
A Methodology for Automatic Generation of
Executable Communication Specifications from
Parallel MPI Applications
(Supplementary Material)
XING WU and FRANK MUELLER, North Carolina State University
SCOTT PAKIN, Los Alamos National Laboratory

1. INTRODUCTION

We utilize ScalaTrace [Noeth et al. 2007] for communicationtrace collection because Scala-
Trace represents the state of the art in parallel application tracing. It benefits benchmark gen-
eration in two aspects. First, due to its pattern-based compression techniques, ScalaTrace gen-
erates application traces that are lossless in communication semantics, yet small and scal-
able in size. For example, ScalaTrace can represent all processes performing the same op-
eration (e.g., each MPI rank sending a message to rank+4) as a single event, regardless of
the number of ranks. Because the application trace is the basis for benchmark generation,
this feature helps reduce the size of the generated code, making it more manageable for sub-
sequent hand-modification. In contrast, previous application tracing tools, such as Extrae/Par-
aver [Pillet et al. 1995], Tau [Shende and Malony 2006], Open|SpeedShop [Schulz et al. 2008],
Vampir [Nagel et al. 1996], and Kojak [Wolf and Mohr 2003], are less suitable for benchmark gen-
eration because their traces increase in size with both the number of communication events and the
number of MPI ranks traced. Second, ScalaTrace is aware of the structure of the original program.
It utilizes the stack signature to distinguish different call sites. Its loop compression techniques
can detect the loop structure of the source code. For example, if an iteration comprises a hundred
iterations, and each iteration sends five messages of one size and ten of another, ScalaTrace rep-
resents that internally as a set of nested loops rather than as 1500 individual messaging events.
These pattern-identification features help benchmark generation maintain the program structure of
the original application so that the generated code will be not only be semantically correct but also
human comprehensible and editable.

We use the domain-specificCONCEPTUAL language [Pakin 2007] instead of a general-purpose
language such as C or Fortran as the target language for benchmark generation. (CONCEPTUAL
does, however, compile to C source code.)CONCEPTUAL is designed specifically to facilitate
the rapid creation of benchmarks that assess communicationdesign and network performance. We
embraceCONCEPTUAL for its unique features that benefit benchmark generation:

— CONCEPTUAL has a powerful, yet concise grammar for the expression of communication pat-
terns. Benchmarks generated inCONCEPTUAL are highly readable.

— CONCEPTUAL code includes almost exclusively communication specifications. Mundane bench-
marking details such as error checking, memory allocation,timer calibration, statistics calculation,
MPI subcommunicator creation, and so forth, are all handledimplicitly, which reduces code clutter
and helps benchmark designers to focus on the core functionality.

— TheCONCEPTUAL runtime library automatically generates an execution logto facilitate analysis
and reproduction of experimental results.

— Benchmarks inCONCEPTUAL are also more portable as they can be compiled to not only C+MPI
but also other combinations of languages and messaging layers.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2

Figure 3 shows the completeCONCEPTUAL program for NPB FT (Class C) of 256 MPI tasks. It
uses only 22 lines of code to produce the communication workload of FT, which is a 2,131-line
program. We believe the conciseness ofCONCEPTUAL makes it an ideal language for benchmark
generation.

2. RELATED WORK

The following characteristics of our benchmark-generation approach make it unique:

— The size of the benchmarks we generate increases sublinearly in the number of processes and in
the number of communication operations.

— We exploit run-time information rather than limit ourselves to information available at compile
time.

— We preserve all communication performed by the original application.

We utilize ScalaTrace to collect the communication trace ofparallel applications. With a
set of sophisticated domain-specific trace-compression techniques, ScalaTrace is able to gen-
erate traces that preserve the original source-code structure while ensuring scalability in trace
size. Other tools for acquiring communication traces such as Vampir [Brunst et al. 2001], Extrae/
Paraver [Pillet et al. 1995], and tools based on the Open Trace Format [Knüpfer et al. 2006] lack
structure-aware compression. As a result, the size of a trace file grows linearly with the number of
MPI calls and the number of MPI processes, and so too would thesize of any benchmark generated
from such a trace, making it inconvenient for processing long-running applications executing on
large-scale machines. This lack of scalability is addressed in part by call-graph compression tech-
niques [Knupfer 2005] but still falls short of our structural compression, which extends to any event
parameters. Casas et al. utilize techniques of signal processing to detect internal structures of Par-
aver traces and extract meaningful parts of the trace files [Casas et al. 2007]. While this approach
could facilitate trace analysis, it is lossy and thus not suitable for benchmark generation.

