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Data Caches are an increasingly important architectural feature in most modern computer systems. They help
bridge the gap between processor speeds and memory access times. One inherent difficulty of using data caches
in a real-time systemis the unpredictability of memory accesses, which makes it difficult to calculate worst-case
execution times (WCETs) of real-time tasks.

While cache analysis for single real-time tasks has been thefocus of much research in the past, bounding the
preemption delay in a multi-task preemptive environment isa challenging problem, particularly for data caches.

This paper makes multiple contributions in the context of independent, periodic tasks with deadlines less than
or equal to their periods executing on a single processor.

1) For every task, we derivedata cache reference patterns for all scalar and non-scalar references. These
patterns are used to derive an upper bound on the WCET of real-time tasks.

2) We show that, when considering cache preemption effects,the critical instant does not occur upon simulta-
neous release of all tasks. We provide results for task sets with phase differences to prove our claim.

3) We develop a method to calculate tight upper bounds on the maximum number of possible preemptions for
each job of a task and, considering the worst-case placement of thesepreemption points, derive a much tighter
bound on its WCET. We provide results using both static and dynamic priority schemes.

Our results show significant improvements in the bounds derived. We achieve up to an order of magnitude
improvement over two prior methods and up to half an order of magnitude over a third prior method for the
number of preemptions, theWCETand theresponse timeof a task. Consideration of the best-case and worst-case
execution times of higher priority jobs enables these improvements.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—scheduling; D.4.7 [Op-
erating Systems]: Organization and Design—real-time systems and embedded systems

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Real-Time Systems, Preemptions, Worst-Case Execution Time, Timing Anal-
ysis, Data Caches, Cache-Related Preemption Delay

1. INTRODUCTION

Data caches are an invaluable architectural feature in modern computer systems. Being
effective in bridging the gap between processor and memory speeds, they provide signifi-
cant improvement in latency. However, they have one inherent complexity — the latency
of memory references becomes unpredictable in the presenceof data caches.
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In a real-time system,a priori knowledge of the worst-case execution time (WCET)
of every task is necessary in order to conduct schedulability tests. The unpredictability
introduced by data caches in such a system significantly increases the complexity of timing
a task with the aim of obtaining WCET estimates.

Data cache analysis for single tasks, itself a challenging problem, has been the focus
of much research ([Lim et al. 1994], [Kim et al. 1996], [Li et al. 1996], [White et al.
1999], [Lundqvist and Stenström 1999]). However, most real-time systems operate in a
prioritized, preemptive manner. Every task in the system isassigned a priority based on a
particular scheduling policy and, at any time, a task with higher priority may preempt that
with a lower priority. This implies that some cache blocks used by the preempted task may
potentially be evicted from cache, causing additional reload delay when the lower-priority
task resumes execution. Hence, the complexity of data cacheanalysis increases further in
the context of preemptive systems.

In previous work [Ramaprasad and Mueller 2005], we presented a framework that ex-
tended the concept of Cache Miss Equations [Ghosh et al. 1997] to derive exact data cache
miss/hit patterns for every memory reference in a loop nest.This analysis framework was
integrated into a static timing analysis framework to provide tight WCET estimates for
tasks in the absence of preemptions.

In this paper, we propose methods to provide tight estimatesof the WCET of tasks in a
multi-task preemptive environment. The fundamental stepsinvolved in this calculation are
as given below.

(1) Preemption delay: Given the preempted task, the set of possible preempting tasks
and the preemption point, calculate the delay incurred due to the preemption.

(2) Number of preemptions: Calculatenp, an upper bound on the number of times a
task can be preempted during execution within a task set.

(3) Worst-case scenario: Identify the placement of thenp preemption points in the iter-
ation space such that the worst-case total delay / preemption cost is obtained.

These issues have been studied by Staschulat et al. for instruction caches [Staschulat and
Ernst 2004], [Staschulat et al. 2005]. Our work is orthogonal and focuses on data caches.

In our current work, the calculation of the base execution time for a task (without pre-
emption delay) uses a static cache simulator to account for instruction cache effects. How-
ever, in the preemption delay calculation, only data cache effects are taken into account.
A similar method may be employed to account for instruction cache related preemption
delay, but this has not been implemented yet.

We first present a method to calculate an upper bound on the maximum number of
preemptions for a task and construct a pessimistic worst-case preemption scenario based
on this number. This yields an upper bound on the WCET estimates. Next, we propose a
method to significantly tighten the maximum number of preemptions using the entire range
of execution times for a task. Using this new, tighter estimate, we construct a realistic
worst-case preemption scenario and derive significantly tighter bounds of the WCET of a
task in the context of a task-set.

We also show that the critical instant doesnotoccur when all tasks are released simulta-
neously if we consider preemption delays. Hence, our secondmethod performs a per-job
analysis rather than a per-task analysis and considers all jobs within a hyperperiod.

The analysis presented in this paper is currently supportedonly by a mathematical proof
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of correctness. Experimental validation of our results using a cycle-accurate simulator is
part of future work and has not been presented in this paper.

The remainder of this paper is organized as follows. Section2 presents the task model
used in this paper. Section 3 discusses related work. Section 4 discusses the effect of
considering data cache related preemption delay on the critical instant. In Section 5, we
briefly discuss our static timing analyzer framework. Section 6 gives an overview of prior
work that analyses a single task. In Section 7, we describe our experimental setup. Section
8 introduces our basic methodology in detail. In Section 9, we discuss how to calculate an
upper bound on the number of preemptions. Section 10 assesses the general task behavior
with respect to preemption delay distributions. Section 11discusses how WCET estimates
are tightened further by eliminating infeasible preemption points. Section 12 provides
detailed results of our analysis. Section 14 summarizes thecontributions of this work.

2. TASK MODEL

In our work, we consider a periodic real-time task model withdeadline less than or equal
to the period of a task. A periodic task is a sequence of jobs where the interval (period)
between any two consecutive job-releases is the same. The least common multiple of the
periods of all tasks in such a system is known as the hyperperiod of the task. Throughout
this work, we assume a list-based scheduling model where every job has a fixed priority.

The notation used in the remainder of this paper is describedhere. A taskTi has char-
acteristics represented by the 5 tuple (Φi, Pi, Ci, ci, Di). Here,Φi is the phase,Pi is the
period,Ci is the worst-case execution time,ci is the best-case execution time andDi is the
relative deadline (less than or equal to the period) of the task. In the context of a specific
task set, every task has a set of derived characteristics represented by the 3 tuple (Bi, Ri,
∆j,i). Here,Bi is the blocking time andRi is the response time of the task.∆j,i is the
preemption delay inflicted on the task due to a higher priority taskTj. Ji,j represents the
jth instance (job) of taskTi.

3. RELATED WORK

Several methods have been proposed in the past to bound data cache behavior for a single
task without taking into account the effects that other tasks may have on the behavior
([Lim et al. 1994], [Kim et al. 1996], [Li et al. 1996], [Whiteet al. 1999], [Lundqvist and
Stenström 1999]). They use methods like data flow analysis,static cache simulation, etc.
for this purpose.

Analytical methods for predicting data cache behavior havebeen proposed. They in-
clude the Cache Miss Equations by Ghosh et al. [Ghosh et al. 1999], a probabilistic anal-
ysis method proposed by Fraguella et al. [Fraguela et al. 1999] and another analytical
method by Chatterjee et al. [Chatterjee et al. 2001]. The common idea behind these meth-
ods is to characterize data cache behavior by means of a set ofmathematical equations. In
prior work [Ramaprasad and Mueller 2005], we have extended the cache miss equations
framework to produce exact data cache patterns for references. Techniques that make data
caches more predictable and can be applied in preemptive systems are cache partitioning
and cache locking [Lisper and Vera 2003], [Puaut and Decotigny 2002]. Both methods
lead to a significant loss in average-case performance in order to gain predictability. Re-
cent work shows improvements in these methods for the case ofinstruction caches [Puaut
2006]. However, since data caches stride over large data sets, it is difficult to prevent loss
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in performance.
Other techniques have been proposed specifically to calculate preemption delay and ana-

lyze schedulability in a multi-task preemptive system. These techniques do not specifically
analyze data cache behavior. Instead, they provide a more generic solution applicable to a
cache including specific solutions for instruction caches.

Early on, Basumallick et al. conducted a survey of cache related issues in real-time sys-
tems [Basumallick and Nilsen 1994]. This survey discussed some initial work related to the
calculation of preemption delay. Busquets-Mataix et al. proposed a method to incorporate
the effect of instruction caches on response time analysis (RTA) [Busquets-Matraix 1996].
They compared cached RTA with cached Rate Monotonic Analysis (RMA) and concluded
that cached RTA outperforms cached RMA. Lee et al. proposed and enhanced a method
to calculate an upper bound for cache related preemption delay in a real-time system [Lee
et al. 1998; Leung ], [Lee et al. 2001]. They used cache statesat basic block boundaries
and data flow analysis on the control flow graph of a task to analyze cache behavior and
calculate preemption delay.

