SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD
Programs

XING WU, FRANK MUELLER, North Carolina State University

Performance modeling for scientific applications is impottfor assessing potential application performance astésys
procurement in high-performance computing (HPC). Recengness on communication tracing opens up novel opportu-
nities for communication modeling due to its lossless yetiadtle trace collection. Estimating the impact of scalimy o
communication efficiency still remains non-trivial due teeeution-time variations and exposure to hardware andvaodt
artifacts.

This work contributes a fundamentally novel modeling schewie synthetically generate the application trace fordarg
numbers of nodes by extrapolation from a set of smaller srad&e devise an innovative approach for topology extrajmolat
of single program, multiple data (SPMD) codes with stencihiesh communication. Experimental results show that the
extrapolated traces precisely reflect the communicatitraier and the performance characteristics at the targés, sior
both strong and weak scaling applications. The extrapblatee can subsequently be (a) replayed to assess comiimmica
requirements before porting an application, (b) transtmfto auto-generate communication benchmarks for varargett
platforms, and (c) analyzed to detect communication iriefiicies and scalability limitations.

To the best of our knowledge, rapidly obtaining the commaitiin1 behavior of parallel applications at arbitrary scale
with the availability of timed replay, yet without actualemution of the application at this scale is without precedeand
has the potential to enable otherwise infeasible systeralation at the exascale level.

Categories and Subject Descriptors: (Rérformance of Systems]: Measurement Techniques; CRBg formance of Sys-
tems]: Modeling Techniques

General Terms: Experimentation, Tracing, Compression

Additional Key Words and Phrases: Communication, Tacirgn@ression, Trace Extrapolation

ACM Reference Format:

Wu, X., Mueller, F. 201?. SBALAEXTRAP: Trace-Based Communication Extrapolation for SPMD PnograACM Trans.

Program. Lang. Syst. V, N, Article A (January YYYY), 26 pages
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.113E83000.0000000

1. INTRODUCTION

Scalability is one of the main challenges for scientific &ailons in HPC. A host of automatic
tools have been developed by both academia and industrgiti asscommunication gathering and
analysis for MPI-style message passing [Gropp et al. 19864t of these tools either obtain loss-
less trace information at the price of poor scalability [Sbet al. 1996] or preserve only aggregated
statistical trace information to limit the size of tracesikes in mpiP [Vetter and McCracken 2001].
Recent work on communication tracing and time recording enadreakthrough in this realm.
SCALATRACE introduced an effective communication trace represemathd compression algo-
rithm [Noeth et al. 2009]. It managed to preserve the strectind temporal ordering of events, yet
maintains traces in a space-efficient representation. Menw8CALATRACE needs to be linked to
the original application and executed on a high-perforrearmmputing cluster of given number

We would like to thank the Juelich Supercomputing Centregfaing us access to their Blue Gene/P system.

This work was supported in part by NSF grants 0937908 and3958

Authors’ address: Department of Computer Science, Nortbl®a State University, Raleigh, NC 27695-8206.

Permission to make digital or hard copies of part or all o$ thiork for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit@nmercial advantage and that copies show this notice on the
first page or initial screen of a display along with the futhtion. Copyrights for components of this work owned by che
than ACM must be honored. Abstracting with credit is peredittTo copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this worlotiner works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., A@M, 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax+1 (212) 869-0481, or permissions@acm.org.

© YYYY ACM 0164-0925/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10510@00000.0000000

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

A:2 X. Wu and F. Mueller

of compute nodes to obtain a trace. Due to the often long application exeauiimes and limited
availability of cluster resources for large numbers of rmdwbtaining the trace information of a
large-scale parallel application remains costly.

An alternative to obtaining communication traces is to mi@ahel predict application behavior
[Kerbyson et al. 2001; Kerbyson and Hoisie 2006]. Generd#flis approach takes a number of
machine and application parameters as input. It utilizesta&formulae to assess the impact of
scaling on the system characteristics and predict perfocman terms of wall-clock runtime of an
application. Similarly, this approach provides only o\lstatistics for an application on a particular
architecture. Without a detailed application trace, maghssticated static analysis is impossible.
In addition, measuring the system and application perfogagarameters is also non-trivial given
the complexity of supercomputers and large-scale sciemgifplications.

Contributions: This paper contributes a set of algorithms and techniquesttapolate full com-
munication traces and execution times of an applicatioargelr scale with information gathered
from smaller executions. Since extrapolation is based @lytioal processing of smaller traces
with mathematical transformations, this approach can blpeed on a single workstation, much
in contrast to analysis or visualization of large tracesaontemporary toolsgg., VAMPIR Next
Generation [Brunst et al. 2005]). It thus enables, for th& fime, the instant generation of trace
information of an application at arbitrary scale withoutessitating time-consuming execution.
Specifically, we extrapolate two aspects of the applicabieimavior, namely the (1) communication
trace events with parameters and (2) timing informatioemgsding computation. The extrapola-
tion of the communication trace is based on the observatiat) in many regular SPMD stencil
and mesh codes, communication parameters and communigatiops are related to the sizes and
dimensions of the communication topology. Thus, extrapmieof communication traces becomes
feasible with the detection of communication topologied #me analysis of communication pa-
rameters to infer evolving patterns. The extrapolatiorinofrtg information involves a process of
analytical modeling. In order to mitigate timing fluctuatounder scaling, we employ statistical
methods.

Our extrapolation methodology is applicable for both strand weak scaling applications. Weak
scaling is typically defined as scaling the problem size hrcdhumber of processors at the same rate
such that the problem size per processor is fixed. This shioyly that the communication patterns
generally evolve in a similar manner for both strong and waaling. Thus, we hypothesize that
the same extrapolation algorithms for patterns and comeation end points should apply to both.
For communication parameters, such as message sizes apdtetion times different trends can
be observed. But we hypothesize that extrapolation basedme fitting is still applicable. In this
work, we verify these hypotheses by evaluating our exti@gm algorithm with both strong and
weak scaling applications.

Our extrapolation methodology follows a trace analysishodblogy independent of the tracing
infrastructure and works for any of the existing trace fotsnBlonetheless, the approach is signifi-
cantly facilitated by 8ALATRACE’'s compression scheme that preserves application steuwatitin
inherent compression that closely resembles the looptateiof an application. In contrast, extrap-
olation with other trace formats, such as OTF [Kniuipfer e2@D6], would be far more tedious and
time/space consuming as structure is neither establistredsanodes nor retained after binary-level
compression.

This trace extrapolation approach has been implementdtkiiStALA EXTRAP tool, which we
utilize to evaluate our extrapolation approach with botbrsg and weak scaling benchmarks, in-
cluding NAS Parallel Benchmark codes [Bailey et al. 1991 Sweep3D [Wasserman et al. 2000].
We utilize up to 16,384 nodes of a 73,728-node IBM Blue Geseffercomputer to generate com-
munication traces for extrapolation and verification. Expents were performed to assess both
the correctness of communication extrapolation and tharacy of the timing extrapolation. Ex-
perimental results demonstrate that our topology detectigorithm is capable of identifying and
characterizing stencil/mesh and collective communicagiatterns. Upon topology detection, the
communication trace extrapolation algorithm correctlyr@golates all communication events, pa-

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:3

rameters and communication groups at an arbitrary targetfsr both stencil/mesh point-to-point
and collective communication. The experiments also detnatesthat the extrapolation of timing
information resembles the running time of the original flafapplication. Compared to the run-
ning time of the original application, the accuracy of rggianes of the corresponding extrapolated
trace is, in the majority of cases, higher than 90%, sometiasehigh as 98%. Given the difficulty
of extrapolating application execution time with only th@é information obtained from several
small executions, our approach achieves unprecedentedsagcthat is sufficient for modeling,
procurement and analysis tasks.

Overall, this work explores the potential to extrapolateowunication behavior of parallel appli-
cations. Several novel algorithms for communication toggldetection and communication trace
extrapolation are introduced. Experimental results destrate that rapid generation of an appli-
cation’s trace information at arbitrary size is entirelyspible, which is unprecedented. In contrast
to tedious and application-centric model development,approach opens new opportunities for
automatically deriving communication models, facilitaticommunication analysis and tuning at
any scale. Our work further enables system simulation aemeé scale based on a single file, con-
cise communication trace representation. More speciiddPC simulation tools€g., DIMEMAS
or SST [Labarta et al. 1997; Snavely et al. 2002; Rodrigued. €2006]), which currently cannot
operate at petascale levels, could benefit by utilizing atrapolated single-file traces that are just
10s of megabytes in size. Benchmark generation is impoiwaictoss-platform performance anal-
ysis due to its standard and portable source code and tHerptaindependent nature. Our work
enables code generation at extreme scale by providing teages that are otherwise unavailable.
Furthermore, by contributing a set of detection techniqpie®mmunication patterns, our work has
the potential to enable the generation of flexible and st&lode programs that can be executed with
arbitrary numbers of nodes and any possible input.

This paper is structured as follows. Section 2 summarizZesee work on £ALATRACE with
respect to its ability to support extrapolation. Section@ves a detailed introduction to the algo-
rithms designed for extrapolation. Sections 4 and 5 prebergxperimental framework and results.
Section 6 provides two case studies to demonstrate thett@pplications of trace extrapolation.
Section 7 contrasts this work with prior research. Sectisar@marizes this work.

2. OVERVIEW OF SCALATRACE

Our work utilizes the publicly available RLATRACE infrastructure [Noeth et al. 2009].
SCALATRACE is an MPI trace-gathering framework that generates neastantisize communi-
cation traces for a parallel application regardless of tiralmer of nodes while preserving structural
information and temporal orderingC8LATRACE utilizes the MPI profiling layer (PMPI) to inter-
cept MPI calls of HPC programs. Extended regular sectioergesrs (RSDs) are used to record
the parameters and information of a single MPI event nestedloop. Power-RSDs (PRSDs) re-
cursively specify RSDs nested in multiple loops. For examfir the 4-point stencil code shown
in Figure 1, RSD1: <MPI_Irecw, (NORTH, WEST, EAST, SOUTH)> and RSD2: <MPI Isend,
(NORTH, WEST, EAST, SOUTH)> denote the alternating send/receive calls to/from the ghaei
bors, andPRSD1: < 1000, RSD1, RSD2, MPI Waitall> denotes the aloop with 1000 iterations.
In the loop’s body, RSD1, RSD2, and a followiNgI Waitall are called sequentially. During
application execution, SALATRACE performs intra-node compression, which captures the loop
structure on-the-fly and represents MPI events in such a cssed manner. Local traces are com-
bined into a single global trace upon application compietice., within the PMPI interposition
wrapper forMPI_Finalize. The key approaches to achieve near-constant inter-nadpression
are the location-independent encoding and communicatimnpgencoding schemes detailed in the
following.

e Location-independent encoding: Communication end-points in SPMD programs differ from one
node to another. By encoding endpoirdiative to the index of an MPI task on a node, a location
independent denotation is created that describes the ioelodlarge node sets. In a stencil/mesh

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

A4 X. Wu and F. Mueller

neighbor[] = {NORTH, WEST, EAST, SOUTH};
for(i=0; i<1000; i++) {
for(j=0; j<4; j++) {
MPI_Irecv(neighbor[jl);
MPI_Isend(neighbor[jl);
}
MPI_Waitall();
}

Fig. 1. Sample Stencil Code for RSD and PRSD Generation

topology, only few of such distinct sets/groups tend to texiscation-independent encoding not
only opens up opportunities for inter-node compressiomifytendpoints across different com-
putational nodes but also enables extrapolation.

