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Abstract

Binary manipulation techniques are increasing in
popularity. They support program transformations tai-
lored toward certain program inputs, and these trans-
formations have been shown to yield performance gains
beyond the scope of static code optimizations without
pro�le-directed feedback. They even deliver moderate
gains in the presence of pro�le-guided optimizations.
In addition, transformations can be performed on the
entire executable, including library routines. This work
focuses on program instrumentation, yet another appli-
cation of binary manipulation.

This paper reports preliminary results on generat-
ing partial data traces through dynamic binary rewrit-
ing. The contributions are threefold. First, a portable
method for extracting precise data traces for partial
executions of arbitrary applications is developed. Sec-
ond, a set of hierarchical structures for compactly rep-
resenting these accesses is developed. Third, an eÆ-
cient online algorithm to detect regular accesses is in-
troduced. These e�orts are part of a larger project to
counter the increasing gap between processor and main
memory speeds by means of software optimization and
hardware enhancements.

1. Introduction

The manipulation of the binary representation of
executable programs is becoming increasingly impor-
tant. Dynamic compilation techniques such as just-
in-time compilation are but one example of binary
translation. Examples include Jalape~no [1] at the
level of virtual machines and Dynamo [2] for native
code. Quantitative results reported for Dynamo un-
derline the e�ectiveness of dynamic compilation, even
for native code, since it has been shown to outper-
form pro�le-directed feedback compilation techniques.

�Part of this work was performed under the auspices of the
U.S. Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-
Eng-48.

In addition, pro�le-directed feedback requires multiple
compilations, which has found only limited acceptance
among users. Dynamic compilation can be performed
on the binary representation during program execu-
tion, and does not require recompilation.

A new trend in the manipulation of binary executa-
bles is the area of dynamic instrumentation, which
shares aspects of its motivation as well as methods
of implementation with dynamic compilation. Tradi-
tional instrumentation generally requires compiler in-
teraction (e.g., for pro�ling) or the inclusion of special
libraries (e.g., for heap monitoring). Dynamic instru-
mentation removes the requirements of recompiling or
relinking. The techniques for dynamic instrumenta-
tion are based on modi�cations of an application dur-
ing execution. For example, our work builds on an
instrumentation framework, DynInst [3], that relies on
techniques of dynamic binary rewriting during program
execution.

Binary rewriting is a term that generally refers to
post-link-time modi�cations of an executable, i.e., the
application's binary representation, before running the
program [22, 16]. In contrast, binary translation rep-
resents the process of modifying the instructions (and,
although less frequently exercised, also the data) of an
application while it is executing [2]. Dynamic binary
rewriting is a combination of these approaches that ap-
plies to the e�orts of our work. Dynamic binary rewrit-
ing uses a control process to rewrite the binary repre-
sentation of an executing application process. However,
during the rewrite process the execution of the appli-
cation is briey suspended before it resumes executing
where it was interrupted. In contrast, binary transla-
tion modi�es the application from within the applica-
tion, i.e., just-in-time compilation is part of the appli-
cation's execution. Finally, traditional (static) binary
rewriting modi�es a binary representation before exe-
cution.

We employ dynamic binary rewriting techniques for
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extracting footprints of data references from an ap-
plication's execution. This work is motivated by the
increasing gap between processor speeds and memory
latencies. While processor speeds increase at a rate
of approximately 60% per year, memory latencies are
reduced by only 7% per year. We are investigating
both software techniques and hardware enhancements
to help reduce the gap. The work reported here focuses
on methods for extracting partial data traces during
the execution of an application in order to later an-
alyze these memory footprints and alleviate memory
bottlenecks through program transformation or hard-
ware recon�guration.

The paper is structured as follows. We �rst intro-
duce a method for extracting partial data traces. Next,
we develop a hierarchy of compact representations of
traces for regular accesses, including an eÆcient online
algorithm for detecting regular accesses. We also pro-
vide an order-preserving abstraction of the partial data
trace. Our preliminary results show the e�ectiveness of
our techniques to compactly represent data traces. We
then discuss several applications of partial data traces.
We contrast our approach with prior work. Finally, we
summarize our contributions.

