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Abstract

Hybrid quantum-high performance computing (Q-HPC) workflows
are emerging as a key strategy for running quantum applications at
scale in current noisy intermediate-scale quantum (NISQ) devices.
These workflows must operate seamlessly across diverse simulators
and hardware backends since no single simulator offers the best
performance for every circuit type. Simulation efficiency depends
strongly on circuit structure, entanglement, and depth, making a
flexible and backend-agnostic execution model essential for fair
benchmarking, informed platform selection, and ultimately the
identification of quantum advantage opportunities. In this work,
we extend the Quantum Framework (QFw), a modular and HPC-
aware orchestration layer, to integrate multiple local backends
(Qiskit Aer, NWQ-Sim, QTensor, and TN-QVM) and a cloud-based
quantum backend (IonQ) under a unified interface. Using this inte-
gration, we execute a number of non-variational as well as varia-
tional workloads. The results highlight workload-specific backend
advantages: while Qiskit Aer’s matrix product state excels for large
Ising models, NWQ-Sim not only leads on large-scale entanglement
and Hamiltonian but also shows the benefits of concurrent subprob-
lem execution in a distributed manner for optimization problems.
These findings demonstrate that simulator-agnostic, HPC-aware
orchestration is a practical path toward scalable, reproducible, and
portable Q-HPC ecosystems, thereby accelerating progress toward
demonstrating quantum advantage.
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1 Introduction

As scientific and engineering problems increase in complexity, tra-
ditional computational methods face fundamental limitations due
to exponential scaling [1, 2]. Domains such as combinatorial opti-
mization, materials discovery, and large-scale linear algebra contain
problem instances that become classically intractable beyond mod-
est sizes [3-5]. Quantum computing offers a promising paradigm
to address such challenges by exploiting quantum parallelism, en-
tanglement, and superposition [6].

Progress in quantum hardware [1, 7-9] has delivered small- to
mid-scale quantum devices, so-called quantum processing units
(QPUs), that can act as accelerators alongside CPUs and GPUs in
high-performance computing (HPC) environments. Yet practical
quantum advantage remains out of reach due to limited qubit counts,
device noise, and the need for seamless integration with large-scale
classical workflows [10]. These constraints have intensified interest
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in hybrid quantum-classical algorithms, where quantum subrou-
tines are embedded within classical outer loops. In contrast to
their non-variational counterpart, variational algorithms are less
prone to adverse affects of today’s noisy quantum devices. Such
algorithms, including the Quantum Approximate Optimization Al-
gorithm (QAOA) [11, 12], the Variational Quantum Linear Solver
(VQLS) [13], and the Variational Quantum Eigen solver [14], lever-
age the quantum-classical hybrid structure, coupling near-term
QPUs with HPC-scale classical optimization.

To evaluate the capabilities of emerging Q-HPC systems, both
non-variational and variational workloads should be considered.
The non-variational set that we choose to analyze includes the
generation of Greenberger—Horne-Zeilinger (GHZ) [15] fully en-
tangled states, Hamiltonian simulation (HAM) [16], the transverse-
field Ising model (TFIM) [17], and the Harrow—-Hassidim-Lloyd
(HHL) [18] linear solver. The variational set includes QAOA [19],
and Distributed QAOA (DQAOA) [20]. While these workloads rep-
resent key algorithmic families in physics, engineering, and scien-
tific computing [21-24], they are computationally demanding, and
hence are seldom evaluated at large scales.

To address the scalability issue, we extend the Quantum Frame-
work (QFw) [25-27], a portable and HPC-aware orchestration layer
for quantum applications, to integrate multiple local and one cloud-
based backend under a unified interface. The local backends include
NWOQ-Sim [28], Qiskit Aer [29], TN-QVM [30], and QTensor [31],
each launched in distributed mode via the PMIx Reference RunTime
Environment (PRTE) and the Message Passing Interface (MPI). The
cloud backend interfaces with IonQ [32]. Deployed on the Frontier
supercomputer [33] via SLURM heterogeneous job groups, QFw
enables coordinated execution across heterogeneous resources with
fine-grained control over scheduling, communication, and device
allocation.

Furthermore, we show that QFw can run identical application
code across all backends without modification, supporting repro-
ducible benchmarking and rapid backend substitution. Our evalua-
tion reveals workload-specific performance advantages and demon-
strates the role of distributed execution and asynchronous orches-
tration in scaling large variational workloads.