Communication group encoding: Similarity in communication patterns is recognized to socity
denote sets/groups of nodes with common behavior. In a ¢gjal space, a communication
group refers to a subset of nodes that have identical conwation patterns. With this encoding
scheme, a communication group is representedasidist. Using the EBNF meta-syntaxyank
list is represented as dimension start_rank iteration_length stride {iteration_length stride} >,
wheredimension is the dimension of the grougtart_rank is the rank of the starting node, and
theiteration_length stride pair is the iteration and stride of the corresponding dirm@msAs an
example, consider the row-major grid topology in Figure Be Bhaded nodes form a communi-
cation group. This group is representedasklist <2 6 35 3 1>, where the tuple indicates that
this communication group is a 2-dimensional area startingde 6 with 3 iterations of stride 5
in the y-dimension and 3 iterations of stride 1 in the x-disien, respectively. Since this encod-
ing scheme takes node placement into account, it natudligats the spatial characteristics of a
communication group.

Fig. 2. Ranklist Representation for Communication Group

We exploit these representations as a foundation for estatipg communication topology.
Besides communication tracingCcSLATRACE also preserves the timing information of a par-
allel application in a scalable way [Ratn et al. 2008]. Alonih the intra-node and inter-node
compression processes, “delta” times representing thg@atation between communication events
are recorded and compressed. For the purpose of scalathdlityt times of a single MPI function call
across multiple loop iterations are not recorded one bylmséead, histograms with a fixed number
of bins for delta times are dynamically constructed to pileva statistical view. Delta times are
distinguished by not only the call context of recorded esgtit also by their path sequence, which
addresses significant variation of delta times caused bydifierencese.g., within entry/exit paths
of aloop.

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A5

Finally, SCALAREPLAY is a replay engine operating on the application traces géerbrby
SCALATRACE. It interprets the compressed application trace on-thefigt issues MPI com-
munication calls accordingly. During replay, all MPI calise triggered over the same number
of nodes with their original parameters (e.g., messageopaytize) but a randomly generated
message content. This ensures comparable bandwidth eeggrits on communication intercon-
nects. SALAREPLAY emulates computation events in the original applicationskeeping so
that the communication contention characteristics arentamied during replay. In general, the
replay engine can be utilized for rapid prototyping and ngnias well as to assess communica-
tion needs of future platforms for large-scale procuremé@ntonjunction with system simulators
(DIMEMAS/SST) [Labarta et al. 1997; Snavely et al. 2002; Rodrigues @006]. In this work, we
use SALAREPLAY to verify the correctness of extrapolation results, whidh be discussed later
in this paper.

3. COMMUNICATION EXTRAPOLATION

This work focuses on the extrapolation of communicatiocgszand execution times. The respective
design is subsequently implemented in a novel toalaAlSA EXTRAP. The challenge of communi-
cation trace extrapolation is to determine how the comnatitn parameters change with node and
problem scaling. The main idea is to identify the relatiopsfetween communication parameters
and the characteristics of the communication topologytypically the sizes of each dimension. As
a simple example, in Figure 2, assuntele 0 communicates witimode 4, i.e., a node at distance of
4. If we can identify that the topological communicationsp#s a grid consisting of 25 nodes with
5 nodes per row, we know thabde 0 actually communicates with the upper-right node. Thersfor
when there are 1024 = 382 nodes, we can safely infer thade 0 communicates witimode 31,
which is still the upper-right node.

Characterizing a communication pattern from one or mokegds non-trivial nonetheless. With-
out the knowledge of a given node assignment scheme andtppadentifying the communication
pattern from the communication graph provided by a tracesfiguivalent to solving the graph iso-
morphism problem, which is known to be NP hard [Xu and Subl20@8]. Therefore, instead of
attempting to find a universal solution, we constrain ourkntorapplications where

(1) nodes execute the same program on different data, he.application follow the SPMD
paradigm;

(2) nodes are numbered in a row-major fashion; and

(3) communication is performed in stencil/mesh point-tarAp manner or via collectives involving
all MPI tasks.

In essence, our communication trace extrapolation alyoriirst identifies the nodes at the “cor-
ner” of a topological space. It then calculates the sizesaohalimension of the topological space
accordingly.

Upon acquiring the topology data, we can perform extrapoaf he extrapolation of a commu-
nication trace consists of two tasks. First, we need to midwemecords corresponding to the same
MPI call in the source code across the traces of differenérsimes. We will discuss the difficulties
involved in this step and our solutions in the following $ees. Second, for each MPI call in the
source code, we need to determine which MPI processes extisicall and what are the values
of the parameters when the application is running at thestacple. For the second task, we rep-
resent the rank list and the communication paramegags the destination rank ¢fPI_Send, as a
function of the known topology data and their undeterminaefficients. In order to calculate these
coefficients, we correlate multiple traces and construet aflinear equations. Finally, we employ
Gaussian Elimination to solve the set of equations. Withfittexd coefficients, we can extrapolate
the value of the desired communication parameter by simybgtituting the topology data with
their values at the desired problem size.

The second aspect of this work concerns the extrapolatiprogiram execution time. In the input
trace files, computation time and communication time betw@ed optionally during) MPI com-

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

A6 X. Wu and F. Mueller

munication events are preserved statistically with histots. When analyzing the corresponding
delta time, scaling trends can be identified across diftanamber of nodes. Therefore, statistical
curve fitting methods are utilized to model an evolving trand extrapolate the execution time to a
desired target size. In order to eliminate outliers, watarintroduce several confidence coefficients
to statistically determine the best extrapolated valuesusdch constraints.

3.1. Topology Identification

Topology identification is the basis of communication trasérapolation. In order to identify a
topology, it is important to find the nodes at the corner orf@lioundary of a topological space,
which we callcritical nodes. We devised a three-step approach to identify the commtioictpol-
ogy.

(1) We create an adjacency list of communication endpoartedich node and group nodes accord-
ing to their adjacency lists.

(2) We identify critical nodes by analyzing the adjacensysli

(3) We calculate the sizes of each dimension (x, y, and z)@ttmmunication topology.

Fig. 4. Boundary Size Calculation

Fig. 3. Topology Detection

First, our algorithm traverses the input trace to consttaotmunication adjacency lists for each
node. According to the relative positions (encodings) bfred communication endpoints of each
node, nodes with same endpoint patterns are placed intcathe group. Figure 3 illustrates an
example of a 2D mesh topology. In this example, nodes on thaderies communicate with nodes
at the opposite side in a wrap-around manner while the iaterades communicate with their
immediate neighbors. Note that wrapping around in the e@rtirection does not lead to different
endpoint encoding. Therefore, the nodes are divided inreetlgroups (A, B, and C) with group
sizes 5, 10, and 5, respectively.

Next, we analyze the adjacency list of each node to identiéydritical nodes. Exploiting the
row major constraint, we scan all nodes sequentially totifleloop structures with respect to com-
munication adjacency list patterns. The underlying ratiens that critical nodes define a topology.
Between corresponding critical nodes, communicatiorepastemerge repeatedly. According to the
length of a loop structure, the sizes of the groups consistitital nodesj.e., critical groups, are
calculated as

n

length of loop’

wheren denotes the number of nodes engaged in MPI communicatiarexammple, in Figure 3,
each row has the same group distribution (A B B C) and is thestitied as a single iteration of the

critical group size=

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A7

loop structure. Since the length of such a loop iteration thd size of theritical groups (group A
and C) is20/4 = 5. Having obtained the size of the critical groups, we theeisse critical nodes
with groups by matching sizes of critical groups.

Finally, we calculate the sizes of each dimension. Againatipg the row-major constraint, in a
d-dimensional topological space, the number of nodes ad-thelimension is the total number of
nodes. The number of nodes at ik (i < d) dimension, is the inclusive range of numbers of
nodes betweenode 0 (1st critical node) and the'zh critical node. Once we have determined the
number of nodes at each dimension, the boundary size dftthéimensions, is calculated as

N
Ni-1
For example, in the 3D topology of Figure 4, the number of sadehelst dimensionn;=3, is
the number of nodes between A and B inclusively, the numbeiodgs in the second dimension,
n,=12 , is the number of nodes between A and D, and the number of niodles third dimension
nz is the total number of nodes. Hence, we have

X=s=n1/Np=3
z=g=ng/m

3.2. Matching MPI Events for Extrapolation

The extrapolation of a trace is performed one-by-one foheacorded MPI event of the trace.
An MPI event is emitted per execution of an MPI function in #oeirce code by the actual values
of the input parameters. Therefore, the extrapolation olM&1 event is actually the process of
inferring the execution of an MPI function at the target edabm its executions at smaller scales,
which are represented as RSDs in the input traces. (In adddue to the SPMD nature of parallel
applications, the extrapolation also involves the préalicof the participants of an MPI evernte.,
the callers of an MPI function in the source code, which walidiscussed in Section 3.3.) Therefore,
being able to match the RSDs corresponding to calls to the $dRi function originating from
source code across traces of different node sizes is thequisite of extrapolation.

