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1. INTRODUCTION

Hard real-time systems need to satisfy stringent timing constraints, which are de-
rived from the systems they control. In general, upper bounds on the execution
times are needed to show the satisfaction of these constraints. Unfortunately, it is
not possible in general to obtain upper bounds on execution times for programs.
Otherwise, one could solve the halting problem. However, real-time systems only
use a restricted form of programming, which guarantees that programs always ter-
minate; recursion is not allowed or explicitly bounded as are the iteration counts of
loops. A reliable guarantee based on the worst-case execution time of a task could
easily be given if the worst-case input for the task were known. Unfortunately, in
general the worst-case input is not known and hard to derive.

We assume that a real-time system consists of a number of tasks, which realize
the required functionality. Figure 1 depicts several relevant properties of a real-time
task. A task typically shows a certain variation of execution times depending on the
input data or different behavior of the environment. The set of all execution times
is shown as the upper curve. The shortest execution time is called the best-case
execution time (BCET), the longest time is called the worst-case execution time
(WCET). In most cases the state space is too large to exhaustively explore all pos-
sible executions and thereby determine the exact worst-case and best-case execution
times. An approach based on measurement of execution times considers a subset of
the possible executions and determines the minimal observed and maximal observed
execution times. These will in general overestimate the BCET and underestimate
the WCET. Today, this is the common method in most parts of industry to derive
execution-time bounds. It is often called dynamic timing analysis.

Other approaches approximate the WCET from above by computing an upper
bound and the BCET from below by computing a lower bound of all execution
times. They use abstraction of the task to make timing analysis of the task feasible.
Abstraction loses information, and thus is responsible for the distance between
worst-case times and upper bounds and between best-case times and lower bounds.
How much is lost depends both on the methods used for timing analysis and on
overall system properties, such as the hardware architecture and characteristics
of the software. These system properties can be subsumed under the notion of
timing predictability. If real-time guarantees are required, the determined upper
bounds (and lower bounds) have to be safe, i.e., they must never underestimate
(overestimate) the real execution time. Thus, the upper bounds represent the
worst-case guarantee a tool can give. Furthermore, the bounds should be tight,
i.e., the overestimation (underestimation) should be as small as possible. Thus, the
main criteria for the acceptance of a tool that is used to obtain timing guarantees
are soundness of the methods—do they produce safe results?—and precision—are
the derived bounds tight?

The determined upper bounds are input to a schedulability analysis for this set
of tasks in order to check that all the timing constraints of the task set will be met
(“timing validation”).

Performance prediction is also required for application domains that do not have
hard real-time characteristics. There, systems may have deadlines, but are not re-
quired to absolutely observe them. Different methods may be applied and different
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Fig. 1. Basic notions concerning timing analysis of systems. The lower curve represents a subset of
measured executions. Its minimum and maximum are the minimal observed execution times and
maximal observed execution times, resp. The darker curve, an envelope of the former, represents
the times of all executions. Its minimum and maximum are the best-case and worst-case execution
times, resp., abbreviated BCET and WCET.

criteria may be used to measure the quality of methods and tools.

The literature on timing analysis has created a confusion by not always making
a distinction between worst-case execution times and estimates for them. We will
avoid this misnomer in this survey.

For brevity, we will call the problem to determine upper bounds for the execution
times the WCET problem. The process of deriving execution-time bounds is called
timing analysis, and a tool that derives upper bounds and sometimes also lower
bounds on the execution times of application tasks is called a timing-analysis tool.
If it only computes upper bounds it is also for short called a WCET tool. We will
concentrate on the determination of upper bounds unless otherwise stated. All
tools described in Section 5 with the exception of SymTA/P offer timing analysis
of tasks in uninterrupted execution. Here, a task may be a unit of scheduling by an
operating system, a subroutine, or some other software unit. This unit is mostly
available as a fully-linked executable. Some tools, however, assume the availability
of source code and of a compiler supporting a subsequent timing analysis.

Organization of the article

Section 2 introduces the problem and its subproblems, describes methods being
used to solve it. Section 3 and 4 present two categories of approaches, static and
measurement-based. Section 5 consists of detailed tool descriptions. Section 6
resumes the state of the art and the deployment and use in industry. Section 7
lists limitations of the described tools. Section 8 gives a condensed overview of
the tools in a tabulated form. Section 9 explains, how timing analysis is or should
be integrated in the development process. Section 10 concludes the paper by pre-
senting open problems and the perspectives of the domain mainly determined by
architectural trends.
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2. OVERVIEW OF TIMING-ANALYSIS TECHNIQUES

This section describes the problems that make timing analysis both difficult and
interesting as a research topic, presents a decomposition of the problem into sub-
tasks, and categorizes some of the techniques used to determine bounds on execution
times.

2.1 Problems and Requirements

Timing analysis attempts to determine bounds on the execution times of a task
when executed on a particular hardware. The time for a particular execution de-
pends on the path through the task taken by control and the time spent in the
statements or instructions on this path on this hardware. Accordingly, the de-
termination of execution-time bounds has to consider the potential control flow
paths and the execution times for this set of paths. A modular approach to the
timing-analysis problem splits the overall task into a sequence of subtasks. Some
of them deal with properties of the control flow, others with the execution time of
instructions or sequences of instructions on the given hardware.

2.1.1 Data-Dependent Control Flow. The task to be analyzed attains its WCET
on one (or sometimes several) of its possible execution paths. If the input and the
initial state leading to the execution of this worst-case path were known, the prob-
lem would be easy to solve. The task would then be started in this initial state
with this input, and the execution time would be measured. In general, however,
this worst-case input and initial state are not known and hard or impossible to de-
termine. A data structure, the task’s control-flow graph, CFG, describes a superset
of the set of all execution paths. The task’s call graph usually is integrated into
the CFG.

A first problem that has to be solved is the construction of the control-flow
graph and call graph of the task from a source or a machine-code version of the
task. They must contain all of the instructions of the task (function closure) under
analysis. Problems are created by dynamic jumps and dynamic calls with computed
target address. Dynamic jumps are mainly due to switch/case structures and are
a problem only when analyzing machine code, because even assembly code usually
labels all switch/case branches. Dynamic calls also occur in source code in the form
of calls through function pointers and calls to virtual functions. A component of a
timing-analysis tool which reconstrutcs the CFG from a machine program is often
called a Frontend.

Different paths through the CFG are taken depending directly or indirectly on
input data. Some paths in the superset described by the CFG will never be taken,
for instance those that have contradictory consecutive conditions. Eliminating such
paths may increase the precision of timing analysis. The more the analysis knows
about the data flow through the task, the more it knows about the outcome of and
the relationship between conditions, the more paths it may recognize as infeasible.

A phase called Control-Flow Analysis (CFA) determines information about the
possible flow of control through the task to increase the precision of the subsequent
analyzes. Control flow analysis may attempt to exclude infeasible paths, determine
execution frequencies of paths or the relation between execution frequencies of
different paths or subpaths etc. Control-Flow Analysis has previously been called
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High-level Analysis.

Tasks spend most of their execution time in loops and in (recursive) functions.
Therefore, it is an essential task of CFA to determine bounds on the iterations of
loops and on the depth of recursion of functions. A necessary ingredient for this
are the values of variables, registers, or memory cells occurring in conditions tested
for termination of loops or recursion.

It is worth noting that complex processors may actually execute an instruction
stream in a different order than the one determined by control-flow analysis. This
is due to pipelining (prefetching and delayed branching), branch prediction, and
speculative or out-of-order execution.

2.1.2 Context Dependence of Execution Times. Early approaches to the timing-
analysis problem assumed context independence of the timing behavior; the execu-
tion times for individual instructions were independent from the execution history
and could be found in the manual of the processor. From this context independence
was derived a structure-based approach [Shaw 1989]: if a task first executes a code
snippet A and then a snippet B, the worst-case bound for A; B was determined as
that for A, ubA, added to that determined for B, ubB, formally ubA;B = ubA +ubB.
This context independence, however, is no longer true for modern processors with
caches and pipelines. The execution time of individual instructions may vary by
several orders of magnitude depending on the state of the processor in which they
are executed. Thus, the execution time of B can heavily depend on the execution
state that the execution of A produced. Any tool should exploit the knowledge that
A was executed before B to determine a precise upper bound for B in the context
A. Determining the upper bound ubA;B for A; B by ubA;B = ubA + ubB ignores
this information and will in general not obtain precise results.

A phase called Processor-Behavior Analysis gathers information on the processor
behavior for the given task, in particular the behavior of the components that influ-
ence the execution times, such as memory, caches, pipelines, and branch prediction.
It determines upper bounds on the execution times of instructions or basic blocks.
Processor-Behavior Analysis has previously been called Low-level Analysis.

2.1.3 Timing Anomalies. The complexity of the processor-behavior analysis
subtask and the set of applicable methods critically depend on the complexity of
the processor architecture [Heckmann et al. 2003]. Most powerful microprocessors
suffer from timing anomalies [Lundqvist and Stenström 1999c]. Timing anomalies
are contra-intuitive influences of the (local) execution time of one instruction on
the (global) execution time of the whole task. This concept is quite complex. So,
we will try to explain it in some detail.

We assume that the system under consideration, executing hardware and ex-
ecuted software, are too complex to allow exhaustive execution or simulation. In
addition, not all input data are known, so that parts of the execution state are miss-
ing in the analysis. Unknown parts of the state lead to non-deterministic behavior,
if decisions depend on these unknown parts. For timing analysis, this means that
the execution of an instruction or an instruction sequence considered in an initial
abstract state may produce different times based on different assumptions about
the missing state components. For example, missing information about whether
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the next instruction will be in the cache may lead to one execution starting with a
cache load contributing the cache-miss penalty to the execution time, while another
execution will start with an instruction fetch from the cache. Intuition would sug-
gest that the latter execution would always lead to the shorter execution time of the
whole task. On processors with timing anomalies, however, this need not be true.
The latter execution may in fact lead to a longer task execution time. This was
observed on the Motorola ColdFire 5307 processor [Heckmann et al. 2003]. The
reason is the following. This processor speculates on the outcome of conditional
branches, that is, it prefetches instructions in one of the directions of the conditional
branch. When the condition is finally evaluated it may turn out that the processor
speculated in the wrong direction. All the effects produced so far have to be undone.
In addition, fetching the wrong instructions has partly ruined the cache contents.
Taken together, the costs of the mis-prediction exceed the costs of a cache miss.
Hence, the local worst case, the I-cache miss, leads to the globally shorter execution
time since it prevents a more expensive branch mis-prediction. This exemplifies one
of the reasons for timing anomalies, speculation-caused anomalies. One such
anomaly is shown in Figure 2.1

Prefetch

A

A

Cache Miss

Cache Hit C - Miss due to Prefetch

C

Branch Condition
Evaluated

Fig. 2. A timing anomaly caused by speculation.

Another type of timing anomalies are instances of well-known scheduling anoma-

lies, first discovered and published by Graham [Graham 1966]. These occur when
a sequence of instructions, partly depending on each other, can be scheduled differ-
ently on the hardware resources, such as pipeline units. Depending on the selected
schedule the execution of the instructions or pipeline phases takes different times.
Figure 3 shows an example of a scheduling-cause timing anomaly.

Timing anomalies violate some intuitive, but incorrect assumption, namely that
always taking the local worst-case transition when there is a choice produces the
global worst-case execution time. This means that the analysis cannot greedily limit
its search for upper bounds by choosing the worst cases for each instruction. The
existence of timing anomalies in a processor thus has a strong influence on the ap-
plicability of methods for timing analysis for that processor [Heckmann et al. 2003].

1Figures 2 and 3 are taken from [Reineke et al. 2006].
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Fig. 3. A scheduling-caused timing anomaly.

—The assumption that only local worst cases have to considered to safely determine
upper bounds on global execution times is unsafe.

—The assumption that one could identify a worst initial execution state, to safely
start measurement or analysis of a piece of code in, is unsafe.

The consequences for timing analysis of systems to be executed on processors
with timing anomalies are as follows:

—The analysis may be forced to follow execution through several successor states,
whenever it encounters an abstract state with a non-deterministic choice between
successor states. This may lead to a quite large state space to consider.

—The analysis has to be able to express the absence of state information instead of
assuming some worst initial state. Absent information in abstract states stand
for all potential concrete instances of these missing state components, thus do
not wrongly exclude any possible execution.

2.2 Classification of Approaches

We present two different classes of methods.

Static methods. These methods do not rely on executing code on real hardware
or on a simulator. It rather takes the task code itself, maybe together with some
annotations, analyzes the set of possible control flow paths through the task, com-
bines control flow with some (abstract) model of the hardware architecture, and
obtains upper bounds for this combination. One such static approach is described
in detail in [Wilhelm 2005].

Measurement-based methods. These methods execute the task or task parts on
the given hardware or a simulator for some set of inputs. They then take the
measured times and derive the maximal and minimal observed execution times,
see 1, or their distribution or combine the measured times of code snippets to
results for the whole task.