Xu et al. construct coordinatedperformance skeletonsto predict application execution time in
new hardware environments [Xu et al. 2008; Xu and Subhlok 2008]. This work exhibits the follow-
ing fundamental differences from ours: 1) A key aspect of performance skeletons is that they drop
“local” communication (communication outside the dominant pattern) and only capture a single,
dominant communication pattern by filtering a trace into aggregate information equivalent to pro-
filing (communication matrix). Similarly, PAS2P [Panaderoet al. 2013] extracts a subset of com-
munication patterns, but not all of them, as we do, and generates signature kernels with associated
weights per pattern to reflect an application mix for execution time prediction. We handle local/ir-
regular communication via lossless tracing and generate concise and readable benchmarks from
such lossless traces, which is non-trivial; Xu et al. generate code only for a single hot-spot com-
munication pattern. 2) Fully preserving all the communication events ensures the correctness of the
generated benchmarks while dropping events may introduce errors such as deadlock and/or mis-
matching send/receive operations. We carefully address these problems to ensure that our tool is
applicable to real-world scenarios. 3) In some applications, such as NPB MG, minor communica-
tion patterns can become the dominant pattern as the application scales. To generate performance-
accurate benchmarks, no communication events should be dropped. In addition, we generate bench-
marks inCONCEPTUAL instead of C so that the generated benchmarks are more human-readable
and editable.

Program slicing, statically reducing a program to a minimalform that preserves key properties
of the original, offers an alternative approach to generating benchmarks from application traces.
Ertvelde et al. utilize program slicing to generate benchmarks that preserve an application’s per-
formance characteristics while hiding its functional semantics [Ertvelde and Eeckhout 2008]. This
work focuses on resembling the branch and memory access behaviors for sequential applications
and may therefore complement our benchmark generator for parallel applications. Shao et al. de-
signed a compiler framework to identify communication patterns for MPI-based parallel applica-
tions through static analysis [Shao et al. 2006], and Zhai etal. built program slices that contain only

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.



A:3

the variables and code sections related to MPI events and subsequently executed these program
slices to acquire communication traces [Zhai et al. 2009]. Program slicing and static benchmark
generation in general have a number of shortcomings relative to our run-time, trace-based approach:
Their reliance on inter-procedural analysis requires thatall source code—the application’s and all its
dependencies—be available; they lack run-time timing information; they cannot accurately handle
loops with data-dependent trip counts (“while not convergeddo. . . ”); and they produce benchmarks
that are neither human-readable nor editable.

Previous work also focused on benchmark synthesis using low-level workload characteris-
tics [Bell and John 2005; Wong and Morris 1988; Sreenivasan and Kleinman 1974]. For example,
Bell et al. [Bell and John 2005] synthesize representative test cases from workload characteristics,
such as instruction sequences, branch predictability, andcache miss rates, of an application binary.
Wong et al. concentrate on the locality of references and usethe LRU cache hit function as a work-
load characterization for benchmark synthesis [Wong and Morris 1988]. Sreenivasan et al. generate
representative synthetic workload by matching the joint probability density of the real workload
with that of the synthetic workload [Sreenivasan and Kleinman 1974].

Besides benchmark generation and synthesis, our work is also relevant to performance modeling
and prediction [Chen et al. 2011;Ïpek et al. 2006; Kerbyson et al. 2001; Bailey and Snavely 2005;
Snavely et al. 2002]. For example, Chen et al. describe a modeling and analysis framework designed
to automatically estimate the resource demand for a given performance target using program char-
acteristics [Chen et al. 2011].Ïpek et al. use artificial neural networks (ANNs) to predict application
performance when the configuration varies [Ïpek et al. 2006].

