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ABSTRACT
Procurement and the optimized utilization of Petascale supercom-
puters and centers is a renewed national priority. Sustained perfor-
mance and availability of such large centers is a key technical chal-
lenge significantly impacting their usability. Storage systems are
known to be the primary fault source leading to data unavailability
and job resubmissions. This results in reduced center performance,
partially due to the lack of coordination between I/O activities and
job scheduling.

In this work, we proposethe coordination of job scheduling with
data staging/offloadingandon-demand staged data reconstruction
to address the availability of job input data and to improve center-
wide performance. Fundamental to both mechanisms is the ef-
ficient management of transient data: in the way it isscheduled
andrecovered. Collectively, from a center’s standpoint, these tech-
niques optimize resource usage and increase its data/service avail-
ability. From a user’s standpoint, they reduce the job turnaround
time and optimize the allocated time usage.

Keywords: Data Staging, Data Scheduling, Coordinated
scheduling, Transient Data Recovery, HPC Center Performance
Optimization

1. INTRODUCTION
PetaFlop (PF) computers are looming on the horizon for high-

end computing (HEC). Reliability, availability and serviceability
are of rising concern with the ever-increasing scale of supercom-
puter systems. Even with today’s machines, fault toleranceis a
serious problem. Table 1, from a recent study by Department of
Energy (DOE) researchers, reports the reliability of several state-
of-the-art supercomputers and distributed computing systems [15,
18]. With such frequent system down times, expensive resources
are sitting idle while user jobs accumulate in wait queues. Thus,
many petascale solicitations from federal agencies are calling for
stringent availability requirements, e.g.,when averaged over one
month, 90% of jobs submitted to the system should complete with-
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out having to be resubmitted as a result of a failure. 1

System # Cores MTBF/I Outage source
ASCI Q 8,192 6.5 hrs Storage, CPU

ASCI White 8,192 40 hrs Storage, CPU
PSC Lemieux 3,016 6.5 hrs

Google 15,000 20 reboots/day Storage, memory
ORNL’s Cray XT4 23,416 37.5 hrs Storage, memory
“Jaguar” NLCF

Table 1: Reliability statistics from several large-scale systems,
including the top sources of hardware failures (top four lines
are from [15]). To this list, we have appended MTBF numbers
for the National Leadership Computing Facility at ORNL [18] ,
which is No. 2 [23] in the Top500 [33] supercomputers as of
this writing. MTBF/I stands for mean time between failures or
interrupts.

Data and I/O availability are integral to providing a non-stop,
continuous computing experience to applications. Table 1 indi-
cates that the storage subsystem is consistently one of the primary
sources of failure on large supercomputers. The situation is only
likely to worsen in the near future, due to the growing relative size
of the storage system forced by two trends: (1) disk performance
increases slower than that of CPUs and (2) users’ data needs grow
faster than does the available compute power [14]. A survey of
DOE applications suggests that most applications require asus-
tained 1 GB/sec I/O throughput for every TeraFlop of peak com-
puting performance. Thus, a PF computer will require 1 TB/sec of
I/O bandwidth. Current disk performance trends suggest such a PF
system in the 2008/2009 time frame may require tens of thousands
of disk drives attached to roughly a few thousand I/O nodes. An
I/O subsystem of this size makes a large parallel machine itself and
is subject to frequent failures. Trends from commercial andHPC
centers suggest, that on average, 3% to 7% of disks, 3% to 16% of
controllers and up to 12% of SAN switches fail per year. Further, it
is estimated that the above numbers are 10 times the rates expected
from vendor specification sheets [12, 13].

Another side to data unavailability affecting supercomputer ser-
vice availability is the data staging and offloading problem. Users
typically stage their data, submit their jobs to schedulersand of-
fload result-data, after job execution, for post processing. However,
this workflow is mired by numerous issues. First, with users’in-
creasing data needs, input and output data sizes are growingfaster
than the size of center I/O systems. The upshot is that staging and
offloading operations are themselves becoming large data transfer
jobs, prone to failure. Second, these activities have to be conjoined
with the compute job itself, so the data is available when thejob is
ready to be scheduled. Otherwise, individual user job turnaround
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time increases as jobs get requeued due to data unavailability. Fur-
ther, there is already a significant waiting time at these facilities,
especially for large jobs, requesting many nodes. Staging data well
in advance is also not a solution as it wastes precious centerre-
sources in terms of scratch space, which could be used for running
jobs or for storing data of more immediate jobs. In addition,with
the likelihood of storage system failure (mentioned earlier), this
could very well result in job resubmits. Similarly, delayedoffload-
ing from scratch system renders result data vulnerable to mandatory
purging, resulting in resubmissions. Thus, data staging/offloading,
coupled with transient storage system failure, is unnecessarily de-
grading supercomputer center performance.

These design constraints are widely recognized. So much so that
it is explicitly called out and asked to be addressed in High Per-
formance Computing (HPC) solicitations such as the NSF 06-573
mentioned above. Even so, leadership-class supercomputing fa-
cilities are stymied by common pitfalls when it comes to provid-
ing seamless data and service availability or reducing resubmis-
sion rates. What is needed is a concerted effort towards datastag-
ing/offloading, job scheduling and data recovery, which cansignif-
icantly improve center operations.

Thematic to our approach is the recognition that job input and
output data needs to be managed more efficiently: in the way itis
scheduledand recovered. For instance, supercomputer centers do
not schedule data transfer jobs. Instead, such data transfer is per-
formed manually by the user. We propose theautomatic schedul-
ing of data staging/offloading activitiesso they can better coincide
with computing. Our approach involves the explicit definition of
data staging and offloading in a job script, followed by its decom-
position and submission to a zero-charge data transfer queue. Next,
most current fault-tolerance and recovery mechanisms are designed
with “persistent data” in mind, while HPC environments predomi-
nantly deal with large volumes oftransient datathat “pass through”
supercomputers. HPC jobs need tostage intheir input data and
stage outtheir output data. We proposeon-demand data recon-
structionthat transparently verifies the availability of the staged job
input data and fetches unavailable pieces from external data sources
in case of storage failures. Our approach takes advantage ofthe ex-
istence of an external data source/sink and the immutable nature of
job input data. Collectively, from a center standpoint, these tech-
niques globally optimize resource usage and increase its data and
service availability. From a user job standpoint, they reduce job
turnaround time and optimize the usage of allocated time.