Only methods and tools that approximate the execution times from above to
solve the WCET problem can be used to derive guarantees. Measurement-based
tools can not guarantee to catch the worst case and thus may in fact approximate
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the WCET from below. However, they may give the developer a feeling about the
execution time in common cases and the likelihood of the occurrence of the worst
case.

2.3 Methods for Subtasks of Timing Analysis

We briefly describe some methods that are being used to solve the above mentioned
subtasks of timing analysis. These methods are imported from other fields of com-
puter science such as compiler construction, computer architecture, performance
estimation, and optimization.

These methods can be categorized according to several properties: whether they
are automatic or manual, whether they are generic, i.e., stand for a whole class of
methods, or are specific instances of such a generic method, and whether they are
applied at analysis time or at tool-construction time.

2.3.1 Static Program Analysis. Static program analysis is a generic method to
determine properties of the dynamic behavior of a given task without actually
executing the task [Cousot and Cousot 1977; Nielson et al. 1999]. These properties
are often undecidable. Therefore, sound approximations are used; they have to be
correct, but may not necessarily be complete. An example from our domain is
instruction-cache analysis, which attempts to determine for each point in the task
which instructions will be in the cache every time execution reaches this program
point. For straight-line programs and known initial cache contents this is easy and
can be done by a standard simulator. However, it is in general undecidable for
tasks whose control flow depends on input data. A sound analysis will compute
a subset of the instructions that will definitely be in the instruction cache every
time execution reaches the program point. More instructions may actually be in
the cache, but the analysis may not be able to find this out. Several instances of
static program analysis are being used for timing analysis.

2.3.2 Simulation. Simulation is a standard technique to estimate the execution
time for tasks on hardware architectures. A key advantage of this approach is that
it is possible to derive rather accurate estimations of the execution time for a task
for a given set of input data and assuming sufficient detail of the timing model of the
architectural simulator. [Desikan et al. 2001] compares timing measurements with
runs on different simulators and gives indication of the errors obtained for an Alpha
architecture. The Simplescalar [Austin et al. 2002] simulator is used, which some
WCET groups also do. The results show large differences in timing compared to
the measured values. The measurement method used might maybe be questioned,
but at least it shows that the Simplescalar simulator should not be trusted as a
clock-cycle accurate simulator for all types of architectures.

Unfortunately, standard cycle-accurate simulators can not be used off-hand for
static methods for timing analysis, since static methods should not simulate exe-
cution for particular input data, but rather for all input data. Thus, input data is
assumed to be unknown. Unknown input data leads to unknown parts in the execu-
tion state of the processor and non-deterministic decisions at control-flow branches.
Simulators modified to cope with these problems are being used in several of the
tools described later.
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2.3.3 Abstract Processor Models. Processor-behavior analysis needs a model of
the architecture. This does not need not be a concrete model implementing all of the
functionality of the target hardware. A simplified model that is conservative with
respect to the timing behavior is sufficient. Such an abstract processor model either
is a part of the engine for processor-behavior analysis or is input to the construction
of such an engine. In any case, the construction of an abstract processor model is
done at tool-construction time.

One inherent limitation of all the approaches that are based on some model of
the hardware architecture is that they rely on the timing accuracy of the model.
In general, computer vendors do not disclose enough information about the mi-
croarchitecture so that one can develop and safely validate the accuracy of a timing
model. Without such validation, any WCET tool based on an abstract model of
the hardware can not be trusted without further assurance. Additional means for
model validation have to be taken. This could be done by measurements. Mea-
sured execution times are compared against predicted bounds. Another method is
trace validation; it is checked whether externally observable traces are projections
of traces as predicted by the model. Not all events predicted by the model are
externally observable. However, both methods are similar to testing; they can dis-
cover the presence of errors, but not prove their absence. Stronger guarantees can
be given by equivalence checking between different abstraction levels. An ongoing
research activity is the formal derivation of abstract processor models from concrete
models.

2.3.4 Integer Linear Programming (ILP). Linear programming [Chvatal 1983]
is a generic methodology to code the requirements of a system in the form of a
system of linear constraints. Additionally given is a goal function that has to be
maximized or minimized to obtain an optimal assignment of values to the system’s
variables. One speaks of Integer Linear Programming if these values are required
to be integers. While linear programs can be solved in polynomial time, requiring
the solution to be integer makes the problem NP-hard. This indicates that the use
of ILP should be restricted to small problem instances or to subproblems of timing
analysis generating only small problem instances.

In the timing-analysis domain, ILP is used in the IPET approach to bounds
calculation, see Section 3.4. The control flow of tasks is translated into integer
linear programs, essentially by coding Kirchhoff’s rule about the conservation of
flow. Extra information about the control flow can often be coded as additional
constraints. The goal function expresses the execution time of the program under
analysis. Its maximal value is then an upper bound for all execution times.

An escape from the exponential complexity that is often taken in other appli-
cation domains is to use heuristics. These heuristics will in general only arrive at
suboptimal solutions. A suboptimal solution in timing analysis represents an unsafe
estimate for the WCET. Thus the escape of resorting to heuristics is barred.

ILP has been used for a completely different purpose, namely to model (very
simple) processor models [Li et al. 1995b; Li et al. 1995a]. However, the complexity
of solving the resulting integer linear programs did not allow this approach to
scale [Wilhelm 2004].
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2.3.5 Annotation. The annotation of tasks with information available from the
developer is a generic technique to support subsequently applied automatic vali-
dation techniques. The developer using a WCET tool may have to supply some
information that the tool needs in separate files or by annotating the task. This
information describes

—the memory layout and any needed characteristics of memory areas,

—ranges for the input values of the task,

—information about the control flow of the task if not determined automatically,
e.g. loop bounds, shapes of nested loops, if iterations of inner loops depend on
iteration variables of outer loops, frequencies of paths or branches taken,

—deviations from the standard function-calling conventions, and

—directives as to the desired precision of the result, which often depends on the
invested effort for differentiating contexts.

2.3.6 Frontend. Most WCET tools analyze software at the executable level,
since only at this level is all necessary information available. The first phase in
timing analysis is thus the decoding of the executable and the reconstruction of its
control flow. This can be quite involved depending on the instruction set of the
processor and the code-generation patterns of the compiler. Some timing analysis
tools are integrated with a compiler which emits the neccessary CFG and call graph
for the analysis.

2.3.7 Visualization of Results. The results of timing analysis are presented in
human-readable form, best in the form of an informative visualization. This usually
shows the call and control-flow graphs annotated with computed timing information
and possibly also information about the processor states.

The following two sections present the two categories of approaches, static and
measurement-based approaches. Section 5 describes the available tools from these
two categories in more detail.

3. STATIC METHODS

This class of methods does not rely on executing code on real hardware or on a
simulator, but rather takes the task code itself, combines it with some (abstract)
model of the system, and obtains upper bounds from this combination.

Figure 4 shows the core components of a static timing-analysis tool and the flow
of information.

3.1 Value Analysis

This is a static program analysis. Any method for data-cache behavior analysis
needs to know effective memory addresses of data, in order to determine where a
memory access goes. Effective addresses are only available at run time. However, a
value analysis, as implemented in aiT, see Section 5.1, in SWEET, see Section 5.7,
and Bound-T, see Section 5.2 is able to determine many effective addresses in
disciplined code statically [Thesing et al. 2003]. It does so by computing ranges
for the values in the processor registers and local variables at every program point.
This analysis is also useful to determine loop bounds and to detect infeasible paths.
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Fig. 4. Core components of a timing-analysis tool. The flow of information is shown by solid
arrows. The dashed arrow represents tool-construction input.

3.2 Control-Flow Analysis

The purpose of control flow analysis is to gather information about possible exe-
cution paths. This set is always finite, since termination must be guaranteed. The
exact set of paths can in general not be determined. Any superset of this set will
be a safe approximation. The smaller this superset is the better. The execution
time of any safely eliminated path can be ignored in computing the upper bound
and thus will not contribute to it.

The input of flow analysis consists of a task representation, e.g. the call graph
and the control-flow graph of the task and possibly additional information such as
ranges for the input data and iteration bounds of some loops. The latter are either
determined by a preceding value analysis or provided by the user. The result of the
flow analysis can be seen as constraints on the dynamic behavior of the task. This
includes information on which functions may be called, on dependencies between
conditionals, and on the (in)feasibility of paths, etc.

There are a number of approaches to automatic flow analysis. Some of the meth-
ods are general, while others are specialized for certain types of code constructs.
The research has mostly focused on loop bound analysis, since bounds on loops
are necessary to derive execution-time bounds. The methods also differ in the type
of codes they analyze, i.e., source-, intermediate- (inside the compiler) or machine
code.

Control-flow analysis is generally easier on source code than on machine code, but
it is difficult to map the results to the machine-code program because compilation,
in particular code optimization and linking may change the control-flow structure.

Gustafsson et al. [Gustafsson et al. 2003] uses a combination of flow-analysis
methods. For simple loops, pattern matching is used. The pattern matching
uses the result of a value analysis. For more complex loop constructs, an abstract
interpretation-based method is used [Gustafsson 2000; Gustafsson et al. 2005]. The
analysis is performed on the intermediate code level. Pattern-matching methods
are based on the fact that for most loops the supported compilers use the same or
similar groups of machine instructions to initialize, update and test loop counters.
Pattern-matching finds occurrences of such instruction groups in the code and an-
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alyzes the values of the instruction operands to find the counter range, for example
in terms of the initial value, the increment or decrement and the final value of
the counter. The drawback of this method is that it can be defeated by compiler
optimizations, or by evolution of the compiler itself, if this changes the emitted
instruction patterns so much that the matching fails.

Bound-T, see Section 5.2, models the computational effect of each instruction
as a relation between the ”before” and ”after” values of the variables (registers
and other storage locations). The relation is expressed in Presburger Arithmetic
as a set of affine (linear plus constant term) equations and inequations, possibly
conditional. Instruction sequences are modelled by concatenating (joining) the
relations of individual instructions. Branching control-flow is modelled by adding
the branch condition to the relation. Merging control-flow is modelled by taking
the union of the inflowing relations.

Loops are modelled by analysing the model of the loop-body to classify variables
as loop-invariant or loop-variant. The whole loop (including an unknown number
of repetitions) is modelled as a relation that keeps the loop-invariant variables
unchanged and assigns unknown values to the loop-variant variables. This is a
first approximation that may be improved later in the analysis when the number
of loop iterations is bounded. With this approximation, the computations in an
entire subprogram can be modelled in one pass (without fixpoint iteration).

To bound loop iterations, Bound-T first re-analyses the model of the loop body in
more detail to find loop-counter variables. A loop counter is a loop-variant variable
such that one execution of the loop body changes the variable by an amount that
is bounded to a finite interval that does not contain zero. If Bound-T also finds
bounds on the initial and final values of the variable, a simple computation gives a
bound on the number of loop iterations.

Whalley et al. [Healy et al. 1998; Healy and Whalley 1999] use data flow analysis
and special algorithms to calculate bounds for single and nested loops in conjunc-
tion with a compiler. [Stappert and Altenbernd 2000] uses symbolic execution on
the source code level to derive flow information. aiT’s loop-bound analysis, see
Section 5.1, is based on a combination of an interval-based abstract interpretation
and pattern-matching [Thesing 2004] working on the machine code.

The result of control-flow analysis is an annotated syntax tree for the structure-
based approaches, see Section 3.4, and a set of flow facts about the transitions of
the control-flow graph, otherwise. These flow facts are translated into a system of
constraints for the methods using implicit path enumeration, see Section 3.4.

3.3 Processor-Behavior Analysis

As stated in Section 2.1.2, a typical processor contains several components that
make the execution time context-dependent, such as memory, caches, pipelines and
branch prediction. The execution time of an individual instruction, even a memory
access depends on the execution history. To find precise execution-time bounds for
a given task, it is necessary to analyze what the occupancy state of these processor
components for all paths leading to the task’s instructions is. Processor-behavior
analysis determines invariants about these occupancy states for the given task.
In principle, no tool is complete that does not take the processor periphery into
account, i.e., the full memory hierarchy, the bus, and peripheral units. In so far, an
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even better term would be hardware-subsystem behavior analysis. The analysis is
done on a linked executable, since only this contains all the necessary information.
It is based on an abstract model of the processor, the memory subsystem, the buses,
and the peripherals, which is conservative with respect to the timing behavior of
the concrete hardware, i.e., it never predicts an execution time less than that which
can be observed on the concrete processor.

The complexity of deriving an abstract processor model strongly depends on the
class of processor used.

—For simpler 8bit and 16bit processors the timing model construction is rather
simple, but still time consuming, and rather simple analyses are required. Com-
plicating factors for the processor behavior analysis includes instructions with
varying execution time due to argument values and varying data reference time
due to different memory area access times.