The contributions of this work are the following:

e We integrate Qiskit-Aer, QTensor, and IonQ backends into
QFw.

e We scale execution and evaluation of variational and non-
variational workloads on QFw across multiple local simula-
tors and a cloud backend.

e We provide an implementation together with large-scale
experiments of DQAOA for metamaterial optimization on
the Frontier supercomputer.

The remainder of this paper is organized as follows: Section 2 re-
views technical background and related work; Section 4 details back-
end integration and orchestration design; Section 5 describes the
compute platform, backends, and benchmarks; Section 6 presents
performance and scalability results; Section 7 analyzes observa-
tions and implications; and Section 8 summarizes our findings and
outlines future directions.

Srikar Chundury et al.

2 Background

This section provides the context for our study. We first summa-
rize the QFw execution model and services that enable distributed,
backend-agnostic orchestration (Section 2.1). We then define the
workload taxonomy, covering fixed-circuit non-variational kernels
(GHZ, HAM/TFIM, and HHL, see Section 2.2) and parameterized,
optimizer-in-the-loop variational algorithms (QAOA and DQAOA,
see Section 2.3). Together, these elements motivate the orchestra-
tion choices used in our experiments and ground the performance
analysis presented later.

2.1 Quantum Framework (QFw)

The QFw [25-27] is a scalable orchestration platform designed to
integrate quantum and classical computing resources for large-scale
hybrid execution. QFw provides a modular, backend-agnostic inter-
face for managing quantum circuit execution across CPUs, GPUs,
and QPUs in HPC environments. By abstracting backend-specific
details, QFw enables quantum applications to remain portable and
reproducible, allowing researchers to switch between simulation
and hardware targets with minimal code changes.

QFw builds on the Process Management Interface for Exascale
(PMIx) Reference RunTime Environment (PRTE) in the Distributed
Virtual Machine (DVM) mode to enable rapid process spawning and
low-latency coordination across distributed nodes. Its architecture
comprises three primary services. (1) The Quantum Platform Man-
ager (QPM) acts as a central dispatcher, selecting execution back-
ends and managing task configurations. (2) The Quantum Resource
Controller (QRC) schedules and launches quantum tasks across MPI
ranks, ensuring efficient utilization of allocated resources. (3) Com-
munication between these components is handled by the Distributed
Execution Framework (DEFw), a lightweight remote procedure call
(RPC) layer optimized for HPC-scale deployments.

Through this design, QFw supports a variety of quantum back-
ends, including state-vector and tensor-network simulators. Users
typically access QFw through a Python API module (QFwBackend)
that provides a drop-in backend compatible with frameworks such
as Qiskit [34] and PennyLane [35]. This interface translates circuit
execution requests into QFw API calls, which are then dispatched
to the selected backend. Simulator workloads are executed in dis-
tributed mode via MPI, while hardware requests are routed to the
appropriate service interface. In both cases, results are returned in
standardized formats, shielding applications from backend-specific
parsing.

By combining HPC process management, distributed task sched-
uling, and backend-agnostic execution, QFw serves as a bridge be-
tween quantum and classical ecosystems [36]. It provides a unified
foundation on which scalable, reproducible, and portable quan-
tum workflows can be developed and deployed on leadership-class
computing platforms.

2.2 Non-Variational Workloads

Non-variational workloads execute fixed circuits without a classi-
cal parameter-update loop and therefore expose the raw execution,
memory, and communication characteristics of each backend. We
consider (i) GHZ state preparation, which stresses long-range en-
tanglement growth with shallow but highly correlated circuits [15];
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(ii) Hamiltonian simulation of Ising-type models, including TFIM,
which exercises trotterized time evolution and controlled two-qubit
interactions with tunable depth [16, 17, 21]; and (iii) the HHL linear
solver, which illustrates deeper coherent subroutines (e.g., phase
estimation and controlled rotations) and ancilla management [18].
These kernels span distinct structures and depths, making them
informative for contrasting state-vector and tensor-network sim-
ulators, including their distributed implementations [28, 30, 31].
Within QFw, identical circuits are issued through standard fron-
tends and dispatched uniformly to multiple local simulators and
the cloud backend, enabling portable and reproducible compar-
isons [34, 35].