Another approach by Tomiyama et al. calculates cache related preemption delay for the
program path that requires the maximum number of cache blocks [Tomiyama and Dutt
2000]. This path is determined by an integer linear programming technique. In this paper,
an empty cache is assumed at the beginning of every job and hence, each preemption is
analyzed individually. Effects of multiple preemptions are not considered. Negi et al.
combined the techniques proposed by Tomiyama et al. [Tomiyama and Dutt 2000] and by
Lee et al. [Lee et al. 1998], [Lee et al. 2001] to develop an enhanced framework [Negi et al.
2003]. Once again, however, multiple preemptions are not considered in their work since
an empty cache is assumed at the beginning of a task.

The work by Lee et al. was enhanced by Staschulat et al. [Staschulat and Ernst 2004],
[Staschulat et al. 2005]. The authors propose a complete framework for the calculation of
response time for tasks in a given task set. Response times are determined as shown below.

Ri = Ci + Bi + Σ
j=1..i−1

((⌈Ri

Pj
⌉ ∗ Cj) + ∆j,i(Ri))

where the blocking time,Bi, is not considered in the example and∆j,i(Ri) is the overhead
incurred by higher priority tasks preempting the current one.

They address the three issues enumerated in the Section 1, namely calculation of the
maximum number of preemption points, identification of their placement and calculation
of the delay at each point. However, their focus is not on datacaches, but on instruction
caches.

In their work, Staschulat et al. discuss the concept of indirect preemptions [Staschulat
et al. 2005]. Table I provides a sample task set with phaseΦ, periodP , WCET C and
preemption delay∆, respectively, for tasksT1 to T4. The third column showsΦ′, another
possible set of phases for the tasks, and is used later, in Section 4, for the purpose of
comparison. For simplicity,∆ is assumed to be fixed per task,i.e., incurred when inflicted
by any higher priority task.

In Figure 1, execution is depicted by shaded boxes and the preemption delay is depicted
by black boxes. Staschulatet al. observe that several indirect preemptions affect lower
priority tasks only once. For example, in the figure,T2 is affected by the first two in-
vocations ofT1. T3 is actually only affected by the first and third invocations since, after
being preempted once, it is not scheduled at all untilT2 completes execution. Furthermore,
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Φ Φ′ P C ∆

T1 2 1 3 1 0
T2 1 0.875 15 4.625 0.125
T3 0 0.125 20 2.25 0.75
T4 0 0 25 1 0.125

Table I. Task Set, Optional Phasing
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Fig. 1. Preemption withΦ Phasing
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Fig. 2. Preemption without Phasing:Φi = 0

while incurring the delay due to preemption,T3 is preempted again at time eight. Hence,
the entire preemption cost is charged again whenT3 resumes at time nine. This results
in a response time ofR3 of 11 units. We will show in this work that considering indirect
preemption along the lines of Staschulatet al. produces pessimistic results.

In more recent work [Staschulat and Ernst 2006], Staschulatet al. propose a timing
framework that considers predictable and unpredictable (input-dependent) data cache ac-
cesses. For unpredictable accesses, a tight bound of their impact on predictable accesses
and a worst-case estimate of the number of additional data cache misses is calculated. As
such, their work considers any reused cache content to be replaced when a conflicting range
of accesses for unpredictable data references exists, up tothe number of cache blocks in
either set. Alternatively, they handle cold misses for small arrays that entirely fit into cache
and do not suffer replacements at all. Our work makes no assumption on the size of arrays.
Furthermore, we assume only predictable data accesses. Notice that for array traversals
exceeding cache size, their scheme breaks down as they assume that the entire cache has
been replaced. As their and our schemes are complementary, it would be interesting to
study the compatibility of these methods. However, this study is beyond the scope of this
paper.

In other related work, Ju et al. propose a method to extend CRPD calculations using
abstract cache states to dynamic scheduling policies [Ju etal. 2007]. Once again, this work
focuses on instruction caches. Our handling of data caches differs significantly.
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Fig. 3. Preemption withΦ′ Phasing

4. PREEMPTION DELAY AFFECTS RESPONSE TIME

Prior work often assumes that the worst-case response time occurs at the theoretical critical
instant for fixed-priority scheduling,i.e., upon simultaneous release of all tasks. However,
this is not necessarily the critical instant when preemption delays are considered. Consider
Figure 2, which uses the same task set but with a phase of zero for all tasks and Figure 3,
which has phase differences between tasks. We observe that,in Figure 3, the response time
of T4 (15 units) exceeds its response time in Figure 2 (14 units).

In general, our method is linear (in terms of analysis time) to the length of the hyper-
period. Hence, if the hyperperiod is large, our method wouldhave higher analysis time.
However, in practice, the hyperperiod of tasks is often a relatively small number. Hence,
releases of tasks can occasionally coincide and are otherwise separated by some minimum
time interval (typically 1 ms). For this reason, we considerin our work,all jobs of a task
within a hyperperiod. We calculate the maximum number of possible preemptions for a
job and the data cache related preemption delay at every point. This enables us to consider
ranges of executionwhere preemptions can occur within the code. Such analysis yields
more accurate results than the calculation of preemption delay per task and helps us sig-
nificantly tighten the estimates of the number of preemptions and the response times of
jobs.

5. STATIC TIMING ANALYSIS

A priori knowledge of the WCET of every task in a task set is assumed forperforming
schedulability analysis in real-time systems. These estimates need to besafeupper bounds
on the actual execution times of tasks.

Two methods for calculating the WCET are dynamic timing analysis and static timing
analysis. It has been demonstrated in earlier studies [Wegener and Mueller 2001] that
dynamic analysis by actual execution of a task does not guarantee worst-case estimates.
Further, exhaustive testing of the input space is impractical. In contrast, static timing
analysis is a viable approach to derivesafeWCET bounds. Here, all execution paths in a
program are traversed and a conservative upper bound for theexecution time of the longest
path is calculated.

Several features of the program under consideration (e.g., data dependent control flow,
pointer accesses, etc.) affect the calculation of WCET. Similarly, severalarchitectural fea-
turesalso cause unpredictability in the timing analysis. One such feature that is particularly
hard to model is thedata cache. Inefficient modeling of the data cache could lead to overly
pessimistic WCET estimates, hence affecting the results ofschedulability tests.

Figure 4 depicts our framework for static timing analysis toderive WCET bounds. The
shaded portions indicate the components responsible for data cache analysis and the actual
timing analysis. The framework uses a static cache simulator that simulates the instruction
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cache and a data cache analyzer framework (developed in prior work [Ramaprasad and
Mueller 2005]) to produce data cache reference patterns.

Cache

Categorizations

Static Cache
Simulator

Cache

Configuration

Source 
Files

Gcc Compiler Timing
Analyzer

WCET
Prediction

Control flow
& Memory
Refs. Info.

Analyzer I/P

Generator

Data Cache
Analyzer

Cache

Configuration
Miss/Hit
Patterns

Fig. 4. Static Timing Analysis Framework

6. PRIOR WORK

In prior work [Ramaprasad and Mueller 2005], we propose a data cache analyzer frame-
work that produces data cache reference patterns, in terms of hits and misses, for every
scalar and non-scalar memory reference in a scientific, loopnest oriented task.

Our work enhances a framework developed by Vera et al. [Vera et al. 2000], [Vera and
Xue 2002] that uses the concept of Cache Miss Equations to statically characterize data
cache behavior for a single task. While this original framework only determines the number
of data cache misses, our enhanced framework provides information about the position of
every miss.

This data cache analyzer framework is integrated into the static timing analyzer frame-
work shown in Figure 4 to calculate the WCET of a task including data cache miss latency.
The constraints the tasks need to adhere to in order to be analyzable by our framework are
summarized in Section 7.

7. BENCHMARKS AND CACHE CONFIGURATION

In our analysis, we use the static timing analyzer frameworkdescribed in Section 5. The
data cache analyzer in this framework produces data cache reference patterns for every
task, the details of which are described in prior work [Ramaprasad and Mueller 2005]. We
use the SimpleScalar tool-set [Burger et al. 1996] for compiling our source code. We use
this tool-set in conjunction with the portable instructionset architecture (PISA), which is a
widely used generic ISA.

Our data cache analyzer poses certain restrictions on the programs it can analyze. Pri-
marily, loop bounds must be known at compile-time, no pointer-based or dynamic mem-
ory accesses are allowed and array subscript expressions must be affine functions of the
loop induction variables. Furthermore, in our current framework, we only support non-
partitioned, direct-mapped data caches.