3. BACKGROUND

Our benchmark generation approach utilizes the ScalaTraceinfrastructure [Noeth et al. 2007] to
extract the communication behavior of the target application. Based on the application trace, we
generate benchmarks inCONCEPTUAL [Pakin 2007], a high-level domain-specific language (with
an associated compiler and run-time system) designed for testing the correctness and performance
of communication networks. This section introduces the features of ScalaTrace andCONCEPTUAL
that enable our benchmark generation methodology.

3.1. ScalaTrace

ScalaTrace is chosen as the trace collection framework because it generates near constant-size com-
munication traces for a parallel applications regardless of the number of nodes while preserving
structural information and temporal ordering. This is important because it makes the size of the
generated benchmarks reasonably small and independent of node count.

ScalaTrace achieves near constant-sized traces through pattern-based compression. It uses ex-
tended regular section descriptors (RSDs) to record the participating nodes and parameter values
of multiple calls to a single MPI routine in the source code across loop iterations and nodes in a
compressed manner. Power-RSDs (PRSDs) recursively specify RSDs nested in loops. For example,
the program fragment shown in Figure 1 establishes a ring-style communication acrossN nodes.
The three RSDs,

RSD1:{〈rank〉, MPI Irecv, LEFT}
RSD2:{〈rank〉, MPI Isend, RIGHT}
RSD3:{〈rank〉, MPI Waitall}

denote the MPISend, MPIReceive, and MPIWaitall operations in a single loop iteration, where
〈rank〉 takes on each value from 0 toN−1 in turn. ScalaTrace then detects the loop structure and
outputs the single PRSD,{1000, RSD1, RSD2, RSD3}, to concisely denote a single, 1000-iteration
loop. Note that the intra-node loop compression is done on-the-fly to reduce memory overhead and
compression time. Finally, the local traces are combined into a single global trace upon application
completion (i.e., within the PMPI interposition wrapper for MPI Finalize). This inter-node com-
pression detects similarities among the per-node traces and merges the RSDs by combining their
lists of participating nodes. For example, in Figure 1, because each MPI routine is called with the

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4

for(i=0; i<1000; i++){

MPI_Irecv(LEFT, ...);

MPI_Isend(RIGHT, ...);

MPI_Waitall(...);

}

Fig. 1. Sample Code for RSD and PRSD Generation
same parameters on each node, the RSDs within the PRSD are consequently merged across nodes
as

RSD1:{0,1, . . . ,N−1, MPI Irecv, LEFT}
RSD2:{0,1, . . . ,N−1, MPI Isend, RIGHT}
RSD3:{0,1, . . . ,N−1, MPI Waitall}

Of course, enumerating all participating ranks one by one isnot scal-
able. Hence, ScalaTrace further compresses the participating list with a ranklist
representation. Using the EBNF meta-syntax, a ranklist is represented as

〈dimension startrank iteration length stride{iteration length stride}∗〉,
where dimensionis the dimension of the group,start rank is the rank of the starting node,
and theiteration length stridepair is the iteration and stride of the corresponding dimension.
As an example, consider the row-major grid topology in Figure 2. The shaded nodes form a
communication group. This group is represented asranklist <2 6 3 5 3 1>, where the tuple
indicates that this communication group is a 2-dimensionalarea starting at node 6 with 3 iterations
of stride 5 in they dimension and 3 iterations of stride 1 in thex dimension, respectively. Since this
encoding scheme takes node placement into account, it naturally reflects the spatial characteristics
of a communication group.

Fig. 2. Ranklist Representation

Besides communication tracing, ScalaTrace also stores application computation times in a scal-
able way [Ratn et al. 2008]. Computation is defined as the timebetween consecutive MPI calls.
Rather than store individual computation-time measurements, ScalaTrace compresses into a his-
togram the time taken by all instances of a particular computation across all loop iterations and all
nodes. ScalaTrace’s path-aware compression distinguishes delta times of different execution paths.
Therefore, in the cases where the time spent in computation prior to the first statement of a loop
differs significantly from the time spent in the subsequent iterations, ScalaTrace can still achieve
good compression without sacrificing performance accuracy. This feature of ScalaTrace enables the
generatedCONCEPTUAL code always to reflect the loop structures and capture the path-specific
execution times irrespective of their time variance by having conditionals on loop iterators, as illus-
trated by the followingCONCEPTUAL code snippet:

FOR EACH i IN {1, ..., n} {
IF i<>1 THEN ALL TASKS COMPUTE FOR t1 THEN
IF i=1 THEN ALL TASKS COMPUTE FOR t2 THEN
...

