A Methodology for Automatic Generation of
Executable Communication Specifications from
Parallel MPI Applications

(Supplementary Material)

XING WU and FRANK MUELLER, North Carolina State University
SCOTT PAKIN, Los Alamos National Laboratory

1. INTRODUCTION

We utilize ScalaTrace[[Noefh etal. 2007] for communicatioace collection because Scala-
Trace represents the state of the art in parallel applicatiacing. It benefits benchmark gen-
eration in two aspects. First, due to its pattern-based cesspn techniques, ScalaTrace gen-
erates application traces that are lossless in commuoicaémantics, yet small and scal-
able in size. For example, ScalaTrace can represent allepses performing the same op-
eration (e.g., each MPI rank sending a message to+dhlas a single event, regardless of
the number of ranks. Because the application trace is thés lias benchmark generation,
this feature helps reduce the size of the generated codenghiakmore manageable for sub-
sequent hand-modification. In contrast, previous apjptinatracing tools, such as Extrae/Par-
aver [Pillefetal. 1995], Tau[[Shende and Malony 2006], OfpredShop[ISchulz efal. 2008],
Vampir [NageT et al. 1996], a%@ﬁﬂﬁfﬂ%}e&ss suitable for benchmark gen-
eration because their traces increase in size with bothuh®ar of communication events and the
number of MPI ranks traced. Second, ScalaTrace is awaredtthcture of the original program.
It utilizes the stack signature to distinguish differenll cites. Its loop compression techniques
can detect the loop structure of the source code. For exaifiple iteration comprises a hundred
iterations, and each iteration sends five messages of oa@siz ten of another, ScalaTrace rep-
resents that internally as a set of nested loops rather thab@0 individual messaging events.
These pattern-identification features help benchmarkrg¢ine maintain the program structure of
the original application so that the generated code will ieomly be semantically correct but also
human comprehensible and editable.

We use the domain-speciftmwNCEP TUAL language[[Pakin 2007] instead of a general-purpose
language such as C or Fortran as the target language for ipaniclyeneration.(coNCEPTUAL
does, however, compile to C source codeONCEPTUAL is designed specifically to facilitate
the rapid creation of benchmarks that assess communiagign and network performance. We
embracecONCEPTUAL for its unique features that benefit benchmark generation:

— CONCEPTUAL has a powerful, yet concise grammar for the expression ofreonication pat-
terns. Benchmarks generateddoNCEPTUAL are highly readable.

— CONCEPTUAL code includes almost exclusively communication spedifics. Mundane bench-
marking details such as error checking, memory allocatiorer calibration, statistics calculation,
MPI subcommunicator creation, and so forth, are all hanidigdicitly, which reduces code clutter
and helps benchmark designers to focus on the core funtitiona

— ThecoNCEPTUAL runtime library automatically generates an executionttofgcilitate analysis
and reproduction of experimental results.

— Benchmarks itoNCEPTUAL are also more portable as they can be compiled to not onlyE+M
but also other combinations of languages and messagingslaye

ACM Transactions on Parallel Computing, Vol. V, No. N, A&, Publication date: January YYYY.

A2

Figure 3 shows the complete®NCEPTUAL program for NPB FT (Class C) of 256 MPI tasks. It
uses only 22 lines of code to produce the communication warklof FT, which is a 2,131-line
program. We believe the concisenes€oNCEPTUAL makes it an ideal language for benchmark
generation.

2. RELATED WORK
The following characteristics of our benchmark-generasipproach make it unique:

— The size of the benchmarks we generate increases sulbjimedne number of processes and in
the number of communication operations.

— We exploit run-time information rather than limit ourse$/to information available at compile
time.

— We preserve all communication performed by the originaligation.

We utilize ScalaTrace to collect the communication tracepafallel applications. With a
set of sophisticated domain-specific trace-compressionniques, ScalaTrace is able to gen-
erate traces that preserve the original source-code gteugthile ensuring scalability in trace
size. Other tools for acquiring communication traces suchampir [Brunstetal. 2001], Extrae/
Paraver[[Pillet ef al. 1995], and tools based on the OpeneTracmat [[Knlpfer et al. 2006] lack
structure-aware compression. As a result, the size of a filecgrows linearly with the number of
MPI calls and the number of MPI processes, and so too wouldiftesof any benchmark generated
from such a trace, making it inconvenient for processingjtaimning applications executing on
large-scale machines. This lack of scalability is addm$sgart by call-graph compression tech-
niques [Knupfer 2005] but still falls short of our structbcampression, which extends to any event
parameters. Casas et al. utilize techniques of signal psougto detect internal structures of Par-
aver traces and extract meaningful parts of the trace filasa€ef al. 2007]. While this approach
could facilitate trace analysis, it is lossy and thus notedlé for benchmark generation.

