyal
locates the failed OST updates its local copy of the strigesamds local or remote data repositories as sources of data staglaggt,

a message to the MDS to trigger an update of the master cogy. Th ; . ) .
MDS associates a dirty bit with the file, indicating the azhility we use the.se benchmarklpg re.sults n gsmulatlon Studyuset
. - job traces, including job failure information, collected large su-
of updated data to other clients. A more efficient method wdnd :
percomputer centers to study the impact of our approach en th

to Iet_ the_ MDS mU|t'CaSt amessage to_aII clients t_hat have!exn)e overall center performance in terms of average job wait tand
the file, instructing them to update their local copies of sképe o .
wait time variances.

list. This is left as future work. . )
- . _— Our testbed for evaluating the proposed data reconstruetie
When the new stripe lisT’; is generated and distributed, stor- roach is a 40-node clustgr at %aE Ridge National Laborato
age space needs to be allocated on @STor the data previousl p L . 1age N y
ge sp previously (ORNL). Each machine is equipped with a single 2.0GHz Intel

stqred on OSE:. As an opject-based file system [2.2]’ _Lustre USES pentium 4 CPU, 768 MB of main memory, with a 10/100 Mb Ether-
objects as storage containers on OSTs. When a file is created, . . . - .
net interconnection. The operating system is Fedora CoriadxL

MDS selects a set of OSTs that the file will be striped on and cre - 7
ates an object on each one of them to store a part of the fildh Eac ggz ?SLluitrYe-patched kernel (version 2.6.12.6) and thareuzer-

OST sends back the id of the object that it creates and the MDS Since our experiments focus on testing the server-side sfiey

collects the object ids as part of the stripe metadata. Tt@vezy h h iority of the the cl d IGe
manager works in the same way, except that the MDS only @eate we have setup the majority of the the cluster nodes as BV
! More specifically, we assign 32 nodes to be OSSs, one node to be

an object in OST,,. The id of the object on the failed OST is ) )
replaced with the id of the object created on O$T The length of the MDS and one node _to be the client. The client also doulslc_es a
an object is variable [22] and, therefore, the amount of datae the head node. In practice, such a group of Lustre servetdevil
Ject . L ' . I able to support a fairly large cluster of 512-2048 computdeso
patched is not required to be speC|f|§d at the time of objeetton. (with 16:1-64:1 ratios seen in contemporary supercomgjiter
In order to patch data from a persistent copy and reconstiect We used three different data sources to patch pieces of adstag

file, the recovery manager needs to know which specific bytgea input file: (1) An NFS server at ORNL that resides outside the

are missing. It obtains this information by generating anayaof “ .
: . . subnet of our testbed cluster (“Local NFS”) (2) an NFS server
{of fset, size} pairs according to the total number of OSTs used at North Carolina State University (“Remote NFS”) and (3) a

by this flle,mf, Fhe p.osmon .of thg failed OST in the stripe ligf, GHdFTP [4] server (“GridFTP”) with a PVFS [5] backend on the
and the stripe sizeysize. Stripe size refers to the number of data S X e
; ] o . TeraGrid Linux cluster at ORNL, outside the Lab’s firewalg-a
blocks. Each{of fset, size} pair specifies a chunk of data that is S
o i : : . cessed through the UberFTP client interface [1].
missing from the file. Given the round-robin striping patteised

by Lustre, it can be calculated that for a file with sigeize, each 6.2 Trace and Simulation Overview

T N N H size 1
of the firstk = fsize mod SSZze,OSTS vsgilehave[ {:size] stripes To evaluate the effect of our recovery mechanism on the over-
and each of the other OSTSs will ha‘@mj stripes. Foreach 4| performance of a supercomputing center, we performetrac
OST, it can be seen that in the, pair,of fset = j x ssize, and driven simulations based on the operational data released f
Los Alamos National Laboratory [17]. This trace containg-fa

in each pair except the last ongze = ssize. If the OST has the
last stripe of the file, therize will be smaller in the last pair. ure records for 24 HPC systems and job submission/completio

