ABSTRACT

BEHERA, SUBHENDU SEKHAR. Adaptive Workflow Scheduling and Fault Tolerance to Manage HPC
Resources. (Under the direction of Dr. Frank Mueller.)

Large-scale Al and high-performance computing systems are breaking barriers with exascale
capabilities that accelerate research and development, driving scientific and technological innova-
tion. However, as scale and heterogeneity increase, failures — and the inefficiencies in recovering
from them — cause substantial loss of computation, degrading both workflow performance and
overall system efficiency. Moreover, even with massive computing capacity, users often struggle to
meet deadlines for large and complex workflows. Consequently, intelligent and adaptive resource
management becomes essential for workflow scheduling and fault tolerance to mitigate work loss,
enable efficient recovery, and ensure timely execution.

This work identifies and leverages opportunities for prioritization, predictability, and scalability
within the HPC ecosystem to alleviate these challenges. We integrate these principles into three
adaptive and complementary solutions across the HPC software stack. First, our predictive, failure-
aware Checkpoint/Restart model mitigates the limitations of short failure lead times by prioritizing
processes within an application, thereby improving efficiency. Second, we introduce a workflow
scheduling framework driven by resource availability prediction that overcomes the shortcomings
of traditional cloud bursting approaches and enables deterministic workflow execution. Finally, we
leverage the existing scalable scheduling techniques for workflow management that support efficient
and coordinated recovery from failures while reducing resource inefficiencies associated with
uniform, isomorphic failure handling. Together, these contributions offer cohesive and synergistic
resource management strategies that advance adaptive workflow scheduling and fault tolerance on

modern HPC systems.

© Copyright 2026 by Subhendu Sekhar Behera

All Rights Reserved

Adaptive Workflow Scheduling and Fault Tolerance to Manage HPC Resources

by
Subhendu Sekhar Behera

A dissertation submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the Degree of
Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2026

APPROVED BY:

Dr. Huiyang Zhou Dr. Jiajia Li

Dr. Xipeng Shen Dr. Frank Mueller
Chair of Advisory Committee

DEDICATION

This dissertation is dedicated to my family, for their unwavering love and support, and to my native
place, whose roots have guided and grounded me.

ii

BIOGRAPHY

The author grew up in the village of Bhatakumarada, Odisha. He completed his early schooling
there before moving to Brahmapur, Odisha, for higher studies. He earned a Bachelor of Engineering
in Computer Science from the National Institute of Science & Technology, Odisha. Following grad-
uation, he worked in Bengaluru at Broadcom and Juniper Networks before moving to the United
States. He pursued a master’s degree in Computer Science at North Carolina State University (NCSU)
and continued on to a Ph.D. under the guidance of Dr. Frank Mueller. During his time at NCSU, he
completed summer internships at ORNL, LLNL, and NVIDIA.

iii

ACKNOWLEDGEMENTS

I'would like to express my sincere gratitude to the following advisors and collaborators.

First, I thank Lipeng Wan and Matthew Wolf for providing me the opportunity to undertake a
summer internship at Oak Ridge National Laboratory in 2019. That experience served as a gateway
to research and inspired my decision to pursue a PhD. I also extend my gratitude to Jae-Seung Yeom,
Daniel Milroy, Dong H. Ahn, and Stephen Herbein at Lawrence Livermore National Laboratory for
their continuous support, guidance, and encouragement throughout this journey.

I am grateful to my committee members, Dr. Huiyang Zhou, Dr. Xu Liu, Dr. Jiajia Li, and Dr.
Xipeng Shen, for their time, insightful feedback, and valuable suggestions on my research. Finally,
I would like to offer my deepest thanks to my MS and PhD advisor, Dr. Frank Mueller, for his
unwavering support, mentorship, and guidance over the years.

I also want to thank my family and friends for their love, patience, and encouragement, which
have been a constant source of strength throughout this journey.

iv

AUTHORSHIP STATEMENT

Contributions of Subhendu Sekhar Behera and co-authors are listed below for each chapter.
Chapter 1: Introduction

Contributions:
¢ Subhendu Sekhar Behera: sole author of Chapter 1.