—For somewhat more advanced 16bit and 32bit processors, like the NEC V850E,
possessing a simple (scalar) pipeline and maybe a cache, one can analyze differ-
ent hardware features separately, since there are no timing anomalies, and still
achieve good results. Complicating factors are similar as for the simpler 8- and
16-bit processors, but also include varying access times due to cache hits and
misses and varying pipeline overlap between instructions.

—More advanced processors, which possess many performance enhancing features
that can influence each other, will exhibit timing anomalies. For these, timing-
model construction is very complex. Also the analyses to be used are less modular
and more complex [Heckmann et al. 2003].

In general, the execution-time bounds derived for an instruction depend on the
states of the processor at this instruction. Information about the processor states
is derived by analyzing potential execution histories leading to this instruction.
Different states in which the instruction can be executed may lead to widely varying
execution times with disastrous effects on precision. For instance, if a loop iterates
100 times, but the worst case of the body, ebody, only really occurs during one of
these iterations and the others are considerably faster (say twice as fast), the over-
approximation is 99∗ 0.5 ∗ ebody. Precision can be gained by regarding execution in
classes of execution histories separately, which correspond to flow contexts. These
flow contexts essentially express by which paths through loops and calls control can
arrive at the instruction. Wherever information about the processor’s execution
state is missing a conservative assumption has to be made or all possibilities have
to be explored.

Most approaches use Data Flow Analysis, a static program-analysis technique
based on the theory of Abstract Interpretation [Cousot and Cousot 1977]. These
methods are used to compute invariants, one per flow context, about the proces-
sor’s execution states at each program point. If there is one invariant for each
program point, then it holds for all execution paths leading to this program point.
Different ways to reach a basic block may lead to different invariants at the block’s
program points. Thus, several invariants could be computed. Each holds for a
set of execution paths, and the sets together form a partition of the set of all ex-
ecution paths leading to this program point. Each set of such paths corresponds
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to what sometimes is called a calling context, a context for short. The invariants
express static knowledge about the contents of caches, the occupancy of functional
units and processor queues, and of states of branch-prediction units. Knowledge
about cache contents is then used to classify memory accesses as definite cache
hits (or definite cache misses). Knowledge about the occupancy of pipeline queues
and functional units is used to exclude pipeline stalls. Assume that one uses the
following method: First accept Murphy’s Law, that everything that can go wrong,
actually goes wrong, assuming worst cases all over. Then both types of “good
news” of the type described above can often be used to reduce the upper bounds
for the execution times. Unfortunately, this approach is not safe for many processor
architectures with timing anomalies, see Section 2.1.3.

3.4 Estimate Calculation

The purpose is to determine an estimate for the WCET. In dynamic approaches the
WCET estimate can underestimate the WCET, since only a subset of all executions
is used to compute it. Combining measurements of code snippets to end-to-end
execution times can also overestimate the WCET, if pessimistic estimates for the
snippets are combined. In static approaches this phase computes an upper bound
of all execution times of the whole task based on the flow and timing information
derived in the previous phases. It is then usually called Bound Calculation. There
are three main classes of methods combining analytically determined or measured
times to end-to-end estimates proposed in literature: structure-based, path-based,
and techniques using implicit path enumeration (IPET).

Fig. 5 taken from [Ermedahl 2003] shows the different methods. Fig. 5(a) shows
an example control-flow graph with timing on the nodes and a loop-bound flow
fact.

In structure-based bound calculation as used in Heptane, cf. [Colin and Puaut 2000]
and Section 5.6, an upper bound is calculated in a bottom-up traversal of the syn-
tax tree of the task combining bounds computed for constituents of statements
according to combination rules for that type of statement [Colin and Bernat 2002;
Colin and Puaut 2000; Lim et al. 1995]. Fig. 5(d) illustrates how a structure-based
method would proceed according to the task syntax tree and given combination
rules. Collections of nodes are collapsed into single nodes, simultaneously deriv-
ing a timing for the new node. As stated in Section 2.1.2, precision can only be
obtained if the same code snippet is considered in a number of different flow con-
texts, since the execution times in different flow contexts can vary widely. Taking
flow contexts into account requires transformations of the syntax tree to reflect the
different contexts. Most of the profitable transformations, e.g. loop unrolling, are
easily expressed on the syntax tree [Colin and Bernat 2002].

Some problems of the structure-based approach are that not every control flow
can be expressed through the syntax tree, that the approach assumes a very straight-
forward correspondence between the structures of the source and the target program
not easily admitting code optimizations, and that it is in general not possible to
add additional flow information as can be done in the IPET case.

In path-based bound calculation, the upper bound for a task is determined by
computing bounds for different paths in the task, searching for the overall path
with the longest execution time [Healy et al. 1999; Stappert and Altenbernd 2000;
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Stappert et al. 2001]. The defining feature is that possible execution paths are
represented explicitly. The path-based approach is natural within a single loop
iteration, but has problems with flow information extending across loop-nesting
levels. The number of paths is exponential in the number branch points, possibly
requiring heuristic search methods.

Fig. 5(b) illustrates how a path-based calculation method would proceed over
the graph in Fig. 5(a). The loop in the graph is first identified and the longest
path within the loop is found. The time for the longest path is combined with flow
information about the loop bound to extract an upper bound for the whole task.

In IPET, program flow and basic-block execution time bounds are combined into
sets of arithmetic constraints. The idea was originally proposed in [Li and Malik 1995]
and adapted to more complex flows and hardware timing effects in [Puschner and Schedl 1995;
Engblom 2002; Theiling 2002a; Theiling 2002b; Ermedahl 2003]. Each basic block
and program flow edge in the task is given a time coefficient (tentity ), expressing
the upper bound of the contribution of that entity to the total execution time every
time it is executed and a count variable (xentity ), corresponding to the number of
times the entity is executed. An upper bound is determined by maximizing the
sum of products of the execution counts and times (

∑
i∈entities

xi ∗ ti), where the
execution count variables are subject to constraints reflecting the structure of the
task and possible flows. The result of an IPET calculation is an upper timing bound
and a worst-case count for each execution count variable.

Fig. 5(c) shows the constraints and formulae generated by an IPET-based bound-
calculation method for the task illustrated in Fig. 5(a). The start and exit con-
straints state that the task must be started and exited once. The structural con-
straints reflect the possible program flow, meaning that for a basic block to be
executed it must be entered the same number of times as it is exited. The loop
bound is specified as a constraint on the number of times the loop-head node A can
be executed.

IPET is able to handle different types of flow information. It has traditionally
been applied in a global fashion treating the whole task and all flow information
together as a unit. IPET-based bound calculation uses integer linear program-
ming (ILP) or constraint programming (CP) techniques, thus having a complexity
potentially exponential in the task size. Also, since flow facts are converted to con-
straints, the size of the resulting constraint system grows with the number of flow
facts.

3.5 Symbolic Simulation

Another static method is to simulate the execution of the task in an abstract model
of the processor. The simulation is performed without input, the simulator thus
has to be capable to deal with partly unknown execution state. This method
combines flow analysis, processor-behavior prediction, and bound calculation in one
integrated phase [Lundqvist 2002]. One problem with this approach is that analysis
time is proportional to the actual execution time of the task. This can lead to a
very long analysis since simulation is typically orders of magnitudes slower than
native execution.
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4. MEASUREMENT-BASED METHODS

These methods execute the task on the given hardware or a simulator for some
set of inputs and determine the maximum of the measured times or their distribu-
tion. As stated above, measurement can not be used to derive guarantees, since in
general only a subset of the executions not guaranteed to contain the worst case
is considered. Even one execution would be enough if the worst-case input were
known. An additional problem is that only a subset of the possible contexts (ini-
tial processor states) is used for each measured basic block or other kind of code
segment. The path-subset problem can be solved in the same way as for the static
methods, by using control flow analysis to find all possible paths and then using
bound calculation to combine the measured times of the code segments into an
overall time bound. This solution would include all possible paths, but would still
produce unsafe results if the measured basic-block times were unsafe. The context-
subset problem can be attacked by running more tests to measure more contexts or
by setting up a worst-case initial state at the start of each measured code segment.
However, identifying worst-case initial states is hard or even impossible for complex
processors, see Section 4. The first method (more tests) only decreases, but does
not eliminate the risk of unsafe results and is expensive unless intensive testing is
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already done for other reasons. The second method (use worst-case initial state)
would be safe if one could determine a worst-case initial state.

Some measurement-based tools, for example SymTA/P, see Section 5.9, can com-
pute ET bounds for processors with simple timing behaviour, but produce only
estimates of the BCET and WCET for more complex processors. Other tools, for
example RapiTime, see Section 5.10, collect and analyse multiple measurements
to provide a picture of the variability of the execution time of the application, in
addition to estimates of the BCET and WCET.

There are multiple ways in which the measurement can be performed. The sim-
plest approach is by extra instrumentation code that collects a timestamp or CPU
cycle counter (available in most processors). Mixed HW/SW instrumentation tech-
niques require external hardware to collect timings of lightweight instrumentation
code. Fully transparent (non-intrusive) measurement mechanisms are possible us-
ing hardware tracing mechanisms like the NEXUS standard and the ETM tracing
mechanism from ARM. Measurements can also be performed from the output of
processor simulators or even VHDL simulators.

The methodology is basically the same for all approaches: run the same task
many times and try different potentially “really bad” input values to provoke the
WCET. This is time-consuming and difficult work, and even worse, it is hard to
guarantee that the actual WCET has been found. Moreover, each measurement
run only gives the execution time for a single execution path. If the number of
possible test-cases is large it might be impossible to perform exhaustive testing.

The results of measurement-based analysis can be used to provide a picture of
the actual variability of the execution time of the application. They can also be
used to provide validation for the static analyis approaches. Measurement should
also not produce execution times that are far lower than the ones predicted by
analytical methods, because this would indicate that the latter are imprecise.

A traditional method still used in industry combines measuring and static meth-
ods. Here, small snippets of code are measured for their execution time, then a
safety margin is applied and the results for code pieces are combined according
to the structure of the whole task. E.g. if a tasks first executes a snippet A and
then a snippet B, the resulting time is that measured for A (plus a potential safety
margin), tA, added to that measured for B (plus a potential safety margin), tB:
t = tA + tB. This reduces the amount of measurements that have to be made,
as code snippets tend to be reused a lot in control software and only the different
snippets need to be measured. It assumes compositionality, i.e., a possibility to
combine bounds for constituents of a program construct to a bound for the con-
struct. The context dependence of execution times, see Section 2.1.2, requires very
sophisticated methods like the one in [Lim et al. 1995] to keep compositionality.

The Problem of the Initial State. Architectures with timing anomalies offer a
difficult problem for dynamic approaches. The question is which state to select
as initial state for simulation or execution. An initial state for the task or for a
part of it should be selected conservatively, i.e., should correspond to the worst
case. However, processors with timing anomalies have local worst cases, but it’s
not clear how they contribute to the overall execution time. This means that all
methods that measure, analyze or simulate program pieces and afterwards compose
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the results have difficulties to select an initial state conservatively. All the possible
execution paths that may contribute to the global upper bound have be analyzed.

Methods based on abstract interpretation have ways to express the absence of in-
formation. The approach that uses static program analysis to obtain upper bounds
for local parts of tasks, e.g., basic blocks, by abstractly simulating the processor
execution considers the global flow of the task for the processor-behavior analy-
sis by propagating simulation results between basic blocks. Thus, no worst case
assumptions need to be made by the analysis on the basic block level.

5. COMMERCIAL WCET TOOLS AND RESEARCH PROTOTYPES

The tool providers and researchers participating in this survey have received the
following list of questions:

—What is the functionality of your tool?

—What methods are employed in your tool?

—What are the limitations of your tool?

—Which hardware platforms does your tool support?

This section can be seen as to have the following line-up of tools, from completely
static tools such as aiT in Subsection 5.1, Bound-T in Subsection 5.2, and the proto-
types of Florida (Subsection 5.3, Vienna (Subsection 5.4, Singapore (Subsection 5.5,
and IRISA (Subsection 5.6, through mostly static tool with a small rudiment of
measurement in SWEET (very controlled pipeline measurements on a simulator),
in Subsection 5.7, and the Chalmers prototype (Subsection 5.8), through SymTA/P
(cache analysis and block/segment measurement starting from a controlled cache
state and bound calculation), in Subsection 5.9, to the most measurement-based
tool, RapiTime (block measurement from an uncontrolled initial state and bound
calculation), in Subsection 5.10.

5.1 The aiT Tool of AbsInt Angewandte Informatik, Saarbrücken, Germany

Functionality of the Tool. The purpose of AbsInt’s timing-analysis tool aiT is
to obtain upper bounds for the execution times of code snippets (e.g. given as
subroutines) in executables. These code snippets may be tasks called by a scheduler
in some real-time application, where each task has a specified deadline. aiT works
on executables because the source code does not contain information on register
usage and on instruction and data addresses. Such addresses are important for
cache analysis and the timing of memory accesses in case there are several memory
areas with different timing behavior.