2. Partial Data Traces through Dy-

namic Binary Rewriting

Partial data traces represent a subset of the data
footprint of an application's execution. Partial data
traces may be comparatively small and can be collected
without prohibitively large overheads during execution,
while complete data traces are expensive to generate
and generally result in very large amounts of data.

This work focuses on the collection of partial ad-
dress traces without compiler or linker support, i.e.,
arbitrary executables can be subject to the generation
of traces. We dynamically modify an executing ap-
plication by injecting instrumentation code via binary

rewriting. The instrumentation is placed at the point
of memory accesses to precisely capture the data refer-
ences issued by an application. Thus, the instrumen-
tation captures the data trace of the application. In
addition, the user may activate or deactivate tracing
so that data reference streams are being generated or
being suppressed, respectively. This facility builds the
foundation for capturing partial memory traces. In the
following, the software infrastructure for partial trace
generation is detailed.

DynInst [3], a component middleware that was de-
signed primarily for \debugging, performance monitor-
ing and application composition out of existing pack-
ages", provided the fundamental software infrastruc-
ture. While traditional debugging and performance
monitoring approaches insert instrumentation at com-
pile time, at link time or at post-link time, DynInst
dynamically modi�es a running application in order
to insert instrumentation snippets. However, DynInst
Version 2.3 is currently constrained to provide instru-
mentation only at subroutine calls, entries and exits.
Furthermore, its design assumes a dual process model
depicted in Figure 1: A control process attaches to an
application process to control the application's state
(to suspend or resume execution) and to modify the
application itself, e.g., by inserting or removing in-
strumentation code. This model entails a consider-
able overhead due to system calls and process context
switching, both of which also perturb the application's
behavior. For example, caches become dirty or may
even be ushed due to the execution of the control
process or kernel code during system calls and context
switches. Upon resuming the application, cold misses
may be incurred that would have been avoided had the
execution not been suspended.

We have extended the capabilities of DynInst with
a set of techniques to support advanced performance
monitoring, including partial memory tracing. This
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was accomplished through a sequence of improvements
to the software infrastructure.

First, we demonstrate the capability for extracting
the data references of a running application. For this
purpose, instrumentation on a per-instruction basis is
required, conditioned by the type of instruction, such
as a load or store in the case of memory tracing. In-
strumentation may be placed in selected subroutines or
throughout the entire program. The instrumentation
consists of a breakpoint at each load or store instruc-
tion in the application, at which point the control pro-
cess may evaluate the address reference as discussed in
the following steps. Second, instructions are decoded
to infer the registers involved in address translation of
data references. Third, the address of a data refer-
ence is calculated based on probed register values and
address translation rules. This approach su�ers from
a considerable performance overhead due to the dual
process approach discussed previously.

Our initial improvement addresses these shortcom-
ings by extending the framework. First, instruction
instrumentation replaces breakpoints with native in-
strumentation code that avoids system calls. Second,
scratch registers saved by the initial trampoline of
DynInst are made accessible from within the running
application through extended runtime support. Third,
non-scratch registers are saved by a second trampoline
in the instrumentation. Fourth, we extend the current
version of DynInst to include a generic hook to call
an arbitrary user-speci�ed subroutine. When used in
conjunction with dynamic loading of shared libraries,
a feature already supported by DynInst, this generic
hook allows the invocation of an arbitrary subroutine
from a shared library not present at link time. Fifth,
data references are translated to generate addresses
based on scratch and non-scratch registers by the sub-
routine. This process is depicted in Figure 2. After

the initial instrumentation, partial address traces are
generated through repeated invocations of the probe
snippets during the execution of the application, i.e.,
without involving any interaction between the control
process and the application.

The generation of partial address traces provides the
capability to later analyze this trace. The generated
partial trace is still potentially very large, a problem
addressed in the next section.

