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A GPU-accelerated discontinuous Galerkin (DG) method is presented for the solution
of compressible flows on 3-D unstructured grids. The present work has employed two of the
most attractive features in a new programming standard of parallel computing – OpenACC:
1) multi-platform/compiler support and 2) descriptive directive interface to upgrade a
legacy CFD solver with the capacity of GPU computing, without significant extra cost in
recoding, resulting in a highly portable and extensible GPU-accelerated code. In addition,
a face renumbering/grouping scheme is proposed to overcome the “race condition” in face-
based flux calculations that occurs on GPU vectorization. Performance of the developed
double-precision solver is assessed for both simple and complex geometries. Speedup factors
up to but not limited to 24× and 1.6× were achieved by comparing the measured computing
time of the OpenACC program running on an NVIDIA Tesla K20c GPU to that of the
equivalent MPI program running on one single core and full sixteen cores of an AMD
Opteron-6128 CPU respectively, indicating a great potential to port more features of the
underlying DG solver into the OpenACC framework.

I. Introduction

The General-Purpose Graphics Processing Unit (GPGPU)20 technology offers unprecedented application
performance by offloading compute-intensive portions of the application to the GPU, while the remainder of
the computer program still runs on the CPU. From a user’s perspective, applications simply run much faster.
Nowadays, computational fluid dynamics (CFD) has been one of the most important applications that run on
supercomputers. However, the gap between the capabilities of the traditional CPU-based parallel computing
and the complexity of the simulation problems to be solved continues to widen. Fortunately, GPGPU offers
a new opportunity to significantly accelerate CFD simulations, and is expected to be a major compute unit
in the near future.

Among the available GPGPU technologies, NVIDA’s CUDA application programming interface (API)
and CUDA-enabled accelerators are recognized as a popular parallel programming model and platform.
Thus the CUDA technology has been widely adopted in developing GPU-accelerated CFD solvers, where
the numerical methods range from the finite difference methods (FDMs), spectral difference methods (SDMs)
and finite volume methods (FVMs) to discontinuous Galerkin methods (DGMs). To list a few of the CUDA-
accelerated CFD applications, Elsen et al.11 reported a 3D high-order FDM solver for large calculation on
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multi-block structured grids; Klöckner et al.16 developed a 3D unstructured high-order nodal DGM solver
for the Maxwell’s equations; Corrigan et al.10 proposed a 3D FVM solver for compressible inviscid flows on
unstructured tetrahedral grids; Zimmerman et al.29 presented an SDM solver for the Navier-Stokes equations
on unstructured hexahedral grids; and more as in the references.3,4, 12,7, 21,23,13,19,8, 14,1, 9

However applying CUDA to a legacy CFD code is not likely an easy job since the developer has to
define an explicit layout of the threads on the GPU (numbers of blocks, numbers of threads) for each kernel
function.15 So what if the CFD code designers have to meet specific investment requirements like (1) enable
GPU computing for legacy CFD programs at a minimum extra cost in time and effort (usually a major
concern for large-scale code development), (2) enable the GPU-accelerated programs running on different
platforms (similar to the situation that the video game designers would like to make their products available
across platforms)? Moreover, designers may also have concerns like what if they cannot afford the time
to adopt to a new programming language like CUDA and rewrite the source code, and what if they do
not plan to depend on a proprietary language like CUDA for long and tie their applications to the CUDA-
enabled devices only? Provided with the fact that many legacy and current CFD programs (including the
one presented) are intended to maintain versatility and portability over multiple platforms even with the
capacity of GPU computing, thus adopting to CUDA might spell almost a brand new design and long-term
project, and a constraint to the CUDA-enabled devices. Fortunately, CUDA is not the sole player in this
scope. Two other solutions include OpenCL22 — the currently dominant open GPGPU computing language
(but disregarded from further discussion since it does not support Fortran), and OpenACC24 — a new open
parallel programming standard which is designed in order to meet the two requirements as indicated above.