We have designed mechanisms for the specification and schedul-
ing of data jobs and have integrated our techniques with HPC cen-
ter resource and job management tools. We have implemented on-
demand recovery schemes into parallel file systems so that applica-
tions can seamlessly utilize available storage elements. Our results,
by means of real-system benchmarking experimentation on sample
systems and trace driven simulations, show that the averagewaiting
time of jobs can be significantly reduced.

2. RELATED WORK
Coscheduling of data and computation has been thrust to the

forefront due to the increasing need to stage large data at remote
computation sites. Stork [16], a scheduler for data placement activ-
ities in a grid environment, is closely related to our approach. Stork,
along with Condor [20] and DAGMan [8], is used to schedule data
and computation together in the face of vagaries in the grid.In
[28], the authors, using simulation analysis, argue that data-aware
scheduling on the grid improves job response time. Similarly, Con-
dor [20] and SRM [31] are coupled in [29] to schedule jobs on
compute nodes, where data is available. However, all of the above

are focused as part of an application workflow rather than a set of
HPC center integrated services.

BatchAware Distributed File System (BAD-FS [2]) constructs
a file system for large, I/O intensive batch jobs on remote clus-
ters. BAD-FS addresses the coordination of storage and compu-
tation by exposing distributed file system decisions to an external,
workload-aware scheduler. The authors argue that this approach
helps data placement, replica creation and reduces data movement
in wide-area networks. While the common goal is the coordination
of jobs and their data, our approach is fundamentally different from
this work. We attempt to inherently improve and optimize thejob
workflow in HPC environments without creating a new file system.

The importance of the timely offloading of result data, from
execution sites to their destinations, is emphasized in IBP[27]
and Kangaroo [32]. Both provide an offloading mechanism based
on intermediary node staging. While IBP and Kangaroo address
the scratch space purging problem by timely offloading of result
data, they do not address the scheduling or coupling of this activ-
ity alongside computation. Moreover, these solutions are not yet
prevalent in HPC settings and users still use simple transfer tools
such as hsi [11], ftp or scp. Our research, on the other hand, ad-
dresses the scheduling of offloading alongside computationand, in
addition, works with existing user tools.

Commercial solutions for cluster and supercomputer schedulers
(such as Moab [24]) are beginning to realize the importance of the
data staging requirement for jobs and its effect on job turnaround
time. Moab provides the ability to set staging requirementson jobs
such that the computation does not commence until staging iscom-
plete. This is similar to our approach. However, for these solutions
to work, it is required that a storage manager be associated with the
resource manager for the scheduler to pass the commands along.
Moreover, it does not support offloading to the end user site.Fur-
ther, unlike our approach, there is also no support for staged data
availability (e.g., retries or recovery).

Next, we will discuss related efforts in data recovery. We
are interested in improving the availability of staged data. Data-
availability schemes have been built with persistent data in mind,
whereas data in HPC is usually transient. Data-intensive jobs in su-
percomputer environments prefer a high-performance scratch par-
allel file system for their aggregate I/O bandwidth. This scratch
storage is precious and maintained using quotas. Replication is a
commonly used technique for persistent data availability [10, 9].
However, in this setting, it consumes precious storage resources
and increases complexity in the need to maintain consistentrepli-
cas.

RAID [26] reconstruction is a commonly used technique to sus-
tain access to data and recover redundancy levels in the presence of
disk failures. Even staged, transient data on supercomputer paral-
lel file systems are likely to be stored on RAID systems. However,
RAID recovery is insufficient for the following reasons. First, even
when hot spare disks are available for RAID reconstruction to kick
in automatically, the latency of such native reconstruction methods
is high (reconstruction time for a 160-GB disk takes on the order of
dozens of minutes.) During this time, the application is subject to
storage performance degradation, at best. The reconstruction time
is proportional to drive size, load and the number of drives in a
RAID group. This time is bound to get worse with storage sys-
tems on petascale machines. Further, RAID recovery is impaired
when there are controller failures or multiple disk failures within
the same group. When hot spares are not available, the reconstruc-
tion requires manual intervention by the system administrator and
will typically take longer. Second, data reconstruction based on
hardware RAID does not help when there are I/O node failures.



Petascale systems will likely employ thousands of I/O nodes. There
are two classes of parallel file systems, namely those whose archi-
tectures are based on I/O nodes/servers managing data on directly
attached storage devices (such as PVFS [5] and LUSTRE [6]) and
those with centralized, shared storage devices that are shared by
all I/O nodes (such as GPFS [30]). For the former category, node
failure implies that a partition of the storage system is unavailable.
Since parallel file systems usually stripe datasets for better I/O per-
formance, failure of one node may affect a large portion of user
jobs. Moreover, unlike specialized nodes/servers such as metadata
servers, token servers, etc., I/O nodes in parallel file systems may
not be routinely protected through failover. I/O node failover does
not help when the underlying RAID recovery is impaired (as men-
tioned above) as the data is seldom replicated. Our on-demand
reconstruction for job input data mitigates these situations by ex-
ploiting the source copies of user job input data.

3. MOTIVATION AND METHODOLOGY
Our target environment is that of shared, large, supercomput-

ing centers. In this setting, vast amounts oftransientjob data rou-
tinely passes through the scratch space, hosted on parallelfile sys-
tems. Supercomputing jobs, mostly parallel time-step numerical
simulations, typically initialize their computation witha significant
amount of staged input data. Their output data is often much larger,
containing intermediate, as well as final simulation results. This
data needs to be offloaded from the scratch space in a timely fash-
ion. Today, users are faced with two options for data staging: man-
ual staging or embedding staging commands in job scripts. Several
layers of user-visible costs may be incurred with these operations.

• Human operational cost: Users have to manually perform
data movement, as well as the coordination between data
movement and job execution.