Xu et al. construct coordinatgeerformance skeletorts predict application execution time in
new hardware environmenfs[Xu ef al. 2008;_Xu and SubhloBRathis work exhibits the follow-
ing fundamental differences from ours: 1) A key aspect ofgrerance skeletons is that they drop
“local” communication (communication outside the dominpattern) and only capture a single,
dominant communication pattern by filtering a trace intoraggte information equivalent to pro-
filing (communication matrix). Similarly, PAS2P [Panadefal. 2018] extracts a subset of com-
munication patterns, but not all of them, as we do, and géeesignature kernels with associated
weights per pattern to reflect an application mix for exemutime prediction. We handle localfir-
regular communication via lossless tracing and generateis® and readable benchmarks from
such lossless traces, which is non-trivial; Xu et al. geteecade only for a single hot-spot com-
munication pattern. 2) Fully preserving all the communaagvents ensures the correctness of the
generated benchmarks while dropping events may introduoesesuch as deadlock and/or mis-
matching send/receive operations. We carefully addressetproblems to ensure that our tool is
applicable to real-world scenarios. 3) In some applicajauch as NPB MG, minor communica-
tion patterns can become the dominant pattern as the afipficrales. To generate performance-
accurate benchmarks, no communication events should peeédoln addition, we generate bench-
marks incONCEPTUAL instead of C so that the generated benchmarks are more hrendable
and editable.

Program slicing, statically reducing a program to a minifieain that preserves key properties
of the original, offers an alternative approach to genegaienchmarks from application traces.
Ertvelde et al. utilize program slicing to generate benatksishat preserve an application’s per-
formance characteristics while hiding its functional saeties [Erfvelde and Eeckhout2008]. This
work focuses on resembling the branch and memory accessibehtor sequential applications
and may therefore complement our benchmark generator failglaapplications. Shao et al. de-
signed a compiler framework to identify communication gats for MPI-based parallel applica-
tions through static analysis [Shao et al. 2006], and Zhali. étuilt program slices that contain only

ACM Transactions on Parallel Computing, Vol. V, No. N, Aléd, Publication date: January YYYY.

A3

the variables and code sections related to MPI events argkbqubntly executed these program
slices to acquire communication tracés [Zhai et al. 2008dgFam slicing and static benchmark

generation in general have a number of shortcomings reltaiour run-time, trace-based approach:
Their reliance on inter-procedural analysis requiresalaource code—the application’s and all its

dependencies—be available; they lack run-time timingrimi@tion; they cannot accurately handle
loops with data-dependent trip counts/{iile not convergedo. . .”); and they produce benchmarks

that are neither human-readable nor editable.

Previous work also focused on benchmark synthesis usinglde@l workload characteris-
tics [Belland John 2005; Wong and Morris T988._Sreenivasankdeinman 19714]. For example,
Bell et al. [Belland John 2005] synthesize representaége ¢ases from workload characteristics,
such as instruction sequences, branch predictabilitycande miss rates, of an application binary.
Wong et al. concentrate on the locality of references andheseRU cache hit function as a work-
load characterization for benchmark synthgsis TWong andiS1@988]. Sreenivasan et al. generate
representative synthetic workload by matching the joirbability density of the real workload
with that of the synthetic workloal [Sreenivasan and Kleamm974].

Besides benchmark generation and synthesis, our workdselsvant to performance modeling
and prediction[[Chen ef al. 201lipek et al. 2006; Kerbyson et al. 20(1; Bailey and Snavey5200
[Snavely et al. 2002]. For example, Chen et al. describe a lingdnd analysis framework designed
to automatically estimate the resource demand for a giveiopeance target using program char-
acteristics[[Chen ef al. 201 1pek et al. use artificial neural networks (ANNS) to predigpkcation
performance when the configuration varigsek et al. 2006].