Much like in OpenMP, developers working with OpenACC simply needs to annotate their source code
to identify the areas that should be accelerated using the compiler directives and some additional functions,
without much effort to modify the source code as to accommodate to specific GPU architectures. Thus
developers will benefit not only from easy implementation of the directives but also the freedom to run
the very same accelerated code on either CPU or GPU of different vendors, e.g., NVIDIA, AMD and
Intel accelerators. However OpenACC may still lag behind CUDA for some cutting-edge features due to
the vendor’s distribution plan (note that NVIDIA is among OpenACC’s supporter organizations), But
in compensation OpenACC presents a design style for developing a unified codebase that is promised to
provide multi-platform and multi-vendor compatibility, offering an ideal way to minimize investment in
legacy programs by enabling an easy migration path to accelerated computing.

The objective of the effort in the present work is to develop a GPU-accelerated discontinuous Galerkin
method for the solution of compressible flows on 3-D unstructured grids. Two of the most attractive features
in OpenACC: 1) multi-platform/compiler support and 2) easy-to-code directives has been employed to par-
tially upgrade a legacy Navier-Stokes DG solver17,18,26,27,25,28 with the GPU computing capacity without
significant extra cost in recoding and maintenance, resuling in a highly portable and extensible GPU code-
base. A face renumbering/grouping scheme is proposed in order to solve the “race condition” in face-based
flux calculations that occurs on GPU vectorization. Performance of the developed double-precision solver
is assessed for both simple and complex geometries. Speedup factors up to but not limited to 24× and
1.6× were achieved by comparing the measured computing time of the OpenACC program running on an
NVIDIA Tesla K20c GPU to that of the equivalent MPI program running on one single core and full sixteen
cores of an AMD Opteron-6128 CPU respectively, indicating a great potential to port more features of the
underlying DG solver into the OpenACC framework.

The outline of the rest of the paper is organized as follows. In Section 1, the governing equations are
briefly introduced. In Section 2, the discontinuous Galerkin spatial discretization is described. In Section 3,
the keynotes of porting an unstructured DGM solver to GPU with the OpenACC directives is illustrated.
In Section 4, the results of scaling test cases are presented and analyzed. The concluding remarks and plan
of future work are given in Section 5.

II. Governing Equations

The Euler equations governing unsteady compressible inviscid flows can be expressed as

∂U(x, t)

∂t
+
∂Fk(U(x, t))

∂xk
= 0 (1)
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where the summation convention has been used. The conservative variable vector U, advective flux vector
F are defined by

U =

 ρ

ρui

ρe

 Fj =

 ρuj

ρuiuj + pδij

uj(ρe+ p)

 (2)

Here ρ, p, and e denote the density, pressure, and specific total energy of the fluid, respectively, and ui is
the velocity of the flow in the coordinate direction xi. The pressure can be computed from the equation of
state

p = (γ − 1)ρ

(
e− 1

2
(u2 + v2 + w2)

)
(3)

which is valid for perfect gas. The ratio of the specific heats γ is assumed to be constant and equal to 1.4.

III. Discontinuous Galerkin Spatial Discretization

The governing equations in Eq. (1) can be discretized using a discontinuous Galerkin finite element
formulation. We assume that the domain Ω is subdivided into a collection of non-overlapping arbitrary
elements Ωe in 3D, and then introduce the following broken Sobolev space V p

h

V p
h =

{
vh ∈

[
L2(Ω)

]m
: vh|Ωe ∈

[
V m
p

]
∀Ωe ∈ Ω

}
(4)

which consists of discontinuous vector polynomial functions of degree p, and where m is the dimension of
the unknown vector and Vp is the space of all polynomials of degree ≤ p. To formulate the discontinuous
Galerkin method, we introduce the following weak formulation, which is obtained by multiplying Eq. (1)
by a test function Wh, integrating over an element Ωe, and then performing an integration by parts: find
Uh ∈ V p