3. Recognition of Regular Accesses

This section focuses on the development of tech-
niques to eÆciently recognize and compress address
trace patterns. Regular access patterns to arrays often
occur in tight loops and are not necessarily constrained
to numerical applications. These patterns can be rep-
resented via regular section descriptors (RSDs) [13] as
a tuple of (start address, length, stride, access type)
1 as depicted in Table 1. The access type allows the
distinction between read and write references, which
may be useful in assessing allocation policies in cache
simulations. The stride of RSDs may be an arbitrary
function. We restrict ourselves to constants in this pa-
per, since we require fast online techniques to recognize
RSDs. In di�erent contexts, one may want to consider
linear functions or higher order polynomials. Special
access patterns are given by recurring references to a
scalar or the same array element, which can be repre-
sented as RSDs with a constant stride of zero. Con-
sider the example with a row-major layout in Figure
3. For the sake of simplicity, we assume an o�set of
one per array element. The read references to array
B occur at o�sets n+1, n+2, n+3 (corresponding to
references B[1,1], B[1,2] and B[1,3], respectively), for
the �rst iteration of the outer loop and a length of n-

1Havlak and Kennedy actually use a stop address instead
of the length parameter, which is equivalent. However, they
omitted the access type.

3



RSD: <start, length, stride, access type>
access type is Read or Write

PRSD: <start, length, stride, PRSD2>
PRSD2 is an RSD or PRSD of the re-
peated subset

DS: <DS1, DS2, IV>
DS1 and DS2 are a DS, RSD or PRSD;
DS1 and DS2 are the primary and sec-
ondary substream, respectively

IV: <pp, pk, sk>
with length parameters pp (primary pro-
logue), sk (secondary kernel) and pk (pri-
mary kernel)

Table 1: Abstract Pattern Representations

1 accesses. This can be represented as RSD4:<B+n+1,
n-1, n, Read>. For array A, n-1 read accesses occur
at o�set 0, captured by a zero stride as RSD1:<A, n-1,

0, Read>. Similarly, the write accesses to o�set 0 are
captured by RSD3.

Simple RSDs by themselves are not suÆciently ex-
pressive to capture the entire stream of accesses of ei-
ther array A or B. To address this limitation, we extend

// declare A[n], B[n][n], initialize A with 0

FOR i := 0 TO n-2 DO

FOR k := 0 TO n-2 DO

A[i] := A[i] + B[i+1][k+1];

references:
A[0] B[1,1] A[0] A[0] B[1,2] A[0] A[0] B[1,3] A[0] ...
A[1] B[2,1] A[1] A[1] B[2,2] A[1] A[1] B[2,3] A[1] ...

o�sets within A: stream representation:
reads: 0 0 0 ... RSD1: <A, n-1, 0, Read>

1 1 1 ... RSD2: <A+1, n-1, 0, Read>
PRSD1: <A, n-1, 1, RSD1>

writes: 0 0 0 ... RSD3: <A, n-1, 0, Write>
1 1 1 ... PRSD3: <A, n-1, 1, RSD3>

IV3: <1, 1, 1>
read data stream DS1: <PRSD1, PRSD3, IV3>

o�sets within B (reads only):
n+1 n+2 n+3 ... RSD4: <B+n+1, n-1, 1, Read>
2n+1 2n+2 2n+3 ... PRSD4: <B+n+1, n-1, n, RSD3>

IV4: <1, 2, 1>

overall data stream DS2: <DS1, PRSD4, IV4>

Figure 3: Handling Regular Data References

this description by power regular section descriptors
(PRSDs), which allow the representation of power sets
of RSDs as speci�ed in Table 1. A PRSD extends the
tuple of an RSD, in that it may contain a PRSD (or
RSD) itself, which represents the subset. The recursive
structure of PRSDs provides the means to hierarchi-
cally represent recurring patterns with di�erent start
addresses but the same strides and lengths.

The example in Figure 3 illustrates how all read ac-
cesses to array A can be combined in PRSD1:<A, n-1,

1, RSD1>. A total of n-1 repetitions of RSD1 with in-
crements of stride one between base addresses of RSD1
are represented. The write accesses to A and the read
accesses to B are represented similarly to PRSD3 and
PRSD4, respectively.

