
Machine Learning Enhanced Real-Time Intrusion
Detection Using Timing Information

Hang Xu and Frank Mueller, North Carolina State University, USA, hxu9, fmuelle@ncsu.edu
Mithun Acharya and Alok Kucheria, ABB Inc., USA, mithun.acharya, alok.kucheria@us.abb.com

Abstract—Past work has investigated intrusion detection mech-
anisms for real-time control devices. This work contributes a
novel framework of separating security monitoring and detection
from real-time control, where the former is performed on Cloud
edge devices while the latter is run on embedded devices attached
to the system that is controlled. We contribute a security
monitoring system that validates worst-case timing bounds of
the target controller and also validates its control outputs by
comparing it against model-based predictions, which are derived
from machine learning.

I. INTRODUCTION AND MOTIVATION

As industrial and governmental cyber-physical systems
(CPS) as well as personal and residential Internet-of-Things
(IoT) devices have become ubiquitous, cyber attacks of these
systems have also been rising [6]. Such attacks and intrusions
usually pose severe risks to the controlled subsystems and may
result in home intrusion, dangerous road scenarios, destruction
of power grid or other industrial devices that may cause
disruptions of operations, bodily injury or even loss of life.
The cyber vulnerabilities of CPS and IoT devices lie in the
exposure to public networks as required by their functionality
and the relatively limited computational capability to deploy
heavy-weight traditional security methods, e.g., public key
cryptography. These factors motivate our work to significantly
increase cyber security across CPS and IoT computing devices
with sensitive controls.

II. PAST WORK AND CONTRIBUTION

In previous work [10], timing the execution paths of and
“fingerprinting” the computation tasks in a normal state has
been proved effective to identify intrusions on embedded
systems. This work assumes the intrusion detection system
(IDS) is deployed on the same host as the target CPS or IoT
device and is not intruded or can only be intruded after the
target is, which may not be the case in practice. In [3], the
system states are monitored by a third party FPGA device,
which switches into a safe controller mode if the system states
are outside of safe thresholds. Such a security system may still
be compromised when an attacker tampers with the commu-
nication packets to forge a normal state. [1] detects intrusion
by monitoring encrypted packets, which cannot be easily
deciphered in the communication channel but such encryption
may not be feasible on low-end devices. [8] detects intrusion
using a physical model but may not be applicable since some
control processes cannot be mathematically transformed into
models.

We present a novel intrusion detection approach that relies
on fine-grained timing information of CPS or IoT devices
enhanced by real-time machine learning (ML). Novel con-
tributions:
• We separate the IDS from the target embedded system

to increase isolation and decrease the attack surface of the
detection system. More specifically, the target control system
maintains state data, which is transmitted with sensor data to
the IDS for verification.
• We use ML models to detect the packets whose data has

potentially been tampered with.
• We use ML models for control systems, where the

physical system model cannot easily be derived.
• We enhance ML inferencing with tighter and predictable

upper bounds on execution time to facilitate a prompt response
to intrusions.
• We use highly accurate ML models on an embedded sys-

tem, exposing it to real industry sensor data from the field, to
demonstrates suitability and efficiency for intrusion detection
under the constrained resources of embedded systems.

III. A REAL-TIME INTRUSION DETECTION FRAMEWORK

Fig. 1 depicts a conceptual overview of our IDS (green/right
box), which resides on a different hardware board than the
target control system (blue/left box). The IDS communicates
with and monitors the streaming telemetries sent from the
target control system and external third party sources.

Fig. 1. System Diagram

Three categories of data packets are transmitted from the
target control system to the detection system:
• Execution Time Upper Bound: We conduct timing analysis

on the target control tasks to obtain tight upper bounds on the
execution time for specific paths through the control code.
• Internal Physical Telemetries: We collect the sensed

physical data from the controlled system, which could be the
entire or a part of the target control system state.

• External Physical Telemetries: We collect the sensed
physical data from a third party system with a sensor array
and verify the validity of the target control system state.