h such as

d

dt

∫
Ωe

UhWh dΩ +

∫
Γe

Fk(Uh)nkWh dΓ−
∫

Ωe

Fk(Uh)
∂Wh

∂xk
dΩ = 0,∀Wh ∈ V p

h (5)

where Uh and Wh are represented by piecewise polynomial functions of degrees p, which are discontinuous
between the cell interfaces, and nk the unit outward normal vector to the Γe: the boundary of Ωe. Assume
that Bi is the basis of polynomial function of degrees p, this is then equivalent to the following system of N
equations,

d

dt

∫
Ωe

UhBi dΩ +

∫
Γe

Fk(Uh)nkBi dΓ−
∫

Ωe

Fk(Uh)
∂Bi

∂xk
dΩ = 0 1 ≤ i ≤ N (6)

where N is the dimension of the polynomial space. Since the numerical solution Uh is discontinuous between
element interfaces, the interface fluxes are not uniquely defined. The flux function Fk(Uh)nk appearing in
the second terms of Eq. (6) is replaced by a numerical Riemann flux function Hk(UL

h ,U
R
h ,nk) where UL

h

and UR
h are the conservative state vectors at the left and right side of the element boundary. This scheme is

called discontinuous Galerkin method of degree p, or in short notation DG(P) method. By simply increasing
the degree p of the polynomials, the DG methods of corresponding higher order are obtained. The inviscid
flux is evaluated by the HLLC2 scheme. To move the second and third terms to the right-hand-side in
Eq. 6, it leads to a system of ordinary differential equations (ODEs) in time and Eq. 6 can be written in
semi-discrete form as

M
dU

dt
= R(U) (7)

where M is the mass matrix and R is the residual vector. The present work employs a hierarchical WENO
reconstructed scheme to improve the accuracy and non-linear stability of the underlying second-order linear
polynomial DG(P1) solution, as the details are referred in the authors’ prior works.17,18

IV. OpenACC Implementation

The computation-intensive portion of the underlying unstructured discontinuous Galerkin solver is a
time marching loop which repeatedly computes the time derivatives of the conservative variable vector,
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as shown in Eq. 7. The conservative variable vector is updated using the three-stage TVD Runge-Kutta
time stepping scheme5,6 within each time loop. The most expensive workload when computing the time
derivatives consists of two procedures: accumulating the right hand side of Eq. 7 from the contribution of
integral over interior/boundary faces, and the contribution of integral over the elements. In fact, the way to
add the OpenACC directives in a legacy code is quite easy and similar to OpenMP, as the example shown
in Table 1 which demonstrates the parallelization of a loop over the elements for collecting contribution to
the elemental-stored residual vector rhsel(1:Ndegr,1:Netot,1:Nelem), where Ndegr is the number of degree of
the approximation polynomial (= 1 for P0, 3 for P1 and 6 for P2 in 2D; = 1 for P0, 4 for P1 and 10 for P2
in 3D), Netot the number of governing equations of the perfect gas (= 4 in 2D, 5 in 3D), Nelem the number
of elements, and Ngp the number of integration points over an element. Both the OpenMP and OpenACC
parallel construct directives can be applied to a readily vectorizable loop like in Table 1 without the need to
change the original code.

Table 1: A vectorizable example of OpenMP / OpenACC parallel construct derivatives implementation.

!... OpenMP version:
!... loop over the elements

!$omp parallel
!$omp do
do ie = 1, Nelem

do ig = 1, Ngp
!... contribution to the element
rhsel(*,*,ie)=rhsel(*,*,ie)+flux

enddo
enddo
!$omp end parallel

!... OpenACC version
!... loop over the elements

!$acc parallel
!$acc loop
do ie = 1, Nelem

do ig = 1, Ngp
!... contribution to the element
rhsel(*,*,ie)=rhsel(*,*,ie)+flux

enddo
enddo
!$acc end parallel

However due to the unstructured grid topology, the attempt to directly wrap a loop over the faces for
collecting contribution to the residual vector with either the OpenMP or OpenACC directives can lead to
the so-called “race condition” as the example is shown in Fig. 2, where multiple writes to the same residual
vector will occur, and thus can smear the correct values in vectorized computing. One feasible solution

Table 2: A “race condition” example of OpenMP / OpenACC parallel construct derivatives implementation.