As illustrated by the example, PRSDs provide a
much more compact representation than RSDs. Past
e�orts to compactly represent access patterns based on
RSDs were generally constrained to simple array ac-
cesses, but were neither applicable to stack or heap al-
located structures, nor to objects [13]. PRSDs actually
provide the means to compactly represent these when
the padding between stack or heap data structures or
objects is regular. For example, a set of objects allo-
cated on the heap may be accessed locally by member
variables as well as by a linked list between objects.
PRSDs can be used to represent a repeating sequence
of regular accesses at both the level of member vari-
ables and objects if the objects are located at evenly
spaced addresses. Consecutive requests to a memory
allocator will provide evenly spaced addresses. In fact,
as long as the requests to the memory allocator follow
a regular pattern, the objects will be located appro-
priately. Thus, we expect our techniques to apply to
many pointer-based applications.

4. Ordering of Accesses

The previous section provided compact representa-
tions for regular access patterns within a sequence of
data references. Data reference streams in numerical
codes often exhibit accesses to multiple sequences in an
interleaved manner. Consider the example in Figure 3
again: Accesses to elements of arrays A and B alternate
(at di�erent frequencies). We provide a compact, ex-
ible representation that preserves the order of accesses
through a data stream (DS). The DS extends a primary
stream (PRSD or DS) by an interleaved secondary
stream (PRSD or DS) with an interleave vector (IV)
(see Table 1). The secondary PRSD relates to its pri-
mary counterpart through the IV, which is represented
by three length parameters IV<pp,pk,sk>. The pri-
mary prologue length (pp) speci�es the number of pri-
mary references before a secondary reference is issued.
The primary kernel length (pk) and the secondary ker-
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nel length (sk) refer to the number of references of each
sequence between alternations, respectively. The DS
may be hierarchically structured, i.e., a primary data
stream may itself contain a secondary data stream in-
stead of a PRSD. The interleave vector then indicates
the prologue of the primary stream, followed by alter-
nating references of the secondary and primary ker-
nel lengths from the respective streams, which allows
references to interleave at di�erent frequencies. Non-
constant functions of strides in RSDs would also require
equivalent functions for the length components of IVs,
which are not considered in this paper. The example
in Figure 3 has a data stream DS1 described by the
interleaving of PRSD1 and PRSD3 with an interleave
vector IV3. The interleave vector indicates that one
initial element from A leads the stream (pp=1). Within
the kernel, alternations between one secondary element
(sk=1) and one primary element (pk=1) follow. The
stream DS2 speci�es the interleaving between DS1 and
PRSD4 with vector IV4. The primary kernel of IV4
has a length of two elements (pk=2) since a write to
A is followed by a read to A from DS1. Notice that
multiple PRSDs may be interleaved within a hierarchy
of data streams. The example could be extended by
a read access to yet another array C within the inner
loop. This would result in another stream embedding
accesses to C within DS2 with an interleave vector of
<2,3,1>.

So far, we have only addressed regular access pat-
terns and their representation. Data streams are pow-
erful enough to represent irregular accesses as well.
Each irregular access could be represented as a single
RSD. A more eÆcient representation, however, may
be via irregular access descriptors (IADs) of the form
<address, i>, where the ith reference at a given ad-
dress within the overall data stream is speci�ed. A vec-
tor of IADs may then represent all irregular accesses.
Access types could be distinguished by keeping sepa-
rate read and write vectors for IADs.

This abstraction of a data stream suÆces to provide
a compact representation of regular references within
applications. The remainder of this paper discusses the
use of data streams, as well as bene�ts of the overall
infrastructure for other applications.

5. Online Detection of Regular Streams

In this section, we present an eÆcient online algo-
rithm | both in terms of space and time complexity |
to detect streams by performing an analysis on the data
trace. Our online stream detection algorithm assumes
that RSDs within a stream are solely comprised of ac-
cess patterns with constant strides. We allow members
forming an RSD to be non-consecutive in the original
issuing sequence of the program. This is necessary for

dealing with real programs, in which accesses to local
stack variables are interspersed among stream refer-
ences.

