
SCALA EXTRAP : Trace-Based Communication Extrapolation for SPMD
Programs

XING WU, FRANK MUELLER, North Carolina State University

Performance modeling for scientific applications is important for assessing potential application performance and systems
procurement in high-performance computing (HPC). Recent progress on communication tracing opens up novel opportu-
nities for communication modeling due to its lossless yet scalable trace collection. Estimating the impact of scaling on
communication efficiency still remains non-trivial due to execution-time variations and exposure to hardware and software
artifacts.

This work contributes a fundamentally novel modeling scheme. We synthetically generate the application trace for large
numbers of nodes by extrapolation from a set of smaller traces. We devise an innovative approach for topology extrapolation
of single program, multiple data (SPMD) codes with stencil or mesh communication. Experimental results show that the
extrapolated traces precisely reflect the communication behavior and the performance characteristics at the target scale, for
both strong and weak scaling applications. The extrapolated trace can subsequently be (a) replayed to assess communication
requirements before porting an application, (b) transformed to auto-generate communication benchmarks for various target
platforms, and (c) analyzed to detect communication inefficiencies and scalability limitations.

To the best of our knowledge, rapidly obtaining the communication behavior of parallel applications at arbitrary scale
with the availability of timed replay, yet without actual execution of the application at this scale is without precedence and
has the potential to enable otherwise infeasible system simulation at the exascale level.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Measurement Techniques; C.4 [Performance of Sys-
tems]: Modeling Techniques

General Terms: Experimentation, Tracing, Compression

Additional Key Words and Phrases: Communication, Tacing, Compression, Trace Extrapolation

ACM Reference Format:
Wu, X., Mueller, F. 201?. SCALA EXTRAP: Trace-Based Communication Extrapolation for SPMD Programs. ACM Trans.
Program. Lang. Syst. V, N, Article A (January YYYY), 26 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Scalability is one of the main challenges for scientific applications in HPC. A host of automatic
tools have been developed by both academia and industry to assist in communication gathering and
analysis for MPI-style message passing [Gropp et al. 1996].Most of these tools either obtain loss-
less trace information at the price of poor scalability [Nagel et al. 1996] or preserve only aggregated
statistical trace information to limit the size of trace files as in mpiP [Vetter and McCracken 2001].
Recent work on communication tracing and time recording made a breakthrough in this realm.
SCALATRACE introduced an effective communication trace representation and compression algo-
rithm [Noeth et al. 2009]. It managed to preserve the structure and temporal ordering of events, yet
maintains traces in a space-efficient representation. However, SCALATRACE needs to be linked to
the original application and executed on a high-performance computing cluster of agiven number

We would like to thank the Juelich Supercomputing Centre forgiving us access to their Blue Gene/P system.
This work was supported in part by NSF grants 0937908 and 0958311.
Authors’ address: Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit orcommercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work inother works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM,Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0164-0925/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 X. Wu and F. Mueller

of compute nodes to obtain a trace. Due to the often long application execution times and limited
availability of cluster resources for large numbers of nodes, obtaining the trace information of a
large-scale parallel application remains costly.

An alternative to obtaining communication traces is to model and predict application behavior
[Kerbyson et al. 2001; Kerbyson and Hoisie 2006]. Generally, this approach takes a number of
machine and application parameters as input. It utilizes a set of formulae to assess the impact of
scaling on the system characteristics and predict performance in terms of wall-clock runtime of an
application. Similarly, this approach provides only overall statistics for an application on a particular
architecture. Without a detailed application trace, more sophisticated static analysis is impossible.
In addition, measuring the system and application performance parameters is also non-trivial given
the complexity of supercomputers and large-scale scientific applications.

Contributions: This paper contributes a set of algorithms and techniques toextrapolate full com-
munication traces and execution times of an application at larger scale with information gathered
from smaller executions. Since extrapolation is based on analytical processing of smaller traces
with mathematical transformations, this approach can be performed on a single workstation, much
in contrast to analysis or visualization of large traces in contemporary tools (e.g., VAMPIR Next
Generation [Brunst et al. 2005]). It thus enables, for the first time, the instant generation of trace
information of an application at arbitrary scale without necessitating time-consuming execution.
Specifically, we extrapolate two aspects of the applicationbehavior, namely the (1) communication
trace events with parameters and (2) timing information resembling computation. The extrapola-
tion of the communication trace is based on the observation that, in many regular SPMD stencil
and mesh codes, communication parameters and communication groups are related to the sizes and
dimensions of the communication topology. Thus, extrapolation of communication traces becomes
feasible with the detection of communication topologies and the analysis of communication pa-
rameters to infer evolving patterns. The extrapolation of timing information involves a process of
analytical modeling. In order to mitigate timing fluctuations under scaling, we employ statistical
methods.

Our extrapolation methodology is applicable for both strong and weak scaling applications. Weak
scaling is typically defined as scaling the problem size and the number of processors at the same rate
such that the problem size per processor is fixed. This shouldimply that the communication patterns
generally evolve in a similar manner for both strong and weakscaling. Thus, we hypothesize that
the same extrapolation algorithms for patterns and communication end points should apply to both.
For communication parameters, such as message sizes and computation times different trends can
be observed. But we hypothesize that extrapolation based oncurve fitting is still applicable. In this
work, we verify these hypotheses by evaluating our extrapolation algorithm with both strong and
weak scaling applications.

Our extrapolation methodology follows a trace analysis methodology independent of the tracing
infrastructure and works for any of the existing trace formats. Nonetheless, the approach is signifi-
cantly facilitated by SCALATRACE’s compression scheme that preserves application structure with
inherent compression that closely resembles the loop structure of an application. In contrast, extrap-
olation with other trace formats, such as OTF [Knüpfer et al. 2006], would be far more tedious and
time/space consuming as structure is neither established across nodes nor retained after binary-level
compression.

This trace extrapolation approach has been implemented in the SCALA EXTRAP tool, which we
utilize to evaluate our extrapolation approach with both strong and weak scaling benchmarks, in-
cluding NAS Parallel Benchmark codes [Bailey et al. 1991] and Sweep3D [Wasserman et al. 2000].
We utilize up to 16,384 nodes of a 73,728-node IBM Blue Gene/Psupercomputer to generate com-
munication traces for extrapolation and verification. Experiments were performed to assess both
the correctness of communication extrapolation and the accuracy of the timing extrapolation. Ex-
perimental results demonstrate that our topology detection algorithm is capable of identifying and
characterizing stencil/mesh and collective communication patterns. Upon topology detection, the
communication trace extrapolation algorithm correctly extrapolates all communication events, pa-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:3

rameters and communication groups at an arbitrary target size for both stencil/mesh point-to-point
and collective communication. The experiments also demonstrate that the extrapolation of timing
information resembles the running time of the original parallel application. Compared to the run-
ning time of the original application, the accuracy of replay times of the corresponding extrapolated
trace is, in the majority of cases, higher than 90%, sometimes as high as 98%. Given the difficulty
of extrapolating application execution time with only the time information obtained from several
small executions, our approach achieves unprecedented accuracy that is sufficient for modeling,
procurement and analysis tasks.

Overall, this work explores the potential to extrapolate communication behavior of parallel appli-
cations. Several novel algorithms for communication topology detection and communication trace
extrapolation are introduced. Experimental results demonstrate that rapid generation of an appli-
cation’s trace information at arbitrary size is entirely possible, which is unprecedented. In contrast
to tedious and application-centric model development, ourapproach opens new opportunities for
automatically deriving communication models, facilitating communication analysis and tuning at
any scale. Our work further enables system simulation at extreme scale based on a single file, con-
cise communication trace representation. More specifically, HPC simulation tools (e.g., DIMEMAS
or SST [Labarta et al. 1997; Snavely et al. 2002; Rodrigues etal. 2006]), which currently cannot
operate at petascale levels, could benefit by utilizing our extrapolated single-file traces that are just
10s of megabytes in size. Benchmark generation is importantfor cross-platform performance anal-
ysis due to its standard and portable source code and the platform-independent nature. Our work
enables code generation at extreme scale by providing largetraces that are otherwise unavailable.
Furthermore, by contributing a set of detection techniquesof communication patterns, our work has
the potential to enable the generation of flexible and stand-alone programs that can be executed with
arbitrary numbers of nodes and any possible input.

This paper is structured as follows. Section 2 summarizes related work on SCALATRACE with
respect to its ability to support extrapolation. Section 3 provides a detailed introduction to the algo-
rithms designed for extrapolation. Sections 4 and 5 presentthe experimental framework and results.
Section 6 provides two case studies to demonstrate the potential applications of trace extrapolation.
Section 7 contrasts this work with prior research. Section 8summarizes this work.

2. OVERVIEW OF SCALATRACE

Our work utilizes the publicly available SCALATRACE infrastructure [Noeth et al. 2009].
SCALATRACE is an MPI trace-gathering framework that generates near constant-size communi-
cation traces for a parallel application regardless of the number of nodes while preserving structural
information and temporal ordering. SCALATRACE utilizes the MPI profiling layer (PMPI) to inter-
cept MPI calls of HPC programs. Extended regular section descriptors (RSDs) are used to record
the parameters and information of a single MPI event nested in a loop. Power-RSDs (PRSDs) re-
cursively specify RSDs nested in multiple loops. For example, for the 4-point stencil code shown
in Figure 1, RSD1: <MPI Irecv, (NORTH, WEST, EAST, SOUTH)> and RSD2: <MPI Isend,
(NORTH, WEST, EAST, SOUTH)> denote the alternating send/receive calls to/from the 4 neigh-
bors, andPRSD1: < 1000, RSD1, RSD2, MPI Waitall> denotes the a loop with 1000 iterations.
In the loop’s body, RSD1, RSD2, and a followingMPI Waitall are called sequentially. During
application execution, SCALATRACE performs intra-node compression, which captures the loop
structure on-the-fly and represents MPI events in such a compressed manner. Local traces are com-
bined into a single global trace upon application completion, i.e., within the PMPI interposition
wrapper forMPI Finalize. The key approaches to achieve near-constant inter-node compression
are the location-independent encoding and communication group encoding schemes detailed in the
following.