!... OpenMP version (race condition):
!... loop over the faces

!$omp parallel
!$omp do
do ifa = Njfac+1, Nafac

iel = intfac(1,ifa) ! left element
ier = intfac(2,ifa) ! right element
do ig = 1, Ngp

!... contribution to the left
rhsel(*,*,iel)=rhsel(*,*,iel)-flux
!... contribution to the right
rhsel(*,*,ier)=rhsel(*,*,ier)+flux

enddo
enddo
!$omp end parallel

!... OpenACC version (race condition):
!... loop over the faces

!$acc parallel
!$acc do
do ifa = Njfac+1, Nafac

iel = intfac(1,ifa) ! left element
ier = intfac(2,ifa) ! right element
do ig = 1, Ngp

!... contribution to the left
rhsel(*,*,iel)=rhsel(*,*,iel)-flux
!... contribution to the right
rhsel(*,*,ier)=rhsel(*,*,ier)+flux

enddo
enddo
!$acc end parallel

to the issue of “race condition” is changing the code structure so as to collect the face contributions in
the loop over elements as proposed for the finite volume methods in Ref.,10 but at the price of redundant
computation. According to Ref.,10 the performance of this approach implemented for the FVM solver was
apparently advantageous only in single-precision GPU computation. It also needs to be noted that the face
loops of DGMs differ mainly from those of FVMs with an extra inner loop over the integration points, where
Ngp denotes the number of Gauss quadrature points. Ngp is equal to 1 for the FVMs, but can be quite a
larger number for the DGMs, and thus would cause much higher overhead if such computation is doubled.
Furthermore, this approach also requires a change of the major loop structure and construction of a new
element-face connectivity matrix, making the equivalent CPU code not efficient at all. Alternatively, the
“race condition” can be eliminated with only a few modifications of the face loop structures, by adopting to
a face renumbering scheme. The scheme is designed in order to divide the faces into several groups, ensuring
that no two faces that belong to a common element fall in the same group. Consequently, an additional
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do-construct that loops over these groups is nested on top of the original face loop and executed sequentially,
as shown in Table 3. Therefore the inner do-construct that loops over the faces is vectorized without the
“race condition” issue. The number of the groups is usually 6, 7 or 8 according to a wide range of test cases,
and can be set equal to 1 for the equivalent CPU code, which recovers to exactly the original code. This
face renumbering scheme results in a unified CPU/GPU unstructured code across platforms. In addition,
it needs to be mentioned that a more direct solution to this issue might be applying the atomic construct
(available since OpenACC specification Version 2.0) to prevent simultaneous reading / writing by vector
threads even without the presented renumbering scheme. However, the compiler version used in this work is
not up-to-date enough to support this functionality. Thus the atomic construct will be tested in future once
the compiler implements it.

Table 3: A no-race-condition example of OpenMP / OpenACC parallel construct derivatives implementation.

!... OpenMP version (no race condition):
!... loop over each group of faces

Nfac1 = Njfac
do ipass = 1, Npass_ift

Nfac0 = Nfac1 + 1
Nfac1 = fpass_ift(ipass)
!$omp parallel
!$omp do
do ifa = Nfac0, Nfac1

iel = intfac(1,ifa) ! left element
ier = intfac(2,ifa) ! right element
do ig = 1, Ngp

!... contribution tothe left
rhsel(*,*,iel)=rhsel(*,*,iel)-flux
!... contribution to the right
rhsel(*,*,ier)=rhsel(*,*,ier)+flux

enddo
enddo
!$omp end parallel

enddo

!... OpenACC version (no race condition):
!... loop over each group of faces
!
Nfac1 = Njfac
do ipass = 1, Npass_ift