Apart from the executable, aiT might need user input to be able to compute a
result or to improve the precision of the result. User annotations may be written
into parameter files and refer to program points by absolute addresses, addresses
relative to routine entries, or structural descriptions (like the first loop in a routine).
Alternatively, they can be embedded into the source code as special comments. In
that case, they are mapped to binary addresses using the line information in the
executable.

Apart from the usual user annotations (loop bounds, flow facts), aiT supports
annotations specifying the values of registers and variables. The latter is useful for
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Fig. 6. Architecture of the aiT WCET analysis tool

analyzing software running in several different modes that are distinguished by the
value of a mode variable.

The aiT versions for all supported processors share a common architecture as
shown in Fig. 6:

—First, the control flow is reconstructed from the given object code by a bot-
tom up approach. The reconstructed control flow is annotated with the infor-
mation needed by subsequent analyses and then translated into CRL (Control
Flow Representation Language, a human-readable intermediate format designed
to simplify analysis and optimization at the executable/assembly level). This
annotated control-flow graph serves as the input for the following analysis steps.

—Next, value analysis computes ranges for the values in the processor registers
at every program point. Its results are used for loop bound analysis, for the
detection of infeasible paths depending on static data, and to determine possible
addresses of indirect memory accesses. An extreme case of control depending on
static data is a virtual machine program interpreting abstract code given as data.
[Souyris et al. ] report on a successful analysis of such an abstract machine.

—aiT’s cache analysis relies on the addresses of memory accesses as found by value
analysis and classifies memory references as sure hits and potential misses. It is
based upon [Ferdinand and Wilhelm 1999], which handles LRU caches, but had
to be modified to reflect the non-LRU replacement strategies of common mi-
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croprocessors: the pseudo-round-robin replacement policy of the ColdFire MCF
5307, and the PLRU (Pseudo-LRU) strategy of the PowerPC MPC 750 and 755.
The deviation from perfect LRU is the reason for the reduced predictability of
the cache contents in case of these two processors compared to processors with
perfect LRU caches [Heckmann et al. 2003].

—Pipeline analysis predicts the behavior of the task on the processor pipeline.
The result is an upper bound for the execution time of each basic block in each
distinguished execution context.

—Finally, bound calculation (called path analysis in the aiT framework) determines
a worst-case execution path of the task from the timing information for the basic
blocks.

Employed Methods. The structuring of the whole task of determining upper
bounds into several phases allows different methods tailored to the subtasks to
be used. In aiT’s case, value analysis and cache/pipeline analysis are realized
by abstract interpretation, a semantics-based method for static program analy-
sis [Ferdinand and Wilhelm 1999; Ferdinand et al. 2001; Langenbach et al. 2002].
Path analysis is implemented by integer linear programming. Reconstruction of
the control flow is performed by a bottom-up analysis [Theiling et al. 2000]. De-
tailed information about the upper bounds, the path on which it was computed,
and the possible cache and pipeline states at any program point are attached to
the call graph / control-flow graph and can be visualized in AbsInt’s graph browser
aiSee.

Limitations of the Tool. aiT includes automatic analysis to determine the targets
of indirect calls and branches and to determine upper bounds of the iterations of
loops. These analyses do not work in all cases. If they fail, the user has to provide
annotations.

aiT relies on the standard calling convention. If some code doesn’t adhere to the
calling convention, the user might need to supply additional annotations describing
control flow properties of the task.

Supported Hardware Platforms. Versions of aiT exist for the Motorola Pow-
erPC MPC 555, 565, and 755, Motorola ColdFire MCF 5307, ARM7 TDMI,
HCS12/STAR12, TMS320C33, C166/ST10, Renesas M32C/85 (prototype), and
Infineon TriCore 1.3.

5.2 The Bound-T Tool of Tidorum, Helsinki, Finland

The Bound-T tool was originally developed at Space Systems Finland Ltd under
contract with the European Space Agency (ESA) and intended for the verification
of on-board software in spacecraft. Tidorum Ltd is extending Bound-T to other
application domains.

Functionality of the Tool. The tool determines an upper bound on the execution
time of a subroutine, including called functions. Optionally, the tool can also
determine an upper bound on the stack usage of the subroutine, including called
functions.

The input is a binary executable program with (usually) an embedded symbol
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table (debug information). The tool is able to compute upper bounds on some
counter-based loops. For other loops the user provides annotations, called asser-
tions in Bound-T. Annotations can also be given for variable values to support the
automatic loop-bounding.

The output is a text file listing the upper bounds etc. and graph files showing call-
graphs and control-flow graphs for display with the DOT tool [Gansner and North 2000].

As a further option, when the task under analysis follows the ESA-specified
HRT (“Hard Real Time”) tasking architecture, Bound-T can generate the HRT
Execution Skeleton File that contains both the tasking structure and the computed
bounds and can be fed directly into the ESA-developed tools for Schedulability
Analysis and Scheduling Simulation.

Employed Methods. Reading and decoding instructions is hand-coded based on
processor manuals. The processor model is also manually constructed for each
processor. Bound-T has general facilities for modelling control flow and integer
arithmetic, but not for modelling complex processor states. Some special-purpose
static analyses have been implemented, for example for the SPARC register-file
overflow and underflow traps and for the concurrent operation of the SPARC Integer
Unit and Floating Point Unit. Both examples use (simple) abstract interpretation
followed by ILP.

The control-flow graph (CFG) is often defined to model the processor’s instruction-
sequencing behaviour, not just the values of the program counter. A CFG node
typically represents a certain pipeline state, so the CFG is really a pipeline-state
graph. Instruction interactions (e.g. data-path blocking) are modelled in the time
assigned to CFG edges.

Counter-based loops are bounded by modelling the task’s loop-counter arithmetic
as a set of affine equations in the Presburger Arithmetic formalism. The Omega
Calculator from Maryland University [Pugh 1991] is used to create and analyze the
equation set. Loop-bounds can be context-dependent if they depend on scalar call-
by-value parameters for which actual values are provided at the top (caller end) of
a call-path.

The worst-case path and the upper bound for one subroutine are found by the
Implicit Path Enumeration Technique, (see Section 3.4) applied to the control-flow
graph of the subroutine. The lp solve tool is used [Berkelaar ]. If the subroutine
has context-dependent loop bounds, the IPET solution is computed separately for
each context (call path).

Annotations are written in a separate text file, not embedded in source-code. The
program element to which an annotation refers is identified by a symbolic name
(subroutine, variable) or by structural properties (loops, calls). The structural
properties include nesting of loops, location of calls with respect to loops, and
location of variable reads and writes.

Limitations of the Tool. The task to be analyzed must not be recursive. The
control-flow graphs must be reducible. Dynamic (indexed) calls are only analyzed
in special cases, when Bound-T’s data-flow analysis finds a unique target address.
Dynamic (indexed) jumps are analyzed based on the code patterns that the sup-
ported compilers generate for switch/case structures, but not all such structures
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are supported.
Bound-T can detect some infeasible paths as a side-effect of its loop-bound anal-

ysis. There is, however, no systematic search for such paths. Points-to analysis
(aliasing analysis) is weak, which is a risk for the correctness of the loop-bound
analysis.

The bounds of an inner loop cannot depend on the index of the outer loop(s).
For such “non-rectangular” loops Bound-T can often produce a “rectangular” upper
bound. Loop-bound analysis does not cover the operations of multiplication (except
by a constant), division or the logical bit-wise operations (and, or, shift, rotate).

The task to be analyzed must use the standard calling conventions. Furthermore,
function pointers are not supported in general, although some special cases such as
statically assigned interrupt vectors can be analyzed.

No cache analysis is yet implemented (the current target processors have no cache
or very small and special caches). Any timing anomalies in the target processor
must be taken into account in the execution time that is assigned to each basic block
in the CFG. However, the currently supported, cacheless processors probably have
no timing anomalies. As Bound-T has no general formalism (beyond the CFG) for
modelling processor state, it has no general limitations in that regard, but models
for complex processors would be correspondingly harder to implement in Bound-T.

Supported Hardware Platforms. Intel-8051 series (MCS-51), Analog Devices ADSP-
21020, ATMEL ERC32 (SPARC V7), Renesas H8/300, ARM7 (prototype) and
ATMEL AVR and ATmega (prototypes).

5.3 Research Prototype from Florida State University, North Carolina State University,
Furman University

The main application areas for our timing analysis tools are hard real-time systems
and energy-aware embedded systems with timing constraints. We are currently
working on using our timing analyzer to provide QoS for soft real-time systems.

Functionality of the Tool. The toolset performs timing analysis of a single task
or a subroutine.

A user interacts with the timing analyzer in the following manner. First, the
user compiles all of the files that comprise the task. The compiler was modified to
produce information used by the timing analyzer, which includes number of loop
iterations, control flow, and instruction characteristics. The number of iterations
for simple and non-rectangular loop nests are supported. The timing analyzer
produces lower bounds and upper bounds for each function and loop in the task.
This entire process is automatic.

Employed Methods. The tool uses data-flow analysis for cache analysis to make
caching categorizations for each instruction [Arnold et al. 1994]. It supports direct-
mapped and set-associative caches [Mueller 2000]. Control-flow analysis is used to
distinguish paths at each loop and function level in the task [Arnold et al. 1994].
The pipeline is simulated to obtain the upper bound of each path, caching cate-
gorizations are used during this time so that pipeline stalls and cache-miss delays
can be properly integrated [Healy et al. 1995]. The loop analysis iteratively finds
the worst-case path until the caching behavior reaches a fixed point that is guaran-
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teed to remain the same [Arnold et al. 1994; Mueller 2000]. Loop bounds analysis
is performed in the compiler to obtain the number of iterations for each loop.
The timing analyzer is also able to address non-rectangular loop nests, which is
modeled in terms of summations [Healy et al. 2000]. Parametric timing analysis
support is also provided for run-time bound loops by producing a bounds formula
parameterized on loop bounds rather than cycles [Vivancos et al. 2001]. Branch
constraint analysis is used to tighten the predictions by disregarding paths that are
infeasible [Healy and Whalley 2002]. A timing tree is used to evaluate the task in
a bottom-up fashion. Functions are distinguished into instances so that caching
categorizations for each instance can be separately evaluated [Arnold et al. 1994].

Limitations of the Tool. Loop bounds for numeric timing analysis are required
to be statically known, or there has to be a known loop bound in the outer
loop in a non-rectangular loop nest. Loop bounds need not be statically known
when using parametric timing analysis support. Like most other timing analy-
sis tools, no support is provided for pointer analysis or dynamic allocation. No
calls through pointers are allowed since the call graph must be explicit to ana-
lyze the task. We also do not allow recursion since we do not currently provide
any support to automatically determine the maximum number of recursive calls
that can be made in a cyclic call graph. We provide limited data cache sup-
port wrt. access patterns [White et al. 1999]. We also provide limited support
for data cache analysis for array accesses in loop nest using cache miss equa-
tions [Ramaprasad and Mueller 2005]. The timing analyzer is only able to deter-
mine execution-time bounds of applications on simple RISC/CISC architectures.
The tool has limited scalability in terms of analyzing small codes in seconds,
medium-sized codes in minutes. But entire systems may take hours/days, which
we do not deem feasible. Scalability depends on the system/target device and is
less of a problem with 8-bit systems, but a more significant problem with 32-bit
systems.

Supported Hardware Platforms. The hardware platforms include a variety of
uniprocessors (multiprocessors should be handled in schedulability analysis). These
include the MicroSPARC I, Intel Pentium, StarCore SC100, PISA/MIPS, and
Atmel Atmega [Anantaraman et al. 2003; Mohan et al. 2005]. Experiments have
been performed with the Force MicroSPARC I VME board. The timing analyzer
WCET predictions have been validated on the Atmel Atmega to cycle-level accu-
racy [Mohan et al. 2005].

5.4 Research Prototypes of TU Vienna

The TU Vienna real-time group has developed a number of tool prototypes for
experimenting with different approaches to execution-time analysis. Three of these
are presented in this paper: The first is a prototype tool for static timing analysis
that has been integrated into a Matlab/Simulink tool chain and can analyze C code
or Matlab/Simulink models. Second we present a measurement-based tool that uses
genetic algorithms to direct input-data generation for timing measurements in the
search for the worst case or long program execution times. The third tool is a
hybrid tool for timing analysis that uses both measurements and elements from
static analysis to assess the timing of C code.
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5.4.1 TU Vienna Research Prototype for Static Analysis.

Functionality of the Tool. The timing analysis for C programs performs timing
analysis for software coded in wcetC, where wcetC is a subset of C with exten-
sions that allow users or tool components for flow analysis to make annotations
about (in)feasible execution paths [Kirner 2002]. The tool cooperates with a C
compiler. The compiler translates the wcetC code into object code and some in-
formation for the WCET analyzer. This object code is then analyzed to compute an
upper bound. Back annotation of bound information for single statements, entire
functions, and tasks are possible.