• Location-independent encoding: Communication end-points in SPMD programs differ from one
node to another. By encoding endpointsrelative to the index of an MPI task on a node, a location
independent denotation is created that describes the behavior of large node sets. In a stencil/mesh

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 X. Wu and F. Mueller

neighbor[] = {NORTH, WEST, EAST, SOUTH};
for(i=0; i<1000; i++) {

for(j=0; j<4; j++) {
MPI_Irecv(neighbor[j]);
MPI_Isend(neighbor[j]);

}
MPI_Waitall();

}

Fig. 1. Sample Stencil Code for RSD and PRSD Generation

topology, only few of such distinct sets/groups tend to exist. Location-independent encoding not
only opens up opportunities for inter-node compression to unify endpoints across different com-
putational nodes but also enables extrapolation.
• Communication group encoding: Similarity in communication patterns is recognized to succinctly

denote sets/groups of nodes with common behavior. In a topological space, a communication
group refers to a subset of nodes that have identical communication patterns. With this encoding
scheme, a communication group is represented as arank list. Using the EBNF meta-syntax, arank
list is represented as< dimension start rank iteration length stride {iteration length stride}>,
wheredimension is the dimension of the group,start rank is the rank of the starting node, and
the iteration length stride pair is the iteration and stride of the corresponding dimension. As an
example, consider the row-major grid topology in Figure 2. The shaded nodes form a communi-
cation group. This group is represented asranklist <2 6 3 5 3 1>, where the tuple indicates that
this communication group is a 2-dimensional area starting at node 6 with 3 iterations of stride 5
in the y-dimension and 3 iterations of stride 1 in the x-dimension, respectively. Since this encod-
ing scheme takes node placement into account, it naturally reflects the spatial characteristics of a
communication group.

Fig. 2. Ranklist Representation for Communication Group

We exploit these representations as a foundation for extrapolating communication topology.
Besides communication tracing, SCALATRACE also preserves the timing information of a par-

allel application in a scalable way [Ratn et al. 2008]. Alongwith the intra-node and inter-node
compression processes, “delta” times representing the computation between communication events
are recorded and compressed. For the purpose of scalability, delta times of a single MPI function call
across multiple loop iterations are not recorded one by one.Instead, histograms with a fixed number
of bins for delta times are dynamically constructed to provide a statistical view. Delta times are
distinguished by not only the call context of recorded events, but also by their path sequence, which
addresses significant variation of delta times caused by path differences,e.g., within entry/exit paths
of a loop.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:5

Finally, SCALA REPLAY is a replay engine operating on the application traces generated by
SCALATRACE. It interprets the compressed application trace on-the-flyand issues MPI com-
munication calls accordingly. During replay, all MPI callsare triggered over the same number
of nodes with their original parameters (e.g., message payload size) but a randomly generated
message content. This ensures comparable bandwidth requirements on communication intercon-
nects. SCALA REPLAY emulates computation events in the original application bysleeping so
that the communication contention characteristics are maintained during replay. In general, the
replay engine can be utilized for rapid prototyping and tuning, as well as to assess communica-
tion needs of future platforms for large-scale procurements in conjunction with system simulators
(DIMEMAS/SST) [Labarta et al. 1997; Snavely et al. 2002; Rodrigues etal. 2006]. In this work, we
use SCALA REPLAY to verify the correctness of extrapolation results, which will be discussed later
in this paper.

3. COMMUNICATION EXTRAPOLATION

This work focuses on the extrapolation of communication traces and execution times. The respective
design is subsequently implemented in a novel tool, SCALA EXTRAP. The challenge of communi-
cation trace extrapolation is to determine how the communication parameters change with node and
problem scaling. The main idea is to identify the relationship between communication parameters
and the characteristics of the communication topology,i.e., typically the sizes of each dimension. As
a simple example, in Figure 2, assumenode 0 communicates withnode 4, i.e., a node at distance of
4. If we can identify that the topological communication space is a grid consisting of 25 nodes with
5 nodes per row, we know thatnode 0 actually communicates with the upper-right node. Therefore,
when there are 1024 = 32×32 nodes, we can safely infer thatnode 0 communicates withnode 31,
which is still the upper-right node.

Characterizing a communication pattern from one or more traces is non-trivial nonetheless. With-
out the knowledge of a given node assignment scheme and topology, identifying the communication
pattern from the communication graph provided by a trace fileis equivalent to solving the graph iso-
morphism problem, which is known to be NP hard [Xu and Subhlok2008]. Therefore, instead of
attempting to find a universal solution, we constrain our work to applications where

(1) nodes execute the same program on different data, i.e., the application follow the SPMD
paradigm;

(2) nodes are numbered in a row-major fashion; and
(3) communication is performed in stencil/mesh point-to-point manner or via collectives involving

all MPI tasks.

In essence, our communication trace extrapolation algorithm first identifies the nodes at the “cor-
ner” of a topological space. It then calculates the sizes of each dimension of the topological space
accordingly.

Upon acquiring the topology data, we can perform extrapolation. The extrapolation of a commu-
nication trace consists of two tasks. First, we need to matchthe records corresponding to the same
MPI call in the source code across the traces of different node sizes. We will discuss the difficulties
involved in this step and our solutions in the following sections. Second, for each MPI call in the
source code, we need to determine which MPI processes execute this call and what are the values
of the parameters when the application is running at the target scale. For the second task, we rep-
resent the rank list and the communication parameters,e.g., the destination rank ofMPI Send, as a
function of the known topology data and their undetermined coefficients. In order to calculate these
coefficients, we correlate multiple traces and construct a set of linear equations. Finally, we employ
Gaussian Elimination to solve the set of equations. With thefixed coefficients, we can extrapolate
the value of the desired communication parameter by simply substituting the topology data with
their values at the desired problem size.

The second aspect of this work concerns the extrapolation ofprogram execution time. In the input
trace files, computation time and communication time between (and optionally during) MPI com-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 X. Wu and F. Mueller

munication events are preserved statistically with histograms. When analyzing the corresponding
delta time, scaling trends can be identified across different number of nodes. Therefore, statistical
curve fitting methods are utilized to model an evolving trendand extrapolate the execution time to a
desired target size. In order to eliminate outliers, we further introduce several confidence coefficients
to statistically determine the best extrapolated value under such constraints.

3.1. Topology Identification

Topology identification is the basis of communication traceextrapolation. In order to identify a
topology, it is important to find the nodes at the corner or on the boundary of a topological space,
which we callcritical nodes. We devised a three-step approach to identify the communication topol-
ogy.

(1) We create an adjacency list of communication endpoints for each node and group nodes accord-
ing to their adjacency lists.

(2) We identify critical nodes by analyzing the adjacency lists.
(3) We calculate the sizes of each dimension (x, y, and z) of the communication topology.

Fig. 3. Topology Detection
Fig. 4. Boundary Size Calculation

First, our algorithm traverses the input trace to constructcommunication adjacency lists for each
node. According to the relative positions (encodings) of all the communication endpoints of each
node, nodes with same endpoint patterns are placed into the same group. Figure 3 illustrates an
example of a 2D mesh topology. In this example, nodes on the boundaries communicate with nodes
at the opposite side in a wrap-around manner while the internal nodes communicate with their
immediate neighbors. Note that wrapping around in the vertical direction does not lead to different
endpoint encoding. Therefore, the nodes are divided in to three groups (A, B, and C) with group
sizes 5, 10, and 5, respectively.

Next, we analyze the adjacency list of each node to identify the critical nodes. Exploiting the
row major constraint, we scan all nodes sequentially to identify loop structures with respect to com-
munication adjacency list patterns. The underlying rationale is that critical nodes define a topology.
Between corresponding critical nodes, communication patterns emerge repeatedly. According to the
length of a loop structure, the sizes of the groups consist ofcritical nodes,i.e., critical groups, are
calculated as

critical group size =
n

length of loop
,

wheren denotes the number of nodes engaged in MPI communication. For example, in Figure 3,
each row has the same group distribution (A B B C) and is thus identified as a single iteration of the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:7

loop structure. Since the length of such a loop iteration is 4, the size of thecritical groups (group A
and C) is20/4 = 5. Having obtained the size of the critical groups, we then associate critical nodes
with groups by matching sizes of critical groups.

Finally, we calculate the sizes of each dimension. Again exploiting the row-major constraint, in a
d-dimensional topological space, the number of nodes at thed-th dimension is the total number of
nodes. The number of nodes at thei-th (i < d) dimension,ni, is the inclusive range of numbers of
nodes betweennode 0 (1st critical node) and the 2i-th critical node. Once we have determined the
number of nodes at each dimension, the boundary size of thei-th dimension,si, is calculated as

si =
ni

ni−1

For example, in the 3D topology of Figure 4, the number of nodes in the1st dimension,n1=3, is
the number of nodes between A and B inclusively, the number ofnodes in the second dimension,
n2=12 , is the number of nodes between A and D, and the number of nodesin the third dimension
n3 is the total number of nodes. Hence, we have

{

x = s1 = n1/n0 = 3
y = s2 = n2/n1 = 4
z = s3 = n3/n2

3.2. Matching MPI Events for Extrapolation

The extrapolation of a trace is performed one-by-one for each recorded MPI event of the trace.
An MPI event is emitted per execution of an MPI function in thesource code by the actual values
of the input parameters. Therefore, the extrapolation of anMPI event is actually the process of
inferring the execution of an MPI function at the target scale from its executions at smaller scales,
which are represented as RSDs in the input traces. (In addition, due to the SPMD nature of parallel
applications, the extrapolation also involves the prediction of the participants of an MPI event,i.e.,
the callers of an MPI function in the source code, which will be discussed in Section 3.3.) Therefore,
being able to match the RSDs corresponding to calls to the same MPI function originating from
source code across traces of different node sizes is the prerequisite of extrapolation.