Benchmarks from the DSPStone benchmark suite [Zivojnovic et al. 1994] are used in
our experiments. Pointer accesses in these benchmarks werereplaced by equivalent array
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accesses to make them analyzable by our framework. Abstractinlining [Ramaprasad and
Mueller 2005] is used on the function calls to lift all data references into one (main) func-
tion. A brief description of the benchmarks used are provided in Table II. We used the
benchmarks with different data-set sizes in order to obtainvarying timing characteristics.
In all our experiments, a 4KB direct-mapped data cache with ahit penalty of 1 cycle and a
miss penalty of 100 cycles was used.

Conceptually, our methods could be applied to any processormodel. However, in our
current implementation, we use the SimpleScalar processormodel [Burger et al. 1996].

Benchmark Description
dot-product Program to find the dot

product of two vectors
convolution Program to implement a

convolution filter
fir Program to implement a

finite impulse response filter
lms Program to implement a least

mean-square filter
n-real-updates Program to perform n real updates

of the form D(i) = C(i) + A(i)*B(i),
where A(i), B(i), C(i) and D(i) are

real numbers, and i = 1,...,N
matrix1 Program to find the product

of two matrices

Table II. Description of benchmarks in the DSPStone suite

8. METHODOLOGY

In our prior work, we model data cache behavior for single tasks. However, in reality, most
real-time systems consist of multiple tasks operating in a prioritized, preemptive manner.
In other words, every task in the system has a priority determined by some scheduling
policy. At any point during its execution, a particular taskmay be interrupted by a task
with higher priority. In our work, we consider non-partitioned data caches, which means
cache lines may be shared across tasks. Thus, when a task is preempted, a subset of its
memory lines may be evicted from the data cache by the execution of the preempting
tasks.

Assuming that all memory lines of a task are evicted during preemption leads to over-
estimation of the Data Cache Related Preemption Delay (D-CRPD), thus affecting the
schedulability of task sets. In this paper, our aim is to calculate a safe, but tight estimate of
the D-CRPD and hence the WCET and response time of a task. We propose a method to
incorporate D-CRPD calculations during WCET calculation itself. Furthermore, to make
the calculation as accurate as possible, we use the intersection of the cache blocks that are
useful to the preempted task on resuming execution and thosethat are potentially used by
the tasks that execute before the preempted task is restarted.

8.1 Response Time Analysis

We use response time analysis to determine schedulability of a task set [Lehoczky et al.
1989; Audsley et al. 1993]. Task sets are assumed to be periodic and each task is assumed

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.



· 9

to have a deadline less than or equal to its period. Response time is calculated using an
iterative approach as indicated in Equation 1.

Rn
i = Ci +

∑

j∈hp(i)

⌈
Rn

i

Pj

⌉ · Cj (1)

The sethp(i) denotes the set of tasks with a higher priority than taski. For every task,
the value ofR that converges this equation is its response time. The worst-case execution
time of a taski is denoted asCi and the period, asPi. Since our method incorporates D-
CRPD calculations within the WCET calculation of a task, we do not require an additional
term for the delay in Equation 1.

8.2 Phase 1: Calculation of Base Time and Data Cache Patterns

In order to compute the WCET of a task that includes D-CRPD, wefirst calculate a base
execution time for every task. For this purpose, we analyze every task individually using
the data cache analyzer to produce data cache reference patterns as described in prior work
[Ramaprasad and Mueller 2005]. These patterns are used by the static timing analyzer
while building timing trees for every task. The timing tree provides information about the
timing of individual nodes (functions/loops) in a given task. It is to be noted that this base
time does not include the D-CRPD and is calculated onlyoncefor every task.

8.3 Phase 2: Preemption Delay Calculation

The data cache analyzer and the timing analyzer interact repeatedly to calculate the WCET
of a task with D-CRPD in this phase. The timing analyzer timesthe program up to a
preemption point. At this point, the data cache analyzer is invoked to calculate the number
of additional misses due to preemption. This delay is added to the remaining execution
time of the task under consideration. The same process is repeated for every interval.

In prior work [Ramaprasad and Mueller 2005], we propose a method to deriveexact
hit/miss patterns for every reference in the loop nest. These patterns are known as data
cache reference patterns and indicate the number and position of every data cache miss
for every reference. We devised the following method to calculate the actual preemption
delay at a given preemption point. All data cache reference patterns for a task are merged,
maintaining the order of accesses. References that access the same cache set are connected
together to form a chain that effectively indicates cache reuse. Chains for different cache
sets are shown using a different line-style. Within each chain, amissis represented by the
letter ’M’ and ahit is represented by a dot. An example with just three cache set chains is
shown in Figure 5.

M  M  M  M  M  M  M  M  M  M  .  .  .  .  .  .  .  .  .  .  .  .  .  M  .  .  .  M  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  M  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Fig. 5. Cache Line Access Chains for Lines 1, 2 and 3

Each point in the access chains of a task is assigned a weight that indicates the number
of additional data cache misses that would be incurred if a preemption were to occur at that
point. This weight is calculated as follows. First, the number of differently styled chains
thatcross overthis point is counted. This effectively eliminates cache sets that are not used
after the preemption point. Additionally, we perform two checks.
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(1) Chains in which the access point on the chain immediatelyfollowing the current point
is amissin the pattern are not counted. The rationale behind this is that, if the point
were amissin the first place, it would be due to some intra-task interference. Hence,
a preemption just before that point will not cause any further delay with respect to the
particular cache set that the chain represents.

(2) Chains that correspond to a cache set that is not used by any task with a higher priority
than the task under consideration are not counted. This ensures that only the cache
blocks that could potentially be replaced during preemption of the current task are
considered.

Access chains for a task need to be constructed onlyonce. However, since the assign-
ment of weights for every point is further dependent on the higher-priority tasks in the task
set, the weights aretask setspecific rather than justtaskspecific.

9. AN UPPER BOUND ON PREEMPTIONS

In the following, we discuss the methods to calculate the maximum number of preemption
points for a task and their placement in the worst case.

9.1 Identification of Preemption Points

First, we need to calculate an upper bound on the number of preemptions for any given
task in the worst case. Consider a taskTi. The upper bound on the number of preemptions
incurred byTi is given by Equation 2.

ni
p =

∑

j∈hp(i)

(⌈
Di

Pj

⌉) (2)

For calculation of preemption delay due to theseni
p preemptions, we use the access

chains of the task as described in Section 8.3. The sum of theni
p most expensive delays in

the chains is used to calculate anupper boundon the worst-case preemption delay for the
task and this is added to the WCET of the task. This method of calculating the number of
preemptions is denoted as HJ-P in the experimental results section.

9.2 Actual Calculation of WCET and Response Time

Response times of tasks are calculated using the formula shown in Equation 1. In order to
calculate the response time of a particular task, we need to know the response times of all
higher priority tasks. Hence, we start with the highest priority task and proceed towards the
lowest priority task. For every task, the D-CRPD, calculated using the method described
above, and the WCET with D-CRPD is used in the equation.

10. PREEMPTION DELAY COSTS

As shown in Section 9, an upper bound on the worst-case preemption delay for a task may
be calculated using thenp most expensive preemption delays. In this process, we do not
impose any constraints on the interval between consecutivepreemption points.

The reason for using this upper bound is based on an observation regarding the reuse
of cache lines in a task. The distribution of preemption costs for the second, third, fourth
and fifth tasks of a sample task set (Table III) are shown in Figure 6. The X-axis shows
the memory access points in order and the Y-axis shows the cost of preemption at a point
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Benchmark Period Stand alone
(=deadline) WCET

convolution 62500 7491
fir 125000 9537
lms 125000 14536

n-real-updates 250000 16738
matrix1 250000 54168

Table III. Example Task Set Characteristics - Task Set 1

in terms of the calculated weight at the point. The calculation of the weight at a given
iteration point is described in Section 8.3.
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(a) lms benchmark
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(b) n-real-updates benchmark
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(c) matrix1 benchmark
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(d) fir benchmark

Fig. 6. Distribution of preemption costs across the iteration space

From these graphs for the benchmarks in Figures 6(a), 6(b) and 6(c), we observe that a
large number of access points have the highest preemption cost. Furthermore, they are all
consecutive. This indicates that a preemption at any of these points would result in the same
preemption delay and, hence, picking thenp most expensive points gives a reasonably tight
bound on the worst-case preemption delay.

The distribution of these delays is a direct indication of the reuse of cache lines in the
respective tasks. In most programs, ninety percent of the time is spent in ten percent of the
code. Within this ten percent, there are repetitive reuse patterns, which implies temporal
and spatial reuse. Hence, during the course of this section,all data that is used in the
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section is already in the data cache. Preemption at any pointin this section would result in
more or less the same cache lines being evicted, hence causing the same preemption delay.