• Computation time charge: Supercomputer users obtain
compute time to conduct their analyses through rigorous
peer review of their proposals. However, slow—and of-
ten sequential—data staging operations embedded in scripts
might be charged against the user. Worse yet, the charge
is often calculated as a product of the wall clock time of I/O
staging completion times the number of processors allocated.

• Waiting time: From users’ perspective, supercomputer job
queue wait times (typically minutes to days) have a direct
impact on the usability of the system. Unavailability of pre-
staged job input data, due to storage system failure, results in
increased waiting time, job turnaround time or even resub-
missions.

• Storage space:When aggregated, the cost of scratch space
is a significant fraction of HPC center acquisition and op-
erations budgets. The scratch space is shared and usually
managed with a forced purge policy. When data resides in
scratch space for a long time (e.g., more than seven days),
shared storage resources are wasted. Furthermore, the proba-
bility of losing input data before the job even starts increases
over time. Similarly, output data could also be lost if kept
on scratch space for a long time before it is transferred or
archived. In addition, many supercomputer centers are al-
ready charging for storage usage besides just computation.
Thus, an unnecessarily early stage-in or delayed stage-out
could prove more expensive to users even without data loss.

With the manual approach, job data staging is done in an out-of-
band fashion as follows. Users manually move their data to super-
computer scratch space from remote archives or home areas using

their favorite transfer tools. This operation should be completed be-
fore the job script is submitted, as it is always possible forthe job
to be scheduled immediately. In most cases, there exists a sufficient
gap between stage-in operations and the corresponding job’s exe-
cution — especially on busy systems — which increases the prob-
ability of data unavailability, either due to storage system errors or
due to purging. Therefore, this approach incurs high manualoper-
ational and storage space costs. Implicitly, the resubmission due to
data unavailability incurs waiting time cost and the outputdata loss
due to human errors (late stage-out) implies wasted computetime.

With the scripted staging approach, users embed data staging and
offloading commands in their job scripts. This way, data movement
is performed before and after a job’s execution. Intuitively, this ap-
proach significantly reduces the human operational cost andmini-
mizes the storage usage of each job (duration of storage). However,
in current systems, the data movement time (multiplied by the num-
ber of processors used by the job) will be charged against theuser’s
computation allocation. Meanwhile, by serializing data movement
and job execution, this approach wastes other system resources and
increases average job waiting time.

Recognizing the above limitations, we propose a novel job exe-
cution environment, wherein data staging is scheduled separately,
yet in coordination with job dispatching. With this new scheme,
data staging operations areautomaticallyextracted from job scripts
and executed in a separatedata queue. Dependencies are assigned
between input data staging, computation, and offloading jobs from
the same user script to ensure correctness. Periodic data availability
checks and transparent data reconstruction is performed toprotect
the staged data against storage system failures. Compared to ex-
isting approaches, this technique incurs minimum user operational
cost, low storage usage cost, and no computation time cost. It also
reduces the average job waiting time of the entire system andin-
creases overall center throughput and service. Design details of our
proposed mechanisms as it relates to the scheduling system as well
as the file system will be presented in the following sections.

4. COORDINATING DATA AND COM-
PUTE OPERATIONS

Our approach involves the explicit definition of data staging and
offloading in a job script, followed by its decomposition anddepen-
dency setup. This infrastructure allows us to schedule and manage
data jobs, resulting in better coordination with the computation.
Figure 1 presents an overview of our architecture.

Specification of I/O Activities: HPC users are already accli-
matized to using sophisticated data transfer tools for their staging
and offloading operations. Many times, these operations areem-
bedded as part of the job script. However, these operations are not
explicitly scheduled like compute jobs. As a first step towards the
scheduling of data transfers, we have enabled the specification of
these operations using “STAGEIN” and “STAGEOUT” directives.
These data directives can be embedded within the job script much
like resource manager directives (e.g., “#PBS” [25]). Sucha spec-
ification allows a parser to extract the data staging/offloading com-
mands to compose individual “data jobs” that can then be sched-
uled. In our implementation, we have instrumented a standard PBS
job script [25]. Below is a simple example of a job script withdata
directives to stage-in data from the HPSS archival system [7] (using
the hsi interface [11]) and to stage-out data (using scp).

#PBS -N myjob
#PBS -l nodes=128, walltime=12:00
#STAGEIN any parameters here
#STAGEIN -retry 2
#STAGEIN hsi -q -A keytab -k my_keytab_file
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-l user “get /scratch/user/destination_file :
input_file”

mpirun -np 128 ~/programs/myapp
#STAGEOUT any parameters here
#STAGEOUT scp /scratch/user/output/

user@destination_host:/home/user/
Of course, more complex staging and offloading logic can be

constructed as long they are prefixed with the appropriate directive
tags. Staging and offloading can also specify retry attemptswith
the “-retry” option. For a compute job several other parameters
such as expected run time, priority, etc., are specified in the job
script as resource manager directives. Similar parameterscan also
be specified for a data activity so they can be propagated to the
resource manager.

"Zero Charge" Data Transfer Queue: Fundamental to the
scheduling of data staging and offloading activities is the treatment
of these operations as “data jobs”. To achieve this, we propose es-
tablishing a separate queue (“dataxfer”) for data stage-inand stage-
out jobs (Figure 1). Doing so enables scheduler control overthe
staging and offloading activities. It is common practice fora super-
computer center to setup multiple queues to manage the diversity
in user jobs. For instance, a computer center might setup differ-
ent queues to handle all high-priority jobs, high throughput jobs
(long running) or jobs requiring access to specific resources such
as tapes. Multiple queues, in general, help service user jobs better.
In our case, setting up separate queues for data and compute jobs is
a step towards streamlining data operations by having them explic-
itly scheduled and managed. Further, it allows better coordination
of staging and computing activities.

In center operations, data transfers are not currently charged
(the network and I/O bandwidth are not chargeable resourcesyet),
which is also the reason why manual staging operations incurno
cost. Storage allocations, on the other hand, are beginningto be
charged. However, if this is so, it is a cost that users need topay in
any case. Now, the center can setup a “zero charge” data queue, to
which staging and offloading jobs can be queued. The data queue
should be scheduled based on the same scheduling policy usedto
manage the compute queue. For instance, if the compute queue
uses priority-based scheduling, it makes sense for the dataof the
high priority job to arrive before the data for other jobs. Our ap-

proach enables this since we propagate parameters about data jobs
from the job script to the resource manager. Finally, queuing up
and scheduling data jobs separately also has the added benefit that
these activities could be charged, if need be, in the future.