}

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.



A:5

3.2. coNCePTuaL

CONCEPTUAL is a tool designed to facilitate rapid generation of network benchmarks.
CONCEPTUAL includes a compiler for a high-level specification language and an accompanying
run-time library.CONCEPTUAL programs are understandable even to non-experts because of its
English-like grammar. For example, the following is acompleteCONCEPTUAL benchmark pro-
gram corresponding to the code snippet presented in Figure 1:

FOR 1000 REPETITIONS {
ALL TASKS RESET THEIR COUNTERS THEN
ALL TASKS t ASYNCHRONOUSLY SEND A 1 KILOBYTE MESSAGE TO TASK t+1 THEN
ALL TASKS AWAIT COMPLETION THEN
ALL TASKS LOG THE MEDIAN OF elapsed_usecs AS "Time (us)".

}

Note in the above that no variable or function declarations are required; no buffer allocation is re-
quired; no MPIRequest or MPIStatus objects need to be defined; no MPI communicators need
to be queried for rank and size; no files need to be opened and written to; no statistics-calculating
routines need to be implemented; no error codes need to be checked; no matching receive needs
to be posted for each send (but can be if the programmer requires more precise control over post-
ing order); and no special cases for the first and last task (rank) need to be specified. Nevertheless,
CONCEPTUAL is able to express sophisticated communication patterns utilizing a variety of collec-
tive and point-to-point communication primitives, looping constructs, and conditional operations.
When executed, the generated code produces log files that contain a wealth of information about
the measured communication performance, code build characteristics, execution environment, and
other information needed to yield reproducible performance measurements [Pakin 2004].

The aforementioned features makeCONCEPTUAL an ideal language for benchmark generation.
In the following section, we present our approach to producing CONCEPTUAL output from Scala-
Trace input.

4. DESIGN

4.1. Engineering Details

CONCEPTUAL is not designed to exactly represent MPI features. In fact,the CONCEPTUAL
compiler can compile the same source program to C+MPI, C+Unix sockets, or to any other
language/communication library combination for which a compiler backend exists. Consequently,
CONCEPTUAL contains collectives that MPI lacks (e.g., arbitrary many-to-many reductions with
non-overlappingsource and destination task sets), and MPIcontains collectives thatCONCEPTUAL
lacks (e.g., scatters of different-sized messages to different destinations). Therefore, for the MPI
collectives that are directly supported byCONCEPTUAL, such as MPIBcast, MPIReduce, and
MPI Alltoall, we generate the correspondingCONCEPTUAL MULTICAST and REDUCE state-
ments. For the unsupported MPI collectives, we had to “impedance match” the benchmark gen-
erator’s MPI-centric input toCONCEPTUAL output. Our approach is to replace each unsupported
MPI collective with one or moreCONCEPTUAL collectives that represent a similar communication
pattern (i.e., data fan in or fan out) and data volume. Table Ipresents the substitutions we made.

MPI has a notion of a “communicator,” which is a subset of the available ranks, renumbered and
possibly reordered. Every MPI communication operation takes a communicator as an argument and
uses it to specify the participants in the operation. A disturbing consequence of communicators is
that a line in the application source code that seems to be sending a message to, say, rank 3 may
in fact be sending a message to rank 8 in the primordial MPICOMM WORLD communicator. To
make the generated benchmarks more readable we keep track ofthe mapping of every rank within
every communicator to an “absolute” rank within MPICOMM WORLD and express all generated
computation and communication operations in terms of theseabsolute ranks.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6