Although the above behavior is observed in most cases, thereare some benchmarks
(Figure 6(d)) in which we observe a gradual increase in the preemption cost up to some
point and then a decrease in the cost for successive access points. Hence, in the next
section, we discuss methods to tighten the worst-case preemption delay bound.

11. TIGHTENING PREEMPTION DELAY BOUNDS

In Section 9, we describe a method to calculate the WCET of a task with D-CRPD. How-
ever, simplified methods were used to calculate the maximum number of preemptions and
the total preemption delay incurred. We now propose methodsto calculate significantly
tighter estimates of the number of preemptions and a more realistic, yet safe method to
identify the placement of these preemption points that leads to the worst-case D-CRPD.

11.1 Eliminating Infeasible Preemption Points

The formula used to calculate the maximum possible number ofpreemptions for a task in
Section 9 is based on the number of jobs of higher priority tasks that are released in the
period of the lower priority task and the amounts of time theyeach take to execute. This
leads to the consideration of several infeasible preemption points either because the lower
priority job has not been scheduled at all and, hence, cannotbe preempted, or because
it has already finished executing. Hence, we developed a method that considers the best
and worst case execution times of higher priority tasks to eliminate these infeasible points.
Since we showed in Section 4 that the critical instant does not necessarily occur when all
tasks are released at the same time, we calculate the WCET foreach job of a task within a
hyperperiod with the individual phasing.

Our method to eliminate infeasible preemption points is described in the remainder of
this section. However, we do not explicitly add the preemption delay at every stage in this
explanation for the sake of simplicity. The actual calculation of preemption delay and the
identification of the placement of preemption points in the iteration space of the preempted
task are discussed in the next section.

We use an example to explain the basic methodology involved in the elimination of in-
feasible preemption points. The characteristics of the task set used in the example is shown
in Table IV. Thehyperperiodof this task set is200and all jobs within this hyperperiod are
considered in our analysis.

Task Period WCET BCET
= deadline

T0 20 7 5
T1 50 12 10
T2 200 30 25

Table IV. Example Task Set Characteristics - Task Set 2

For the purposes of our analysis, we require the construction of a timeline for every
task indicating release points for higher priority jobs. All these release points are potential
preemption points for the task under consideration and the goal is to eliminate the infeasible
ones. Figures 7 and 8 show the time lines for tasksT1 andT2, respectively. The arrows
represent job releases and are numbered consecutively. Thepreemption points that get
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eliminated as a result of our analysis are circled. BCETs of higher priority jobs are laid
out above the time axis and WCETs of higher priority jobs, below the time axis. In this
example, black rectangles are used for jobs of taskT0, gray rectangles for those of taskT1

and the red rectangles, for those ofT2.
Let us first consider the timeline for taskT1 (Figure 7). In order to determine whether

release point 1 is a feasible preemption point forJ1,0, we need to perform two checks.
First, we need to calculate whetherJ1,0 can get scheduled in the previous interval,i.e.,
between points 0 and 1. Secondly, we need to check whether anyexecution ofJ1,0 remains
beyond point 1. For the first condition, we use the BCETs of allhigher priority jobs (in
this examples,J0,0). Since there is idle time after placing the BCET ofJ0,0 (5 units), we
determine thatJ1,0 could be scheduled before point 1. To check if any execution of J1,0

remains beyond point 1, we use the sum of the WCETs ofJ0,0 andJ1,0, namely 7 and 12
units respectively. Since this does not exceed point 1,J1,0 is guaranteed to finish within
the current interval. Hence, we conclude that no preemptions are possible forJ1,0.

2001801601401201008060200

T0

T1

BEST CASE

WORST CASE

40

T1 T1 T1 T1

T0 T0 T0 T0 T0 T0 T0 T0 T0 T0
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Fig. 7. Timeline for TaskT1
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T2 T2

0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 8. Timeline for TaskT2

Second, proceed to the next release ofT1, i.e., J1,1. During the interval between release
points 3 and 4, in the best case, we note that no higher priority job needs to be scheduled.
Hence,J1,1 can be scheduled in this interval. Next, we calculate that, in the worst case,
J1,1 is not guaranteed to finish before point 4. This leads to the conclusion that point 4
is a potential preemption point forJ1,1. Proceeding this way, we calculate the maximum
number of preemption points forJ1,1 to be 1. The analysis is repeated for further releases
of T1 within the hyperperiod.

In the above example, we see that the second release ofT1, namelyJ1,1, has a higher
number of preemptions thanJ1,0, hence creating the possibility of a worse response time
for J1,1 by the addition of the preemption delay. This proves our claim that the critical
instant does not necessarily occur when all tasks are release simultaneously.

The maximum number of preemptions for releases of taskT2 are calculated using the
same analysis. The timeline forT2 is shown in Figure 8. For this task, we need to consider
two higher priority tasks, namelyT0 andT1. Starting withJ2,0, we determine that release
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point 1 is a feasible preemption point sinceJ2,0 can be scheduled before point 1 and is
not guaranteed to finish before point 1. Similarly, we determine that points 2 and 3 are
feasible. However, when we consider the interval between points 3 and 4, we calculate that,
even in the best case, the execution ofJ1,1, which has higher priority, occupies the entire
interval. Hence, there is no possibility ofJ2,0 being scheduled in this interval. This leads
to the elimination of point 4 as a feasible preemption point for J2,0. In the worst-case,J2,0

finishes execution at time 82. Hence, points 6, 7, 8, 9, 10 and 11 are also eliminated. At the
end of the hyperperiod, our analysis determines that the maximum number of preemptions
for J2,0 is 4. Our original method (described in Section 9) produces abound of 9 for the
same job.

In summary, the method is as follows. Consider a set of tasksT0, ..., Tn. Let Ji,0, ...,
Ji,k represent the jobs of taskTi. Assume that taskT0 has the highest priority and that task
Tn has the lowest priority using a static priority scheme.

A timeline between 0 and the hyperperiod of the task set is constructed for every task
Ti and the releases of all higher priority jobs are marked on this timeline. The feasibility
of a release point (say x) as a preemption point forJi,j is determined by performing two
checks for the interval between release points x and x-1. First, we check whetherJi,j has
a chance of being scheduled in this interval based on the BCETs of higher priority jobs.
If not, point x is not a feasible preemption point. If yes, we proceed to the next check of
determining if any portion of execution ofJi,j remains beyond point x. If yes, point x
is a feasible preemption point. For this, we use the WCETs of all jobs executing in this
interval, in order of priority, includingJi,j .

The above calculations are repeated for every interval between potential preemption
points forJi,j until it is guaranteed to finish.This analysis is performed for every job in
the hyperperiod of the task set.

11.2 Extension to a Dynamic Scheduling Policy

The analysis presented in Section 11 assumes a static priority scheme. The analysis may be
extended to support dynamic priority schemes as follows. Instead of calculating priorities
in the beginning of the analysis and assuming that they neverchange, we recalculate job
priorities at the beginning of every interval between consecutive preemption points. By
doing this, we add the flexibility of conceptually being ableto use different scheduling
policies. Our current implementation supports the static Rate Monotone (RM) policy and
the dynamic Earliest Deadline First (EDF) policy.

11.3 Correctness of Analysis

Consider a task set withn tasks,T0, ...,Tn−1. Let us assume that the tasks are in decreasing
order of priority. LetC0, ..., Cn−1 be the WCETs of the tasks andc0, ..., cn−1 be their
BCETs. The WCET and BCET are safe upper and lower bounds, respectively, on the
longest and shortest possible execution time of a task.

Preemption of a task can only occur when it is currentlyrunning. Furthermore, in
the case of scheduling policies such as Rate-Monotone, Deadline-Monotone, Earliest-
Deadline-First,etc., the positions of potential preemption points for a task arefixed since
they are thereleasepoints of a task with higher priority.

Let us consider the interval between twoconsecutivepreemption points,p−1 andp. Let
us assume that jobsJ0,k0

, ..., Ji,ki
have been released at some prior point and have not

yet completed execution atp−1. Let us assume thatJi,ki
is the job for which we need to
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calculate the maximum number of preemptions possible.
Let x be the length of the interval between preemption pointsp−1 andp. We have three

cases to consider.

Case 1:
∑i−1

j=0 cj,kj
< x,

∑i

j=0 Cj,kj
> x. AssumeJi,ki

cannot be preempted atp, i.e.,
it cannot be running at time p. However, ∃

j=0..i−1

ej,kj s.t. cj,kj
≤ ej,kj

≤ Cj,kj

and p−1 +
∑i−1

j=0 ej,kj
< p and p−1 +

∑i

j=0 ej,kj
> p, i.e., Ji,ki

is running atp.
Contradiction. Hence,p is a feasible preemption point.