To ensure that the dataxfer queue is not used by users for other
computational jobs, we can limit access to the queue based on
ACLs, which are supported by modern resource managers [24].For
instance, queue attributes such as host-based ACLs can be used to
control the machines that can submit jobs to the dataxfer queue.
Based on this, the scheduler on the head node can setup an ssh
connection to a data job submission node (or I/O node) to submit
stag-in and stage-out jobs to the dataxfer queue.

Planning and Orchestration: We now have a way to specify
and distinguish I/O activities such as staging and offloading along-
side job scripts. Further, we have a dedicated data queue accepting
transfer jobs. The next step is to devise a “plan” for execution.
To this end, we have built a planner that accepts a PBS job script
(shown above) and decomposes it into computing, staging andof-
floading jobs and their associated dependencies (see Figure1). Let
us say the compute, stage-in and stage-out jobs are stagin.pbs, com-
pute.pbs and stageout.pbs, respectively. The stagin.pbs looks as
follows:

#PBS any parameters here
retry looping construct here...
hsi -q -A keytab -k my_keytab_file -l user “get

/scratch/user/destination_file : input_file”
The stagout.pbs looks as follows:
#PBS any parameters here
scp /scratch/user/output/

user@destination_host:/home/user/
The compute.pbs looks as follows:
#PBS -N myjob
#PBS -l nodes=128, walltime=12:00
mpirun -np 128 ~/programs/myapp
The planner then sets up dependencies between these jobs and

submits them to their respective queues using standard resource
manager primitives. For example, an execution plan for the above
three jobs might comprise the following steps.

staginJobid=‘qsub -q dataxfer stagein.pbs‘
computeJobid=‘qsub -W depend=afterok:$staginJobid

-q batch compute.pbs‘



qsub -W depend=afterok:$computeJobid -q dataxfer

stageout.pbs
Here, we have used standard PBS primitives to set up depen-

dencies and have used “qsub” to submit the jobs to the respective
queues (batch and dataxfer). By explicitly specifying I/O activities
and scheduling them along side compute jobs, we have ensuredthat
the data will have arrived when the job is ready to be scheduled.
Likewise, upon job completion, the offload data job is scheduled to
transfer the data to its destination, thereby avoiding getting purged,
waiting for manual intervention. Note, however, that our approach
only ensures the timely initiation of the staging activity and cannot
guarantee its completion due to other end-to-end issues (network
vagaries and other storage issues). However, we do support retries
of staging and offloading. If the staging activity failed, the com-
pute job will not be scheduled. This way, the user, at least, does not
waste his compute time waiting for data to become available.

The scheduling of both data and compute operations poses the
question: When should a job in the data queue be executed to en-
able “just-in-time” staging? This can be addressed by having esti-
mates of queue wait times (using tools like NWS [35]) at the time
of job submission and data transfer times, both of which are used
as a measure to decide when to initiate staging. To start with, data
transfer estimates can be specified by the user in much the same
way estimated job run times are specified. Estimates of data trans-
fer times can also be obtained between any two sites using transfer
predictions (our earlier work [34]). This way, we can more closely
tie the staging with the compute job. This also reduces the early
stagein of the dataset and its associated pitfalls. However, this is be-
yond the scope of this paper and will be addressed in future work.
Finally, to address the potential unavailability of prestaged data,
due to storage system failure, before the job is scheduled, we have
developed recovery stubs that perform data reconstructionif nec-
essary (discussed in the next section). Since these recovery stubs
are a means to cope with center failure, they will incur no cost to
users’ allocated time. Thus, the coordinated scheduling helps im-
prove center performance by mitigating the detrimental effects of
failure.

5. DATA RECOVERY AT NO COST TO AL-
LOCATED TIME

As mentioned earlier, recovery operations are necessary tore-
construct pre-staged data in the event of storage system failure be-
fore the job is scheduled. These operations are performed asperi-
odic checks to ensure data availability for any given job. Further,
recovery is performed as part of system management even before
the job is scheduled. Therefore, its cost is not charged against the
users’ compute time allocation. In the absence of reconstruction,
user jobs are left to the mercy of traditional system recovery or put
back in the queue for rescheduling.

To start with, this mode of recovery is made feasible due to the
transient nature of job data and the fact that they have immutable,
persistent copies elsewhere. Next, many high-performancedata
transfer tools and protocols (such as hsi [11] and GridFTP [3]) sup-
port partial data retrieval, with which disjoint segments of missing
file data—specified by pairs of start offset and extent—can bere-
trieved. Finally, the costs of network transfer is decreasing much
faster than that of disk-to-disk copy. Collectively, thesereasons
enable and favor on-demand recovery.

A staged job input data on the scratch parallel file system may
have originated from the “/home” area or an HPSS archive [7]
in the supercomputer center itself or from an end-user site.To
achieve proactive data reconstruction, however, we need rich meta-

data about data source and transfer protocols used for staging. In
addition, we need sophisticated recovery mechanisms builtinto
parallel file systems. In the rest of this section, we will describe au-
tomatic recovery metadata extraction and the instrumentation of a
parallel file system as an instance of how to achieve this on-demand
data recovery.

5.1 Metadata: Recovery Hints
To enable on-demand data recovery, we first propose to ex-

tend the parallel file system’s metadata withrecovery informa-
tion, which can be intelligently used to improve fault tolerance
and data/resource availability. Staged input data has persistent ori-
gins. Source data locations, as well as information regarding the
corresponding data movement protocols, can be recorded as op-
tional recovery metadata (using the extended attributes feature) on
file systems. For instance, the location can be specified as a uni-
form resource index (URI) of the dataset, comprised of the pro-
tocol, URL, port and path (e.g., “http://source1/StagedInput” or
“gsiftp://mirror/StagedInput”). In addition to URIs, user creden-
tials, such as GSI (Grid Security Infrastructure) certificates, needed
to access the particular dataset from remote mirrors can also be in-
cluded as metadata so that data recovery can be initiated on behalf
of the user. Simple file system interface extensions (such asthose
using extended attributes) would allow the capture of this metadata.
We have built mechanisms for the recovery metadata to be auto-
matically stripped from a job submission script’s staging/offloading
commands, facilitating transparent data recovery. One advantage of
embedding such recovery-related information in file systemmeta-
data is that the description of a user job’s data “source” and“sink”
becomes an integral part of the transient dataset on the supercom-
puter while it executes. This allows the file system to recover el-
egantly without manual intervention from the end users or signifi-
cant code modification.