We would like our algorithm to detect the RSD cor-
responding to accesses to a data structure such as an
array, despite the interleaving of alternate accesses to
other data. Constraints on space require us to peri-
odically discard the older trace data to make room for
newer references. We refer to this concept as aging.
While aging does reduce the possibility of detecting
very widely spaced RSDs, patterns with large strides
are less likely to contribute toward temporal locality
(or even spatial locality). Hence, aging can be em-
ployed to generate irregular access descriptors (IADs),
as discussed above.

The algorithm requires maintaining two separate
data structures:

� Stream Table: This data structure contains a
compact description of RSDs that have already
been detected. The table is stored as a chained
hash with the expected successor reference ad-
dress to the RSD serving as the hash key. Each
node in the table is an RSD, i.e., a tuple consist-
ing of the start address, the length, the stride and
an access type. If aging of RSDs is desired, an
additional value representing the age of the last
referenced RSD element is added to the tuple.
An additional tuple �eld implements chaining in
the hash table.

� Pool: This data structure contains the refer-
ences that have not yet been identi�ed as part of
any RSD. The references lie within the window
of addresses being scanned for potential RSDs.
As new addresses are referenced, the window of
active addresses advances within the pool, and,
consequently, older references are aged and pro-
moted to the corresponding stream of IADs. In
order to determine the existence of RSDs with
constant strides, it is imperative to compute dif-
ferences between elements of the pool. To re-
duce the computational complexity in repeatedly
determining the di�erences between existing ele-
ments as new elements are added to the pool, we
keep track of di�erences with prior elements by
storing a set of di�erences along with each ref-
erence in the pool. The quest for locating RSDs
reduces to one of �nding a sequence of pool el-
ements in which di�erences between consecutive
stream elements are identical. Practically, the
pool consisting of both the memory references
and the calculated di�erences can be stored in a
statically allocated, two-dimensional array, which
is used in a circular manner by keeping track of
two indices, the start and the end of the active
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WHILE new reference exists DO

Increment column; /* move window */

pool[0][column] := new reference; /* Add reference to pool */

IF reference IN some RSD THEN

Update length of RSD in stream table;

Mark column in pool (shaded in example);

ELSE

/* Compute and store differences in pool */

FOR i := 1 TO window size DO

pool[i][column] := pool[0][column] - pool[0][column-i];

END FOR;

found := FALSE;

/* Search for RSDs of minimum length 3 */

FOR i := 1 TO window size DO

FOR k := 1 TO window size DO

IF pool[i][column] == pool[k][column-i] THEN

found = TRUE;

END IF;

UNTIL found;

UNTIL found;

IF found THEN

Enter RSD in stream table;

Mark corresponding columns in pool (shaded in example);

END IF;

END IF;

END WHILE;

Figure 4: Online Algorithm to Detect RSDs

addresses. The indices advance via modulo arith-
metic through the pool.

The pseudo code of the algorithm, omitting the de-
tails of aging and distinguishing access types, is pre-
sented in Figure 4. We illustrate the application of the
algorithm on the example in Figure 3. We assume A

and B start at location 100 and 200, respectively, and
are stored in row-major layout. For simplicity, we as-
sume both A and B have 10 elements each, and each
element occupies a single memory location. The ac-
cesses translate into an address sequence as follows:

100 ; 211 100 100 ; 212 100 100 ; 213 100 100 ; ...
101 ; 221 101 101 ; 222 101 101 ; 223 101 101 ; ...

Figure 5 shows the snapshot of the pool as the
�rst eight references are encountered. The header row
shows the referenced locations. Each column contains
the di�erence between the value in the current column
header and the value in a preceding column (see \com-
pute and store di�erences" in Figure 4). The particu-
lar element used for calculating the di�erence depends
on the row in which the di�erence is computed. The
�rst row (below the header) consists of the di�erence

100 211 100 100 212 100 100 213

111 -111

0

0

-111

0 1 1

1

--

--

--

--

--

--

-1

-2

-3

-4

-5

-6

dist.