2.3 Variational Workloads

Variational workloads couple parameterized quantum circuits with
a classical optimizer, repeatedly preparing, measuring, and updating
parameters to minimize a task-specific objective [23]. Our focus is
on QAOA, whose layered cost-mixer ansatz provides a controllable
depth-quality trade-off and well-studied scaling behavior on com-
binatorial problems [12]. In particular, our work focuses on finding
novel meta-materials by formulating the optimization problem as a
quadratic unconstrained binary optimization (QUBO).

Distributed Quantum Approximate Optimization Algorithm
(DQAOA). The DQAOA is an extension of QAOA designed to
address the hardware and scale limitations of near-term quantum
computing systems. In this approach, a large combinatorial
optimization problem is decomposed into smaller sub-problems,
each requiring much fewer qubits and shallower circuits. These
sub-problems can be executed simultaneously on multiple quantum
simulators or hardware, where their results are combined to form
an approximate global solution. Such decomposition mitigates
two key constraints in current quantum systems: (1) limited qubit
counts and (2) circuit depth restrictions due to noise.

DQAOA naturally lends itself to HPC integration, as many sub-
problems can be solved in parallel. A typical workflow allocates clas-
sical and quantum resources, dispatches sub-problem circuits con-
currently, and aggregates their outputs for classical post-processing.
This parallel execution is well-suited for batch schedulers and dis-
tributed execution frameworks, enabling substantial reductions in
wall time for large-scale problems.

Kim et al. [19] proposed DQAOA that coupled HPC resources
with quantum backends, distributing sub-problem execution across
heterogeneous compute nodes. Their study showed that this ap-
proach can handle problems with up to thousands of binary vari-
ables with high solution quality. Xu et al. [26] extended this model
to a GPU-accelerated implementation using Qiskit Aer and MPI-
based orchestration, achieving significant performance gains on
leadership-class supercomputers.

These studies illustrate how DQAOA can combine quantum
parallelism with classical HPC scalability. By exploiting distributed
resources at both the algorithmic and simulation levels, DQAOA
provides a pathway toward solving larger optimization instances
than would be possible on quantum computing alone.

In this context, iterative workloads amplify orchestration de-
mands (many circuit evaluations per optimization step) and there-
fore benefit directly from QFw’s backend-agnostic scheduling and
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distributed execution model. Using a unified frontend (e.g., Qiskit or
PennyLane) with QFw allows the same QAOA/DQAOA application
code to target multiple simulators and a cloud backend without
modification, supporting fair benchmarking and rapid platform
substitution [34, 35].

3 Related Work

Early efforts to integrate quantum acceleration into classical HPC
workflows have focused on bridging existing cluster tools with
emerging quantum resources. For instance, Esposito and Haus [37]
leverage SLURM’s heterogeneous jobs feature and MPI to co-
schedule hybrid classical-quantum workflows on supercomputers,
aiming to eliminate idle time on scarce quantum processors. Their
method requires refactoring a monolithic hybrid program into a
sequence of smaller jobs, each encapsulating one quantum computa-
tion alongside its surrounding classical processing. This allows the
quantum device to be released after each quantum step and reused
by other jobs, significantly improving utilization. While effective,
this approach demands moderate user intervention (splitting code
and managing data hand-offs) and relies on the HPC scheduler to
interleave tasks, without deeper automation or resource awareness
beyond job queuing.

More automated scheduling frameworks have been proposed to
manage quantum tasks in HPC environments. SCIM MILQ by Seitz
et al. [38] is an HPC quantum scheduler that combines conven-
tional job scheduling techniques with quantum-specific methods
like circuit cutting. By partitioning large quantum circuits and in-
telligently scheduling the pieces, SCIM MILQ seeks to minimize
overall makespan and noise impact when running multiple quan-
tum tasks on limited hardware. This is a step toward specialized
runtime systems that can optimize hybrid workloads, although
such research prototypes have yet to be integrated into general-
purpose HPC job managers. Similarly, XACC [39] provides a low-
level software infrastructure for heterogeneous quantum-classical
computing, exposing a service-oriented framework for quantum
program compilation and execution across diverse hardware back-
ends. XACC’s hardware-agnostic interfaces lay the groundwork
for tightly coupling quantum co-processors with classical code, but
require adoption within HPC toolchains.

