
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/269229057

On	the	Multi-GPU	Computing	of	a	Reconstructed
Discontinuous	Galerkin	Method	for	Compressible
Flows	on	3D	Hybrid	Grids

CONFERENCE	PAPER	·	JUNE	2014

DOI:	10.2514/6.2014-3081

READS

27

6	AUTHORS,	INCLUDING:

Yidong	Xia

Idaho	National	Laboratory

31	PUBLICATIONS			75	CITATIONS			

SEE	PROFILE

Lixiang	Luo

North	Carolina	State	University

23	PUBLICATIONS			61	CITATIONS			

SEE	PROFILE

Hong	Luo

Sichuan	Normal	University

97	PUBLICATIONS			1,382	CITATIONS			

SEE	PROFILE

Available	from:	Yidong	Xia

Retrieved	on:	02	March	2016

https://www.researchgate.net/publication/269229057_On_the_Multi-GPU_Computing_of_a_Reconstructed_Discontinuous_Galerkin_Method_for_Compressible_Flows_on_3D_Hybrid_Grids?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_2
https://www.researchgate.net/publication/269229057_On_the_Multi-GPU_Computing_of_a_Reconstructed_Discontinuous_Galerkin_Method_for_Compressible_Flows_on_3D_Hybrid_Grids?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Yidong_Xia?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Yidong_Xia?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Idaho_National_Laboratory?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Yidong_Xia?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Lixiang_Luo?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Lixiang_Luo?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_5
https://www.researchgate.net/institution/North_Carolina_State_University?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Lixiang_Luo?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Hong_Luo19?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Hong_Luo19?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Sichuan_Normal_University?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Hong_Luo19?enrichId=rgreq-ec2f3d28-91d1-408d-8235-e4c72bc0f2b5&enrichSource=Y292ZXJQYWdlOzI2OTIyOTA1NztBUzoyMDQxNzE3MzIwOTkwNzVAMTQyNTY4OTc0MjQ1Mg%3D%3D&el=1_x_7

On the Multi-GPU Computing of a Reconstructed
Discontinuous Galerkin Method for Compressible

Flows on 3D Hybrid Grids

Yidong Xia ⇤ , Jialin Lou † , Lixiang Luo ‡ , Hong Luo § and Jack Edwards ¶‡

Department of Mechanical and Aerospace Engineering

North Carolina State University, Raleigh, NC 27695-7910, United States

and

Frank Mueller k

Department of Computer Science

North Carolina State University, Raleigh, NC 27695-8206, United States

A multi-GPU accelerated, third-order, reconstructed discontinuous Galerkin method,
namely RDG(P1P2), has been developed based on the OpenACC directives for compress-
ible flows on 3D hybrid grids. The present scheme requires minimum intrusion and algo-
rithm alteration to an existing CPU code, which renders an e�cient design approach for
upgrading a legacy CFD solver with the GPU-computing capability while maintaining its
portability across multiple platforms. The grid partitioning is performed according to the
number of GPUs, and loaded equally on each GPU. Communication between the GPUs
is achieved via the host-based MPI. A face renumbering and grouping algorithm is used
to eliminate memory contention due to vectorized computing over the face loops on each
individual GPU. A series of inviscid and viscous flow problems have been presented for the
verification and scaling test, demonstrating excellent scalability of the resulting GPU code.
The numerical results indicate that this parallel RDG(P1P2) method is a cost-e↵ective,
high-order DG method for scalable computing on GPU clusters.

I. Introduction

Nowadays computational fluid dynamics (CFD) has been one of the most important applications that run
on supercomputers. However the gap between the capabilities of the traditional high performance computing
technology based on CPU (central processing unit) and the complexity of the simulation problems to be solved
continues to widen. Therefore a faster and more cost-e↵ective hardware model as well as a new programming
model has been sought in order to meet the needs of high performance computing in future. Fortunately
the GPGPU22 technology, which stands for general-purpose graphics processing unit, o↵ers an exciting
opportunity to significantly accelerate the high performance computing not only in CFD applications, but
also in many other computational sciences, and thus is one of the major growing computation models in
recent years. In principle, the GPGPU o↵ers unprecedented application performance by o✏oading compute-
intensive portions of the application to the GPU, while the remainder of the computer program still runs on
the CPU. From a user’s perspective, applications simply run much faster.

Among the major vendors of GPGPU hardware and software, Nvidia has been an exceptional pioneer in
promoting and leading the development of GPGPU technology in the past decade. In particular, the Nvidia

⇤Postdoctoral Research Associate, AIAA Member. Corresponding Author: yxia2@ncsu.edu
†Graduate Student
‡Postdoctoral Research Associate.
§Professor, AIAA Associate Fellow.
¶Professor, AIAA Associate Fellow.
kProfessor

1 of 18

American Institute of Aeronautics and Astronautics

CUDA application programming interface (API) and CUDA-enabled graphical accelerators are recognized as
the most popular parallel programming model and platform in computational sciences nowadays. As a matter
of fact, most recent research e↵orts4,5, 14,8, 23,26,15,21,9, 16,1, 10 in the investigation and development of GPU-
accelerated CFD solvers have been conducted based on the CUDA programming model and Nvidia hardware.
To the best of the authors’ knowledge, the numerical methods that have been attentively studied for GPU
parallel computing include the finite di↵erence methods (FDMs), spectral di↵erence methods (SDMs), finite
volume methods (FVMs), discontinuous Galerkin methods (DGMs), Lattice Boltzmann method (LBMs),
and more. For example, Elsen et al.

12 reported a 3D high-order FDM solver for large calculation on multi-
block structured grids; Klöckner et al.

18 developed a 3D unstructured high-order nodal DGM solver for
the Maxwell’s equations; Corrigan et al.

11 proposed a 3D FVM solver for compressible inviscid flows on
unstructured tetrahedral grids; Zimmerman et al.

36 presented an SDM solver for the Navier-Stokes equations
on unstructured hexahedral grids.

In general, the development of a CUDA-based CFD solver can be categorized in two types: 1) a brand
new code design, and 2) extension from an existing code. In the first type people simply start from scratch,
which is more often the case of fundamental study of a numerical model on GPU computing. In the second
type, however, upgrading a legacy CFD code of either production level or research level by using the Nvidia
CUDA model is not likely a trivial job, since people have to define an explicit layout of the threads on the
GPU (numbers of blocks, numbers of threads) for each kernel function.17 Such a design project indicates
a huge human resource that has to be spent rewriting all the core content of the source code. As in the
development of a production-level code, people also need to address both the short and long term investment
concerns like the cost and benefit, and more importantly, the platform portability. These concerns can often
set people back from utilizing GPU capabilities for their solution products. Even at the research level,
people may be more inclined to maintain multi-platform compatibility for their codes, instead of pursuing
performance improvement on one particular platform at the price of losing the code portability on other
platforms. Therefore the development of a CFD code based on the CUDA model might spell a long-term
investment with unclear prospect of the vendor’s own plan. Fortunately Nvidia is not the sole player in this
area. Two other models include OpenCL:25 the currently dominant open GPGPU programming model (but
dropped from further discussion since it does not support Fortran); and OpenACC:28 a new open parallel
programming standard based on directives.

