An Open Infrastructure for Scalable, Reconfigurable Analysis*

Bronis R. de Supinski * Rob Fowler * Todd Gamblin
bronis@llnl.gov rjf@renci.org tgamblin@cs.unc.edu
Frank Mueller Prasun Ratn Martin Schulz *
mueller@csc.ncsu.edu pratn@ncsu.edu schulzm@llnl.gov

*Lawrence Livermore National Laboratory
TNorth Carolina State University
Renaissance Computing Institute, University of North Carolina at Chapel Hill

Abstract

Petascale systems will have hundreds of thousands of processor cores so their applications
must be massively parallel. Effective use of petascale systems will require efficient interpro-
cess communication through memory hierarchies and complex network topologies. Tools to
collect and analyze detailed data about this communication would facilitate its optimization.
However, several factors complicate tool design. First, large-scale runs on petascale systems
will be a precious commodity, so scalable tools must have almost no overhead. Second, the
volume of performance data from petascale runs could easily overwhelm hand analysis and,
thus, tools must collect only data that is relevant to diagnosing performance problems. Anal-
ysis must be done in-situ, when available processing power is proportional to the data.

We describe a tool framework that overcomes these complications. Our approach allows
application developers to combine existing techniques for measurement, analysis, and data
aggregation to develop application-specific tools quickly. Dynamic configuration enables
application developers to select exactly the measurements needed and generic components
support scalable aggregation and analysis of this data with little additional effort.

1 Introduction

In recent years, the degree of concurrency in large-scale supercomputers has increased exponen-
tially. The largest existing system, Blue Gene/L at Lawrence Livermore National Laboratory [5],
has 212,992 processors, and future petascale machines are expected to have at least as many.

The performance of applications written for machines of this size will depend largely on develop-
ers’ ability to manage communication through shared memory hierarchies and complex network
topologies. Local performance will require application developers to share on-node resources,

*This work was supported in part by the DOE Office of Science SciDAC PERI (DE-FC02-06ER25764) and NSF
grants CNS-0410203, CCF-0429653 and CAREER CCR-0237570. Part of this work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

mailto:bronis@llnl.gov
mailto:rjf@renci.org
mailto:tgamblin@cs.unc.edu
mailto:mueller@csc.ncsu.edu
mailto:pratn@ncsu.edu
mailto:schulzm@llnl.gov

while scalability will depend on efficient communication between nodes as well as eliminating
impediments to parallelism such as serialization and load imbalance. System software, includ-
ing performance and debugging tools, will also be constrained by these requirements. Hence, the
design of tools for petascale systems must address two key challenges:

1. To address problems that only appear at extreme scale, tools must be usable on large-scale,
long-running executions. Such resources will be reserved primarily for production jobs, so
tools must have sufficiently low overhead to run in a production environment and must not
require modification of the source code of monitored applications.

2. Since petascale runs could generate huge volumes of performance data, requiring excessive
communication and storage resources, on-line data aggregation and analysis are essential.

We present a component architecture to address these challenges. On individual processes, mea-
surement tools are combined as abstract data sources in a chain of components to transform and
to analyze collected data. These components significantly reduce the volume of on-node data and
then pass it to scalable aggregation components, which further reduce the collected data so its
storage and eventual human analysis is feasible. Additionally, the aggregation components can
perform on-line analysis. The key to our system is that these components are completely recon-
figurable. Data sources can be chosen at runtime and generic transform, analysis, and aggregation
components support scalable information collection from arbitrary sources.

Since our framework supports dynamic tool configuration, we allow application developers to
combine precisely those components required to diagnose their particular performance problem.
Tool users can monitor jobs at runtime and change tools based on their dynamic behavior if new
quantities need to be measured. By measuring only what is needed and by combining gathered
data on-node using transformation and analysis tools, we ensure that on-node overhead is not too
steep for production jobs. We also eliminate the need to run jobs multiple times with different
tools to collect different sets of performance data.

Scalable data aggregation tools factor into our framework as generic components similar to data
sources and analyzers. Previous work has shown that scalable aggregation techniques such as tree-
reductions [1, 12, 14] and sampling [4, 10] are essential. Rather than requiring users to rewrite
interfaces to these components every time a new tool is built, our framework allows data sources
to be connected to reduction networks ad-hoc, without additional programming.