Due to its structure-preserving representation, SCALATRACE traces are often similar to the source
code. In a trace, the queue of RSDs represents the temporal ordering of the MPI events, which in turn
reflects the locations of the corresponding MPI function invocations in the source code. Therefore,
in most cases, traces of different node sizes are inherentlyaligned. However, nodes are sometimes
partitioned due to differences in their communication patterns and may thus form different commu-
nication groups. For example, Figure 5(a) shows the distribution of the communication groups of
2D stencil codes such as Sweep3D. Since the communication behavior is different across groups,
SCALATRACE cannot merge the per-node traces but appends them sequentially. Because the inter-
node compression are performed with a radix tree and the order of disjoint subsequences of MPI
events are not maintained during compression [Noeth et al. 2007], the relative positions of RSDs
originating from different communication groups are not necessarily the same in traces of different
node sizes. For example, in the final 16-node trace the third group is Group C (both in Figure 5(b)
and in the root node of Figure 5(d)) while it is Group E in the 25-node trace (in the root node
of Figure 5(e)) . This illustrates how the order of differentcommunication groups are determined
along with the radix tree style inter-node reduction (cf. Figures 5(d)+(e)). Clearly, extrapolating by
relating RSDs of different communication groups is meaningless.

We utilize the dependence graph to reorder the trace. The dependence graph is a data structure
used by SCALATRACE to keep track of disjoint RSD subsequences during the inter-node reduc-
tion [Noeth et al. 2009]. If two per-node traces are partially different, a branching point and a
merging point will be inserted before the first and after the last non-matching RSDs. We designed
a recursive algorithm that traverses the dependence graph in a depth-first manner and topologically
sorts each branch in the rank order (Algorithm 1). Our reordering algorithm guarantees that the RSD
subsequences corresponding to different communication groups are always organized in ascending

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 X. Wu and F. Mueller

(a) Communication Group Dis-
tribution of 2D Stencil Codes

(b) Group Distribution for 16
Nodes

(c) Group Distribution for 25
Nodes

(d) Inter-node Compression for 16 nodes (e) Inter-node Compression for 25 nodes

Fig. 5. Inter-node Compression and the Positions of Communication Groups for 2D Stencil Codes

order of the rank for the leading nodes of groups. With such analgorithm, we are able to align the
communication groups in traces of different node sizes. Theextrapolation is subsequently becomes
possible.

3.3. Extrapolation of MPI Events

The extrapolation of an MPI event consists of the extrapolation of both communication groups
and communication parameters to indicate who communicatesand how they communicate. The
extrapolation algorithm is based on the observation that, in regular SPMD stencil/mesh codes,strong
scaling (increasing the number of nodes under a constant input size)linearly increases/decreases the
value of communication parameters and the topological sizes. Given several data points, a fitting
curve can be constructed to extrapolate the growth rate of the communication parameters and the
topology information (the sizes of each dimension) of the communication groups.

Specifically, in an n-dimensional Cartesian space, the coordinates of nodeX and Y are
(X1,X2, ...,Xn) and(Y1,Y2, ...,Yn), whereXi andYi ∈ [0,Si−1] andSi is the size of thei-th dimension
of the topological space(1≤ i≤ n). Assuming the locations of nodeX andY differ only in thei-th
dimension, the distance betweenX andY in thei-th dimension isdi = Xi−Yi. With the assumption of
linear correlation between topology size and communication parameters,di = Xi−Yi = ai×Si +bi,
whereai andbi are two constants. Furthermore, with the row-major node placement assumption,
the rank of an arbitrary nodeA(A1,A2, ...,An) is

RankA =
n

∑
i=1

Ai

i−1

∏
j=1

S j.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:9

Algorithm 1 Aligning the Communication Groups
Require: Tin: input trace
Ensure: Tout : output trace in which branches (RSD subsequences for communication groups) are ordered by

rank

1: procedure REORDERTRACE(Tin)
2: for iter← Tin.head, Tin.tail do
3: if iter is a merging RSD nodethen
4: merging node← iter
5: find branching node: merging node’s matching branching RSD node
6: REORDER(merging node, branching node) ⊲ reorder the branches betweenmerging node and

branching node by rank
7: end if
8: end for
9: end procedure

10: procedure REORDER(merging node, branching node)
11: for each branch betweenmerging node andbranching node do
12: traversebranch in depth-first order
13: if m: a merging RSD node is found inbranch then
14: find b: m’s matching branching RSD node
15: REORDER(m, b) ⊲ recursively reorder the branches
16: end if
17: end for
18: sort the branches betweenmerging node andbranching node by rank
19: reorder the branches
20: end procedure

Therefore,di
′, the rank distance betweenX andY , is

di
′ = (Xi−Yi)×

i−1

∏
j=1

S j = (ai×Si + bi)×
i−1

∏
j=1

S j

In general, for two arbitrarily selected nodesM andN, their rank distanced′ is the sum of their rank
distances in each dimension,

d′ = d0
′+ d1

′+ ...+ dn
′

=
n

∑
i=1

(Ni−Mi)
i−1

∏
j=1

S j =
n

∑
i=1

(ai×Si + bi)
i−1

∏
j=1

S j

= an

n

∏
j=1

S j +
n−1

∑
i=1

(ai + bi+1)
i

∏
j=1

S j + b1 =
n

∑
i=0

ci

i

∏
j=1

S j,

wherecn = an, c0 = b1, andci = ai + bi+1(1≤ i≤ n−1).
In order to extrapolate the rank of a communication endpoint(src/dest), which is defined by the

rank distance between nodes, we need to identify how the topology information is related to the
communication parameter. We construct a set of linear equations to solveci (1≤i≤n-1). In general,
for an n-dimensional topology,n+1 input traces are needed to solven+1 coefficients. We employ
Gaussian Elimination to solve the equations. Once the values of ci(1≤ i ≤ n−1) are determined,
a fitting curve for the given parameter is established. In order to extrapolate the same parameter for
a larger execution, we utilize the known coefficients and specify the topology information at the
target task size. The desired value is then calculated accordingly.

As an example, in a 2D space, the bottom-right node in Figure 6communicates with itsEAST
neighbor in a wrap-around manner. In order to extrapolate the rank of the communication end-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 X. Wu and F. Mueller

point, three input traces with dimensions 4× 4, 5× 5, and 6× 6 are used to construct the set
of linear equations shown in Figure 7, andc2 = 1, c1 = −1, andc0 = 1 are obtained as the
values of the coefficients. To extrapolate a 10× 10 mesh, we re-construct the equation with co-
efficients and topology information assigned. Subsequently, the target valueV is calculated as
V = c2×10×10+ c1×10+ c0 = 91.

Fig. 6. Generic Representation of Communica-
tion Endpoints

{

c2×4×4+ c1×4+ c0 = 13
c2×5×5+ c1×5+ c0 = 21
c2×6×6+ c1×6+ c0 = 31

Fig. 7. Set of Equations for Communication Endpoint Ex-
trapolation

Besides the communication parameters, communication groups are also extrapolated. The topo-
logical space of an application can be partitioned into several communication groups according to
the communication endpoint pattern of each node. Understrong scaling, partitions tend to retain
their position within the topological space but change their sizes for each dimension accordingly.
For example, Figure 8 shows the distribution of 9 communication groups of a 2D stencil code. De-
spite the changing problem size, groupsA, C, G, andI always represent corner nodes, groupsB, D,
F, andH are always the boundaries, and groupE contains the remaining (interior) nodes.

Fig. 8. Distribution of Communication Groups of a 2D Stencil Code

This opens up the opportunity to extrapolate communicationgroups of the same application at
arbitrary size. In order to extrapolate, we represent communication groups asrank lists, which ef-
fectively specifies the starting node and the dimension sizes of a group. Since the dimension sizes
are defined by the distances between nodes (vertices), we again utilize a set of linear equations to
establish the relation between the topology information ofcommunication groups and the task sizes.
Extrapolation is performed for thestart rank, iteration length, andstride fields of the rank list. The
output rank list reflects the communication group at the target size. For example, for the topology
shown in Figure 8, when the total number of nodes is 16, the rank list of groupE, as defined in
Section 2, is<2 5 2 4 2 1>, i.e., a 2D space starting fromnode 5 with x- and y-dimensions of size
2. Similarly, the rank lists of groupE at sizes 25 and 36 are<2 6 3 5 3 1> and<2 7 4 6 4 1>,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:11

<MPI_Irecv, (LEFT)>

<MPI_Isend, (RIGHT)>

<MPI_Wait>

<MPI_Wait>

(a) Trace Snippet
(b) Generated Finite-state Machine

Fig. 9. A Simple Trace Snippet and the Generated Finite-state Machine

respectively. We can thus construct the set of linear equations for each field in the rank list to derive
a generic representation of the rank list as:

< 2 x + 1 x−2 x x−2 1 >.

Subsequently, assuming that we want to extrapolate for size10×10, letx be 10, which yields the
output rank list<2 11 8 10 8 1> that precisely matches therank list representation of communica-
tion groupE at this problem size.

By combining the extrapolation of both communication groups and communication parameters,
we are capable of extrapolating the communication trace fora given application at arbitrary topo-
logical sizes.

3.4. Lossy Extrapolation

As was discussed in Section 3.2, aligning the matching RSDs across traces of different node sizes
is critical for extrapolation. Despite being recognized asone of the existing tracing libraries that
provides the best compression, there still exist some applications that SCALATRACE cannot obtain
constant-size compression for. In fact, for applications that exhibit new communication patterns
only at or beyond a certain node size, lossless yet constant-size compression is hardly possible. To
extrapolate traces of such applications, we designed a lossy approach. We attempt to capture and
extrapolate the dominating communication pattern by optionally dropping events at three different
levels: (1) within an MPI process, (2) among MPI processes ofan execution, and (3) across traces
of different node sizes.