OpenACC is designed to closely resemble OpenMP: people simply need to annotate their code to identify
the areas that should be accelerated by wrapping with the OpenACC directives and some runtime library
routines, without the huge e↵ort to change the original algorithms as to accommodate the code to a specific
GPU architecture and compiler. By using OpenACC for programming, people benefit not only from easy im-
plementation of the directives but also the freedom to compile the very same code and conduct computations
on either CPU or GPU from di↵erent vendors. However on the other side, OpenACC still lags behind CUDA
in terms of many desired advanced features due to vendors’ distribution plan (note that Nvidia is among the
OpenACC’s main supporters). Nevertheless OpenACC becomes available as an attractive parallel program-
ming model for the development of a portable and unified code, and o↵ers a promising approach to minimize
the investment in legacy CFD codes by presenting an easy migration path to accelerated computing.

The objective of the e↵ort discussed in the present work is to develop a multi-GPU accelerated, third-
order, reconstructed discontinuous Galerkin method, namely RDG(P1P2), for the solution of the compress-
ible Navier-Stokes equations on 3D hybrid grids. This work is based on a class of reconstruction-based
RDG(PnPm) methods,19,20,29,34 which are recently developed in order to improve the overall performance
of the underlying standard DG(Pn) methods without significant extra costs in terms of computing time and
storage requirement. Part of the solution modules in a well verified and validated RDG flow solver have
already been upgraded with the capability of single-GPU computing based on the OpenACC directives in
our prior work,32 The present design requires minimum intrusion and algorithm alteration to an existing
CPU code, which renders an e�cient approach to upgrading a legacy CFD solver with the GPU-computing
capability while maintaining its portability across multiple platforms. The grid partitioning is performed
according to the number of GPUs, and loaded equally on each GPU. Communication between the GPUs is
achieved via the host-based MPI. A face renumbering and grouping algorithm is used to eliminate memory
contention due to vectorized computing over the face loops on each individual GPU. A series of inviscid
and viscous flow problems have been presented for the verification and scaling test, demonstrating excellent
scalability of the resulting GPU code. The numerical results indicate that this parallel RDG(P1P2) method
is a cost-e↵ective, high-order DG method for scalable computing on GPU clusters.

2 of 18

American Institute of Aeronautics and Astronautics

The outline of the rest of this paper is organized as follows. In Section II, the governing equations are
briefly introduced. In Section III, the discontinuous Galerkin spatial discretization is described. In Section
IV, the keynotes of porting a discontinuous Galerkin flow solver to GPUs based on the OpenACC directives
is discussed in detail. In Section V, a series of inviscid and viscous flow test cases are presented. Finally the
concluding remarks are given in Section VI.

II. Governing Equations

The Navier-Stokes equations governing the unsteady compressible viscous flows can be expressed as

@U

@t

+
@Fk(U)

@xk
=

@Gk(U,rU)

@xk
(1)

where the summation convention has been used. The conservative variable vector U, advective flux vector
F, and viscous flux vector G are defined by

U =

0

B

@

⇢

⇢ui

⇢e

1

C

A

Fj =

0

B

@

⇢uj

⇢uiuj + p�ij

uj(⇢e+ p)

1

C

A

Gj =

0

B

@

0

⌧ij

ul⌧lj + qj

1

C

A

(2)

Here ⇢, p, and e denote the density, pressure, and specific total energy of the fluid, respectively, and ui is
the velocity of the flow in the coordinate direction xi. The pressure can be computed from the equation of
state

p = (� � 1)⇢

✓

e� 1

2
uiui

◆

(3)

which is valid for perfect gas. The ratio of the specific heats � is assumed to be constant and equal to 1.4.
The viscous stress tensor ⌧ij and heat flux vector qj are given by

⌧ij = µ

✓

@ui

@xj
+

@uj

@xi

◆

� 2

3
µ

@uk

@xk
�ij qj =

1

� � 1

µ

Pr

@T

@xj
(4)

In the above equations, T is the temperature of the fluid, Pr the laminar Prandtl number, which is taken
as 0.7 for air. µ represents the molecular viscosity, which can be determined through Sutherlands law

µ

µ

0

=

✓

T

T

0

◆

3
2
T

0

+ S

T + S

(5)

where µ

0

is the viscosity at the reference temperature T

0

and S = 110K. In addition, the Euler equations
can be obtained if the e↵ect of viscosity and thermal conduction are neglected in Eq. 1.

III. Discontinuous Galerkin Spatial Discretization

The governing equations in Eq. 1 can be discretized using a discontinuous Galerkin finite element
formulation. We assume that the domain ⌦ is subdivided into a collection of non-overlapping arbitrary
elements ⌦e in 3D, and then introduce the following broken Sobolev space V

p
h

V

p
h =

n

vh 2
⇥

L

2(⌦)
⇤m

: vh|⌦e 2
⇥

V

m
p

⇤

8⌦e 2 ⌦
o

(6)

which consists of discontinuous vector polynomial functions of degree p, and where m is the dimension of
the unknown vector and Vp is the space of all polynomials of degree p. To formulate the discontinuous
Galerkin method, we introduce the following weak formulation, which is obtained by multiplying Eq. 1
by a test function Wh, integrating over an element ⌦e, and then performing an integration by parts: find
Uh 2 V

p
h such as

d

dt

Z

⌦e

UhWhd⌦+

Z

�e

FknkWhd��
Z

⌦e

Fk
@Wh

@xk
d⌦ =

Z

�e

GknkWhd��
Z

⌦e

Gk
@Wh

@xk
d⌦, 8Wh 2 V

p
h (7)

3 of 18

American Institute of Aeronautics and Astronautics

where Uh and Wh are represented by piecewise polynomial functions of degrees p, which are discontinuous
between the cell interfaces, and nk the unit outward normal vector to the �e: the boundary of ⌦e. Assume
that Bi is the basis of polynomial function of degrees p, this is then equivalent to the following system of N
equations,

d

dt

Z

⌦e

UhBid⌦+

Z

�e

FknkBid��
Z

⌦e

Fk
@Bi

@xk
d⌦ =

Z

�e

GknkBi d��
Z

⌦e

Gk
@Bi

@xk
d⌦, 1 i N (8)

where N is the dimension of the polynomial space. Since the numerical solution Uh is discontinuous between
element interfaces, the interface fluxes are not uniquely defined. This scheme is called discontinuous Galerkin
method of degree p, or in short notation DG(p) method. By simply increasing the degree p of the polynomials,
the DG methods of corresponding higher order are obtained. In the present work, the HLLC scheme3 and
Bassi-Rebay II scheme2 are used for evaluating the inviscid and viscous fluxes, respectively.