3. BACKGROUND

Our benchmark generation approach utilizes the ScalaTirdi@structure [[Noeth et al. 2007] to
extract the communication behavior of the target applicatBased on the application trace, we
generate benchmarks @oNCEP TUAL [Pakin 2007], a high-level domain-specific language (with
an associated compiler and run-time system) designedgtingethe correctness and performance
of communication networks. This section introduces théuies of ScalaTrace armbNCEP TUAL
that enable our benchmark generation methodology.

3.1. ScalaTrace

ScalaTrace is chosen as the trace collection frameworkusedegenerates near constant-size com-
munication traces for a parallel applications regardlésh® number of nodes while preserving
structural information and temporal ordering. This is imtpat because it makes the size of the
generated benchmarks reasonably small and independendefoount.

ScalaTrace achieves near constant-sized traces throtighrnpbased compression. It uses ex-
tended regular section descriptors (RSDs) to record thicjpating nodes and parameter values
of multiple calls to a single MPI routine in the source codeoas loop iterations and nodes in a
compressed manner. Power-RSDs (PRSDs) recursively g8Ds nested in loops. For example,
the program fragment shown in Figue 1 establishes a riylg-sbmmunication acrosd nodes.
The three RSDs,

RSD1:{(rank), MPl_Irecv, LEFT}

RSD2:{(rank), MPI_lsend, RGHT}

RSD3:{(rank), MPI_Waitall}
denote the MPBend, MPIReceive, and MPWaitall operations in a single loop iteration, where
(rank) takes on each value from 0 d— 1 in turn. ScalaTrace then detects the loop structure and
outputs the single PRSH1000, RSD1, RSD2, RSD3to concisely denote a single, 1000-iteration
loop. Note that the intra-node loop compression is donéherflty to reduce memory overhead and
compression time. Finally, the local traces are combintaarsingle global trace upon application
completion (i.e., within the PMPI interposition wrapper fdPI_Finalize). This inter-node com-
pression detects similarities among the per-node tracgsreanges the RSDs by combining their
lists of participating nodes. For example, in Figlle 1, biseaecach MPI routine is called with the

ACM Transactions on Parallel Computing, Vol. V, No. N, At Publication date: January YYYY.

A4

for(i=0; i<1000; i++){
MPI_Irecv(LEFT, ...);
MPI_Isend(RIGHT, ...);
MPI_Waitall(...);

Fig. 1. Sample Code for RSD and PRSD Generation
same parameters on each node, the RSDs within the PRSD aege@mtly merged across nodes

RSD1:{0,1, ...,N—1, MPLlIrecv, LEFT}
RSD2:{0,1, ...,N—1, MPLIsend, RGHT}
RSD3:{0,1, ...,N—1, MPI Waitall}

Of course, enumerating all participating ranks one by one et scal-
able. Hence, ScalaTrace further compresses the partigpatist with a ranklist
representation. Using the EBNF meta-syntax, a ranklist igprasented as

(dimension startrank iterationlength stridditerationlength stridg*),
where dimensionis the dimension of the groutart_rank is the rank of the starting node,
and theiterationlength stridepair is the iteration and stride of the corresponding direans
As an example, consider the row-major grid topology in Fegdr The shaded nodes form a
communication group. This group is representedalist <2 6 3 5 3 >, where the tuple
indicates that this communication group is a 2-dimensiangé starting at node 6 with 3 iterations
of stride 5 in they dimension and 3 iterations of stride 1 in thdimension, respectively. Since this
encoding scheme takes node placement into account, itatigteeflects the spatial characteristics

of a communication group. @ @ @ @ @

®® ® ®/0
CHONCROR®
OHONONCHO®,

ONONONONO

Fig. 2. Ranklist Representation

Besides communication tracing, ScalaTrace also stordgappn computation times in a scal-
able way [Rafn et al. 2008]. Computation is defined as the tieteveen consecutive MPI calls.
Rather than store individual computation-time measureag)etalaTrace compresses into a his-
togram the time taken by all instances of a particular cormjmu across all loop iterations and all
nodes. ScalaTrace’s path-aware compression distingugsita times of different execution paths.
Therefore, in the cases where the time spent in computation fo the first statement of a loop
differs significantly from the time spent in the subsequésrations, ScalaTrace can still achieve
good compression without sacrificing performance accuiiug feature of ScalaTrace enables the
generateccONCEPTUAL code always to reflect the loop structures and capture the gecific
execution times irrespective of their time variance by hgwonditionals on loop iterators, as illus-
trated by the followingcONCEPTUAL code snippet:

FOR EACH i IN {1, ..., n} {
IF i<>1 THEN ALL TASKS COMPUTE FOR t1 THEN
IF i=1 THEN ALL TASKS COMPUTE FOR t2 THEN

ACM Transactions on Parallel Computing, Vol. V, No. N, Aléd\, Publication date: January YYYY.