5.2 Data Reconstruction Architecture
In this section, we present a prototype recovery manager. The

prototype is based on the Lustre parallel file system [6], which is
being adopted by several leadership-class supercomputers. A Lus-
tre file system comprises of the following three key components:
Client, MDS (MetaData Server) andOSS(Object Storage Server).
Each OSS can be configured to host severalOSTs (Object Storage
Target) that manage the storage devices (e.g., RAID storagearrays).

The reconstruction process is as follows. 1) Recovery hintsabout
the staged data are extracted from the job script. Relevant recov-
ery information for a dataset is required to be saved as recovery
metadata in the Lustre file system. 2) The availability of staged
data is periodically checked (i.e., check for OST failure).This is
performed after staging and before job scheduling. 3) Data is re-
constructed after OST failures. This involves finding spareOSTs
to replace the failed ones, orchestrating the parallel reconstruction,
fetching the lost data stripes from the data source, using recovery
hints and ensuring the metadata map is up-to-date for futureac-
cesses to the dataset.

Extended Metadata for Recovery Hints: As with most par-
allel file systems, Lustre maintains file metadata on the MDS as
inodes. To store recovery metadata for a file, we have added a
field in the file inode named “recov”, the value of which is a setof
URIs indicating permanent copies of the file. The URI is a charac-
ter string, specified by users during data staging. Maintaining this
field requires little additional storage (less than 64 bytes) and min-
imal communication costs for each file. We have also developed
two additional Lustre commands, namelylfs setrecovandlfs getre-
covto set and retrieve the value of the “recov” field respectively, by



making use of existing Lustre system calls.
I/O Node Failure Detection: To detect the failure of an OST,

we use the corresponding Lustre feature with some extensions. In-
stead of checking the OSTs sequentially, we issue commands to
check each OST in parallel. If no OST has failed, the probe returns
quickly. Otherwise, we wait for a Lustre-prescribed timeout of 25
seconds. This way, we identify all failed OSTs at once. This check
is performed from the head node, where the scheduler also runs.

File Reconstruction: The first step towards reconstruction
is to update the stripe information of the target file, which is
maintained as part of the metadata. Each Lustre filef is striped
in a round-robin fashion over a set ofmf OSTs, with indices
Tf = {t0, t1, . . . , tmf

}. Let us suppose OSTfi is found to
have failed. We need to find another OST as a substitute from
the stripe list,Tf . To sustain the performance of a striped file ac-
cess, it is important to have a distinct set of OSTs for each file.
Therefore, in our reconstruction, an OST that is not originally in
Tf will take OSTfi’s position, whenever at least one such OST
is available. More specifically, a listL of indices of all avail-
able OSTs is compared withTf and an indexti′ is picked from
the setL − Tf . We are able to achieve this, since Lustre has a
global index for each OST. The new stripe list for the datasetis
T ′

f = {t0, t1, . . . , ti−1, ti′ , ti+1, . . . , tmf
}. When a client opens

a Lustre file for the first time, it will obtain the stripe list from the
MDS and create a local copy of the list, which it will use for subse-
quent read/write calls. In our reconstruction scheme, the client that
locates the failed OST updates its local copy of the stripe and sends
a message to the MDS to trigger an update of the master copy. The
MDS associates a dirty bit with the file, indicating the availability
of updated data to other clients. A more efficient method would be
to let the MDS multicast a message to all clients that have opened
the file, instructing them to update their local copies of thestripe
list. This is left as future work.

When the new stripe listT ′
f is generated and distributed, stor-

age space needs to be allocated on OSTti′ for the data previously
stored on OSTti. As an object-based file system [22], Lustre uses
objects as storage containers on OSTs. When a file is created,the
MDS selects a set of OSTs that the file will be striped on and cre-
ates an object on each one of them to store a part of the file. Each
OST sends back the id of the object that it creates and the MDS
collects the object ids as part of the stripe metadata. The recovery
manager works in the same way, except that the MDS only creates
an object in OSTti′ . The id of the object on the failed OSTti is
replaced with the id of the object created on OSTti′ . The length of
an object is variable [22] and, therefore, the amount of datato be
patched is not required to be specified at the time of object creation.

In order to patch data from a persistent copy and reconstructthe
file, the recovery manager needs to know which specific byte ranges
are missing. It obtains this information by generating an array of
{offset, size} pairs according to the total number of OSTs used
by this file,mf , the position of the failed OST in the stripe list,i,
and the stripe size,ssize. Stripe size refers to the number of data
blocks. Each{offset, size} pair specifies a chunk of data that is
missing from the file. Given the round-robin striping pattern used
by Lustre, it can be calculated that for a file with sizefsize, each
of the firstk = fsize mod ssize OSTs will have⌈ fsize

ssize
⌉ stripes

and each of the other OSTs will have⌊ fsize

ssize
⌋ stripes. For each

OST, it can be seen that in thejth pair, offset = j × ssize, and
in each pair except the last one,size = ssize. If the OST has the
last stripe of the file, thensize will be smaller in the last pair.

The recovery manager then acquires the URIs to remote perma-
nent copies of the file from the “recov” field of the file inode, as we
described above. Then, it establishes a connection to the remote

data source, using the protocol specified in the URI, to patcheach
chunk of data in the array of{offset, size} pairs. These are then
written to the object on OSTti′ . We have built mechanisms so that
the file reconstruction process can be conducted from the head node
or from the individual OSS nodes (to exploit parallelism), depend-
ing on transfer tool and Lustre client availability.