Chapter 2: P-ckpt: Coordinated Prioritized Checkpointing

Citation: S. Behera, L. Wan, E Mueller, M. Wolf and S. Klasky, "P-ckpt: Coordinated Prioritized
Checkpointing,” 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
Lyon, France, 2022, pp. 436-446, doi: 10.1109/TPDPS53621.2022.00049.

Contributions:

¢ Subhendu Sekhar Behera: preliminary investigation, design, implementation, literature review,

development of methodologies, coding, evaluation, and writing (drafting).
* Frank Mueller: design, supervision, feedback, and writing(reviews/edits).

¢ Lipeng Wan, Matthew Wolf, Scott Klasky: design, feedback, and facilitation of resources for

evaluation and analysis.

Chapter 3: Predictive Execution of Workflows in a HPC+Cloud Environment
Citation: Accepted and presented at HiPC 2025. In the process of being published.

Contributions:

¢ Subhendu Sekhar Behera: preliminary investigation, design, implementation, literature review,

development of methodologies, coding, evaluation, and writing (drafting).
* Frank Mueller: design, supervision, feedback, and writing (reviews/edits).
¢ Jae-Seung Yeom, Daniel Milroy: design, feedback, and writing (reviews/edits).

¢ Marc Niethammer: provision of workflow, feedback.

Chapter 4: WHESL: A Distributed Exception Management Framework for HPC
Citation: Submitted.

Contributions:

¢ Subhendu Sekhar Behera: preliminary investigation, design, implementation, literature review,

development of methodologies, coding, evaluation, and writing (drafting).

¢ Frank Mueller: design, supervision, feedback, and writing (reviews/edits).

¢ Jae-Seung Yeom, Daniel Milroy, Dong H. Ahn, Stephen Herbein: design and feedback.

Chapter 5: Conclusion

Contributions:
¢ Subhendu Sekhar Behera: sole author of Chapter 5.

Use of generative artificial intelligence: In chapters 1 and 5, a Large Language Model-based tool
(ChatGPT) was used to improve clarity and grammatical correctness and bring smooth transitions

between sentences.

vi

TABLE OF CONTENTS

LISTOF TABLES e e e e e ix
LISTOFFIGURES e e X
Chapter1 Introduction. ittt 1
Chapter2 P-ckpt: Coordinated Prioritized Checkpointing 4
2.1 IntroduCtiont e 4

2.2 SystemModel 6

2.3 Simulation Framework 9

2.4 TI/OPerformance Model e 11

2.5 ImpactofLead Time Variability 13

2.6 Priority-based Coordinated Checkpointing, 17

2.7 Evaluation e 19

2.8 Related Work e 30

2.9 SUINMATY. . . .o e e e 32
Chapter 3 Predictive Execution of Workflows in a HPC+Cloud Environment 33
3.1 Introduction e 33

3.2 Background e 35

3.3 System Design e e 37
3.3.1 ExecutionModel. 37

3.3.2 DeSIgN . .o e e 37

3.3.3 DataPreloadingStrategyot e 42

3.3.4 Adaptive Resource Scaler (ARS) e 43

3.4 Resource Availability Predictor (RAP), 43
3.4.1 FeatureDataSet e 44

3.4.2 Trainingand Results 45

3.5 EBEvaluation 46
3.5.1 HPCH+CLOUDSImulatort 46

352 Results e 46

3.6 Related Work 55

3.7 SUINMATY. . . oo et e e e e e e 57
Chapter4 'WHESL: A Distributed Exception Management Framework for HPC 59
4.1 IntroduCtion e 59