Table I. Mapping of MPI Collectives to CONCEPTUAL

MPI collective CONCEPTUAL implementation

Allgather REDUCE + MULTICAST

Allgatherv REDUCE with averaged message size+ MULTICAST

Alltoallv MULTICAST with averaged message size
Gather REDUCE

Gatherv REDUCE with averaged message size
Reducescatter n many-to-oneREDUCEs with different message sizes and roots, wheren is the

communicator size
Scatter MULTICAST

Scatterv MULTICAST with averaged message size

4.2. Combining Per-Node Collectives

The complexity of Algorithm 1 isO(e), wheree= Σn−1
i=0 ei is the total number of MPI events on all

the nodes andei is the number of communication events per node. This can be derived from the
fact that Algorithm 1 traverses every event in the trace exactly once for each node. In Algorithm 1,
the for loop in line 2 initializes the iterator to the head RSD for each node. During execution, the
while loop in line 12 always moves the iterator farward by exactly one event in each iteration. In
case the traversal is blocked at a collective, a context switch happens at line 27. When the call to
Align returns, the traversal proceeds to the next event. In addition, since MPIFinalize is handled
as a collective that all nodes participate in (line 23), the traversal is performed for all the nodes.
Nevertheless, we do not blindly run this algorithm for arbitrary input traces. Before applying the
algorithm we first check the trace to see if there are unaligned collectives. This check costs only
O(r), wherer is the number of RSDs in the trace and is typically much smaller than e due to
compression.

4.3. Eliminating Non-determinism

Because Algorithm 2 is again based on traversing a trace and each MPI event is evaluated exactly
once in thewhile loop at line 12, the complexity isO(e), wheree= Σn−1

i=0 ei is the total number of
MPI events on all the nodes. Similarly, the use of wildcard receives is checked at a cost ofO(r)
before applying this algorithm, wherer is the number of RSDs in the trace and, typically,r ≪ e.

4.4. ScalaExtrap

This section briefly summarizes ScalaExtrap. A complete discussion on ScalaExtrap can be found
in our prior work [Wu and Mueller 2011]. ScalaExtrap is a toolthat implements a methodology
to automatically extrapolate a large trace from a series of smaller traces for SPMD codes with
a stencil/mesh communication pattern. ScalaExtrap assumes that MPI parameters such assource,
dest, andcountare linearly correlated with the dimension sizesx, y, andz of the communication
topology. Given a set of input traces of different node sizes, ScalaExtrap constructs a set of linear
equations in which unknown coefficients ofx, y, z reflect the correlation. ScalaExtrap uses Gaussian
elimination to solve the set of linear equations. The obtained coefficients are later used with the
knownx, y, z sizes of an application at large scale to calculate actual values of the MPI parameters
of interest. In addition, ScalaExtrap utilizes the curve fitting approach to extrapolate the lengths
of the computational regions in the application so that the timing behavior under scaling is also
captured in the extrapolated trace.

4.5. Sources of Performance Inaccuracy

As indicated, there are a number of ways in which our benchmark generator trades off performance
fidelity for an improved ability to reason about the generated code and its performance: computa-
tion times are summarized across ranks instead of being specified individually (Section 3.1); some
complex MPI collectives are implemented in terms of more basic CONCEPTUAL collectives (Sec-

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.



A:7

Algorithm 1 Algorithm to Align Collectives
Precondition: Tin: input trace, N: total number of nodes
Postcondition: Tout: the trace forCONCEPTUAL code generation

1: function INITIALIZATION (Tin, N)
2: for i ← 1, N do
3: Allocate traversal context C[i]
4: C[i].RSD← Tin.head
5: end for
6: Initialize Tout to am empty trace
7: Tout← ALIGN(0,Tout) ⊲ Start with node 0
8: return Tout
9: end function

10: function ALIGN(n,Tout)
11: iter← C[n].RSD
12: while iter do
13: if node n is not in iter.ranklist then
14: iter← iter.next
15: else
16: if iter.op is not a collectivethen
17: Extract current MPI event
18: Append a new RSD toTout
19: CompressTout
20: iter← iter.next
21: continue
22: end if
23: if iter.op is a collective or MPIFinalizethen
24: if some participants have not arrived yetthen
25: C[n].RSD← iter
26: next← the next node in the communicator
27: ALIGN(next,Tout)
28: else
29: Append an RSD for all participants toTout
30: CompressTout
31: C[n].RSD← iter
32: for each i ∈ {participants} do
33: C[i].RSD← C[i].RSD.next
34: end for
35: first← the first node in the communicator
36: ALIGN(first,Tout)
37: end if
38: end if
39: end if
40: end while
41: return Tout
42: end function

tion 4.1); and nondeterministic receive ordering is replaced with an arbitrary deterministic ordering
(Section 4.3). In Section 5 we examine the impact of these design decisions in the context of a suite
of test programs.