Patching Session: At the beginning of each patching opera-
tion, a session is established between the patching nodes (the head
node or the individual OSS nodes) and the data source. Many data
sources assume downloads occur in an interactive session that in-
cludes authentication, such as GridFTP [3] servers using UberFTP
client [1] and HPSS [7] using hsi [11]. In our implementation,
we use Expect [19], a tool specifically geared towards automating
interactive applications, to establish and manage these interactive
sessions. We used Expect so that authentications and subsequent
partial retrieval requests to the data source can be performed over
a single stateful session. This implementation mitigates the effects
of authentication and connection establishment by amortizing these
large, one-time costs over multiple partial file retrieval requests.

6. PERFORMANCE

6.1 Experimental Setup
Our performance evaluation involves the following two steps.

First, we assess the effect of storage node failures and its subse-
quent data reconstruction overhead on a real cluster using several
local or remote data repositories as sources of data staging. Next,
we use these benchmarking results in a simulation study thatuses
job traces, including job failure information, collected by large su-
percomputer centers to study the impact of our approach on the
overall center performance in terms of average job wait timeand
wait time variances.

Our testbed for evaluating the proposed data reconstruction ap-
proach is a 40-node cluster at Oak Ridge National Laboratory
(ORNL). Each machine is equipped with a single 2.0GHz Intel
Pentium 4 CPU, 768 MB of main memory, with a 10/100 Mb Ether-
net interconnection. The operating system is Fedora Core 4 Linux
with a Lustre-patched kernel (version 2.6.12.6) and the Lustre ver-
sion is 1.4.7.

Since our experiments focus on testing the server-side of Lustre,
we have setup the majority of the the cluster nodes as I/O servers.
More specifically, we assign 32 nodes to be OSSs, one node to be
the MDS and one node to be the client. The client also doubles as
the head node. In practice, such a group of Lustre servers will be
able to support a fairly large cluster of 512-2048 compute nodes
(with 16:1-64:1 ratios seen in contemporary supercomputers).

We used three different data sources to patch pieces of a staged
input file: (1) An NFS server at ORNL that resides outside the
subnet of our testbed cluster (“Local NFS”) (2) an NFS server
at North Carolina State University (“Remote NFS”) and (3) a
GridFTP [4] server (“GridFTP”) with a PVFS [5] backend on the
TeraGrid Linux cluster at ORNL, outside the Lab’s firewall, ac-
cessed through the UberFTP client interface [1].

6.2 Trace and Simulation Overview
To evaluate the effect of our recovery mechanism on the over-

all performance of a supercomputing center, we perform trace-
driven simulations based on the operational data released from
Los Alamos National Laboratory [17]. This trace contains fail-
ure records for 24 HPC systems and job submission/completion
records for 5 of them. Out of these 5 systems, system 20 is the
largest one with 512 nodes and 4 CPUs per node. Therefore, we
chose to base our simulations on this system. Two traces fromsys-



tem 20 are used as input to our simulator. First is thenode failure
trace from system 20, which contains 2049 failure records over a
period of 1349 days, each indicating specifications of a failure: the
node number as well as the failure time and duration. Second is the
job trace, which contains 489376 job submission and completion
records over a period of 1073 days.

Next, we explain how we couple the failure trace with the job
trace. First of all, due to a lack of disk failure data, we focus on I/O
node failures. These are failures that could not be automatically
recovered using schemes such as RAID. Since the traces did not
indicate whether I/O nodes were included or which nodes wereI/O
nodes, we assume all the 512 nodes are compute nodes and append
additional nodes as I/O nodes. In most cluster systems, I/O nodes
often share the same configuration as compute nodes (except for
secondary storage). Therefore we extrapolate the failure statistics
observed from the failure trace to these additional I/O nodes. More
specifically, system 20’s node failure trace is used to calculate the
average node failure rate and the average node failure repair time.
We use those statistics to generate a set of failure events for each I/O
node. Based on the job trace, we generate a set of job submission
events, each of which contains the submission time, the execution
time and the number of CPUs for a job. For parallel job scheduling,
our simulator adopts the FIFO algorithm with backfilling, a popular
choice in many supercomputing centers.

The job trace, however, is devoid of staged data information
(e.g., file size, stripe size, stripe count) for each job. To this end,
we have obtained a snapshot of the Lustre scratch space from a
production supercomputer center at ORNL. This staged data trace
contains details of every file staged in the scratch parallelfile sys-
tem. We have calculated the distributions of file sizes, stripe sizes
and stripe counts. We play these two traces together, randomly
assigning staged data sizes to jobs, and study the average waiting
times of jobs in Section 6.4.

6.3 Performance of Transparent Input Data
Reconstruction

As illustrated in Section 5, for each file in question, the recon-
struction procedure can be divided into the following steps. 1) The
failed OSTs are determined by querying the status of each OST.
2) The file stripe metadata is updated after replacing the failed
OST with a new one. 3) The missing data is patched in from the
source. This involves retrieving the URI information of thedata
source from the MDS, followed by fetching the missing data stripes
from the source and subsequently patching the Lustre file to com-
plete the reconstruction. These steps are executed sequentially and
atomically as one transaction, with concurrent accesses, to the file
in question, protected by file locking. The costs of the individual
steps are independent of one another,i.e., the cost of reconstruction
is precisely the sum of the costs of the steps. Below we discuss the
overhead of each step in more detail.

In the first step, all the OSTs are checked in parallel. The cost
of this check grows with the number of OSTs due to the fact that
more threads are needed to check the OSTs. Also, the metadatafile
containing the status of all OSTs will be larger, which increases the
parsing time. This step induces negligible network traffic by send-
ing small status checking messages. The timeout to determine if
an OST has failed is the default value of 25 seconds in our experi-
ments. Shorter timeouts might result in false positives.