Figure 5: Snapshot of the Reservation Pool

between the current and the immediately preceding el-
ement (distance -1), exempli�ed by the upper arrow.
The second row consists of di�erences between the cur-
rent element and its second predecessor (distance -2),
illustrated by the lower arrow, and so forth. To capture
RSDs within a window size w, we need only compute
the di�erences above the diagonal of the pool table. El-
ements determined to be part of a stride are removed
from the table. In the example above, on seeing the
third 100 (assuming a minimum length of three), we
will identify an RSD by observing the two correspond-
ing di�erences of 0 (circled) in a transitive relationship.
Consequently, we will insert an RSD of <100, 3, 0>
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in the stream table. These elements are shown shaded
in the pool to illustrate their absence from the subse-
quent di�erence computations of the pool. Similarly,
the later 100s will be immediately observed to belong
to the RSD, and the RSD �elds will be modi�ed to
<100, 5, 0> on receiving the �fth 100. It is impor-
tant to observe that on detecting an element to be a
part of an RSD, we still keep a slot for it while omitting
di�erences for this element. The slot is kept to preserve
the notion of the window size. On seeing 213, a new
RSD is identi�ed by observing an identical di�erence of
1 (circled) for the transitive relation between 211, 212
and 213. At this point, <211, 3, 1> will be inserted
in the stream table, and the slots for these elements
can be marked to indicate their non-participation in
further RSD detection.

We can summarize with the following observations:

� There is an implicit assumption that sequences
must have a minimum length, at which point the
corresponding accesses are promoted to an RSD.
This detail is omitted from the pseudo-code rep-
resentation of the algorithm. In the example, this
value is three.

� The worst case complexity of the algorithm is
O(N � w2), where N is the number of total ref-
erence and w is the window size. This can be
signi�cantly reduced if the di�erences with prior
elements are not computed when it becomes clear
that no stream with the minimum length can be
found in the window.

� Our stream table is optimized for the average
case, where an element does not belong to any
RSD. Extending RSDs in our hash is more ex-
pensive than performing an unsuccessful lookup,
since it involves changing the hash bucket of the
RSD.

� Our algorithm intentionally prevents member-
ship of an element in multiple streams. We
achieve this by removing elements from the pool
on detecting their membership in an RSD.

� As mentioned before, aging of streams can easily
be achieved by including a tag with each tuple in
the stream table signifying the stream's age.

We omit the details of composing RSDs into PRSDs
and data streams (DS), since these tasks do not present
a signi�cant contribution to the algorithm.

6. Preliminary Results

Preliminary results of our study were conducted in
the PowerPC 3 architecture under AIX 4.3 for a set of
kernels with nested loops accessing matrices. Modulo

performs a wrap-around modulo index into a matrix,
MM is a regular matrix multiplication and tiled MM

program Modulo MM tiled MM
RSDs 1 1 1
PRSDs 1 1 2

We will add the RSDs and PRSDs in the �nal version.

Table 2: Number of Descriptor per Kernel

is a tiled version with a blocking size of N=10 for an
N�N matrix. Table 2 depicts the number of RSDs and
PRSDs for the central loop of each program. Notice
that we only depict the metrics of one array access.
There were a total of three read accesses and one write
access per iteration for each kernel. For the tested pro-
grams, a single RSD suÆces to represent the regular
accesses per array for the innermost loop. Modulo re-
quired one PRSD to represent the modulo arithmetic
in indexing the matrix. MM required a PRSD for repeti-
tions of the access patterns through the entire matrix.
Tiled MM required two PRSDs, one more than MM, to
capture the blocking. We omitted one additional RSD
from the table, which results from starting the partial
data trace in the middle of an iteration and results in
an RSD with shorter length than observed during con-
secutive iterations. Overall, the results con�rm that
regular accesses can be represented in a compact man-
ner.