4.2 Background 61
4.2.1 Resource and Job ManagementSystem 61

4.2.2 Workflow ManagementSystemttt 63

4.3 SystemDesign e e 64
4.3.1 ExecutionModel. 64

4.3.2 PFailureModel e 64

4.3.3 DeSigN . .. e 65

vii

4.3.4 Exception DetectionandIsolation................ 68

4.3.5 CoordinationandRecovery........... i, 71

4.4 EBvaluationo e 73
4.4.1 Managing Disk Quota Exceeded Exception. 74

4.4.2 Managing Application Crash and Hang Exceptions. 80

4.4.3 Impact of WHESL on Application Performance 83

4.5 Related Work o 83

4.6 SUIMIMATY . . ¢ ot vttt et et e 85
Chapter5 Conclusion e 86
BIBLIOGRAPHY e 88

viii

Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5

Table 3.1
Table 3.2
Table 3.3
Table 3.4

Table 3.5

Table 4.1
Table 4.2
Table 4.3

LIST OF TABLES

HPC workload characteristics 15
FT Ratio for applicationsunderMlandM2 18
Weibull distributions for failure generation 20
FT Ratio for applicationsunderPlandP2 21
C/Rmodel comparisonc.ou ittt 31
Cloud CostModel. e 39
LSTM Training Parametersttt 45
TeStCaSES . . o vt e 48
Task completion rates (Q1, Q3) without Data Preloading, Rebalancing and

Backup HPC e 53
Hybrid Scheduling Comparison oo, 56
Fault Tolerance support in Workflow Management Systems 62
OAI Analysis workflow’s output perimage 75
Exception Management Systems Comparison 84

Figure 2.1

Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6

Figure 2.7
Figure 2.8

Figure 2.9
Figure 2.10
Figure 2.11

Figure 2.12
Figure 2.13

Figure 2.14
Figure 2.15
Figure 2.16
Figure 2.17

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4

LIST OF FIGURES

Computation loss upon failure during (A) computation post checkpointing
to PES, (B) asynchronous checkpointing to PFS, and (C) synchronous check-

pointingto BB e 8
Failure prediction lead time distribution 8
Simulation framework. L 10
I/O performance on single computenode 12
Impact of scalingonI/Obandwidth. 12
Impact of lead time variability on safeguard checkpointing and LM for appli-

cation CHIMERA i 14
Impact of lead time variability on safeguard checkpointing and LM for appli-

cation XGC . . . oo 14
Impact of lead time variability on safeguard checkpointing and LM for appli-

cation POP 15
State diagram of a node in hybrid C/Rmodel 18
Reduction in overhead for Summit under Titan’s Failure Distribution 20
Impact of lead time variability on p-ckpt and hybrid p-ckpt for applications

CHIMERA. . . . e e e e e et e e e 22
Impact of lead time variability on p-ckpt and hybrid p-ckpt for applications

XGC e 23
Impact of lead time variability on p-ckpt and hybrid p-ckpt for applications

PO . e 23
Difference in LM and p-ckpt FTratioinP2model 24

Reduction in overhead for Summit under LANL System 18’s Failure Distribution 26
Reduction in overhead for Summit under LANL System 8’s Failure Distribution 27

Reduction in overhead for LM vs p-ckpt 28
Challenges with Large Job Scheduling 36
Overall System Design 38
Pipelined execution of the stagesinworkflow. 40
Execution slots and Throughput allocation 41
Validation and OAI Analysis Workflow 48
Task Completion Rate i 49
Percentage of tasks completed by resources 50
Delay of ProductionJobs e 51
Difference between Predicted and Actual Costs 52
CoStSaVINGS . . . ottt e 53
Costof Backingup HPCintheCloud 54
Overall WHESL Architecture, 65
Exception Detectionin WHESL 68
Inefficient Recovery without WHESL 68
Exception Isolation with WHESL Isolator 69

Figure 4.5

Figure 4.6
Figure 4.7
Figure 4.8

Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12

Sequence Diagram for Recovery Coordination in WHESL for workflow-level
EXCEPLIONS . . . vttt e e e e 72
OAI AnalysisWorkflow i, 74
Impact of WHESL during Failure scaling without any queue wait times for jobs 77
Impact of WHESL during Failure scaling with expected queue wait time for