Due to its structure-preserving representatiatySATRACE traces are often similar to the source
code. In atrace, the queue of RSDs represents the tempdeairng of the MPI events, which in turn
reflects the locations of the corresponding MPI functiorozations in the source code. Therefore,
in most cases, traces of different node sizes are inheraligiyed. However, nodes are sometimes
partitioned due to differences in their communicationguais and may thus form different commu-
nication groups. For example, Figure 5(a) shows the digioh of the communication groups of
2D stencil codes such as Sweep3D. Since the communicatfaviee is different across groups,
SCALATRACE cannot merge the per-node traces but appends them sedjyeBgaause the inter-
node compression are performed with a radix tree and the ofd#isjoint subsequences of MPI
events are not maintained during compression [Noeth et08i7]2 the relative positions of RSDs
originating from different communication groups are notegsarily the same in traces of different
node sizes. For example, in the final 16-node trace the thadpgis Group C (both in Figure 5(b)
and in the root node of Figure 5(d)) while it is Group E in ther&le trace (in the root node
of Figure 5(e)) . This illustrates how the order of differeosmmunication groups are determined
along with the radix tree style inter-node reduction (cgu¥es 5(d)+(e)). Clearly, extrapolating by
relating RSDs of different communication groups is mealeisg

We utilize the dependence graph to reorder the trace. Thendiemce graph is a data structure
used by 8ALATRACE to keep track of disjoint RSD subsequences during the imbele reduc-
tion [Noeth et al. 2009]. If two per-node traces are patftigifferent, a branching point and a
merging point will be inserted before the first and after ¢ hon-matching RSDs. We designed
a recursive algorithm that traverses the dependence gnaptepth-first manner and topologically
sorts each branch in the rank order (Algorithm 1). Our redngealgorithm guarantees that the RSD
subsequences corresponding to different communicatimupgrare always organized in ascending

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

A:8 X. Wu and F. Mueller

i
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|

i
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|

i
|
|

_i
|
|
I
|
|
|
|
|
|

—i
|
|
|
|

‘00O ol |e0'@ 0 |9000@
EOEO Oioi i@i@ ® @ | i@:@E@ i@i
iogi E i Pl ED i E i Pl ioi@@®ir:
' 0i0. - 00} (9® 00 166080,
iaoio -~ 010 | EG@E@H;@IE i@i@@g@l@li

(a) Communication Group Dis- (b) Group Distribution for 16 (c) Group Distribution for 25
tribution of 2D Stencil Codes Nodes Nodes

{0} 11,2} B3H{7,113{15}

(5.6.9.101 113,141 4.8} {12} {03 {1.2.3}{6,7.8,11,12,13,16,17,18} {5.10,15}

{21,22,23}{9,14,19} {4} {24} {20}

{23 {4.8}3{12}
{6,103 {14}

{13H7,11,13,17}

{5.15}{21.23}{9,19}

(31711315}
{23} {19}

15)19)
(13,17} 21}

14}18,12,16}
124} {20}

16,18} {10}
{14}422}

(d) Inter-node Compression for 16 nodes (e) Inter-node Compression for 25 nodes

Fig. 5. Inter-node Compression and the Positions of Communitcaimups for 2D Stencil Codes

order of the rank for the leading nodes of groups. With suchlgarithm, we are able to align the
communication groups in traces of different node sizes.&xti@polation is subsequently becomes
possible.

3.3. Extrapolation of MPI Events

The extrapolation of an MPI event consists of the extrapmiadf both communication groups
and communication parameters to indicate who communi@atdshow they communicate. The
extrapolation algorithm is based on the observation thaggular SPMD stencil/mesh codeispng
scaling (increasing the number of nodes under a constant inputlgieayly increases/decreases the
value of communication parameters and the topologicaksi@iven several data points, a fitting
curve can be constructed to extrapolate the growth rateso€dmmunication parameters and the
topology information (the sizes of each dimension) of thegainication groups.

Specifically, in an n-dimensional Cartesian space, the dinates of nodeX and Y are
(X1, X2,...,%n) and(Y1, Yz, ...,Yn), whereX; andy; € [0,S — 1] andS is the size of thé-th dimension
of the topological spacgl <i < n). Assuming the locations of nodéandY differ only in thei-th
dimension, the distance betweé¢mandy in thei-th dimension igl = X; — ;. With the assumption of
linear correlation between topology size and communiogiErameters; = X — Y, = g x §+ by,
wherea; andb; are two constants. Furthermore, with the row-major nodeguteent assumption,
the rank of an arbitrary nod&(Aq, Ay, ..., An) IS

n i—1
Rankp = i;A; JELSJ-.

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:9

Algorithm 1 Aligning the Communication Groups

Require: Tin: input trace

Ensure: Toy: output trace in which branches (RSD subsequences for comation groups) are ordered by
rank

1: procedure REORDERTRACE(Tip)

2: for iter — Tin.head, Tjy.tail do

3: if iter is a merging RSD nodghen

4: merging_node « iter

5: find branching_node: merging-node’'s matching branching RSD node

6: REORDERmMerging_node, branching_node) > reorder the branches betwemerging_node and
branching_node by rank

7 end if
8: end for
9: end procedure

10: procedure REORDERMerging_node, branching_node)
11 for each branch betweenmerging_node andbranching_node do

12: traversebranch in depth-first order

13: if m: a merging RSD node is found branch then

14: find b: m's matching branching RSD node

15: REORDERM, b) > recursively reorder the branches
16: end if

17: end for

18: sort the branches betweamrging_node andbranching_node by rank
19: reorder the branches
20: end procedure

Therefored;’, the rank distance betwe&nhandy, is

i—1 i—1
di’ = (% —Y) x I_|Sj =(axS+b) x I_|Sj
=1 =1

In general, for two arbitrarily selected noddsandN, their rank distancd’ is the sum of their rank
distances in each dimension,

d=dy+d/+...+d
i i—1

= ii(Ni — Mi)ﬁsj' = ii(ai X § —|—bi)JI:LSj

=an J]jsj + T;l(a@ +bit1) Jljlsj +by = iici J]ij,

wherec, = ap, Co = by, andci =& + by 1(1 <i<n-1).

In order to extrapolate the rank of a communication endp@irtdest), which is defined by the
rank distance between nodes, we need to identify how thddgpanformation is related to the
communication parameter. We construct a set of linear @nsto solvec; (1<i<n-1). In general,
for an n-dimensional topology,+ 1 input traces are needed to sotvé 1 coefficients. We employ
Gaussian Elimination to solve the equations. Once the sadfig(1 <i < n— 1) are determined,
a fitting curve for the given parameter is established. Ireotd extrapolate the same parameter for
a larger execution, we utilize the known coefficients anccgpehe topology information at the
target task size. The desired value is then calculated dicayy.

As an example, in a 2D space, the bottom-right node in Figurerdmunicates with it&AST
neighbor in a wrap-around manner. In order to extrapolageréimk of the communication end-

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

A:10 X. Wu and F. Mueller

point, three input traces with dimensionsx4, 5x 5, and 6x 6 are used to construct the set
of linear equations shown in Figure 7, asgd= 1, c; = —1, andcyp = 1 are obtained as the
values of the coefficients. To extrapolate ax1@0 mesh, we re-construct the equation with co-
efficients and topology information assigned. Subsequetité target value/ is calculated as
V =0y x10x 10+ ¢y x 10+ co = 91.

O O O O+
Q Q Q Qoum-x Cox4dx4+cyx4+cH=13
{ Cox5x54+cx54+¢=21
CoX6x6+Cx6+cyp=231
FAST: ,,,ﬁ,A Fig. 7. Set of Equations for Communication Endpoint Ex-

trapolation

Fig. 6. Generic Representation of Communica-
tion Endpoints

Besides the communication parameters, communicatiorpgrate also extrapolated. The topo-
logical space of an application can be partitioned into s\@mmunication groups according to
the communication endpoint pattern of each node. Ustteng scaling, partitions tend to retain
their position within the topological space but changertsaes for each dimension accordingly.
For example, Figure 8 shows the distribution of 9 commuiveagroups of a 2D stencil code. De-
spite the changing problem size, gro¥p<C, G, andl always represent corner nodes, groBpb,

F, andH are always the boundaries, and gr&tipontains the remaining (interior) nodes.

Fig. 8. Distribution of Communication Groups of a 2D Stencil Code

This opens up the opportunity to extrapolate communicajimups of the same application at
arbitrary size. In order to extrapolate, we represent comoation groups asank lists, which ef-
fectively specifies the starting node and the dimensiorssif& group. Since the dimension sizes
are defined by the distances between nodes (vertices), vire @geae a set of linear equations to
establish the relation between the topology informatiocoshmunication groups and the task sizes.
Extrapolation is performed for thgtart _rank, iteration_length, andstride fields of the rank list. The
output rank list reflects the communication group at thedbsize. For example, for the topology
shown in Figure 8, when the total number of nodes is 16, thk liahof groupE, as defined in
Section 2,is<25242 1>, i.e, a 2D space starting fromode 5 with x- and y-dimensions of size
2. Similarly, the rank lists of grouf at sizes 25 and 36 ake2 6353 1> and<2746 4 1>,

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A1l

<MPI_Irecv, (LEFT)>
<MPI_Isend, (RIGHT)>
<MPI_Wait>
<MPI_Wait>

Collective

(a) Trace Snippet
(b) Generated Finite-state Machine

Fig. 9. A Simple Trace Snippet and the Generated Finite-state Mach

respectively. We can thus construct the set of linear egosifior each field in the rank list to derive
a generic representation of the rank list as:

<2 X+1 X—=2 X x—2 1>.

Subsequently, assuming that we want to extrapolate for $xe 10, letx be 10, which yields the
output rank list<2 11 8 10 8 1> that precisely matches thank list representation of communica-
tion groupE at this problem size.

By combining the extrapolation of both communication gr@apd communication parameters,
we are capable of extrapolating the communication trace fgiwen application at arbitrary topo-
logical sizes.

3.4. Lossy Extrapolation

As was discussed in Section 3.2, aligning the matching R®bssa traces of different node sizes
is critical for extrapolation. Despite being recognizedoag of the existing tracing libraries that
provides the best compression, there still exist some egiins that SALATRACE cannot obtain
constant-size compression for. In fact, for applicatidme xhibit new communication patterns
only at or beyond a certain node size, lossless yet constameompression is hardly possible. To
extrapolate traces of such applications, we designed & bggsroach. We attempt to capture and
extrapolate the dominating communication pattern by ogwiily dropping events at three different
levels: (1) within an MPI process, (2) among MPI processemoéxecution, and (3) across traces
of different node sizes.

The intra-node level event filtering is performed againstpler-node queue of MPI events. We
observe that a number of application traces contain a sukseg of events that embody the domi-
nating communication pattern and comprise a large portidimectrace by repeating multiple times.
Based on this observation, a user-provided trace snippeilized as the reference to drop events.
Typically, such a trace snippet is a sequence of RSDs corgsist tens of MPI events, with the
event type (Send, Recyv, etc.) and the values of the key paeesra each event. Based on the trace
snippet, we automatically generate a Finite-State Magti8&1) to process the input stream of MPI
events. At the beginning, the FSM is initialized to the STASRAte. If the input event is a collective,
the FSM directly enters the ACCEPT state. This indicatesahaollectives are directly accepted
while the FSM is not in the middle of accepting a sequencéndfihput is neither a collective nor
the first event to be accepted, the FSM enters the ERROR stdtéhae input event is dropped.
Once the FSM leaves the START state, it only accepts the nexit@xpected in a sequence. If an
unexpected event arrives, the FSM enters the ERROR statallghd pending events are dropped,
including the current input if it is not a collective. Finglif the FSM arrives at the ACCEPT state,
the pending events are accepted. These events will notdaediby future ERROR states. Figure 9
shows a simple trace snippet and the FSM generated.