The rest of this paper is organized as follows. We describe our component framework in §2. §3
and §4 detail our existing tools that fit within this model and present sample results from their use.
We discuss using our framework for on-line identification of performance clusters in §5. Finally,
we state our conclusions and outline future work in §6.

2 A Dynamically Reconfigurable Analysis Framework

Traditional performance analysis tools are insufficient for monitoring petascale applications. Trac-
ing tools gather sufficient information to analyze almost all performance issues but generate
prodigious data volumes, excessively perturb the monitored application and perform little or
no online analysis. Conversely, profiling tools (e.g., those in HPCToolkit [9], TAU [17] and
Open|SpeedShop [18]) provide a compact, whole-run summary of application performance but

Trace representation using Power Regular Section Descriptors (PRSDs)

GLOBAL REDUCTION Types of Components
'> Transformer '>

t Reducer '>

Large Scale MPI Applications
Implicit Program Behavior

LOCAL NODE INSTANTIATION - 4

\ Data Input: from Tracer, Profiler, Child Nodes \

T
(o]
@®
a
<]
QO
8
@ . =
@ Compressor PRSDs Timing »
2 4 t Annotater '>
c | MR PRSD 2 R
< PRSD E
oF Q
S &
= Loop. Q@ Communication paths
D Information s
8 2 OPS Attr.1
© PRSD o)
o
g { Reduction g Attr2 | .. | AttrN
o Annotator H Nodes =4
: c —_—)
PRSD i 2 extensible,
— ¢ El self-describing
Configuration ‘ Data Output: to Parent Node, Tool ‘ k D Format
. . . . Attribute examples
Interactive User Tools and Visualization User e PRSDs, timing, ...
v Understanding of Program Behavior and Optimizations & Storage

Figure 1: Interaction of Components

primarily make their aggregation decisions a priori, which often limits diagnosis of performance
problems, particularly those that emerge over time due to evolutionary or cyclic behavior.

Our framework scalably and efficiently combines the features and advantages of both approaches
while providing significant dynamic flexibility. We achieve this goal using a three-pronged ap-
proach. First, we employ efficient data compression that fundamentally limits data volumes with-
out losing structural trace information. Second, we perform on-line analysis across a tree-based
overlay network, which reduces the computational overhead of the analysis in addition to support-
ing our data aggregation. Most importantly, we enable the users to specify and to include only
relevant analysis steps during a particular run or application phase by encapsulating all analysis
routines in independent, reconfigurable components.

Our tool component architecture collects data from one or more data sources of the MPI applica-
tion and then passes it through a tree-based reduction network to the front end tool, as illustrated
on the right side of Figure 1. An instantiation of the analysis framework processes data at each
leaf (MPI task) or internal reduction node through one or more user-provided analysis modules,
as shown on the left side of the figure. We organize the data flowing between the analysis compo-
nents, as well as the levels of the reduction tree, in an extensible and self describing data format
that can be annotated with analysis-specific attributes (see PRSDs in Section 3).

Each component can interpret this format and transform its contents as well as change, add or
remove attributes before passing the data stream to the next component. We classify the analysis
components into four major operation-based groups: Transformers work on a single input stream
and produce a single output stream; Reducers combine two or more input streams into a single
output stream; Analyzers extract additional information for further processing; and Annotators
add further annotations from analyzers or external sources to the data stream. Users can arbitrarily
combine these components to target analysis precisely to their performance issues.

We decentralize module composition and data flow with local configuration modules. These mod-

ules identify required components through user input or data flow constraints, load the necessary
modules and steer the data flow between them. The framework also supports dynamic global con-
figuration from the front end or local analysis feedback, providing the flexibility to adapt quickly
and autonomously to performance observations including application phases.

We implement this framework through existing infrastructure: P M PI [15] virtualizes the PMPI
profiling interface to support our dynamic tool adaptation and component interaction, and MR-
Net [14] provides tree-based overlay network functionality with custom reduction nodes. P M PI
provides a generic tool stack mechanism that supports dynamic configuration and control of all
data sources within the application process, including non-MPI data sources, such as hardware
counter measurements or application annotations as well as those that employ MPI tracing or
profiling. We implement each data source as a separate PMPI module and then load them into
the dynamically created MPI tool stack. Using P™V M PI core services, the data is then forwarded
into the analysis leaf processes and from there through the MRNet reduction nodes to the front end
tool. Overall, our framework provides a flexible mechanism to tailor data collection, aggregation
and analysis to large-scale performance issues.

