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Abstract—This work presents NchooseK, a unified program-
ming model for constraint satisfaction problems that can be
mapped to both quantum circuit and annealing devices through
Quadratic Unconstrained Binary Operators (QUBOs). Our map-
ping provides an approachable and effective way to program both
types of quantum computers. We provide examples of NchooseK
being used.

I. MOTIVATION

Quantum computing has the potential to provide a perfor-
mance advantage over classical computing, but as a practical
technology it is newly emerging. The two main quantum
computational models, quantum annealing and the quantum
gate model, are distinct from each other as well as from
classical programming and lead to different performance and
engineering trade-offs.

To program a quantum annealer, one encodes a prob-
lem as either a classical, 2-local Ising-model Hamiltonian
or a quadratic unconstrained binary optimization (QUBO)
problem—the two are isomorphic—and the system uses quan-
tum effects to solve for the two-level (Boolean) inputs that
minimize overall energy. To program a gate-model quantum
computer, one encodes the problem as a sequence of unitary
transformations applied to an input state, and a final measure-
ment projects the result to a vector of Booleans.

The disconnect between these two computing models, as
well as the potential of quantum computing, has inspired us
to create a new programming model that enables programs to
run on quantum annealers, circuit-based quantum computers,
and classical computers. This model, called NchooseK, is
designed to express a particular type of constraint-satisfaction
problem. NchooseK strives to strike a balance between ease
of programmability and performance. An early investigation
into the use of NchooseK [1] was based on Grover’s search
algorithm. This paper reports on an improved implementation
approach based instead on the quantum approximate optimiza-
tion algorithm (QAOA) [2].

II. NCHOOSEK OVERVIEW

NchooseK is a constraint-based programming model and a
specific type of Integer Linear Programming (ILP). Programs

consist of Boolean variables and a set of constraints applied to
them. Each constraint takes the form, “Given a collection of
variables of cardinality N, a subset of them with cardinality K
must be true”.

Definition 1 (Variable collection): A variable collection
comprises a number of Boolean variables in which variables
can be repeated, but order does not matter. Its cardinality is the
number of elements (which can exceed the number of unique
variables due to repetitions).

Definition 2 (Selection set): A selection set comprises a set
of disjoint whole numbers, none of which can be greater than
the cardinality of a corresponding variable collection.

Definition 3 (NchooseK constraint): An NchooseK con-
straint, written as nck({N},{K}), consists of a variable col-
lection N and a selection set K. It is satisfied if the cardinality
of the variable collection whose variables are true equals one
of the numbers in the selection set:

nck(N,K)≡

(
∑

n∈N
n

)
∈ K,

where n ∈ Z2 and we associate false with 0 and true with 1.
Definition 4 (NchooseK program): An NchooseK pro-

gram is a conjunction of NchooseK constraints, notated
nck({N1},{K1}) ∧ nck({N2},{K2}) ∧ ·· · ∧ nck({Nn},{Kn}).
The result of executing a program is either an assignment
of Boolean values to all variables appearing in all variable
collections such that every NchooseK constraint is honored or
an indication that no such assignment exists.

Constructing NchooseK constraints involves focusing on the
relationships among variables. Consider a variable collection
{a,b}. If a and b must have different values, the constraint
is expressed as nck({a,b},{1}). This indicates that exactly
one of a and b must be true and therefore the other false. If
they need to have the same value, instead nck({a,b},{0,2})
would be used: either zero variables are true (so both false) or
two variables are true (so both true). As additional examples,
nck({a,b},{1,2}) constrains at least one of a and b to be true,
and nck({a,b},{0,1}) constrains at least one to false.

The same variable can appear in the variable collection of
multiple constraints in an NchooseK program. In this case, the
variable takes the same value in both constraints. For example,



nck({a,b},{1})∧nck({b,c},{1}) is satisfied when both a and
c are true while b is false or when both a and c are false and
b is true but no other combinations.

III. CASE STUDIES

To clarify how one could express a computational problem
as an NchooseK program we consider two case studies. Sec-
tion III-A discusses the exact-cover problem, and Section III-B
discusses the map-coloring problem. Each of these presents a
concrete example of a problem and discusses the steps needed
to formulate this example in terms of NchooseK constraints.