A5

3.2. coNCePTualL

CONCEPTUAL is a tool designed to facilitate rapid generation of netwdyenchmarks.
CONCEPTUAL includes a compiler for a high-level specification langei@pd an accompanying
run-time library.cCONCEPTUAL programs are understandable even to non-experts bechiise o
English-like grammar. For example, the following i€@mpletecoONCEPTUAL benchmark pro-
gram corresponding to the code snippet presented in Higure 1

FOR 1000 REPETITIONS {
ALL TASKS RESET THEIR COUNTERS THEN
ALL TASKS t ASYNCHRONQUSLY SEND A 1 KILOBYTE MESSAGE TO TASK t+1 THEN
ALL TASKS AWAIT COMPLETION THEN
ALL TASKS LOG THE MEDIAN OF elapsed_usecs AS "Time (us)".
}

Note in the above that no variable or function declaratiaesraquired; no buffer allocation is re-
quired; no MPIRequest or MPStatus objects need to be defined; no MPI communicators need
to be queried for rank and size; no files need to be opened attdmio; no statistics-calculating
routines need to be implemented; no error codes need to lekedheno matching receive needs
to be posted for each send (but can be if the programmer esjoiore precise control over post-
ing order); and no special cases for the first and last task)r@eed to be specified. Nevertheless,
CONCEPTUAL is able to express sophisticated communication pattdilidng a variety of collec-
tive and point-to-point communication primitives, looginonstructs, and conditional operations.
When executed, the generated code produces log files thitic@wealth of information about
the measured communication performance, code build cteaistecs, execution environment, and
other information needed to yield reproducible perforneameasurements [Pakin 2004].

The aforementioned features makeNCEP TUAL an ideal language for benchmark generation.
In the following section, we present our approach to proaigicioN CEPTUAL output from Scala-
Trace input.

4. DESIGN
4.1. Engineering Details

CONCEPTUAL is not designed to exactly represent MPI features. In fdu,CONCEPTUAL
compiler can compile the same source program t#oMPI, C4+Unix sockets, or to any other
language/communication library combination for which anpiler backend exists. Consequently,
CONCEPTUAL contains collectives that MPI lacks (e.g., arbitrary maoymany reductions with
non-overlapping source and destination task sets), anccbtRains collectives thaoNCEPTUAL
lacks (e.g., scatters of different-sized messages tordiftedestinations). Therefore, for the MPI
collectives that are directly supported bpNCEPTUAL, such as MPIBcast, MPIReduce, and
MPI_Alltoall, we generate the correspondic@NCEPTUAL MULTICAST and REDUCE state-
ments. For the unsupported MPI collectives, we had to “inaped match” the benchmark gen-
erator's MPI-centric input ta ONCEPTUAL output. Our approach is to replace each unsupported
MPI collective with one or more oONCEPTUAL collectives that represent a similar communication
pattern (i.e., data fan in or fan out) and data volume. TBplesents the substitutions we made.

MPI has a notion of a “communicator,” which is a subset of thalable ranks, renumbered and
possibly reordered. Every MPI communication operatioesekcommunicator as an argument and
uses it to specify the participants in the operation. A disihg consequence of communicators is
that a line in the application source code that seems to bdirgpa message to, say, rank 3 may
in fact be sending a message to rank 8 in the primordia @®BMM_WORLD communicator. To
make the generated benchmarks more readable we keep trdekmBpping of every rank within
every communicator to an “absolute” rank within MEDMM_WORLD and express all generated
computation and communication operations in terms of théselute ranks.

ACM Transactions on Parallel Computing, Vol. V, No. N, At Publication date: January YYYY.