5. EVALUATION

5.1. Communication Correctness

Our first set of experiments verifies the correctness of the generated benchmarks, i.e., the benchmark
generator’s ability to retain the original applications’ communication pattern. For these experiments,
we acquired traces of our test suite on Blue Gene/L, generated CONCEPTUAL benchmarks, and
executed these benchmarks also on Blue Gene/L. To verify thecorrectness of the generated bench-
marks, we linked both them and the original applications with mpiP [Vetter and McCracken 2001],

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8

Algorithm 2 Algorithm to Resolve Wildcard Receive (without Deadlock Detection)
Precondition: T: input trace, N: total number of nodes
Postcondition: T: trace without wildcard receive

1: function INITIALIZATION (T, N)
2: for i ← 1, N do
3: Allocate listL1 and listL2 for node i
4: Allocate traversal context C[i]
5: C[i].RSD← T.head
6: end for
7: T←Match(0, T) ⊲ Start with node 0
8: return T
9: end function

10: function MATCH(n, T)
11: iter← C[n].RSD
12: while iter do
13: if node n is not in iter.ranklist then
14: iter← iter.next
15: else
16: if iter.op is point-to-point operationthen
17: if match with an eventeink in L2 then
18: L2.delete(eink)
19: nodei .L1.delete(eink)
20: if nodei .L1 is emptythen
21: C[i].RSD← C[i].RSD.next ⊲ unblock
22: end if
23: if iter.peer is MPIANY SOURCEthen
24: iter.peer = i ⊲ resolve the wildcard
25: end if
26: iter← iter.next
27: continue
28: else
29: p← iter.peer
30: L1.add(enp(kn++))
31: nodep.L2.add(enpkn)
32: if iter.op is blocking operationthen
33: C[n].RSD← iter
34: MATCH(p, T)
35: else
36: iter← iter.next
37: continue
38: end if
39: end if
40: end if
41: if iter.op is collective or MPIFinalizethen
42: ... ⊲ refer to Algorithm 1
43: end if
44: if iter.op is wait operationthen
45: if L1 is not emptythen
46: MATCH(L1.first.getPeer(), T)
47: else
48: iter← iter.next
49: continue
50: end if
51: end if
52: end if
53: end while
54: return T
55: end function

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.



A:9

a lightweight MPI profiling library that gathers run-time statistics of MPI event counts and the
message volumes exchanged. Experimental results (not presented here) showed that, for each type
of MPI event, the event count and the message volume measuredfor each generated benchmarks
matched perfectly with those measured for the original application.

We then conducted experiments to verify that the generated benchmarks not only resemble the
original applications in overall statistics but also that they preserve the original semantics on a
per-event basis. To this end, we instrumented each generated benchmark with ScalaTrace and com-
pared its communication trace with that of its respective original application. Due to differences in
the call-site stack signatures between the original application and the generated benchmark, these
traces are never bit-for-bit identical. Therefore, we replayed both traces with the ScalaTrace-based
ScalaReplay tool [Wu and Mueller 2011] to eliminate spurious structural differences and thereby
fairly compare the pairs of traces. The results (again, not presented here) show that the original ap-
plications and the generated benchmarks generated equivalent traces. That is, the semantics of each
of the original applications was precisely reproduced by the corresponding generated benchmark.