A. Exact Cover

As an example on how to form a problem with NchooseK,
consider the exact cover problem: Given a set E =
{e1,e2, . . . ,en} of n elements and a set S = {s1,s2, . . . ,sm}, of
m subsets of E, i.e.,si ⊆ E, the goal is to find some subset of S
that includes every element of E exactly once—or report that
no such cover exists. We call a subset of S that includes every
element of E a “cover”. The “exactly once” condition makes
this subset an exact cover. Consider the following problem:

E = {a,b,c,d,e, f ,g}
S = {s1,s2,s3,s4,s5,s6}

s1 = {b,c,e, f}
s2 = {a,d,e}
s3 = {a,d,e,g}
s4 = {a,g, f}
s5 = {c, f}
s6 = {b,g}

In this case, one solution is the subset {s2,s5,s6} of S
because this subset contains each of a, b, c, d, e, f , and g
exactly once, making it an exact cover. An example of a non-
solution is the subset {s1,s3}, which covers E—it includes
all seven elements of E—but is not an exact cover because
element e occurs twice. The subset {s1,s2} is also not a
solution because it is missing element g, implying that {s1,s2}
does not cover E.

Given that a solution to the exact-cover problem indicates
which subsets are in the cover, we include one variable in
the corresponding NchooseK problem per element of set S.
Specifically, an NchooseK variable vi is true if and only if
its associated subset si belongs to the cover. The requirements
of a valid solution are that (1) each element of E must be
included in the cover and (2) no element of E may be in
the cover more than once. Because element e of E must be
included exactly once, we must constrain exactly one of the
variables associated with a subset containing e to true. That
is, we will include one NchooseK constraint per element of
E. These variables and constraints are all that are needed to
express the exact cover.

In our example problem, the NchooseK constraint for the
element a is

nck({v2,v3,v4},{1})

because subsets s2, s3, and s4 are the ones that contain element
a, and exactly one of them needs to be in the cover. The
complete NchooseK program is

nck({v2,v3,v4},{1})∧ B a
nck({v1,v6},{1})∧ B b
nck({v1,v5},{1})∧ B c
nck({v2,v3},{1})∧ B d
nck({v1,v2,v3},{1})∧ B e
nck({v1,v4,v5},{1})∧ B f
nck({v3,v4,v6},{1}) B g

These constraints and variables are illustrated graphically in
Figure 1.

B. Map Coloring

Another example of solving a problem with NchooseK is
the map coloring problem. Given a map of territories, some
of which share borders, the map should be colored such that
no two territories with a common border have the same color.

An NchooseK solution of the map-coloring problem con-
strains which territories are colored with which color. This is
not a binary choice, unlike the exact cover in which the only
question is whether a subset is part of the cover or not. When
the solution covers multiple dimensions—in this case, n and
m, where n is the number of territories and m is the number
of colors—the NchooseK variables have to defined to reflect
those dimensions. For the map-coloring problem, this means
there are n ·m variables, one variable per territory per color.
Consider the simple case of two territories, P and Q, and four
colors, red, orange, green, and blue. (It can be shown that any
two dimensional map can be colored with only four colors [3],
[4], which is why we use four colors in this example.) In this
case, eight variables are needed: Pred, Porange, Pgreen, Pblue, Qred,
Qorange, Qgreen, and Qblue.

Ultimately, each territory can be assigned only a single
color. Hence, a constraint is needed for each territory, indicat-
ing that only one color can be true (assigned). For territory P
in our example, this NchooseK constraint is expressed as
nck({Pred,Porange,Pblue,Pgreen},{1}). An analogous constraint
is specified for territory Q.

Requiring that no bordering territories share a color requires
additional constraints, namely one constraint per border per
color, indicating both cannot be true (i.e., cannot be colored
identically). For the border between territory P and Q, this
NchooseK constraint is expressed as

nck({Pred,Qred},{0,1})∧nck({Porange,Qorange},{0,1})
∧nck({Pblue,Qblue},{0,1})∧nck({Pgreen,Qgreen},{0,1}).

The selection sets in the above must include both 0 and 1
because neither territory may be a given color. For example,
nck({Pred,Qred},{0,1}) allows for either P or Q to be red or
for neither P nor Q to be red. The only case that is prohibited
is both P and Q being red.