The recovery manager then acquires the URIS to remote perma-records for 5 of them. Out of these 5 systems, system 20 is the

nent copies of the file from the “recov” field of the file inods,wae largest one with 512 nodes and 4 CPUs per node. Therefore, we
described above. Then, it establishes a connection to thetee chose to base our simulations on this system. Two tracesgysm




tem 20 are used as input to our simulator. First isribde failure
trace from system 20, which contains 2049 failure records over a
period of 1349 days, each indicating specifications of aifailthe
node number as well as the failure time and duration. Secotitbi
job trace which contains 489376 job submission and completion
records over a period of 1073 days.

Next, we explain how we couple the failure trace with the job
trace. First of all, due to a lack of disk failure data, we feaum 1/0O
node failures. These are failures that could not be autcalbti
recovered using schemes such as RAID. Since the traces tlid no
indicate whether 1/0 nodes were included or which nodes Wére

nodes, we assume all the 512 nodes are compute nodes and appen

additional nodes as I/0O nodes. In most cluster systems, dles
often share the same configuration as compute nodes (e>arept f
secondary storage). Therefore we extrapolate the failatésscs
observed from the failure trace to these additional I/O sodiéore
specifically, system 20’s node failure trace is used to dateuthe
average node failure rate and the average node failurerreypa.
We use those statistics to generate a set of failure evergadh 1/0
node. Based on the job trace, we generate a set of job submissi
events, each of which contains the submission time, theuérec
time and the number of CPUs for a job. For parallel job schadul
our simulator adopts the FIFO algorithm with backfilling,@pplar
choice in many supercomputing centers.

The job trace, however, is devoid of staged data information
(e.qg., file size, stripe size, stripe count) for each job. fAis &nd,
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Figure 2: Cost of finding failed OSTs

reality is configured by system administrators. High-enstems

tend to have multiple OSTs per OSS, medium-sized or smdllsf ¢

ters often choose to use local disks and have only one OST$8r O
From Figure 2, it can be seen that the overhead of step 1 Ig fair
small with a moderate number of OSTs. In most cases, the step 1
cost is under 0.05 seconds. However, this overhead growplgha

as the number of OSTs increases to 256 (16 OSTs on each of the

we have obtained a snapshot of the Lustre scratch space from al6 OSSs) and 512 (16 OSTs on each of the 32 OSSs). This can be

production supercomputer center at ORNL. This staged date t
contains details of every file staged in the scratch parfleebys-
tem. We have calculated the distributions of file sizespstsizes
and stripe counts. We play these two traces together, ralydom
assigning staged data sizes to jobs, and study the averatjegwa
times of jobs in Section 6.4.

6.3 Performance of Transparent Input Data
Reconstruction

As illustrated in Section 5, for each file in question, theorec
struction procedure can be divided into the following steljsThe
failed OSTs are determined by querying the status of each. OST
2) The file stripe metadata is updated after replacing thiedai
OST with a new one. 3) The missing data is patched in from the
source. This involves retrieving the URI information of ttata
source from the MDS, followed by fetching the missing datigpes
from the source and subsequently patching the Lustre fil@ito-c
plete the reconstruction. These steps are executed séjlyeand
atomically as one transaction, with concurrent accesedbetfile
in question, protected by file locking. The costs of the il
steps are independent of one another, the cost of reconstruction
is precisely the sum of the costs of the steps. Below we disthies
overhead of each step in more detail.

In the first step, all the OSTs are checked in parallel. Thé cos
of this check grows with the number of OSTs due to the fact that
more threads are needed to check the OSTs. Also, the mefadata
containing the status of all OSTs will be larger, which irases the
parsing time. This step induces negligible network trafficsbnd-
ing small status checking messages. The timeout to deterifin
an OST has failed is the default value of 25 seconds in ourrexpe
ments. Shorter timeouts might result in false positives.