A6

Table I. Mapping of MPI Collectives to CONCEPTUAL

MPI collective coNCEPTUAL implementation

Allgather REDUCE + MULTICAST

Allgatherv REDUCE with averaged message SizeMULTICAST
Alltoallv MULTICAST with averaged message size
Gather REDUCE

Gatherv REDUCE with averaged message size

Reducescatter nmany-to-on®EDUCES with different message sizes and roots, wimneigethe
communicator size

Scatter MULTICAST

Scatterv MULTICAST with averaged message size

4.2. Combining Per-Node Collectives
The complexity of AlgorithnfdL i©D(e), wheree = %, —1q is the total number of MPI events on all

the nodes ane; is the number of communication events per node. This can beedefrom the
fact that Algorithn{l traverses every event in the trace exance for each node. In Algorithid 1,
thefor loop in line 2 initializes the iterator to the head RSD forleaode. During execution, the
while loop in line 12 always moves the iterator farward by exactig @vent in each iteration. In
case the traversal is blocked at a collective, a contexthwiappens at line 27. When the call to
Align returns, the traversal proceeds to the next event. In addisince MPIFinalize is handled
as a collective that all nodes participate in (line 23), ttawersal is performed for all the nodes.
Nevertheless, we do not blindly run this algorithm for amdniy input traces. Before applying the
algorithm we first check the trace to see if there are unatigralectives. This check costs only
O(r), wherer is the number of RSDs in the trace and is typically much smaliane due to
compression.

4.3. Eliminating Non-determinism

Because Algorithrll2 is again based on traversing a trace actu Pl event is evaluated exactly
once in thewhile loop at line 12, the complexity i©(e), wheree = Zi“;ola is the total number of
MPI events on all the nodes. Similarly, the use of wildcarceiees is checked at a cost Ofr)
before applying this algorithm, wheras the number of RSDs in the trace and, typicall,: e.

4.4. ScalaExtrap

This section briefly summarizes ScalaExtrap. A completeusision on ScalaExtrap can be found
in our prior work [Wu and Mueller 2011]. ScalaExtrap is a tolaht implements a methodology
to automatically extrapolate a large trace from a seriesmddllgr traces for SPMD codes with
a stencil/mesh communication pattern. ScalaExtrap asstima¢ MP| parameters such sgurce
dest andcountare linearly correlated with the dimension sizey, andz of the communication
topology. Given a set of input traces of different node siS=laExtrap constructs a set of linear
equations in which unknown coefficientsxqfy, zreflect the correlation. ScalaExtrap uses Gaussian
elimination to solve the set of linear equations. The oladinoefficients are later used with the
knownyx, y, z sizes of an application at large scale to calculate actuaésadf the MPI parameters
of interest. In addition, ScalaExtrap utilizes the curveénfif approach to extrapolate the lengths
of the computational regions in the application so that theng behavior under scaling is also
captured in the extrapolated trace.

4.5. Sources of Performance Inaccuracy
As indicated, there are a number of ways in which our benckigpemerator trades off performance
fidelity for an improved ability to reason about the genatatede and its performance: computa-

tion times are summarized across ranks instead of beingfigpeindividually (Sectiofz3]1); some
complex MPI collectives are implemented in terms of moredasNCEPTUAL collectives (Sec-

ACM Transactions on Parallel Computing, Vol. V, No. N, Aléd, Publication date: January YYYY.

A7

Algorithm 1 Algorithm to Align Collectives

Precondition: Ti,: input trace, N: total number of nodes
Postcondition: Toy: the trace fotoONCEP TUAL code generation

1: function INITIALIZATION (Tin, N)

2 for i« 1, Ndo

3 Allocate traversal context C[i]

4 C[i].RSD « Tin.head

5: end for

6 Initialize Toyt to am empty trace

7 Tout < ALIGN(O, Tout) > Start with node 0
8 return Toyt

9: end function

10: function ALIGN(N, Tout)
11: iter— C[n].RSD
12: while iter do

13: if node n is not in iter.rankist then

14: iter — iter.next

15: ese

16: if iter.op is not a collectivéhen

17: Extract current MPI event

18: Append a new RSD @

19: CompresJout

20: iter — iter.next

21: continue

22: end if

23: if iter.op is a collective or MRFinalizethen

24: if some participants have not arrived yién
25: C[n].RSD+ iter

26: next— the next node in the communicator
27: ALIGN(next, Tout)

28: else

29: Append an RSD for all participants Tgyt
30: CompresTJout

31: C[n].RSD+ iter

32: for each i € {participanty do

33: C[i].RSD « CJ[i].RSD.next

34: end for

35: first— the first node in the communicator
36: ALIGN(first, Tour)

37: end if

38: end if

39: end if

40: end while
41: return Tout
42: end function

tion[41); and nondeterministic receive ordering is repthwith an arbitrary deterministic ordering
(SectioZB). In Sectidd 5 we examine the impact of thesigdetcisions in the context of a suite
of test programs.

