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Abstract

The growing processor/memory performance gap causes the
performance of many codes to be limited by memory ac-
cesses. If known to exist in an application, strided memory ac-
cesses forming streams can be targeted by optimizations such
as prefetching, relocation, remapping, and vector loads. Un-
detected, they can be a significant source of memory stalls in
loops. Existing stream-detection mechanisms either require
special hardware, which may not gather statistics for subse-
quent analysis, or are limited to compile-time detection of array
accesses in loops. Formally, little treatment has been accorded
to the subject; the concept of locality fails to capture the exis-
tence of streams in a program’s memory accesses.

The contributions of this paper are as follows. First, we de-
fine spatial regularity as a means to discuss the presence and ef-
fects of streams. Second, we develop measures to quantify spa-
tial regularity, and we design and implement an on-line, parallel
algorithm to detect streams — and hence regularity — in run-
ning applications. Third, we use examples from real codes and
common benchmarks to illustrate how derived stream statistics
can be used to guide the application of profile-driven optimiza-
tions. Overall, we demonstrate the benefits of our novel regular-
ity metric as a low-cost instrument to detect potential for code
optimizations affecting memory performance.

This work was performed under the auspices of the U.S. Department of En-
ergy by the University of California Lawrence Livermore National Laboratory
under Contract W-7405-Eng-48, UCRL-JC-XXXXXX and National Science
Foundation awards 0073532 as well as NSF CAREER CCR-0237570. The
authors would like to thank David Bailey, the Performance Evaulation and Re-
search Center (PERC), and the National Energy Research Scientific Computing
Center (NERSC), for providing computing facility use for experiments. This
work was performed while the first author was a graduate student in the School
of Computing at the University of Utah.

1 Introduction

Processor speeds have increased much faster than memory
speeds, and the disparity prevents many applications from mak-
ing effective use of the immense computing power of mod-
ern microprocessors. A variety of approaches have been used
to improve the memory performance of scientific codes [12];
we survey but a few of these, since they are too numerous to
list here. Which optimizations apply to a given code depend
highly on the memory access characteristics of that code. For
instance, stencil computations such as iterative 3D PDE solvers
often benefit from tiling optimizations [16, 17, 20]. Likewise,
adaptive mesh generation codes from computational fluid dy-
namics and N-body solvers from astrophysics or molecular dy-
namics often benefit from scatter/gather operations and address
remapping [6] or from code and data restructuring optimiza-
tions [9, 13, 5, 8].

Most high-performance code optimizations attempt to ex-
ploit locality of reference. Indeed, the concepts of spatial and
temporal locality have been well understood for decades. Un-
fortunately, current notions of locality are limited to references
with proximate or repeating accesses, and cannot capture the
existence of other patterns. On the other hand, modern pro-
cessor architectures and memory subsystems can exploit many
of these other patterns, with streams (successive memory ref-
erences with a constant difference in address) being the most
common. For instance, the Power3 processor can detect and
prefetch strided accesses at a cache-line granularity [15]. The
Impulse memory system [6] can prefetch and gather streams
within the controller, shipping dense cache lines to the proces-
sor’s cache hierarchy. To better understand and improve the
performance of codes on such architectures, it is useful to ex-
tend the concept of locality to include strided patterns (as a first
step — certainly, there exist other kinds of patterns that could
be described and exploited, but they are beyond the scope of
this paper). We define spatial regularity as the likelihood that
a memory access will form or continue a strided sequence. In
Section 2.1 we develop a metric to quantify spatial regularity.



The scope for applying many optimizations is intimately re-
lated to the presence (or absence) of streams in an application.
To a first-order approximation, spatially regular or streamed
computations are amenable to a one set of optimizations, and
“irregular” applications to another. Poor cache performance
for applications in the former class results primarily from one
or more of: self/mutual interference causing conflict misses
among long streams, large-stride streams causing compulsory
and capacity misses, and long streams causing capacity misses
by overrunning the cache or TLB.

Irregular applications (or irregular portions of applications)
exhibit no obvious patterns in their use of memory. For in-
stance, this behavior could arise from using an indirection vec-
tor (IV) to access memory. Such applications generally have
large memory footprints and make poor use of cache. Many ap-
plications in fluid and molecular dynamics fall in this class, for
instance. We have developed a tool that allows us to broadly
classify applications (or code sections) into two categories —
regular and irregular — on the basis of their regularity metric.
We target the two categories with different optimizations. We
consider tiling, sequential and stream prefetching, copying and
remapping, layout changes and loop transformations for regular
applications. For irregular applications we consider prefetching
the indirection vector/pointer, software prefetching and code re-
structuring. We refine our candidate set of optimizations by
considering other stream characteristics, such as counts, lengths
and strides.

The rest of this paper is organized as follows. In the next
section we develop the concept of spatial regularity, and define
a metric to quantify it. In the following section, we discuss
how the metric, along with other relevant stream statistics, can
guide selecting optimizations. In Section 3, we present our on-
line stream detection algorithm. In Section 4, we discuss our
stream detection framework, and the use of PAPI and Dyninst
therein. Next, in Section 5, we present regularity data for real
applications and common benchmarks, and we discuss specific
optimizations. Finally, we discuss related and future work.

2 Regularity

The principle of locality is well known and recognized for its
importance in determining application memory performance.
Traditionally, it is considered to have two primary components.
A classic definition of these is found in Hennessey and Patter-
son’s computer architecture text [14]:� Temporal locality (locality in time) – If an item is refer-

enced, it will tend to be referenced again soon.� Spatial locality (locality in space) – If an item is refer-
enced, nearby items will tend to be referenced soon.