To make tampering and omitting of the execution time data
more difficult, we can anchor the execution time data manage-
ment in OS kernel as one of the scheduler functionalities. Even
if the OS kernel is compromised and the execution times plus
system state are tempered with to circumvent detection, simply
transmitting arbitrary system state values does not compromise
the entire detection mechanism. Detection is not only based
on the internal system states but also on their relation to
and consistency with external physical states. For example, an
intruder may record and replay the output and voltage current
of an inverter, yet false power data can still be detected if it
does not match the expected values given the current weather
data at this geographic location.

Based on the above data, the IDS conducts two analyses,
Timing Analysis and Third Party Model Verification. The
former analysis checks the execution time against valid upper
bounds obtained from prior experiments. If the error is larger
than a certain threshold or the data packets are not received
before their deadline, the system will report an anomaly. If the
former analysis does not detect any anomaly, the latter analysis
is conducted, which supplies the input physical telemetry
data to a third party ML model and compares the measured
physical telemetry with the expected outcome based on the
ML model. The inputs to the model are selected based on the
specific control application from internal and external physical
telemetries. If the error is larger than a certain threshold, the
system will report an anomaly. The pseudo code of intrusion
detection is shown in Algorithm 1 using the model parameters
of Table I.

The two analyses can be further fused to more effectively
counter stealthy attack. A stealthy attack may evade the detec-
tion if it results in moderately suspicious execution times and
moderately suspicious physical state telemetries. However, the
IDS could still detect this attack by considering the execution
times and telemetries together, and raising an alarm if both are
moderately suspicious. Such fused detection will be based on
weighting the thresholds of the timing analyses and the ML
verification output and obtaining the summed overall detection
threshold. How to weight and fuse the detection thresholds is
beyond the scope of this paper. Such fused detection handles
independent detection of one data sources as a special case,
where other sources receive “zero” weights.

IV. PROMPTNESS

Our system addresses one of the most important require-
ments of IDS, promptness, as follows. One of our objectives is
to guarantee prompt response to the intrusion through reducing
the detection delay, i.e., the duration between the intrusion
event and the detection of such intrusion. “Promptness” does
not only imply a tight average timing bound of detection delay
but also a tight upper timing bound, namely Tdetect. The total
detection delay is the aggregate of two terms:

TABLE I
PARAMETERS OF THE DETECTION ALGORITHM

Symbol Description
N number of code snippets in the target control code

Dcomm deadline of communication delay
WCET [N] worst-case execution time vector
THML ML model verification threshold
socket controller socket file descriptor
Data streaming data from controller
Tdtc the data reception timestamp on the detector
Ttgt the transmission timestamp on the controller

Tctrl[N] execution time vector on target control system
PHYin internal physical telemetries
PHYex external physical telemetries
MSRin physical telemetries selected as measured inputs
MSRout physical telemetries selected as measured outputs
EXPout inference output of ML model

Algorithm 1 Intrusion Detection Algorithm
1: function DETECT ANOMALY(socket)
2: Data = read(socket);
3: Tdtc = gettimeofday();
4: if Data ≤ 0 then
5: return True; . packet not received
6: else
7: [Ttgt, Tctrl[N], PHYin, PHYex] = parse(Data);
8: if Tdtc − Ttgt > Dcomm then
9: return True; . data packet not received in time

10: else if ∃i, Tctrl[i] > WCET [i], 0 ≤ i < N, i ∈ Z then
11: return True; . execution time over bound
12: else
13: [MSRin,MSRout] =

select telemetry(PHYin, PHYex)
14: EXPout = ML Model(MSRin)
15: if ‖EXPout −MSRout‖ > THML then
16: return True; . ML verification failed
17: else
18: return False; . No anomaly
19: end if
20: end if
21: end if
22: end function

• The duration between the start of the intrusion and the
time when the data packets are transmitted to and started to
be processed by the detection system, namely Tcomm.
• The duration between the start and the end of the analysis

of the packet data on the detection system, namely Tanaly.
Reducing the upper bound of the detection delay is not only

important to guarantee prompt detection of an anomaly but is
also essential to ensure fast data stream monitoring for the
target control system.