This example is illustrated in Figure 2. A map with more re-
gions would follow the same pattern but with a corresponding
increase in the number of constraints.
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Fig. 1: A visualization of the exact cover example problem represented in NchooseK. Each circle corresponds to one of the
variables in the NchooseK problem or subset in the original problem. The colors are for convenience only, to help distinguish
the arrows. The boxes represent NchooseK constraints. Within each box, the small squares represent the variable collection—
containing the variables pointing to them—and the text indicates the selection set. In this case the selection set is {1} for each
constraint. Parenthesized letters underneath each box indicate the element of set E in the original problem.
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Fig. 2: A visualization of the map coloring example problem represented in NchooseK. Each circle corresponds to one of
the variables in the NchooseK problem or combination of territory and color in the original problem. The boxes represent
NchooseK constraints. Within each box, the small squares represent the variable collection—containing the variables pointing
to them—and the text indicates the selection set.

IV. IMPLEMENTATION

The NchooseK model is intended to be portable to both
gate-model quantum computers and quantum annealers as well
as to admit a classical solution. Our current implementation
uses a quadratic unconstrained binary optimization (QUBO)
formulation as the intermediate representation of an NchooseK
program. We first discuss the translation to QUBOs and
then describe how these QUBOs are executed on quantum
computers.

A QUBO problem can be expressed as the argument mini-
mum of a quadratic pseudo-Boolean function. That is, given

f (x) =
n−1

∑
i=0

n−1

∑
j=i

ai, jxix j (1)

with variables xi ∈ Z2 and constants ai, j ∈ R, we seek the x
values that minimize f (x):

argmin
x

f (x) . (2)

The first step in our NchooseK implementation is to translate
an NchooseK problem to QUBO form such that the values
returned by Equation 2 satisfy all of the NchooseK constraints.

Consider the NchooseK program from Section II of
nck({a,b},{1})∧nck({b,c},{1}). We translate the constraint
nck({x0,x1},{1}) to

f (x0,x1) = 2x0x1− x0− x1 , x0,x1 ∈ Z2 (3)

because this f is minimized when exactly one of x0 and x1
has a value of 1. QUBO problems are additive; the solution
to a sum of QUBOs is the intersection of the solutions to
its constituent QUBOs as long as this intersection is non-
empty. Hence, f (a,b)+ f (b,c) = (2ab−a−b)+(2bc−b−c)
is minimized over the same values of a, b, and c that satisfy
nck({a,b},{1})∧nck({b,c},{1}).

We have implemented the NchooseK model in a domain-
specific language (DSL) embedded in Python. Figure 3 shows
how one could express nck({a,b},{1})∧ nck({b,c},{1}) in
this DSL.



import nchoosek
from nchoosek.solve import ocean

env = nchoosek.Environment()
a = env.register port(’a’)
b = env.register port(’b’)
c = env.register port(’c’)
env.nck([a, b], {1})
env.nck([b, c], {1})
print(ocean.solve(env))

Fig. 3: The NchooseK program nck({a,b},{1}) ∧
nck({b,c},{1}) expressed as an embedded domain-
specific language in Python. The code creates an execution
environment, registers variables with that environment,
establishes a pair of NchooseK constraints, and solves for
the variables using the Ocean library [5]. Typical output is
{’a’: False, ’b’: True, ’c’: False}.

Our DSL compiler first converts each NchooseK constraint
to a quadratic pseudo-Boolean function of the form shown in
Equation 1. It does so by expressing each constraint in terms of
a Boolean satisfiability problem and uses the Z3 satisfiability
modulo theories (SMT) solver [6] to find coefficients for the
corresponding quadratic pseudo-Boolean function, such as the
one shown in Equation 3, for example. It then sums all of the
functions for all of the constraints into a single function to be
solved as a QUBO problem.

The compiler can use either a classical or a quantum
computer to solve for the variables that minimize the QUBO.
The classical solution relies once again on the Z3 SMT
solver. The solution on a quantum annealer, whose native
input form is essentially a QUBO, uses D-Wave’s Ocean
library [5]. The solution on a gate-model quantum computer
uses the QAOA [2] implementation from IBM’s Qiskit li-
brary [7] to search for suitable variable assignments. QAOA
is a hybrid quantum-classical method that (approximately)
solves optimization problems. It utilizes a classical optimizer
to determine some of its parameters over tens of jobs on
a quantum computer. We use Qiskit’s default COBYLA [8]
optimizer, but any other optimizer supported by Qiskit could
have been used instead.