Figure 2 shows the results of benchmarking the cost of step 1
(detecting OST failures) when there are no such failures. Inother
words, this is the cost already observed in the majority of file ac-
cesses, where data unavailability is not an issue. In this group of
tests, we varied the number of OSTs per I/O node (OSS), which in
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Figure 2: Cost of finding failed OSTs

reality is configured by system administrators. High-end systems
tend to have multiple OSTs per OSS, medium-sized or smaller clus-
ters often choose to use local disks and have only one OST per OSS.
From Figure 2, it can be seen that the overhead of step 1 is fairly
small with a moderate number of OSTs. In most cases, the step 1
cost is under 0.05 seconds. However, this overhead grows sharply
as the number of OSTs increases to 256 (16 OSTs on each of the
16 OSSs) and 512 (16 OSTs on each of the 32 OSSs). This can be
attributed to the network congestion caused by the client commu-
nicating with a large number of OSTs in a short span. Note thatthe
current upper limit of OSTs allowed by Lustre is 512, which incurs
an overhead of 0.3 seconds, which is very small considering this is
a one-time cost for input files only.

1 2 4 4421 221 14 33 33

1 432 1 432

File size = 16MB, Stripe count = 4, Stripe size = 1MB

1 2 43

File size = 16MB, Stripe count = 4, Stripe size = 2MB

File size = 16MB, Stripe count = 4, Stripe size = 4MB

Figure 3: Round-robin striping over 4 OSTs

The second recovery step has constant cost regardless of the
number of OSTs as the only parties involved in this operationare
the MDS and theclient that initiates the file availability check (in
our case, the head node). In our experiments, we also assessed this
overhead and found it to be in the order of milliseconds. Further,
this remains constant regardless of the number of OSSs/OSTs. The
cost due to multipleMDS(normally two for Lustre) is negligible.

The overhead of the third recovery step is expected to be the
dominant factor in the reconstruction cost when OST failures do
occur. Key factors contributing to this cost are the amount of data
and the layout of missing data in the file. It is well known that
non-contiguous access of data will result in lower performance than
sequential accesses. The effect of data layout on missing data is
more significant if sequential access devices such as tape drives
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Figure 4: Patching costs for single OST failure from a stripecount 32. Filesize/32 is stored on each OST and that is the amount of
data patched. Also shown is the cost of staging the entire fileagain, instead of just patching a single OST worth of data.

are used at the remote data source. More specifically, factors that
may affect patching cost include the size of each chunk of missing
data, the distance between missing chunks, and the offset ofthe first
missing chunk. Such a layout is mostly determined by the striping
policy used by the file. To give an example, Figure 3 illustrates the
different layout of missing chunks when OST 3 fails. The layout
results from different striping parameters, such as thestripe width
(called “stripe count” in Lustre terminology) and thestripe size.
The shaded boxes indicate missing data stripes (chunks).

We conducted multiple sets of experiments to test the data patch-
ing cost using a variety of file striping settings and data staging
sources. Figures 4(a)-(c) show the first group of tests, one per data
staging source (Remote NFS, Local NFS, and GridFTP). Here, we
fixed the stripe count (stripe width) at 32 and increased the file size
from 128MB to 2GB. Three popular stripe sizes were used with
1MB, 2MB, and 4MB chunks as the stripe unit, respectively. Toin-
ject a failure, one of the OSTs is manually disconnected so that 1/32
of the file data is missing. They-axismeasures the total patching
time in log scale. For reference, a dotted line in each figure shows
the time it takes to stage-in the whole file from the same data source
(in the absence of our enhancements).

We notice that the patching costs from NFS servers are consid-
erably higher with small stripe sizes (e.g., 1MB). As illustrated in
Figure 3, a smaller stripe size means the replacement OST will re-
trieve and write a larger number of non-contiguous data chunks,
which results in higher I/O overhead. Interestingly, the patching
costs from the GridFTP server remains nearly constant with differ-
ent stripe sizes. The GridFTP server uses PVFS, which has better
support than NFS for non-contiguous file accesses. Therefore, the
time spent obtaining the non-contiguous chunks from the GridFTP
server is less sensitive to smaller stripe sizes. However, both recon-
structing from NFS and GridFTP utilize standard POSIX/Linux I/O
system calls to seek in the file at the remote data server. In addi-
tion, there is also seek time to place the chunks on the OST. A more
efficient method would be to directly rebuild a set of stripeson the
native file system of an OST, which avoids the seek overhead that
is combined with redundant read-ahead caching (of data between
missing stripes) when rebuilding a file at the Lustre level. This, left
as future work, should result in nearly uniform overhead approxi-
mating the lowest curve regardless of stripe size.

Overall, we have found that the file patching cost scales well
with increasing file sizes. For the NFS servers, the patchingcost
using 4MB stripes is about 1/32 of the entire-file staging cost. For
the GridFTP server, however, the cost appears to be higher and less
sensitive to the stripe size range we considered. The reasonis that
GridFTP is tuned for bulk data transfers (GB range) using I/Oon
large chunks, preferably tens or hundreds of MBs [21]. Also,the
GridFTP performance does improve more significantly, compared
with other data sources, as the file size increases.
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Figures 5 and 6 demonstrate the patching costs with different
stripe counts. In Figure, 5 we increase the stripe count at the same
rate as the file size to show how the patching cost from the local
NFS server varies. The amount of missing data due to an OST
failure is 1

stripe_count
× file_size. Therefore, we patch the same

amount of data for each point in the figure. It can be seen that the
patching cost grows as the file size reaches 512MB and remains
constant thereafter. This is caused by the fact that missingchunks
in a file are closer to each other with a smaller stripe count. There-
fore, when one chunk is accessed from the NFS server, it is more
likely for the following chunks to be read ahead into the server
cache. With larger file sizes (512MB or more), distances between
the missing chunks are larger as well. Hence, the server’s read-
ahead has no effect. Figure 6 shows the results of fixing the stripe
size at 4MB and using different stripe counts. Note that a stripe
count of 1 means transferring the entire file. From this figure, we
can see how the cost of reconstructing a certain file decreases as the
file is striped over more OSTs.