3 ScalaTrace: Scalable Communication Trace Compression

ScalaTrace [12] is a scalable MPI tracing tool set that exploits the SPMD nature of MPI applica-
tions to extract highly compressed, full communication traces. ScalaTrace uses the PMPI interface
to collect trace data, and we have integrated it as a data source module in our framework so that
its traces can be dynamically analyzed by other tools. Compared to previous MPI tracing mech-
anisms, its traces are orders of magnitude smaller, and it often achieves near constant trace size,
regardless of node count or application run length while preserving structural information and
temporal event order. Thus, ScalaTrace achieves the data reduction needed for petascale analysis.

3.1 Compression Strategy

Our trace-gathering tool set intercepts MPI calls via for (i = 1;i < 1000; i++) {
the PMPI mechanism during application execution. for (k =1; k < 100; k++) {

PN M PI loads the tracing library and enables the trac- MPI_Send(...); /* send call 1 */
ing of MPI operations and significant parameters without MPI_Recv(...); /* recv call 1%/
recording the message content. This intra-node informa- }

tion (task-level) is compressed on-the-fly. We also per- } MPI.Barrier(...); /* barrier call 17/

form inter-node compression upon application termina-

tion to obtain a single trace file that preserves structural Figure 2: Sample Code for PRSDs
information suitable for lossless replay. We describe the

compression at a high level here; algorithmic details are available elsewhere [12].

We compress MPI call entries within each node on-the-fly. We use regular section descriptors
(RSDs) to describe MPI events nested in a single loop in constant size [7] and power-RSDs
(PRSDs) to specify recursive RSDs nested in multiple loops [8]. MPI events may occur at any
level in PRSDs. For example, the tuple RS D1 :< 100, M PI_Sendl, M PI_Recvl > denotes a
loop with 100 iterations of alternating send/receive calls with identical parameters (omitted here),

and PRSD1 :< 1000, RSD1, M PI_Barrierl > denotes 1000 invocations of that loop (RSD1)
followed by a barrier. These constructs correspond to the code in Figure 2.

We perform generic and domain-specific optimizations in order to compress intra-node events ef-
ficiently. We identify calling sequences through a signature derived from a stack walk. Thus,
the trace distinguishes routines by call site (e.g., multiple MPI_Send uses). We identify request
handles by a relative index into a dynamically updated handle buffer, which portably abstracts
runtime-dependent data structures, (e.g., for handles returned by asynchronous communication
calls such as MPI_Isend). We aggregate iterative constructs with an indeterminate number of
repetitions of a common event type, such as looping over MPI_Waitsome to complete n asyn-
chronous events, into a single event that is abstracted as multiple calls.

ScalaTrace combines local traces into a single global trace upon application completion. Current
work is converting this mechanism to use MRNet as the application run progresses. Our inter-
node compression mechanism uses a tree-based overlay network to merge events and structures
(RSD and PRSDs) of nodes step-wise and in a bottom-up fashion when events, parameters, struc-
ture and iteration counts match. This compression is essential for petascale tracing, as it avoids
communication and storage requirements proportional to the job’s MPI task count.

We employ further generic and domain-specific optimizations for inter-node compression (across
tasks). We use location-independent encoding of communication end-points, which enables event
merging, particularly for stencil-based codes. We encode sequences of task IDs as PRSDs, which
allows a concise representation even for subsets of nodes. We also reorder events temporally when
they originate from different nodes (with no causal relation) for a more concise representation.

3.2 Preserving Statistical Timing Information

The objective of trace analysis is to find inefficiencies in the code, e.g., as indicated by load
imbalance between nodes. Such analysis requires knowledge about the timing between events.
Conventional trace techniques timestamp all communication events. However, our compression
techniques would fail if each event included a timestamp since the times would necessarily be dif-
ferent. We have designed two methods to capture event timing information: a low-cost statistical
recording of delta times (relative times between event pairs), and a variation-preserving recording
scheme [13]. Both methods support constant size representations.

The first method collects aggregate statistics (maximum, minimum, average and standard devia-
tion) of delta times and combines those statistics within PRSDs. Statistical aggregation is sufficient
for approximate event replay that preserves relative timing at a coarse grain. It allows one to deter-
mine if significant load imbalances exist. However, it does not capture finer-grained inefficiencies.