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

A:12 X. Wu and F. Mueller

Beyond the intra-node level event filtering, if necessag/algo drop events during the inter-node
compression and when aligning the traces of different nams $or extrapolation. We designed a
Longest Common Subsequence (LCS) based approach for theféteing at these two levels.
The LCS problem is to find the longest subsequence that is @mtotwo input sequences, where
a subsequence need not be consecutive in either of the @rigquences. If a trace is considered
as a sequence of MPI events, the LCS of two traces reflects Bieelents that nodes participate
in for both traces. We adapted a well-known dynamic prograrmgroased LCS algorithm for trace
comparison [Bergroth et al. 2000]. In a&£8LATRACE trace, the loop structure is preserved and
explicitly indicated. As a building block, loop structursisould be evaluated in their entirety with
the number of MPI events in the loop representing the weigherefore, we first enhanced the
LCS algorithm to take into account the weight when evalgatiow the length of the LCS will be
affected by retaining or removing a loop structure. Seceimte loops are often nested in the source
code and in the trace, we further modified the LCS algorithrthab it can execute in two modes
in a recursive manner. In the first pass, this algorithm oalgulates the LCS but does not modify
the trace. This is required because modifying the inner loag affect the evaluation of the outer
loop. Once the LCS is determined, this algorithm is applgaimin the second mode such that any
uncommon events are removed.

With these event filtering techniques above, we are abletragalate complicated and irregular
applications depending on nodes counts such as the NPB M&lk&ve have developed a replay
engine that infers receives from sends to replay a histogrased communication trace [Wu et al.
2011]. In case the event filtering makes the trace incoreartwhen sends and receives mismatch,
this algorithm can be adapted to execute on a single maahir@tect the trace. Our insight here is
that instead of dropping the minor communication eventsmatched by any other MPI processes
due to event filtering, preserving them by manually genegatie matching events with probabilis-
tic approaches may be a better solution [Wu et al. 2011].

3.5. Extrapolation of Timing Information

Besides the communication traces, we also extrapolatérttiegt information of the application.
SCALATRACE preserves the “delta” time for each communication eventfanthe computation
between two communication events. For a single MPI funatelhacross multiple loop iterations,
i.e, for a RSD, the delta times are recorded in multi-bin hishogs. These histograms contain
the overall average, minimum, and maximum delta time, thséridution of the delta execution
times represented as histogram bins, and the average, ummiand maximum delta time for each
histogram bin. To extrapolate timing information, we a#licurve fitting to capture the variations
in trends of the delta times with respect to the number of agde, t=f(n), wheret is the delta
execution time and is the total number of nodes. Hence, the target delta tine calculated as
te= f(ne) , wherene is the total number of nodes at a given problem size. Whileavesxtrapolate
only the aggregated average delta time per RSD, to reshaistatistics of delta time, extrapolation
is performed for each field of a histogram. Currently, we iempénted four statistical models based
on curve fitting for each extrapolation. We use a deviatiasddl metric to determine the best of
these models to fit to a given curve.

(1) Constant: This method captures constant tingg, t=f(n)=c. Before calculating the constant
time, the input timd, with the largest absolute value of deviation is excludednftbe input
times to mitigate the influence of outliers (which can be edusy either unstable system state or
an empty bin). Subsequently, the average value of the rénggimput times reflects the constant
time ¢, andd;=std. dev./average is used to evaluate this fitting curve among the remaining
values.

(2) Linear: This method captures linearly increasing/dasing trendg,e., t=f(n)=an+b. We use
the least-squares method to fit the curve. In order to avasdataissifications, such as a constant
time relationship as a linear relationship with a near-zope, we define a threshold slope

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:13

Smin=0.2 such thatva < sqyin t=f(n)=b. For curve evaluatiord, = v/residual/average is used,
whereaverage refers to the average value of the estimated running times.

(3) Inverse Proportional: This method captures inverggpgrtional trendsij.e., t=f(n)=k/n. We
observe this trend in the NAS Parallel Benchmark IS, wh@e Alltoallv dynamically re-
balances the per-node workloads even though the collagtividoad over all nodes is constant.
Lett; be the input timesy; be the corresponding number of nodes, knd t; x n;. We extrap-
olate the constark as the average value kf. Again, we exclude the outligg, which has the
largest absolute value within the deviation. To evaluaiefitiing curve, we calculate the stan-
dard deviation ok; and then divide by the average valuekgfi.e., ds=std. dev./averageis used
for comparison.

(4) Inverse Proportional + Constant: This method captuhneseixecution time consisting of an
inverse proportional phase and a constant phase t=f(n)=k/n+c. Instead of directly ex-
trapolatingt, we utilize the least-squares method to extrapotate tn = cn+ k and use
d4 = vresidual/averagefor the curve evaluation. With an extrapolateghdk, t is subsequently
calculated as=t'/n=k/n+c.

Having obtained the deviations for each curve-fitting pss¢ceve compare the values to determine
the curve that best fits. For a closer approximation, we defiteeshold value; = 0.05, such that
if and only if dyin 4+ ¢k < d; holds for alld; other thandy, will the corresponding candidate curve
be selected as the fitting curve. Otherwise, the extrapoldtir the current field is postponed until
we have processed all the fields in the same histogram. Sugcg Beld in the histogram should
have the same variation trend, we finalize the pending eadatipn according to the decisions of
the remaining fields.

4. EXPERIMENTAL FRAMEWORK

Our extrapolation methodology for communication traces ingplemented as theCBLAEXTRAP
tool that generates a synthetic trace for a freely seleatetber of nodes. The extrapolation is based
on traces obtained from application instrumentation witlhGATRACE on a cluster. For both base
traces generation and results verification, we use a subse&l®@ENE, an IBM Blue Gene/P with
73,728 compute nodes and 294,912 cores, 2 GB memory peraadighe 3D torus and global tree
interconnection networks.

The extrapolation process is run on a single workstationragdires only several seconds, irre-
spective of the target number of nodes for extrapolatiors Tdw overhead is due to the linear time
complexity of our algorithm with respect to the total numb&KMPI function calls in an application.
Results from extrapolation are subsequently comparedhtesrand runtimes of an application at
the same scale, where runtimes for extrapolated tracebtamed via EALAREPLAY (see Section
2).

We conducted extrapolation experiments with the NAS PalrBEnchmark (NPB) suite (version
3.3 for MPI) [Bailey et al. 1991] and Sweep3D [Wasserman e2@00]. These benchmarks have
either a stencil/mesh communication pattern or collea@munication, both of which are appli-
cable to our extrapolation algorithm. Among these benckmas originally exhibited imperfect
compression resulting in non-scalable trace sizes dus tlyitamic load re-balancing via workload
exchange through théPT_A11toallv communication collective. In order to utilize our extrapo-
lation techniques, we enhanced/8 ATRACE such that minor differences MPI_Alltoallv pa-
rameters caused by load re-balancing are eliminated. Timencmication pattern of CG is another
example of a complicated dynamic pattern. In CG, nodes ajiedtly organized in a 2D array.
Each node communicates with the nodes in the same row witlvarpaf-two distance and with the
node diagonally symmetric to itself, as indicated in FigL@e We support such more complicated
patterns by allowing programmers to provide plugin funesidor compression and extrapolation
on a per-parameter basis. The communication trace exatgofor CG is facilitated by specifying
the communication pattern (i.e., the communication endtpbéscribed by a function) as a plugin.
With this plugin, the extrapolation of timing informatiomes not require any extra information.

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

A:l14 X. Wu and F. Mueller

® &G
cRogcgclio
®
®

® 66606 06

*@ D6 O @
o RoNONONONONC)
Fig. 10. CG Communication Topology

We report the experimental results for both strong scalimthveeak scaling. For the strong scaling
experiments, we mostly used class D and E input sizes for P8 dbdes. For the weak scaling
experiments, we enhanced the input generator to providé& wesling inputs for selected NPB
codes.

5. EXPERIMENTAL RESULTS

Experiments were conducted with respect to two aspectsgiyahre correctness of communication
traces and the accuracy of timing information, both for @xtlations under strong scalinige.,
when varying the number of nodes. Notice that strong scadirsgtually aharder problem under
extrapolation as it tends to affect communication paramsetgch as message volume size. In con-
trast, weak scaling (increasing the number of nodes andgrosizes at the same rate) is easier as
it tends to preserve message volumes sizes irrespectitie ofuimber of nodes.

5.1. Correctness of Communication Trace Extrapolation

We first evaluated our communication trace extrapolatigorthm with microbenchmarks and the

NPB BT, EP, FT, CG, LU, and IS codes. We assessed the abiligtain communication semantics

across the extrapolation process for these benchmarke aattet scale. The microbenchmarks
perform regular stencil-style/torus-style communicaiio topological spaces from 1D to 3D. The

NPB programs exercise both collective and point-to-paamimunication patterns. We verified the

extrapolation results in multiple ways.

(1) The extrapolated trace fil, was compared with the trace file obtained from an actual execu
tion at the same scalkargee ON @ per-event basis (Expl in Figure 11).

(2) The extrapolated track, was replayed such that aggregate statistical metrics atooninu-
nication events could be compared to those of a correspgradiginal application run at the
same problem size and node size (Exp2 in Figure 11).

(3) After extrapolation, trace%,, Te,, ..., T Were collected in a sequence of replays to obtain a
fixed point in the trace representation (Exp3 in Figure 11).

First, the per-event analysis of trace files showed thatprtated MPI parameters and com-
munication groups perfectly matched those of the apptoatiace for all benchmarks except one
(Explin Figure 11). In BT, the message volume of non-blogkinint-to-point sends and receives
approximates an inverse-proportional relationship with respect to thenher of nodes. However,
it diverges slightly from an inverse-proportional approztion for extrapolating the message vol-
ume due to integer division (discarding the remainder)iieheto the source code. This inaccuracy
is later amplified in the extrapolation process and resaltméssage volumes that are about 13%
smaller than the actual ones at a given scaling factor in thiestwcase. As imprecisions remain
localized to certain point-to-point messages, this effeshown to be contained in that resulting

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:15

Exp2
ScalaReplay
(mpiP)

mpiP =

@ ScalaTrace

Fig. 11. Correctness of Trace Extrapolation and Replay

timings are deemed accurate within the considered tolerganege for extrapolation experiments
(see timing results below). Such imprecisions have no sftest on semantic correctness (causal
order) of trace events whatsoever. Overall, the resulttatitsrace analysis show that our synthet-
ically generated extrapolation trace is equivalent to thed obtained from actual execution of the
same application at the same scaling level.