Case 2:
∑i−1

j=0 cj,kj
< x,

∑i

j=0 Cj,kj
< x. AssumeJi,ki

can be preempted atp, i.e.,
it may be running at time p. Hence, ∃

j=0..i−1

ej,kj s.t. cj,kj
≤ ej,kj

≤ Cj,kj
and

p−1 +
∑i−1

j=0 ej,kj
< p andp−1 +

∑i

j=0 ej,kj
> p. However,

∑i

j=0 Cj,kj
< x implies

p−1 +
∑i

j=0 ej,kj
< p. Contradiction. Hence,Ji,ki

cannot be running atp, andp is not
a feasible preemption point.

Case 3:
∑i−1

j=0 cj,kj
> x. AssumeJi,ki

can be preempted atp, i.e., it may be running at

time p. Hence, ∃
j=0..i−1

ej,kj s.t. cj,kj
≤ ej,kj

≤ Cj,kj
andp−1 +

∑i−1
j=0 ej,kj

< p

andp−1 +
∑i

j=0 ej,kj
> p. However,

∑i−1
j=0 cj,kj

> x impliesp−1 +
∑i−1

j=0 ej,kj
> p.

Contradiction. Hence,Ji,ki
cannot be running atp, andp is not a feasible preemption

point.

Hence, preemptions can only occur under Case 1, which is the condition checked by our
algorithm (see Figure 12) with the summations of WCET and BCET in the for loop and
the check implemented in the subsequent conditions.

The algorithm described above is shown as pseudocode in Figure 12 in the appendix.
The variables used are first described. The rest of the algorithm describes a loop that
iterates over every interval between consecutive preemption points (comment 2). For each
interval, after performing some initializations (comment3), tasks released at the beginning
of the interval are identified (comment 4) and the variables related to the release of a
new job are initialized (comment 5). Next, the current priorities are calculated using the
scheduling policy for the task set (comment 6). Tasks activein the current interval are
traversed in order of priority (comment 7). For each task, best case and worst case scenarios
are calculated (comments 8 and 9 respectively). During thisprocess, the minimum and
maximum times available for execution of a task in the current interval are calculated.
Once all active tasks have been processed, preemption information for every task that could
be preempted at the end of the interval is updated (comment 10). For all jobs that are
guaranteed to be done before the end of the current interval variables used during the
analysis are reset (comment 11).

11.4 Complexity of Analysis

Static data cache analysis to produce data cache reference patterns is performed only once
for each task. Here, we iterate through the iteration space of a task, hence making the time
and space complexity proportional to the number of data references,nd in the task, namely
O(nd).

The complexity of our algorithm to calculate D-CRPD and, hence, WCET of a task is
O(nJ ∗ nT ∗ nd) wherenJ is the number of job releases in the hyperperiod of the task
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set andnT is the number of tasks. Our algorithm iterates over every interval between job
release points. This introduces a complexity ofnJ . Within each interval, the algorithm
iterates over currently active jobs in order of priority. Since we consider systems where
a task has a deadline equal to or less than its period, there can be at most one job of a
particular task active at any time. Hence, iterating over active jobs adds a complexity of
nT . Finally, at every identified preemption point, maximum possible delay incurred by
the preempted task is calculated using its access chains andinformation about the range of
iteration points at which the preempted task is determined to be when it is preempted. This
introduces a complexity ofnd sincend is the length of the access chain of a task. However,
in reality, this range is usually much smaller thannd for a given preemption point since it
is limited by the largest interval between two consecutive potential preemption points for
a task.

11.5 Calculation of the Preemption Delay

In Section 11.1, we describe our algorithm to eliminate infeasible preemption points in
isolation, without details of the actual calculation of thepreemption delay incurred at every
feasible point. Here, we discuss the calculation of preemption delay at every point and its
addition to the remaining WCET of the preempted task.

Every preemption point determined to be feasible for a task is a point in time. This point
in time needs to be translated into an execution point in the iteration space of the preempted
task. The preemption delay at this point may then be calculated using the access chains of
the preempted task.

To explain the above with an example, consider the task set whose characteristics are
shown in Table IV. On the timeline for taskT2 shown in Figure 8, point 1 is identified to
be a feasible preemption point. In order to obtain the delay due to preemption at that point,
we need to identify the iteration point (the loop iteration number of a particular loop within
the task [Ramaprasad and Mueller 2005]) withinJ2,0 that has been reached at the time that
the preemption occurs.

The static timing analyzer framework described in Section 5provides best-case and
worst-case execution time estimates for a program. Furthermore, given a certain interval
of time, it can provide information about the iteration point that the program could be at
the end of the interval both in the best and the worst-case scenarios.

Using our feasible preemption point analysis, we are able toobtain the minimum and
maximum time available for a task within every interval between preemption points. This
information is obtained using the best and worst-case execution times of higher priority
tasks as described in Section 11.1. In the current example, we use the BCETs and WCETs
of jobsJ0,0 andJ1,0 since they have higher priority that jobJ2,0. In the first interval, after
subtracting the time required for the higher priority jobs,we are left with 5 units of time
in the best case and 1 unit of time in the worst case forJ2,0. These provide an upper and
lower bound, respectively, for the time available forJ2,0 in the interval.

The upper and lower bound thus identified are each supplied asinputs to the static tim-
ing analyzer framework. The framework performs best and worst-case timing analysis of
the preempted task to produce, for each input, two iterationpoints. One iteration point
represents the latest possible point that could be reached (i.e., cannot be exceeded) by the
preempted task in the given time and is obtained from best-case timing analysis of the
task. The second iteration point represents the earliest iteration point that is guaranteed
to be reached in the given time and is obtained from worst-case timing analysis of the
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preempted task.
Considering the earliest and latest iteration points amongthe four iteration points ob-

tained provides us with the range of iteration points that the preempted task could have
reached when it is preempted. Now, we calculate the preemption delay at each point in this
range and choose the maximum delay among those and consider that to be the worst-case
preemption delay due to preemption at the particular preemption point. This delay is added
to the remaining WCET of the preempted task.

Let us revisit the example of taskT2 that is preempted at point 1 as shown in Figure 8.
AssumeT2 is a program that has a loop with 100 iterations. In the interval between points
0 and 1,T2 is guaranteed to execute for at least 1 unit of time and is guaranteed not to
exceed 5 units of time as calculated using our algorithm described in Section 11.

Using the lower bound of the time available for its execution(1 unit), assume the static
timing analyzer determines thatJ2,0 is guaranteed to reach at least iteration 4 and cannot
proceed beyond iteration 7. Similarly, assume it determines thatJ2,0 is guaranteed to reach
at least iteration 9 in 5 units of time (upper bound of the timeavailable for its execution)
and does not proceed beyond iteration 13 in the same amount oftime. We now consider
the entire range of iteration points between 4 and 13 and calculate the delays at every point.
Among these, we identify the highest delay and add this delayto the remaining WCET of
J2,0.

The algorithm used to implement the above method of calculating worst-case preemp-
tion delay at a given preemption point is summarized below. The static timing analyzer
framework is invoked to perform worst-case partial timing on the minimum available ex-
ecution time for the preempted task. This yields the beginning of the range of iteration
points to be considered. Next, the timing analyzer is invoked to perform best-case partial
timing on the maximum available execution time for the preempted task. This yields the
end of the range of iteration points. The range thus identified is provided to a function that
iterates through the access chains of the preempted task andcalculates the highest delay in
the given range.

In the method described thus far, we assume that, for every task, we know the values
of its period, deadline andphase. For a given phasing of tasks, our method calculates the
worst-case response times for all tasks. Instead, we now propose a modification to our
method to calculate the worst-case response times for tasksregardless of the phasing of the
tasks.

In the algorithm described above, for every preemption point, we calculate arangeof
iteration points where the preempted task could be when it ispreempted. We then consider
the maximum preemption delay in this range as the preemptiondelay at the preemption
point.

Instead, we now assume that the maximum delay in theentireiteration space is incurred
at everypreemption point. Further, in order to allow any phasing among tasks, we add
extra preemptions for every job at its release. Let us assumethat the maximum possible
phasing for any task isx units. Furthermore, for any given task, the maximum phasingis
less than or equal to its own period. Under these conditions,Equation 3 gives the number
of extra preemptions to add in case of a static-priority policy, and Equation 4 gives the
number of extra preemptions in the case of a dynamic-priority scheduling policy.

pextrai,j
x =

i−1
∑

hp=1

(⌈
min(x, Pi)

Php

⌉) (3)
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pextrai,j
x =

n
∑

hp=1

(

{

⌈min(x,Pi)
Php

⌉) , ifhp 6= i

0 , otherwise

}

) (4)

However, we also observe that, every time a lower-priority task gets preempted, at least
one higher-priority task executes. The minimum amount of execution time of this higher-
priority task may be safely assumed to be at least equal to theshortest best-case execution
time (BCET) among all higher-priority tasks. Hence, the shortest BCET is subtracted
from the maximum possible phase of the lower-priority task before adding any more ex-
tra preemptions, thereby tightening the bound on the numberof extra preemptions. This
calculation effectively gives us an upper bound on the number of preemptions and on the
worst case response times for a maximum phasing ofx.