The second method, which addresses the shortcomings of the first for fine grained analysis, uses
size-limited histograms of delta times. Generally, a fixed number of bins suffices to gain more
insight about computational imbalance. Our method divides the range of delta times associated
with an event pair into k subrange bins (k constant). We increment counters corresponding to each
subrange when a delta time in the subrange is observed. We have designed a dynamic algorithm
based on weighted subrange partitioning to shift and to widen value ranges of bins with the objec-
tive to equalize bin frequencies. We track minimum and maximum values for each bin to provide
finer-grain information suitable for trace-based performance analysis.

10000 T T T T

100
1
0
)
N
[7p]
Q .01
8 0.0 o full
= M intra
[inter

0.0001

1078

1078

32 256 512 32 256 512 32 256 512 32 256 512

LU MG IS Mean
Benchmarks,Number of CPUs

Figure 3: Representative and Mean Trace Sizes

3.3 ScalaTrace Results

ScalaTrace produces near-constant size traces for most of the NAS parallel benchmarks. Overall,
our results fall into three classes based on trace size growth: near-constant size (DT, EP, LU, BT,
FT), sub-linear (MG, CG) and non-scalable (IS). Figure 3 shows the normalized trace sizes for one
benchmark from each class and also the geometric mean of the trace sizes across all benchmarks.
The bars compare full (no compression), intra-node (i.e., local compression only) and inter-node
traces. The poor IS scaling results from its use of MPT_Alltoallv with varying counts and
displacements, thus adversely affecting the inter-node merge due to parameter mismatches. Over-
coming this limitation is the subject of current research.

ScalaTrace supports generic replay of communication traces without the application code, suitable
for fast network simulation. We have implemented a replay engine that interprets the compressed
trace on-the-fly to issue communication calls in the same order they were issued by the application.
In effect, the replay engine is a reversal of the compression algorithm. When it encounters an RSD
or PRSD, it iteratively issues the communication calls recreating their structure, frequency and
parameters, with random message sizes. Our structure-preserving compression enables scalable
replay with very low memory requirements loosely bounded by the size of the compressed trace.

Using the replay engine, we conducted experiments to verify the correctness of our scalable com-
pression for all NAS benchmarks based on aggregate wall-clock replay times. Figure 4 shows
trace replay timings for three of the NAS parallel benchmarks. We achieve -9 to 14% accuracy for
intra-node traces and -22 to 5% accuracy for inter-node traces (except MG). In the case of MG, the
replay timing errors are higher since the communication time is significantly larger during replay
than in the original application, which may be due to imbalances introduced during replay.

Execution time
H
T T T

18
16
14
12
=
0.6 I Compute
04
0.2
0

I
"
_ &
il
i
it
I

cEfEdE e g g g En

Benchmarks,Number of CPUs

Figure 4: Representative replay timing results

4 Scalable Load-balance Monitoring

Measuring load-balance in large-scale systems is difficult because it requires that observations be
recorded for all processes. However, monitoring schemes with data requirements that are linear
in terms of the number of processes in the system will not scale. Compounding the problem,
many scientific applications use data-dependent, adaptive algorithms and may redistribute load
dynamically. To characterize the performance of these applications accurately, we must record
the load for each process over time. Application developers need three pieces of information to
diagnose load imbalance: i) where the problem occurs in the code; ii) on which processors the
load is imbalanced; and iii) when the imbalance emerges during execution.

Using our framework, we have built a tool [3] for scalable, system-wide load-balance tracing using
low-error compression techniques. We have developed an Effort Model for load-balance data, and
this instantiation of the framework uses two modules in conjunction with ScalaTrace to extract and
analyze model data. An Analysis module extracts the timing data necessary for the model from
ScalaTrace’s MPI event stream, and a lossy parallel wavelet compression module scalably reduces
the volume of numerical load-balance data.

4.1 The Effort Model

We introduce the Effort Model to express load in terms of high-level application semantics. Our
model measures two types of loops in SPMD applications, progress loops and effort loops, to

quantify load generated by application code. Units of progress and effort correspond to iterations
of these loops. Progress units correspond to absolute headway towards some application goal. In
many parallel simulations, iterations of outer time-step loops can serve as progress events. Effort
units correspond to runtime events that may have variable iteration counts, such as inner loops
with possibly data-dependent execution. We model per-process load as effort units.