Figure 2 shows the results of benchmarking the cost of step 1
(detecting OST failures) when there are no such failuresotter
words, this is the cost already observed in the majority ef dit-
cesses, where data unavailability is not an issue. In tlisgof
tests, we varied the number of OSTs per 1/0 node (OSS), which i

attributed to the network congestion caused by the clientroo-
nicating with a large number of OSTs in a short span. Notettiet
current upper limit of OSTs allowed by Lustre is 512, whichurs
an overhead of 0.3 seconds, which is very small considehisgg
a one-time cost for input files only.
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Figure 3: Round-robin striping over 4 OSTs

The second recovery step has constant cost regardless of the
number of OSTs as the only parties involved in this operasign
the MDS and theclient that initiates the file availability check (in
our case, the head node). In our experiments, we also adsbsse
overhead and found it to be in the order of milliseconds. et
this remains constant regardless of the number of OSSs/O3i€s
cost due to multipléMDS (normally two for Lustre) is negligible.

The overhead of the third recovery step is expected to be the
dominant factor in the reconstruction cost when OST fagule
occur. Key factors contributing to this cost are the amodritada
and the layout of missing data in the file. It is well known that
non-contiguous access of data will result in lower perfamogthan
sequential accesses. The effect of data layout on missitagisla
more significant if sequential access devices such as tapesdr
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Figure 4: Patching costs for single OST failure from a stripecount 32. Filesize/32 is stored on each OST and that is the annat of
data patched. Also shown is the cost of staging the entire fikgain, instead of just patching a single OST worth of data.

are used at the remote data source. More specifically, &thait
may affect patching cost include the size of each chunk o$imis
data, the distance between missing chunks, and the offtes éifst
missing chunk. Such a layout is mostly determined by theisi
policy used by the file. To give an example, Figure 3 illugtsathe
different layout of missing chunks when OST 3 fails. The latyo
results from different striping parameters, such asdtpe width
(called “stripe count” in Lustre terminology) and tls¢ripe size
The shaded boxes indicate missing data stripes (chunks).

We conducted multiple sets of experiments to test the dathpa
ing cost using a variety of file striping settings and datayisig.
sources. Figures 4(a)-(c) show the first group of tests, enelata
staging source (Remote NFS, Local NFS, and GridFTP). Hege, w
fixed the stripe count (stripe width) at 32 and increased thesize
from 128MB to 2GB. Three popular stripe sizes were used with
1MB, 2MB, and 4MB chunks as the stripe unit, respectivelyinfo
ject afailure, one of the OSTs is manually disconnected &olit32
of the file data is missing. Thg-axismeasures the total patching
timein log scale For reference, a dotted line in each figure shows
the time it takes to stage-in the whole file from the same datece
(in the absence of our enhancements).

We notice that the patching costs from NFS servers are consid
erably higher with small stripe sizes., 1MB). As illustrated in
Figure 3, a smaller stripe size means the replacement O3 Tewil
trieve and write a larger number of non-contiguous data kbun
which results in higher 1/0 overhead. Interestingly, théchang
costs from the GridFTP server remains nearly constant witére
ent stripe sizes. The GridFTP server uses PVFS, which haerbet
support than NFS for non-contiguous file accesses. Therefioe
time spent obtaining the non-contiguous chunks from thellsrP
server is less sensitive to smaller stripe sizes. Howewath, tecon-
structing from NFS and GridFTP utilize standard POSIX/XiD
system calls to seek in the file at the remote data server. diz ad
tion, there is also seek time to place the chunks on the OSTore m
efficient method would be to directly rebuild a set of stripesthe
native file system of an OST, which avoids the seek overhead th
is combined with redundant read-ahead caching (of datadsstw
missing stripes) when rebuilding a file at the Lustre levdilisTleft
as future work, should result in nearly uniform overheadragp
mating the lowest curve regardless of stripe size.