Another line of work emphasizes unified software stacks to hide
quantum-classical complexity from end users. The Munich Quan-
tum Software Stack (MQSS) [40] being developed by TUM and
LRZ is a comprehensive platform that deeply integrates quantum
devices into HPC centers. MQSS provides a single access point to
multiple quantum backends at the LRZ supercomputing facility, ac-
cessible via a web portal, command line, or through hybrid jobs tied
into the cluster scheduler [41]. The stack automates the workflow
from user-submitted quantum programs to execution on available
hardware, including dynamic compilation that adapts to device
calibration data [42]. Our work shares a similar goal of enabling
flexible backend selection and seamless quantum integration, but
MQSS is tailored to a specific institutional environment.

Beyond HPC-centric solutions, the rise of cloud quantum ser-
vices also provides relevant context. Platforms such as Amazon
Braket [43], Microsoft Azure Quantum [44], and gBraid [45] aggre-
gate a variety of quantum processors (superconducting, ion-trap,
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etc.) from multiple vendors and offer unified interfaces for job sub-
mission. These services let users develop algorithms with familiar
open-source frameworks (e.g., Qiskit, Cirq, PennyLane) and run
them on different backends through a common API For exam-
ple, qBraid’s environment enables one-click access to over two
dozen quantum devices across providers, with cross-framework
compatibility and centralized job tracking. Such cloud platforms
demonstrate the value of backend flexibility and ease of use, though
they operate in remote data centers rather than tightly coupled to lo-
cal HPC resources. Conqure [46] combines an Amazon-compatible
interface with a Qiskit front-end and Slurm-based scheduling co-
ordinated with HPC in an open-source environment aimed at lab-
hosted quantum devices and local or remote simulation with a
private cloud presence.

In our work, we similarly support multiple quantum backends—
combining both local HPC ones and a remote one under a single
workflow. However, we differ by focusing on hybrid workflow
performance and co-scheduling in an HPC context, rather than pure
cloud access. All prior art has either required users to manually
split and schedule quantum tasks or has been limited to specific
ecosystems, with only small-scale simulation. Our approach strives
to generalize hybrid quantum-classical scheduling with minimal
user effort. It provides a unified framework that dynamically selects
quantum backends and orchestrates their interaction with classical
computations, thereby advancing the state of the art in flexible
quantum workflow management.

4 Methodology

QFw addresses two complementary goals: (i) providing a clean,
modular path to integrate new simulators and hardware backends,
and (ii) enabling an application execution model that scales across
HPC resources and hybrid cloud endpoints with minimal changes
to user code.

QFw exposes a frontend API to applications and a backend QPM
API to simulators or hardware. QPM coordinates a pool of worker
processes, each bound to an HPC core, and dispatches batches of
quantum circuit tasks either via PRTE/MPI for on-premise execu-
tion or through REST for cloud endpoints. Results are returned
asynchronously to the frontend, ensuring non-blocking execution
for iterative and variational workflows.

The end-to-end workflow is illustrated in Fig. 1. In step-1, a
SLURM job is submitted with two heterogeneous groups: one for
the application (hetgroup-0) and another for QFw-related manage-
ment and simulator nodes (hetgroup-1). In step-2, the QFw setup
procedure launches the core infrastructure, including the DEFw
with a PRTE/DVM URI shared across all processes, multiple QPM
processes for managing quantum circuit execution jobs and queues,
and multiple QRC worker threads per QPM process for triggering
MPI runs on the nodes allocated to QFw (hetgroup-1). Only the first
node in this group houses QFw’s management services, while all
nodes, including the first, act as workers. In step-3, the user appli-
cation, implemented in frameworks such as Qiskit or PennyLane,
is executed.

If the application is distributed (step-4A), the programmer may
employ MPI (e.g., via mpi4py) or use multithreading within the ap-
plication’s node group and must connect to the same backend API
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specified in step-5. If it is not distributed (step-4B), the QFwBack-
end is invoked directly, connecting to the QPM API in hetgroup-1
and preparing to submit circuits to any QPM accessible to the
backend. In step-5, the QFwBackend, implemented as a Qiskit
BackendV2 interface, routes application requests to the designated
QPM service via RPC calls handled by DEFw. These calls, which
include circuit creation, deletion, execution, and status queries,
are processed in step-6 by the appropriate QPM implementation
depending on the application’s configuration. Circuit execution
(step-7) may occur on local HPC resources in hetgroup-1 or on
remote QPUs via REST calls.