Second, we replayed the extrapolated trageto assess if the MPI communication events are
fully captured (see Exp2 in Figure 11). For this experim&aaLAREPLAY is linked with mpiP
[Vetter and McCracken 2001], which yields frequency infatian of each MPI call distinguished
by call site (using dynamic stackwalks). During replay,MRI function calls recorded in the syn-
thetically generated extrapolation trace were executeld thie same number of nodes and their
original payload size. For comparison, we instrumentedtiginal application with mpiP and ex-
ecuted it at extrapolated sizes (problem and node sizesgovidpared thé\ggregate Sent Message
Szereported by mpiP between the original application and tpéayed extrapolated trace. Results
show that the total send volumes of these experiments anéiddé except foMPI_Isend in BT
as discussed above. We also compared the total number of éllRIrecorded in the mpiP output
files. The results allowed us to verify that the number of camitation events in the actual and
extrapolated traces matdke., the correctness of communication trace extrapolationasgrved.

Third, we evaluated the correctness afARAREPLAY by replaying the generated trace file in
sequence until a fixed point is reached (see Exp3 in Figure TH§ fixed point approach is a
well established mathematical proof method that estaddistonversion, in this case of the trace
data. In this experiment, instead of instrumentirgaBSA REPLAY with mpiP, we interposed MPI
calls through 8ALATRACE again. As $ALAREPLAY issues MPI function calls, SALATRACE
captures these communication events and generates a teafoe i, just as would be done for any
other ordinary MPI application. We start by replaying th&apolated trace fil&, and obtain a new
traceTe,. This trace differs fronTg, in that call sites of the original program have been repldned
call sites from £ALAREPLAY. This affects not only stackwalk signatures but also thecttire of
trace files due to the recursive approach of replaying trée®ifi place over their internal (PRSD)
structure without decompressing it. We then replay tiacéo obtain another track, and so on for
Te. We then compare pairs of trace filés, Tg . ;. If two such traces match, a fixed point has been
reached. In these experiments, we verified that pairs oé tfites, baring syntactical differences,
are semantically equivalent to each other. In other word2,L8 REPLAY neither adds nor drops
any communication events during replag,, by obtaining a fixed point it was shown that all MPI
communication calls are preserved during replay.

5.2. Accuracy of Extrapolated Timings: Timed Replay

We further analyzed the timing information of the extrapeditraces. We report the accuracy of the
extrapolated timings for both strong scaling and weak sgali

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

A:16 X. Wu and F. Mueller

16384

App Time === App Time m=== App Time m===
4096 Replay Time 1024 Replay Time 1024 Replay Time
Z 1024 G 256 @ 256
g g g
£ 2% E 64 = 64
=3 =3 =3
£ 64 = =
£ £ 16 E 16
x 16 @ @
4 4 ’_I " 4
: R S 2 . ! 6y U s S5 Yo, & % ! Gy U s S5 Yo, J
5% % % 0 X AN 5\%, Y Qe o R0, 00 0, 7 %% % 70‘% CRCEN
4 7 7
Number of Nodes Number of Nodes Number of Nodes
(a) Replay Time Accuracy for Class-E BT (b) EP Class D (c) FT Class D
512 " 16384 - n
App Time === App Time === 4096 App Time ===
256 Replay Time 4096 Replay Time Replay Time

1024 1024

256 256

6

R

Running Time (s)
Running Time (s)
Running Time (s)

=
o

IS
~

% %% % \}0*’790707%@%%{%@7 R ‘/°7%>7 > L % K “’z@e
Number of Nodes Number of Nodes Number of Nodes
(d) IS (Modified Input Size) (e) CG Class D (Square Topology)(f) CG Class D (Rectangular Topol-
ogy)

Fig. 12. Replay Time Accuracy for Strong Scaling Benchmarks

Strong Scaling: For this set experiments, we used the NPB BT, EP, FT, CG, arcdd8s with
a total number of nodes of up to 16,384. For CG, EP, and FT, wé cisiss D input sizes. For BT,
class E was used so that a sufficient workload is guarante®s 284 nodes. For IS, we modified
the input size to adapt it for 16,384 nodes (the original NBB@PI provides only class D problem
size and supports a maximum of 1024 nodes). These probles aim node sizes were decided
based on the memory constraints (for some benchmarks, nyezopstraints compel us to gener-
ate the base traces already at large scales, which in twaddawer target sizes for evaluation)
and the availability of computational resources to asdes®ffects and limitations of our timing
extrapolation approach.

In this set of experiments, we first generated 4 trace filesdch benchmark as the extrapolation
basis. From these base traces, an extrapolated trace wstsuobd@d next using GALAEXTRAP,
including extrapolated delta time histograms. We thensastiee timing accuracy by replaying the
extrapolated traces. During replayc & AREPLAY parses the timing histograms of the computa-
tion periods in the trace files. It simulates computationlbgging to delay the next communication
event by the proper amount of time. In this context, the ¢ftédoad imbalance is preserved by
SCALATRACE. The timing histogram records not ortyinimum, maximum, average and standard
deviation values, but also th&requency for each timing bin, and these statistics are also extrapo-
lated by ALAEXTRAP. During replay, the sleeping time is generated accordirigdee statistics
and the unbalanced timing behavior is thus reproduced. Gonwation is simply replayed with the
same extrapolated end points and payload sizes but a ranéssage payload. We do not impose
any delays on communication as published results indicatteraccuracy with just delays for com-
putation only [Noeth et al. 2009], which we also confirmedtHis experiment, SALAREPLAY is
linked to neither 8ALATRACE nor mpiP to avoid additional overhead caused by the instntiane
tion layer of these tools. Hence, the output afA3A REPLAY in this experiment is the total time
to replay a trace. For each extrapolated trace, we run thesmonding application at the same
problem size and record its overall execution time for cornspa.

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:17

Figure 12 depicts the extrapolation accuracy of BT, EP, §Tahd CG, respectively, for a varying
number of nodes. We show the extrapolation results of CG prarsee figures because they have
different communication topologies and thus a differetitapolation basis. As shown in Figure 12,
the timing extrapolation accuracy is generally higher tB8%6, sometimes even higher than 98%,
where accuracy is defined as

_ |Replay Time — App Time|
App Time

For BT, we observed slightly lower accuracy when the totahhar of nodes approaches 16,384.
At such sizes the computational workload becomes so snalthtle influence of non-deterministic
factors, such as system overheads or performance fluatuEtMPI collectives caused by different
process arrival patterns [Faraj et al. 2007], become damhii@mpared to the other benchmarks,
IS shows a constantly lower accuracy (66%-83%). Two reasmysexplain this phenomenon: (a)
Although IS dynamically rebalances the workload acrosaa@dles, the execution time of the appli-
cation’s sorting algorithm on each process still takes gediht amount of time. Hence, collective
MPI calls take unpredictable time to synchronize as thevartimes of processes at collectives
varies significantly due to load imbalance. Since the degfémbalance is determined by ran-
domly determined delta times from histograms, it is difficalpredict/extrapolate this behavior. (b)
Source code analysis shows that the most computationadigsive code section in IS consists of
two phases, namely (i) an inverse-proportional phasei(neris inverse-proportional to the number
of nodes), and (ii) a relatively short constant phase (n@tioes not change significantly with node
sizes). When the node size is small, the inverse-propattiphase almost solely determines the
computation time. As a result, our algorithm fails to unaavemall constant factor that contributes
to timing for larger node sizesC3LAEXTRAP instead treats it as a pure inverse-proportional timing
trend. Without the short constant factor in the timing cuthe extrapolated runtime drops slightly
faster than the real runtime leading to a constantly shoefgay time. However, since we are able
to capture the dominating inverse-proportional timingntrewe still obtained an acceptable timing
prediction accuracy.

In large, minor inaccuracies during replay stem from imggecurve fitting for the extrapolation
of computation times. For the simulation of communicatiaredion, ALAREPLAY depends only
on the communication parameters such as end points andgohgipes, which are shown to be
correctly extrapolated in Section 5.1. Overall, the extiafed timing information precisely reflects
the runtime of the original application at the target probkze and node size.

Weak Scaling: Weak scaling refers to varying the problem size and the nuwigrocesses at
the same rate so that the problem size per node stays conslsténg scaling [Gustafson 1988].
Among the three factors we have to extrapolate, namely camuation topologies, message sizes,
and computation times, strong scaling and weak scalingrgbyeo not affect the communication
topology in different waysi.e., the communication patterns often evolve similarly fortbstrong
and weak scaling. Therefore, the communication topolodgdi®n and extrapolation algorithms
still apply to weak scaling codes. For the other two factoosppared to strong scaling codes, weak
scaling codes may exhibit different runtime behavior. Bareple, due to a constant computational
workload per node, the computation times often (but not wb)éollow a constant trend for weak
scaling. In terms of the message sizes, the overall messdgme exchanged among all the par-
ticipating nodes—typically wittHPI_A11toall or MPI_Alltoallv—often increases linearly (or
remain constant) under weak scaling when varying the tatalber of processes. Nonetheless, the
curve fitting approach is still applicable, though diffefadditional curve fitting algorithms may
have to be supplied in practice.