5. EVALUATION

5.1. Communication Correctness

Ouir first set of experiments verifies the correctness of thegged benchmarks, i.e., the benchmark
generator’s ability to retain the original applicationshemunication pattern. For these experiments,
we acquired traces of our test suite on Blue Gene/L, gercera®l CEPTUAL benchmarks, and
executed these benchmarks also on Blue Gene/L. To verifgdirectness of the generated bench-
marks, we linked both them and the original applicationswiipiP [Vetter and McCracken 2001],

ACM Transactions on Parallel Computing, Vol. V, No. N, At Publication date: January YYYY.

A:8

Algorithm 2 Algorithm to Resolve Wildcard Receive (without Deadlocki®ation)

Precondition: T: input trace, N: total number of nodes
Postcondition: T: trace without wildcard receive

1
2
3
4:
5:
6:
7
8

9: end function

function INITIALIZATION (T, N)
fori <1, Ndo
Allocate listL; and listL, for node i
Allocate traversal context C[i]
C[i].RSD + T.head

T« Match(0, T)

10: function MATCH(n, T)

11:
12:

54:
55: end function

iter— C[n].RSD
whileiter do
if node n is not in iter.rankist then
iter — iter.next

if iter.op is point-to-point operatiothen

if match with an evengj in L then
L,.delete€nk)
node.L;.delete§nk)
if node.L, is emptythen
C[i].RSD « CJ[i].RSD.next
end if
if iter.peer is MPIANY _SOURCEthen
iter.peer =i
end if
iter — iter.next
continue
else
p« iter.peer
Ly.add€npk, 1))
node,.Lo.addénpk,)
if iter.op is blocking operatiothen
C[n].RSD+ iter
MATCH(p, T)
ese
iter — iter.next
continue
end if
end if

end if

if iter.op is collective or MPFinalizethen
end if

if iter.op is wait operatiorthen

if L1 is not emptythen
MATCH(L,.first.getPeer(), T)
else
iter — iter.next
continue
end if

end if

> Start with node 0

> unblock

> resolve the wildcard

> refer to Algorithnd

ACM Transactions on Parallel Computing, Vol

.V, No. N, Al Publication date: January YYYY.

A9

a lightweight MPI profiling library that gathers run-timeasistics of MPI event counts and the

message volumes exchanged. Experimental results (narmesshere) showed that, for each type
of MPI event, the event count and the message volume meafuredch generated benchmarks
matched perfectly with those measured for the originaliappon.

We then conducted experiments to verify that the generagedhmarks not only resemble the
original applications in overall statistics but also thia¢yt preserve the original semantics on a
per-event basis. To this end, we instrumented each geddyvatehmark with ScalaTrace and com-
pared its communication trace with that of its respectivginal application. Due to differences in
the call-site stack signatures between the original agfiin and the generated benchmark, these
traces are never bit-for-bit identical. Therefore, we agphll both traces with the ScalaTrace-based
ScalaReplay tool [Wu and Mueller 2011] to eliminate spusistructural differences and thereby
fairly compare the pairs of traces. The results (again, redgnted here) show that the original ap-
plications and the generated benchmarks generated egpiivieices. That is, the semantics of each
of the original applications was precisely reproduced leyabrresponding generated benchmark.

All tasks synchronize then
Task O resets its counters then
All tasks compute for 52 microseconds
Task O multicasts a 12-byte message
to all other tasks
A1l tasks compute for O microseconds
Task O multicasts a 4-byte message
to all other tasks
All tasks compute for 295410 microseconds
A1l tasks multicast a 32768-byte message
to all other tasks
A1l tasks compute for 133044 microseconds
All tasks synchronize
A1l tasks compute for 317381 microseconds
All tasks multicast a 32768-byte message
to all other tasks
For each i1 in {1, ..., 20} {
If i1 <> 1 then all tasks compute
for 167332 microseconds then
If i1 = 1 then all tasks compute
for 312861 microseconds then
A1l tasks multicast a 32768-byte message
to all other tasks then
All tasks compute
for 254450 microseconds then
A1l tasks reduce 4 integers to task O
}
A1l tasks compute for 24 microseconds
All tasks synchronize then
Task 0 logs elapsed_usecs/1E6 as "Seconds"