The transmission interval for streaming data packets can be
configured by the programmer to update the execution time
bounds and system state to detect an anomaly in a timely
manner. Ideally, such an interval is aligned to the control
system sampling interval to constantly monitor all system
timing bounds and physical states. In order to apply the ideal
data transmission interval, the detection delay should be less
than the ideal transmission interval. Since the communication
delay is determined by the operation system and network
medium, we have less margin to tune and optimize the
communication delay compared to the analysis delay. Hence,

we use experiments to determine the communication delay and
then focus on tightening the upper bound of analysis delays
via code optimization. In future work, we plan to enhance the
network stack and operating system kernels to further optimize
on communication delay.

Communication Delay: Our system uses a communication
delay deadline, Dcomm, on the detection system to verify
the validity of the first part of the detection delay, which
is the aggregate of T target

proc (network processing delay on the
control system), Ttrans (network transmission delay between
control and detection systems), and T detect

proc (system and net-
work processing delay on the detection system. The network
processing delay on both the target and detection systems can
be bounded within 2ms [9]. Both systems are usually deployed
in the same local area network (LAN) connected via Ethernet
with a typical upper bound of delay < 1ms for 100Mb wired
Ethernet [2], which is better than any wireless delay [7].

We assume the system clocks are synchronized for the target
control and detection systems using Network Time Protocol
(NTP) or Precision Time Protocol (PTP) with a system clock
error Terror bound of 18ms and tens of nanoseconds, respec-
tively [4].

We ensure that the detector waits for and then timestamps
the arrival of packets from the controller instead of leaving
the arrived packet in the socket buffer and timestamping them
later. By not buffering packets, we tighten the upper bound on
the communication delay.

Assuming we use NTP and given the above timing
bounds, we obtain a theoretical communication delay deadline
Dcomm = maxTcomm + Terror = max(T target

proc + Ttrans +
T detect
proc) + Terror = 2 + 1 + 2 + 18ms = 23ms.
Analysis Delay: The analysis delay is the worst-case exe-

cution time (WCET) of the detection task, which is checking
the validity of the execution time upper bound and the state
of the control system using the ML model. In our experiment,
we found that the WCET for the execution time checking
code is significantly smaller than the WCET of the ML model
checking code (see experimental section).

The WCET of the ML model checking code is dependent
on the ML library deployed on the detection system. Since
ML model verification is an inference task, we only consider
the WCET of the inference API of the ML library. We select
representative ML libraries to compare their suitability for a
more predictable upper bound on the execution time of their
inference APIs. We select Keras with a Tensorflow backend
as the representative for an interpreter-based ML library and
Caffe for a compilation-based library. In contrast to the Python
interpreter-based Keras library, the inference code of Caffe is
written in C++ and compiled into native code, which should
in principle result in tighter upper bounds of execution time.
Another significant advantage of Caffe over Keras is that it
utilizes less memory than Keras and does not dynamically
allocate/free any of it. Python’s background garbage collector
does not provide fine-grained real-time control and often
perturbs the predictability of execution time of the ML tasks
under Keras. The same is true for Python’s reliance on an

interpreter, which not only adds overhead for execution but
also reduces predictability. (Notice that Python’s libraries, such
as numpy, often make calls to lower-level C or Cuda libraries
for CPUs and GPUs, respectively, which results in better and
more predictable performance on higher-end platforms, but not
on embedded architectures such as the Raspberry Pi.)

Our experimental comparison shows that the average ex-
ecution time of Keras’s inference phase is about 4 times
slower than that of the original Caffe code basis. However,
the standard deviation of the execution time, which is directly
related to execution time predictability, varies significantly for
the original Caffe code distribution, i.e., it is occasionally
two orders of magnitude larger and otherwise 4 times smaller
than that of Keras. This somewhat surprising result shows that
Keras outperforms the original Caffe code in performance and
real-time predictability for the ML task of inferencing.

V. ACCURACY

The accuracy of our system is evaluated by the confusion
matrix, where the false negative (FN) rate indicates undetected
anomalies and the false positive (FP) rate indicates normal
state flagged as abnormal.