A component of the static tool has been built into the Matlab/Simulink tool
chain. This component generates code from the block set that includes all path
annotations necessary for timing analysis, i.e., there is no need to perform any ad-
ditional flow analysis or annotate the code. In that way the tool supports fully au-
tomatic timing analysis for the complete Matlab/Simulink block set defined within
the European IST project SETTA, see [Kirner et al. 2002]. In addition, the tool
supports back annotation of detailed execution-time information for individual Mat-
lab/Simulink blocks and entire Matlab/Simulink application models.

Employed Methods. A number of adaptations had been made to the Matlab/Simulink
tool chain. First, the code-generation templates used by the target language com-
piler (TLC) were modified. The templates for our block set were changed so that
TLC generates Code with wcetC macros instead of pure C code. Second, a GNU C
compiler was adapted to translate wcetC code and cooperate with the WCET an-
alyzer. The modified C compiler uses abstract co-interpretation of path information
during code translation in order to trace changes in the control structure as made by
code optimization. This co-transformation of path information is the key to keeping
path information consistent in optimizing compilers, thus facilitating timing analy-
sis of highly optimized code [Kirner and Puschner 2003; Kirner 2003]. It computes
execution-time bounds for the generated code by means of integer linear program-
ming adding information about infeasible execution paths [Puschner and Schedl 1997].
Back annotation of timing-analysis results to the Matlab/Simulink specification
level is done via dedicated WCET blocks that represent time bounds for blocks and
entire tasks.

Limitations of the Tool. If used together with the SETTA Matlab/Simulink block
set, the static WCET tool provides a fully automated timing analysis, i.e., there is
no need for annotations or help from the user to calculate execution-time bounds.
So there are no limitations besides the fact that the programmer must only use
blocks from the block set.

In case the tool is to be used to analyze C code it may be necessary to annotate the
code with information about (in)feasible paths (either by using a flow-annotation
tool or by providing manual annotations). In the latter case the quality of the
computed bounds strongly depends on the quality of the annotations.

Supported Hardware Platforms. M68000, M68360, and C167.

5.4.2 TU Vienna Research Prototype for Measurement-based Analysis.
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Fig. 7. Architecture of the TU-Vienna hybrid timing analysis tool

Functionality of the Tool. The measurement-based tool for dynamic execution-
time analysis yields optimistic approximations to the upper bounds on execution
times of a piece of code.

Employed Methods. Genetic algorithms are used to generate input data for execution-
time measurements [Puschner and Nossal 1998] as follows: At the beginning, the
task or program under observation is run with a number of random input-data sets.
For each of the input data sets the execution time is measured and stored. The
execution-time values are then used as fitness values for their respective input data
sets (i.e., longer execution times imply higher fitness). The fitness values, in turn,
form the basis for the generation of a new population of input-data sets by the
genetic algorithms. The GA-based input-data generation strategy is repeated until
the termination criterion as specified for the analysis is reached [Atanassov et al. 1999].

Limitations of the Tool. GA-based bounds search can in general not guarantee to
produce safe results, as measurement-based techniques approach the upper bound
from the side of lower execution times.

Supported Hardware Platforms. The targets supported include the C167, and
PowerPC processors.

5.4.3 TU Vienna Research Prototype for Hybrid Analysis.

Functionality of the Tool. The hybrid timing analysis tool combines static pro-
gram analysis techniques and execution time measurements to calculate an estimate
of the WCET. The main features of the tool are the automatic segmentation of the
program code into segments of reasonable size and the automatic generation of test
data used to measure the execution times of all subpaths within each program seg-
ment. The tool has been designed with a special focus on analyzing automatically
generated code, e.g., code generated from Matlab/Simulink models.
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The architecture of the hybrid analysis tool is given in Fig. 7. The tool takes a
C program as input, partitions the program into code segments, and extracts path
information that is used during the final bounds calculation to identify infeasible
paths within the program. Automatic test-data generation is used to derive the
required input data for the execution-time measurements. The measurements are
typically performed remotely on the real target hardware. Measurement results are
processed to construct a timing model specific to the analyzed program, which is
used together with the path information to calculate a WCET estimate.

Employed Methods. The central technique of the hybrid timing-analysis tool is
the automatic test-data generation used to derive a WCET estimate by means
of execution time measurements. To approach a full subpath coverage within each
program segment, a formal test-data generation method based on model checking is
used [Wenzel et al. 2005a; Wenzel et al. 2005b]. However, to compensate the high
computation cost of formal test-data generation, a three-step approach is used:

(1) Random search is used to generate the majority of test data. The path cover-
age of these test data is derived using an automatically, entirely instrumented
version of the program.

(2) Heuristic search methods like genetic algorithms allow to improve the segment
coverage already achieved by step 1.

(3) The remaining test data are generated using formal test-data generation based
on model checking [Clarke et al. 1999]. The formal model of the program needed
for the model checker is automatically derived from the source code. Code op-
timizations have to be performed to improve the performance of the formal
test-data generation [Wenzel et al. 2005a]. This approach provides for a given
subpath in a program segment either the test data to trigger its execution or
the information that this subpath is infeasible.

Based on the measurement results and the path information of the program, the
overall WCET estimate is calculated using integer linear programming.

Limitations of the Tool. As the tool performs static program analysis at the
source code level, it has to be assured that the compiler does not significantly
change the structure of the program code. The hybrid analysis tool guarantees
path coverage for each program segment, therefore every execution scenario is cov-
ered by the analysis. However, the tool does not provide state coverage, thus the
WCET estimate, though being quite precise, is not guaranteed to be a safe upper
bound of the execution times for complex processors having pipelines or caches.
Furthermore, the calculation of the tool supports program-flow annotations only at
the granularity of entire program segments.

Supported Hardware Platforms. The targets supported currently include the HCS12,
and Pentium processors.

However, as the hybrid approach of the tool does not rely on a model of a
processor, it is relatively easy to adapt it to other processors. To port the tool
to a new processor one has to modify the instrumentation code used to measure
execution times and provide a mechanism to communicate the measurement results
to the host computer.
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5.5 The Chronos Research Prototype from National University of Singapore

Chronos2 is an open-source static WCET analysis tool.

Functionality of the Tool. The purpose of Chronos is to determine a tight upper
bound for the execution times of a task running on a modern processor with com-
plex micro-architectural features. The input to Chronos is a task written in C and
the configuration of the target processor. The frontend of the tool performs data
flow analysis to compute loop bounds. If it fails to obtain certain loop bounds, user
annotations have to be provided. The user may also input infeasible-path informa-
tion to improve the accuracy of the results. The frontend maps this information
from the source code to the binary executable.

The core of the analyzer works on the binary executable. It disassembles the exe-
cutable to generate the control flow graph (CFG) and performs processor-behavior
analysis on this CFG. Chronos supports the analysis of (i) out-of-order pipelines,
(ii) various dynamic branch prediction schemes, (iii) instruction caches, and the
interaction among these different features to compute a tight upper bound on the
execution times.

Employed Methods. Chronos employs several innovative techniques to efficiently
obtain safe and tight upper bounds on execution times.

The core of the analyzer determines upper bounds of execution times of each
basic block under various execution contexts such as correctly predicted or mis-
predicted jump of the preceding basic blocks and cache hits/misses within the
basic block [Li 2005]. Determining these bounds is challenging for out-of-order
processor pipelines due to the presence of timing anomalies. It requires the costly
enumeration of all possible schedules of instructions within a basic block. Chronos
avoids this enumeration via a fixed-point analysis of the time intervals (instead
of concrete time instances) at which the instructions enter/leave different pipeline
stages [Li et al. 2004].

Next, the analyzer employs Integer Linear Programming (ILP) to bound the
number of executions corresponding to each context. This is achieved by bounding
the number of branch mispredictions and instruction cache misses. Here ILP is
used to accurately model branch prediction, instruction cache as well as their inter-
action [Li et al. 2005]. The analysis of branch prediction is generic and parameteri-
zable w.r.t. the commonly used dynamic branch prediction schemes including GAg
and gshare [Mitra et al. 2002]. Instruction caches are analyzed using the ILP-based
technique proposed by Li, Malik, and Wolfe [Li et al. 1999]. However, the integra-
tion of cache and branch prediction requires analyzing the constructive and destruc-
tive timing effects due to cache blocks being “prefetched” along the mispredicted
paths. This complex interaction is accounted for in the analyzer [Li et al. 2003] by
suitably extending the instruction cache analysis.

Finally, bounds calculation is implemented by the IPET technique (see Sec-
tion 3.4) by converting the loop bounds and user provided infeasible-path infor-
mation to linear flow constraints.

2Chronos, according to Greek mythology, is the personification of time.
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Limitations of the Tool. Chronos currently does not analyze data caches. Since
the focus is mainly on processor-behavior analysis, the tool performs limited data
flow analysis to compute loop bounds. The tool also requires user feedback for
infeasible program paths.

Supported Hardware Platforms. Chronos supports the processor model of Sim-
pleScalar [Austin et al. 2002] sim-outorder simulator, a popular cycle-accurate
micro-architectural simulator. The tool deliberately targets a simulated processor
model so that the processor can be easily configured with different pipeline, branch
prediction, and instruction cache options. This allows the user to evaluate the
efficiency, scalability, and accuracy of the WCET analyzer for various processor
configurations without requiring the actual hardware. Moreover, the source code
of the entire tool is publicly available allowing the user to easily extend and adapt
it for new architectural features and estimation techniques.

5.6 The Heptane tool of IRISA, Rennes

Heptane is an open-source static WCET analysis tool released under GPL license.

Functionality of the Tool. The purpose of Heptane is to obtain upper bounds
for the execution times of C programs by a static analysis of their code (source code
and binary code). The tool analyses the source and/or binary format depending
on the calculation method the tool is parameterized to work with.

Employed Methods. Heptane embeds in the same analysis tool an ILP-based and
a timing schema-based method for bound calculation (see Sections 3.4) and 2.3.4.
The former method produces quickly safe, albeit in some circumstances overesti-
mated upper bounds for a code snippet, while the latter requires more computing
power, but yields tighter results. The two calculation methods cannot be used si-
multaneously on fragments of the same task. The timing-schema method operates
on the task’s syntactic structure, which is extracted from the source code. The
ILP-based method exploits the task’s control-flow graph extracted from the task’s
binary.

Finding the upper bound of a loop requires the knowledge of the maximum num-
ber of loop iterations. Heptane requires the user to give this information through
symbolic annotations in the source program. Annotations are designed to support
non-rectangular and even non-linear loops (nested loops whose number of iterations
arbitrarily depends on the counter variables of outer loops) [Colin and Puaut 2000].
The final bound is computed using an external evaluation tool (Maple and Maxima
for the computation method based on timing schemata, lp solve and CPLEX for
the method based on ILP).

Heptane integrates mechanisms to take into account the effect of instruction
caches, pipelines and branch prediction.

—Pipelines are tackled by an off-line simulation of the flow of instructions through
the pipelines.

—An extension of Frank Mueller’s so-called static cache simulation [Mueller 2000],
based on data flow analysis is implemented in the tool. It classifies every instruc-
tion according to its worst-case behavior with respect to the instruction cache. In-
struction categories take into account loop nesting levels. The Heptane tool takes
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as input the memory map of the code (cacheable vs. uncacheable code regions,
address range of scratchpad memory, if any) as well as the contents of locked
cache regions if a cache locking mechanism is used [Puaut and Decotigny 2002].

—An approach derived from static cache simulation is used to integrate the effect of
branch predictors based on a cache of recently taken branches [Colin and Puaut 2000].

The modeling of the instruction cache, branch predictor and pipeline produce re-
sults expressed in a microarchitecture-independent formalism [Colin and Puaut 2001a],
thus allowing Heptane to be easily modified or retargeted to a new architecture.

Limitations of the Tool

—No automatic flow analysis (loop bounds are given manually as annotations at the
source code level), no detection of mutually exclusive or infeasible paths, resulting
in pessimistic upper bounds for some tasks (e.g. [Colin and Puaut 2001b]).

—The bound-calculation method based on timing schemata currently does not
support compiler optimizations that cause a mismatch between the task’s syntax-
tree and control flow graph.

—No support for data cache analysis.

—Limited number and types of target processors (currently limited to scalar pro-
cessors with in-order execution) and only the gcc compiler.

Supported Hardware Platforms. Heptane is designed to produce timing infor-
mation for in-order monoprocessor architectures (Pentium1 - accounting for one
integer pipeline only, StrongARM 1110, Hitachi H8/300, and MIPS as a virtual
processor with an overly simplified timing model).

5.7 SWEET (SWEdish Execution Time tool)

The tool was previously developed in Paderborn, Uppsala University and Mälardalen
University, but development has now fully moved to Mälardalen University.

