QFw: A Quantum Framework for Large-Scale HPC Ecosystems

Srikar Chundury'?, Amir Shehata!, Thomas Naughton?, Seongmin Kim?, Frank Mueller?, and In-Saeng Suh'
1 National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830

%OAK RIDGE

National Laboratory

NC STATE
UNIVERSITY

2 Department of Computer Science, North Carolina State University, Raleigh, NC 27606

create circuit

Submit SLURM job
with two
heterogeneous
groups

get result

@ i

(sync/async)

(Qiskit)
Hamiltonian
Simulation

gfw

(Pennylane)

QNLP read queue

delete circuit

Fig (1) Overview

Qiskit-AER QPM

TN-QVM QPM

NWQ-Sim QPM

Simulator QPMs

API ‘ QPM

@ Post process
——— result

: SLURM Job End
I

<dvm-uri> I .
' IE Free classical
' B YES " auant
Classical HPC Cluster (Frontier-Borg) : of app dand quantum

i logic? resources
| (&)

NO

* Quantum Computing (QC) = Efficient for specific problems than classical
computing
* Using QCin an HPC environment can be useful for such problems

= A Hybrid HPC/QC Computing model
* Resource management for such a hybrid model is important!

-

. . Background)

PMIx Reference Runtime Environment (PRRTE) =2

 Open-source, scalable, and flexible runtime environment designed for HPC
and parallel computing

 PMiIx interfaces with SLURM, PBS and others - Interoperable

* Detects and recovers from process and node failures, ensuring continuous
and reliable application execution = Fault-Tolerant

e Supports rapid job launching, dynamic spawning, and process
management

* Facilitates efficient execution of parallel applications

PRTE Distributed Virtual Machine (PRTE-DVM) -

e A specific deployment mode of PRRTE that provides a lightweight DVM for
running parallel applications

 The DVM, identified by a unique <dvm-uri>, is responsible for all MPI tasks

R4 DEFw Node

all-to-all

Fig (2) DEFw

Distributed Execution Framework[7] (DEFw)—>
* A framework to manage the DVM and the QFw components
 DEFw manages all the nodes in the heterogeneous group

 Enables inter-service communication via Remote Procedure Calls (RPCs)
abstracting it away from each service

)

Resource Manager

 Keeps track of services running in the DEFw environment

* Respawns services if needed

QPM-API (Quantum Platform Manager)

* Service managing quantum resources

 “Declares” QPM APl methods —> see Fig (1)

* Supports both synchronous and asynchronous operations

QPM-API-Implementation

e A QPM service (e.g., an HPC Simulator— TN-QVM[1], NWQ-Sim[2]) or actual
quantum hardware (our future task using QFw’s plugin architecture)

[_

* Provides functions to connect to QFw and retrieve a resource manager
instance, which then gets an QPM API
* QFWSimulator 2 Implements Qiskit[3] BackendV2 interface

AerSimulator (method="auto")
QFWSimulator (simulator="nwgsim")

1 # backend instance =
2 backend instance =

* Pennylane[5] = Leverages the ‘pennylane-qiskit™ plugin

import pennylane as gml

from gfw.giskit integration import QFWSimulator

dev = gml.device('giskit.aer', wires=2)

qfw _backend = QFWSimulator (simulator="nwqgsim”)

dev = gml.device('giskit.remote', wires=2, backend=qfw backend)

o w N+

1. QFw decouples frontends (E.g. Qiskit, Pennylane etc) from backends (E.g, TN-QVM,
NWQ-Sim, Qiskit-AER, etc) —> see Figure (3) & Figure (6)

2. QFw enables application scaling to multiple nodes without needing additional code
changes —> see Fig (3)

Qubits = 28

Qubits = 26

BN nwgsim - 2 proc/node
1 nwgsim - 4 proc/node
I nwgsim - 8 proc/node

150000
100000

50000

4 8 0 2 4 8 16
Number of Nodes Number of Nodes

Qubits = 30 Qubits = 32
5500000 500000
E
o 2400000 400000
-
‘E 300000 300000
&
%200000 200000
©
0100000 100000
X [XTxTx] [xXIx [X

2 4 8 16 2 4 8 16

Number of Nodes

Fig (3) Qiskit GHZ Scale Tests via QFw with NWQ-Sim

Number of Nodes

- Ran beyond SLURM time limit

.