6.4 Job Scheduling Simulation Results
In this section, we describe our results obtained by using the

reconstruction numbers as input to trace-driven simulation of job
wait times. Our simulations compare system performance with and
without the reconstruction mechanism for different stripecounts.
We use two metrics to evaluate system performance: the mean
value and standard deviation(“SD”) of wait times of jobs. The SD
of wait times is vital to center users because it represents an ex-
pected level of service. With our approach, we expect to improve
the SD of wait times by eliminating the difference in wait times
of failure-afflicted jobs and other successful jobs. Without recon-
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Figure 6: Patching costs with stripe size 4MB
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Figure 7: Simulation results with the original trace. Zero-wait jobs are omitted.

struction, jobs encountering failure would be re-queued atthe end
of the queue. On the other hand, with our reconstruction, jobs that
encounter an I/O node failure would only spend the cost of recon-
struction as additional wait time. Moreover, the reconstruction cost
can be hidden by proactive and periodic checking of the status of
OSTs that host a job’s data.

Our first set of simulation tests use the original LANL system20
job trace combined with the staged data trace (see Section 6.2). In
our experiments, we have tested different strategies of assigning a
pair of{file_size, stripe_size} values from the staged data trace
to each job (from the LANL trace). These include using fixed val-
ues for all jobs, using larger file sizes and stripe sizes for longer
running jobs, and randomly picking a pair of values for each job.
However, we find no observable difference between the strategies.
The reason being, file sizes and stripe sizes only impact the recon-
struction cost, which is hidden from the affected job in mostcases
due to our approach of proactive checking of the file’s availabil-
ity. Therefore, we show the results of using randomly assigned file
sizes and stripe sizes. As for stripe counts in the staged data trace,
we find that more than90% of the files are striped across 4 OSTs,
according to the ORNL scratch space trace we obtained. In our
simulations, we chose 4, 8, 16 and 32 for the stripe count values.

Figure 7 shows the simulation results using the LANL job trace.
The job traces follow a binomial distribution of job wait times (i.e.,
many short and few very long jobs exist in the queue). To address

this, we filtered the trace to remove jobs that have a zero waittime
under all test configurations. As can be seen from Figure 7, the
higher the stripe count, the more OSTs the files are associated with,
which means an OST failure will affect more jobs. This intuitive
trend can be observed for the job schedule without reconstruction.
With our new reconstruction mechanism, however, the mean value
and SD of wait times of all jobs are not affected by the increase in
the stripe count, indicating a scalable solution for potentially very
large Lustre server groups. Further, our reconstruction mechanism
achieves the same mean value and SD of wait times as the ideal
values (without any OST failure) for all stripe count settings (as the
two curves are on top of each other).

The second pair of charts in Figure 7 show the mean value and
SD of wait times for the failure-affected jobs. There are twokinds
of affected jobs. First are the scheduled and running jobs that ac-
cess datasets located on the failed I/O node. These are now inter-
rupted by the failure. Since we do not support online recovery yet,
they will be rescheduled. The second set of jobs are yet to be sched-
uled, but have job input data located on the failed I/O node. If no
reconstruction were applied, these jobs would have been moved to
the tail of the job queue, waiting for their next turn to be dispatched.
With reconstruction, however, they are scheduled immediately. For
these affected jobs, the gains due to our new recovery mechanism
are significant. The mean wait times are reduced from hundreds of
thousands of seconds to tens of seconds.
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Figure 8: Simulation results with varying system work load

The figure indicates that the mean value and SD of wait times for
the affected jobs increases as the stripe count increases from 4 to
32. As mentioned earlier, a higher stripe count results in more jobs
being afflicted due to an OST failure. Of those, affected running
jobs that wait longer contribute to the mean wait time more than
the affected jobs that are yet to be scheduled.

Also, Figure 7 indicates that the mean wait time of affected jobs
is much shorter than that of the set of all jobs. However, the mean
wait time of the affected jobs should be longer than that of the set of
all jobs since they not only incur the same wait time as the normal
jobs but they also need to wait for the recovery. One possiblerea-
son for these results is that the job submission and failure logs used
for the simulation have some special properties that cause affected
jobs to have short wait times. One thing to note is that the fail-
ure log used for the I/O nodes is correlated to CPU failures, which
could have an unintended effect on simulation results. Whenfail-
ures occur in a supercomputing center, typically all or somenodes
are shut down and the job queue may refuse new jobs. Therefore,
the job submission behavior may be altered as a consequence of
center management policies regarding failure handling. Asa result,
fewer jobs exist in the job log around the failure times recorded,
causing short wait times.

In our experiments with system 20’s job trace, we find that the
system CPU utilization rate is only35%. To test our mechanism
under heavier system work loads, we constructed a series of con-
catenated job traces based on the original trace by shortening the
time interval between job submissions. Figures 8(a)-(b) depict the
results of the set of all jobs. These results indicate that asthe system
work load increases, the mean wait time and the standard deviation
with our mechanism increases slower than without our mechanism.
In other words, the benefit of applying our reconstruction mecha-
nism will be even more significant with heavier system work loads.
For the affected jobs shown in Figures 8(c)-(d), with heavier sys-
tem work loads, more running jobs are interrupted by the failures.
Consequently, they need much more time to be rescheduled, wait-
ing in the longer queue. Thus, the mean wait time increases from

tens of seconds to hundreds of seconds for the affected jobs with
reconstruction. However, for the affected jobs without reconstruc-
tion, since the base is huge (around 100,000 seconds), the increase
is not visible on the curve.

7. CONCLUSION
In this paper, we have identified the need to manage transientjob

input/output data efficiently and have assessed its direct impact on
supercomputer center performance as we approach petascaleenvi-
ronments. We have built techniques to schedule data jobs alongside
their computational counterparts to allow them to be scheduled in
a synergistic fashion. Further, we have proposed a novel wayto
reconstruct transient, job input data in the face of storagesystem
failure. Our simulation study of job traces and staged data,sup-
ported by data recovery measurements from a real supercomputer,
suggests that our technique reduces the average wait time ofjobs
in a center significantly. In particular, more significant benefits are
seen for long jobs and as data is stored over a larger number ofI/O
nodes. From a user’s standpoint, our techniques help reducethe
job turnaround time and enable the efficient use of the precious, al-
located compute time. From a center’s standpoint, our techniques
improve serviceability by reducing the rate of resubmissions due to
storage system failure and data unavailability. Further, they enable
the optimal use of center resources (e.g., precious scratchspace) by
the timely staging and offloading of job input and output data.
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