By moving the second and third terms to the right-hand-side (r.h.s.) in Eq. 8, we will arrive at a system
of ordinary di↵erential equations (ODEs) in time, which can be written in semi-discrete form as

M
dU

dt

= R(U) (9)

where M is the mass matrix and R is the residual vector. The present work employs a third-order, WENO
reconstructed scheme to improve the overall performance of the underlying second-order DG(P1) method,19

without much extra cost in computing time and memory requirement.

IV. OpenACC Implementation

A. Overview

The computation-intensive portion of this reconstructed discontinuous Galerkin method is a time marching
loop which repeatedly computes the time derivatives of the conservative variable vector as shown in Eq.9.
In the present work, the conservative variable vector is updated using the explicit, three-stage, TVD Runge-
Kutta time stepping scheme6,7 (TVDRK3) within each time iteration. To enable GPU computing, all the
required arrays are first allocated on the CPU memory and initialized before the computation enters the
main loop. These arrays are then copied to the GPU memory, most of which will not need to be copied back
the CPU memory. In fact, the data copy between the CPUs and GPUs, usually considered to be one of the
major overheads in GPU computing, needs to be minimized in order to improve the e�ciency. The workflow
of time iterations is outlined in Table 1, in which the <ACC> tag denotes an OpenACC acceleration-enabled
region, and the <MPI> tag means that MPI routine calls are needed in the case that multiple CPUs or
GPUs are invoked. Compared with the standard DG method, two extra MPI routine calls are required for
the RDG method in parallel mode, due to the fact that the solution vector at the partition ghost elements
need to be updated after each reconstruction scheme.

B. Multiple-GPU communication

Nowadays, a top-of-the-line GPGPU card like the Nvidia Tesla K series can contain over two thousand
stream processors, yet its memory size is relatively small in comparison with a regular CPU compute node.
For example, a Tesla K20c Accelerator has 2496 stream processors and 5GB in memory — su�cient for
scientific computing and business modeling in various disciplines. However, such a memory size is still far
from enough even for some basic CFD simulation problems. In order to extend the memory, we can choose
a more recent product like the Tesla K40 Accelerator (2880 stream processors, 12GB memory). But the
pricing of such a new device is still prohibitive ($4440 before tax), which would make GPU computing
a rather disadvantageous alternative to CPU computing in terms of cost-e↵ectiveness. Instead, the use
of a cluster of legacy GPGPU cards appears a more economical and practical choice for large-scale CFD
computing. Unlike the case of single-GPU computing that requires no communication between the devices
within the main loop of time steps, the major di↵erence in designing a multi-GPU parallel model lies
in the fact that the inter-GPU communication needs to be taken into account. In the present work, we
adopt a parallelism scheme based on a message passing interface (MPI) programming paradigm, where the
METIS library is used for the partitioning of a grid into subdomain grids of approximately the same size.
Consequently, the data exchange is required based on the MPI library, and the workflow is sketched in Table

4 of 18

American Institute of Aeronautics and Astronautics

Table 1: Workflow for the main loop over the explicit time iterations.

!! loop over time steps
DO itime = 1, ntime

<ACC> Predict time-step size

!! loop over TVDRK stages
DO istage = 1, nstage

!! P1P2 least-squares reconstruction
<ACC> IF(nreco > 0) CALL reconstruction_ls(...)

!! data exchange for partition ghost cells
<MPI> IF(nprcs > 1) CALL exchange(...)

!! r.h.s. residual from diffusion
<ACC> IF(nvisc > 0) CALL getrhs_diffusion(...)

!! WENO reconstruction
<ACC> IF(nreco > 0) CALL reconstruction_weno(...)

!! data exchange for partition ghost cells
<MPI> IF(nprcs > 1) CALL exchange(...)

!! r.h.s. residual from convection
<ACC> CALL getrhs_convection(...)

!! update solution vector
<ACC> CALL tvdrk(...)

!! data exchange for partition ghost cells
<MPI> IF(nprcs > 1) CALL exchange(...)

ENDDO

ENDDO

2, where the continuous memory corresponding to the solution vector of the partition ghost elements (from
(Nelem+1)-th element to (Nadje)-th element) is first copied from the GPUs to the host CPUs, and then
copied back to the GPUs after a non-blocking communication procedure. As one has observed, the overall
inter-GPU communication procedure has to go through the host CPUs. In fact, the so-called GPUDirect27,24

techniques, which are intended to realize direct communication between the GPUs, has yet to mature. In
addition, most of the recently reported GPUDirect solutions would more or less require some unique software
customization. Furthermore, even if these techniques are achievable within a durable e↵ort on our current
HPC resource, the resulting code is unlikely to be portable across the platforms. Therefore those are the
main reasons that we do not anticipate the GPUDirect techniques to be incorporated into the framework
of our OpenACC-based GPU code, unless more fundamental improvement in terms of hardware structures
and OpenACC specifications would take place in the GPGPU industry.

C. Parallelism for acceleration regions

The most expensive workload when computing the time derivatives of solutions dU/dt includes the following
two categories of procedures:

1. Reconstruction of the second derivatives

• P1P2 least-squares reconstruction (involves both element and face loops)

• P2 WENO reconstruction (involves on element loops)

2. Accumulation of the r.h.s. residual vector in Eq. 9

• Face integral over the dual-edges

• Domain integral over the elements

Thus these procedures need to be properly ported to acceleration kernels by using the OpenACC parallel
construct directives. In fact , the way to add OpenACC directives in a legacy code is very similar to that

5 of 18

American Institute of Aeronautics and Astronautics

Table 2: Workflow for the data exchange and synchronization procedure.

!! data exchange for partition ghost elements
SUBROUTINE exchange(...)

!! copy partition ghost elements from GPU to CPU
!$acc update host(unkno(:, :, Nelem+1:Nadje))

!! initialize receive
DO i = 1,Ncomm

s = exprc(i)
dtype = irecv(i)
CALL mpi_irecv(...)

ENDDO

!! send out partition-adjacent elements
DO i = 1,Ncomm

r = exprc(i)
dtype = isend(i)
call mpi_isend(...)

ENDDO

!! wait for all sends and receives to complete
CALL mpi_waitall(...)

!! copy partition ghost elements from CPU to GPU
!$acc update device(unkno(:, :, Nelem+1:Nadje))

END SUBROUTINE exchange

of OpenMP. The example shown in Table 3 demonstrates the parallelization of a loop over the elements
for collecting contribution to the residual vector rhsel(1:Ndegr,1:Netot,1:Nelem), where Ndegr is the
number of degree of the approximation polynomial (= 1 for P0, 3 for P1 and 6 for P2 in 2D; = 1 for P0, 4
for P1 and 10 for P2 in 3D), Netot the number of governing equations of the perfect gas (= 4 in 2D, 5 in
3D), Nelem the number of elements, and Ngp the number of Gauss quadrature points over an element. Both
the OpenMP and OpenACC parallel construct directives can be applied to a readily vectorizable loop like in
Table 3 without the need to modify the original code. However due to the unstructured grid topology, the

Table 3: An example of loop over the elements.