7. Applications of Partial Data Traces

We have demonstrated the ability to extract data
references from binaries and have established methods
to represent data streams of references in a compact
manner. The compression of data streams is integrated
into the instrumentation of the binary to avoid the gen-
eration of voluminous traces. These compressed traces
may be communicated on demand as partial traces to
another process, such as the control process.

7.1. Incremental Cache Analysis

In the case of cache analysis, the cache behavior is
simulated incrementally based on the partial memory
traces as they are supplied. Cache simulation allows
the identi�cation of the causes of cache misses, such as
cold misses, conict misses and capacity misses. Only
the latter two are relevant for the programmer since
only they may be avoided. The cache simulator pro-
vides the means to track the sources of conicts, i.e.,
a cached data item replaced by a miss is recorded in
conjunction with the miss. The simulation results can
be depicted with a reference to the source program,
thereby guiding the programmer to hot spots of cache
misses. Conict misses correlate the sources of a miss
with the item replaced in cache. Capacity misses may
be regarded as a special case of conict misses where
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a data structure conicts with itself. A correlation be-
tween conicting items on the level of data structures
provides suÆcient information to the programmer to
help restructure the application program and, subse-
quently, to avoid such a conict. Application restruc-
turing can yield considerable performance gains. Over-
all, incremental cache simulation and visualization of
cache correlations identi�es memory bottlenecks (hot
spots of data misses). This information enables the
programmer to restructure the data layout or the iter-
ation structure over the data space in question.

7.2. Dynamic Code Optimization

Information about the cause of cache misses may
also be exploited by dynamic code optimizations. Soft-
ware prefetching can be used in conjunction with
loop unrolling to selectively prefetch data where cache
misses are known to occur regularly. More complex
optimizations, such as tiling and other loop transfor-
mations, may be applicable but are subject to data
dependence constraints that can be inferred from data
ow analysis [25, 26]. Applying such transformations
dynamically has considerable advantages over compile-
time optimizations. During execution, the architec-
tural parameters, such as cache size, are known, and
this knowledge may result in program transformations
better geared toward a particular architecture. We can
restrict these optimizations to hot paths that may be
detected by instrumentation along the lines of portable
frameworks that target di�erent processors, such as
UQBT [9, 23]. Our infrastructure permits these op-
timizations to occur o�ine before the optimized code
is injected into the application. The application may
proceed to execute while the binary is being optimized,
which reduces the overhead of dynamic compilation
typically imposed by just-in-time compilation.

8. Related Work

The idea of enhancing DynInst by supplying the reg-
ister contents of scratch and non-scratch registers and
the ability to invoke high-level routines through indi-
rect calls to dynamically loaded shared libraries builds
on our prior work on multi-threaded debugging [21].
The invocation of arbitrary routines has also been re-
alized in a similar fashion in DPCL, a distributed in-
strumentation framework on top of DynInst [10].

Regular Section Descriptors represent a particular
instance of a common concept in memory optimiza-
tions, either in software or hardware. For instance,
Havlak and Kennedy's RSDs [13] are virtually identical
to the stream descriptors in use at about the same time
in the compiler and memory systems work inspired by
the WM architecture [27].

Weikle et al. [24] describe an analytic framework
for the evaluation of caching systems. Their approach
views caches as �lters, and one component of the frame-
work is a trace-speci�cation notation called TSpec.
TSpec is similar to the RSDs described here in that
it provides a more formal mechanism by which re-
searchers may communicate with clarity about the
memory references generated by a processor. The
TSpec notation is more complex than RSDs, since it is
also the object on which the cache �lter operates and is
used to describe the state of a caching system. All such
notations support the creation of tools for automatic
trace expansion or synthetic trace generation, and can
be used to represent di�erent levels of abstraction in
benchmark analysis.