Fig. 3. CompletecoONCEPTUAL Program for NPB FT (Class C) of 256 MPI Tasks

6. DISCUSSION AND FUTURE WORK

Currently, our work focuses on the generation of commuigodienchmarks. Our approach guaran-
tees that the generated communication is cross-platforfanpeance-portable because we preserve
the original communication pattern and can execute it abtion a target machine. However, since
computation times are taken from the source machine, th@utation performance does not reflect
architecture-specific effects of a different platform. Gulwantage of mimicking computation with
spin loops is that this enables studies in which computaitioa is explicitly varied, as in Sectic??

ACM Transactions on Parallel Computing, Vol. V, No. N, Até, Publication date: January YYYY.

A:10

of the paper. Meanwhile, we are also working on scalable nmginacing to complement commu-
nication tracing. Automatic generation and replay of meyraecess behavior within ScalaTrace is
a subject of future work.

Acknowledgments

This work was supported in part by NSF grants 0937908 and®Pb8nd by the U.S. Department
of Energy’s National Nuclear Security Administration undentract DE-AC52-06NA25396 with
Los Alamos National Security, LLC.

REFERENCES

D.H. Bailey and A. Snavely. 2005. Performance Modeling: €hsthnding the Present and Predicting the Futurguho-Par
Conference

R Bell and L. John. 2005. Improved Automatic Testcase Swihi®r Performance Model Validation. Int'l Conf. on
Supercomputingl11-120.

Holger Brunst, Hans-Christian Hoppe, Wolfgang E. Naged, sianuela Winkler. 2001. Performance Optimization for learg
Scale Computing: The Scalable VAMPIR Approach.Irternational Conference on Computational Science 81—
760.

Marc Casas, Rosa Badia, and Jesus Labarta. 2007. Autorttatituse extraction from MPI applications tracefiles Haro-

Par Conference

Jian Chen, Lizy Kurian John, and Dimitris Kaseridis. 201bddling program resource demand using inherent program cha
acteristicsSIGMETRICS Perform. Eval. R89, 1 (June 2011), 1-1801 : http://dx.do1.org/10.1145/2007116.2007118

Luk Van Ertvelde and Lieven Eeckhout. 2008. Dispersing pedary applications as benchmarks through code mutattion.
Architectural Support for Programming Languages and OfiataSystems201-210.

Enginipek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski &fartin Schulz. 2006. Efficiently exploring archi-
tectural design spaces via predictive modelingABPLOS-XII: Proceedings of the 12th international confeezon
Architectural support for programming languages and opiaigsystems195-206.

D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wassermard &h Gittings. 2001. Predictive Performance and Scalabilit
Modeling of a Large-Scale Application. Bupercomputing

Andreas Knupfer. 2005. Construction and Compression ofilet@ Call Graphs for Post-Mortem Program Trace Analysis.
In International Conference on Parallel Processifig5-172.

A. Knupfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel. 0B Introducing the Open Trace Format (OTF)Intil Conf.
on Computational Sciencé26-533.

W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchethal 996. VAMPIR: Visualization and Analysis of MPI
ResourcesSupercomputet 2, 1 (1996), 69-80.

M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski. 200¢al8ble Compression and Replay of Communica-
tion Traces in Massively Parallel Environments. liiternational Parallel and Distributed Processing Symipos
DOI :/http://dX.do1.org/10.1145/1188455.1188605

Scott Pakin. 2004. Reproducible Network Benchmarks withl CEPTUAL. In Proceedings of the 10th International Euro-
Par Conference (Lecture Notes in Computer Scieniigrco Danelutto, Domenico Laforenza, and Marco Vanneschi
(Eds.), Vol. 3149. 64-71.

Scott Pakin. 2007. The Design and Implementation of a DofBaiecific Language for Network Perfor-
mance Testing.l[EEE Transactions on Parallel and Distributed Systeri8, 10 (Oct. 2007), 1436-1449.
DOI :http://dX.do1.org/10.1109/TPDS.2007.1065

Javier Panadero, Alvaro Wong, Dolores Rexachs, and Emiliue. 2013. A Tool for Selecting the Right Target Machine
for Parallel Scientific Application?rocedia Computer Sciends (2013), 1824-1833.