Functionality of the Tool. SWEET has been developed in a modular fashion, al-
lowing for different analyses and tool parts to work rather independently [Gustafsson 2000;
Engblom 2002; Ermedahl 2003]. The different analyses communicate through well-
defined data structures, named scope graph with flow facts and timing model in
Fig. 8.

SWEET performs automatic WCET analysis of tasks written in C offering the
following functionality:

—Automatic flow analysis on the intermediate code level.

—Integration of flow analysis and a research compiler.

—Connection between flow analysis and processor-behavior analysis.

—Instruction cache analysis for level one caches.

—Pipeline analysis for medium-complexity RISC processors.

—A variety of methods to determine upper bounds based on the results of pipeline
and flow analysis.
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Fig. 8. Architecture of the SWEET timing-analysis tool

Employed Methods. The architecture of the tool is shown in Fig. 8. Flow analysis
is based on a multi-phase approach. Pattern-matching catches “easy cases” such
as simple loops. Interval-based abstract interpretation (labelled Abstract Execu-
tion in Fig. 8) is used to analyze the code not handled by the pattern-matching
phase; it can find loop bounds automatically. Flow analysis is performed on the
intermediate code of a compiler to reduce the problems when mapping to object
code [Gustafsson 2000; Gustafsson et al. 2003; Gustafsson et al. 2005].

A variety of straight-forward naming techniques is used to connect the intermediate-
code level of the flow analysis to the object-code level of the processor-behavior
analysis.

Pipeline analysis is performed by executing object code sequences in trace-driven
cycle-accurate simulators. The results of consecutive simulation runs starting with
the same basic block in the code are combined to find timing effects across sequences
of two or more blocks in the code [Engblom 2002].

An instruction-cache analysis similar to [Ferdinand et al. 1999] is executed prior
to pipeline analysis providing access time of the instructions.

Upper bounds on global execution times are calculated by three different tech-
niques, a fast path-based technique, a standard global IPET method, see Sec-
tion 3.4, and a “clustered” technique. The clustered calculation can perform both
local IPET and/or local path based calculations (the decision on what to use is
based on the flow information available for the specific program part under analy-
sis) [Ermedahl et al. 2005; Ermedahl 2003].

Limitations of the Tool. Each part of the tool, flow analysis, processor-behavior
analysis, and bound calculation have their individual limitations.

There is always code that cannot be analyzed automatically for possible program
flows with good results. Our flow analysis method will have problems with tasks
with too much dynamic control. Annotations will be needed in such a case. The
current low-level analysis does not handle data caches.

The pipelines that are amenable to analysis using the simulation technique are
limited to in-order pipelines with bounded long-timing effects. Out-of-order pipelines
are not handled. There is no limitation regarding the structure of the task code:
any arbitrary task graph can be analyzed.

The path-based bound calculation requires that the code of the task is well-
structured. The IPET-based methods can handle arbitrary task graphs.

Supported Hardware Platforms. SWEET’s processor-behavior analysis currently
supports the ARM9 core and NEC V850E. The V850E model has been validated
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against actual hardware, which the ARM9 has not.

5.8 Research Prototype from Chalmers University of Technology

This tool is a research prototype that was developed to evaluate new concepts for
the determination of execution-time bounds for tasks executed on high-performance
microprocessors featuring pipelining and multi-level caching techniques.

Functionality of the Tool. The developed tool is capable of automatically deriving
safe upper bounds for tasks’ binaries using a subset of the Power-PC instruction
set architecture. It is sometimes possible to derive the exact WCET, in case the
worst-case input of the task is known.

Additional functionality:

—Integration of path and timing analysis through symbolic cycle-level execution of
the task on a detailed architectural simulation model extended to handle unknown
input data values [Lundqvist and Stenström 1999b; Lundqvist 2002].

—Binary code transformation techniques that eliminate timing anomalies, which
may occur when tasks are run on processors where instructions are scheduled
dynamically [Lundqvist and Stenström 1999c; Lundqvist 2002].

—A data cache analysis method that can identify data structures that can be safely
cached - called predictable - so as to improve the worst-case cache performance.
Under this method, data structures with unpredictable access patterns are iden-
tified and tagged as non-cacheable [Lundqvist and Stenström 1999a].

—A method that can determine the worst-case data-cache performance for data ac-
cesses to predictable data structures whose exact location in the address space is
statically unknown. This method can be applied to improve worst-case cache per-
formance for e.g. procedures whose input parameters are pointers to data struc-
tures whose access patterns are predictable, but whose locations in the memory
space are not known until run-time [Lundqvist 2002].

Employed Methods. Simulation models have been used for some time to es-
timate the execution time for tasks on future architectures making use of ad-
vanced pipelining and caching techniques. One such example is the SimpleScalar
toolset [Austin et al. 2002]. A key advantage of this approach is that it is possible
to derive arbitrarily accurate estimations of the execution time for a task for a
given set of input data and assuming sufficient detail of the timing model of the
architectural simulator. Unfortunately, as the input data is unknown for a WCET
analyzer, such simulation models cannot be used off-hand.

Concepts have been developed that leverage on the accuracy of architectural
timing models to make tight, but still safe estimates of the execution-time bounds.
One key concept developed is cycle-level symbolic program simulation. First, loop
bounds, branch conditions etc., which are not input-data dependent will be calcu-
lated as the task is executed symbolically on the architectural simulator. However,
in order to handle unknown input data, the instruction-set simulator was extended
with the capability of handling unknown input data. For example, if a branch con-
dition depends on unknown input data, both paths are executed. Inevitably, this
may result in the well-known path explosion problem in program loops with a large
number of iterations. A path-merging approach excludes the paths that may not
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be part of the worst-case execution path through the task. The analysis that deter-
mines which paths to exclude must take into account what timing effect they may
have in the future. This involves analysis of worst-case performance taking microar-
chitectural features such as pipelining and caching into account. Methods have been
developed and integrated to do this analysis for a range of architectural features
including multi-level instruction and data caches [Lundqvist and Stenström 1999b;
Lundqvist and Stenström 1999a] and multiple-issue pipelines with dynamic instruc-
tion scheduling [Lundqvist and Stenström 1999c]. How often path merging is car-
ried out is a tradeoff between computational speed and accuracy of the analysis and
is investigated in [Lundqvist 2002]. The described symbolic execution of tasks has
been shown to exclude some infeasible paths thereby making the execution-time
bounds tighter.

Limitations of the Tool. The user has to provide annotations for non-terminating
loops. At present, our tool is not capable of taking care of any annotations although
it can be trivially extended with this capability.

An inherent limitation of the approach is the computational complexity of the
analysis. While the path-merging method partly addresses this concern, it also
introduces over-estimation of the WCET. Therefore, we believe that this approach
is most relevant in the final stage of the development cycle, when the design space
has been narrowed down so that one can afford the long-running simulations for
limited aspects of the entire system.

Supported Hardware Platforms. Our tool currently supports a fairly rich subset
of the PowerPC instruction set architecture. We have also integrated architectural
timing models for some implementations of the PowerPC featuring dual-instruction
issue, a dynamically scheduled pipeline, a parameterized cache hierarchy with split
first-level set-associative instruction and data caches and a unified second-level
cache. The cache and block size as well as the associativity of each cache is param-
eterized.

5.9 Symta/P Tool of TU Braunschweig, Germany

5.9.1 Functionality of the Tool. The purpose of SymTA/P is to obtain upper
and lower execution time bounds of C programs running on micro-controllers.
SymTA/P is an acronym of SYMbolic Timing Analysis for Processes. The key
idea of SymTA/P is to combine platform independent path analysis on source code
level and platform dependent measurement methodology on object code level. The
main benefit is that this hybrid analysis can easily be re-targeted to a new hardware
platform.

The tool takes C-source code as input. The execution time measurement can
be obtained by an off-the shelf cycle-true processor simulator or by an evaluation
board. Besides the execution time of a task, SymTA/P analyzes the instruction
as well as data cache behavior during a single task execution. Furthermore, the
additinal preemption delay for instruction caches in systems with preemptive task
scheduling is analyzed. In such systems, cache behavior can be strongly degraded
by frequent replacement of cache blocks. SymTA/P analyzes the cache related
preemption delay (CRPD) and provides a cache-aware response time analysis.

The approach targets micro-controllers with instruction caches. Timing anoma-
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lies of complex architectures with parallel execution are not considered. A possible
interference of caches and pipelines are conservatively modeled by adding a con-
stant time delay which covers potential underestimation of pipeline behavior during
measurement because a safe initial state is often difficult to enforce.

5.9.2 Employed Methods. The hybrid approach consists of high level path anal-
ysis and low level execution time measurement. Symbolic simulation is the most
accurate but also most complex approach in timing analysis. Exact values or ranges
of values of input data are propagated on the control flow graph to analyze every ex-
ecution path of a task. Standard simulation techniques, on the other hand, execute
the entire task with several input data to cover all program paths. The problem
with standard simulation is that potentially exponential number of input data are
necessary. The SymTA/P approach identifies the case in which symbolic simulation
is identical to standard simulation. If a program path through a complex control
structure has only a single execution path, standard simulation can be used to de-
termine the execution time. Symbolic simulation would output the same result,
as there is only a single possible execution path. In previous approaches the basic
block has been assumed as the smallest entity in program path analysis to deter-
mine the execution time of instructions. The execution time behavior of program
segments with only a single feasible path can be calculated by symbolic execution
as well as simulation [Wolf 2002; Wolf et al. 2001; Ye and Ernst 1997] leading to
the same result. Therefore, processor simulation can be used to determine the ex-
ecution time for single feasible paths. Then, static analysis techniques are applied
to calculate the worst-case and best-case execution time of the entire program.

SymTA/P uses symbolic analysis on the abstract syntax tree to identify such
single feasible paths (SFP) on source code level. The result is a control flow graph
with nodes containing single feasible paths or basic blocks that are part of a mul-
tiple feasible path. A single feasible path can be beyond basic block boundaries,
for example, a fast Fourier transformation or a finite response filter. In these
cases, the program contains loops with several if-then-else statements which are
input independent. This means, that the branch direction depends only on local
variables, for example the loop iteration count. Therefore the entire loop repre-
sents an SFP and is represented by a single node. The main benefit of SFPs are
fewer number of instrumentation points. A traditional path analysis based on basic
blocks would estimate the execution time of each then and else branch separately
and would loose valuable system state information in a merge operation after the
if-then-else statement.

In a second step, the execution time for each node is estimated. Off-the-shelf
processor simulators or cost-efficient evaluation boards can be used. The C source
code is instrumented with measurement points that mark the beginning and the
end of each node. Such a measurement point is linked to a platform dependent
measurement procedure, such as accessing the system clock or internal timer. For
a processor simulator the instrumentation can use a processor debugger command to
stop the simulation and store the internal system clock. Then, the entire C-program
with measurement points is compiled, linked and executed on the evaluation board
(or simulated on the processor simulator). During this measurement, a safe initial
state cannot be assured in all cases. Therefore an additional time delay is added
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that covers a potential underestimation during such a measurement.

At this step, SymTA/P assumes that each memory access takes constant time.
For timing analysis, input data for a complete branch coverage must be supplied.
A complete branch coverage means, that with a given set of input data all branches
and other C statements are at least executed once. This criterion requires the user
to specify a considerably fewer number of input data than a full path coverage
because combinations of execution paths need not be considered. This advantage
comes with the drawback that it adds a conservative overhead to cover pipelining
effects between nodes. Finally, the execution time of all single feasible paths and
multiple feasible paths is calculated.

The constant memory access time assumption is revised by analyzing the in-
struction cache behavior [Wolf et al. 2002] independently. When using a proces-
sor simulator, the memory access trace for each node is generated using a similar
methodology as the execution time measurements. The traced memory accesses are
annotated to the corresponding node in the control flow graph. A data flow analysis
technique is used to propagate the information which cache lines are available at
each node. Pipelining effects between nodes are not directly modeled, instead a
conservative overhead of an empty pipeline is assumed.

The longest and shortest path in the control flow graph are found by implicit
path enumeration (IPET) using linear programming (ILP). The time for each node
is given by the measured execution time and the statically analyzed cache access
behavior. This framework has also been used to calculate the power consumption
of a program [Wolf et al. 2002]. Loop bounds have to be specified by the user, if
the loop condition is input dependent.

If preemptive scheduling is used, cache blocks might be replaced by higher pri-
ority tasks. SymTA/P considers the cache behavior of the preempted and pre-
empting task to compute the maximum cache related preemption delay. This de-
lay is considered in cache-aware response time analysis [Staschulat and Ernst 2004]
[Staschulat et al. 2005].

We proposed a static analysis approach for data cache behavior, which combines
symbolic execution to identify input dependent memory accesses and uses integer
linear programming to bound the worst case data cache behavior for input depen-
dent memory accesses [Staschulat and Ernst 2006].