Unfortunately, these concepts and their measures alone are in-
sufficient to describe all the key application properties that in-
telligent memory systems can exploit. Consider the following
code fragment for a matrix transpose:

double A[N][N], B[N][N];
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; j++)
A[i][j] = B[j][i];

With a row-major layout, successive iterations of the inner loop
access contiguous elements of � . This pattern exhibits high
spatial locality, and will therefore benefit from caching. For
such a case, locality measures provide an accurate assessment
of performance gains as a result of caching and prefetching on
traditional controllers.

In contrast, all accesses to � are separated in memory by	�
�����
elements. This sequence exhibits poor spatial locality

(with respect to � ) and leads to low cache utilization. On tradi-
tional prefetching systems, few (if any) performance gains can
be expected through data prefetches of � ’s elements. Despite
this lack of locality, however, a very predictable pattern exists
for � ’s accesses. This can be exploited by smarter memory
subsystems that detect large-strided streams (in this case the ac-
cesses to � ), prefetch successive stream elements, and possibly
send them to the processor in dense cache blocks [1, 10, 19].
Locality metrics do not give an accurate depiction of appli-
cation performance in the presence of such memory subsys-
tems. Streams are common in many applications, including
compression and archiving, file I/O utilities, image processing,
string manipulation routines, and partial differential equation
solvers [4].

In order to describe these additional access characteristics,
we extend the principle of locality to regularity. As with local-
ity, regularity can be broken into two components:� Temporal regularity (regularity in time) – If a sequence

of items is referenced, the entire sequence is likely to be
referenced again soon.� Spatial regularity (regularity in space) – If referenced
items form a strided sequence (stream), items that continue
the sequence will tend to be referenced soon.

Temporal regularity simply extends temporal locality to se-
quences of items – with no relationship needed between ele-
ments forming a sequence. It reduces to temporal locality when
the sequence consists of a single item. Spatial regularity re-
quires a linear relationship between the accesses forming a se-
quence. It reduces to a special case of spatial locality when
the stride is small. Most computer architecture features that ex-
ploit regularity benefit programs that exhibit spatial regularity.
However, compiler-based approaches for exploiting temporal
regularity have been identified [7], and we expect that other,
hardware-based techniques will emerge as the principle of reg-
ularity becomes better understood. In this paper, we focus on
detecting and exploiting spatial regularity.

2.1 Spatial Regularity Metric

Regular sequences, or streams, are precisely arithmetic progres-
sions, defined as: ��������������� �
where

�
is a constant and

� �
is the !�"�# reference in the regular

sequence. The following metric can be used to quantify the
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spatial regularity of an application (or code section):

$&%('*) ",+ ).-
�0/2143 + 1


where
153 + 1 is the length of the 6 "�# sequence and



is the total

number of references. Effectively, the metric is the fraction of
all references that belong to some stream. Since we do not allow
a reference to be included in more than one sequence, the met-
ric is a positive number not greater than unity. Higher metric
values imply greater spatial regularity. The example code seg-
ment above exhibits high regularity: each memory reference in
the code segment belongs to a stream. Consequently, the metric
for the code is exactly one.

The regularity metric allows us to classify applications into
two broad categories: regular and irregular. This classifica-
tion is useful in that applicable optimizations are often dif-
ferent for regular and irregular codes: the former benefit
from stream/sequential prefetching, loop transformations, lay-
out changes, and stream copying and remapping; while the
latter are aided by software prefetching, code restructuring,
and scatter/gather optimizations. Our experience indicates that
applications widely considered “regular” have a metric value
greater than 0.80, while irregular codes have a metric value
less than 0.65. We suggest and implement optimizations partly
based on this classification. It is very possible that some appli-
cations will have a metric in between these values; in that case
other stream statistics may highlight the nature of the applica-
tion (regular or irregular).

2.2 Stream Statistics

Most real programs contain thousands of streams of varying
lengths, strides and starting addresses. To further the under-
standing of the memory behavior of applications in the pres-
ence of such streams, we introduce additional important stream
statistics.

Mean Stream Length: The mean length of streams qualifies
the regularity of applications, since long streams are easier
to optimize for effective cache use. Potential optimizations
include prefetching, remapping, creating super-pages, and
blocking (see mgrid, swim, and su2cor in “Results”).
Standard deviation in stream length is a worthwhile com-
panion measure, indicating the significance of the mean
in depicting stream length information. Irregular appli-
cations often have high variance in stream lengths (see
umt98 and CG in “Results”). This variance often arises
from long streams existing in the form of indirection vec-
tors and short streams occurring on the indirect accesses
through these vectors.

Mean Stream Stride: Streams with low stride often enjoy
fewer compulsory misses, since successive stream ele-
ments in the same or next prefetched line. Reducing
stream stride through copying, remapping, and additional
prefetching (apart from the usual one line ahead sequential
hardware prefetch) are ways to improve cache use.

Aggregate Stream Counts: Many real codes have stream
counts in the thousands, but their smaller functions often
have few streams ( 7 10). Aggregate stream counts can
help select possible optimizations: regular codes with few
streams and poor cache performance can benefit from ar-
ray padding and code restructuring optimizations, while
having many long streams may suggest an entirely differ-
ent optimization, such as tiling. Our tool gathers counts
of stream lengths, making it possible to answer questions
such as “How many streams greater than a particular
length are detected?”. We use this information to perform
a code-restructuring optimization in gzip.