All tasks synchronize then
Task 0 resets its counters then
All tasks compute for 52 microseconds
Task 0 multicasts a 12-byte message

to all other tasks
All tasks compute for 0 microseconds
Task 0 multicasts a 4-byte message

to all other tasks
All tasks compute for 295410 microseconds
All tasks multicast a 32768-byte message

to all other tasks
All tasks compute for 133044 microseconds
All tasks synchronize
All tasks compute for 317381 microseconds
All tasks multicast a 32768-byte message

to all other tasks
For each i1 in {1, ..., 20} {

If i1 <> 1 then all tasks compute
for 167332 microseconds then

If i1 = 1 then all tasks compute
for 312861 microseconds then

All tasks multicast a 32768-byte message
to all other tasks then

All tasks compute
for 254450 microseconds then

All tasks reduce 4 integers to task 0
}
All tasks compute for 24 microseconds
All tasks synchronize then
Task 0 logs elapsed_usecs/1E6 as "Seconds"

Fig. 3. CompleteCONCEPTUAL Program for NPB FT (Class C) of 256 MPI Tasks

6. DISCUSSION AND FUTURE WORK

Currently, our work focuses on the generation of communication benchmarks. Our approach guaran-
tees that the generated communication is cross-platform performance-portable because we preserve
the original communication pattern and can execute it natively on a target machine. However, since
computation times are taken from the source machine, the computation performance does not reflect
architecture-specific effects of a different platform. Oneadvantage of mimicking computation with
spin loops is that this enables studies in which computationtime is explicitly varied, as in Section??

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10

of the paper. Meanwhile, we are also working on scalable memory tracing to complement commu-
nication tracing. Automatic generation and replay of memory-access behavior within ScalaTrace is
a subject of future work.

Acknowledgments

This work was supported in part by NSF grants 0937908 and 0958311 and by the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-AC52-06NA25396 with
Los Alamos National Security, LLC.

REFERENCES

D.H. Bailey and A. Snavely. 2005. Performance Modeling: Understanding the Present and Predicting the Future. InEuro-Par
Conference.

R Bell and L. John. 2005. Improved Automatic Testcase Synthesis for Performance Model Validation. InInt’l Conf. on
Supercomputing. 111–120.

Holger Brunst, Hans-Christian Hoppe, Wolfgang E. Nagel, and Manuela Winkler. 2001. Performance Optimization for Large
Scale Computing: The Scalable VAMPIR Approach.. InInternational Conference on Computational Science (2). 751–
760.

Marc Casas, Rosa Badia, and Jesus Labarta. 2007. Automatic structure extraction from MPI applications tracefiles. InEuro-
Par Conference.

Jian Chen, Lizy Kurian John, and Dimitris Kaseridis. 2011. Modeling program resource demand using inherent program char-
acteristics.SIGMETRICS Perform. Eval. Rev.39, 1 (June 2011), 1–12.DOI:http://dx.doi.org/10.1145/2007116.2007118

Luk Van Ertvelde and Lieven Eeckhout. 2008. Dispersing proprietary applications as benchmarks through code mutation.In
Architectural Support for Programming Languages and Operating Systems. 201–210.

Engin Ïpek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski, and Martin Schulz. 2006. Efficiently exploring archi-
tectural design spaces via predictive modeling. InASPLOS-XII: Proceedings of the 12th international conference on
Architectural support for programming languages and operating systems. 195–206.

D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasserman, and M. Gittings. 2001. Predictive Performance and Scalability
Modeling of a Large-Scale Application. InSupercomputing.

Andreas Knupfer. 2005. Construction and Compression of Complete Call Graphs for Post-Mortem Program Trace Analysis.
In International Conference on Parallel Processing. 165–172.

A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel. 2006. Introducing the Open Trace Format (OTF). InInt’l Conf.
on Computational Science. 526–533.

W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach. 1996. VAMPIR: Visualization and Analysis of MPI
Resources.Supercomputer12, 1 (1996), 69–80.

M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski. 2007. Scalable Compression and Replay of Communica-
tion Traces in Massively Parallel Environments. InInternational Parallel and Distributed Processing Symposium.
DOI:http://dx.doi.org/10.1145/1188455.1188605

Scott Pakin. 2004. Reproducible Network Benchmarks withCONCEPTUAL. In Proceedings of the 10th International Euro-
Par Conference (Lecture Notes in Computer Science), Marco Danelutto, Domenico Laforenza, and Marco Vanneschi
(Eds.), Vol. 3149. 64–71.