Consider the example used earlier in Section 3. The task-setcharacteristics for this ex-
ample are shown in Table I. Figure 2 shows response times of tasks when all tasks are
released simultaneously. In order to calculate the response time of a task irrespective of
phasing, we use this scenario. To every task, we add one preemption more than the number
calculated. For example, for taskT2, we calculate the response time assuming three pre-
emptions instead of two and considering the maximum preemption delay at each of these
points. In our current example, since we assume that a task has a constant preemption
delay,∆, for any preemption, we use that value as the maximum preemption delay and ob-
tain a response time of 8 units instead of 7.875 units. In Section 12, we provide worst-case
response times calculated in this manner in addition to the worst-case response time for a
given phasing.

When a preemption takes place, it results in a context-switch at the operating system
level. The operating system code that is executed in order toperform the context-switch
may also use the data cache and, hence, alter the results of our analysis. In our current
experiments, we have not considered this factor. However, conceptually, this issue may be
dealt with in the following manner.

First, we need to identify the data cache lines that are used by the operating system code.
Since this code may not adhere to the constraints that our analysis framework poses on the
programs that we analyze, our analysis cannot be used. Hence, we allocate a predetermined
area in the memory to hold the operating system code and thereby constrain the data cache
lines that it may use.

Second, we need to consider the effects that the execution ofoperating system code
would have on the tasks being analyzed. For this purpose, while calculating the preemption
delay incurred by a task at a given preemption point using access chains, we consider the
cache lines allocated for the operating system code as potential candidates for eviction. In
other words, the operating system code would be treated as the highest priority task in the
system and would execute every time there is a preemption.

12. EXPERIMENTAL FRAMEWORK

For our experiments, several task sets were constructed using the DSPStone benchmarks
with different data set sizes. The benchmarks used, along with their stand-alone WCETs
and BCETs, are shown in Table V. A benchmark ID is given to eachof the benchmarks.
This ID will be referenced in the result tables.

In our experiments, we used tasks sets that have a base utilization (utilization without
considering preemption delays) of 0.5, 0.6, 0.7 and 0.8. Task sets of different sizes (2, 4,
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ID Name WCET BCET ID Name WCET BCET
1 convolution 7491 7491 15 matrix1 59896 54015

2 200convolution 14191 14191 16 fir 9537 9537

3 300convolution 20891 20891 17 500fir 43937 43937

4 500convolution 34291 34291 18 600fir 54837 52537

5 600convolution 45291 40991 19 700fir 65937 61137

6 700convolution 55491 47691 20 800fir 77037 69737

7 800convolution 66191 54391 21 900fir 88137 78337

8 900convolution 76391 61091 22 1000fir 99237 86937

9 1000convolution 87091 67791 23 lms 14536 14536

10 n-real-updates 16738 16738 24 600lms 89636 79536

11 300n-real-updates 56538 47338 25 700lms 112636 92536

12 400n-real-updates 92238 62638 26 800lms 135636 105536

13 500n-real-updates 127538 77938 27 900lms 158636 118536

14 dot-product 750 750 28 1000lms 181636 131536

Table V. Stand-Alone WCETs and BCETs of DSPStone Benchmarks

6, 8) were constructed for each of these utilizations. For 0.8 utilization, we were able to
construct a task set consisting of 10 tasks as well. In all these task sets, we assume a static
priority scheme.

The maximum number of preemptions,np, possible for a task are calculated using three
different methods to provide a comparison to our methods described in this paper.

(1) An upper bound on the number of preemptions,np, for a task is determined by using
Equation 2. This is denoted asHJ-P in our results.

(2) We calculatenp by considering indirect preemption effects as proposed byStaschulat
et al. This method uses the periods and response times of tasks [Staschulat et al. 2005].
This is denoted asStas-R.

(3) We calculatenp using the range of execution times of higher priority jobs asproposed
in Section 11. This new method uses the periods, WCETs and BCETs of tasks to
calculate feasible preemption points. We use two methods for the actual calculation
of preemption delay as described in Section 11.5. The methodusing the maximum
delay in a range of iteration points (where the task is determined to be) is denoted as
OurFP-RangeMax and the one using the maximum delay in the entire iteration space
is denoted asOurFP-ItSpMax.

.
In the current set of experiments, the maximum phasing for a task, used in Equations

4 and 3, is assumed to be1000 cycles. Although all the methods calculate the maximum
number of preemptions for a task, the first two methods do not provide information about
the placement of the preemption points. Hence, in these cases, we consider thenp largest
delays for a task in order to obtain its D-CRPD.
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13. EXPERIMENTAL RESULTS

We performed several experiments to demonstrate the working of our new methods
(OurFP-RangeMax and OurFP-ItSpMax) in comparison to priormethods (HJ-P and Stas-
R). The results of these experiments are shown and discussedin the following sections.

13.1 Response Time Analysis

In the first set of experiments, we use the task sets describedin Table VI and perform
response time analysis using all the methods described in Section 12 for calculating the
number of preemptions. Results obtained for the task sets with base utilization of 0.5 and
0.8 are shown in Figure 9. Results for utilizations of 0.6 and0.7 are similar and are omitted
due to space constraints. Different graphs are used to represent the three metrics studied
— maximum number of preemptions, WCET with preemption delayand response times
for tasks. In each graph, the x-axis represents the several task sets used. Tasks within each
task set are numbered in decreasing order of priority. It is to be noted that, in this set of
experiments, we use a static priority scheme for the task sets.

# Tasks 2 4 6 8 10
U = 0.5

IDs 16, 19 1, 15,
18, 22

23, 3, 6, 11, 19,
26

2, 3, 4, 11, 15, 18, 7, 27

Periods 50K, 200K 50K,
400K,
500K,
100K

400K, 500K,
1000K, 1000K,
2000K

100K, 400K, 500K,
800K, 1000K, 2000K,
2000K, 4000K

U = 0.6
IDs 21, 27 1, 15,

8, 27
3, 4, 6, 11, 19,
26

2, 5, 6, 11, 15, 18, 7, 27

Periods 300K, 500K 50K,
400K,
500K,
1000K

100K, 400K,
500K, 1000K,
1000K, 2000K

100K, 400K, 500K,
800K, 1000K, 2000K,
2000K, 4000K

U = 0.7
IDs 27, 21 16, 9,

7, 27
3, 17, 8, 7, 20,
27

3, 5, 20, 11, 15, 19, 8,
26

Periods 300K, 500K 50K,
400K,
500K,
1000K

100K, 400K,
500K, 1000K,
1000K, 2000K

100K, 400K, 500K,
800K, 1000K, 2000K,
2000K, 4000K

U = 0.8
IDs 27, 26 28, 13,

27, 19
21, 8, 20, 13,
25, 19

8, 26, 20, 15, 9, 11, 8,
21

10, 8, 15, 9, 5, 11, 20,
27, 22, 17

Periods 300K, 500K 500K,
500K,
1000K,
2000K

400K, 500K,
500K, 1000K,
1000K, 2000K

400K, 500K, 800K,
800K, 1000K, 2000K,
2000K, 4000K

100K, 625K, 625K,
625K, 1000K, 1000K,
1250K, 1250K, 2500K,
5000K

Table VI. Task Set Characteristics: Benchmark IDs per Task Set and Periods[cycles]
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(a) # Preemptions for U = 0.5 (b) # Preemptions for U = 0.8

(c) WCET w/ delay for U = 0.5 (d) WCET w/ delay for U = 0.8

(e) Response Time for U = 0.5 (f) Response Time for U = 0.8

Fig. 9. Results for U=0.5 and U=0.8 using RM policy

Our method of using onlyfeasiblepreemption points consistently derives a much tighter
bound on the number of preemptions for a given task as compared to the two prior methods
(HJ-P and Stas-R). Since the number of preemption points identified is smaller, bounds for
the WCET with preemption delay and the response time for eachtask are also significantly
tighter, as indicated in our results. Even the method that calculates an upper bound on the
maximum number of feasible preemption points for any phasing of tasks (OurFP-ItSpMax)
provides significantly tighter bounds than the two prior methods.