Buck and Hollingsworth performed a simulation
study to pinpoint the hot spots of cache misses based
on hardware support for data trace generation [4].
Hardware counter support in conjunction with inter-
rupt support on overow for a cache miss counter was
compared to miss counting in selected memory regions.
The former approach is based on probing to capture
data misses at a certain frequency (e.g., one out of
50,000 misses). The latter approach performs a binary
search (or n-way search) over the data space to identify
the location of the most frequently occurring misses.
Sampling was reported to yield less accurate results
than searching. The approach based on searching pro-
vided accurate results (mostly less than 2% error) for
these simulations. Unfortunately, either hardware sup-
port for these two approaches is not yet readily avail-
able (with the exception of the IA-64), or there is a
lack of documentation for this support (as con�rmed
by one vendor). In addition, interrupts on overow
are imprecise due to instruction-level parallelism. The
data reference causing an interrupt is only known to be
located in \close vicinity" to the interrupted instruc-
tion, which complicates the analysis. Finally, this de-
scribed hardware support is not portable. In contrast,
our approach to generating traces is applicable to to-
day's architectures, is portable and precise in locating
data references, and does not require the overhead of
interrupt handling. Other approaches to determining
the causes of cache misses, such as informing memory
operations, are also based on hardware support and are
presently not supported in contemporary architectures
[15, 20].

Recent work by Mellor-Crummey et al. uses a mod-
i�ed compiler to insert instrumentation code that ex-
tracts a data trace of array references. The trace is
later exposed to a cache simulator before miss correla-
tions are reported [19]. This approach shares its goal of
cache correlation with our work, and we are considering
collaborative e�orts. CProf [17] is a similar tool that

8



relies on post link-time binary editing through EEL
[16] but cannot handle shared library instrumentation
or partial traces. Lebeck and Wood also applied binary
editing to substitute instructions that reference data in
memory with function calls to simulate caches on-the-
y [18]. Our work di�ers in the fundamental approach
of rewriting binaries, which is neither restricted to a
special compiler or programming language, nor does
it preclude the analysis of library routines. Another
major di�erence addresses the overhead of large data
traces inherent to all these approaches. We restrict our-
selves to partial traces and employ trace compression
to provide compact representations.

Recent work by Chilimbi et al. concentrates on
language support and data layout to better exploit
caches [8, 7] as well as quantitative metrics to assess
memory bottlenecks within the data reference stream
[6]. This work introduces the term whole program
stream (WPS) to refer to the data reference stream,
and presents methods to compactly represent the WPS
in a grammatical form. However, the WPS compres-
sion is only applicable to scalar data, while our ap-
proach addresses compact representations for array ac-
cesses and even dynamically allocated objects. Other
e�orts concentrate on access modeling based on whole
program traces [3, 14] using cache miss equations [11]
or symbolic reference analysis at the source level based
on Presburger formulas [5]. These approaches involve
linear solvers with response times on the order of sev-
eral minutes up to over an hour. We concentrate our
e�orts on providing feedback to a programmer quickly.

A number of approaches address dynamic optimiza-
tions through just-in-time compilation techniques for
native code [2, 9, 23, 12]. The main thrust of these tech-
niques is program transformation based on knowledge
about taken execution paths, such as trace scheduling.
The transformations include the reallocation of regis-
ters and loop transformations (such as code motion and
unrolling), to name a few. These e�orts are constrained
by the trade-o� between the overhead of just-in-time
compilation and the potential payo� in execution time
savings. Our approach di�ers considerably. We allow
o�ine optimizations to occur, which do not a�ect the
application's performance during compilation, and we
rely on injection of dynamically optimized code there-
after.

9. Conclusion

We introduced an approach to dynamic binary
rewriting and motivated its bene�ts for identifying
cache performance bottlenecks and for applying dy-
namic code optimizations. We developed a framework
to extract partial data traces in a portable fashion from
uninstrumented executables, and contributed methods

for compactly representing these traces. An online al-
gorithm was presented to capture regular access pat-
terns eÆciently through regular section descriptors. A
hierarchical representation, power regular section de-
scriptors (PRSDs), extends this notion to capture re-
curring patterns with di�erent base addresses, and the
abstraction of data streams provides an ordering for
the interleaving of di�erent PRSDs. We are currently
pursuing several directions to exploit the knowledge of
data streams in the context of software optimizations
and, potentially specialized hardware support.
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