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A Introduction

Our ability to solve Grand Challenge Problems in computing hinges on the development

of reliable and efficient High-End Computing systems. Unfortunately, the increasing gap

between memory and processor speeds remains one of the major bottlenecks in modern ar-

chitectures. Uniprocessor nodes still suffer, but symmetric multiprocessor nodes — where

access to physical memory is shared among all processors — are among the hardest hit. In

the latter case, the memory system must juggle multiple working sets and maintain mem-

ory coherence, on top of simply responding to access requests. To illustrate the severity of

the current situation, consider two important examples: even the high-performance paral-

lel supercomputers in use at Department of Energy National labs observe single-processor

utilization rates as low as 5%, and transaction processing commercial workloads see utiliza-

tions of at most about 33%. A wealth of research demonstrates that traditional memory

systems are incapable of bridging the processor/memory performance gap, and the problem

continues to grow. The success of future High-End Computing platforms therefore depends

on our developing hardware and software technologies to dramatically relieve the memory

bottleneck.

In order to take better advantage of the tremendous computing power of modern mi-

croprocessors and future High-End systems, we consider it crucial to develop the hardware

for intelligent, adaptable memory systems; the middleware and OS modifications to manage

them; and the compiler technology and performance tools to exploit them. Taken together,

these will provide the foundations for meeting the requirements of future generations of

performance-critical, parallel systems based on either uniprocessor or SMP nodes (including

PIM organizations). We feel that such solutions should not be vendor-specific, but should
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be sufficiently general and adaptable such that the technologies could be leveraged by any

commercial vendor of High-End Computing systems. This strategy is likely to have the most

impact while maintaining modest costs for adoption of the new technologies.

B Hardware and Software Technologies

B.1 Key Technologies

Many underlying pieces of the necessary technologies have been developed within the last

decade. The Stream Memory Controller project [9] demonstrated the viability and perfor-

mance impact (speedups of up to 23x) of putting intelligent DRAM resource management

and compiler-controlled prefetching into the memory controller. The Impulse Adaptable

Memory Controller project [14] built on these techniques, and contributed technology to

perform parallel vector element accesses (for strided or indirection-vector access patterns) in

the DRAM backend [8], as well as the ability to remap physical addresses to dramatically

improve utilization of the cache hierarchy. Initial compiler technology has been developed

to exploit such memory systems [1, 6], and techniques ranging from traditional loop and

data restructuring optimizations [10, 3] to data shackling [7] and computation regrouping

for temporal locality [12] augment the impact of these DAOs.

Processor-in-Memory (PIM) technology [13, 5] will dramatically change the location of

some system bottlenecks, but regardless of the memory organization, it will always be essen-

tial to exploit available resources intelligently if we are to realize the highest possible system

performance. Likewise, sophisticated interconnect fabrics like Myrinet [2, 11] enable a host

of performance optimizations, but intelligent memory systems can be used to further exploit

these capabilities, e.g., by performing scatter/gather operations directly to/from the NIC.

B.2 Areas for Development

There exist two show-stopper problems to be solved before we can realize the full benefit of

these technologies: memory coherence, and software automation.

Current systems conservatively apply cache invalidations and usage restrictions, avoiding

the creation of aliased copies in caches, or leaving the responsibility for coherence manage-

ment to the user. This greatly reduces system efficiency and applicability. Further, existing

solutions are largely limited to uniprocessor systems. Solving the general problem of mem-

ory aliases for reconfigurable parallel systems represents one of the key problems faced by

high-performance computer architects today, and no comprehensive, general solution has yet

been developed. Likewise, even though proof-of-concept compiler prototypes or algorithms

have been developed for these sophisticated memory systems, even better analysis and tools



are needed to take full advantage of optimization opportunities without requiring significant

programmer intervention.

Efficiently maintaining coherence is a primary requirement in any parallel memory sys-

tem. The problem of enforcing an application’s required level of coherence becomes much

more complex in memory systems that provide processors with multiple or reconfigurable

views of application data. For instance, potential problems arise from the memory remap-

pings of the Impulse Adaptable Memory System; the reconfigurable, application-specific

hardware assists in the MORPH architecture [15]; the use of explicitly controlled scratchpad

or streaming memory in the Malleable Cache project [4] or the non-cached stream buffers in

the Stream Memory Controller; and even the E-registers of the Cray T3E. All these mech-

anisms enable memory aliases, whereby the same physical data element may be accessed

using more than one address. This inevitably leads to coherence conflicts between stored

copies of aliased memory elements.

C Technology Maturity Roadmaps, Investments, and

Performance Metrics

As feature sizes shrink and microarchitectures continue to evolve, the processor/memory

performance gap will continue to grow for High-End Systems. Even PIM systems will require

off-chip memory storage for scientific and transaction processing codes (to name but a few

examples) with huge datasets. The technologies outlined in Section B.1 will continue to

mature, but the problems outlined in Section B.2 will not disappear. By addressing these

problems in a structured, general, and flexible manner, we envision an avenue to improving

the memory performance for traditional as well as revolutionary sytem designs. Deploying

these solutions will represent but a marginal increase in hardware costs. Comprehensive

compilation, dynamic optimization, and performance analysis tools will minimize the impact

on legacy codes, and on source program structure, in general.

Developing and prototyping the hardware and software for the proposed advanced mem-

ory systems constitutes a four-five year time investment. The hardware component requires

architectural design-space analysis and performance simulation, HDL synthesis for com-

plexity and critical-path analyses, FPGA prototyping of functionality and interfaces, and

technology transfer to generate a full system. The software components will proceed in

parallel. Vendor-specific solutions involving technology transfer and collaboration from the

beginning are likely to have a shorter project life cycle, but such an approach obstructs our

goal of developing a general and widely applicable set of solutions. Performance metrics

will include cycle-accurate simulation of current benchmarks from the SPEC 2000, ASCI



Purple and DARPA Data Intensive Systems suites, TPC-C, as well as emerging applications

and traces from commercial (e.g., IBM DB2) transaction processing systems. Participating

researchers from National Laboratories will have access to a wider variety of real codes with

which to evaluate our solutions. Technologies to speed simulation times without distorting

performance statistics will be key to the software infrastructure of the project, as will in-

tegrating hardware emulation and prototype component testing with flexible simulation of

other parts of the large, High-End systems we target.

Current hardware trends emphasize the increasing importance of memory system per-

formance. However, many current and emerging mechanisms, such as prefetching and spec-

ulative memory accesses, increase bandwidth requirements in order to hide latency. Other

mechanisms, such as system-on-a-chip (SOC), increase the available bandwidth but do not

address how to use that bandwidth effectively. Our solutions will complement these trends

by reducing wasted bandwidth. Other benefits of our approach include moving important

features of vector systems into COTS, and exploiting all memory resources (processor caches,

PIM, traditional DRAM, and specialized buffers within the memory controller or network

interface, along with the buses connecting these structures to other parts of the system) as

fully as possible, both for uniprocessor and SMP nodes in very large scale parallel systems.

D Technology Dependencies and Interactions

Our solutions do not depend on the development of any particular foundation technolo-

gies, but will adapt to address emerging technologies, including PIM organizations, fast

interconnects, SOC and CMP organizations, new DRAM interfaces, advances in FPGA and

ASIC technologies, and the incorporation of multiple memory controllers within a single

node. We envision a componentized memory system — a trend that is already appearing in

high-performance machines such as the newest products from AMD. Organizing the mem-

ory system as a series of individual components both isolates complexity (simplifying design

and test while minimizing hardware costs and unwanted microarchitectural interactions)

and increases efficiency (by allowing components to be placed to minimize communication

delays).
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