Nfac0 = Nfac1 + 1
Nfac1 = fpass_ift(ipass)
!$acc parallel
!$acc do
do ifa = Nfac0, Nfac1

iel = intfac(1,ifa) ! left element
ier = intfac(2,ifa) ! right element
do ig = 1, Ngp

!... contribution to the left
rhsel(*,*,iel)=rhsel(*,*,iel)-flux
!... contribution to the right
rhsel(*,*,ier)=rhsel(*,*,ier)+flux

enddo
enddo
!$acc end parallel

enddo

Since the main time marching loop is performed on GPU, a one-time data copy between the host CPU and
the attached GPU can be done at the beginning and the end of the complete solving with minimal overhead,
as shown in Table 4. This data translation accounts for a very small portion of overhead throughout
the solving process, which might take the solver about seconds to minutes, depending on the scale of the
computational grids.

Table 4: An example of the main time marching loop.

!... OpenMP version: time marching loop

!... No data translation API directive
!... is needed since
!... all the data is on CPU memory
do itime = ninit, ntime

!... explicit time stepping scheme
call exrkdg3d()

enddo

!... OpenACC version: time marching loop

!$acc data region &
!$acc copy(unkno,unold,rhsel) &
!$acc copyin(...other arrays...)
do itime = ninit, ntime

!... explicit time stepping scheme
call exrkdg3d()

enddo
!$acc end data region

The present discontinuous Galerkin solver code is written in Fortran 95 and compiled with the PGI
Accelerator compiler suite. If a CUDA-enabled GPU hardware is linked, the PGI compiler will first translate
the subroutines that contain OpenACC parallel loops into the CUDA language, and then generate CUDA
acceleration kernels. Therefore in this case, the runtime performance of the resulting OpenACC program
is determined partially by the indirectly generated CUDA kernels that implement the actual computation
on GPU. On the other side, although the OpenACC standards are almost complete (up to version 2.0 as of
now), more time is expected for its supporting vendors like PGI and CAPS to release products that target
a wider range of graphics hardware, e.g., AMD line of accelerated processing units (APUs) as well as the
AMD line of discrete GPU accelerators.
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V. Numerical Results

The performance of the OpenACC-based GPU program was measured on a NVIDIA Tesla K20c GPU
containing 2496 multiprocessors. The performance of the equivalent MPI-based parallel CPU program was
measured on an AMD Opteron 6128 CPU containing 16 cores. The source codes were compiled with the PGI
Accelerator (version 13.4) + OpenMPI (version 1.5.5) compiler/runtime suite. A few quantities for timing
measurements are defined. Firstly, the unit running time Tunit is calculated as

Tunit =
Trun

Ntime×Nelem
× 106 (microsecond)

where the running time Trun refers to the time recorded only for completing the entire time marching loop
with a given number of time steps Ntime, not including the start-up procedures, initial/end data translation,
and solution file dumping. Secondly, the speedup factors were obtained by comparing the timings of the GPU
program against those obtained with the CPU program running on one and sixteen cores (denoted as CPU-1
and CPU-16), respectively. However the portability feature of the OpenACC code is not demonstrated in
this work due to the limited compiler/accelerator resources.

V.A. Simple Geometry: Subsonic Flow past a Sphere

The test case of an inviscid subsonic flow past a sphere at a free stream Mach number of M∞ = 0.5 is
considered first in order to verify and validate the OpenACC code, and assess the OpenACC acceleration
on different levels of computing scales. To serve these purposes, a sequence of four successively refined
tetrahedral grids are used in this computation, as shown in Figs. 1(a) – 1(b) respectively: the Level-1 grid
consists of 2,426 elements, 589 nodes and 640 boundary faces; the Level-2 grid consists of 16,467 elements,
3,425 nodes and 2,372 boundary faces; the Level-3 grid consists of 124,706 elements, 23,462 nodes and 9,072
boundary faces; and the Level-4 grid consists of 966,497 elements, 172,512 nodes and 34,662 boundary faces.
The cell size is halved between consecutive grids. Note that only a quarter of the configuration is modeled
due to symmetry of the problem. The computation is started with a uniform flow field and the number of
iteration for each grid is large enough for the flow field to converge to the steady state, as illustrated by the
surface pressure contours in Figs. 2(a) – 2(b). The timing measurements are given in Table 5, along with
Figs. 3 and 4 demonstrating the unit running time and speedup factors, respectively. From these results,
one can see that GPU acceleration for small-scale computing like on the Level-1 grid may not gain advantage
over the 16-core CPU compute node. With the increased computing scale like on the Level-2, 3 and 4 grids,
the potential of OpenACC is tapped, as one can observe a series of speedup factors up to 22.6× and 1.49×
by comparing to the CPU program running on one single core and on full sixteen cores of the CPU compute
node, respectively. Moreover, it can be seen in Fig. 4 that a further improving speedup factor is to be
expected provided with a larger computing scale.