The intra-node level event filtering is performed against the per-node queue of MPI events. We
observe that a number of application traces contain a subsequence of events that embody the domi-
nating communication pattern and comprise a large portion of the trace by repeating multiple times.
Based on this observation, a user-provided trace snippet isutilized as the reference to drop events.
Typically, such a trace snippet is a sequence of RSDs consisting of tens of MPI events, with the
event type (Send, Recv, etc.) and the values of the key parameters of each event. Based on the trace
snippet, we automatically generate a Finite-State Machine(FSM) to process the input stream of MPI
events. At the beginning, the FSM is initialized to the STARTstate. If the input event is a collective,
the FSM directly enters the ACCEPT state. This indicates that all collectives are directly accepted
while the FSM is not in the middle of accepting a sequence. If the input is neither a collective nor
the first event to be accepted, the FSM enters the ERROR state and the input event is dropped.
Once the FSM leaves the START state, it only accepts the next event expected in a sequence. If an
unexpected event arrives, the FSM enters the ERROR state andall the pending events are dropped,
including the current input if it is not a collective. Finally, if the FSM arrives at the ACCEPT state,
the pending events are accepted. These events will not be affected by future ERROR states. Figure 9
shows a simple trace snippet and the FSM generated.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 X. Wu and F. Mueller

Beyond the intra-node level event filtering, if necessary, we also drop events during the inter-node
compression and when aligning the traces of different node sizes for extrapolation. We designed a
Longest Common Subsequence (LCS) based approach for the event filtering at these two levels.
The LCS problem is to find the longest subsequence that is common to two input sequences, where
a subsequence need not be consecutive in either of the original sequences. If a trace is considered
as a sequence of MPI events, the LCS of two traces reflects the MPI events that nodes participate
in for both traces. We adapted a well-known dynamic programming based LCS algorithm for trace
comparison [Bergroth et al. 2000]. In a SCALATRACE trace, the loop structure is preserved and
explicitly indicated. As a building block, loop structuresshould be evaluated in their entirety with
the number of MPI events in the loop representing the weight.Therefore, we first enhanced the
LCS algorithm to take into account the weight when evaluating how the length of the LCS will be
affected by retaining or removing a loop structure. Second,since loops are often nested in the source
code and in the trace, we further modified the LCS algorithm sothat it can execute in two modes
in a recursive manner. In the first pass, this algorithm only calculates the LCS but does not modify
the trace. This is required because modifying the inner loopmay affect the evaluation of the outer
loop. Once the LCS is determined, this algorithm is applied again in the second mode such that any
uncommon events are removed.

With these event filtering techniques above, we are able to extrapolate complicated and irregular
applications depending on nodes counts such as the NPB MG kernel. We have developed a replay
engine that infers receives from sends to replay a histogram-based communication trace [Wu et al.
2011]. In case the event filtering makes the trace incorrect,e.g., when sends and receives mismatch,
this algorithm can be adapted to execute on a single machine to correct the trace. Our insight here is
that instead of dropping the minor communication events notmatched by any other MPI processes
due to event filtering, preserving them by manually generating the matching events with probabilis-
tic approaches may be a better solution [Wu et al. 2011].

3.5. Extrapolation of Timing Information

Besides the communication traces, we also extrapolate the timing information of the application.
SCALATRACE preserves the “delta” time for each communication event andfor the computation
between two communication events. For a single MPI functioncall across multiple loop iterations,
i.e., for a RSD, the delta times are recorded in multi-bin histograms. These histograms contain
the overall average, minimum, and maximum delta time, the distribution of the delta execution
times represented as histogram bins, and the average, minimum, and maximum delta time for each
histogram bin. To extrapolate timing information, we utilize curve fitting to capture the variations
in trends of the delta times with respect to the number of nodes, i.e., t=f(n), wheret is the delta
execution time andn is the total number of nodes. Hence, the target delta timete is calculated as
te = f (ne) , wherene is the total number of nodes at a given problem size. While we can extrapolate
only the aggregated average delta time per RSD, to restrain the statistics of delta time, extrapolation
is performed for each field of a histogram. Currently, we implemented four statistical models based
on curve fitting for each extrapolation. We use a deviation-based metric to determine the best of
these models to fit to a given curve.

(1) Constant: This method captures constant time,i.e., t=f(n)=c. Before calculating the constant
time, the input timeto with the largest absolute value of deviation is excluded from the input
times to mitigate the influence of outliers (which can be caused by either unstable system state or
an empty bin). Subsequently, the average value of the remaining input times reflects the constant
time c, andd1=std. dev./average is used to evaluate this fitting curve among the remaining
values.

(2) Linear: This method captures linearly increasing/decreasing trends,i.e., t=f(n)=an+b. We use
the least-squares method to fit the curve. In order to avoid mis-classifications, such as a constant
time relationship as a linear relationship with a near-zeroslope, we define a threshold slope

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:13

smin=0.2 such that∀a < smin t=f(n)=b. For curve evaluation,d2 =
√

residual/average is used,
whereaverage refers to the average value of the estimated running times.

(3) Inverse Proportional: This method captures inverse-proportional trends,i.e., t=f(n)=k/n. We
observe this trend in the NAS Parallel Benchmark IS, whereMPI Alltoallv dynamically re-
balances the per-node workloads even though the collectiveworkload over all nodes is constant.
Let ti be the input times,ni be the corresponding number of nodes, andki = ti×ni. We extrap-
olate the constantk as the average value ofki. Again, we exclude the outlierko, which has the
largest absolute value within the deviation. To evaluate this fitting curve, we calculate the stan-
dard deviation ofki and then divide by the average value ofki, i.e., d3=std. dev./average is used
for comparison.

(4) Inverse Proportional + Constant: This method captures the execution time consisting of an
inverse proportional phase and a constant phase,i.e., t=f(n)=k/n+c. Instead of directly ex-
trapolating t, we utilize the least-squares method to extrapolatet ′ = tn = cn + k and use
d4 =

√
residual/average for the curve evaluation. With an extrapolatedc andk, t is subsequently

calculated ast = t ′/n = k/n + c.

Having obtained the deviations for each curve-fitting process, we compare the values to determine
the curve that best fits. For a closer approximation, we definea threshold valuedt = 0.05, such that
if and only if dmin + dt < di holds for alldi other thandmin will the corresponding candidate curve
be selected as the fitting curve. Otherwise, the extrapolation for the current field is postponed until
we have processed all the fields in the same histogram. Since every field in the histogram should
have the same variation trend, we finalize the pending extrapolation according to the decisions of
the remaining fields.

4. EXPERIMENTAL FRAMEWORK

Our extrapolation methodology for communication traces was implemented as the SCALA EXTRAP
tool that generates a synthetic trace for a freely selected number of nodes. The extrapolation is based
on traces obtained from application instrumentation with SCALATRACE on a cluster. For both base
traces generation and results verification, we use a subset of JUGENE, an IBM Blue Gene/P with
73,728 compute nodes and 294,912 cores, 2 GB memory per node,and the 3D torus and global tree
interconnection networks.

The extrapolation process is run on a single workstation andrequires only several seconds, irre-
spective of the target number of nodes for extrapolation. This low overhead is due to the linear time
complexity of our algorithm with respect to the total numberof MPI function calls in an application.
Results from extrapolation are subsequently compared to traces and runtimes of an application at
the same scale, where runtimes for extrapolated traces are obtained via SCALA REPLAY (see Section
2).

We conducted extrapolation experiments with the NAS Parallel Benchmark (NPB) suite (version
3.3 for MPI) [Bailey et al. 1991] and Sweep3D [Wasserman et al. 2000]. These benchmarks have
either a stencil/mesh communication pattern or collectivecommunication, both of which are appli-
cable to our extrapolation algorithm. Among these benchmarks, IS originally exhibited imperfect
compression resulting in non-scalable trace sizes due to its dynamic load re-balancing via workload
exchange through theMPI Alltoallv communication collective. In order to utilize our extrapo-
lation techniques, we enhanced SCALATRACE such that minor differences inMPI Alltoallv pa-
rameters caused by load re-balancing are eliminated. The communication pattern of CG is another
example of a complicated dynamic pattern. In CG, nodes are logically organized in a 2D array.
Each node communicates with the nodes in the same row with a power-of-two distance and with the
node diagonally symmetric to itself, as indicated in Figure10. We support such more complicated
patterns by allowing programmers to provide plugin functions for compression and extrapolation
on a per-parameter basis. The communication trace extrapolation for CG is facilitated by specifying
the communication pattern (i.e., the communication end point described by a function) as a plugin.
With this plugin, the extrapolation of timing information does not require any extra information.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 X. Wu and F. Mueller

Fig. 10. CG Communication Topology

We report the experimental results for both strong scaling and weak scaling. For the strong scaling
experiments, we mostly used class D and E input sizes for the NPB codes. For the weak scaling
experiments, we enhanced the input generator to provide weak scaling inputs for selected NPB
codes.

5. EXPERIMENTAL RESULTS

Experiments were conducted with respect to two aspects, namely the correctness of communication
traces and the accuracy of timing information, both for extrapolations under strong scaling,i.e.,
when varying the number of nodes. Notice that strong scalingis actually aharder problem under
extrapolation as it tends to affect communication parameters such as message volume size. In con-
trast, weak scaling (increasing the number of nodes and problem sizes at the same rate) is easier as
it tends to preserve message volumes sizes irrespective of the number of nodes.

5.1. Correctness of Communication Trace Extrapolation

We first evaluated our communication trace extrapolation algorithm with microbenchmarks and the
NPB BT, EP, FT, CG, LU, and IS codes. We assessed the ability toretain communication semantics
across the extrapolation process for these benchmarks at the target scale. The microbenchmarks
perform regular stencil-style/torus-style communication in topological spaces from 1D to 3D. The
NPB programs exercise both collective and point-to-point communication patterns. We verified the
extrapolation results in multiple ways.

(1) The extrapolated trace fileTe0 was compared with the trace file obtained from an actual execu-
tion at the same scaleTtarget on a per-event basis (Exp1 in Figure 11).

(2) The extrapolated traceTe0 was replayed such that aggregate statistical metrics aboutcommu-
nication events could be compared to those of a corresponding original application run at the
same problem size and node size (Exp2 in Figure 11).

(3) After extrapolation, tracesTe1, Te2, ..., Tei were collected in a sequence of replays to obtain a
fixed point in the trace representation (Exp3 in Figure 11).

First, the per-event analysis of trace files showed that extrapolated MPI parameters and com-
munication groups perfectly matched those of the application trace for all benchmarks except one
(Exp1 in Figure 11). In BT, the message volume of non-blocking point-to-point sends and receives
approximates an inverse-proportional relationship with respect to the number of nodes. However,
it diverges slightly from an inverse-proportional approximation for extrapolating the message vol-
ume due to integer division (discarding the remainder) inherent to the source code. This inaccuracy
is later amplified in the extrapolation process and results in message volumes that are about 13%
smaller than the actual ones at a given scaling factor in the worst case. As imprecisions remain
localized to certain point-to-point messages, this effectis shown to be contained in that resulting

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:15

Fig. 11. Correctness of Trace Extrapolation and Replay

timings are deemed accurate within the considered tolerance range for extrapolation experiments
(see timing results below). Such imprecisions have no side-effect on semantic correctness (causal
order) of trace events whatsoever. Overall, the results of static trace analysis show that our synthet-
ically generated extrapolation trace is equivalent to the trace obtained from actual execution of the
same application at the same scaling level.