Several factors contribute to the variable duration of effort loops. These factors include the size
and complexity of the data processed, convergence rates of numerical algorithms, availability and
performance of resources such as I/O, the network and even faulty nodes. Application data, in
particular, can impact many aspects of the computation, including its complexity, the degree of
refinement and the speed of convergence.

These two loop types lead to recurring patterns in an application’s full event trace. We have
devised a filter layer to generate model data by separating MPI traces into progress and effort
regions. Currently, we instrument progress loops with a single call to MPI_Pcontrol, which is
trivial for most parallel codes since the main time-step loop is easily located. Our load balance
monitoring tool automatically extracts effort regions, as discussed in the following subsection.

4.2 Effort Filtering

for (int i=0; i < max_timestep; i++) {

We approximate effort with the elapsed time spent [@— Wrpcontrolc; /7 phase 1 narker |

in non-communication regions of the code. We /7 convergent solver
. . . . while (Iconverged? {
assume that communication operations delineate ;7 cmutetiona effort ...
effort regions and that variable time in these re- !
. . . . [c) MPI_Pcontrol(2); // phase 2 marker] @
gions is what causes processes to wait on their

peers (i.e., load imbalance). At runtime, our [@ W aitalC 5
tool slices the trace into dynamic execution re- [—iwrremtite;

gions bounded by calls to MPI_Pcontrol or
other MPI functions likely to indicate effort re-
gions such as MPT _Barrier, MPTI_Allreduce
and MPTI Waitall. We monitor elapsed time in
each region separately, using the start and end call-
paths of the slices as identifiers. Our wrapper also records time spent in MPI operations so that

communication regions can be examined as well as computational effort.

o

Figure 5: Effort regions in a dynamic trace.

Figure 5 uses a state machine to show how our tracer automatically extracts effort regions. The
shaded MPI function call sites correspond to our machine’s states. States that correspond to a phase
transition are labeled with the phase’s identifier in parentheses. When the tracer encounters one of
these call sites, it records the effort associated with the current phase identifier, the start callpath
and the end callpath. Thus, we record effort along the edges of our state machine, which the figure
labels with their identifiers. Users can optionally delineate application phases (groups of effort
regions) with calls to MPT_Pcontrol (id), where id is a unique non-zero phase identifier.

As already discussed, we delineate progress events with an MPI_Pcontrol (0). Each time the
tracer encounters a progress event, it appends effort values for the current progress step to running
lists. Thus, at the end of a run with n progress steps and m effort regions, each process has m x n-
element vectors of effort values. Additionally, we annotate the trace when progress events occur.

These additional trace elements allow correlation of the recorded trace with stored effort data.

4.3 Scalable Aggregation for Numerical Data

Distributed
effort
measurements

As discussed, petascale performance tools cannot naively ELE
aggregate and store data from all processes. We have de-

signed a parallel compression algorithm to gather effort
data scalably from all monitored processes, and we have
integrated it as a component in our tool framework. Our
algorithm uses a parallel wavelet transform to precondi-
tion data for compression. Compression is structured as a J paal merg o
tree-based reduction over all transformed effort data. This s
component can be used as a generic lossy reduction tech-

nique for large volumes of numerical data. Figure 6: Parallel compression.

Parallel
Wavelet Transform

Local compression

Figure 6 gives a high-level overview of our lossy com-

pression architecture. We start with vectors of effort val-

ues for all progress steps distributed across the application’s processes. Each of these can be
considered a column in a distributed 2-dimensional matrix. Each row in the matrix represents the
observed effort values from each process for a particular time-step.

Our algorithm gathers distributed rows to fewer processes, then performs a parallel wavelet trans-
form on the more densely-distributed data. Row consolidation may appear to reduce parallelism,
but we are generally monitoring many different effort regions, each of which has its own dis-
tributed matrix. We thus balance the load by consolidating each metric on a disjoint set of proces-
sors, and by performing the wavelet transforms on each set in parallel.

After transforming the data, the algorithm thresholds the wavelet coefficients and streams them
to the root of a reduction tree. As the data is streamed through the tree, it is run-length encoded,
and finally the root node Huffman-encodes the remaining data. We are currently working on more
sophisticated compression schemes, such as parallel EZW coding [16].

Although we describe their use for load-balance measurement here, our framework makes both
our effort filter and our wavelet compression components available for use in other tools. Local
effort analysis tools could use effort model data in order to identify single processor bottlenecks.
Our wavelet compression algorithm has wide reuse potential as a generic, scalable aggregation
tool for numerical measurements gathered from large systems.