We verified our extrapolation approach with weak scalingesodlVe conducted these experiments
with the NPB BT, EP, FT, IS and LU codes, and the Sweep3D natttamsport kernel [Wasserman
et al. 2000]. (For other NPB codes, such as CG, weak scaljmgsrcould be easily be constructed.)
Unlike Sweep3D, the NPB codes are originally designed asgtscaling benchmarks. Hence, we
manually changed the input to provide weak scaling worksoad

Accuracy = (1

) x 100%

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

A:18 X. Wu and F. Mueller

In the first experiment, we verified the correctness of theegetied traces with respect to the ex-
trapolated communication topologies and the values of déimencunication parameters. We applied
similar testsj.e., static trace comparison and mpiP results comparisonh&synthetically gener-
ated traces under weak scaling. The results show that thepexated traces are able to correctly
preserve the communication semantics, and hence demtensteaapplicability of our topology
extrapolation algorithm for applications under weak suali

In the second experiment, we evaluated the accuracy of thepetated timings for weak scaling
problems. We used BT, EP, FT, IS, LU, and Sweep3D benchmarksres with up to 16,384 MPI
processes. We first generated four traces for each benclasdhe extrapolation basis. Because
these base traces were obtained from a series of weak seaftgtions, the timing information
preserved in the traces also reflects the weak scaling ti®adhen performed the extrapolation
with SCALAEXTRAP and replayed the extrapolated traces to obtain and evatuateccuracy of
the total runtimes against the original runs. In these eérparts, we observed that the duration of
most of the computational phases remains consistent degdaling. This is because for a given
weak scaling input, the per-node problem size is fixed imetpe of the node size. We observed
this trend for all benchmarks in this experiment, includihg simpler ones such as EP and FT as
well as the more complicated ones such as Sweep3D and LUobk&rvation is consistent with
our empirical knowledge about the nature of weak scalingesoth BT, we also observed a more
complicated timing trend for some of the computational plsasaused by the 3D layout of the
problem. Nevertheless, our curve-fitting approach renstiispplicable. Figure 13 depicts the ex-
trapolation accuracy of the benchmarks. Quantitatively,rhean absolute percentage accuracy (as
defined in Section 5.2) across all benchmarks and test 928v%. Among all the tests, IS with
4,096 nodes has a relatively low timing accuracy. IS usekdisort to distribute the elements to
different nodes and then sorts the local elements withih eade. When run with 4,096 nodes with
the weak scaling input we provided, IS failed to balance thé&dwad across nodes. Since the base
traces for extrapolation were obtained from runs with gaadiibalance, we cannot extrapolate the
inconsistent computational duration caused by the unbathworkload. We thus simply could not
reproduce the unbalanced timing behavior during replagréll; our timing extrapolation approach
is able to accurately predict the runtimes without expeaiiggnadditional challenges beyond those
observed under strong scaling. With such a high timing asgyuand the proven communication
semantics, the extrapolated weak scaling traces can befustrdce-based system simulation or
other performance analysis experiments.

5.3. Lossy Extrapolation

Compared to all other benchmarks discussed so far, MG ddnatesthe most complicated com-
munication pattern. Overall, MG has a 3D communication togga All nodes participate in a reg-
ular 7-point 3D torus-style communication. However, as aoancommunication pattern, nodes at
particular positions also communicate to nodes one hopeftie of 2) away in the 3D space. This
communication is rank dependent even for those particigatiodes, which makes the per-node
traces highly divergent and the size of the final trace nafatde. What is even more challenging is
that the non-SPMD communication pattern does not exhilyitregular spacial property in forming
the communication groups, i.e., there is little informatto be derived from smaller traces about
how a node will behave at larger scale. As a result, we canmohel extrapolation by utilizing a
general approach.

To extrapolate MG, we applied the lossy extrapolation apgho Specifically, we applied the
snippet-based trace event filtering at the intra-node leveliminate the minor rank dependent
communication events. With events dropped, the generededd consist of only the dominating
regular 3D torus communication and the collectives. Whengared across different node sizes,
the traces are structurally identical, which indicates dgué compression. As the result, the ex-
trapolation of MG is largely simplified and becomes equikate the extrapolation of the 3D torus
micro-benchmark.

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

Running Time (s)

Running Time (s)

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:19

o
=
)
o
=
)
-3
i

App Time D= App Time mm=m App Time =
256 Replay Time 256 Replay Time 32 Replay Time
128 128
© «
64 T 64 o 16
32 E =2 E .
16 2 16 2
g £
8 5 8 S 4
4 4
4 4
2
2 2
! b % G Yo < Y Y ! S Yo O 6, X% Y ! @ G Uy D S Y
% % %
¢ T Y Y %, R A A %, R TR %, Ry, %,
Number of Nodes Number of Nodes Number of Nodes
(a) BT (b) EP (c) FT
64 - 1024 - 128 "
App Time == App Time == App Time ===
Replay Time Replay Time 64 Replay Time

w
[\
N
a
-

=

=Y
w
N

-3
R

-

o

3

IN
N
o

Running Time (s)
Running Time (s)

N
IS

BN A ®

-
[N

o G @ 2 o, T %
sed‘v\%oevo‘%\cs;%>7

Number of Nodes Number of Nodes Number of Nodes

(dy IS (e) LU (f) Sweep3D

RZ 6, <% 07 % R7 Vo O 6, Y <% Y. . Y
o & Y by By Gy s B % G % e Ry Yy,

Fig. 13. Replay Time Accuracy for Weak Scaling Benchmarks

We evaluated the lossy extrapolation of MG with both stroogling and weak scaling con-
figurations. For weak scaling experiments, we changed et igenerator to provide weak scaling
inputs. We first evaluated the ability of extrapolated testogpreserve communication events. We re-
played each extrapolated trace with mpiP instrumentatimeu SCALA REPLAY. We subsequently
compared the generated mpiP results (profile counts) witkettobtained by executing the mpiP-
instrumented original benchmark over the same number ofpM&iesses. The experimental results
show that for all the extrapolated sizes the number of drogvents is constantly less than 5% of
the total number of MPI events, which indicates the commatioa workload is well preserved.
Figure 14 compares the replay times of the extrapolatedsriacthe runtimes of the original bench-
mark. Due to inaccurate curve fitting, the replay times ofdkigapolated traces are slightly longer
than the original runtimes at large scales. Nonetheless after increasing the replay times by 5%
(given less than 5% of the events were filtered), the extedpdltraces were still able to reflect the
total runtime of the original benchmark.

When configured for strong scaling, MG falls into the catggafrapplications that do not fol-
low the dominating communication pattern at smaller scaldsch presents a challenge. On the
positive side, we are able to preserve and extrapolatealttahectives and the regular 7-point 3D
torus communication pattern, the latter of which is meas$twéde the dominating pattern at smaller
scales. However, as the problem size per node decreasesrttier of the 3D torus communica-
tion events also decreases. Meanwhile, the number of theeMgtts corresponding to the minor
communication pattern stays constant and starts to doméésrger scales. For example, with the
lossy tracing approach, 96.98% of tMBI_Send operations were preserved in the 64-node trace
of MG while only 77.56% were preserved in the trace of 1024es0ds a result, the extrapolated
trace loses its ability to preserve most of the communicatiorkload, even though one of the
two overlapping communication patterns is fully capturgithce our trace-based extrapolation is a
black box approach relying only on information in the inpaices instead of knowledge about the

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

A:20 X. Wu and F. Mueller

120 + App Time === |
Replay Time
100 | 1
e
> [-
£ 80
|_
2 607
c
S
g 407
20
6, U5 9n S Y b %
v D S8 s Y05 SQ, O
CRCA I e O

Number of Nodes

Fig. 14. Timing Accuracy of Lossy Extrapolation of Weak Scaling MG

source code of the application, the extrapolation of thengfrscaling for MG is beyond the scope
of SCALAEXTRAP's current capabilities.

6. APPLICATIONS OF TRACE EXTRAPOLATION

Extrapolated traces provide the means to correctly préldéctommunication semantics and tim-
ing behavior of the original applications at large scalesl@wonstrated in our experiments. This
capability enables the extrapolated traces to be used ftorpgance analysis. For example, traces
can be fed into discrete-event-based simulators, suchiiagNns, for performance simulation.
They can also be used as the input for visualization tootd) ais \VAMPIR Next Generation. In this
section, we describe two case studies to demonstrate adtese cases of the extrapolated traces.
Experiments described in this section were performed on AREuster with 1728 cores on 108
compute nodes, 32 GB memory per node and both Infiniband dred it interconnects.

6.1. Code Generation from Extrapolated Traces

In the first case study, we use the extrapolated traces toafernmarallel benchmarks. The main idea
of benchmark generation is to automatically generate 1) &Bhts with the same parameter values
and temporal ordering, and 2) sleeps that mimic the comipuatatages in the original application
based on the information of the input trace [Wu et al. 2011sHpande 2011]. The drawback of
the trace-based benchmark generation approach is thaetterajed code can only be launched
with the same number of MPI processes with which the trace aeiscted. Our extrapolation
approach compliments such generation approaches by augrg@recisely this restriction: With
the extrapolated trace, the benchmark generator may auergte code for arbitrary number of
MPI processes that accurately reflects application behavitat size.

To demonstrate the idea, we generated C+MPI code from thepotated Sweep3D traces. In
this experiment, we first ran theCALATRACE-instrumented Sweep3D code at node sizes of 16,
36, 64, and 100, to collect the base traces for extrapolafi@then extrapolated a series of traces
for the node sizes of 144, 196, 256, 324, and 400, which wdrsesjuently fed into the benchmark
generator to generate C+MPI parallel benchmarks. Figuetipares the total execution times of
the generated benchmarks to that of the original applicata the same node size. Quantitatively,
the mean absolute percentage accuracy (as defined in SB@jpacross all test cases is.28%.
With such a high timing accuracy, the generated benchmark$®e used for performance analysis
experiments, especially for novel interconnects or cpatform test. In effect, the auto-generated
benchmark serves as a substitute for the original appdicafihis is particularly beneficial when

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:21

the original application’s source code was classified stheeauto-generated benchmark also ob-
fuscated the original code can be release without restristi

256
Application ===
128 | Generated Benchmark s |

w (o2
N b
T T

Running Time (s)
B
[e2]

[N -y [oe]
T T T

N N4 <X 2 <
Y % % % 9D
Number of Nodes

Fig. 15. Timing Accuracy for the Benchmarks Generated from thedpdtated Traces

6.2. Performance Experiments with Extrapolated Traces

The second case study utilizes the extrapolated trace tyzarthe impact of computational speedup
on the overall performance. Computational speedup can lneved in multiple ways. For exam-
ple, application developers can optimize performance lgrlapping communication and compu-
tation. They may also manually or automatically paralkelibeir code to take advantage of the
compute power of the multi-core/many-core architectufesurrent trend in high-performance
computing is to supplement general-purpose CPUs with mpeeial-purpose computational ac-
celerators (e.g., GPUs). Unfortunately, it is neitheri&divo predict how fast a parallel application
will run once accelerated nor to port a parallel applicatman accelerated architecture.

To readily assess the effect of computational speedup defgrlementation, application devel-
opers can perform a quick what-if analysis by modifying tpplecation trace. A unique feature of
SCALATRACE is that the collected trace is concise and structure-prege(This opens the door to
manual inspection and modification of traces for perforneaalysis. Since the extrapolated trace
is equivalent to the trace obtained from a real executioshdres the same merits (and shortcom-
ings) as the original code.