In step-9, execution results are marshaled into the common
QPM API format before being forwarded for application-level
post-processing (step-10). Depending on the application logic
(step-11), e.g., whether additional iterations for a classical op-
timizer are required, control is either returned to the QFwBackend
for continued execution or the application concludes (step-12).
In step-13, QFw performs a controlled teardown in hetgroup-1,
shutting down RPC services, releasing worker allocations, and free-
ing any remote QPU queue reservations (currently using QCUP’s
shared queue). Finally, the SLURM job terminates in step-14.

The next two subsections detail (1) how new simulators or hard-
ware backends plug into QFw, and (2) how applications interface
with the frontend API to submit batched circuits and retrieve asyn-
chronous results.

4.1 Integrating Backends

Integrating a new backend into QFw requires implementing a Back-
end QPM that conforms to a predefined QPM-API. Consequently,
each backend that is to be integrated with QFw as a new QPM
should (1) accept a standardized circuit/problem description, (2)
configure backend-specific runtime parameters, (3) launch execu-
tion via MPI/PRTE (on-prem) or REST (cloud), and (4) marshal
results into QFw’s unified return format. Hence, the frontend and
backend are cleanly decoupled and the application code remains
unchanged when swapping backends or retargeting sub-backends.
QFw also unifies logging, error propagation, and timing instrumen-
tation so QPM can maintain comparable per-backend performance
profiles.

QFw currently supports five backends spanning state-vector
and tensor-network simulation, plus a cloud QPU provider. Each
integration reflects challenges in terms of robustness, scaling model,
and ease of deployment on HPC systems:

e TN-QVM (ORNL). TN-QVM is a tensor-network simulator
that uses the ExaTN library underneath. TN-QVM can tar-
get multiple topologies (MPS, TTN, PEPS). We wrote a thin
wrapper to select the topology as a sub-backend. In QFw, we
currently support and test ExaTN-MPS.

o NWOQ-Sim (PNNL). The state-vector engine (SV-Sim) is fully
integrated. Historically, SV-Sim offers several sub-backends
(OpenMP, MPI, CPU, AMD GPU) that are supported and
selectable at runtime. NWQ-Sim’s native MPI distribution
makes it a good fit for multi-node CPU/GPU HPC runs.

e QTensor (ANL). QTensor is a tree tensor-network approach
built around the qtree library. Although QTensor is pri-
marily designed for QAOA-style workloads (emphasizing
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Figure 1: QFw architecture and execution flow. QPM manages worker pools, dispatches batches to local MPI ranks or cloud
endpoints, and streams results back to applications. Note: Background shading corresponds to the heterogeneous groups as pointed
out in step-1, with the warmer tone indicating hetgroup-0 components and the cooler tone indicating hetgroup-1 components.

expectation estimation on sparse QUBOs via light-cone style
optimizations), QFw uses it for full-state contraction through
qtree. QFw has been tested thoroughly with numpy. MPI
distribution is enabled via mpi4py.

e Qiskit Aer. Aer remains a state-of-the-art single-node
circuit simulator and provides several sub-backends:
statevector, matrix_product_state, stabilizer, and
automatic (which selects among others). MPI support ex-
ists via chunking across ranks. QFw has been exercised with
mps, statevector, and automatic. GPU acceleration is available
(CUDA by default); HIP/ROCm requires a custom Aer build
for AMD GPUs.

e IonQ (cloud). For the cloud path, simple REST suffices. In
practice, we leverage IonQ’s Qiskit BackendV2 plugin, which
handles the REST plumbing but adds helpful boilerplate. This
work extensively tested the simulator sub-backend.

Table 1 summarizes capabilities and caveats. In all cases, back-
ends and sub-backends are selected via lightweight runtime proper-
ties (e.g., {“backend”: “qgtensor”, “subbackend”: “numpy”}),
so users can shift between engines without refactoring their algo-
rithms. The key contribution here is the ease of integrating new
backends and combing components to this end. What’s more, the
same QFw backend object can be plugged into popular frameworks
(e.g., Qiskit, PennyLane); swapping backend/subbackend toggles
engines and device targets without changing the user’s quantum
program as illustrated in Figure 2.

4.2 Integrating Applications

QFw is deployed on HPC systems via SLURM’s heterogeneous
job allocation model. A typical launch reserves two resource
groups: hetgroup-@ for the application’s classical control logic, and
hetgroup-1 for QFw services and backend execution. The QPM
service is started on the lead node of hetgroup-1, instantiating a
PRTE-DVM that spans all backend nodes. This separation ensures
that backend execution is isolated from application orchestration
overheads and allows for independent scaling of the classical and
quantum-simulation components.