Interleave Statistics: Measures such as the number of streams
with a certain fraction of elements in a temporally inter-
leaved pattern can help determine more precisely when
and how a stream occurs in context of the program. We
therefore implement an algorithm to detect temporal inter-
leaving information of streams. Consider:

for (i=0; i< N; i++) {
A[i] = B[i] + C[i]; }

Assuming i is in a register, every third memory access is
to the same stream.

2.3 Exploiting Streams

Optimizing compilers automatically apply a variety of loop and
other high-order transformations at high optimization levels.
Occasionally, however, a source modification or compiler di-
rective is necessary to enable the application of certain opti-
mizations that might otherwise not be permissible/identified.
For instance, tiling optimizations require a loop interchange,
which may be illegal until the code is suitably modified. Com-
piler flags and directives drive certain compiler optimizations
and permit more aggressive uses of existing ones. For instance,
the MIPS compiler accepts directives for aggressive prefetch-
ing, inner loop fission, and unrolling [21]. Indisputably, a pro-
grammer’s understanding of the need for a certain optimization
can aid in its use. Streams and stream characteristics discussed
in Section 2.2 receive special merit, for they:� often contribute to the bulk of memory accesses in loops

of regular codes;� are easier to optimize for, since their strided patterns
makes their interaction with the memory hierarchy pre-
dictable; and� can often be treated as a unit for purposes such as data and
computation restructuring.

In Table 1 we relate stream statistics and the regularity metric
to potential optimizations. We provide here an intuition into the
relationship for one such optimization: tiling.

Loop tiling is a combination of strip mining and loop inter-
change. It reduces capacity and conflict misses by dividing the
iteration space into tiles and transforming the loop nest to it-
erate over them [27]. By definition, a code that benefits from
tiling has multiple nested loops and a working set larger than
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the cache hierarchy. The memory accesses are often streamed,
since they result from array accesses in nested loops. Tiling
candidate code sections will therefore have high regularity, with
numerous long streams. Table 1 presents simplified numbers
for these adjectives – “high” (regularity), “long”, and “many”
(streams). We generated these guidelines from empirical results
for applications on the Power3. These “rules of thumb” attempt
to provide a empirical substitute for a complex algebraic anal-
ysis that relates architectural parameters, such as cache/TLB
sizes, to stream statistics. Section 5 presents stream data for
popular codes. In some cases the data leads to new optimiza-
tions, and in others it affirms the applicability of optimizations
known to improve the code’s performance.

Optimization Characteristics Code
prefetching long streams (100+) with short/moderate

strides ( 8 10)
gzip,
swim,
mgrid

tiling many (10k+) long streams (100+ elements),
some with large strides (10+); many scalar
streams

mgrid,
swim,
su2cor,
matmult,
3D Jacobi

loop fission many short streams; many scalar streams
from register pressure; interleaved long
streams

su2cor

loop fusion long streams with repetition
loop inter-
change

very large strides (32+) FT (3D
FFT)

data layout few, long (100+) streams with short strides
( 8 8); high cache miss-rates

swim,
su2cor

copying,
stream
remapping

long streams (100+) with large strides (32+) FT, BT,
matmult

super-
paging

long streams, spanning many pages (10+);
TLB misses and page faults

gzip

loop un-
rolling

many scalar streams due to register pressure

code restruc-
turing

a few long streams with short stride ( 8 8);
high cache/TLB miss rates

gzip,
su2cor

scatter/gather
using indi-
rection
vector (IV)

irregular( 8 0.6) umt98,
CG

Table 1: Optimizing (ir)regular applications

3 Algorithm to detect streams

To measure spatial regularity and to classify codes using the
metrics and statistics introduced above, we have developed an
efficient algorithm to detect streams by analyzing a program’s
loads and stores as they are executed. We perform an online
analysis, thus avoiding the space and time complexity of archiv-
ing traces on auxiliary storage. We allow streams to be inter-
leaved with each other and with non-stream references. This
enables us to identify streams in the presence of other accesses.
However, constraints on space require us to periodically discard
older trace data to make room for new references. This aging
prevents the detection of streams interspersed with a large num-
ber of intervening accesses1.

The algorithm uses two main data structures:

1However, once a stream has been identified, we are no longer forced to age
it for space limitations, as the entire stream is compactly represented.

     WHILE new reference exists DO
       Modulo−increment col; /* move window */
       /* Add reference to pool */
       pool[0][col] := new reference;
       IF reference extends stream IN stream table  
       (perform a hash lookup to check), THEN
         Update length of stream in stream table;
         Mark column in pool (shaded in example)
       ELSE
         /* Compute differences between new element and previous ones */
         FOR i := 1 TO (window size − 1) DO
           IF (col >= i), THEN
             c = col − i;
           ELSE 
             c = col+w −i ;
           END IF;
           pool[i][col] := pool[0][col] − pool[0][c];
         END FOR;

         /* Search for streams of minimum length 3 */
         found := FALSE;
         FOR i := 1 TO (window size − 1) DO
           IF (col >= i), THEN
             c = col − i;
           ELSE 
             c = col+w −i ;
           END IF;
           IF column c is already marked, THEN
             continue;
           END IF;
           FOR k := 1 TO (window size − 1) DO
             IF pool[i][col] == pool[k][c] THEN
               found = TRUE;
             END IF;
           UNTIL found;
         UNTIL found;

         IF found THEN
           Enter stream in stream table;
           Mark corresponding columns in pool (shaded in example);
         END IF;
      END IF;
    END WHILE;

Figure 1: On-line algorithm to detect streams

Stream Table: The stream table contains a compact descrip-
tion of streams that have already been detected. The table
is stored as a chained hash, with the expected successor to
the stream serving as the hash key. Each node in the table
is a triple consisting of the start address, length,
and stride of the stream. In addition, we store the age
of the last stream element in order to facilitate aging.