We observe from the graphs that, for some of the tasks, response times are not indicated
for the first two methods of comparison (HJ-P and Stas-R). This means that the response
exceeded the deadline of the task, making the task set unschedulable. Results from our
methods (OurFP-RangeMax and OurFP-ItSpMax) show that these task sets are, in reality,
schedulable. This underlines the potential benefits of our new methods. For the calculation
of response time, we use a fixed-point approach and proceed only as long as the deadline
of the given task is not exceeded. In the Stas-R method, the value of the response time
obtained in one iteration of this fixed-point approach is used to calculate the number of
preemptions in the next iteration. Hence, if the response time of a task exceeds its deadline,
we stop the iterative calculation and do not report number ofpreemptions.
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Widening gaps between results using our new methods (OurFP-RangeMax and OurFP-
ItSpMax) and using the two prior methods (HJ-P and Stas-R) show an increase in the
effectiveness of our methods as we proceed towards lower priority tasks. Since lower
priority tasks are less likely to be scheduled in the initialintervals, more preemption points
are deemed infeasible by our new methods, hence producing tighter bounds. This feature
of our new methods prevents the exponential increase in the number of preemptions for
successive tasks observed in the method HJ-P.

Analysis times using the method OurFP-RangeMax are indicated in Table VII. The
most significant factors affecting the analysis time of a task are the number of memory
accesses within the task and the actual loop nest structure of the task. The actual task set
characteristics, which determine the number of jobs of eachtask in the hyperperiod of the
task set, also contribute to this time, albeit in a much less significant way.

Utilization = 0.5 Utilization = 0.8
Task Set Size Analysis Time Task Set Size Analysis Time

2 33.65 2 558.44
4 177.80 4 626.47
6 175.20 6 436.49
8 417.85 8 419.33

10 415.11

Table VII. Analysis times in seconds

Between the two base utilizations whose results are shown inFigure 9, we observe that
the 0.8 utilization shows a higher number of preemptions than the 0.5 utilization. This is
due to the increased WCET in the case of higher utilization. Increased WCET means that
the tasks have a greater number of feasible preemptions oncethey have started execution
and, hence, the response times of tasks increase. It may be observed from the results
that the WCET bound of a task does not depend significantly on its priority unlike the
response time. This is due to the fact that the stand-alone orbase WCET dominates the
total preemption delay cost. Thus, the WCET with preemptiondelay does not necessarily
increase monotonically with decreasing priority.

From our results, several observations can be made regarding the two prior methods
(HJ-P and Stas-R). While both of them produce very similar results for the first two tasks
in a task set, they start to exhibit differences as we proceedtowards lower priority tasks.
The Stas-R method consistently performs better than the HJ-P method since it correctly
takes effects of indirect preemptions into account.

As already observed, the new methods OurFP-RangeMax produces significantly tighter
bounds than the two prior methods inall cases. Furthermore, the method OurFP-ItSpMax,
which produces an upper bound for the number of preemptions for any phasing of tasks,
also usually performs significantly better than both prior methods. However, in the case
of the task with second-highest priority, it gives a higher number of preemptions (and,
hence, WCET with delay and response time) than the Stas-R method. This is explained as
follows. Since the task with second-highest priority has only one higher-priority task, the
Stas-R and OurFP-ItSpMax methods actually calculate the same number of preemptions.
However, in OurFP-ItSpMax, we add one extra preemption (and, hence, extra preemption
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delay) to account for any possible phasing. This makes the number of preemptions higher
than that produced by Stas-R.

To illustrate the variation in the maximum number of preemptions obtained by our new
method OurFP-RangeMax between the various jobs of a task, weprovide results for two
of the task sets in Table VIII. As already observed from the graphs in Figure 9, OurFP-
RangeMax always produces asignificantlylower value for the number of preemptions than
that produced by the two prior methods. Moving towards lowerpriority tasks, we further
observe that there is a difference between the number of preemptions for different jobs of
the same task by noting that the minimum, maximum and averagevalues obtained over
all the jobs are different from each other. In the case of the task set with base utilization
0.8, we notice that number of preemptions for certain tasks are not reported in the Stas-
R method. This is for the same reason already explained with reference to the graphs in
Figure 9 — the number of preemptions could not be calculated since the response times of
those tasks exceeded their respective deadlines.

Benchmark Period WCET BCET # Jobs # P # P # P
(cycles) (cycles) (cycles) OurFP-RangeMax HJ-P Stas-R

avg min max

U = 0.5
200convolution 100k 14191 14191 40 0 0 0 0 0
300convolution 400k 20891 20891 10 0 0 0 4 1
500convolution 500k 34291 34291 8 0 0 0 7 2

300n-real-updates 800k 56538 47338 5 0.2 0 1 12 4
matrix1 1000k 59896 54015 4 1 1 1 17 6
600fir 2000k 54837 52537 2 1 1 1 34 8

800convolution 2000k 66191 54391 2 1 1 1 35 14
900lms 4000k 158636 118536 1 3 3 3 71 27

U = 0.8
n-real-updates 100k 16738 16838 50 0 0 0 0 0
900convolution 625k 76391 61091 8 0.75 0 1 7 1

matrix1 625k 59896 54015 8 1 1 1 8 3
1000convolution 625k 87091 67791 8 1.25 1 2 9 5
600convolution 1000k 45291 40991 5 0.6 0 2 16 7

300n-real-updates1000k 56538 47338 5 1.4 0 3 17 10
800fir 1250k 77037 69737 4 1.75 1 2 23
900lms 1250k 158636 118536 4 3.75 3 5 24
1000fir 2500k 99237 86937 2 4.5 3 6 47
500fir 5000k 43937 43937 1 1 1 1 94

Table VIII. Number of Preemptions (# P) for Task Set with U=0.5 and U = 0.8

In our experiments, we also observed that the number of preemptions obtained for the
first job of every task (released at the same time as all higherpriority jobs) was not always
the maximum value obtained across all jobs. This proves the claim we make in Section
4 about the critical instantnot being the instant at which jobs of all tasks are released at
the same time and underlines the necessity to perform our analysis for every job in the
hyperperiod of a task set rather than once for every task.

ACM Transactions on Embedded Computing Systems, Vol. V, No.N, Month 20YY.



24 ·

(a) Difference in WCET w/ delay for U = 0.5 (b) Difference in WCET w/ delay for U = 0.8

(c) Difference in Response Time for U = 0.5 (d) Difference in Response Time for U = 0.8

Fig. 10. Results for staggered task-set for U = 0.5 and U = 0.8

13.2 Task Sets with Staggered Releases

In our first set of experiments, we assume that all tasks in a task set are released simultane-
ously (synchronous release). However, since our analysis is capable of producing worst-
case response time bounds for a task set with a particular phasing, we thought it useful to
illustrate such a case with experimental results. For this purpose, we reuse the same task
set characteristics from Table VI. However, in this experiment, we change the phasing of
the tasks. Tasks in every task set are released in reverse order of priority. Every task has a
maximum phase of1000 cycles, or its own period, whichever is smaller.

In these experiments, the differences in the results of OurFP-RangeMax between the
first set and the current set of experiments are not significantly different. For this reason,
we decided to present thedifferencesobtained in the bounds for the WCET and response
time for task sets with synchronous releases and task sets with staggered releases. The
differences are shown in Figure 10. The graph also shows differences between maximum
possible values (obtained using OurFP-ItSpMax) and synchronous release.

For most tasks, there are very small changes in the values of WCET and response times
for the phased task sets when compared to the difference between the maximum possible
values and synchronous release. This is because, in OurFP-ItSpMax, we add extra pre-
emptions to account for any possible phasing and assume the maximum possible delay at
every one of them. Since the increase or decrease in WCET is entirely dependent on the
relative positioning of jobs at different points in the hyperperiod, it is difficult to determine
the phasing of a task set that would result in the worst possible response-times for tasks.
This illustrates the merit of the method that calculates an upper bound on the number of
preemptionsirrespectiveof phasing (OurFP-ItSpMax).

13.3 Effects of WCET/BCET on # of Preemptions

In order to study the effects that the ratio of WCET of a task toits BCET has on the upper
bound for the number of preemptions it incurs, we performed aset of experiments with
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synthetictask sets. We vary the ratio of WCET to BCET for every task, maintaining all
other parameters. The results of this set of experiments areshown in Table IX. Since we
use synthetic tasks, we do not have actual code from which to construct access chains for
calculation of preemption delay. Hence, we need to assume a fixed value for the preemption
delay. Since the preemption delay is significantly less thanthe base WCET of a task, we
assume a delay value of 0 in our experiments for the sake of simplicity. Our primary goal
in this set of experiments is to show how the WCET/BCET ratio affects the number of
preemptions.