4.4 Compression Results

We have tested our compression framework on up to 1,024 processors on an IBM BG/L system.
For these tests, we used two well known simulation applications from LLNL: Raptor [6] and Par-
aDiS [2]. Figure 7(a) shows data collection time with our tool versus writing exhaustive data to
per-process files on disk. The traces compressed were 26 time-steps long and contained between
100 and 200 effort regions. At 64 processes, exhaustive data collection saturates the I/O infrastruc-
ture and output data is serialized. Thus, the exhaustive approach scales linearly. Our compression
algorithm, on the other hand, scales sub-linearly up to 1024 processes, taking near-constant exe-

14

y " 100000 : ; .
Raptor (BGL) —m— .
12 Raptor w/o bcompression (BGL) —5— - Quartlles —1
@ [ParaDiS (BGL) —e— 7 I
e ParaDiS w/o compression (BGL) —e— ~ 10000 ¢
g 10+ 1 2
2 S
j."’j s o 1000
£ [c
[Re]
5 or 2 100
£ g
£ § 10 }
S Ll
P 1
032 32 64 128 256 512 1024
Number of processes Processors
(a) Compression time for traces of ParaDiS and Raptor (b) Compression ratios for Raptor effort data.

cution time of under half a second for both applications. We achieve this performance because the
parallel wavelet transform we use [11] requires only nearest-neighbor communication.

Figure 7(b) shows the distribution of compression ratios achieved over all effort regions measured
for Raptor. The raw data compression ratios achieved here are impressive, and we were able to
achieve considerable data reduction. Data from a 1024-process run of Raptor was compressible
with a ratio of 244:1 and even a 32-processor run was compressed with a ratio of 71:1. Also,
although our compression algorithm is lossy, mean-squared error rates for data reconstructed from
compressed traces did not exceed 7.8%.

S Cluster analysis

We have described tools for scalable data collection, but we have not covered extensively how
our framework can be used to deploy online components for its analysis. One of our framework’s
major strengths is that it supports creation of new application-specific tools out of existing com-
ponents. It may take developers many iterations to find the set of measurements that yield insight
into a particular application’s performance and the ability to combine existing methods without
significant tool reengineering can speed this process.
The full performance measurement space is vast; many different quantities can be measured at
different points in execution, for different regions of the code and on different processes within
the same system. We are currently designing a third tool instantiation based on our framework that
will find correlations across multiple dimensions in this space with cluster analysis.
The output of our scalable load-balance measurement tool is a 3-dimensional matrix that spans
processes, progress steps and the full set of effort regions in application code. We are iteratively
applying clustering algorithms to this data to find:

1. Which regions in the code are consuming the most time?

2. What equivalence classes exist between regions of code across different processes?

3. What metrics contribute to performance problems within these regions?

We view each of these questions as a multidimensional clustering problem on data that our frame-
work gathers. For the first, we can cluster effort regions across processes by the amount of time

each process spends in particular effort regions across different timesteps. We can then determine
if the time spent in particular regions constitutes a load imbalance by determining which clusters
span only certain subsets of the full set of processes. We can use further statistical analyses and
other measurement components to find correlations between slow regions on particular processes
and performance metrics.

We can exploit the scalable wavelet representation outlined in §4 to perform this analysis quickly.
Since a wavelet representation can be thought of as a series of incrementally higher-resolution
approximations, we can perform this analysis quickly on a relatively small subset of the total data,
and we can incrementally refine it if we need more detailed cross-process analysis.

6 Conclusion

We have presented a scalable tool framework suitable for petascale systems. Our framework pro-
vides a mechanism to create dynamically reconfigurable application-specific tools, and we have
implemented three modules to demonstrate its versatility. First, we have created a module that
enables scalable, lossless compression of MPI traces. Second, we have developed a load-balance
model that characterizes parallel applications as a series of progress steps, each composed of mul-
tiple effort steps. Variability in the execution time of effort steps leads to load imbalances. We can
extract model data from our MPI trace tool using a simple filter module in our framework. Third,
we have developed a module for lossy compression using parallel, in-situ wavelet transforms to
enable scalable system-wide aggregation of effort data. We have briefly discussed how to imple-
ment a new tool that scalably identifies clusters of tasks and/or code regions that exhibit similar
performance. While full integration of the tracing mechanism within the context of our reconfig-
urable framework is on-going, our results for our existing tools demonstrate that our approach can
overcome the key tool challenges for petascale systems: low overhead instrumentation, scalable
data aggregation and on-line performance analysis.