Table 5: Timing measurements for subsonic flow past a sphere.

Tunit (microsecond) Speedup

Nelem GPU CPU-1 CPU-16 vs. CPU-1 vs. CPU-16

2,426 20.2 176.8 14.8 8.8 0.73

16,467 10.7 182.8 12.6 17.0 1.18

124,706 9.3 182.8 13.0 19.6 1.40

966,497 8.8 198.9 13.1 22.6 1.49

V.B. Complex Geometry: Transonic Flow over a Boeing 747 Aircraft

The test case of a transonic flow past a complete Boeing 747 aircraft at a free stream Mach number of
M∞ = 0.85 and an angle of attack of α = 2◦ is chosen in order to assess the performance of the OpenACC-
based GPU program in computing complex geometric configurations. The Boeing 747 configuration includes
the fuselage, wing, horizontal and vertical tails, under-wing pylons, and flow-through engine nacelle. Two
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Figure 1: The four successively refined tetrahedral grids for subsonic flow past a sphere.
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Figure 2: Surface pressure contours obtained on the four successively refined tetrahedral grids for subsonic
flow past a sphere.
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Figure 3: Statistics for subsonic flow past a sphere in double precision: (a) unit running time; (b) performance
scaling.
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grids are used in this computation, containing 253,577 elements, 48,851 grid points, 23,616 boundary faces,
and 1,025,170 elements, 371,162 grid points, 60,780 boundary faces, respectively. Note that only the half-
span airplane is modeled due to symmetry of the problem, as shown in Fig. 5. The computation is started
with a uniform flow field and iterated until the steady state is reached, as illustrated by the surface Mach
number contours also in Fig. 6. Timing measurements are given in Table 6, along with Figs. 7 and 8
demonstrating the unit running time and speedup factors, respectively. From the results, one can observe
two sets of speedup factors up to 24.5× and 1.57× by comparing to the CPU program running on one single
core and on full sixteen cores of the CPU compute node, respectively. Overall, the highest speedup factors
observed are similar to the first test case.

Table 6: Timing measurements for transonic flow over a Boeing 747 Aircraft.

Tunit (microsecond) Speedup

Nelem GPU CPU-1 CPU-16 vs. CPU-1 vs. CPU-16

253,577 11.5 243.8 16.4 21.2 1.43

1,025,170 10.6 249.4 16.6 24.5 1.57

(a) (b)

Figure 4: Illustration of transonic flow over a Boeing 747 aircraft at M∞ = 0.85 and α = 2◦: (a) surface
unstructured triangular meshes; (b) surface Mach number contours.

VI. Conclusion and Outlook

A new GPU parallel programming standard — OpenACC, has been explored in this paper to port a
legacy unstructured discontinuous Galerkin flow solver to the GPU accelerator without significant extra
effort in adjusting the original code. A face renumbering/grouping scheme is proposed in order to overcome
the “race condition” in face-based flux calculations that occurs on GPU vectorization. The scaling test
conducted in this paper has demonstrated good speedup for the resulting GPU-accelerated code on both
simple and complex geometries, indicating the potential to further port more features of the underlying
solver onto GPU parallel computing with OpenACC.
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