Pool: The pool contains recent references that have not yet
been detected to be part of a stream. As new addresses
are referenced, this window of active addresses expands to
fill the storage structure of the pool. Once filled, the addi-
tion of each new reference causes an earlier reference to be
discarded from the pool after a scan for streams, cyclically
rotating the active window through the Poole’s physical
storage structure. In determining the existence of streams,
elements of which may be separated by arbitrary numbers
of intervening accesses, differences between elements of
the pool are computed. To reduce the computational com-
plexity in repeatedly determining the differences between
existing elements as new elements are added, we store a set
of differences with each reference in the pool. Given this
pool structure, detecting streams becomes a matter of find-
ing a sequence of elements such that the differences be-
tween successive elements match. In our implementation,
the pool is organized as a statically allocated, 9�:;9 , two-
dimensional array, where 9 is the window size (a compile-
time constant).

Multithreaded programs can easily employ our stream detec-
tion algorithm. A unique thread running this algorithm – and
maintaining its own stream table and pool – can be dedicated
to receiving the accesses of a single thread in the instrumented
application. By maintaining separate data structures in each

4



100 211 100 100 212 100 100 213

111 −111

0

0

−111

0 1 1

1

−−

−−

−−

−−

−−

−−

−1

−2

−3

−4

−5

−6

dist.

Figure 2: Snapshot of the reservation pool

thread, the detection of streams across application threads is not
possible. This is desirable, since most architectural features that
exploit streams use processor-specific caches, and cannot take
advantage of cross-thread spatial regularity. Another benefit of
thread-specific data structures is that it allows our algorithm to
efficiently scale for parallel applications. An ancillary benefit of
this stream detection process is that it can be leveraged to quan-
tify temporal locality, which corresponds to streams with zero
stride. The algorithm, omitting the details of aging and without
distinguishing between access types, is presented in Figure 1.
We illustrate the application of our algorithm on the following
highly regular sequence of accesses, where we do not distin-
guish between access types for simplicity:

100, 211, 100; 100, 212, 100; 100, 213,
100; 100, 214, 100; <=<*<

The pool can be viewed as a table as shown in Figure 2,
which depicts a snapshot of the pool after encountering the first
eight references. The header row shows the referenced loca-
tions. Each column contains the difference between the value
in the current column header and the value in a preceding col-
umn (see “Compute differences” in Figure 1). The particular
element used for calculating the difference depends on the row
for which the difference is to be computed. The first row (be-
low the header) consists of the difference between an element
and its immediate predecessor (distance

�>�
), indicated by the

upper arrow. The second row consists of differences between
an element and its penultimate predecessor (distance

�@?
). To

capture streams within a window size 9 , we need only com-
pute the differences above the diagonal of the pool table. In
our implementation we effectively double the window size by
computing differences below the diagonal as well. Elements
determined to be part of a stride are removed from the table. In
the example above, on seeing the third 100 (assuming a min-
imum length of three), we identify a stream by observing the
two corresponding differences of 0 (circled) in a transitive rela-
tionship. Consequently, we insert a stream of <100,3,0> in
the stream table. The columns containing these stream elements
are marked and are not used in future scanning for streams (un-
til the elements age). We keep these marked slots (rather than
filling them with new elements immediately) to maintain a con-
sistent window size. The marked columns are shown shaded in
the figure. The later 100s are immediately observed (by way
of a hash lookup) to belong to the stream, and the stream fields
are modified to <100,5,0> on receiving the fifth 100. On
seeing 213, a new stream is identified by observing an identi-

cal difference of 1 (circled) for the transitive relation between
211, 212 and 213. At this point, <211,3,1> is inserted in the
stream table, and the columns for these elements are marked to
indicate their non-participation in further stream detection.

Although not mentioned in the outline of the algorithm, we
implicitly assume that sequences must have a minimum length
to qualify as streams; the algorithm in Figure 1 and the example
discussed assumed a minimum length of three. The value of
metrics computed on streams is dependent on this parameter.
The worst case complexity of the algorithm is:A �CB 	(
 : 	ED � 	F�G� $ %('*) ",+ ).- � :H9@I �F�J�


is the total number of references, 9 is the window size,
D

is the number of streams detected, and
$>%('*) ",+ ).- is the observed

regularity metric. The quadratic dependence on 9 – the win-
dow size – arises from scanning the pool for streams on adding
a new reference. In regular codes a majority of the references
belong to some stream, and require no pool scanning, merely
a hash lookup. The hash lookup is bounded in the worst case
by an


 : D complexity (where
D

are the number of streams),
and in practice has a far lower constant than

D
, since most ref-

erences extend a recently modified stream, which lies at the be-
ginning of the hash chain. This analysis explains the paradox,
where increasing window size ( 9 ) reduces the overhead for cer-
tain stencil codes. The explanation lies in the sharp increase in
the observed regularity metric (

$>%('*) ",+ ).- ) resulting from streams
with successive elements widely separated, now fitting in the
larger pool, and hence getting identified as such.