Second, we replayed the extrapolated traceTe0 to assess if the MPI communication events are
fully captured (see Exp2 in Figure 11). For this experiment,SCALA REPLAY is linked with mpiP
[Vetter and McCracken 2001], which yields frequency information of each MPI call distinguished
by call site (using dynamic stackwalks). During replay, allMPI function calls recorded in the syn-
thetically generated extrapolation trace were executed with the same number of nodes and their
original payload size. For comparison, we instrumented theoriginal application with mpiP and ex-
ecuted it at extrapolated sizes (problem and node sizes). Wecompared theAggregate Sent Message
Size reported by mpiP between the original application and the replayed extrapolated trace. Results
show that the total send volumes of these experiments are identical, except forMPI Isend in BT
as discussed above. We also compared the total number of MPI calls recorded in the mpiP output
files. The results allowed us to verify that the number of communication events in the actual and
extrapolated traces match,i.e., the correctness of communication trace extrapolation is preserved.

Third, we evaluated the correctness of SCALA REPLAY by replaying the generated trace file in
sequence until a fixed point is reached (see Exp3 in Figure 11). The fixed point approach is a
well established mathematical proof method that establishes conversion, in this case of the trace
data. In this experiment, instead of instrumenting SCALA REPLAY with mpiP, we interposed MPI
calls through SCALATRACE again. As SCALA REPLAY issues MPI function calls, SCALATRACE
captures these communication events and generates a trace file for it, just as would be done for any
other ordinary MPI application. We start by replaying the extrapolated trace fileTe0 and obtain a new
traceTe1. This trace differs fromTe0 in that call sites of the original program have been replacedby
call sites from SCALA REPLAY. This affects not only stackwalk signatures but also the structure of
trace files due to the recursive approach of replaying trace files in place over their internal (PRSD)
structure without decompressing it. We then replay traceTe1 to obtain another traceTe2 and so on for
Tei . We then compare pairs of trace filesTei ,Tei+1. If two such traces match, a fixed point has been
reached. In these experiments, we verified that pairs of trace files, baring syntactical differences,
are semantically equivalent to each other. In other words, SCALA REPLAY neither adds nor drops
any communication events during replay,i.e., by obtaining a fixed point it was shown that all MPI
communication calls are preserved during replay.

5.2. Accuracy of Extrapolated Timings: Timed Replay

We further analyzed the timing information of the extrapolated traces. We report the accuracy of the
extrapolated timings for both strong scaling and weak scaling.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 X. Wu and F. Mueller

 1

 4

 16

 64

 256

 1024

 4096

 16384

256
400

576
784

1024
2304

4096
6400

9216
12544

16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(a) Replay Time Accuracy for Class-E BT

 1

 4

 16

 64

 256

 1024

64 128
256

512
1024

2048
4096

8192
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(b) EP Class D

 1

 4

 16

 64

 256

 1024

64 128
256

512
1024

2048
4096

8192
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(c) FT Class D

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

64 128
256

512
1024

2048
4096

8192
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(d) IS (Modified Input Size)

 1

 4

 16

 64

 256

 1024

 4096

 16384

16 64 256
1024

4096
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(e) CG Class D (Square Topology)

 1

 4

 16

 64

 256

 1024

 4096

32 128
512

2048
8192

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(f) CG Class D (Rectangular Topol-
ogy)

Fig. 12. Replay Time Accuracy for Strong Scaling Benchmarks

Strong Scaling: For this set experiments, we used the NPB BT, EP, FT, CG, and IScodes with
a total number of nodes of up to 16,384. For CG, EP, and FT, we used class D input sizes. For BT,
class E was used so that a sufficient workload is guaranteed at16,384 nodes. For IS, we modified
the input size to adapt it for 16,384 nodes (the original NPB3.3-MPI provides only class D problem
size and supports a maximum of 1024 nodes). These problem sizes and node sizes were decided
based on the memory constraints (for some benchmarks, memory constraints compel us to gener-
ate the base traces already at large scales, which in turn leaves fewer target sizes for evaluation)
and the availability of computational resources to assess the effects and limitations of our timing
extrapolation approach.

In this set of experiments, we first generated 4 trace files foreach benchmark as the extrapolation
basis. From these base traces, an extrapolated trace was constructed next using SCALA EXTRAP,
including extrapolated delta time histograms. We then assess the timing accuracy by replaying the
extrapolated traces. During replay, SCALA REPLAY parses the timing histograms of the computa-
tion periods in the trace files. It simulates computation by sleeping to delay the next communication
event by the proper amount of time. In this context, the effect of load imbalance is preserved by
SCALATRACE. The timing histogram records not onlyminimum, maximum, average and standard
deviation values, but also thefrequency for each timing bin, and these statistics are also extrapo-
lated by SCALA EXTRAP. During replay, the sleeping time is generated according tothese statistics
and the unbalanced timing behavior is thus reproduced. Communication is simply replayed with the
same extrapolated end points and payload sizes but a random message payload. We do not impose
any delays on communication as published results indicate better accuracy with just delays for com-
putation only [Noeth et al. 2009], which we also confirmed. Inthis experiment, SCALA REPLAY is
linked to neither SCALATRACE nor mpiP to avoid additional overhead caused by the instrumenta-
tion layer of these tools. Hence, the output of SCALA REPLAY in this experiment is the total time
to replay a trace. For each extrapolated trace, we run the corresponding application at the same
problem size and record its overall execution time for comparison.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:17

Figure 12 depicts the extrapolation accuracy of BT, EP, FT, IS, and CG, respectively, for a varying
number of nodes. We show the extrapolation results of CG in separate figures because they have
different communication topologies and thus a different extrapolation basis. As shown in Figure 12,
the timing extrapolation accuracy is generally higher than90%, sometimes even higher than 98%,
where accuracy is defined as

Accuracy = (1− |Replay Time − App Time|
App Time

)×100%.

For BT, we observed slightly lower accuracy when the total number of nodes approaches 16,384.
At such sizes the computational workload becomes so small that the influence of non-deterministic
factors, such as system overheads or performance fluctuation of MPI collectives caused by different
process arrival patterns [Faraj et al. 2007], become dominant. Compared to the other benchmarks,
IS shows a constantly lower accuracy (66%-83%). Two reasonsmay explain this phenomenon: (a)
Although IS dynamically rebalances the workload across allnodes, the execution time of the appli-
cation’s sorting algorithm on each process still takes a different amount of time. Hence, collective
MPI calls take unpredictable time to synchronize as the arrival times of processes at collectives
varies significantly due to load imbalance. Since the degreeof imbalance is determined by ran-
domly determined delta times from histograms, it is difficult to predict/extrapolate this behavior. (b)
Source code analysis shows that the most computationally intensive code section in IS consists of
two phases, namely (i) an inverse-proportional phase (runtime is inverse-proportional to the number
of nodes), and (ii) a relatively short constant phase (runtime does not change significantly with node
sizes). When the node size is small, the inverse-proportional phase almost solely determines the
computation time. As a result, our algorithm fails to uncover a small constant factor that contributes
to timing for larger node sizes. SCALA EXTRAP instead treats it as a pure inverse-proportional timing
trend. Without the short constant factor in the timing curve, the extrapolated runtime drops slightly
faster than the real runtime leading to a constantly shorterreplay time. However, since we are able
to capture the dominating inverse-proportional timing trend, we still obtained an acceptable timing
prediction accuracy.

In large, minor inaccuracies during replay stem from imprecise curve fitting for the extrapolation
of computation times. For the simulation of communication duration, SCALA REPLAY depends only
on the communication parameters such as end points and payload sizes, which are shown to be
correctly extrapolated in Section 5.1. Overall, the extrapolated timing information precisely reflects
the runtime of the original application at the target problem size and node size.

Weak Scaling: Weak scaling refers to varying the problem size and the number of processes at
the same rate so that the problem size per node stays consistent during scaling [Gustafson 1988].
Among the three factors we have to extrapolate, namely communication topologies, message sizes,
and computation times, strong scaling and weak scaling generally do not affect the communication
topology in different ways,i.e., the communication patterns often evolve similarly for both strong
and weak scaling. Therefore, the communication topology detection and extrapolation algorithms
still apply to weak scaling codes. For the other two factors,compared to strong scaling codes, weak
scaling codes may exhibit different runtime behavior. For example, due to a constant computational
workload per node, the computation times often (but not always) follow a constant trend for weak
scaling. In terms of the message sizes, the overall message volume exchanged among all the par-
ticipating nodes—typically withMPI Alltoall or MPI Alltoallv—often increases linearly (or
remain constant) under weak scaling when varying the total number of processes. Nonetheless, the
curve fitting approach is still applicable, though different/additional curve fitting algorithms may
have to be supplied in practice.

We verified our extrapolation approach with weak scaling codes. We conducted these experiments
with the NPB BT, EP, FT, IS and LU codes, and the Sweep3D neutron-transport kernel [Wasserman
et al. 2000]. (For other NPB codes, such as CG, weak scaling inputs could be easily be constructed.)
Unlike Sweep3D, the NPB codes are originally designed as strong scaling benchmarks. Hence, we
manually changed the input to provide weak scaling workloads.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 X. Wu and F. Mueller

In the first experiment, we verified the correctness of the generated traces with respect to the ex-
trapolated communication topologies and the values of the communication parameters. We applied
similar tests,i.e., static trace comparison and mpiP results comparison, for the synthetically gener-
ated traces under weak scaling. The results show that the extrapolated traces are able to correctly
preserve the communication semantics, and hence demonstrate the applicability of our topology
extrapolation algorithm for applications under weak scaling.