5.9.3 Limitations of the Tool. The measurement on an evaluation board is more
accurate if program paths are longer. If many basic blocks are measured individu-
ally the additional time delay to cover pipelining effects leads to an overestimation
of the total worst case execution time. Data-dependent execution times of single
instrucions are not explicitly considered. It is assumed that input data covers the
worst case regarding data dependent instruction execution time. Input data has to
be provided for a complete branch coverage. Such patterns are usually available
from functional test. The precision of the final analysis depends on the measurement
environment. Especially for evaluation boards the interference of the measurement
instrumentation has to be a constant factor to obtain sufficiently accurate results.
Currenly, the approach assumes a sequential memory access behavior where the
CPU stalls during a memory access.
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5.9.4 Supported hardware platforms. C programs on the following micro-controllers
have been analyzed: ARM architectures (e.g. ARM9), TriCore, StrongARM, C167,
and i8051. The software power analysis has been applied to SPARClite. Further-
more, an open interface for processor simulators and a measurement framework for
evaluation boards is provided.

5.10 The RapiTime tool of Rapita Systems Ltd., York, UK

RapiTime aims at medium to large real-time embedded systems on advanced pro-
cessors. The RapiTime tool targets the automotive electronics, avionics and telecom-
munications industries.

Functionality of the Tool. Rapitime is a measurement-based tool, i.e., it derives
timing information of how long a particular section of code (generally basic a block)
takes to run from measurements. Measurement results are combined according to
the structure of the program to determine an estimate for the longest path through
the program,

RapiTime not only computes an estimate for the WCET of a program as a single
(integer) value, but also the whole probability distribution of the execution time
of the longest path in the program (and other subunits). This distribution has
a bounded domain (an absolute upper bound, the WCET estimate, and a lower
bound).

The input of RapiTime is either a set of source files (C or Ada) or an executable.
The user also has to provide test data from which measurements will be taken. The
output is a browsable HTML report with description of the WCET prediction and
actual measured execution times, split for each function and subfunction.

Timing information is captured on the running system by either a software instru-
mentation library, a lightweight software instrumentation with external hardware
support, purely non-intrusive tracing mechanisms (like Nexus and ETM) or even
traces from CPU simulators.

The user can add annotations in the code to guide how the instrumentation and
analysis process will be performed, to bound the number of iterations of loops, etc.

The RapiTime tool supports various architectures, adapting the tool for new
architectures requires porting the object code reader (if needed) and determining
a tracing mechanism for that system.

RapiTime is the commercial quality version of the pWCET tool developed at the
Real-Time Systems Research Group at the University of York.

Employed Methods. The RapiTime tool is structure-based and works on a tree
representation of the program. The structure is derived from either the source code
or from the direct analysis of executables.

The timing of individual blocks is derived from extensive measurements extracted
from the real system. RapiTime not only computes the maximum of the measured
times but whole probability distributions [Bernat et al. 2002; Bernat et al. 2005].
The WCET estimates are computed using an algebra of probability distributions.

The timing analysis of the program can be performed on different contexts, there-
fore allowing to analyse, for instance, each different call to a function individually.
The level of detail and how many contexts are analysed is controlled by annotations.
RapiTime also allows to analyse different loop iterations by virtually unrolling loops,
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for each of these loop contexts, loop bounds are derived from actual measurements
(or annotations).

Limitations of the Tool. The RapiTime tool does not rely on a model of the
processor, so in principle it can model any processing unit (even with out-of-order
execution, multiple execution units, various hierarchies of caches etc). The lim-
itation is put on the need to extract execution traces which require some code
instrumentation and a mechanism to extract these traces from the target system.
Regarding source code level, RapiTime can not analyse programs with recursion
and with non-statically analysable function pointers.

Supported Hardware Platforms. Motorola processors (including MPC555, HCS12,
etc), ARM , MIPS, NecV850. Future versions will include Tricore and LEON.

6. EXPERIENCE

Three commercial WCET tools are available, aiT, Bound-T, and RapiTime. There
are extensive reports about industrial use [Thesing et al. 2003; Sandell et al. 2004;
Souyris et al. ; Byhlin et al. 2005; Holsti et al. 2000b; Holsti et al. 2000a]. In fact,
tools are under routine use in the aeronautics and the automotive industries. They
enjoy very positive feedback concerning speed, precision of the results, and usability.

There are not many published benchmark results about timing-analysis tools.
[Lim et al. 1995] is a study done by the authors of a method carefully explaining the
reasons for over-estimation. [Thesing et al. 2003; Souyris et al. ] report experiences
made by developers. The developers are experienced, and the tool is integrated into
the development process. We summarize these three comparable benchmarks in Ta-
ble I. They seem to exhibit a surprising paradox, benchmarks published earlier offer
better results regarding the degree of overestimation, although significant method-
ological progress has been made in the meantime. The reason lies in the fact that
the advancement of processor architectures and in particular the divergence of pro-
cessor and memory speeds have made the challenge of timing analysis harder. Both
have increased the timing variability and thus the penalty for the lack of knowledge
in analysis results. Let’s take the cache-miss penalty as an example, the single cause
with highest weight. In [Lim et al. 1995], published in 1995, a cache-miss penalty
of 4 cycles was assumed. In [Thesing et al. 2003], a cache-miss penalty of roughly
25 was given, and finally in the setting described in [Souyris et al. ], the cache-miss
penalty was between 60 internal cycles for a worst-case access to an instruction in
SDRAM and roughly 200 internal cycles for an access to data over the PCI bus.
Thus, any overestimation should be considered in the context of the given architec-
ture. An overestimation of 30% in 2005 as reported in [Souyris et al. ] means a huge
progress compared to an overestimation of 30% reported in 1995 [Lim et al. 1995]!

The Mälardalen University WCET-research group has performed several indus-
trial WCET case-studies as M.Sc. Thesis projects using the SWEET [Carlsson et al. 2002]
and aiT [Sandell et al. 2004; Byhlin et al. 2005; Eriksson 2005; Zhang 2005; Sehlberg 2005]
tools. The students were experts neither on the used timing-analysis tool nor on
the analyzed system. However, they were assisted both by WCET analysis experts
from academia and industrial personel with detailed system knowledge.

The case-studies show that it is possible to apply static WCET analysis to a
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Reference Year Cache-miss penalty Overestim.

[Lim et al. 1995] 1995 4 20-30%

[Thesing et al. 2003] 2002 25 15%

[Souyris et al. ] 2005
60 for accessing instructions in SDRAM
200 for access over PCI bus

30-50%

Table I. Cache-miss penalties and degrees of overestimation.

variety of industrial systems and codes. The tools used performed well and derived
safe upper timing bounds. However, detailed knowledge of the analysed code and
many manual annotations were often required to achieve reasonably tight bounds.
These annotations were necessary to give the analysis enough knowledge about
program flow constraints and in some cases constraints on addresses of memory
accesses. A higher degree of automation and support from the tools, e.g. automatic
loop bounds calculation, would in most cases have been desirable.

The case-studies also show that single timing bounds, covering all possible sce-
narios, are not always what you want. For several analyzed systems it was more
interesting to have different WCET bounds for different running modes or system
configurations rather than a single WCET bound. The latter would in most cases
have been a gross overapproximation. In some cases, it was also possible to manu-
ally derive a parametrical formula [Sandell et al. 2004; Byhlin et al. 2005], showing
how the WCET estimate depends on some specific system parameters.

The case-studies were done for processors without cache. The overestimation
were mostly in the range 5-15% as compared with measured times. Measurements
were in some cases done with emulators, and in some cases directly on the hardware
using oscilloscopes and logical analyzers.

Performance and Size. Table IV in Section 8 lists the maximal size of tasks
analyzed by the different tools. They vary between 10 kByte and 80 kByte of code.
Analysis times vary widely depending on the complexity of the processor and its
periphery and the structure and other characteristics of the software. Analysis of a
task for a simple microprocessor such as the C166/ST10 may finish in a few minutes.
Analysis of a complex software, an abstract machine and the code interpreted by it,
and a complex processor has shown to take in the order of a day, see [Souyris et al. ].

Also of interest is the size of the abstract processor models underlying some static
analysis approaches. They range from 3000 to 11000 lines of C code. This C code
is the result of a translation from a formal model.

7. LIMITATIONS OF THE TOOLS

Determining safe and precise bounds on execution times is a very difficult prob-
lem, undecidable in general as is known, but still very complex for programs with
bounded iteration and recursion. There are several features whose use will easily
ruin precision. Among these are pointers to data and to functions that cannot
statically be resolved, and the use of dynamically allocated data. Most tools will
expect that function calling conventions are observed. Some tools forbid recursion.
Currently, only mono-processor targets are supported. Most tools only consider
uninterrupted execution of tasks.
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Tool Flow Proc. Behavior Bound Calc.

aiT value analysis static progr. analysis IPET

Bound-T linear loop-bounds
and constraints by
Omega test

static progr. analysis IPET per func-
tion

RapiTime n.a. measurement structure-based

SymTA/P

Heptane - static prog. analysis structure-based,
IPET

Vienna S. - static progr. analysis IPET
Vienna M. Genetic Algorithms segment measurements n.a.
Vienna H. Model Checking segment measurements IPET

SWEET value analysis, ab-
stract execution,
syntactical analysis

static progr. analysis for in-
str. caches, simulation for the
pipeline

path-based,
IPET-based,
clustered

Florida static progr. analysis path-based

Chalmers modified simulation

Chronos static prog. analysis IPET

Table II. Analysis methods employed

8. TOOL COMPARISON

This section shows in a condensed form the most relevant information about the
different tools. The following abbreviations for the Vienna tools are used, Vienna M.
for Vienna Measurement, Vienna S. for Vienna Static, and Vienna H. for Vienna
Hybrid. Table II lists the methods used for the different subtasks. The methods
are the ones described in Section 2. The abbreviation n.a. stands for not applicable,
while a dash (-) is used when no such method or analysis is employed.

Table III describes which architectural features, e.g., caches and pipelines, may
be present in processor architectures for which instances of the tools are available.
Instruction caches are supported by most of the tools. However, data caches need
a resolution of effective memory addresses at analysis times. This is currently not
supported by many tools. Of particular interest is, whether only in-order execution
pipelines are supported. Out-of-order execution almost unavoidably introduce tim-
ing anomalies [Lundqvist and Stenström 1999c], which require integrated analyses
of the cache and the pipeline behavior.

Table IV gives additional information such as the language level of the analyzed
software, how the results are presented, the size of the biggest programs analyzed,
etc.

Table V lists the hardware platforms that have been targeted with the tools.

9. INTEGRATION WITH OTHER TOOLS

Timing Analysis can be performed as an isolated activity. However, most of the time
it is done for a subsequent schedulability analysis, whose job it is to check, whether
the given set of tasks can all be executed on the given hardware satisfying all their
constraints. Timing analysis should be integrated with such a schedulablity analysis
for improved results, because schedulability analysis can profit from information
about context-switch costs incurred by cache and pipeline damages that result
from preemption. Information about the amount of damage can be made available
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Tool Caches Pipeline Periphery

aiT I/D, direct/set associative, LRU,
PLRU, pseudo round robin

in-order/out-of-order PCI bus

Bound-T - in-order -

RapiTime n.a. n.a. n.a.

SymTA/P set-associative -

Heptane I-cache, direct, set associative, LRU,
locked caches

in-order -

Vienna S. jump-cache simple in-order -
Vienna M. n.a. n.a. n.a.
Vienna H. n.a. n.a. n.a.