!! OpenMP for CPUs:

!! loop over the elements
!$omp parallel
!$omp do
do ie = 1, Nelem

!! loop over the Gauss quadrature points
do ig = 1, Ngp

!! contribution to this element
rhsel(*,*,ie) = rhsel(*,*,ie) + flux

enddo

enddo
!$omp end parallel

!! OpenACC for GPUs:

!! loop over the elements
!$acc parallel
!$acc loop
do ie = 1, Nelem

!! loop over the Gauss quadrature points
do ig = 1, Ngp

!! contribution to this element
rhsel(*,*,ie) = rhsel(*,*,ie) + flux

enddo

enddo
!$acc end parallel

attempt to directly wrap a loop over the dual-edges for collecting contribution to the residual vector with
either the OpenMP or OpenACC directives can lead to the so-called “race condition”, that is, multiple writes
to the same elemental residual vector, and thus result in the incorrect values. In general, two approaches are
available to eliminate the “race condition” issue for vectorized computing on unstructured grids as described
below:

Approach I
One approach is to incorporate the dual-edge computation into the loop over the elements as proposed
by Corrigan et al.

11 for the finite volume methods. In this approach, all the workload-intensive com-
putations are wrapped in element-wise loops that are perfectly vectorizable, thus no “race condition”

6 of 18

American Institute of Aeronautics and Astronautics

would occur for the resulting code. However, a major overhead associated to this approach is its re-
dundant computation for the dual-edges. According to Reference,11 the performance of the developed
finite volume solver based on CUDA was only advantageous in single-precision GPU computation, and
became much worse in double-precision. In fact, this approach would never meet our design goals for
two reasons. For the first, the discontinuous Galerkin methods require an inner loop over the Gauss
quadrature points Ngp for computing the face integrals in dual-edge computation, which account for at
least 50% of the gross computing time as in the second-order DG(P1) method. Furthermore, Ngp could
be a larger number in the case of higher-order DG methods, therefore resulting in a huge overhead if
the workload of such computation is doubled. For the second, the implementation of this approach
indicates a major change in the code structure, which is not only costly in programming, but also
would completely ruin the performance of the equivalent CPU code.

Approach II
Alternatively, the “race condition” can be eliminated with a moderate amount of work by adopting a
mature algorithm of face renumbering and grouping. This algorithm is designed to divide all the faces
into a number of groups by ensuring that any two faces that belong to a common element never fall in
the same group, so that the face loop in each group can be vectorized without “race condition”. An
example is shown in Table 4, where an extra do-construct that loops over these groups is nested on top
of the original loop over the internal faces, and executed sequentially. The inner do-construct that loops
over the internal faces is vectorized without the “race condition” issue. In fact, this kind of algorithm is
widely used for vectorized computing on unstructured grids with OpenMP. The implementation details
can be found in an abundance of literature. The number of groups for each subdomain grid is usually
between 6 and 8 according to a wide range of test cases, indicating some overheads in repeatedly
launching and terminating the OpenACC acceleration kernels for the loop over the face groups. This
kind of overheads is typically associated to GPU computing, but not for the code if parallelized by
OpenMP for CPU computing. Nevertheless, the most favorable feature in this design approach is that
it allows the original CPU code to be recovered when the OpenACC directives are dismissed in the pre-
processing stage of compilation. Therefore, the use of this face renumbering and grouping algorithm
will result in a unified source code for both the CPU and GPU computing on unstructured grids.

To sum up from the discussion above, the parallelism in Approach II can suit well in the present work, for
its simplicity and portability to quickly adapt into the original source code without any major change in the
legacy programming structures. It is applied for the face integrals as well as some other procedures that
require the loop over faces like P1P2 least-squares reconstruction and evaluation of the local time-step sizes.

V. Numerical examples

Performance of the developed GPU code based on OpenACC was measured on the North Carolina State
University’s research-oriented cluster ARC, which has 1728 CPU cores on 108 compute nodes integrated by
Advanced HPC. All machines are 2-way SMPs with AMD Opteron 6128 (Magny Core) processors with 8
cores per socket (16 cores per node). The GPGPU cards used in the present study are shown in Figs. 1(a)
and 1(b), with their details listed in Table. 5. Note that each GPGPU card is attached to one compute node
on the ARC cluster. The source code was written in Fortran 90 and compiled with the PGI Accelerator with
OpenACC (version 13.9) + OpenMPI (version 1.5.1) development suite. The minimum compilation flags
required for generating the double-precision, optimized, Nvidia GPU-accelerated executables are: -r8 -O3

-acc -ta=nvidia,time,cc20

To evaluate the speedup of GPU versus CPU, we compared the running time measured by using the GPU
code on one Nvidia Tesla K20c card with that measured by using the equivalent CPU code on one compute
node (16 CPU cores). To assess the scalability of our code on multiple GPUs, we performed a weak scaling
experiment on up to eight Nvidia Tesla C2050 cards for each test case. The unit time Tunit is calculated as

Tunit =
T

wall-clock

⇥ Ngpus

Ntime⇥ Nelem
⇥ 106 (microsecond)

where T

wall-clock

refers to the wall-clock time recorded for completing the entire time marching loop with
a given number of time steps Ntime by using an amount of Ngpus GPU cards, not including the start-up
procedures, initial/end data translation, and solution file dumping.

7 of 18

American Institute of Aeronautics and Astronautics

Table 4: An example of loop over the edges.

!! OpenMP for CPUs (without race condition):

!! loop over the groups
Nfac1 = Njfac
do ipass = 1, Npass_ift

Nfac0 = Nfac1 + 1
Nfac1 = fpass_ift(ipass)

!! loop over the edges
!$omp parallel
!$omp do
do ifa = Nfac0, Nfac1

!! left element
iel = intfac(1,ifa)

!! right element
ier = intfac(2,ifa)

!! loop over Gauss quadrature points
do ig = 1, Ngp

!! contribution to the left element
rhsel(*,*,iel) = rhsel(*,*,iel) - flux

!! contribution to the right element
rhsel(*,*,ier) = rhsel(*,*,ier) + flux

enddo

enddo
!$omp end parallel

enddo

!! OpenACC for GPUs (without race condition):

!! loop over the groups
Nfac1 = Njfac
do ipass = 1, Npass_ift

Nfac0 = Nfac1 + 1
Nfac1 = fpass_ift(ipass)

!! loop over the edges
!$acc parallel
!$acc do
do ifa = Nfac0, Nfac1

!! left element
iel = intfac(1,ifa)

!! right element
ier = intfac(2,ifa)

!! loop over Gauss quadrature points
do ig = 1, Ngp

!! contribution to the left element
rhsel(*,*,iel) = rhsel(*,*,iel) - flux

!! contribution to the right element
rhsel(*,*,ier) = rhsel(*,*,ier) + flux

enddo

enddo
!$acc end parallel

enddo

Three numerical examples are introduced in the rest of this section. In each of these examples, the
following test suite was carried out to verify and validate the developed flow solver:

• A verification test with an absolute error tolerance of 1.0⇥ 10�12 that compares the numerical results
obtained by the GPU code with those by the equivalent CPU code.