JODS 78
Impact of WHESL during task scaling without any queue wait time for jobs . 79
Recovery times for OAIfromDQE 79
Impact of WHESL on LULESH Application 82
Impact of WHESLon HPCJobs 82

CHAPTER

INTRODUCTION

Adaptive and efficient resource management techniques are critical to achieving resilience and de-
terministic scheduling on modern large-scale High-performance Computing (HPC) systems. In the
absence of robust resiliency and timely scheduling mechanisms, HPC systems risk underutilization
and inefficient use of compute resources due to failures, as well as an inability to meet deadlines
for time-critical workloads. To highlight these concerns, we identify three key challenges faced by
today’s HPC ecosystem.

Challenge 1: Checkpoint/Restart (C/R) is widely used to enable reliable execution of applica-
tions ranging from exascale simulations to large language model training. When coupled with failure
prediction, C/R can further improve overall execution efficiency. However, existing failure-aware
C/R techniques fall short when handling failures with low lead time. Under high I/O contention,
vulnerable nodes cannot deterministically save state to persistent storage, such as a parallel file sys-
tem. In such scenarios, large-scale applications suffer from computation loss, resulting in resource
wastage.

Challenge 2: Beyond resiliency, efficient resource utilization and predictable performance across
heterogeneous HPC-Cloud systems remain open challenges. Meeting deadlines for data-intensive
workflows is difficult because HPC jobs experience variable queue wait times. Cloud Bursting can
provision additional public-cloud resources to meet demand, but it lacks deterministic scheduling

because it depends on local HPC resources that may not be available. Additionally, data movement
latency between HPC and cloud environments becomes a performance bottleneck, leading to
resource idleness and increased cost.

Challenge 3: As workflows grow more complex and distributed, fault tolerance must extend
beyond individual applications to entire workflow ecosystems. Existing fault-tolerance approaches,
such as C/R and resource over-provisioning, perform well for monolithic parallel jobs but fail
to support complex heterogeneous workflows due to limited awareness of the workflow—HPC
hierarchical ecosystem. Workflow management systems orchestrate such workflows but typically
provide only basic fault tolerance, such as job restarts or simple error handling via programming-
language mechanisms. These approaches lack the holistic, system-wide coordination required for
efficient recovery.

To address this diverse set of challenges, we propose the following hypothesis.

Hypothesis: To improve application and system efficiency in the presence of failures and inefficient
recovery, and to ensure the timely execution of workflows, modern HPC systems require intelligent
and adaptive resource management techniques for fault tolerance and scheduling that leverage
prioritization, predictability, and scalability within the HPC ecosystem.

To evaluate this hypothesis, we developed three primary solutions that leverage techniques
such as prioritization, predictability, and scalability within the HPC ecosystem. This thesis is orga-
nized into three main chapters. In Chapter 2, we develop p-ckpt, a novel checkpoint/restart (C/R)
technique driven by a failure prediction model that coordinates distributed processes to prioritize
checkpointing on vulnerable nodes, thereby enabling contention-free access to the parallel file
system (PES). We further integrate complementary technologies, such as live migration and burst
buffers, into p-ckpt to reduce work loss and improve checkpointing efficiency. Our hybrid p-ckpt
C/R model considers prediction lead time and checkpoint latency to the PFS when deciding on fea-
sible proactive actions, such as proactive checkpointing or live migration. We evaluate our solution
through simulation using six real-world applications on the Summit supercomputer, comparing it
against state-of-the-art approaches in terms of overhead reduction. We assess our C/R models under
multiple failure distributions and analyze the impact of lead-time variability and failure prediction
accuracy. Based on this evaluation, we discuss the trade-offs associated with these models and their
effects on overall application overhead.