3 A

QFw can also run multiple different circuits in parallel
 Enables better resource sharing, also useful for certain applications like
Distributed-QAOA[6]
4. QFw enables hybrid application runs

—> see Fig (4) & Fig (5)

5. QFw has some overhead —> see Fig (7)
7000 _ .
I nwgsim —_
150]16 s
K 6000 e tngvm _
= 124.07 s m -
= £5000
py E
= 9566 s g
= : = 4000
& :
70.96 s x
v 68.25 s z 2000 1
© ()]
2 ©
z £2000 L
E 1
1000 i i
1 2 4 8 16 0 2 4 8 16

#Processes

Fig (4) Metamaterial Design[4] QAOA
(QUBO 20) via QFw-NWQ-Sim

Number of Qubits

Fig (6) Pennylane GHZ experiments via QFw
with NWQ-Sim vs TN-QVM

1.4%

ACtual QFW/ s Standalone NWQ-Sim (2.79's)
-1.070966 -1.070966 -1.070967 ‘zjlsoooo
8 -2.367085 -2.367085 -2.367085 5100000
10 5102878 -5.102878 -5.102878 & il
< 50000 .
16 -3.974519 -3.974519 -3.974519 i0%)
, IR
20 -0.934529 -0.83677 -0.92976 26 s 30
Fig (5) Metamaterial Design[4] QAOA Fig (7) QFw Overhead (GHZ)
k solutions
- __Summary & Future \

This work 1) integrated NWQ-Sim into QFw, and 2) introduced a lightweight
python layer with the Qiskit BackendV2 implementation for QFw making it
hybrid application friendly. Next Steps 2

More QPM-API-Implementations =2 simulators (qgiskit-aer, QTensor), actual
guantum hardware!

)

2. Different runs in a hybrid workflow could use different QPMs

3. More hybrid applications = E.g., Distributed QAOA[6]

4. Auto selection of QPMs based on circuit meta-data

5. Smart resource management to avoid wasteful SLURM allocation for QFw
. (heterogeneous group 1))

[1] McCaskey, Alexander J. Tensor Network Quantum Virtual Machine (TNQVM). Computer software.

https://www.osti.gov//servlets/purl/1340180. Vers. 00. USDOE. 18 Nov. 2016. Web.

[2] Li, A., Fang, B., Granade, C., Prawiroatmodjo, G., Hein, B., Rotteler, M., & Krishnamoorthy, S. (2021). SV-Sim: Scalable PGAS-based State Vector

Simulation of Quantum Circuits. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis.

[3] Javadi-Abhari, A., Treinish, M., Krsulich, K., Wood, C. J., Lishman, J., Gacon, J., Martiel, S., Nation, P. D., Bishop, L. S., Cross, A. W., Johnson, B. R,,

& Gambetta, J. M. (2024). Quantum computing with Qiskit. https://doi.org/10.48550/arXiv.2405.08810

[4] Kim, S., & Suh, I.-S. (2024). Performance Analysis of an Optimization Algorithm for Metamaterial Design on the Integrated High-Performance

Computing and Quantum Systems. https://arxiv.org/abs/2405.02211

[5] Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Ahmed, S., Ajith, V., Alam, M. S., Alonso-Linaje, G., AkashNarayanan, B., Asadi, A., Arrazola, J. M.,

Azad, U., Banning, S., Blank, C., Bromley, T. R., Cordier, B. A., Ceroni, J., Delgado, A., Matteo, O. D., ... Killoran, N. (2022). PennyLane: Automatic

differentiation of hybrid quantum-classical computations. https://arxiv.org/abs/1811.04968

[6] Kim, S., Luo, T., Lee, E., & Suh, 1.-S. (2024). Distributed Quantum Approximate Optimization Algorithm on Integrated High-Performance

Computing and Quantum Computing Systems for Large-Scale Optimization. https://arxiv.org/abs/2407.20212

[7]1 Shehata, A., Naughton, T., & Suh, I.-S. (2024). A Framework for Integrating Quantum Simulation and High Performance Computing.
Cttps://arxiv.org/abs/2408.08098

[This work was supported in part by NSF awards DMR-1747426, PHY-1818914, MPS-2120757, CCF-2217020 and CCF-2316201. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725.

https://www.osti.gov/servlets/purl/1340180.%20Vers.%2000
https://arxiv.org/abs/1811.04968
https://arxiv.org/abs/2407.20212