4 Dynamic Stream Detection Tool

`

Binary

dsd
Stream

detection
process

Thread 1 Thread 2

Thread 1

Thread 2

Control Pipe Data
Pipe

Mutator

Dyninst

Control
channel

Insert call __instr__

Start/stop signalsvoid __instr__(packet*p) {
  // is it a function entry/exit?
 // if YES,
     // send function name/id
     //   to control pipe
     // pause and read PAPI
     // send PAPI data to data
     //   pipe
 // else (it is a load/store)
    // send address, bytes,
    //   access type to data pipe
}

libldst.a

dynamically load

Figure 3: Stream detection framework

Figure 3 shows the setup for our stream detection tool. It con-
sists of three components: dsd, mutator and the binary to
be instrumented. The mutator is a generic application that
uses the Dyninst library to instrument the binary of interest.
The instrumentation is used to introduce hardware performance
monitoring at function entry/exits and to handle load/store in-
formation at memory accesses.

We have written a single function, instr , to handle
both scenarios — the arguments determine the context. The
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mutator can be configured to instrument specific functions
and modules rather than the whole binary. Once the binary
has been successfully instrumented, the mutator starts dsd,
the stream detection module. The mutator passes control
information — such as its process ID, and the functions in-
strumented and their ids — to dsd using the control chan-
nel (shown by the bi-directional arrow between the mutator
and dsd). The mutator then starts the instrumented binary.
The first time instr is called, it sets up one-way data and
control pipes between itself (the instrumented application) and
dsd. The control pipes carry information about function en-
try/exits, while the data pipes are used to pass memory access
information and counter values obtained from PAPI calls.2 Sub-
sequent calls to instr pass hardware performance counter
values or memory access information (type, address, and num-
ber of bytes) to dsd. The kernel automatically blocks the appli-
cation when the data pipe fills up, since dsd usually processes
data slower than it is generated. If a stop-sampling condition
for a particular function is reached (e.g., a limit on number of
samples), dsd signals the mutator through the control chan-
nel. The mutator pauses the application, deletes the inserted
snippets from the function, and resumes the application.

The user may not know which are the performance-critical
code sections, and can use our tool to dynamically instrument
all (or some) of the functions with PAPI calls to first determine
low-level performance statistics, such as memory load/store
counts, cache/TLB misses and floating-point operations. The
list of functions in various modules can be determined us-
ing a probe feature of Dyninst, and requires no source code.
In this simple form, our tool provides portable and dynamic
function-level performance statistics. Once the functions of in-
terest are known, their memory accesses can be instrumented
(again, dynamically), to obtain regularity and stream statistics
at a function-level granularity. We provide a number of differ-
ent sampling modes to accommodate differing needs:

Complete: The chosen functions are sampled for an entire ap-
plication run.

Max samples: An upper limit is provided on the number of
samples of the function(s). After the requisite number of
samples, the instrumentation is removed. This is useful if
many calls are made to the function(s).

Periodic sampling: A sample period and an inter-sample in-
terval is provided for long-running functions. During the
inter-sample interval, all instrumentation is disabled.

Convergence sampling: A user-prescribed value is specified
such that sampling continues until the fractional change
between measures from successive samples falls below
that threshold. This method is useful for functions with
varying behavior between successive calls.

The stream detection program — dsd— can work alongside
compiler-implemented static memory access mechanisms, too.
The Portland Group’s compilers can instrument memory ac-
cesses when given a command-line option [24]. We have lever-
aged our tool to perform stream detection (and regularity mea-

2Actually, we multiplex the two information flows over a single channel for
efficiency and synchronization reasons.

surements) on applications instrumented by these compilers. A
significant limitation of any static instrumentation approach is
its high run-time overhead, since the instrumentation remains
in place for the entire application run. Our instrumentation via
Dyninst allows function-level regularity profiling. However,
the user can determine stream and regularity information for
arbitrary code sections by manually inserting sentinel calls to
instr . Such a technique can help determine regularity and

stream information in specific loops.
Overhead is an important issue for any approach that instru-

ments the code/binary. Incorporating Dyninst’s ability to dis-
able, insert, and remove instrumentation at run time gives the
user more control over instrumentation overhead costs. For
most results mentioned in Section 5, the overhead factor is be-
tween 50 and 500. Nevertheless, the overhead depends on the
extent and duration of instrumentation applied by the user, and
may vary widely.

For implementing profile-driven optimizations, our frame-
work is best applied to applications whose memory access pat-
terns do not change significantly with different input datasets.
Unlike compile-time analysis techniques, in which regularity
measurements can be predicated on symbolic constants [23],
our measurements are for actual runs. If our tool is used to im-
plement dynamic optimizations, then this need for a typical pro-
file is removed. Our framework can be used efficiently for mul-
tithreaded applications: dsd can be configured to use pThreads
or OpenMP for parallelization. Note that the current release of
the Dyninst library is not multithread-safe, but the forthcoming
release is expected to be. In the meantime, we have applied
our stream detection process to compiler-instrumented parallel
applications, obtaining meaningful results.

5 Results

This section presents regularity metrics obtained with our tool
and discusses how these metrics guide application optimization.
The primary platform for the regularity and PAPI results is an
RS/6000 SP running AIX 4.3 on Power3 processors. We use a
single processor for all experimental results presented here. The
C and FORTRAN compilers xlc and xlf, versions 5.0.2.2 and
7.1.0.1, respectively, are used with optimization flag -O2, un-
less otherwise stated. We use a MIPS R10000/IRIX6.5 system
to implement an optimization in gzip.