• A weak scaling test that assesses how the solution time varies with the number of GPU cards for a
fixed problem size per GPU card.

In addition, the readers are suggested to refer to the authors’ prior work32 where the results of strong scaling
test based on the competition between a single K20c GPU card and a sixteen-core CPU compute node can
be found.

Table 5: Part of the Nvidia GPGPU resource on the NCSU’s ARC cluster (donated by Nvidia)

Type Amount Stream processors Memory Bandwidth (GB/sec)

Tesla C2050 9 448 3 GB 144

Tesla K20c 3 2496 5 GB 200

A. Inviscid flow past a sphere

In the first test case, an inviscid subsonic flow past a sphere at a free-stream Mach number of M1 = 0.5 is
considered in order to assess the performance of the developed code for solving the Euler equations. First
the computation is conducted on four Nvidia Tesla C2050 GPU cards to verify if the GPU code can deliver
the identical numerical solutions to those by the equivalent CPU code. A sequence of three successively
refined tetrahedral grids, which were used in the authors’ prior works31,33 for the verification and validation
purposes, are displayed in Figs. 2(a) – 2(c). The cell size is halved between two consecutive grids. Note that
only a quarter of the configuration is modeled due to symmetry of the problem. The computation is started

8 of 18

American Institute of Aeronautics and Astronautics

Yidong Xia

(a) (b)

Figure 1: The Nvidia Tesla GPGPUs used in the present work: (a) C2050 (448 stream processors, 3GB
memory); (b) K20c (2496 stream processors, 5GB memory).

with a uniform flow field, and terminated at a su�ciently large total number of time iterations for each grid
to obtain a steady-state solution. Figs. 2(d) – 2(f) and Figs. 2(g) – 2(i) show the computed Mach number
contours on the surface meshes obtained by DG(P1) and RDG(P1P2), respectively. The following L

2 norm
of the entropy production is used as the error measurement for the steady-state inviscid flow problems:

k"kL2
(⌦)

=

s

Z

⌦

"

2

d⌦ =

v

u

u

t

Nelem
X

i=1

Z

⌦i

"

2

d⌦

where the entropy production " is defined as

" =
S � S1
S1

=
p

p1

✓

⇢1
⇢

◆�

� 1

Note that the entropy production, where the entropy is defined as S = (p/⇢)� , is a very good criterion to
measure accuracy of the numerical solutions, since the flow under consideration is isentropic. The quantitative
measurement of the discretization errors as shown in Table 6. As one has observed, both the DG(P1) and
RDG(P1P2) methods achieved a formal order of accuracy of convergence, being 2.00 and 3.01, respectively,
convincingly demonstrating the benefits of using the RDG method over its underlying baseline DG method.
Most importantly, a hand-made diff program with a defined absolute error tolerance of 1.0⇥10�12 indicates
that the GPU code and the CPU code produced the identical solution data on each grid.

Table 6: Discretization errors and convergence rates obtained on the three successively refined tetrahedral
grids for inviscid subsonic flow past a sphere at a free-stream Mach number of M1 = 0.5.

Grids Elements L

2 norm (P1) Order (P1) L

2 norm (P1P2) Order (P1P2)

Coarse 535 -0.1732E+01 – -0.196E+01 –

Medium 2,426 -0.2302E+01 1.895 -0.284E+01 2.924

Fine 16,467 -0.2933E+01 2.094 -0.377E+01 3.094

Secondly a weak scaling test is carried out on a sequence of four successively refined tetrahedral grids,
which contain approximately half million, one million, two million, and four million elements, respectively, as
shown in Table 7. These four grids correspond to the use of one, two, four, and eight Nvidia Tesla C2050 GPU
cards respectively, ensuring an approximately fixed problem size per GPU card. The total number of time
iterations is set to be 10, 000 for all of these four grids. The detailed timing measurements are presented
in Table 7, showing the statistics of unit running time and parallel e�ciency obtained on each grid. In
addition, Figs. 3(a) and 3(b) display the variations of the unit running time and parallel e�ciency with

9 of 18

American Institute of Aeronautics and Astronautics

respect to the number of GPUs, indicating that both the DG(P1) and RDG(P1P2) methods have achieved
good parallel e�ciency in the case of eight GPUs, being 87.0% and 87.7% respectively. The primary loss
of e�ciency in multi-GPU mode is due to the overheads in GPU-to-CPU and CPU-to-GPU data copies,
and MPI communication and synchronization between the host CPUs. Above all, this parallel RDG solver
based on the OpenACC directives exhibits a competitive scalability for computing inviscid flow problems on
multiple GPUs.

X

Y

Z

(a)

X

Y

Z

(b)

X

Y

Z

(c)

X

Y

Z

(d)

X

Y

Z

(e)

X

Y

Z

(f)

X

Y

Z

(g)

X

Y

Z

(h)

X

Y

Z

(i)

Figure 2: Subsonic flow past a sphere at a free-stream Mach number of M1 = 0.5: (a) – (c) Surface
triangular meshes of the three successively refined tetrahedral grids used in the verification test; (d) – (f)
Computed Mach number contours obtained by DG(P1) on the surface meshes; (g) – (i) Computed Mach
number contours obtained by RDG(P1P2) on the surface meshes.

B. Viscous flow past a sphere

In the second test case, a viscous flow past a sphere at a free-stream Mach number of M1 = 0.5, and a
low Reynolds number of Re = 118 based on the diameter of the sphere is considered in order to assess

10 of 18

American Institute of Aeronautics and Astronautics

Table 7: Timing measurements of weak scaling obtained on a cluster of Nvidia Tesla C2050 GPU cards for
inviscid subsonic flow past a sphere.

Storage (GB) Unit time (ms) Parallel e�ciency

Grids Elements GPU’s P1 P1P2 P1 P1P2 P1 P1P2

Level 1 501, 972 ⇥1 1.4 1.8 1.72 14.14 – –

Level 2 1, 015, 570 ⇥2 2.8 3.6 1.79 14.47 95.9% 97.7%

Level 3 1, 999, 386 ⇥4 5.6 7.3 1.89 15.22 90.1% 92.4%

Level 4 4, 029, 430 ⇥8 11.2 14.6 1.95 16.06 87.0% 86.4%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8

U
n
it

 t
im

e
(m

ic
ro

-s
ec

)

Number of GPUs

DG(P1)
RDG(P1P2)

(a)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 2 3 4 5 6 7 8

P
ar

al
le

l
ef

fi
ci

en
cy

Number of GPUs

Ideal
DG(P1)

RDG(P1P2)

(b)

Figure 3: Plot of the timing measurements for inviscid subsonic flow past a sphere with a fixed problem size
(approximately half million elements) per GPU card (Nvidia Tesla C2050): (a) Unit running time versus the
number of GPU cards; (b) Parallel e�ciency versus the number of GPU cards.