The approach outlined here is different from that employed
by Khetawat et al. [1], which scaled poorly, was not fully
automated, and did not have a way to create circuits that com-
bined multiple NchooseK constraints. The trade off relative to
our approach is that QAOA requires running multiple circuits,
while Khetawat creates a single, complicated circuit solved
with a Grover search [9].

V. NCHOOSEK VS. QUBO

NchooseK, as we have implemented it, converts a problem
to a QUBO before running it on the various architectures.
Quantum annealers, at the lowest level, minimize the energy of
a classical, 2-local, Ising-model Hamiltonian function, which

is almost identical to solving a QUBO problem. (The former
uses variables x ∈ {−1,+1} while the latter uses variables
x ∈ {0,1}.) Hence, in order to run on a quantum annealer, the
conversion to QUBO/Ising would need to be done at some
point. For quantum devices following the gate model, exten-
sive prior work has been conducted to convert optimization
problems, of which NchooseK is an example, to quantum
circuits. Because our implementation already needs to convert
an NchooseK program to a QUBO to run it on a quantum
annealer, we decided to use this same approach for the gate
model as well. The Qiskit library even provides a “quadratic
program” interface, which can solve QUBO problems in a
number of different ways.

The fact that we convert an NchooseK program to a
QUBO before running it on either type of machine raises
the following question: Why not skip NchooseK and create
QUBOs directly from the problem? Our answer is twofold.
First, it is often easier to set up a problem with NchooseK
than to determine QUBO coefficients directly. Second, it is
easier to read and comprehend the semantics of a program
written with NchooseK than it is to interpret a QUBO. To
illustrate the difference between programming in NchooseK
versus programming directly to QUBOs, we compare several
NchooseK problems to their equivalent QUBOs in the follow-
ing discussion.

A. XOR

XOR is a common binary operation. How can A⊕B = C
be represented in both NchooseK and QUBO notation? To
start investigating simple problems like this, it is often useful
to create a truth table. The truth table for A⊕B = C is as
shown in Table I. A quick inspection of this table uncovers

A B C

0 0 0
1 0 1
0 1 1
1 1 0

TABLE I: The truth table for A⊕B = C (XOR). As in the
rest of this paper, 0 corresponds to false, and 1 corresponds
to true.

an easy conversion to NchooseK. Each row contains either
zero or two true values, and each combination of three values
not appearing as a row in Table I contains either one or three
true values. The NchooseK constraint that represents this XOR
problem is therefore nck({A,B,C},{0,2}).

The QUBO creation is trickier. Recall that a QUBO with
n binary terms takes the form shown in Equation 2. When
creating a QUBO, the challenge is posed by deciding the
values to assign to each ai, j in Equation 1. Because 02 = 0 and
12 = 1, we can simplify ai,ix2

i to aixi. The XOR truth table tells
us that we need to select factors such that all four states have
the same, lowest energy. This results in the following system



of equations as each constraint must have the same (minimal)
value:

A B C A ·B A ·C B ·C
aA ·0+aB ·0+aC ·0+aA,B ·0 ·0+aA,C ·0 ·0+aB,C ·0 ·0 =
aA ·1+aB ·0+aC ·1+aA,B ·1 ·0+aA,C ·1 ·1+aB,C ·0 ·1 =
aA ·0+aB ·1+aC ·1+aA,B ·0 ·1+aA,C ·0 ·1+aB,C ·1 ·1 =
aA ·1+aB ·1+aC ·0+aA,B ·1 ·1+aA,C ·1 ·0+aB,C ·1 ·0 .

To match Table I, the preceding equations use A, B, and C as
coefficient indices instead of 0, 1, and 2 as in Equation 1.

By multiplying and removing each zero term, these equali-
ties are simplified to

0 = aA +aC +aA,C = aB +aC +aB,C = aA +aB +aA,B.

which also implies ai, j =−ai−a j.
Because the rows of Table I must not only be equal to each

other when used as xs in Equation 1’s f (x) but must also be
less than f applied to any other row, we must additionally
consider a system of inequalities for all rows not appearing in
the table:

A B C A ·B A ·C B ·C
aA ·0+aB ·0+aC ·1+aA,B ·0 ·0+aA,C ·0 ·1+aB,C ·0 ·1 > 0
aA ·0+aB ·1+aC ·0+aA,B ·0 ·1+aA,C ·0 ·0+aB,C ·1 ·0 > 0
aA ·1+aB ·0+aC ·0+aA,B ·1 ·0+aA,C ·1 ·0+aB,C ·0 ·0 > 0
aA ·1+aB ·1+aC ·1+aA,B ·1 ·1+aA,C ·1 ·1+aB,C ·1 ·1 > 0.