References

[1] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P. Miller, and M. Schulz. Stack trace
analysis for large scale debugging. In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), Long Beach, CA, 2007.

[2] V. Bulatov, W. Cai, M. Hiratani, G. Hommes, T. Pierce, M. Tang, M. Rhee, K. Yates, and T. Arsenlis.
Scalable line dynamics in ParaDiS. In Supercomputing 2004 (SC’04), 2004.

[3] T. Gamblin, B. R. de Supinski, M. Schulz, R. J. Fowler, and D. A. Reed. Scalable load-balance
measurement for SPMD codes. In Submission, 2007.

[4] T. Gamblin, R. J. Fowler, and D. A. Reed. Scalable methods for monitoring and detecting behavioral
classes in scientific codes. Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS), April 14-18 2008.

[5] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E. Giampapa, R. A. Haring, P. Hei-
delberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-Burow,
T. Takken, and P. Vranas. Overview of the Blue Gene/L system architecture. IBM Journal of Re-
search and Development, 49(2/3), 2005.

(6]

(7]
(8]

[9]
(10]
(11]

[12]

(13]
[14]
[15]

(16]

[17]

(18]

J. Greenough, A. Kuhl, L. Howell, A. Shestakov, U. Creach, A. Miller, E. Tarwater, A. Cook, and
B. Cabot. Raptor — software and applications for BlueGene/L. In BlueGene/L Workshop. Lawrence
Livermore National Laboratory, 2003. Available from: http://www.lInl.gov/asci/platforms/bluegene/
agenda.html.

P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section analysis.
IEEE Transactions on Parallel and Distributed Systems, 2(3):350-360, July 1991.

J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A. McKee, and A. Yoo. METRIC: Tracking
down inefficiencies in the memory hierarchy via binary rewriting. In International Symposium on
Code Generation and Optimization, pages 289-300, Mar. 2003.

J. Mellor-Crummey. HPCToolkit: Multi-platform tools for profile-based performance analysis. In 5th
International Workshop on Automatic Performance Analysis (APART), November 2003.

C. L. Mendes and D. A. Reed. Monitoring large systems via statistical sampling. [International
Journal of High Performance Computing Applications, 18(2):267-277, 2004.

O. M. Nielsen and M. Hegland. Parallel performance of fast wavelet transforms. International Journal
of High Speed Computing, 11(1):55-74, 2000.

M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski. Scalable compression and replay of com-
munication traces in massively parallel environments. In International Parallel and Distributed Pro-
cessing Symposium, Apr. 2007.

P. Ratn, F. Mueller, B. R. de Supinski, and M. Schulz. Preserving time in large-scale communication
traces. In International Conference on Supercomputing, page (accepted), June 2008.

P. C. Roth, D. C. Arnold, and B. P. Miller. MRNet: A software-based multicast/reduction network for
scalable tools. In Supercomputing 2003 (SC03), 2003.

M. Schulz and B. R. de Supinski. PYMPI tools a whole lot greater than the sum of their parts. In
Supercomputing 2007 (SC’07), 2007.

J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions
on Signal Processing, 41(12):3445-3462, December 1993. Available from: http://ieeexplore.ieee.
org/xpl/freeabs_all.jsp?arnumber=258085.

S. Shende and A. Maloney. The TAU parallel performance system. International Journal of High
Performance Computing Applications, 20(2):287-331, 2006.

The Open|SpeedShop Team. Open|SpeedShop for Linux. Available from: http://www.
openspeedshop.org.

http://www.llnl.gov/asci/platforms/bluegene/agenda.html
http://www.llnl.gov/asci/platforms/bluegene/agenda.html
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=258085
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=258085
http://www.openspeedshop.org
http://www.openspeedshop.org

	Introduction
	A Dynamically Reconfigurable Analysis Framework
	ScalaTrace: Scalable Communication Trace Compression
	Compression Strategy
	Preserving Statistical Timing Information
	ScalaTrace Results

	Scalable Load-balance Monitoring
	The Effort Model
	Effort Filtering
	Scalable Aggregation for Numerical Data
	Compression Results

	Cluster analysis
	Conclusion