11 of 18

American Institute of Aeronautics and Astronautics

the performance of the developed code for solving the Navier-Stokes equations. First the computation
is conducted on four Nvidia Tesla C2050 GPU cards to verify if the GPU code can deliver the identical
numerical solutions to those by the equivalent CPU code. A coarse tetrahedral grid consisting of 119, 390
elements, 22, 530 grid points and 4, 511 boundary grid points is used in this computation, as shown in Fig.
4(a). One can observe the coarseness of the triangular surface meshes near the sphere wall region. Note that
only half of the configuration is modeled due to the symmetry of the problem. The computation is started
with a uniform free-stream flow field and no-slip boundary conditions on the solid wall, and terminated at
a su�ciently large total number of time iterations to obtain a steady-state solution. The computed velocity
streamtraces by RDG(P1P2) is plotted on the symmetry plane as shown in Fig. 4(b). As one can observe,
the two trailing vortices are visually identical and symmetric to the center-line. In addition, a diff check
with an absolute error tolerance of 1.0 ⇥ 10�12 indicates that the GPU code and the CPU code produced
the identical solution data in this verification test.

(a) (b)

Figure 4: Viscous flow past a sphere at a free-stream Mach number of M1 = 0.5 and a Reynolds number of
Re = 118: (a) The tetrahedral grid in the verification test. (b) The computed streamtraces on the symmetry
plane.

Table 8: Timing measurements of strong scaling obtained by RDG(P1P2) on a Nvidia Tesla K20c GPU card
for a viscous flow past a sphere.

Unit time (ms) Speedup

Elements 1 GPU 1 CPU 16 CPUs vs. 1 CPU vs. 16 CPUs

200, 416 14.6 259.9 20.5 17.8 1.41

925, 925 13.9 257.2 20.6 18.5 1.48

Secondly a strong scaling test is carried out on one Nvidia Tesla K20c GPU card, which has competed
against one and full sixteen cores of a dual AMD Opteron 6128 compute node, respectively. The computations
were conducted on a coarse grid consisting of 200, 416 elements and a fine grid consisting of 925, 995 elements
respectively, with the detailed timing measurements presented in Table 8. A speedup factor of up to 18.5 is
obtained with respect to one CPU core, and 1.48 with respect to the full sixteen CPU cores. It is interesting
to discern that the speedup factors obtained for solving the Navier-Stokes equations are lower than those for
the Euler equations,32 although the computational intensity is obviously higher in the former case. This is
mainly due to the overheads in initializing doubled acceleration kernels each time the r.h.s. residual vector is
calculated, since the contribution from viscous and inviscid flux calculations is implemented in two separate

12 of 18

American Institute of Aeronautics and Astronautics

edge loops in the current RDG solver.
Thirdly a weak scaling test is carried out on a sequence of four successively refined tetrahedral grids, which

contain approximately half million, one million, two million, and four million elements, respectively. These
four grids correspond to the use of one, two, four, and eight Nvidia Tesla C2050 GPU cards respectively,
ensuring an approximately fixed problem size per GPU card. The total number of time iterations is set to
be 10, 000 for all of these four grids. with the detailed timing measurements presented in Table 9. Figs. 5(a)
and 5(b) display the variations of the unit running time and parallel e�ciency with respect to the number
of GPUs respectively. The parallel e�ciency ratios of 90.3% and 91.2% were obtained for DG(P1) and
RDG(P1P2) in the case of eight GPUs, respectively, demonstrating the good scalability of the developed
RDG solver on multiple GPUs for computing viscous flow problems on tetrahedral grids.

Table 9: Timing measurements of weak scaling obtained on a cluster of Nvidia Tesla C2050 GPU cards for
viscous flow past a sphere.

Storage (GB) Unit time (ms) Parallel e�ciency

Grids Elements GPU’s P1 P1P2 P1 P1P2 P1 P1P2

Level 1 500, 095 ⇥1 1.9 2.5 5.96 19.84 – –

Level 2 1, 000, 103 ⇥2 3.8 4.9 6.05 20.26 98.5% 97.9%

Level 3 2, 000, 051 ⇥4 7.6 9.9 6.16 21.11 96.6% 93.6%

Level 4 4, 000, 227 ⇥8 15.2 19.8 6.53 22.71 90.4% 85.5%

C. Quasi-2D lid driven square cavity

A quasi-2D lid driven square cavity laminar flow at a Reynolds numbers of Re = 10, 000 is considered in
this numerical experiment. The cavity dimensions are 1 unit in the x and y directions, and 0.1 unit in the z

direction. First the computation is conducted on four Nvidia Tesla C2050 GPU cards to verify if the GPU
code can deliver the identical numerical solutions to those by the equivalent CPU code. A sparse hexahedral
grid which was used in Reference,35 is used in the verification test as shown in Fig. 6(a). This grid consists
of 32 ⇥ 32 ⇥ 2 grid points, which has only one element in the span-wise z direction. The grid points are
clustered near the walls in the x and y directions, and the grid spacing is geometrically stretched away
from the wall with the minimum value h

min

= 0.005 (equivalent to y

+ = 3.535). On the bottom and side
walls, the no-slip, adiabatic boundary conditions are prescribed. Along the top “lid”, the no-slip, adiabatic
boundary conditions along with a lid velocity VB = (0.2, 0, 0) are prescribed. On the front and back walls,
a symmetric boundary condition is prescribed. The computation is started with the velocity field at rest
without perturbation, and terminated at a su�ciently large total number of time iterations, ensuring that a
steady-state flow field is reached. The computed velocity streamtraces obtained by the GPU code is displayed
in 6(b), demonstrating the ability of the RDG(P1P2) method to accurately resolve all the major vortices on
this sparse grid. Fig. 7 displays the profiles of the computed normalized velocity components u/uB and v/uB

by DG(P1) and RDG(P1P2) that are plotted along the y and x center-lines respectively. The profiles by
a second-order compressible finite volume solver based on a WENO reconstruction,30 namely RDG(P0P1)
in our RDG(PnPm) framework, is also presented. As one can observe, only the profiles by RDG(P1P2)
matched well with the classical reference data by Ghia et al.,13 clearly demonstrating the superior accuracy
of the RDG(P1P2) method in the case of high Reynolds numbers and very sparse grid resolution. Above
all, a diff check with an absolute error tolerance of 1.0⇥ 10�12 indicates that the GPU code and the CPU
code produced the identical solution data in this verification test.

Secondly a weak scaling test is carried out on a sequence of four successively refined hexahedral grids,
which contain half million (1000 ⇥ 500), one million (1000 ⇥ 1000), two million (1000 ⇥ 2000), and four
million (1000 ⇥ 4000) elements, respectively. These four grids correspond to the use of one, two, four, and
eight Nvidia Tesla C2050 GPU cards respectively, ensuring a fixed problem size per GPU card. The total
number of time iterations is set to be 10, 000 for all of these four grids. The detailed timing measurements
are presented in Table 10, showing the statistics of unit running time and parallel e�ciency obtained on each
grid. In addition, Figs. 8(a) and 8(b) displayed the variations of the unit running time and parallel e�ciency

13 of 18

American Institute of Aeronautics and Astronautics

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8

U
n
it

 t
im

e
(m

ic
ro

-s
ec

)

Number of GPUs

DG(P1)
RDG(P1P2)

(a)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 2 3 4 5 6 7 8

P
ar

al
le

l
ef

fi
ci

en
cy

Number of GPUs

Ideal
DG(P1)

RDG(P1P2)

(b)

Figure 5: Plot of the timing measurements for viscous flow past a sphere with a fixed problem size (approxi-
mately half million elements) per GPU card (Nvidia Tesla C2050): (a) Unit running time versus the number
of GPU cards; (b) Parallel e�ciency versus the number of GPU cards.