The overall system accuracy is affected by both the accuracy
of execution time upper bound checking and the accuracy of
ML model verification. We denote the FP rate and FN rate
for the timing analysis and ML model verification as FPtm,
FPML,FNtm and FNML respectively. The derivation can be
briefly described as follows. An FN detection of the overall
system occurs when and only when an attack takes place to
the controller but neither timing analysis nor ML verification
detect such an intrusion. Thus, an FN event implies both
timing analysis and ML verification failed, which is equivalent
to multiplying the probabilities of these two independent de-
tectors. In contrast, an FP occurs when there is no attack but
either timing analysis or ML verification flag an anomaly, i.e.,
the union of FP events of the two detection methods. Since an
anomaly flagged by timing analysis precedes ML verification,
the FP event of the ML verification coincides with a true
negative (TN) of timing analysis. Since TN = 1 − FP ,
the overall system detection FN, FNsys, and false-positive,
FPsys, rates are: FNsys = FNtm ∗ FNML (1)

FPsys = FPtm + (1− FPtm) ∗ FPML (2)
Here, we observe that FNsys is reduced by a factor of 0 <=

FNML <= 1. Although an extra term, (1−FPtm)∗FPML, is
added to the overall system FP rate, detection still depends on
FN and FP . In other words, a trade-off exits between the cost
of reacting to false alarms and missing anomalies, where the
latter exposes systems to greater risk. Such a study is beyond
the scope of this paper. Instead, we focus on configuring
the detection threshold of the timing analysis and the model
verification for better overall accuracy of the detection system
based on a pre-trained ML model.

VI. EXPERIMENT

We consider a practical industrial problem, where a green
(solar) power generation source is secured. The core part of

a solar power system is the inverter, which controls power
conversion and flow via an embedded micro-controller or DSP.
We simulate the solar inverter’s embedded system and the
intrusion detector on two Raspberry pi B microcomputers,
respectively, to assess accuracy and response time of the IDS.

The simulated inverter (controller) is a real-time application
with two tasks, one of which reads data from a file to simulate
sensing while the other sends packets containing the sensed
data and execution time information to the detector. The
detector is a real-time application with two tasks, one for
reading and parsing the TCP message from the controller and
the other for anomaly detection analysis described in pseudo
code 1. To allow the anomaly detector to keep up with the data
streaming rate of the controller and to consider the WCETs
of all tasks on the controller and detector, we choose 25ms as
the relative deadline for both tasks on the controller, and 40ms
and 10ms for those of the data reading and anomaly detection
tasks of the detector, respectively.

Via our partner, ABB Inc., we have access to field data
collected from ABB’s UNO 2.0 2.5 inverter and ABB’s
weather station V SN800 − 14 from 2014 to 2017 located
at Kihei, Hawaii. This data set consists of electrical state data
from the solar inverter and weather data from the weather
station deployed 20km away from the solar inverter plant,
both collected every five minutes. The electrical data reflects
the inverter’s output power generation, and the weather data
includes the ambient temperature, the global horizontal irra-
diance (GHI) and plane of array irradiance (POAI) etc. at
the weather station. In this experiment, the detector selects
the weather information as ML model input, computes the
predicted inverter output power as ML inference result and
compares the result with the measured output power, which
enhances anomaly detection beyond timing bounds checking.
We ignore the data collection interval of 5mins and assume it
aligns with the task period, 50ms, of the control system, since
timing analysis and ML inference are performed offline.

Controller and detector are sharing the same wired LAN of
a router to reduce the communication delay. The Raspberry
Pis synchronize with the same NTP server. The worst-case
communication delay was experimentally upper bounded at
2.7ms, aggregating network transmission delay, OS processing
delay considering NTP synchronization error, which is notably
much lower than Dcomm = 23ms (see Sect. V), likely due to
different networking than used in previous work [4]. Due to
clock drift, time-difference tables, dynamically updated as part
of exchanged network packets, may be more suitable here [5].
Our target code snippet of the controller has a measured
execution time of 10ms. We simulate additional execution due
to malicious code via “sleeping” for by random intervals of
0− 10ms. For reproducibility, we set the seed of the random
number generator. Based on the these parameters, we choose
the detection threshold of the execution time to be 0.1%, 1%,
and 10%, namely 0.01, 0.1 and 1ms. 80% of data samples are
subject to intrusion. The other 20% feature timing deviation
less than 0.01ms, which are not considered to be intrusions.
We offline train our ANN model via the Caffe library with

high inference accuracy in terms of variance, namely 0.891.
Since the power output of the inverter is below 2kW, we
configure the detection threshold for ML inference deviation
to be 1%,5%, and 10% of 1kW, namely 10, 50, and 100W.