In Chapter 3, we present a predictive workflow scheduling approach that enables determin-
istic execution and controlled cost-deadline trade-offs across hybrid environments, providing
reliable guarantees on both cost and deadlines for large-scale workflows. We propose scheduling
data-intensive workflows deterministically over a combined HPC—-cloud hybrid environment by

scavenging unused HPC resources. We predict the availability of HPC resources and exploit these

predictions to dynamically split resource allocation between unused HPC capacity and cloud on-
demand resources to complete workflows by a given deadline. Deterministic resource allocation
enables preloading of input data for workflow tasks, thereby avoiding execution delays. Furthermore,
we develop an adaptive scaling algorithm that effectively backs up the targeted HPC allocation with
cloud resources to prevent workflow execution delays in the event of inaccurate resource availability
estimation. We evaluate our framework against state-of-the-art solutions based on task completion
rate, impact on HPC production jobs, cost savings, and cost estimation error.

In Chapter 4, we present the Workflow Hierarchy-aware Distributed Exception Management
System (WHESL), a novel solution that standardizes FT specification and manages exceptions
among disparate components in workflows in a coordinated and programmable manner. WHESL
is primarily built on three core components: ESL, an Exception Specification Language that can
succinctly define a rich set of exceptions and relate them to the hierarchy of workflows; EMIL, the
Exception Management and Isolation Layer, which provides exception isolation and coordination
among the components of the workflow execution environment; and ERM, the Exception Resource
Management library that provides advanced recovery mechanisms. Our solution is built on top of
Flux, a next-generation hierarchical resource and job management system, from which we utilize
scalable and nested scheduling capabilities. By evaluating different types of exceptions, we show
that WHESL can significantly extend the traditional HPC FT support for modern workflows, thereby

enabling scalable, usable, and portable fault tolerance on modern HPC systems.

CHAPTER

2

P-CKPT: COORDINATED PRIORITIZED
CHECKPOINTING

2.1 Introduction

Failures and I/O contention add significant overhead to application execution and become the
key challenge for C/R efficiency [Gei03; Sat12; Sch07; Luc14; Liul2; Isk08]. In past years, significant
progress has been made on failure prediction [Das18b; Das18c; Gail2b; Gail2a], live migration
(LM) [Wan08; Wan12], and Burst Buffers (BBs) utilization [Liul2; Fan] to address the challenges of
fault tolerance and PFS I/0O contention. Based on these techniques, many hybrid solutions such
as failure-aware safeguard checkpointing [Boul3; Tiw14], and multi-level C/R by orchestrating
failure prediction, LM, BBs and periodic checkpointing [Beh20] have been proposed. Multi-level
Checkpoint models employ multiple storage layers with different latency to minimize checkpoint
latency while improving system efficiency [Moo10; Dil7; Dil4]. Safeguard Checkpoint [Boul3] tries
to minimize computation loss by checkpointing just-in-time before an anticipated failure. However,
effectiveness of these failure-aware C/R solutions depends on the accuracy of the failure prediction
model and the length of the lead times to predicted failures. Proactive techniques, such as LM, require

high lead times for a larger memory footprint while safeguard checkpoints require enough lead time

to complete a proactive checkpoint until the data is committed to the PFS amid I/O congestion.
Without adequate lead time, an effort to complete the safeguard checkpoint is not guaranteed to
succeed (i.e., complete before the failure) on vulnerable nodes given the unpredictable nature of
I/O completion on large HPC systems. Such challenges require solutions that can effectively meet
the deadline to commit checkpoint data to the PFS on vulnerable nodes. Prioritizing checkpoint
data bleed-off on individual nodes is a promising direction. A filesystem-level implementation of
prioritizing checkpoint data on vulnerable nodes to PFS requires complex changes in the filesystem,
I/0 server layer, and interconnect network layer. Further, in a system with a high failure rate, simple
prioritization of an unhealthy node would fail given the Weibull distribution of failure arrival times
on HPC systems [Tiw14].