14 of 18

American Institute of Aeronautics and Astronautics

(a) (b)

Figure 6: A quasi-2D lid driven square cavity flow at a lid velocity of VB = (0.2, 0, 0) and a Reynolds number
of Re = 10, 000: (a) The sparse hexahedral grid (32 ⇥ 32 ⇥ 2 grid points) used in the verification test. (b)
The computed streamtraces obtained by RDG(P1P2) on the sparse grid.

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1
 0

 0.2

 0.4

 0.6

 0.8

 1
 0 0.2 0.4 0.6 0.8 1

v/
u

B

y-
co

o
rd

in
a
te

u/uB

x-coordinate

RDG(P0P1)
DG(P1)

RDG(P1P2)
Ghia el al (1982)

Figure 7: Profiles of the normalized velocity components u/uB and v/uB on a sparse hexahedral grid
(32 ⇥ 32 ⇥ 2 grid points) for a quasi-2D lid driven square cavity at a lid velocity of VB = (0.2, 0, 0), and a
Reynolds number of Re = 10, 000.

15 of 18

American Institute of Aeronautics and Astronautics

with respect to the number of GPUs, demonstrating that both the DG(P1) and RDG(P1P2) methods have
achieved excellent parallel e�ciency in the case of eight GPUs, being 97.0% and 97.3% respectively. Such
a high scalability as obtained in this test case is mainly attributed to the use of hexahedral grids, which
renders better load-balanced grid partitions and renumbered face groups than tetrahedral grids. Above
all, this parallel RDG solver has exhibited strong scalability on multiple GPUs for computing viscous flow
problems on hexahedral grids.

Table 10: Timing measurements of weak scaling obtained on a cluster of Nvidia Tesla C2070 GPU cards for
a quasi-2D lid driven square cavity.

Storage (GB) Unit time (ms) Parallel e�ciency

Grids Elements GPU’s P1 P1P2 P1 P1P2 P1 P1P2

Level 1 500, 000 ⇥1 2.3 3.0 9.40 15.04 – –

Level 2 1, 000, 000 ⇥2 4.6 6.1 9.54 15.33 98.5% 98.1%

Level 3 2, 000, 000 ⇥4 9.2 12.2 9.63 15.72 97.6% 95.7%

Level 4 4, 000, 000 ⇥8 19.6 24.4 9.68 16.47 97.0% 91.3%

VI. Conclusions

A multi-GPU accelerated, reconstructed discontinuous Galerkin method RDG(P1P2) has been developed
based on the OpenACC directives for the solution of compressible flows on 3D hybrid grids. A remarkable
design feature in the present scheme is that it requires minimum intrusion and algorithm alteration to an
existing CPU code, and renders an e�cient approach to upgrading a legacy solver with the GPU-computing
capability without compromising its cross-platform portability and compatibility with the mainstream com-
pilers. Communication between the GPUs is achieved via the host CPUs and synchronized based on the MPI
library. A face renumbering and grouping algorithm is used to eliminate memory contention of vectorized
computing over the face loops on each individual GPU. A series of inviscid and viscous flow problems have
been presented for the verification and scaling test, demonstrating excellent scalability of the resulting GPU
code. The numerical results indicate that this RDG(P1P2) method is an e�cient high-order DG method for
scalable computing on GPU clusters. In addition to the Nvidia GPGPUs, future work will be focused on
the completion of a full portability study on the AMD and Intel GPGPUs for the developed flow solver.

Acknowledgments

The authors would like to acknowledge the support for this work provided by the Basic Research Initiative
program of The Air Force O�ce of Scientific Research. Dr. F. Fariba and Dr. D. Smith serve as the technical
monitors.

References

1V. G. Asouti, X. S. Trompoukis, I. C. Kampolis, and K. C. Giannakoglou. Unsteady cfd computations using vertex-
centered finite volumes for unstructured grids on graphics processing units. International Journal for Numerical Methods in
Fluids, 67(2):232–246, 2011.

2F. Bassi and S. Rebay. Discontinuous Galerkin Solution of the Reynolds-Averaged Navier-Stokes and -! Turbulence
Model Equations. Computers & Fluids, 34(4-5):507–540, 2005.

3P. Batten, M. A. Leschziner, and U. C. Goldberg. Average-State Jacobians and Implicit Methods for Compressible
Viscous and Turbulent Flows. Journal of Computational Physics, 137(1):38–78, 1997.

4T. Brandvik and G. Pullan. Acceleration of a two-dimensional euler flow solver using commodity graphics hardware.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(12):1745–1748,
2007.

5T. Brandvik and G. Pullan. Acceleration of a 3d euler solver using commodity graphics hardware. In 46th AIAA aerospace
sciences meeting and exhibit, pages 2008–607, 2008.

6B. Cockburn, S. Hou, and C. W. Shu. TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element
Method for conservation laws IV: the Multidimensional Case. Journal of Mathematical Physics, 55:545–581, 1990.

16 of 18

American Institute of Aeronautics and Astronautics

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8

U
n
it

 t
im

e
(m

ic
ro

-s
ec

)

Number of GPUs

DG(P1)
RDG(P1P2)

(a)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

 1 2 3 4 5 6 7 8

P
ar

al
le

l
ef

fi
ci

en
cy

Number of GPUs

Ideal
DG(P1)

RDG(P1P2)

(b)

Figure 8: Plot of the timing measurements for a quasi-2D lid driven square cavity with a fixed problem size
(approximately half million elements) per GPU card (Nvidia Tesla C2050): (a) Unit running time versus the
number of GPU cards. (b) Parallel e�ciency versus the number of GPU cards.

17 of 18

American Institute of Aeronautics and Astronautics

7B. Cockburn and C. W. Shu. The Runge-Kutta Discontinuous Galerkin Method for conservation laws V: Multidimensional
System. Journal of Computational Physics, 141:199–224, 1998.

8J. Cohen and M. J. Molemaker. A fast double precision cfd code using cuda. Parallel Computational Fluid Dynamics:
Recent Advances and Future Directions, pages 414–429, 2009.

9A. Corrigan, F. Camelli, R. Löhner, and F. Mut. Porting of an edge-based cfd solver to gpus. In 48th AIAA Aerospace
Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 2010.

10A. Corrigan, F. Camelli, R. Löhner, and F. Mut. Semi-automatic porting of a large-scale fortran cfd code to gpus.
International Journal for Numerical Methods in Fluids, 69(2):314–331, 2012.