Vincent Pillet, Vincent Pillet, Jesus Labarta, Toni Cortsd Sergi Girona. 1995. PARAVER: A Tool to Visualize and Ana
lyze Parallel Code. IRroceedings of the 18th Technical Meeting of WoTUG-18: §pater and Occam Developments
17-31.

P. Ratn, F. Mueller, Bronis R. de Supinski, and M. Schulz.&2@0eserving Time in Large-Scale Communication Traces. In
Int'l Conf. on Supercomputing!l6-55.

Martin Schulz, Jim Galarowicz, Don Maghrak, William Hadkfe David Montoya, and Scott Cranford. 2008.
OperjSpeedShop: An Open Source Infrastructure for Parallelofeence AnalysisScientific Programmind6, 2—
3(2008), 105-121D01 :)http://dx.dor.org/10.3233/SPR-2008-0256

Shuyi Shao, Alexk. Jones, and Rami Melhem. 2006. A compiered communication analysis approach for multiprocessor
systems. Irin International Parallel and Distributed Processing Syosjum

ACM Transactions on Parallel Computing, Vol. V, No. N, Aléd, Publication date: January YYYY.

http://dx.doi.org/10.1145/2007116.2007118
http://dx.doi.org/10.1145/1188455.1188605
http://dx.doi.org/10.1109/TPDS.2007.1065
http://dx.doi.org/10.3233/SPR-2008-0256

A1l

Sameer S. Shende and Allen D. Malony. 2006. The Tau Paralébifhance Systenint’l Journal of High Performance
Computing Applicationg0, 2 (2006), 287-311.

A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badiad &. Purkayastha. 2002. A Framework for Performance Mod-
eling and Prediction. ISupercomputing

K. Sreenivasan and A. J. Kleinman. 1974. On the construcf@representative synthetic workloa@Zommun. ACML7, 3
(March 1974), 127-13301 : http://dx.do1.org/10.1145/360860.360863

J. Vetter and M. McCracken. 2001. Statistical Scalabilityafysis of Communication Operations in Distributed Apations.
In ACM SIGPLAN Symposium on Principles and Practice of ParBlfegramming

F. Wolf and B. Mohr. 2003. KOJAK—A Tool Set for Automatic Permance Analysis of Parallel Applications. Rtoc. of
the European Conference on Parallel Computing (Euro-Paecfure Notes in Computer Sciencél. 2790. Springer,
Klagenfurt, Austria, 1301-1304. Demonstrations of Patahd Distributed Computing.

W.S. Wong and R.J.T. Morris. 1988. Benchmark synthesisgus$ia LRU cache hit functiorComputers, IEEE Transactions
on 37, 6 (jun 1988), 637 —64B01 :/http://dx.do1.org/10.1109/12.22)2

Xing Wu and Frank Mueller. 2011. ScalaExtrap: Trace-baseshi@unication Extrapolation for SPMD Programs AGM
SIGPLAN Symposium on Principles and Practice of ParalleigpPamming

Qiang Xu, Ravi Prithivathi, Jaspal Subhlok, and Rong Zh@0§8.Logicalization of MPI Communication TraceBechnical
Report UH-CS-08-07. Dept. of Computer Science, Universitiiouston.

Qiang Xu and Jaspal Subhlok. 2008. Construction and Evatuaf Coordinated Performance Skeletonslrternational
Conference on High Performance Computii§—86.

J. Zhai, T. Sheng, J. He, W. Chen, and W. Zheng. 2009. FACT: Gasmunication Trace Collection for Parallel Applica-
tions Through Program Slicing. Rroceedings of SC'Q9-12.

ACM Transactions on Parallel Computing, Vol. V, No. N, At Publication date: January YYYY.

http://dx.doi.org/10.1145/360860.360863
http://dx.doi.org/10.1109/12.2202

	Introduction
	Related Work
	Background
	ScalaTrace
	coNCePTuaL

	Design
	Engineering Details
	Combining Per-Node Collectives
	Eliminating Non-determinism
	ScalaExtrap
	Sources of Performance Inaccuracy

	Evaluation
	Communication Correctness

	Discussion and Future Work