Task Period WCET # Preempts OurFP-RangeMax (Min/Max/Avg) # P # P
ID (cycles) (cycles) W/B = 1 W/B = 1.5 W/B = 2 W/B = 2.5 W/B = 3 HJ-P Stas-R

U = 0.5
1 80k 16k 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 8 2
2 100k 5k 0/1/0.25 0/1/0.25 0/2/0.5 0/2/0.5 0/2/0.5 12 4
3 200k 30k 3/3/3 3/4/3.5 3/4/3.5 3/5/4 3/5/4 25 8

U = 0.8
1 80k 20k 2/2/2 2/2/2 2/2/2 2/2/2 2/2/2 8 3
2 100k 15k 1/2/1.5 1/3/1.75 1/3/1.75 1/4/2 1/4/2 12 6
3 200k 50k 6/7/6.5 8/8/8 8/9/8.5 8/9/8.5 8/8/8 25 19

Table IX. Preemptions for Task Set with U=0.8 with Varying WCET/BCET (W/B) ratios

For utilizations of 0.5 and 0.8, we consider WCET/BCET ratios of 1, 1.5, 2, 2.5 and
3. As before, in every case, the bounds obtained by our methodof eliminating infeasible
preemption points is significantly lower than those obtained by the two prior methods (HJ-
P and Stas-R). As the ratio of WCET/BCET increases, the upperbound on the number of
preemptions increases slightly for small ratios. After a ratio of around 3, the number of
preemptions start to decrease once again. However, the number of preemptions does not
go below the number obtained with ratio equal to 1. This is expected since the schedule
with WCET/BCET ratio of 1 has the least amount of slack.

The maximum increase in the number of preemptions as compared to the number with
ratio equal to 1 was found to be approximately 30 percent. Hence, even if we set the BCET
of a task to 0, the pessimism in the results obtained are not very significant. In fact, they
would still be tighter bounds than those produced by the two prior methods. This is a useful
observation since several timing analyzers only provide WCET bounds for a task, but not
BCET bounds. Even in these cases, our analysis would be applicable and useful to obtain
tight bounds on the worst-case number of preemptions.

13.4 Static-Priority vs Dynamic-Priority Scheduling Policy

In all the above experiments, we use the RM scheduling policy, which is a static-priority
scheduling policy. However, our framework is conceptuallyable to support dynamic-
priority scheduling policies as well. In order to demonstrate this, we performed a set
of experiments using the EDF scheduling policy. For this purpose, once again we used
the task sets whose characteristics are shown in Table VI. Tasks in every task set were
released in reverse order of the lengths of their periods (i.e., in reverse order of priority
as determined by the RM scheduling policy). A phase difference of 10 cycles was used
between successive tasks. Figure 11 compares results obtained using both the RM and the
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EDF scheduling policies for base utilizations of 0.5 and 0.8. Only the task sets that actually
exhibit a difference in behavior between the two policies are shown.

(a) # Preemptions for U = 0.5 (b) # Preemptions for U = 0.8

(c) WCET w/ delay for U = 0.5 (d) WCET w/ delay for U = 0.8

(e) Response Time for U = 0.5 (f) Response Time for U = 0.8

Fig. 11. Comparison of results for RM and EDF for U=0.5 and U=0.8

From the above results, we observe that, in some cases, the EDF policy decreases the
number of preemptions for a task in comparison to RM, yet increases its response time.
This is due to the fact that the relative deadlines of tasks alter their priorities. The ex-
periments demonstrate the applicability of our method to systems with dynamic-priority
scheduling policies.

14. CONCLUSIONS AND FUTURE WORK

In this work, we propose methods to calculate preemption delay suited to data caches
and integrate it with past work in instruction cache and pipeline analysis. A framework
developed in prior work is enhanced to calculate tight bounds for the data cache related
preemption delay for real-time tasks. These bounds are usedto calculate tighter bounds on
WCETs and hence response times of tasks to determine its schedulability.

The contributions of this paper are:

(1) Calculation of an upper bound on the maximum number of preemptions for a given
task;
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(2) Calculation of a significantly tighter bound on the maximum number of preemptions
using an algorithm that eliminates infeasible preemption points for tasks with given
phasing, and an upper bound of the same for tasks with any possible phasing;

(3) Proof that the critical instant for a task set need not occur upon simultaneous release
of all tasks when considering data cache related preemptiondelay;

(4) Construction of a realistic worst-case scenario for theplacement of preemption points
using the BCET and WCET of tasks for systems with static or dynamic scheduling
policies.

We obtain significantly tighter bounds for (a) the number of preemptions, (b) the WCET
and (c) the response time of a task as compared with prior methods. The improvements
are up to an order of magnitude over two of the prior methods and up to half an order of
magnitude over another. To the best of our knowledge, our work is novel in its contribution
of a methodology to integrate data caches into preemption delay determination and in the
consideration of critical instants for staggered releasesof tasks.

As part of future work, we propose to conduct experiments to measure the WCET of a
task using a cycle-accurate simulator. These values could then be compared to the results
of our analysis in order to validate our results.

In light of the restrictions posed on the tasks and the characteristics of the task-sets being
analyzed, it would be worthwhile to investigate the possibility of restricting areas where
a task may be preempted. In other words, a task could have a region during its execution
where is is non-preemptible. A sensitivity study may be conducted by varying the position
and length of this region. We are currently pursuing this line of investigation [Ramaprasad
and Mueller 2007].

Currently, if the data layout for a task changes, we can account for it only by recalculat-
ing the response times of all tasks. In future work, we could refine our approach to allow
incremental changes to the data layout.
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/* 1. Description and initialization of variables used */
n: number of tasks
releasepoints: array of release points
timeline: array of tasks released at every release point
interval: time interval between two preemption points
bcet rem, wcetrem: array 1..n of remaining BC/WCET (init val=0)
curr job: array 1..n of current job of every task
bcet sum, wcetsum: var. to sum up BC/WCET in interval
no work done, nocount, restart: array 1..n of bool (init to false)
num p: array 1..n of max. # of preemptions for tasks
curr priorities: array 1..n of current priorities
bneedtobreak, wneedtobreak: boolean values
/* 2. Loop iterating over intervals between release points */
for all rp in releasepointsup to hyper-period{

for all tasks in system /* 3. Initialization of boolean variables for every interval */
no count[task], nowork done← false

/* 4. Get tasks released at beginning of interval */
tasks← timeline[releasepoints[rp]]
interval← releasepoints[rp+1] - releasepoints[rp]
for each elementtaskof array of tasks released at current point{ /* 5. Initialize released tasks */

curr job[task]← curr job[task] + 1
restart← true
bc/wcetrem[task]← bc/wcet[task]
}
/* 6. Calculation of current priorities */
curr priorities← calculate current priorities
bcet sum, wcetsum← 0
bneedtobreak, wneedtobreak← false
for every task in order of currpriorities{ /* 7. Loop iterating over tasks in order of priority */

if (restart[task]){
/* 8. Best case scenario calculation */
if (bcet rem[task]> 0) {

bcet sum← bcet sum + bcetrem[task]
if (bcet sum≥ interval){

for each lower priority task, lptask
no count[lp task], nowork done[lp task]← true

insert into array maxexectimes[task][currjob[task]-1]
value bcetrem[task] - (bcetsum - interval)

bcet rem[task]← bcet sum - interval
bneedtobreak← true
} else{

insert into array maxexectimes[task][currjob[task]-1]
value bcetrem[task]

bcet rem[task]← 0
}
no work done[task]← false
} else{

insert into array maxexectimes[task][currjob[task]-1]
value0

no work done[task]← true
}

Fig. 12. Algorithm to Eliminate Infeasible Preemption Points
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/* 9. Worst case scenario calculation */
wcet sum← wcet sum + wcetrem[task]
if (wcet sum≥ interval){

for each lower priority tasks, lptask{
no count[lp task]← true
no work done[lp task]← true
}
if (wcet rem[task]> (wcet sum - interval)){

insert into array minexectimes[task][currjob[task]-1]
value wcetrem[task] - (wcetsum - interval)

wcet rem[task]← wcet sum - interval
no work done← false
} else{

insert into array minexectimes[task][currjob[task]-1]
value0

if (no work done[task] = true)
no count[task]← true

}
wneedtobreak← true
} else{

wcet rem[task]← 0

no count[task]← true
}
if (bneedtobreak AND wneedtobreak)

break
}
}
/* 10. Check if point marking end of interval is a

feasible preemption point */
for every task in order of currpriorities{

if (!no count[task] AND !nowork done[task]){
if (restart[task]){

if task released at end of interval has
higher priority{
num p[task]← num p[task] + 1
insert into preemptingtasks[task]

value currpriorities[0]
}
}
}
}
/* 11. If current job is done, reset variables for next job */
for every task in order of currpriorities{

if (restart[task] AND ! wcetrem[task]){
num p[task]← 0
restart[task]← 0
}
}
}

Fig. 13. Algorithm (cont.) to Eliminate Infeasible Preemption Points
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