On the frontend, applications interact with QFw through a
lightweight Python client, QFWBackend, which exposes a uniform

# Qiskit + QFw example
from qfw_qiskit import QFwBackend
backend = QFwBackend(
properties = {
"backend": "nwgsim",
"subbackend":"MPI"
3
)

# Pennylane + QFw example

import pennylane as gqml

dev = gml.device('qgiskit.remote', wires=2,
backend=backend)

Figure 2: Selecting the QFwBackend.

execute () method. Applications generate circuits or problem in-
stances using their preferred SDK (e.g., Qiskit) and pass them di-
rectly to QFw. Execution calls are translated into RPCs to QPM,
which schedules them across worker pools.

For non-variational workloads (GHZ, HAM, TFIM, HHL),
QFw batches independent circuit instances across available cores,
maximizing throughput. For variational workloads (QAOA,
DQAOA), the application issues multiple asynchronous calls within
each optimization iteration, enabling parameter sweeps without
idle time.

To enable scalable quantum optimization workflows, we ex-
tended QFw to DQAOA applications. The workflow (Fig. 1) begins
with a dual-group heterogeneous SLURM allocation: one group ded-
icated to the DQAOA application and another to QFw services. In
the QFw group, a unique DVM-URI is created and QPM services are
launched. On the DQAOA side, a Qiskit-based Python application
initializes with a QUBO matrix as input. During initialization, the
QFwBackend establishes a secure connection to the QPM services.

The large QUBO is decomposed into multiple subQUBOs using
either random partitioning or decomposition methods directed by
an impact factor. The application uses Python’s threading module
to issue concurrent solve calls for each subQUBO, as the workload
is primarily I/O-bound. For local HPC simulators, these calls trigger
asynchronous RPCs to QFw, which dispatch the jobs via PRTE and
launch MPI-parallel circuit executions across the allocated nodes.
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Table 1: Backends used with QFw.

Backend Sub-backend(s) CPU GPU Native MPI Notes
TN-QVM exatn-mps Yes Yes’ Yes' Tensor-network simulator; QFw wrapper selects topology. QFw
(ORNL) TTN (pending) is tested with ExaTN-MPS. TTN currently blocked by . xasm vs.
PEPS (planned) .qasm; PEPS is architecturally supported.
NWQ-Sim  OpenMP Yes Yes Yes Fully integrated. At the time of development, HIP+MPI lacked
(SV-Sim) MPI complete upstream support; other sub-backends are supported
CPU via QFw.
AMDGPU
Qiskit Aer  statevector Yes  Yes' Yes Strong single-node performance; MPI uses chunking. QFw tested
matrix_product_state with mps, statevector, and automatic. HIP/ROCm requires a
automatic custom Aer build.
QTensor numpy Yes Yes Yes Tree TN (qtree). Designed for QAOA expectation estimation on
(ANL) cupy (planned) sparse QUBOs, but used in QFw for full-state contraction;
pytorch (planned) currently tested thoroughly with numpy. MPI via mpi4py.
IonQ (cloud)  simulator N/A Integrated via IonQ’s Qiskit BackendV2 plugin (REST under the

hardware (planned)

hood).

" Engine-dependent via ExaTN build options. T CUDA by default; HIP/ROCm requires a custom Aer build.

For remote quantum services such as the IonQ cloud simulator,
QPM translates the request into REST API calls, managing job
submission and result retrieval transparently.

As subQUBO results return, they are aggregated to update the
classical optimizer, and the cycle repeats until convergence. Upon
completion, QPM services are terminated, the DVM-URI is released,
and SLURM resources are deallocated. This integration design uni-
fies local MPI-based simulation and remote cloud backends under a
single asynchronous workflow, enabling DQAOA to scale efficiently
across heterogeneous resources while preserving full backend flex-
ibility.

This modular integration model enables new backends and appli-
cations to be combined arbitrarily, supporting reproducible, large-
scale quantum workloads without rewriting core application logic.