We apply our tool to three real applications (gzip,
umt98, and smg2000), numerous benchmarks (SPEC:
mgrid, swim, su2cor; NAS/NPB: FT, BT, CG),
and a couple kernels (3-D Jacobi and dense matrix multiply).
gzip is the GNU file compression utility. umt98 and
smg2000 are part of the ASCI Purple benchmark suite.
umt98 is an irregular mesh transport code with poor mem-
ory performance and substantial use of indirection vectors;
smg2000 is a semi-coarsening multigrid solver. mgrid and
swim are stencil codes that benefit from tiling and stream
prefetching [25]. su2cor applies a Monte-Carlo method
to compute the masses of elementary particles using the
Quark-Gluon theory; it is known to benefit from inter-variable
padding [26]. FT is a 3D Fast Fourier Transform benchmark
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known to benefit from copying array transpositions [3]. BT
solves multiple, independent systems of non-diagonally domi-
nant, block tridiagonal equations; it benefits from blocking and
copying/remapping. CG is a conjugate gradient sparse matrix
inversion code that is aided by scatter/gather optimizations at
the memory controller [6].

Our results are promising: for gzip we uncover and imple-
ment two optimizations that reduce overall memory stalls by a
few percent; in FT (a Fast Fourier Transform benchmark) we
implement a loop interchange that reduces overall TLB misses
and memory stalls by 58% and 8%, respectively. In many cases,
our tool suggests optimizations previously known to benefit the
code, while in some it suggests new ones. In most analyzed
codes, the tool indicates the specific function(s) to optimize and
a small set of potential optimizations. Table 2 lists the regular-
ity statistics for the codes. The sampling mode — convergence,
periodic, or fixed — depends on the performance results in the
first pass, and differs according to the application. The “Op-
timization” column lists a subset of the optimizations that are
suggested from Table 1, i.e., those that are known to actually
improve the code based on previous research or from our ex-
periments. umt98 and smg2000 are exceptions: the optimiza-
tions listed for them are not supported by earlier research, and
implementing them is an area of future work. Here we detail
how our tool guides optimization of gzip and FT. Full results
can be found elsewhere [22].

Regularity
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Figure 4: Regularity metric
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Figure 5: Stream strides

Figure 4 shows the regularity metric for all applications. No-
tice the high regularity in stencil codes such as mgrid, swim,
and Jacobi, and the far lower metric values for indirection-
vector codes like umt98 and CG. In Figure 5 we see mean
stream strides on a logarithmic scale. In general, high stride
values can imply the need for loop interchange and copy-
ing/remapping optimizations for regular codes. We imple-
ment a loop interchange in FT and suggest copying/remapping
for BT. Hand-tiling significantly improves the performance of
the matmult and KJacobi kernels and correspondingly reduces
their mean stream strides. gzip’s low mean stride is the re-
sult of a byte-by-byte scan for repeated strings. Mean stream
lengths and the distribution of streams with lengths is shown
in Figure 6. Applications with many long streams benefit from
tiling: mgrid, swim, su2cor, Jacobi, and matmult fall
into this category. Tiled codes exhibit far lower mean stream
lengths and variances; we see this when we compare untiled
matmult and Jacobi with their tiled counterparts. A high
variance in stream lengths is present in many irregular codes,
such as umt98 and CG. Regular codes with long streams bene-
fit from prefetching (sequential or stream), and this is observed
for gzip, swim and mgrid.

5.1 gzip

Gzip is a popular, free GNU compression utility, based on a
variation of the Lempel-Ziv 1977 (LZ77) algorithm, and avail-
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Streams Stream Length
Program Reg. Total ]4-32] ]32-128] ]128-16384] L 16384 Mean Dev. Stride Optimization
gzip 0.95 5402 4625 76 17 584 3552 170 1.71 aggressive prefetching,

super-paging and code
restructuring

FT 0.96 755750 734755 20481 513 1 12 23 109.3 loop interchange, array
transposition

umt98 0.44 310655 307386 1818 1377 44 31 570 9.4 scatter/gather using IV in
snswp3d

smg2000 0.36 100675 100519 78 74 4 13 108 6.95 code restructuring
mgrid 0.99 82359 52 82307 0 0 91 3.2 8.0 prefetching and tiling in

RESID
swim 1.00 38259 1052 2 37188 17 614 223 4.4 aggressive prefetching,

blocking, padding
su2cor 1.00 50274 33688 289 16317 0 1208 52 10.0 code restructuring, fis-

sion, padding, tiling,
prefetching

CG 0.58 184954 143587 40555 805 7 46 518 5.4 scatter/gather using IV
BT 0.80 1470357 1419110 51247 0 0 9 4.8 64.8 copying, base-stride

remapping
Jacobi
(Un-
tiled)

1.00 77127 99 76832 196 0 85 26 12.0 tiling

Jacobi t
(Tiled)

1.00 61741 61741 0 0 0 11 1 8 none

matmult
(Un-
tiled)

1.00 88683 8081 0 80602 0 183 4.2 806.0 tiling

matmult t
(Tiled)

0.97 1788850 1788805 0 45 0 10 0.5 356.3 none

Table 2: Regularity statistics
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Figure 6: Stream lengths

able for a variety of Unix platforms. We expect gzip to be
regular on the basis of its compression algorithm. The code has
little computation and is memory bound (for our purposes we
ignore all file I/O activities). Table 3 shows a summary of the
results obtained from PAPI and a single-pass regularity sam-
pling of all the functions, in the compression of a 9MB binary

using gzip version 1.2.4. The table lists functions with the
most memory stalls in decreasing order.

gzip has a very high regularity (0.95) and mean stream
length (3552) and a significantly low mean stride (1.71). The
stream data collected shows that the two functions with the
most memory stalls — fill window and deflate — also
have very high regularity metrics. We focus on these func-
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STALLS TLB MISS L1 MISS
function (million) (thousand) (thousand) Reg. Streams Len. Stride
fill window 345 7 461 1.00 4 32766 2.0
deflate 169 367 452 0.96 4917 3867 35.5
longest match 125 283 1505 0.31 2 5 4.0
compress block 77 283 21 0.16 207 1592 17.1
send bits 76 275 23 0.53 2 5 4.0
updcrc 76 18 55 0.00 0 - -
ct tally 48 198 175 0.00 0 - -