To address these challenges, we propose a novel coordinated prioritized checkpoint method,
called p-ckpt, that coordinates processes within an application in their effort to store checkpoint
data to the PFS in giving vulnerable nodes higher priority for such actions. The core idea is as follows:
In the event of failure predictions, a p-ckpt request gets initiated by the vulnerable node. It triggers
the checkpointing process to, in the first phase, checkpoint to the PFS on only the vulnerable nodes.
During this time, the healthy nodes await a checkpoint completion notification from vulnerable
nodes to move forward to the next phase, and a new node predicted to fail during this phase gets
queued in the node-local priority queue based on its lead time to failure. Once all the vulnerable
nodes commit their checkpoint data, the remaining nodes commit their checkpoint data to the PFS
in a second phase. Such coordination is facilitated by prioritizing vulnerable nodes based on the
lead time to the predicted failure. A lower lead time implies a higher priority. Further, we incorporate
LM into the C/R model, thereby creating a so-called hybrid p-ckpt. LM is the preferred proactive
choice over prioritized checkpoints as it is cost-effective in terms of network traffic and its ability to
let the application continue execution while LM is in progress [Wan08].

Our multi-level hybrid p-ckpt C/R model for modern HPC systems can benefit in performance
from failure prediction and an analysis model for effective use and coordination of multiple resilience
techniques such as p-ckpt, LM, and periodic checkpoints. Our adaptive C/R model is driven by failure
lead time prediction to select an appropriate proactive action with the smallest possible overhead
in the presence of failures. Desh’s [Das18b] log-based failure chain characterization technique is
utilized to detect instances of likely failures in real-world HPC system logs (three HPC systems) and
their lead time distribution, which provides the means for failure prediction and system failure rate
calculation. LM and p-ckpt checkpoints are integrated into our C/R model to provide just-in-time
mitigation of a predicted failure. The approach is unique in that it selects the best possible actions
dynamically based on the lead time to failure, either via p-ckpt, to checkpoint to the PFS, or via LM
with minimal interruption to application execution. The impact of this trade-off is subject to our

evaluations.

In summary, we make the following contributions:

o We assess the impact of short lead times to predicted failures comparing existing safeguard
checkpoint and live migration [Boul3; Beh20] solutions.

e We propose a novel checkpoint technique, (p-ckpt), that allows coordination at application-
level to prioritize the saving of state on nodes with imminent health problems to avoid computational
loss due to failures.

e We develop a hybrid p-ckpt C/R model that coordinates fault tolerance techniques of LM
and coordinated prioritized checkpointing while considering the latency of multiple I/0 layers for
storing checkpoints, driven by a log-based failure analysis and prediction model to reduce failure
overhead.

o We evaluate the p-ckpt and hybrid p-ckpt C/R models against multiple failure distributions
and measure their effectiveness while assessing sensitivity to lead times to failures. We test their
robustness against failure prediction accuracy. We discuss these evaluations and make suggestions
on their applicability. Further, we evaluate the impact of checkpoint size and LM transfer size on

the performance of LM and p-ckpt models and provide an analytical model.

2.2 System Model

Our work is modeled on an HPC system that resembles the Summit supercomputer architecture.
Each compute node has a BB serving as an intermediate storage device to absorb I/O write bursts
locally. Other HPC architectures historically employed a cluster of dedicated BB nodes, e.g., NERSC'’s
Cori [Bhil6]. On Summit, each BB device has 1.6 TB capacity, compared to a 512 GB DRAM size,
with up to 2.1 GB/sec write and 5.5 GB/sec read I/O bandwidth [Vaz18]. BBs assist in reducing
PFS I/0 contention in two situations in our C/R model: First, periodic checkpoints are cached on
the BBs and later asynchronously bled off to the PFS. The asynchronous bleed off is optimized by
limiting the number of nodes that transfer data to the PFS at any time. Second, during recovery
from unmitigated failures, only one node, the replacement node, needs to recover checkpoint data
from the PFS. The rest of the nodes recover data from their local BB.