5 Experimental Setup

Compute Platform: The experiments are run on a Frontier test
cluster at OLCF with 32 nodes. Each Frontier compute node contains
one 64-core “Optimized 3rd Gen” AMD EPYC CPU with 512 GiB
DDR4 memory, and four AMD Instinct MI250X GPUs. Each MI250X
comprises two GCDs (8 logical GPUs per node), each with 64 GiB
HBM2e. Nodes are connected via HPE Slingshot 200 with an ag-
gregate node-injection bandwidth of 800 Gbit s™1. Each node ex-
poses eight last-level cache (LLC) domains, each serving eight CPU
cores; to minimize OS noise, we reserve one core per LLC for ker-
nel/system processes, leaving 56 application cores per node
available to QFw.

Job Orchestration, Builds, and Protocol: We use SLURM hetero-
geneous job groups: hetgroup-0 hosts the application layer and
hetgroup-1 hosts Quantum Framework (QFw) simulation workers.
The QPM (on the first node of hetgroup-1) spawns eight worker
threads and distributes circuit-execution tasks round-robin, using
PRTE across hetgroup-1 for local simulators or REST API calls for

Table 2: Benchmarks and problem sizes grouped by category.
QAOA reports QUBO size. DQAOA reports QUBO size and
subQUBO settings as (subgsize , nsubq’).

Non-variational

Application #qubits

SupermarQ GHZ 4, 8,12, 16, 20, 24, 28, 30, 32

SupermarQ HAM 4, 8, 12, 16, 20, 24, 28, 30, 32

TFIM 4, 8, 12, 16, 20, 24, 28, 30, 32

HHL 5,7,9,11, 13, 15, 17

Variational

Application QUBO size

QAOA 4,8, 10, 20, 30

DQAOA 30 with (subgsize’, nsubq’ ): (16,2), (8.4), (12,3)

40 with (subgsize’, nsubq’ ): (16,4), (12,4)

" subgsize refers to the sub-QUBO size. T nsubq refers to the number of sub-QUBOs.

TonQ cloud backends. All simulators/backends are built from their
latest public releases with -03; GPU builds are enabled when avail-
able (e.g., cuQuantum/GPU options for Aer). Each experiment is
repeated three times (limited by allocation) for which we report the
mean and standard deviation. Unless stated otherwise, one node is
reserved for the application layer (hetgroup-0) while QFw scales on
hetgroup-1.

Backends: We use the set of simulators and the IonQ cloud emu-
lator (with hardware executions planned for future work) described
in Section 4.1 and Table 1.

Benchmarks: We evaluate both non-variational and variational
applications as described in Section 4.2; problem sizes are enumer-
ated in Table 2.
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Figure 3: (a)-(e) Results per benchmark across backends. (f) QAOA solution fidelity (referenced to D-Wave’s hybrid quantum
annealing solver [47]). This figure represents an approximate weak scaling study where we increase both the number of qubits
and the number of processes but not exactly proportionally. Note: The secondary x-axis in each panel denotes (#N, #P), i.e.,

(num nodes, processes per node).

6 Results

We benchmark the integrated backends from Table 1 on the work-
loads and sizes listed in Table 2. Each point is the mean of three
runs with error bars indicating standard deviation.

Non-variational workloads: Figures 3a-3d present runtime scal-
ing for GHZ, HAM, TFIM, and HHL circuits, respectively. In GHZ
(Fig. 3a) and HAM from SupermarQ (Fig. 3b), all backends scale to
32 qubits, but runtime separation increases with size: NWQ-Sim
and Qiskit Aer (MPS) remain competitive, while QTensor slows
notably beyond 24 qubits.

For TFIM (Fig. 3c), Qiskit Aer’s mps solver sustains low run-
times up to 33 qubits, outperforming NWQ-Sim at large sizes. The
TFIM-28 workload, when executed with varying process counts (an
approximate strong scaling study, since the increase was not strictly
proportional). We observe that state-vector-based simulators such
as NWQ-Sim and Qiskit Aer exhibit improved performance with
increased resources, whereas MPS-based approaches do not scale
as effectively.

For HHL (Fig. 3d), increasing circuit depth reduces scalabil-
ity. NWQ-Sim outperforms at smaller problem sizes, Qiskit Aer
achieves comparable performance for medium instances, and NWQ-
Sim again leads for larger instances, subject to the resource con-
straints indicated on the secondary x-axis.