From the first three inequalities we conclude that

aC > 0
aB > 0
aA > 0 .

Combining the fourth inequality with the observation made
above that ai, j =−ai−a j results in the inequality

aA +aB +aC +(−aA−aB)+(−aA−aC)+(−aB−aC)> 0

and therefore that

aA +aB +aC < 0 .

But this results in a contradiction: We saw above that aA, aB,
and aC must each be greater than zero, but we now see that
their sum must be less than zero. This proves that a quadratic
pseudo-Boolean function for XOR cannot be constructed with
three variables.

To construct a pseudo-Boolean function for XOR we intro-
duce an ancillary variable, D, whose purpose is to increase
the degrees of freedom when solving for the Equation 1
coefficients but whose value is ultimately ignored. Essentially,
we extend Table I with an additional column to produce
Table II. It is difficult in the general case to determine values
with which to populate the ancillary columns—more than
one may be required for a given truth table—in order to
make the system of equalities and the system of inequalities

A B C D

0 0 0 0
1 0 1 0
0 1 1 0
1 1 0 1

TABLE II: The truth table for A⊕B =C (XOR) with ancillary
variable D. The addition of column D makes it possible to
express this truth table as a quadratic pseudo-Boolean function.

solvable [10], [11]. The specific values used in Table II lead
to the quadratic pseudo-Boolean function

f (A,B,C,D) = A+B+C+4D+2AB−2AC−4AD

−2BC−4BD+4CD , (4)

which is minimized on any row of Table II. As a QUBO, we
search for the A, B, C, and D that minimize the function but
disregard the value of D that is found.

This example illustrates why finding a QUBO for even a
simple problem can be quite difficult, much more so than con-
structing an NchooseK constraint. It also shows how difficult
it can be to determine the function of a QUBO relative to
the function of an NchooseK constraint: it is non-obvious that
Equation 4 corresponds to an XOR or that one of its variables
is not part of the solution being sought.

B. Exact Cover and Map Coloring

Let us next consider the exact-cover and map-coloring
problems, which we investigated previously (Section III), from
the perspective of a QUBO. Both of these problems are
relatively simple to solve using QUBOs. The exact cover
problem can be divided into parts based on the elements of E.
Because only one subset in the cover is allowed to contain
any given elements, we can set up a QUBO for each element
e ∈ E of the form ((

∑
i

vi

)
−1
)2

,

where vi = 1 if and only if subset si is part of the cover.
This ensures that exactly one of the si will be included in
the cover. (An expression (x−1)2 is minimized when x = 1.)
Aggregating all of these per-element QUBOs results in a
single QUBO that describes the problem. This is a straight-
forward problem setup but essentially required constructing an
NchooseK problem—identifying that exactly one of the sets
of vi must be true—before turning it into a series of QUBOs.

The map-coloring problem is also straightforward to express
as a QUBO and has been well explored in the context
of QUBO problems and quantum annealing [12], [13]. The
corresponding top-level QUBO is slightly more complicated
than that for the exact-cover problem in that it comprises two
different types of QUBOs. One type ensures that each territory
has exactly one color, and the other ensures that two territories
sharing a border have different colors. Let us denote a variable
Ti, j for each territory i and color j.



The first type of QUBO resembles the expressions in the
exact cover problem, where we ensure that each territory can
have only one color. Aggregating these results gives

∑
i

((
∑

j
Ti, j

)
−1
)2

.

The second type of QUBO is the one involving borders. To
ensure that the two adjacent territories do not share a color,
we add a QUBO for each pair of territories i and k with a
common border. This QUBO is simply Ti, jTk, j, which has a
nonzero value—and is therefore not minimized—if and only if
both Ti, j and Tk, j are true (i.e., both have color j). Aggregating
all QUBOs of both types results in a QUBO expression of the
map-coloring problem.

Once again, to set up this problem as a QUBO we first
construct the problem in such a way that it would have been
trivial to create an NchooseK problem from it: one color per
territory must be true; and for each color, zero or one of a
pair of adjacent territories must have that color. We noted
the two requirements and created a different type of QUBOs
to handle each, just as we did with NchooseK constraints in
Section III-B.