Table 3: gzip – regularity and performance statistics

tions, rather than the irregular longest match and com-
press block, as regular functions are generally easier to op-
timize. fill window has four streams with very high mean
stream length (32766) and very low stride (two bytes). From
Table 1 we find that the applicable optimizations are prefetch-
ing, data and code restructuring, and super-paging. deflate
has a moderate number of streams (4917) with high mean
stream length (3867) and high mean stride (35.5 bytes). Can-
didate optimizations for deflate are loop interchange and
copying/remapping.

We base our first optimization on the very high mean stream
length, high regularity, and low mean strides in fill window.
We recompile the code with compiler flags to enable aggressive
prefetching with a higher prefetching distance (five cache lines)
with the MIPS Pro C compiler on an R10000 system (the IBM
compiler does not support these options). The improvements
are modest: There is a 14% reduction in the total cycle count
of fill window. deflate, with its larger stride and more
streams, predictably, benefits much less from this optimization
(1.6% reduction in the total cycle count). Nonetheless, the over-
all performance improvement for the program is around four
percent, as shown in Table 4.

Our second optimization, implemented on the IBM SP, also
targets fill window. Despite this function’s very regular na-
ture (100%), few streams (four) and low stride (2.0), it exhibits
many memory stalls. A cursory inspection of the function re-
veals a sequential update of two 64KB arrays. The code struc-
ture precludes conflict misses, and Power3’s stream prefetching
makes substantial compulsory misses for small-strided data un-
likely. With the Power3’s small page size (4KB) the two arrays
span 32 pages, leading us to conclude that TLB misses and page
faults cause a majority of the stalls. By reversing the array up-
date order in every alternate call to fill window, we increase
reuse in the TLB (and cache). This code restructuring reduces
the TLB misses and memory stalls in fill window by 34%
and 7%, as shown in Table 5. The overall memory stalls for
the application are reduced by 2.4%. A far more significant op-
timization would create a super-page for the two arrays, with
a provision that the page be locked in memory. The optimiza-
tion, however, requires special hardware and operating system
support and can hence not be implemented on the AIX/Power3
platform.

The gains from our optimizations are very modest, but it is
worth noting that the code is highly optimized to begin with; the
first optimization requires no study of the code, while the sec-
ond, only a cursory glance at a function. Similarly, the super-
page optimization could reduce page faults and TLB misses

and, thus, memory stalls, even further. The reader may rightly
question the sensitivity of our regularity data to variance in the
input to gzip. For this purpose, we took three different data
inputs: Two binary files of different sizes and a large text file.
We found that the regularity of some functions, such as de-
flate varied significantly with changing input, being high-
est for the text data file, where the number of repeated strings
found by the compression algorithm were the most. More in-
terestingly, fill window exhibited exactly the same statistics
in each case. A glance at the function clearly shows its data
independence. Predictably, the second optimization gave sim-
ilar speedups in all cases, while the first gave variable results.
This highlights that regularity statistics, and hence optimiza-
tions based on them, are, in their most general form, a function
of the code and the data input. Optimizations applied on in-
variant statistics should hence be the prime target for the person
optimizing the code. Implicit in our statements regarding appli-
cation (ir)regularity, is its specificity to the input used, though
in many cases it is evident that the algorithm is the overriding
factor.

Total Cycles
(millions)

function No Prefetch -pf ahead=5 % speedup
deflate 176.7 173.9 1.6
updcrc 150.4 150.4 0.0
fill window 125.2 107.0 14.0
longest match 109.6 109.1 0.4
ct tally 9.5 9.1 4.0
compress block 5.9 5.9 -0.4
send bits 5.7 5.7 0.3
Total 598.0 575.7 3.7

Table 4: gzip – SpeedShop output with and w/o prefetching for
MIPS R10000

TLB MISS MEM STALL
(thousands) (millions)

function Normal Cyclic % change Normal Cyclic % change
fill window 7.6 5.0 34.2 345.6 321.2 6.9
deflate 367.0 341.1 7.2 169.2 175.1 -3.4
longest match 283.3 252.6 10.8 125.4 122.3 2.5
compress block 283.5 274.3 3.2 77.1 77.0 0.1
send bits 275.8 261.4 5.2 76.8 76.3 0.7
updcrc 1.8 1.7 4.5 76.2 76.1 0.1
ct tally 198.9 189.7 4.8 48.7 48.2 1.0
Total 143.4 134.2 6.4 925.7 903.1 2.4

Table 5: gzip – PAPI output with and w/o cyclic optimization for
Power3

5.2 FT

FT, from the NAS NPB and NPB-2 suite [2], is a 3-D Fast
Fourier Transform solving a Poisson PDE problem. We use
a serial version of the benchmark. On cache-based and NUMA
systems, large strides in 3-D FFTs are known to seriously de-
grade performance. The common solution is to perform an ar-
ray transposition by copying [3]. The data in Table 6 is for a
fully optimized (-O3) binary.