11A. Corrigan, F. Camelli, R. Löhner, and J. Wallin. Running unstructured grid-based CFD solvers on modern graphics
hardware. International Journal for Numerical Methods in Fluids, 66(2):221–229, 2011.

12E. Elsen, P. LeGresley, and E. Darve. Large calculation of the flow over a hypersonic vehicle using a gpu. Journal of
Computational Physics, 227(24):10148–10161, 2008.

13U. Ghia, K. N. Ghia, and C. T. Shin. High-Re solutions for incompressible flow using the Navier-Stokes equations and a
multigrid method. Journal of Computational Physics, 48(3):387–411, 1982.

14D. Goddeke, S. HM Buijssen, H. Wobker, and S. Turek. Gpu acceleration of an unmodified parallel finite element navier-
stokes solver. In High Performance Computing & Simulation, 2009. HPCS’09. International Conference on, pages 12–21.
IEEE, 2009.

15D. A. Jacobsen, J. C. Thibault, and I. Senocak. An mpi-cuda implementation for massively parallel incompressible flow
computations on multi-gpu clusters. In 48th AIAA Aerospace Sciences Meeting and Exhibit, volume 16, 2010.

16D. C. Jespersen. Acceleration of a cfd code with a gpu. Scientific Programming, 18(3):193–201, 2010.
17H. Jin, M. Kellogg, and P. Mehrotra. Using compiler directives for accelerating CFD applications on GPUs. In OpenMP

in a Heterogeneous World, pages 154–168. Springer, 2012.
18A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven. Nodal discontinuous galerkin methods on graphics processors.

Journal of Computational Physics, 228(21):7863–7882, 2009.
19H. Luo, Y. Xia, S. Li, and R. Nourgaliev. A Hermite WENO Reconstruction-Based Discontinuous Galerkin Method for

the Euler Equations on Tetrahedral grids. Journal of Computational Physics, 231(16):5489–5503, 2012.
20H. Luo, Y. Xia, S. Spiegel, R. Nourgaliev, and Z. Jiang. A reconstructed discontinuous Galerkin method based on a

hierarchical WENO reconstruction for compressible flows on tetrahedral grids. Journal of Computational Physics, 236:477–492,
2013.

21D. Michéa and D. Komatitsch. Accelerating a three-dimensional finite-di↵erence wave propagation code using gpu graphics
cards. Geophysical Journal International, 182(1):389–402, 2010.

22J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J. Purcell. A survey of general-
purpose computation on graphics hardware. In Computer graphics forum, volume 26, pages 80–113. Wiley Online Library,
2007.

23E. H. Phillips, Y. Zhang, R. L. Davis, and J. D. Owens. Rapid aerodynamic performance prediction on a cluster of
graphics processing units. In Proceedings of the 47th AIAA Aerospace Sciences Meeting, number AIAA, volume 565, 2009.

24G. Shainer, A. Ayoub, P. Lui, T. Liu, M. Kagan, C. R. Trott, G. Scantlen, and P. S. Crozier. The development of
Mellanox/NVIDIA GPUDirect over InfiniBanda new model for GPU to GPU communications. Computer Science-Research
and Development, 26(3-4):267–273, 2011.

25J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming standard for heterogeneous computing systems.
Computing in science & engineering, 12(3):66, 2010.

26J. C. Thibault and I. Senocak. Cuda implementation of a navier-stokes solver on multi-gpu desktop platforms for
incompressible flows. In Proceedings of the 47th AIAA Aerospace Sciences Meeting, pages 2009–758, 2009.

27H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, and D. K Panda. MVAPICH2-GPU: optimized GPU to GPU
communication for InfiniBand clusters. Computer Science-Research and Development, 26(3-4):257–266, 2011.

28S. Wienke, P. Springer, C. Terboven, and D. Mey. Openaccfirst experiences with real-world applications. In Euro-Par
2012 Parallel Processing, pages 859–870. Springer, 2012.

29Y. Xia, M. Frisbey, H. Luo, and R. Nourgaliev. A WENO Reconstruction-Based Discontinuous Galerkin Method for
Compressible Flows on Hybrid Grids. AIAA Paper, 2013-0516, 2013.

30Y. Xia, X. Liu, and H. Luo. A Finite Volume Method Based on a WENO Reconstruction for Compressible Flows on
Hybrid Grids. AIAA Paper, 2014-0939, 2014. http://arc.aiaa.org/doi/abs/10.2514/6.2014-0939.

31Y. Xia, H. Luo, M. Frisbey, and R. Nourgaliev. A set of parallel, implicit methods for a reconstructed discontinuous
Galerkin method for compressible flows on 3D hybrid grids. Computers & Fluids, 98:134–151, 2014. http://dx.doi.org/10.

1016/j.compfluid.2014.01.023.
32Y. Xia, H. Luo, L. Luo, J. Edwards, J. Lou, and F. Mueller. OpenACC-based GPU Acceleration of a 3-D Unstructured

Discontinuous Galerkin Method. AIAA Paper, 2014-1129, 2014. http://arc.aiaa.org/doi/abs/10.2514/6.2014-1129.
33Y. Xia, H. Luo, and R. Nourgaliev. An implicit Hermite WENO reconstruction-based discontinuous Galerkin method on

tetrahedral grids. Computers & Fluids, 96:406–421, 2014. http://dx.doi.org/10.1016/j.compfluid.2014.02.027.
34Y. Xia, H. Luo, S. Spiegel, M. Frisbey, and R. Nourgaliev. A Parallel, Implicit Reconstruction-Based Hermite-WENO

Discontinuous Galerkin Method for the Compressible Flows on 3D Arbitrary Grids. AIAA Paper, submitted, in process, 2013.
35Y. Xia, H. Luo, C. Wang, and R. Nourgaliev. Implicit Large Eddy Simulation of Turbulent Flows by a Reconstructed

Discontinuous Galerkin Method. AIAA Paper, 2014-0224, 2014. http://arc.aiaa.org/doi/abs/10.2514/6.2014-0224.
36B. Zimmerman, Z. Wang, and M. Visbal. High-Order Spectral Di↵erence: Verification and Acceleration using GPU

Computing. 2013-2491, 2013.

18 of 18

American Institute of Aeronautics and Astronautics

http://arc.aiaa.org/doi/abs/10.2514/6.2014-0939
Yidong Xia

http://dx.doi.org/10.1016/j.compfluid.2014.01.023
http://dx.doi.org/10.1016/j.compfluid.2014.01.023
http://arc.aiaa.org/doi/abs/10.2514/6.2014-1129
http://dx.doi.org/10.1016/j.compfluid.2014.02.027
http://arc.aiaa.org/doi/abs/10.2514/6.2014-0224

	Introduction
	Governing Equations
	Discontinuous Galerkin Spatial Discretization
	OpenACC Implementation
	Overview
	Multiple-GPU communication
	Parallelism for acceleration regions

	Numerical examples
	Inviscid flow past a sphere
	Viscous flow past a sphere
	Quasi-2D lid driven square cavity

	Conclusions