As an example, we assess the impact of computational spesdtie overall performance of
Sweep3D with the extrapolated Sweep3D trace. In this ey, we used the Ethernet intercon-
nect on ARC, which is slower than Infiniband. We first extraped the Sweep3D trace of 400
MPI processes from smaller traces. We then changed the datigrutimes and message volumes
recorded in the trace to simulate different expected imgnuents due to (a) hardware acceleration
and (b) fluctuations in the communication workload. Tota@xtion time was measured to reflect
the change of the overall performance. Results are showigiré-16. The x-axis indicates the
length of the generated computational phases in perceofdge original delta time. The different
curves correspond to different message volumes. We obaarveeresting phenomenon: Reducing
the computation times.e.,“accelerating” the computational stages, doesalways lead to a better
overall performance. For example, when the message volsiimerieased from 1 to 2 and then 4
times of the actual values, the best overall performancehg&ged when the sleep time is set to
be 10%, 20%, and 40% of the original, respectively. This iegph speedup for 10x, 5x, and 2.5x
for the computational parts, respectively. Particulasligen the message volume is set to 8 times of
the actual value, the optimal sleep time is 180% of the oalgiomputation times, which indicates
that, instead of trying to accelerate, application devetsmctually should slow down the compu-
tation stages to achieve the best overall performance. @ierstand this puzzling behavior, note

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

A:22 X. Wu and F. Mueller

that Sweep3D is a stencil code consisting almost exclysivesynchronous point-to-point com-
munication operations. Shortening the sleep times inesetie contention in the network, which in
turn offsets the time saved with computational speedup eldheer, the larger the message volume,
the heavier the network congestion would be. As a resuliptienal sleep time increases with the
message volume.

In prior work, Hoisieet al. studied the Sweep3D code through performance modelingséloi
et al. 1999]. With their model, the authors showed that thglsinode efficiency, rather than the
inter-processor communication performance, is the domiperformance bottleneck. The apparent
discrepancy is caused by the fact that the impact of commatinitperformance is evaluated from
different aspects. In Hoisie’s work, the time of a single coumication stage is modeled &gy =
to + Nmsg/B, Wherety is the latency and overhead, aBds the bandwidth in the LogGP model.
Subsequently, they fixed the bandwidth and modified the ¢gtigrirom 10us to 0.1us and showed
that decreasing the MPI latency by a factor of 100 reducesnerby only less than a factor of two.
Our work studies a different aspect. We show that the aVeiladindwidttB is reduced significantly
with increasing congestion. When the message Nigg is large (as is the case in Sweep3D), the
change of bandwidth dominates the change of the commumittitne Trgg and thus substantially
decreases overall performance.

We should note that the experimental result presented iar€itj6 is both application-specific
and platform-specific. Yet, with the application trace, wiianalysis on application performance
can easily be performed without the need to implement a leaskeleton algorithm or even port
the original application. Besides, with the trace-basedagwlation, performance analysis can be
performed even without the large-scale input data set ondcessary hardwareg., without pur-
chasing a large number of GPUs and deploying them over camudes.

800
Message Volume x 1 —+—
700 Message Volume x 2 === |
@ Hq, Message Volume X 4 %
> 600 fFg Message Volume x 8 i l
. g um
F 500 B
5
= ",
S 400 T
o) B o
5 300 "“‘“‘EJVVVE,....H....E,..‘.;]H‘E]..-.E!"“E’ I
£ 200 f- .
2 x.,,,(“*.%*%*__}‘“*..
100 S e
0

O < % 6y & ¢ 5 Yy Ya Yo <h 5
O "0 "0 "0 QO p % 6 Y~ <p %

Computation Time (% of Original)

Fig. 16. The Impact of Computational Speedup on the Overall Pedora

7. RELATED WORK

SCALATRACE is an MPI trace-gathering framework that generates neatantisize communica-
tion traces for a parallel application regardless of the lpenof nodes while preserving structural
information and temporal ordering [Noeth et al. 2009; Ratal €2008] (see Section 2. Our extrap-
olation work builds on the trace representation GASATRACE.

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:23

Xu et al. construct coordinated performance skeletons to estinpgikcation execution time in
new hardware environments [Xu et al. 2008; Xu and SubhlokBR0rthey detect dominant com-
munication topologies by comparing an application comroation matrix against a predefined set
(library) of reference patterns. In this work, complicatetnmunication patterns, such as the NAS
benchmark CG, are handled by manually provided specificatidthe new patterns. Moreover, the
graph spectrum analysis and graph isomorphism testsadtilizthis work lack scalability in terms
of time complexity and thus limit the applicability of thisonk at large sizes. Most significantly,
their work does not capture all communication events.

Zhai et al. collect MPI communication traces and extract applicatiommunication patterns
through program slicing [Zhai et al. 2009]. This work utdiza set of source code analysis tech-
niques to build a program slice that only contains the véembnd code sections related to MPI
events, and then executes the program slice to acquire coiation traces. While removing the
computation in the original application enables a fast admehp trace collection, it also causes the
loss of temporal information that is essential for chandzitegy the application runtime behavior.
In addition, the lack of trace compression limits its fedgibfor large-scale application tracing.
Based on the FACT framework, Zhetial. employ a deterministic replay technique to predict the
sequential computation time of one process in a paralldi@gifn on a target platform [Zhai et al.
2010]. The main idea is to use the information recorded irtrifiee to simulate the execution result
of MPI calls when there is actually only one MPI process, atilze the deterministic data replay to
simulate the runtime of the computation phases on the tptggorm. While this approach manages
to predict the computation time, it fails to capture the camination related effects. In addition,
this work focuses on cross-platform performance predidbiat cannot predict the application per-
formance on a cluster that is larger than the available Hatfopm.

DIMEMAS is a discrete-event-based network performance simulb#iruses RRAVER traces
as input [Pillet et al. 1995]. It simulates the applicatighhvior on the target platform with speci-
fied processor counts and network latency. HowevenHMAS simulations are infeasible for peta-
/exascale simulations due to a lack of hardware resourcgsrterate the input trace and the sheer
size of traditional application traces. Hermarhsl. presented a method for verifying hypotheses
on causality between distant performance phenomena ie-&ggle MPI Applications [Hermanns
et al. 2009]. By manipulating the application trace, repigyand performing wait-state analysis on
the simulated event trace, this approach facilitates thegalanalysis for hypothesized performance
problems. Our work, in contrast, focuses on the trace eatatipn for larger platforms that appli-
cations have not yet been ported to or even future platfoexascale). The extrapolated traces can
subsequently be used for various purposes that a normalirght be used for, such as 1) determin-
istic replay with ALAREPLAY, 2) the input trace for simulators (REMAS/SST) for performance
prediction, and 3) benchmark generation for performangeements, as described in Section 6.
Ronsseet al. presentedRoltMT, an extension of ROLT (Reconstruction of Lamport Timestanp
for message passing systems [Ronsse and Kranzimuellej.1898oltMT, send events related
with a promiscuous receive event are attached with Lampoestamps incremented by a positive
number. Since only timestamps for these events are recandi trace, the trace size and the
program perturbation caused by tracing are minimized. €herded Lamport timestamps are then
used in replay with additional synchronizations to allowedetiministic replay of programs with
non-deterministic receives.

Preisslet al. extract communication patterrig., the recurring communication event sets, from
MPI traces [Preissl et al. 2008]. They first search for repgadccurrences of identical events in
the trace of each individual process and then iterativedyvghem into global patterns. The output
of this algorithm can be used to identify potential bottlekeein parallel applications. Preiss
al. further utilize the detected communication patterns tmwmatte source code transformations
such as automatic introduction of MPI collectives [Preisshl. 2008]. Our method, in contrast,
focuses on the spatial aspect of communication eveeisthe identification and extrapolation of
communication topology.

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

A:24 X. Wu and F. Mueller

Eckert and Nutt [Eckert and Nutt 1996; 1994] extrapolatedsof parallel shared-memory appli-
cations. They take as input the traces collected on an mgiafichitecture and extrapolate them to a
target platform with different architectural parameterishout re-executing the original application.
This work analyzes the causal event stream. It focuses ocdtinectness of the extrapolated trace
given the existence of program-level non-determiniei, the interleaving of events or modifica-
tions in the actual set of events caused by moving the traossdifferent architectures. In contrast,
our work is based on deterministic application executior.aléo preserve the causal ordering of
communication events but our focus is on the communicatérabior at arbitrary problem sizes.

Performance modeling has traditionally taken the appradeigorithmic analysis, often com-
bined with tedious source code inspection and hardware lingder floating-point operations per
second, memory hierarchy analysis from caches over buseaitomemory and interconnect topol-
ogy, latency and bandwidth considerations. In particidarbysonet al. present a predictive per-
formance and scalability model of a large-scale multidisienal hydrodynamics code [Kerbyson
et al. 2001]. This model takes application, system, and inggparameters as input to match the
application with a target system. It utilizes a multitudef@imulae to characterize and predict the
performance of a scientific application. Snavetlgl. model and predict application performance by
1) characterizing a system with machine profiles, namelylsiprocessor performance and network
latency and bandwidth, 2) collecting the operations in grlieation to generate application signa-
tures, and 3) mapping signatures to profiles to charactpedermance [Snavely et al. 2002; Bailey
and Snavely 2005]. Grubet al. describe PatternTool, an interactive tool for creatindadae hi-
erarchical graphs to define the communication patterns anttal flows of a parallel algorithm
graphically [Gruber et al. 1996]. The created performanod@hcan be used as the input to PAPS
(Performance Prediction of Parallel Systems), a simulgiat can be parameterized for different
computer systems for what-if performance analykisk et al. follow a completely different ap-
proach by utilizing artificial neural networks (ANNs) to piiet the performance when application
configuration variesipek et al. 2006]. This approach employs repeated sampfiagmall number
of points in the design space that are statistically deteechithrough SimPoint [Sherwood et al.
2002]. Only these points are then simulated and resultstdized to teach the ANNs, which are
subsequently utilized to predict the performance for ottesign points. In contrast, our work ex-
plores the potential of extrapolating the application imetaccording to its evolving trend across
increasing problem sizes. Since this method requires ereitttasurement of performance metrics
nor intense computation, it provides a simple and highlycigffit approach to study the effect of
scaling across a large numbers of compute nodes. In comdradit of the above approaches, our
SCALAEXTRAP does not just simulate communication behavior at scale llmws such behavior
to be observed in practice through replaying on a targefgstatwith large numbers of nodes, even
if the corresponding application itself has not been poytsd

8. CONCLUSION

Scalability is one of the main challenges of scientific agadions in HPC. Advanced communica-
tion tracing techniques achieve lossless trace collecpogserve event ordering and encapsulate
time in a scalable fashion. However, estimating the impéstaling on communication efficiency
is still non-trivial due to execution time variations ancgesure to hardware and software artifacts.
This work contributes a set of algorithms and analysis tephes to extrapolate communication
traces and execution times of an application at large scieimformation gathered from smaller
executions. The extrapolation of communication tracegddp on an analytical method to charac-
terize the communication topology of an application. Bazethe observation that problem scaling
increases/decreases communication parameters anddgy@atla certain rate, we utilize a set of lin-
ear equations to capture the relation between communicatoes for changing number of nodes
and extrapolate communication traces accordingly. Foektapolation of communication traces,
the detection of communication topology is non-trivial lalgo vital. We currently focus on sten-
cil/mesh topology with nodes arranged in a row-major fashiwhile a large amount of parallel
applications fall into this category, we observed more cempommunication topologies that are

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

SCALAEXTRAP: Trace-Based Communication Extrapolation for SPMD Programs A:25

hard to detect with a generic approach, which limits the iappllity of this work. In future work,
user plugins will be supported so that the extrapolationomfiglicated and unique communication
patterns can be facilitated by user-supplied information.