The extraordinarily high stride (512) in com-
pute indexmap highlights the opportunity for a loop
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interchange, array transposition or copying/remapping op-
timization. Copying incurs a cost in implementing the
optimization and remapping requires special hardware/OS
support. A brief inspection of the code confirms that a loop
interchange will improve cache and TLB usage in com-
pute indexmap. Table 7 presents a summary of the change
in performance for binaries compiled with the -O3 flag. There
is a reduction in TLB misses, L1 D-cache, memory stalls, and
total cycles in compute indexmap by 99%, 95%, 90% and
72%, respectively. The overall benchmark TLB misses, cache
misses, memory stalls and total cycles are reduced by 58%, 4%,
8% and 5%, respectively. The high mean strides in cffts1,
cffts2 and cffts3 suggest that an array transposition
(which potentially affects the entire application) may offer
better results than the loop interchange we hand-implemented
in a single function.

STALLS TLB MISS L1 MISS
function (million) (thousand) (%) Reg. Streams Len. Stride
fftz2 172 54 3.0 0.98 513 16 12.0
compute int 146 6 0.1 0.00 0 - -
evolve 103 78 12.0 - - - -
cffts1 98 35 6.7 1.00 147969 28 39.0
cffts3 76 576 3.6 0.91 78307 7 24.0
cffts2 60 43 8.4 0.92 523776 7 24.7
cfftz 52 9 3.0 0.96 1087 8 39.7
compute index 42 1049 83.9 1.00 4097 140 511.9

Table 6: FT – regularity and performance statistics

TLB MISS MEM STALL TOT CYC
(thousands) (millions) (millions)

function Normal Opt. % less Normal Opt. % less Normal Opt. % less
fftz2 54 24 55.0 173 169 2.3 459 450 1.9
compute int 6 7 -16.6 146 147 -0.7 329 329 0.0
evolve 78 80 -2.5 104 86 17.3 120 105 12.5
cffts1 35 35 0.0 98 98 0.0 119 120 -0.7
cffts3 576 573 0.5 76 73 3.9 103 98 4.8
cffts2 44 43 2.2 60 59 1.6 83 80 3.6
cfftz 10 6 40.0 52 51 1.9 126 125 0.7
compute index 1049 2 99.8 42 4 90.4 44 12 71.7
Total 1855 771 58 753 689 8.5 1389 1320 5.0

Table 7: FT – PAPI output with and w/o loop-interchange optimiza-
tion

6 Related Work

Gerlek et al. determine complex sequences, including peri-
odic and geometric sequences, based on loop induction vari-
ables [11]. Their algorithm assists their restructuring Fortran
90 compiler – Nascent – in performing a data dependence anal-
ysis. Parker et al. use the AST (abstract syntax tree) to detect
linearity in the subscript expression of array accesses [23]. Ap-
proaches that work at the source code level, typically, have low
overhead, but limit themselves to specific language/compilers,
and have difficulty contending with pointer-based structures.

Hardware stream detection has been exploited by prefetch-
ing and dynamic access optimization mechanisms. Baer and
Chen [1] employ a hardware reference prediction table and a
look-ahead program counter to preload data with regular ac-
cess patterns in cache to avoid access penalty. While hardware

stream detection is likely to have a lower overhead than our
approach, we gather more detailed stream statistics to target a
range of profile-driven optimizations.

Chilimbi attempts to address the processor-memory perfor-
mance gap by introducing the abstraction of exploitable local-
ity – a combination of locality and regularity [7]. His defini-
tions of regularity, both spatial and temporal, are sufficiently
different from ours to merit special attention. His definition
of regularity corresponds to our notion of temporal regularity,
while his definition of temporal regularity has no counterpart
in our work. Furthermore, his usage of “spatial regularity” dif-
fers significantly; ours denotes a property of programs, whereas
his quantifies a particular property of streams, as he defines
them. Chilimbi focuses on non-scientific codes with references
to scalar variables while we address non-scalar references with
access patterns of varying regularity. While the specific devel-
opment of regularity, and the patterns dealt with, differ between
his work and ours, the underlying theme is the same: the mem-
ory performance of applications can be improved by exploiting
the presence of patterns in the memory references of an appli-
cation.

Marathe at al. use dynamic binary rewriting to gather par-
tial traces and perform detailed cache simulations to determine
per-reference cache metrics as well as evictor information [18].
They apply code transformations to optimize memory behavior
by transforming loops and utilizing tiling. Their work differs
in that their cache analysis is much heavier weight. In contrast,
we develop regularity metrics. From these metrics, we can in-
fer opportunities for optimizations such as prefetching and loop
inversion as well as interchange without detailed cache simu-
lation. Hence, the two approaches are complementary in that
we determine opportunities for optimizations at a very low cost
in terms of analysis while Marathe et al. may find additional
opportunities at a considerably higher analysis cost.

7 Conclusion

This paper demonstrates a tool that dynamically detects
streamed memory accesses in applications. Despite the intu-
itive understanding of such accesses, there exist few formalisms
to reason about them. To this end, we define a notion of spatial
reference regularity that retains previous notions of regularity.
This analysis aids a parallel algorithm in dynamically detecting
streams within a run-time environment, in contrast to previous
efforts that leverage static analysis or hardware detection mech-
anisms. Unlike static approaches, the run-time mechanism may
selectively focus on performance bottlenecks. The hardware
mechanisms that would otherwise allow such dynamic flexibil-
ity are not available on general-purpose platforms and, hence,
are inaccessible to most applications.

This work ameliorates the overhead inherent in an online,
software-based detection approach through a framework where
sampling is selective and instrumentation is transient. This al-
lows a user to select an appropriate trade-off between measure-
ment overhead and its accuracy and extent. The resultant ap-
plication of optimizations based on regularity data from the ap-
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plication show performance improvements in real applications
and popular kernels.
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