Scott Pakin. 2007. The Design and Implementation of a Domain-Specific Language for Network Perfor-
mance Testing.IEEE Transactions on Parallel and Distributed Systems18, 10 (Oct. 2007), 1436–1449.
DOI:http://dx.doi.org/10.1109/TPDS.2007.1065

Javier Panadero, Alvaro Wong, Dolores Rexachs, and Emilio Luque. 2013. A Tool for Selecting the Right Target Machine
for Parallel Scientific Applications.Procedia Computer Science18 (2013), 1824–1833.

Vincent Pillet, Vincent Pillet, Jesus Labarta, Toni Cortes, and Sergi Girona. 1995. PARAVER: A Tool to Visualize and Ana-
lyze Parallel Code. InProceedings of the 18th Technical Meeting of WoTUG-18: Transputer and Occam Developments.
17–31.

P. Ratn, F. Mueller, Bronis R. de Supinski, and M. Schulz. 2008. Preserving Time in Large-Scale Communication Traces. In
Int’l Conf. on Supercomputing. 46–55.

Martin Schulz, Jim Galarowicz, Don Maghrak, William Hachfeld, David Montoya, and Scott Cranford. 2008.
Open|SpeedShop: An Open Source Infrastructure for Parallel Performance Analysis.Scientific Programming16, 2–
3 (2008), 105–121.DOI:http://dx.doi.org/10.3233/SPR-2008-0256

Shuyi Shao, Alexk. Jones, and Rami Melhem. 2006. A compiler-based communication analysis approach for multiprocessor
systems. InIn International Parallel and Distributed Processing Symposium.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/2007116.2007118
http://dx.doi.org/10.1145/1188455.1188605
http://dx.doi.org/10.1109/TPDS.2007.1065
http://dx.doi.org/10.3233/SPR-2008-0256


A:11

Sameer S. Shende and Allen D. Malony. 2006. The Tau Parallel Performance System.Int’l Journal of High Performance
Computing Applications20, 2 (2006), 287–311.

A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha. 2002. A Framework for Performance Mod-
eling and Prediction. InSupercomputing.

K. Sreenivasan and A. J. Kleinman. 1974. On the constructionof a representative synthetic workload.Commun. ACM17, 3
(March 1974), 127–133.DOI:http://dx.doi.org/10.1145/360860.360863

J. Vetter and M. McCracken. 2001. Statistical Scalability Analysis of Communication Operations in Distributed Applications.
In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.

F. Wolf and B. Mohr. 2003. KOJAK—A Tool Set for Automatic Performance Analysis of Parallel Applications. InProc. of
the European Conference on Parallel Computing (Euro-Par) (Lecture Notes in Computer Science), Vol. 2790. Springer,
Klagenfurt, Austria, 1301–1304. Demonstrations of Parallel and Distributed Computing.

W.S. Wong and R.J.T. Morris. 1988. Benchmark synthesis using the LRU cache hit function.Computers, IEEE Transactions
on 37, 6 (jun 1988), 637 –645.DOI:http://dx.doi.org/10.1109/12.2202

Xing Wu and Frank Mueller. 2011. ScalaExtrap: Trace-based Communication Extrapolation for SPMD Programs. InACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming.

Qiang Xu, Ravi Prithivathi, Jaspal Subhlok, and Rong Zheng.2008.Logicalization of MPI Communication Traces. Technical
Report UH-CS-08-07. Dept. of Computer Science, Universityof Houston.

Qiang Xu and Jaspal Subhlok. 2008. Construction and Evaluation of Coordinated Performance Skeletons. InInternational
Conference on High Performance Computing. 73–86.

J. Zhai, T. Sheng, J. He, W. Chen, and W. Zheng. 2009. FACT: Fast Communication Trace Collection for Parallel Applica-
tions Through Program Slicing. InProceedings of SC’09. 1–12.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/360860.360863
http://dx.doi.org/10.1109/12.2202

	Introduction
	Related Work
	Background
	ScalaTrace
	coNCePTuaL

	Design
	Engineering Details
	Combining Per-Node Collectives
	Eliminating Non-determinism
	ScalaExtrap
	Sources of Performance Inaccuracy

	Evaluation
	Communication Correctness

	Discussion and Future Work