We conduct 9 groups of experiments with different detection
thresholds of execution time and ML model output deviation,
each group has 10 experiments with 2500 data samples per
experiment. We average over the 10 groups and compare the
confusion matrix of the overall detection system combining
timing analysis and ML model anomaly detection with sole
timing analysis checks (past work).

Fig. 2 shows that the system’s FP rate decreases when
detection thresholds of the WCET or the ML model increase.
However, the FP rate of the overall system tends to increase
and the accuracy (true positive plus true negative) tends to
decrease when detection thresholds of the WCET or the ML
model increase. This illustrates the trade-off between selecting
appropriate detection thresholds as a means to optimize overall
system efficacy considering the effects of FP and FN events
for a specific application.

Fig. 2. Overall System Confusion Matrix, Increasing Thresholds (left to right)

Fig. 3 show that ML helps increase detection accuracy of
the overall system by about 3%, especially when the execution
time upper bound is not as tight (0.1 and 1ms).

Fig. 3. Timing Analysis Stacked Bar Confusion Matrix

VII. CONCLUSION

We enhanced prior intrusion detection based on timing
analysis via ML model verification and conducted experiments
to demonstrate its effectiveness based on practical industrial
data. We investigated the trade-off between FP and FN rates
when selecting the detection thresholds of WCET and ML
model output. Future work will capitalize on this trade-off and
develop optimization techniques to further improve intrusion
detection for CPS/IoT.

ACKNOWLEDGEMENT

This work was funded in part by NSF grants 1329780,
1813004.

REFERENCES

[1] Sachin P. Joglekar and Stephen R. Tate. Protomon: embedded monitors
for cryptographic protocol intrusion detection and prevention. Interna-
tional Conference on Information Technology: Coding and Computing,
2004. Proceedings. ITCC 2004., 1:81–88 Vol.1, 2004.

[2] Ming Li. Delay analysis of networked control systems based on 100 m
switched ethernet. TheScientificWorldJournal, 2014:751491, 2014.

[3] Sibin Mohan, Stanley Bak, Emiliano Betti, Heechul Yun, Lui Sha, and
Marco Caccamo. S3a: Secure system simplex architecture for enhanced
security and robustness of cyber-physical systems. In Proceedings of
the 2Nd ACM International Conference on High Confidence Networked
Systems, HiCoNS ’13, pages 65–74, New York, NY, USA, 2013. ACM.

[4] T. Neagoe, V. Cristea, and L. Banica. Ntp versus ptp in com puter
networks clock synchronization. In 2006 IEEE International Symposium
on Industrial Electronics, volume 1, pages 317–362, July 2006.

[5] Tao Qian, Frank Mueller, and Yufeng Xin. Hybrid edf packet scheduling
for real-time distributed systems. In Euromicro Conference on Real-Time
Systems, pages 37–46, July 2015.

[6] A. Sadeghi, C. Wachsmann, and M. Waidner. Security and privacy chal-
lenges in industrial internet of things. In 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), pages 1–6, June 2015.

[7] Shweta Singh and Arun Tripathi. Analysis of delay and load factors in
wired and wireless environments, 12 2015.

[8] Nils Svendsen and Stephen Wolthusen. Using physical models for
anomaly detection in control systems, 03 2009.

[9] J. Xie and M. Xie. Delay bound analysis in real-time networks with
priority scheduling using network calculus. In 2013 IEEE International
Conference on Communications (ICC), pages 2469–2474, June 2013.

[10] C. Zimmer, B. Bhat, F. Mueller, and S. Mohan. Time-based intrusion
dectection in cyber-physical systems. In International Conference on
Cyber-Physical Systems, pages 109–118, April 2010.