In the second experiment, we evaluated the accuracy of the extrapolated timings for weak scaling
problems. We used BT, EP, FT, IS, LU, and Sweep3D benchmarks on runs with up to 16,384 MPI
processes. We first generated four traces for each benchmarkas the extrapolation basis. Because
these base traces were obtained from a series of weak scalingexecutions, the timing information
preserved in the traces also reflects the weak scaling trend.We then performed the extrapolation
with SCALA EXTRAP and replayed the extrapolated traces to obtain and evaluatethe accuracy of
the total runtimes against the original runs. In these experiments, we observed that the duration of
most of the computational phases remains consistent duringscaling. This is because for a given
weak scaling input, the per-node problem size is fixed irrespective of the node size. We observed
this trend for all benchmarks in this experiment, includingthe simpler ones such as EP and FT as
well as the more complicated ones such as Sweep3D and LU. Thisobservation is consistent with
our empirical knowledge about the nature of weak scaling codes. In BT, we also observed a more
complicated timing trend for some of the computational phases caused by the 3D layout of the
problem. Nevertheless, our curve-fitting approach remainsstill applicable. Figure 13 depicts the ex-
trapolation accuracy of the benchmarks. Quantitatively, the mean absolute percentage accuracy (as
defined in Section 5.2) across all benchmarks and test cases is 92.87%. Among all the tests, IS with
4,096 nodes has a relatively low timing accuracy. IS uses bucket sort to distribute the elements to
different nodes and then sorts the local elements within each node. When run with 4,096 nodes with
the weak scaling input we provided, IS failed to balance the workload across nodes. Since the base
traces for extrapolation were obtained from runs with good load balance, we cannot extrapolate the
inconsistent computational duration caused by the unbalanced workload. We thus simply could not
reproduce the unbalanced timing behavior during replay. Overall, our timing extrapolation approach
is able to accurately predict the runtimes without experiencing additional challenges beyond those
observed under strong scaling. With such a high timing accuracy and the proven communication
semantics, the extrapolated weak scaling traces can be usedfor trace-based system simulation or
other performance analysis experiments.

5.3. Lossy Extrapolation

Compared to all other benchmarks discussed so far, MG demonstrates the most complicated com-
munication pattern. Overall, MG has a 3D communication topology. All nodes participate in a reg-
ular 7-point 3D torus-style communication. However, as a minor communication pattern, nodes at
particular positions also communicate to nodes one hop (distance of 2) away in the 3D space. This
communication is rank dependent even for those participating nodes, which makes the per-node
traces highly divergent and the size of the final trace non-scalable. What is even more challenging is
that the non-SPMD communication pattern does not exhibit any regular spacial property in forming
the communication groups, i.e., there is little information to be derived from smaller traces about
how a node will behave at larger scale. As a result, we cannot do the extrapolation by utilizing a
general approach.

To extrapolate MG, we applied the lossy extrapolation approach. Specifically, we applied the
snippet-based trace event filtering at the intra-node levelto eliminate the minor rank dependent
communication events. With events dropped, the generated traces consist of only the dominating
regular 3D torus communication and the collectives. When compared across different node sizes,
the traces are structurally identical, which indicates a perfect compression. As the result, the ex-
trapolation of MG is largely simplified and becomes equivalent to the extrapolation of the 3D torus
micro-benchmark.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:19

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

16 36 64 100
256

1024
4096

16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(a) BT

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

8 16 32 64 256
1024

4096
16384

R
un

ni
ng

 T
im

e
(s

)
Number of Nodes

App Time
Replay Time

(b) EP

 1

 2

 4

 8

 16

 32

 64

32 64 128
256

512
1024

4096
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(c) FT

 1

 2

 4

 8

 16

 32

 64

8 16 32 64 256
1024

4096
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(d) IS

 1

 4

 16

 64

 256

 1024

16 64 256
1024

4096
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(e) LU

 1

 2

 4

 8

 16

 32

 64

 128

16 36 64 100
256

1024
4096

16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(f) Sweep3D

Fig. 13. Replay Time Accuracy for Weak Scaling Benchmarks

We evaluated the lossy extrapolation of MG with both strong scaling and weak scaling con-
figurations. For weak scaling experiments, we changed the input generator to provide weak scaling
inputs. We first evaluated the ability of extrapolated traces to preserve communication events. We re-
played each extrapolated trace with mpiP instrumentation under SCALA REPLAY. We subsequently
compared the generated mpiP results (profile counts) with those obtained by executing the mpiP-
instrumented original benchmark over the same number of MPIprocesses. The experimental results
show that for all the extrapolated sizes the number of dropped events is constantly less than 5% of
the total number of MPI events, which indicates the communication workload is well preserved.
Figure 14 compares the replay times of the extrapolated traces to the runtimes of the original bench-
mark. Due to inaccurate curve fitting, the replay times of theextrapolated traces are slightly longer
than the original runtimes at large scales. Nonetheless, even after increasing the replay times by 5%
(given less than 5% of the events were filtered), the extrapolated traces were still able to reflect the
total runtime of the original benchmark.

When configured for strong scaling, MG falls into the category of applications that do not fol-
low the dominating communication pattern at smaller scales, which presents a challenge. On the
positive side, we are able to preserve and extrapolate all the collectives and the regular 7-point 3D
torus communication pattern, the latter of which is measured to be the dominating pattern at smaller
scales. However, as the problem size per node decreases, thenumber of the 3D torus communica-
tion events also decreases. Meanwhile, the number of the MPIevents corresponding to the minor
communication pattern stays constant and starts to domineer at larger scales. For example, with the
lossy tracing approach, 96.98% of theMPI Send operations were preserved in the 64-node trace
of MG while only 77.56% were preserved in the trace of 1024 nodes. As a result, the extrapolated
trace loses its ability to preserve most of the communication workload, even though one of the
two overlapping communication patterns is fully captured.Since our trace-based extrapolation is a
black box approach relying only on information in the input traces instead of knowledge about the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 X. Wu and F. Mueller

 20

 40

 60

 80

 100

 120

64 128
256

512
1024

2048
4096

8192
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

Fig. 14. Timing Accuracy of Lossy Extrapolation of Weak Scaling MG

source code of the application, the extrapolation of the strong scaling for MG is beyond the scope
of SCALA EXTRAP’s current capabilities.

6. APPLICATIONS OF TRACE EXTRAPOLATION

Extrapolated traces provide the means to correctly predictthe communication semantics and tim-
ing behavior of the original applications at large scales asdemonstrated in our experiments. This
capability enables the extrapolated traces to be used for performance analysis. For example, traces
can be fed into discrete-event-based simulators, such as DIMEMAS, for performance simulation.
They can also be used as the input for visualization tools, such as VAMPIR Next Generation. In this
section, we describe two case studies to demonstrate potential use cases of the extrapolated traces.
Experiments described in this section were performed on ARC, a cluster with 1728 cores on 108
compute nodes, 32 GB memory per node and both Infiniband and Ethernet interconnects.

6.1. Code Generation from Extrapolated Traces

In the first case study, we use the extrapolated traces to generate parallel benchmarks. The main idea
of benchmark generation is to automatically generate 1) MPIevents with the same parameter values
and temporal ordering, and 2) sleeps that mimic the computation stages in the original application
based on the information of the input trace [Wu et al. 2011; Deshpande 2011]. The drawback of
the trace-based benchmark generation approach is that the generated code can only be launched
with the same number of MPI processes with which the trace wascollected. Our extrapolation
approach compliments such generation approaches by overcoming precisely this restriction: With
the extrapolated trace, the benchmark generator may auto-generate code for arbitrary number of
MPI processes that accurately reflects application behavior at that size.

To demonstrate the idea, we generated C+MPI code from the extrapolated Sweep3D traces. In
this experiment, we first ran the SCALATRACE-instrumented Sweep3D code at node sizes of 16,
36, 64, and 100, to collect the base traces for extrapolation. We then extrapolated a series of traces
for the node sizes of 144, 196, 256, 324, and 400, which were subsequently fed into the benchmark
generator to generate C+MPI parallel benchmarks. Figure 15compares the total execution times of
the generated benchmarks to that of the original applications at the same node size. Quantitatively,
the mean absolute percentage accuracy (as defined in Section5.2) across all test cases is 93.76%.
With such a high timing accuracy, the generated benchmarks can be used for performance analysis
experiments, especially for novel interconnects or cross-platform test. In effect, the auto-generated
benchmark serves as a substitute for the original application. This is particularly beneficial when

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:21

the original application’s source code was classified sincethe auto-generated benchmark also ob-
fuscated the original code can be release without restrictions.

 1

 2

 4

 8

 16

 32

 64

 128

 256

144
196

256
324

400

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

Application
Generated Benchmark

Fig. 15. Timing Accuracy for the Benchmarks Generated from the Extrapolated Traces

6.2. Performance Experiments with Extrapolated Traces

The second case study utilizes the extrapolated trace to analyze the impact of computational speedup
on the overall performance. Computational speedup can be achieved in multiple ways. For exam-
ple, application developers can optimize performance by overlapping communication and compu-
tation. They may also manually or automatically parallelize their code to take advantage of the
compute power of the multi-core/many-core architectures.A current trend in high-performance
computing is to supplement general-purpose CPUs with more special-purpose computational ac-
celerators (e.g., GPUs). Unfortunately, it is neither trivial to predict how fast a parallel application
will run once accelerated nor to port a parallel applicationto an accelerated architecture.

To readily assess the effect of computational speedup before implementation, application devel-
opers can perform a quick what-if analysis by modifying the application trace. A unique feature of
SCALATRACE is that the collected trace is concise and structure-preserving. This opens the door to
manual inspection and modification of traces for performance analysis. Since the extrapolated trace
is equivalent to the trace obtained from a real execution, itshares the same merits (and shortcom-
ings) as the original code.

