QFw: A Quantum Framework for Large-Scale HPC Ecosystems
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* Quantum Computing (QC) = Efficient for specific problems than classical
computing
* Using QCin an HPC environment can be useful for such problems

= A Hybrid HPC/QC Computing model
* Resource management for such a hybrid model is important!

-

. . Background )

PMIx Reference Runtime Environment (PRRTE) =2

 Open-source, scalable, and flexible runtime environment designed for HPC
and parallel computing

 PMiIx interfaces with SLURM, PBS and others - Interoperable

* Detects and recovers from process and node failures, ensuring continuous
and reliable application execution = Fault-Tolerant

e Supports rapid job launching, dynamic spawning, and process
management

* Facilitates efficient execution of parallel applications

PRTE Distributed Virtual Machine (PRTE-DVM) -

e A specific deployment mode of PRRTE that provides a lightweight DVM for
running parallel applications

 The DVM, identified by a unique <dvm-uri>, is responsible for all MPI tasks
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Fig (2) DEFw

Distributed Execution Framework[7] (DEFw)—>
* A framework to manage the DVM and the QFw components
 DEFw manages all the nodes in the heterogeneous group

 Enables inter-service communication via Remote Procedure Calls (RPCs)
abstracting it away from each service

)

Resource Manager

 Keeps track of services running in the DEFw environment

* Respawns services if needed

QPM-API (Quantum Platform Manager)

* Service managing quantum resources

 “Declares” QPM APl methods —> see Fig (1)

* Supports both synchronous and asynchronous operations

QPM-API-Implementation

e A QPM service (e.g., an HPC Simulator— TN-QVM[1], NWQ-Sim[2]) or actual
quantum hardware (our future task using QFw’s plugin architecture)
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* Provides functions to connect to QFw and retrieve a resource manager
instance, which then gets an QPM API
* QFWSimulator 2 Implements Qiskit[3] BackendV2 interface

AerSimulator (method="auto")
QFWSimulator (simulator="nwgsim")

1 # backend instance =
2 backend instance =

* Pennylane[5] = Leverages the ‘pennylane-qiskit™ plugin

import pennylane as gml

from gfw.giskit integration import QFWSimulator

# dev = gml.device('giskit.aer', wires=2)

qfw _backend = QFWSimulator (simulator="nwqgsim”)

dev = gml.device('giskit.remote', wires=2, backend=qfw backend)
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1. QFw decouples frontends (E.g. Qiskit, Pennylane etc) from backends (E.g, TN-QVM,
NWQ-Sim, Qiskit-AER, etc) —> see Figure (3) & Figure (6)

2. QFw enables application scaling to multiple nodes without needing additional code
changes —> see Fig (3)
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Fig (3) Qiskit GHZ Scale Tests via QFw with NWQ-Sim
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QFw can also run multiple different circuits in parallel
 Enables better resource sharing, also useful for certain applications like
Distributed-QAOA[6]
4. QFw enables hybrid application runs

—> see Fig (4) & Fig (5)

5. QFw has some overhead —> see Fig (7)
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Fig (4) Metamaterial Design[4] QAOA
(QUBO 20) via QFw-NWQ-Sim
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Fig (6) Pennylane GHZ experiments via QFw
with NWQ-Sim vs TN-QVM
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- __Summary & Future \

This work 1) integrated NWQ-Sim into QFw, and 2) introduced a lightweight
python layer with the Qiskit BackendV2 implementation for QFw making it
hybrid application friendly. Next Steps 2

More QPM-API-Implementations =2 simulators (qgiskit-aer, QTensor), actual
guantum hardware!

)

2. Different runs in a hybrid workflow could use different QPMs

3. More hybrid applications = E.g., Distributed QAOA[6]

4. Auto selection of QPMs based on circuit meta-data

5. Smart resource management to avoid wasteful SLURM allocation for QFw
. (heterogeneous group 1) )
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