For the extrapolation of timing information, we utilize eerfitting approaches to model trends
in delta times over traces with varying number of nodes.iSitel methods are further employed
to mitigate timing fluctuations under scaling. We currectypture four categories of the most com-
monly seen timing trends. However, the prediction of momaglicated timing trends, including
detection of combinations of currently supported timingntits, may require more sophisticated
algorithms.

Experiments were conducted using an implementation thiroug SCALA EXTRAP tool and with
the NAS Parallel Benchmark suite and Sweep3D. We utilizetbu5,384 nodes of a 73,728-node
IBM Blue Gene/P. Experimental results show that our alpamiis capable of extrapolating sten-
cil/mesh and collective communication patterns for botbrgy scaling and weak scaling configu-
rations. Extrapolation of timing information is furtherastin to provide good accuracy.

We believe that extrapolation of communication traces #maflel applications at arbitrary scale
is without precedence. Without porting applications, camination events can be replayed and
analyzed in a timed manner at scale. This has the potentaiadble otherwise infeasible system
simulation at the exascale level.

REFERENCES

BAILEY, D. AND SNAVELY, A. 2005. Performance modeling: Understanding the premhpredicting the future. IBuro-
Par Conference.

BAILEY, D. H., BARszCz E., BARTON, J. T., BROWNING, D. S., CARTER, R. L., DAGUM, D., FATOOHI, R. A., FRED-
ERICKSON, P. O., LAsINSKI, T. A., SCHREIBER, R. S., SMON, H. D., VENKATAKRISHNAN, V., AND WEER-
ATUNGA, S. K. 1991. The NAS Parallel BenchmarKs$e International Journal of Supercomputer Applications 5, 3,
63-73.

BERGROTH, L., HAKONEN, H., AND RAITA, T. 2000. A survey of longest common subsequence algorithmf2roceed-
ings of the Seventh International Symposium on Sring Processing Information Retrieval (SPIRE’00). IEEE Computer
Society, Washington, DC, USA, 39-.

BRUNST, H., KRANZLMULLER, D.,AND NAGEL, W. 2005. Tools for Scalable Parallel Program Analysis - parNG and
DeWiz. The International Seriesin Engineering and Computer Science, Distributed and Parallel Systems 777, 92—102.

DESHPANDE V. 2011. Automatic Generation of Complete Communicati&el&ons from Traces. M.S. thesis, North Car-
olina State University, Raleigh, NC, USA.

ECKERT, Z. AND NUTT, G. 1996. Trace extrapolation for parallel programs onegthanemory multiprocessors. Tech. Rep.
TR CU-CS-804-96, Department of Computer Science, UnityeadiColorado at Boulder, Boulder, CO.

ECKERT, Z. K. F. AND NUTT, G. J. 1994. Parallel program trace extrapolationlnternational Conference on Parallel
Processing. 103-107.

FARAJ, A., PATARASUK, P.,AND YUAN, X. 2007. A study of process arrival patterns for MPI coleetoperations. In
International Conference on Supercomputing. 168—179.

GROPR W., Lusk, E., Doss N., AND SKJELLUM, A. 1996. A high-performance, portable implementationtaf MPI
message passing interface stand®edallel Computing 22, 6, 789-828.

GRUBER, B., HARING, G., KRANZLMUELLER, D., AND VOLKERT, J. 1996. Parallel programming with capse — a case
study.Parallel, Distributed, and Network-Based Processing, Euromicro Conference on 0, 0130.

GUSTAFSON J. L. 1988. Reevaluating Amdahl’'s la®@ommunications of the ACM 31, 5, 532-533.

HERMANNS, M.-A., GEIMER, M., WOLF, F.,AND WYLIE, B. J. N. 2009. Verifying causality between distant perfance
phenomena in large-scale mpi applicationsPhaceedings of the 2009 17th Euromicro International Conference on
Parallel, Distributed and Network-based Processing. IEEE Computer Society, Washington, DC, USA, 78-84.

HoISIE, A., LUBECK, O. M.,AND WASSERMAN, H. J. 1999. Performance analysis of wavefront algorithmsesy-large
scale distributed systems. Workshop on Wide Area Networks and High Performance Computing. Springer-Verlag,
London, UK, 171-187.

IPEK, E., MCKEE, S. A., CARUANA, R.,DE SUPINSKI, B. R.,AND SCHULZ, M. 2006. Efficiently exploring architectural
design spaces via predictive modeling ABPLOS-XII: Proceedings of the 12th international conference on Architec-
tural support for programming languages and operating systems. 195-206.

KERBYSON, D., ALME, H., HOISIE, A., PETRINI, F., WASSERMAN, H., AND GITTINGS, M. 2001. Predictive performance
and scalability modeling of a large-scale applicationSlipercomputing.

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

A:26 X. Wu and F. Mueller

KERBYSON, D. J.AND HoISIE, A. 2006. Performance modeling of the blue gene architectarJVA ' 06: Proceedings of
the |EEE John Vincent Atanasoff 2006 International Symposium on Modern Computing. 252—259.

KNUPFER A., BRENDEL, R., BRUNST, H., Mix, H., AND NAGEL, W. E. 2006. Introducing the open trace format (OTF).
In International Conference on Computational Science. 526-533.

LABARTA, J., GRONA, S.,AND CORTES, T. 1997. Analyzing scheduling policies using dimenkesallel Computing 23, 1-
2,23-34.

NAGEL, W. E., ARNOLD, A., WEBER, M., HOPPE H. C.,AND SOLCHENBACH, K. 1996. VAMPIR: Visualization and
analysis of MPI resourceSupercomputer 12, 1, 69-80.

NOETH, M., MUELLER, F., SCHULZ, M., AND DE SUPINSKI, B. R. 2007. Scalable compression and replay of communi-
cation traces in massively parallel environmentdnbernational Parallel and Distributed Processing Symposium.

NOETH, M., MUELLER, F., SCHULZ, M., AND DE SUPINSKI, B. R. 2009. Scalatrace: Scalable compression and replay of
communication traces in high performance computilogrnal of Parallel Distributed Computing 69, 8, 969—710.

PILLET, V., LABARTA, J., ORTES T.,AND GIRONA, S. 1995. PARAVER: A tool to visualise and analyze paral&e In
Proceedings of WoTUG-18: Transputer and occam Developments. Transputer and Occam Engineering Series, vol. 44.
17-31.

PREISSL, R., KOCKERBAUER, T., SCHULZ, M., KRANZLMULLER, D., SUPINSKI, B. R.D., AND QUINLAN, D. J. 2008.
Detecting patterns in mpi communication tracesl@FP '08: Proceedings of the 2008 37th International Conference
on Parallel Processing. IEEE Computer Society, Washington, DC, USA, 230-237.

PREISSL, R., SCHULZ, M., KRANZLMULLER, D., SUPINSKI, B. R.,AND QUINLAN, D. J. 2008. Using mpi communi-
cation patterns to guide source code transformationkC@8’ 08: Proceedings of the 8th international conference on
Computational Science, Part I11. Springer-Verlag, Berlin, Heidelberg, 253-260.

RATN, P., MUELLER, F., DE SUPINSKI, B. R.,AND ScHuULZ, M. 2008. Preserving time in large-scale communication
traces. Innternational Conference on Supercomputing. 46-55.

RODRIGUES A. F., MURPHY, R. C., KOGGE, P.,AND UNDERWOOD, K. D. 2006. The structural simulation toolkit:
exploring novel architectures. Poster at the 2006 ACM/IEEE Conference on Supercomputing. 157.

RONSSE M. AND KRANZLMUELLER, D. 1998. Roltmp-replay of lamport timestamps for messagsing system®aral-
lel, Distributed, and Network-Based Processing, Euromicro Conference on 0, 0087.

SHERWOOD, T., PERELMAN, E., HAMERLY, G.,AND CALDER, B. 2002. Automatically characterizing large scale pragra
behavior. INASPLOS-X: Proceedings of the 10th international conference on Architectural support for programming
languages and operating systems. 45-57.

SNAVELY, A., CARRINGTON, L., WOLTER, N., LABARTA, J., BADIA, R.,AND PURKAYASTHA, A. 2002. A framework
for performance modeling and prediction. Sapercomputing.

VETTER, J.AND MCCRACKEN, M. 2001. Statistical scalability analysis of communicatoperations in distributed appli-
cations. INACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.

WASSERMAN, H., HOISIE, A., AND LUBECK, O. 2000. Performance and scalability analysis of teradlcade parallel ar-
chitectures using multidimensional wavefront appligasiorhe International Journal of High Performance Computing
Applications 14, 330-346.

Wu, X., MUELLER, F., AND PAKIN, S. 2011. Automatic generation of executable communicasipecifications from
parallel applications. IfProceedings of the international conference on Supercomputing. ICS '11. ACM, New York,
NY, USA, 12-21.

Wu, X., VIJAYAKUMAR , K., MUELLER, F., MA, X., AND ROTH, P. C. 2011. Probabilistic communication and i/o tracing
with deterministic replay at scale. ICPP.

XU, Q., RRITHIVATHI, R., SUBHLOK, J.,AND ZHENG, R. 2008. Logicalization of mpi communication traces. TeRBp.
UH-CS-08-07, Dept. of Computer Science, University of Hons

XU, Q.AND SUBHLOK, J. 2008. Construction and evaluation of coordinated perdnce skeletons. limternational Con-
ference on High Performance Computing. 73-86.

ZHAI, J., CHEN, W.,AND ZHENG, W. 2010. Phantom: predicting performance of paralleliapfibns on large-scale parallel
machines using a single node AGM SIGPLAN Symposium on Principles and Practice of Parallel Programming. 305—
314.

ZHAI, J., HENG, T., HE, J., CHEN, W., AND ZHENG, W. 2009. Fact: fast communication trace collection foraiar
applications through program slicing. Supercomputing. 1-12.

ACM Transactions on Programming Languages and SystemsyMib. N, Article A, Publication date: January YYYY.