As an example, we assess the impact of computational speedupon the overall performance of
Sweep3D with the extrapolated Sweep3D trace. In this experiment, we used the Ethernet intercon-
nect on ARC, which is slower than Infiniband. We first extrapolated the Sweep3D trace of 400
MPI processes from smaller traces. We then changed the computation times and message volumes
recorded in the trace to simulate different expected improvements due to (a) hardware acceleration
and (b) fluctuations in the communication workload. Total execution time was measured to reflect
the change of the overall performance. Results are shown in Figure 16. The x-axis indicates the
length of the generated computational phases in percentageof the original delta time. The different
curves correspond to different message volumes. We observean interesting phenomenon: Reducing
the computation times,i.e.,“accelerating” the computational stages, doesnot always lead to a better
overall performance. For example, when the message volume is increased from 1 to 2 and then 4
times of the actual values, the best overall performance is achieved when the sleep time is set to
be 10%, 20%, and 40% of the original, respectively. This implies a speedup for 10x, 5x, and 2.5x
for the computational parts, respectively. Particularly,when the message volume is set to 8 times of
the actual value, the optimal sleep time is 180% of the original computation times, which indicates
that, instead of trying to accelerate, application developers actually should slow down the compu-
tation stages to achieve the best overall performance. To understand this puzzling behavior, note

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 X. Wu and F. Mueller

that Sweep3D is a stencil code consisting almost exclusively of synchronous point-to-point com-
munication operations. Shortening the sleep times increases the contention in the network, which in
turn offsets the time saved with computational speedup. Moreover, the larger the message volume,
the heavier the network congestion would be. As a result, theoptimal sleep time increases with the
message volume.

In prior work, Hoisieet al. studied the Sweep3D code through performance modeling [Hoisie
et al. 1999]. With their model, the authors showed that the single-node efficiency, rather than the
inter-processor communication performance, is the dominant performance bottleneck. The apparent
discrepancy is caused by the fact that the impact of communication performance is evaluated from
different aspects. In Hoisie’s work, the time of a single communication stage is modeled asTmsg =
t0 + Nmsg/B, wheret0 is the latency and overhead, andB is the bandwidth in the LogGP model.
Subsequently, they fixed the bandwidth and modified the latency t0 from 10µs to 0.1µs and showed
that decreasing the MPI latency by a factor of 100 reduces runtime by only less than a factor of two.
Our work studies a different aspect. We show that the available bandwidthB is reduced significantly
with increasing congestion. When the message sizeNmsg is large (as is the case in Sweep3D), the
change of bandwidth dominates the change of the communication timeTmsg and thus substantially
decreases overall performance.

We should note that the experimental result presented in Figure 16 is both application-specific
and platform-specific. Yet, with the application trace, what-if analysis on application performance
can easily be performed without the need to implement a parallel skeleton algorithm or even port
the original application. Besides, with the trace-based extrapolation, performance analysis can be
performed even without the large-scale input data set or thenecessary hardware,e.g., without pur-
chasing a large number of GPUs and deploying them over compute nodes.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20
 40

 60
 80

 100
 120

 140
 160

 180
 200

 220
 240

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

)

Computation Time (% of Original)

Message Volume x 1
Message Volume x 2
Message Volume x 4
Message Volume x 8

Fig. 16. The Impact of Computational Speedup on the Overall Performance

7. RELATED WORK

SCALATRACE is an MPI trace-gathering framework that generates near constant-size communica-
tion traces for a parallel application regardless of the number of nodes while preserving structural
information and temporal ordering [Noeth et al. 2009; Ratn et al. 2008] (see Section 2. Our extrap-
olation work builds on the trace representation of SCALATRACE.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:23

Xu et al. construct coordinated performance skeletons to estimate application execution time in
new hardware environments [Xu et al. 2008; Xu and Subhlok 2008]. They detect dominant com-
munication topologies by comparing an application communication matrix against a predefined set
(library) of reference patterns. In this work, complicatedcommunication patterns, such as the NAS
benchmark CG, are handled by manually provided specifications of the new patterns. Moreover, the
graph spectrum analysis and graph isomorphism tests utilized in this work lack scalability in terms
of time complexity and thus limit the applicability of this work at large sizes. Most significantly,
their work does not capture all communication events.

Zhai et al. collect MPI communication traces and extract application communication patterns
through program slicing [Zhai et al. 2009]. This work utilizes a set of source code analysis tech-
niques to build a program slice that only contains the variables and code sections related to MPI
events, and then executes the program slice to acquire communication traces. While removing the
computation in the original application enables a fast and cheap trace collection, it also causes the
loss of temporal information that is essential for characterizing the application runtime behavior.
In addition, the lack of trace compression limits its feasibility for large-scale application tracing.
Based on the FACT framework, Zhaiet al. employ a deterministic replay technique to predict the
sequential computation time of one process in a parallel application on a target platform [Zhai et al.
2010]. The main idea is to use the information recorded in thetrace to simulate the execution result
of MPI calls when there is actually only one MPI process, and utilize the deterministic data replay to
simulate the runtime of the computation phases on the targetplatform. While this approach manages
to predict the computation time, it fails to capture the communication related effects. In addition,
this work focuses on cross-platform performance prediction but cannot predict the application per-
formance on a cluster that is larger than the available host platform.

DIMEMAS is a discrete-event-based network performance simulator that uses PARAVER traces
as input [Pillet et al. 1995]. It simulates the application behavior on the target platform with speci-
fied processor counts and network latency. However, DIMEMAS simulations are infeasible for peta-
/exascale simulations due to a lack of hardware resources togenerate the input trace and the sheer
size of traditional application traces. Hermannset al. presented a method for verifying hypotheses
on causality between distant performance phenomena in large-scale MPI Applications [Hermanns
et al. 2009]. By manipulating the application trace, replaying, and performing wait-state analysis on
the simulated event trace, this approach facilitates the what-if analysis for hypothesized performance
problems. Our work, in contrast, focuses on the trace extrapolation for larger platforms that appli-
cations have not yet been ported to or even future platforms (exascale). The extrapolated traces can
subsequently be used for various purposes that a normal trace might be used for, such as 1) determin-
istic replay with SCALA REPLAY, 2) the input trace for simulators (DIMEMAS/SST) for performance
prediction, and 3) benchmark generation for performance experiments, as described in Section 6.
Ronsseet al. presentedRoltMT , an extension of ROLT (Reconstruction of Lamport Timestamps)
for message passing systems [Ronsse and Kranzlmueller 1998]. In RoltMT , send events related
with a promiscuous receive event are attached with Lamport timestamps incremented by a positive
number. Since only timestamps for these events are recordedin the trace, the trace size and the
program perturbation caused by tracing are minimized. The recorded Lamport timestamps are then
used in replay with additional synchronizations to allow a deterministic replay of programs with
non-deterministic receives.

Preisslet al. extract communication patterns,i.e., the recurring communication event sets, from
MPI traces [Preissl et al. 2008]. They first search for repeating occurrences of identical events in
the trace of each individual process and then iteratively grow them into global patterns. The output
of this algorithm can be used to identify potential bottlenecks in parallel applications. Preisslet
al. further utilize the detected communication patterns to automate source code transformations
such as automatic introduction of MPI collectives [Preisslet al. 2008]. Our method, in contrast,
focuses on the spatial aspect of communication events,i.e., the identification and extrapolation of
communication topology.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 X. Wu and F. Mueller

Eckert and Nutt [Eckert and Nutt 1996; 1994] extrapolate traces of parallel shared-memory appli-
cations. They take as input the traces collected on an existing architecture and extrapolate them to a
target platform with different architectural parameters,without re-executing the original application.
This work analyzes the causal event stream. It focuses on thecorrectness of the extrapolated trace
given the existence of program-level non-determinism,e.g., the interleaving of events or modifica-
tions in the actual set of events caused by moving the trace across different architectures. In contrast,
our work is based on deterministic application execution. We also preserve the causal ordering of
communication events but our focus is on the communication behavior at arbitrary problem sizes.

Performance modeling has traditionally taken the approachof algorithmic analysis, often com-
bined with tedious source code inspection and hardware modeling for floating-point operations per
second, memory hierarchy analysis from caches over buses tomain memory and interconnect topol-
ogy, latency and bandwidth considerations. In particular,Kerbysonet al. present a predictive per-
formance and scalability model of a large-scale multidimensional hydrodynamics code [Kerbyson
et al. 2001]. This model takes application, system, and mapping parameters as input to match the
application with a target system. It utilizes a multitude offormulae to characterize and predict the
performance of a scientific application. Snavelyet al. model and predict application performance by
1) characterizing a system with machine profiles, namely single processor performance and network
latency and bandwidth, 2) collecting the operations in an application to generate application signa-
tures, and 3) mapping signatures to profiles to characterizeperformance [Snavely et al. 2002; Bailey
and Snavely 2005]. Gruberet al. describe PatternTool, an interactive tool for creating scalable hi-
erarchical graphs to define the communication patterns and control flows of a parallel algorithm
graphically [Gruber et al. 1996]. The created performance model can be used as the input to PAPS
(Performance Prediction of Parallel Systems), a simulatorthat can be parameterized for different
computer systems for what-if performance analysis.Ïpek et al. follow a completely different ap-
proach by utilizing artificial neural networks (ANNs) to predict the performance when application
configuration varies [Ïpek et al. 2006]. This approach employs repeated sampling of a small number
of points in the design space that are statistically determined through SimPoint [Sherwood et al.
2002]. Only these points are then simulated and results are utilized to teach the ANNs, which are
subsequently utilized to predict the performance for otherdesign points. In contrast, our work ex-
plores the potential of extrapolating the application runtime according to its evolving trend across
increasing problem sizes. Since this method requires neither measurement of performance metrics
nor intense computation, it provides a simple and highly efficient approach to study the effect of
scaling across a large numbers of compute nodes. In contrastto all of the above approaches, our
SCALA EXTRAP does not just simulate communication behavior at scale but allows such behavior
to be observed in practice through replaying on a target platform with large numbers of nodes, even
if the corresponding application itself has not been portedyet.

8. CONCLUSION

Scalability is one of the main challenges of scientific applications in HPC. Advanced communica-
tion tracing techniques achieve lossless trace collection, preserve event ordering and encapsulate
time in a scalable fashion. However, estimating the impact of scaling on communication efficiency
is still non-trivial due to execution time variations and exposure to hardware and software artifacts.