Overall, we have found that the file patching cost scales well
with increasing file sizes. For the NFS servers, the patchow
using 4MB stripes is about 1/32 of the entire-file staging.cbsr
the GridFTP server, however, the cost appears to be higliHeas
sensitive to the stripe size range we considered. The rdagbat
GridFTP is tuned for bulk data transfers (GB range) usingdfO
large chunks, preferably tens or hundreds of MBs [21]. Atbe,
GridFTP performance does improve more significantly, caegpa
with other data sources, as the file size increases.
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Figure 5: Patching from local NFS. Stripe count increases vih
file size. One OST fails and its data is patched.

Figures 5 and 6 demonstrate the patching costs with differen
stripe counts. In Figure, 5 we increase the stripe counteaséme
rate as the file size to show how the patching cost from thd loca
NFS server varies. The amount of missing data due to an OST
failure is m x file_size. Therefore, we patch the same
amount of data for each point in the figure. It can be seen ket t
patching cost grows as the file size reaches 512MB and remains
constant thereafter. This is caused by the fact that misdingks
in a file are closer to each other with a smaller stripe couher&-
fore, when one chunk is accessed from the NFS server, it i® mor
likely for the following chunks to be read ahead into the serv
cache. With larger file sizes (512MB or more), distances betw
the missing chunks are larger as well. Hence, the servead-re
ahead has no effect. Figure 6 shows the results of fixing tigest
size at 4MB and using different stripe counts. Note that gestr
count of 1 means transferring the entire file. From this figuwe
can see how the cost of reconstructing a certain file decsessthe
file is striped over more OSTSs.

6.4 Job Scheduling Simulation Results

In this section, we describe our results obtained by usirg th

reconstruction numbers as input to trace-driven simutatibjob

wait times. Our simulations compare system performancle aitd
without the reconstruction mechanism for different strquaints.

We use two metrics to evaluate system performance: the mean
value and standard deviation(“SD”) of wait times of jobs.eTSD

of wait times is vital to center users because it represemtexa
pected level of service. With our approach, we expect to awer

the SD of wait times by eliminating the difference in wait &m

of failure-afflicted jobs and other successful jobs. Withmcon-
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Figure 7: Simulation results with the original trace. Zero-wait jobs are omitted.

struction, jobs encountering failure would be re-queuethatend
of the queue. On the other hand, with our reconstructiors jolt
encounter an 1/O node failure would only spend the cost afmec
struction as additional wait time. Moreover, the reconstinn cost
can be hidden by proactive and periodic checking of the stafu
OSTs that host a job’s data.

Ouir first set of simulation tests use the original LANL syst2n
job trace combined with the staged data trace (see Sec@ynl6.
our experiments, we have tested different strategies afrisg a
pair of { file_size, stripe_size} values from the staged data trace
to each job (from the LANL trace). These include using fixell va
ues for all jobs, using larger file sizes and stripe sizes dogér
running jobs, and randomly picking a pair of values for eau |
However, we find no observable difference between the giiege
The reason being, file sizes and stripe sizes only impactteanr
struction cost, which is hidden from the affected job in nuestes
due to our approach of proactive checking of the file’s atmlila
ity. Therefore, we show the results of using randomly assigfile
sizes and stripe sizes. As for stripe counts in the stagexdtdate,
we find that more thaf0% of the files are striped across 4 OSTs,

this, we filtered the trace to remove jobs that have a zerotimagt
under all test configurations. As can be seen from Figure &, th
higher the stripe count, the more OSTs the files are assdaidtk,
which means an OST failure will affect more jobs. This inugt
trend can be observed for the job schedule without recoctstru
With our new reconstruction mechanism, however, the meareva
and SD of wait times of all jobs are not affected by the incedas
the stripe count, indicating a scalable solution for patgiytvery
large Lustre server groups. Further, our reconstructiontrarism

achieves the same mean value and SD of wait times as the ideal

values (without any OST failure) for all stripe count segir(as the
two curves are on top of each other).