These examples indicate that expressing a problem with
NchooseK tends to be simpler than expressing the same
problem as a QUBO. In fact, establishing NchooseK-like
constraints is sometimes the first step in constructing a QUBO.
An NchooseK problem also tends to be easier to interpret
than the corresponding QUBO problem because the need for
ancillary variables is hidden from the programmer and because
NchooseK constraints directly express the number of variables
that must be true rather than indirectly encoding such tallies
in terms of sums of squared differences, sums of sums, and
other formulations.

VI. RESULTS

We ran a variety of exact-cover and map-coloring problems
on one of IBM’s gate-based machines, ibmq guadalupe, and
one of D-Wave’s annealing machines, Advantage 1.1. We
observed the correct final results each time we ran any of
the problems. In the case of the IBM machine, running the
problem includes running multiple circuits 1024 times each,
calculating a single result. The D-Wave machine runs a single
circuit multiple times, in this case 100. The result which
occurs most often is returned, but the energy for each result
is calculated. This can be inspected to find multiple correct
solutions if such exist, or to check to ensure that the most
common result also has the lowest energy. In the map-coloring
problems, the D-Wave machine found multiple correct results
while QAOA on the IBM machine terminates after a single
result is found.

Some results on the gate-based machine are shown in
Table III. QAOA alternates submitting a job to the quantum
computer and feeding the measured output to a classical opti-
mizer, which prepares the next job to submit to the quantum
computer. The process repeats until a convergence criterion is
met. We found no significant trend in the relationship between

Type Vars Cons Qubits Jobs Depth CNOTs

Exact 6 7 6 31 70 61
Exact 6 8 6 28 52 48
Exact 8 8 8 33 130 171
Exact 10 10 14 30 122 256
Map 8 6 8 31 90 112
Map 12 16 15 36 130 281
Map 16 20 16 33 168 403
Map 16 24 16 31 173 388

TABLE III: Problem setups and results on IBM’s
ibmq guadalupe 16-qubit gate-model machine. The table
indicates the problem type (exact cover/map coloring), the
number of variables of interest, the number of NchooseK
constraints, the number of qubits used for them, the number
of jobs run as part of the QAOA, the depth of the circuits
within the QAOA, and the number of CNOT gates per circuit.
Each job comprised 1024 shots (quantum circuit executions).

the complexity of the problem and the number of individual
jobs needed to be run on IBM’s machine until convergence
was reached, not even when the machine was using all 16 of
its qubits.

The data plotted in Figure 4 shows how the circuit depth
of the circuits and the number of CNOT gates used both rise
as the number of NchooseK variables increases. The circuit

Fig. 4: Graph of the circuit depth (+) and the number of CNOT
gates (×) as a function of the number of NchooseK variables
in the program.

depth—the number of time steps needed for the circuit to
complete—is an important metric because it indicates how
long the qubits will need to remain active, which correlates
with both execution time and susceptibility to errors. The
CNOT count is important because (two-qubit) CNOT gates are
an order of magnitude more susceptible to errors than single-
qubit gates. For these results, we considered every job except
the last in a QAOA iteration sequence. All jobs but the last
one are run to find the circuit parameters (rotational angles)
that minimize the corresponding QUBO, and they make up



the bulk of the work. The final job represents only a post-
processing step.

The increases in depth and CNOT count indicate an increase
in complexity. Not only do qubits likely need to interact via
CNOTs if they share any constraints, but they also likely
need to be swapped in order to affect each other due to the
hardware interconnect topology. These swaps are constructed
from CNOT gates, also contributing to the increase in CNOT
count. Any increase in gate count has the potential to increase
the circuit depth; CNOTs are especially likely to do so, as
gates which affect multiple qubits can force some qubits to
wait for others to finish other operations before interacting.