This work contributes a set of algorithms and analysis techniques to extrapolate communication
traces and execution times of an application at large scale with information gathered from smaller
executions. The extrapolation of communication traces depends on an analytical method to charac-
terize the communication topology of an application. Basedon the observation that problem scaling
increases/decreases communication parameters and topology at a certain rate, we utilize a set of lin-
ear equations to capture the relation between communication traces for changing number of nodes
and extrapolate communication traces accordingly. For theextrapolation of communication traces,
the detection of communication topology is non-trivial butalso vital. We currently focus on sten-
cil/mesh topology with nodes arranged in a row-major fashion. While a large amount of parallel
applications fall into this category, we observed more complex communication topologies that are

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:25

hard to detect with a generic approach, which limits the applicability of this work. In future work,
user plugins will be supported so that the extrapolation of complicated and unique communication
patterns can be facilitated by user-supplied information.

For the extrapolation of timing information, we utilize curve fitting approaches to model trends
in delta times over traces with varying number of nodes. Statistical methods are further employed
to mitigate timing fluctuations under scaling. We currentlycapture four categories of the most com-
monly seen timing trends. However, the prediction of more complicated timing trends, including
detection of combinations of currently supported timing trends, may require more sophisticated
algorithms.

Experiments were conducted using an implementation through our SCALA EXTRAP tool and with
the NAS Parallel Benchmark suite and Sweep3D. We utilized upto 16,384 nodes of a 73,728-node
IBM Blue Gene/P. Experimental results show that our algorithm is capable of extrapolating sten-
cil/mesh and collective communication patterns for both strong scaling and weak scaling configu-
rations. Extrapolation of timing information is further shown to provide good accuracy.

We believe that extrapolation of communication traces for parallel applications at arbitrary scale
is without precedence. Without porting applications, communication events can be replayed and
analyzed in a timed manner at scale. This has the potential toenable otherwise infeasible system
simulation at the exascale level.

REFERENCES

BAILEY, D. AND SNAVELY, A. 2005. Performance modeling: Understanding the presentand predicting the future. InEuro-
Par Conference.

BAILEY, D. H., BARSZCZ, E., BARTON, J. T., BROWNING, D. S., CARTER, R. L., DAGUM , D., FATOOHI, R. A., FRED-
ERICKSON, P. O., LASINSKI, T. A., SCHREIBER, R. S., SIMON , H. D., VENKATAKRISHNAN , V., AND WEER-
ATUNGA , S. K. 1991. The NAS Parallel Benchmarks.The International Journal of Supercomputer Applications 5, 3,
63–73.

BERGROTH, L., HAKONEN, H., AND RAITA , T. 2000. A survey of longest common subsequence algorithms. In Proceed-
ings of the Seventh International Symposium on String Processing Information Retrieval (SPIRE’00). IEEE Computer
Society, Washington, DC, USA, 39–.

BRUNST, H., KRANZLM ÜLLER, D., AND NAGEL, W. 2005. Tools for Scalable Parallel Program Analysis - Vampir NG and
DeWiz.The International Series in Engineering and Computer Science, Distributed and Parallel Systems 777, 92–102.

DESHPANDE, V. 2011. Automatic Generation of Complete Communication Skeletons from Traces. M.S. thesis, North Car-
olina State University, Raleigh, NC, USA.

ECKERT, Z. AND NUTT, G. 1996. Trace extrapolation for parallel programs on shared memory multiprocessors. Tech. Rep.
TR CU-CS-804-96, Department of Computer Science, University of Colorado at Boulder, Boulder, CO.

ECKERT, Z. K. F. AND NUTT, G. J. 1994. Parallel program trace extrapolation. InInternational Conference on Parallel
Processing. 103–107.

FARAJ, A., PATARASUK , P., AND YUAN , X. 2007. A study of process arrival patterns for MPI collective operations. In
International Conference on Supercomputing. 168–179.

GROPP, W., LUSK, E., DOSS, N., AND SKJELLUM , A. 1996. A high-performance, portable implementation of the MPI
message passing interface standard.Parallel Computing 22, 6, 789–828.

GRUBER, B., HARING, G., KRANZLMUELLER , D., AND VOLKERT, J. 1996. Parallel programming with capse – a case
study.Parallel, Distributed, and Network-Based Processing, Euromicro Conference on 0, 0130.

GUSTAFSON, J. L. 1988. Reevaluating Amdahl’s law.Communications of the ACM 31, 5, 532–533.
HERMANNS, M.-A., GEIMER, M., WOLF, F.,AND WYLIE , B. J. N. 2009. Verifying causality between distant performance

phenomena in large-scale mpi applications. InProceedings of the 2009 17th Euromicro International Conference on
Parallel, Distributed and Network-based Processing. IEEE Computer Society, Washington, DC, USA, 78–84.

HOISIE, A., LUBECK, O. M., AND WASSERMAN, H. J. 1999. Performance analysis of wavefront algorithms on very-large
scale distributed systems. InWorkshop on Wide Area Networks and High Performance Computing. Springer-Verlag,
London, UK, 171–187.

ÏPEK, E., MCKEE, S. A., CARUANA , R.,DE SUPINSKI, B. R.,AND SCHULZ, M. 2006. Efficiently exploring architectural
design spaces via predictive modeling. InASPLOS-XII: Proceedings of the 12th international conference on Architec-
tural support for programming languages and operating systems. 195–206.

KERBYSON, D., ALME , H., HOISIE, A., PETRINI, F., WASSERMAN, H.,AND GITTINGS, M. 2001. Predictive performance
and scalability modeling of a large-scale application. InSupercomputing.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 X. Wu and F. Mueller

KERBYSON, D. J.AND HOISIE, A. 2006. Performance modeling of the blue gene architecture. InJVA ’06: Proceedings of
the IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing. 252–259.

KNÜPFER, A., BRENDEL, R., BRUNST, H., MIX , H., AND NAGEL, W. E. 2006. Introducing the open trace format (OTF).
In International Conference on Computational Science. 526–533.

LABARTA , J., GIRONA, S.,AND CORTES, T. 1997. Analyzing scheduling policies using dimemas.Parallel Computing 23, 1-
2, 23–34.

NAGEL, W. E., ARNOLD, A., WEBER, M., HOPPE, H. C., AND SOLCHENBACH, K. 1996. VAMPIR: Visualization and
analysis of MPI resources.Supercomputer 12, 1, 69–80.

NOETH, M., MUELLER, F., SCHULZ, M., AND DE SUPINSKI, B. R. 2007. Scalable compression and replay of communi-
cation traces in massively parallel environments. InInternational Parallel and Distributed Processing Symposium.

NOETH, M., MUELLER, F., SCHULZ, M., AND DE SUPINSKI, B. R. 2009. Scalatrace: Scalable compression and replay of
communication traces in high performance computing.Journal of Parallel Distributed Computing 69, 8, 969–710.

PILLET, V., LABARTA , J., CORTES, T., AND GIRONA, S. 1995. PARAVER: A tool to visualise and analyze parallel code. In
Proceedings of WoTUG-18: Transputer and occam Developments. Transputer and Occam Engineering Series, vol. 44.
17–31.

PREISSL, R., KÖCKERBAUER, T., SCHULZ, M., KRANZLM ÜLLER, D., SUPINSKI, B. R. D., AND QUINLAN , D. J. 2008.
Detecting patterns in mpi communication traces. InICPP ’08: Proceedings of the 2008 37th International Conference
on Parallel Processing. IEEE Computer Society, Washington, DC, USA, 230–237.

PREISSL, R., SCHULZ, M., KRANZLM ÜLLER, D., SUPINSKI, B. R., AND QUINLAN , D. J. 2008. Using mpi communi-
cation patterns to guide source code transformations. InICCS ’08: Proceedings of the 8th international conference on
Computational Science, Part III. Springer-Verlag, Berlin, Heidelberg, 253–260.

RATN , P., MUELLER, F., DE SUPINSKI, B. R., AND SCHULZ, M. 2008. Preserving time in large-scale communication
traces. InInternational Conference on Supercomputing. 46–55.

RODRIGUES, A. F., MURPHY, R. C., KOGGE, P., AND UNDERWOOD, K. D. 2006. The structural simulation toolkit:
exploring novel architectures. InPoster at the 2006 ACM/IEEE Conference on Supercomputing. 157.

RONSSE, M. AND KRANZLMUELLER , D. 1998. Roltmp-replay of lamport timestamps for message passing systems.Paral-
lel, Distributed, and Network-Based Processing, Euromicro Conference on 0, 0087.

SHERWOOD, T., PERELMAN, E., HAMERLY, G.,AND CALDER, B. 2002. Automatically characterizing large scale program
behavior. InASPLOS-X: Proceedings of the 10th international conference on Architectural support for programming
languages and operating systems. 45–57.

SNAVELY, A., CARRINGTON, L., WOLTER, N., LABARTA , J., BADIA , R., AND PURKAYASTHA , A. 2002. A framework
for performance modeling and prediction. InSupercomputing.

VETTER, J. AND MCCRACKEN, M. 2001. Statistical scalability analysis of communication operations in distributed appli-
cations. InACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.

WASSERMAN, H., HOISIE, A., AND LUBECK, O. 2000. Performance and scalability analysis of teraflop-scale parallel ar-
chitectures using multidimensional wavefront applications.The International Journal of High Performance Computing
Applications 14, 330–346.

WU, X., MUELLER, F., AND PAKIN , S. 2011. Automatic generation of executable communication specifications from
parallel applications. InProceedings of the international conference on Supercomputing. ICS ’11. ACM, New York,
NY, USA, 12–21.

WU, X., V IJAYAKUMAR , K., MUELLER, F., MA , X., AND ROTH, P. C. 2011. Probabilistic communication and i/o tracing
with deterministic replay at scale. InICPP.

XU, Q., PRITHIVATHI , R., SUBHLOK , J.,AND ZHENG, R. 2008. Logicalization of mpi communication traces. Tech. Rep.
UH-CS-08-07, Dept. of Computer Science, University of Houston.

XU, Q. AND SUBHLOK , J. 2008. Construction and evaluation of coordinated performance skeletons. InInternational Con-
ference on High Performance Computing. 73–86.

ZHAI , J., CHEN, W.,AND ZHENG, W. 2010. Phantom: predicting performance of parallel applications on large-scale parallel
machines using a single node. InACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. 305–
314.

ZHAI , J., SHENG, T., HE, J., CHEN, W., AND ZHENG, W. 2009. Fact: fast communication trace collection for parallel
applications through program slicing. InSupercomputing. 1–12.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