The second pair of charts in Figure 7 show the mean value and
SD of wait times for the failure-affected jobs. There are Kirds
of affected jobs. First are the scheduled and running jobsab-
cess datasets located on the failed I/O node. These are tew in
rupted by the failure. Since we do not support online recpyet,
they will be rescheduled. The second set of jobs are yet totieds
uled, but have job input data located on the failed I/O nofl@ol
reconstruction were applied, these jobs would have beered

according to the ORNL scratch space trace we obtained. In our the tail of the job queue, waiting for their next turn to bepditched.

simulations, we chose 4, 8, 16 and 32 for the stripe counegalu
Figure 7 shows the simulation results using the LANL jobeérac

The job traces follow a binomial distribution of job wait tas {.e.,

many short and few very long jobs exist in the queue). To addre

With reconstruction, however, they are scheduled immediaFor
these affected jobs, the gains due to our new recovery mesrhan
are significant. The mean wait times are reduced from huisdoéd
thousands of seconds to tens of seconds.
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Figure 8: Simulation results with varying system work load

The figure indicates that the mean value and SD of wait times fo
the affected jobs increases as the stripe count increases4rto
32. As mentioned earlier, a higher stripe count results inenabs
being afflicted due to an OST failure. Of those, affected nugin
jobs that wait longer contribute to the mean wait time month
the affected jobs that are yet to be scheduled.

Also, Figure 7 indicates that the mean wait time of affectdubj
is much shorter than that of the set of all jobs. However, tieam
wait time of the affected jobs should be longer than that efstt of
all jobs since they not only incur the same wait time as thenabr
jobs but they also need to wait for the recovery. One posséde
son for these results is that the job submission and faibgs Used
for the simulation have some special properties that caffiseted
jobs to have short wait times. One thing to note is that thle fai
ure log used for the 1/0 nodes is correlated to CPU failurdschy
could have an unintended effect on simulation results. \Waitn
ures occur in a supercomputing center, typically all or soroées
are shut down and the job queue may refuse new jobs. Therefore

the job submission behavior may be altered as a consequénce o

center management policies regarding failure handlinga Fesult,
fewer jobs exist in the job log around the failure times releat,
causing short wait times.

In our experiments with system 20’s job trace, we find that the
system CPU utilization rate is onB5%. To test our mechanism
under heavier system work loads, we constructed a seriesrsf ¢
catenated job traces based on the original trace by shogehe
time interval between job submissions. Figures 8(a)-(Ipicle¢he
results of the set of all jobs. These results indicate thetesystem
work load increases, the mean wait time and the standardtit@vi
with our mechanism increases slower than without our meshan
In other words, the benefit of applying our reconstructiorchze
nism will be even more significant with heavier system woikds.
For the affected jobs shown in Figures 8(c)-(d), with heasies-
tem work loads, more running jobs are interrupted by theifas.
Consequently, they need much more time to be rescheduléd, wa
ing in the longer queue. Thus, the mean wait time increases fr

tens of seconds to hundreds of seconds for the affected jahs w
reconstruction. However, for the affected jobs withoutorestruc-
tion, since the base is huge (around 100,000 seconds),drease

is not visible on the curve.

7. CONCLUSION

In this paper, we have identified the need to manage trarjsient
input/output data efficiently and have assessed its dinggact on
supercomputer center performance as we approach petasséle
ronments. We have built techniques to schedule data jobgsilte
their computational counterparts to allow them to be scleztiin
a synergistic fashion. Further, we have proposed a noveltway
reconstruct transient, job input data in the face of stomggem
failure. Our simulation study of job traces and staged dsii@;
ported by data recovery measurements from a real superdgempu
suggests that our technique reduces the average wait tijodof
in a center significantly. In particular, more significanhbéts are
seen for long jobs and as data is stored over a larger numhb&d of
nodes. From a user's standpoint, our techniques help retthece
job turnaround time and enable the efficient use of the puscial-
located compute time. From a center’s standpoint, our fgcies
improve serviceability by reducing the rate of resubmissidue to
storage system failure and data unavailability. Furthaytenable
the optimal use of center resources (e.g., precious scsatute) by
the timely staging and offloading of job input and output data
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