SWEET I-cache, direct/set associative, LRU in-order -

Florida I/D, direct/set associative in-order -

Chalmers split first-level set-associative, unified
second-level cache

multi-issue superscalar -

Chronos I-cache, direct, LRU in-order/out-of-order,
dyn. branch prediction

-

Table III. Support for architectural features

Tool Lang. level Result repr. Max anal. Integration

aiT object text, graphical 80 KByte some versions adapted to
code generated by STATE-
MATE, Ascet/SD, Scade,
MATLAB/Simulink, or Tar-
getlink

Bound-T object text, graphical 30 KByte stack-extent analysis, HRT
Schedulability Analyzer

RapiTime source (C,
Ada), object

graphical,
html based

50 KLOC Matlab/Simulink, Tar-
getlink, SimpleScalar
simulator

SymTA/P source

Heptane source, object graphical 14 KLOC

Vienna S. source, object text, graphical Matlab/Simulink, optimiz-
ing compiler

Vienna M. object text
Vienna H. source, object text, graphical Matlab/Simulink, Tar-

getlink

SWEET flow analysis on
intermediate,
proc. beh. anal.
on object

text, graphical IAR compiler, SUIF com-
piler, LCC compiler

Florida object cycle-accurate simulators,
power-aware schedulers,
compiler

Chalmers object

Chronos object graphical 10 KByte GCC compiler, Sim-
pleScalar simulator

Table IV. Additional features. The first column gives the language level of the systems analyzed.
The second column shows how the results are presented to the user. The third column gives the
maximum size of tasks analyzed in one run. The total size of the analyzed system may be larger.
The last column lists other tool integrated with the timing-analysis tool.
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Tool Hardware platform

aiT Motorola PowerPC MPC 555, 565, and 755, Motorola ColdFire MCF 5307, ARM7
TDMI, HCS12/STAR12, TMS320C33, C166/ST10, Renesas M32C/85, Infineon
TriCore 1.3

Bound-T Intel-8051, ADSP-21020, ATMEL ERC32, Renesas H8/300, ATMEL AVR, AT-
mega, ARM7

RapiTime Motorola PowerPC family, HCS12 family, ARM, NecV850, MIPS3000

SymTA/P ARM, TriCore, StrongARM, i8051

Heptane Pentium1, StrongARM 1110, Hitachi H8/300

Vienna S. M68000, M68360, C167
Vienna M. C167, PowerPC
Vienna H. HCS12, Pentium

SWEET ARM9 core, NEC V850E

Florida MicroSPARC I, Intel Pentium, StarCore SC100, Atmel Atmega, PISA/MIPS

Chalmers PowerPC

Chronos SimpleScalar out-of-order processor model with MIPS-like instruction-set-
architecture (PISA)

Table V. Supported hardware platforms

by WCET tools.
On the other hand, timing precision can profit from integration of WCET tools

with compilers. Compilers have semantic information that is hard to recover from
the generated code. If this information were passed on to the WCET tool, the
precision could be increased. For instance, the integration with the compiler and
linker would be desirable to supply the WCET tool with the possible targets for dy-
namic calls and jumps and the possible memory locations for dynamic data accesses
(pointer analysis). A standard format for this information, perhaps embedded in
the linked executable, would be preferable to a real-time interaction between these
tools. A closer integration between the WCET tool and the compiler is desirable,
so that the compiler can utilize feedback about temporal properties of code from
the WCET tool in order to identify the best code optimization strategy for each
section of code it generates.

For automatically synthesized code, integration with the semantic information
available on the model level would be very helpful. Timing information about
dynamically called library functions is necessary to bound the time for their calls.

The current symbol-table structures in executable files are also an important
practical problem, although trivial in theory. The symbol-table structures are
poorly defined and differ across compilers and targets.

It is obvious that a source-file browsing tool should be integrated with the WCET
tool, to help the user to understand the results and to control the WCET tool. The
browsing tool may, in turn, need to interact with a version-control tool.

An exciting extension is to integrate a WCET tool into a tool for the performance
analysis of distributed and communication-centric systems.

10. CONCLUSIONS

The problem of determining upper bounds on execution times for single tasks and
for quite complex processor architectures has been solved. Several commercial
WCET tools are available and have experienced very positive feedback from ex-
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Tool Contact person Contact information

aiT Christian Ferdinand Email: info@AbsInt.com
AbsInt Angewandte Informatik GmbH Phone: +49 681 383 60 0
Science Park 1 Fax: +49 681 383 60 20
D-66123 Saarbrücken Web: www.AbsInt.com
Germany

Bound-T Niklas Holsti Email : info@tidorum.fi
Tidorum Ltd Phone: +358 (0) 40 563 9186
Tiirasaarentie 32 Web: www.tidorum.fi
FI-00200 Helsinki Web: www.bound-t.com
Finland

RapiTime Guillem Bernat Email: enquiries@rapitasystems.com
Rapita Systems Ltd. Phone: +44 1904 567747
IT Center, York Science Park Fax: +44 1904 567719
Heslington Web: www.rapitasystems.com
York YO10 5DG
United Kingdom

SymTA/P Rolf Ernst, Jan Staschulat Email: ernst|staschulat@ida.ing.tu-bs.de
Inst. für Datentechnik und Phone: +49 531 391 3728
Kommunikationsnetze Fax: +49 531 391 3750
Technische Universität Braunschweig
Hans-Sommer-Str. 66
D-38106 Braunschweig, Germany

Heptane Isabelle Puaut Email: puaut@irisa.fr
IRISA, ACES Research Group Phone: +33 02 99 84 73 10
Campus univ. de Beaulieu Fax: +33 02 99 84 25 29
35042 Rennes Cédex, France Web: www.irisa.fr/aces/work/heptane-

demo/heptane.html

Vienna Peter Puschner Email: peter.puschner@tuwien.ac.at
Inst. für Technische Informatik Phone: 01 58 801 18 227
TU Wien Fax: 01 58 69 149
A-1040 Wien, Austria

SWEET Björn Lisper Email: bjorn.lisper@mdh.se
Mälardalen University Email: andreas.ermedahl@mdh.se
P.O. Box 883 SE-721 23 Email: jan.gustafsson@mdh.se
SE 72123 Väster̊as Phone: +46 21 151 709
Sweden Web: www.mrtc.mdh.se/projects/wcet/

Florida David Whalley Email: whalley@cs.fsu.edu
Florida State University
Frank Mueller Email: mueller@cs.ncsu.edu
North Carolina State University
Chris Healy Email: chris.healy@furman.edu
Furman University, USA

Chalmers Per Stenström Email: pers@ce.chalmers.se
Department of Computer Engineering Phone: +46 31 772 1761
Chalmers University of Technology Fax: +46 31 772 3663

S-412 96 Göteborg, Sweden

Chronos Tulika Mitra, Email: tulika@comp.nus.edu.sg,
Abhik Roychoudhury, Email: abhik@comp.nus.edu.sg
Xianfeng Li, Email: lixianfe@comp.nus.edu.sg
National University of Singapore www.comp.nus.edu.sg/˜rpembed/chronos

Table VI. Contact information for the tools.
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tensive industrial use. This feedback concerned speed, precision of the results, and
usability. Several research prototypes are under development.

10.1 Remaining problems and Future Perspectives

What significant problems or novel directions is timing analysis facing?

Increased support for flow analysis. Most problems reported in timing-analysis
case studies relate to setting correct loop-bounds and other flow annotations. Str-
onger static program analyses are needed to extract this information from the soft-
ware.

Verification of abstract processor models. Static timing-analysis tools based on
abstract processor models may be incorrect if these models are not correct. Strong
guarantees for correctness can be given by equivalence checking between different
abstraction levels. Ongoing research activities attempt the formal derivation of
abstract processor models from concrete models. Progress in this area will not only
improve the accuracy of the abstract processor models, but also reduce the effort to
produce them. Measurement-based methods can also be used to test the abstract
models.

Integration of timing analysis with compilation. An integration of static timing
analysis with a compiler can provide valuable information available in the compiler
to the timing analysis and thereby improve the precision of analysis results.

Integration with scheduling. Preemption of tasks causes large context-switch costs
on processors with caches; the preempting task may ruin the cache contents, such
that the preempted task encounters considerable cache-reload costs when resuming
execution. These context-switch costs may be even different for different combina-
tions of preempted and preempting task. These large and varying context-switch
costs violate assumptions underlying many real-time scheduling methods. A new
scheduling approach considering the combination of timing analysis and preemptive
scheduling will have to be developed.

Interaction with energy awareness. This may concern the trade off between speed
and energy consumption. On the other hand, information computed for WCET
determination, e.g., cache behavior, is of high value for the determination of energy
consumption [Seth et al. 2003].

Design of systems with time-predictable behavior. This is a particularly well-
motivated research direction, because several trends in system design make systems
less and less predictable [Thiele and Wilhelm 2004].

There are first proposals in this area. [Anantaraman et al. 2003] propose a vir-
tual simple architecture (VISA). A VISA is the pipeline timing specification of a
hypothetical simple processor. Upper bounds for execution times are derived for
a task assuming the VISA. At run-time, the task is executed speculatively on an
unsafe complex processor, and its progress is continuously gauged. If continued
safe progress appears to be in jeopardy, the complex processor is reconfigured to
a simple mode of operation that directly implements the VISA, thereby explicitly
bounding the task’s overall execution time. Progress is monitored at intra-task
checkpoints, which are derived from upper bounds and unsafe predictions of execu-
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tion times for subtasks [Anantaraman et al. 2004]. Hence, VISA shifts the burden
of bounding the execution times of tasks, in part, to hardware by supporting two
execution modes within a single processor. [Puschner 2005] proposes to transform
sets of program paths to single paths by predicate conversion as in code generation
for processors with predicated execution. The disadvantage is the loss in perfor-
mance resulting from the need to execute predicated paths that would originally
not be executed.

Any proposal increasing predictability plainly at the cost of performance will
most likely not be accepted by developers.

Extension to component-based design. Timing-Analysis methods should be made
applicable to component-based design and systems built on top of real-time oper-
ating systems and using real-time middleware.

10.2 Architectural Trends

The hardware used in creating an embedded real-time system has a great effect on
the ease of predictability of the execution time of programs.

The simplest case are traditional 8-bit and 16-bit processors with simple archi-
tectures. In such processors, each instruction basically has a fixed execution time.
Such processors are easy to model from the hardware timing perspective, and the
only significant problem in WCET analysis is how to determine the program flow.

There is also a class of processors with simple in-order pipelines, which are found
in cost-sensitive applications requiring higher performance than that offered by
classic 8-bit and 16-bit processors. Examples are the ARM7 and the recent ARM
Cortex R series. Over time, these chips can be expected to replace the 8-bit and
16-bit processors for most applications. With their typically simple pipelines and
cache structures, relatively simple and fast WCET hardware analysis methods can
be applied.

At the high-end of the embedded real-time spectrum, performance requirements
for applications like flight control and engine control force real-time systems design-
ers to use complex processors with caches and out-of-order execution. Examples are
the PowerPC 750, PowerPC 5000, and Tricore and Tricore2 families of processors.
Analyzing such processors requires more advanced tools and methods, especially in
the hardware analysis.

The mainstream of computer architecture is steadily adding complexity and spec-
ulative features in order to push the performance envelope. Architectures such as
the AMD Opteron, Intel Pentium 4 and Pentium-M, and IBM Power5 use multiple
threads per processor core, deep pipelines, and several levels of caches to achieve
maximum performance on sequential programs.

This mainstream trend of ever-more complex processors is no longer as dominant
as it used to be, however. In recent years, several other design alternatives have
emerged in the mainstream, where the complexity of individual processor cores has
been reduced significantly.

Many new processors are designed by using several simple cores instead of a
single or a few complex cores. This design gains throughput per chip by running
more tasks in parallel, at the expense of single-task performance. Examples are
the Sun Niagara chip which combines 8 in-order four-way multithreaded cores on a
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single chip [Olukotun and Hammond 2005], and the IBM-designed PowerPC for the
Xbox 360, using three two-way multithreaded in-order cores [Krewell 2005]. These
designs are cache-coherent multiprocessors on a chip, and thus have a fairly complex
cache- and memory system. The complexity of analysis moves from the behavior
of the individual cores to the interplay between them as they access memory.

Another very relevant design alternative is to use several simple processors with
private memories (instead of shared memory). This design is common in mobile
phones, where you typically find an ARM main processor is combined with one or
more DSPs on a single chip. Outside of the mobile phone industry, the IBM-Sony-
Toshiba Cell processor is a high-profile design using a simple in-order PowerPC core
along with eight synergistic processing elements (SPEs) [Hofstee 2005]. The Cell
will make its first appearance in the Sony PlayStation 3 gaming console, but IBM
and Mercury Computing systems are pushing the Cell as a general-purpose real-
time processor for high-performance real-time systems. The SPEs in the Cell are
designed for predictable performance, and use local program-controlled memories
rather than caches, just like most DSPs. Thus, this type of architecture provides
several easy-to-predict processors on a chip as an alternative to a single hard-to-
predict processor.

Field-programmable gate arrays (FPGAs) are another design alternative for some
embedded applications. Several processor architectures are available as ”soft cores”
that can be implemented in an FPGA together with application-specific logic and
interfaces. Such processor implementations may have application-specific timing
behaviour which may be challenging for off-the-shelf timing analysis tools, but they
are also likely to be less complex and thus easier to analyze than general-purpose
processors of similar size. Likewise, some standard processors are now packaged
together with FPGA on the same chip for implementing application-specific logic
functions. The timing of these FPGA functions may be critical and need analysis,
separately or together with the code on the standard processor.

There is also work on application-specific processors or application-specific ex-
tensions to standard instruction sets, again creating challenges for timing analysis.
Here there is also an opportunity for timing analysis: to help find the application
functions that should be speeded up by defining new instructions.
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Seth, K., Anantaraman, A., Mueller, F., and Rotenberg, E. 2003. FAST: Frequency-Aware
Static Timing Analysis. Proc. of the IEEE Real-Time Systems Symposium, 40–51.

Shaw, A. C. 1989. Reasoning About Time in Higher-Level Language Software. IEEE Transactions
on Software Engineering 15, 7, 875–889.
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