Variational workloads: Fig. 3e and Fig. 3f show QAOA runtime
and fidelity trends as a function of QUBO size. Runtimes increase

with problem size, with sharper growth when scaling process counts
(#P) beyond a single LLC domain due to MPI communication over-
heads. Missing points (red X) correspond to runs exceeding the
two-hour cutoff. Fidelity remains consistently above 95% across
tested sizes, with minor variation due to backend-specific numerical
differences. A red X in the plots indicates a configuration omitted
due to exceeding walltime or resource constraints on the Frontier
test cluster, a scaled-down environment with limited processes per
node. These constraints particularly impact backends such as Qiskit
Aer, which, when run via mpi4py, does not benefit from usual multi-
core optimizations due to not being natively designed for strong
scaling beyond a single node.

DQAOA results with NWQ-Sim and IonQ backends are shown in
Figs. 4 and 5. The former plot compares total execution times across
different problem sizes and subproblem configurations, while the
latter zoomed view highlights iteration-level timing patterns for
a specific configuration (subgsize=12, nsubq=4). The zoomed plot
clearly shows NWQ-Sim completing iterations faster (and about
four concurrently) and with more uniform timing compared to the
TonQ simulator which involves calls over the internet and cloud
queues.

7 Discussion

Our evaluation highlights key factors influencing simulator perfor-
mance, scalability, and QFw’s role in enabling portable quantum
workflows.
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Figure 5: A zoomed portion of the DQAOA-40 run with subq-
size=12 and nsubq=4.

No single backend dominates across all problems. Qiskit Aer’s
mps solver is highly efficient for structured, low-entanglement cir-
cuits such as TFIM, sustaining low runtimes even beyond 30 qubits.
NWQ-Sim’s state-vector kernels and MPI parallelization excel for
GHZ and HAM workloads, while QTensor’s TTN decomposition
favors shallow or tree-like circuits but slows sharply on deeper or
densely connected topologies.

DQAOA results demonstrate QFw’s ability to execute many sub-
QUBOs concurrently, overlapping RPC communication with back-
end computation. Moderate-sized subQUBOs achieve good scal-
ing, but very small subQUBOs incur fixed overheads from RPC
and scheduling, reducing efficiency. The same application code
runs without modification across HPC simulators and cloud back-
ends, confirming the effectiveness of QFw’s asynchronous, backend-
agnostic execution model.

System-level optimizations help reduce OS noise and improve
reproducibility at scale. This includes LLC core reservation, SLURM
heterogeneous job groups, and PRTE-based MPI dispatching. By
fully decoupling application logic from backend orchestration, QFw
enables fair, repeatable performance comparisons and rapid back-
end substitution.

The ability to seamlessly move between local MPI-based simula-
tors and remote quantum hardware positions QFw as a practical
platform for hybrid execution, large-scale algorithm tuning, and re-
producibility studies in production HPC environments. This porta-
bility is critical as quantum computing moves toward integrated
HPC-quantum deployments.

8 Conclusion

We integrated a diverse set of quantum circuit backends into QFw,
making it a hybrid quantum-HPC execution framework that spans
multiple local simulators (NWQ-Sim, Qiskit Aer, TN-QVM, QTen-
sor) via PRTE/MPI and a remote IonQ service. This unified inte-
gration supports both non-variational and variational workloads,

Srikar Chundury et al.

implemented in Qiskit and PennyLane, and deployable without
code changes across heterogeneous HPC and cloud resources.

Our evaluation on GHZ, HAM, TFIM, and HHL circuits, as well as
QAOA, and DQAOA, confirms that backend performance is highly
workload-dependent: Tensor-network methods such as Qiskit Aer’s
mps excel for structured, low-entanglement problems, while state-
vector engines like NWQ-Sim perform strongly for shallow but
highly entangled workloads. For deeper circuits and large-scale
variational algorithms, distributed MPI execution is essential for
scaling, and asynchronous orchestration enables effective overlap
of computation and communication.

By decoupling application logic from backend orchestration,
QFw enables reproducible, cross-platform benchmarking and rapid
backend substitution, which are critical capabilities for advancing
scalable, portable hybrid quantum-HPC workflows. Future exten-
sions will target real-hardware experimentation, GPU-accelerated
tensor-network backends, automated workload-driven backend
selection, and larger-scale hybrid HPC-cloud studies spanning mul-
tiple hardware targets, further informing backend design and de-
ployment strategies.

Al Assistance

Portions of the text in this manuscript were refined with the assis-
tance of the Al tool ChatGPT (OpenAl) [48] to improve clarity and
readability.
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