Results for the quantum annealer are shown in Table IV.
Both the IBM and D-Wave quantum computers provide only

Type Vars Cons Correct (%) Qubits

Exact 6 7 57 7
Exact 6 8 71 7
Exact 8 8 53 12
Exact 10 10 44 16
Map 8 6 100 8
Map 12 16 91 17
Map 16 20 91 22
Map 16 24 70 25

TABLE IV: Problem set-ups and results on a D-Wave Ad-
vantage quantum-annealing machine. The tables indicates the
problem type (exact cover/map coloring), the number of vari-
ables of interest, the number of NchooseK constraints, the
percentage of runs which returned the correct results, and the
number of qubits used. Each problem was run 100 times. In
all cases, the statistical mode corresponds to the correct result,
even when the overall percentage of runs returning the correct
result was relatively small.

sparse qubit connectivity. Entangling qubits that are non-
adjacent in the hardware topology requires extra time on
a gate-based quantum computer such as IBM’s, which is
achieved via a sequences of swap operations. However, it
requires extra space on an annealing-based quantum computer
such as D-Wave’s, which comes in the form of “chaining”
multiple physical qubits into a logical qubit to increase ef-
fective connectivity. This effect is visible in Table IV as the
required number of qubits increases not only with the number
of NchooseK variables, as was the case with the gate-based
system, but also with the number of constraints, as seen in
particular in the final two rows of the table.

The map-coloring problems used in the final two rows
of the table both involve four territories and four colors.
In the first one, with 20 constraints, each territory shares a
border with two others, and they could be arranged in a ring.
The other is similar, but with one additional border added
between two of the territories. This increased connectivity of
the territories corresponds to increased connectivity needed
within the annealer, leading in turn to more qubits being used
to represent the problem.

Both the QAOA algorithm and quantum-annealing hardware
typically run each problem many times to gain statistical

validity. (Remember, quantum computation is fundamentally
stochastic.) While Qiskit’s QAOA implementation returns the
single best solution, the Ocean library returns a histogram of
solutions so that one may select a solution (or, if desired,
multiple solutions) to consider. If the problem is correctly
formulated, the minimal-energy solution should (within sta-
tistical error) be the correct one, but this may not be the most
frequently occurring solution. When we inspect the success
probability of running our eight problems (Figure 5), an
interesting trend appears. Taken individually, the accuracy of
the different problems falls when the number of qubits used in-
creases, but the first-order effect is the problem type. The best
exact-cover problem observes a worse success probability—by
a full percentage point—than the worst map-coloring problem,
despite the fact that the exact-cover problems use significantly
fewer qubits than the map-coloring ones. One possible ex-
planation of this is that the exact cover problems had, in
these examples, exactly one right answer. The map coloring
problems, on the other hand, always have multiple solutions
simply by virtue of color permutations, to say nothing of
different correct arrangements of the colors.

Fig. 5: The trend in accuracy on D-Wave systems with
respect to the number of qubits used. Overall, the exact-cover
problems (+) observe a lower success probability than the
map-coloring problems (×).

VII. FUTURE WORK

Work is currently being done to expand the capabilities of
the NchooseK model to enable it to tackle a greater variety
of optimization problems. On the evaluation side, we are also
planning experiments to investigate the results of NchooseK
problems more fully, notably measuring the time spent on both
the quantum computation proper and the time spent in classical
problem preparation and, for QAOA, optimization.

We are also interested in finding new ways to prepare
NchooseK problems for gate-based machines. One approach
is to prepare custom mixers for QAOA [14], rather than using
Qiskit’s defaults.



Once we have the framework of NchooseK more solidly in
place, we may look into expanding into more general ways of
programming, such as a more general ILP interface.

VIII. CONCLUSIONS

NchooseK is a constraint-based programming model de-
signed to be sufficiently powerful to express a variety of
problems while working at a level of abstraction that enables
the same program to run on classical computers, quantum
annealers, and circuit-based quantum computers. Although
not a typical programming model, NchooseK has a classical
semantics in that programmers work with bits (Z2) rather than
qubits (C2) and do not have to reason about quantum effects
such as superpositioning and entanglement, e.g., via unitary
matrix transformations. Our intention is that NchooseK’s
simple semantics will help non-experts exploit the power of
quantum computing.

NchooseK as we have implemented it converts each problem
to a QUBO, which is subsequently converted to a form
more suitable for the target architecture. QUBOs make a
suitable intermediate representation because they are supported
natively by quantum annealers, can be converted to QAOA
circuits for circuit-based machines, and can be solved using
a variety of classical solver types, such as an SMT solver.
While programs are converted internally to QUBOs, it is often
easier for a programmer to write NchooseK programs than it
is to calculate QUBO coefficients, and NchooseK problems
are more human-readable than QUBOs.
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