Further, each node has an instance of a fault predictor using the Aarohi [Das20b] model running
on a separate core than the application. Aarohi suggests placing predictors on Hardware Supervisory
System (HSS) that manages a chassis on Cray systems. Their observations are based on the grounds
of application interference from the predictor. However, notifying the prediction handler subsys-
tem/thread on a compute node from a chassis controller can be challenging in terms of latency,

particularly when prediction lead times are in the range of a few seconds. Placing the predictor on

the node itself eliminates this problem, preferably on a spare core or otherwise by core sharing with
applications. Aarohi itself is a lightweight monitor that predicts a failure by analyzing 18 different logs
within 0.31 msecs on average. Checkpoint data is transferred from BBs to the PFS asynchronously,
e.g., via the Spectral library on Summit [ORN20]. We assume that the integrity of the checkpoint
data stored on local BBs is maintained, and the checkpoint size per node never exceeds the DRAM
or BB size.

Checkpoint Model: Our proactive checkpoint technique (applicable to both p-ckpt and safe-
guard checkpoint) mandates that all the nodes commit their checkpoints to the PFS in the event
of failure prediction, thereby bypassing the BBs. In contrast, periodic checkpoints are staged on
to the BBs first and later drained to the PFS asynchronously. Other strategies have been pursued
in multi-level checkpointing models, such as neighbor checkpointing and local disk/BB check-
pointing [Moo10; BG11]. Evaluating these methods are beyond the scope of this work, but as they
are orthogonal, can themselves benefit from prioritization. Further, we mandate all the nodes in
an application to save their state to avoid application restart and synchronization issues. Thus, if
recovery happens from a non-handled failure, then all the healthy nodes recover checkpoint data,
which was stored in a periodic checkpoint on their local BBs, while the replacement node recovers
from the PFS. If a failure is mitigated with proactive checkpointing, then all the nodes recover from
the PFS.

Failure Model: We make the following assumptions in our failure model:

o Failures can happen at any point in time.

e The impact of failure is limited to a single node.

¢ Another failure, predicted or not, can occur on a node that already had a previous failure
predicted, but still with some lead time left before the failure is predicted to occur.

The Optimal Checkpoint Interval (OCI) is the near-optimal time gap between two consecutive
checkpoints that aims to lower the checkpoint frequency while minimizing the computation loss
due to failures. Young’s formula [You74] for OCI applies to single-level C/R models. Previous work
by Di et al. [Dil4; Di17] and Benoit et al. [Ben17] focused on the optimal checkpoint interval for
multiple types of checkpoints, each of them stored on a separate storage medium. However, our HPC
system model employs intermediate storage devices (BBs in this case) that stage the checkpoints
before being bled off to the PFS asynchronously. Failures during the asynchronous checkpointing
can cause loss of computation performed during the current and previous iterations as shown in
Figure 2.1(B). However, during our evaluation, we found that this asynchronous checkpoint window
is negligible compared to the OCI because of the high performance of the PFS on Summit (see
Section 2.4). So we use Young’s formula in Eq. 2.1 for OCI calculation, where . ,’:l;t is the OCI, A the

failure rate, ¢ the number of compute nodes a job is running on, and tfkbp the time required to

t

tcmpt pfs (A)

tckpt
l i i Probable
4 Failure [J AASyne Checkpoint fo

0 Checkpoint

to BB B Computation

PFS computation loss

Figure 2.1 Computation loss upon failure during (A) computation post checkpointing to PFS, (B) asyn-

chronous checkpointing to PFS, and (C) synchronous checkpointing to BB

write one checkpoint to the BBs by a job.

bb
opt Ztckpt
tcmpt— Ac
SR EE
S
AN (o)
o
ES o o
3 o
2 8 (OQ <] o
o O N o
£ g
= S 8
—8 ¥ S] o) fe)
o o | A o
- S AN 60_0 %8\ 0)/-\ n;? Vv
Em X “"i S ™ Mol
s | == =N\ 20 Bl

\\\& ,L\\"Jq) \‘bb\gb(\\%(\ ‘JQ:\ b\\% 1\5%\\\&(5%\5\ \QQ"J
Failure Sequences

Figure 2.2 Failure prediction lead time distribution

(2.1)

The OCI in our checkpoint model further includes a rigorous analysis of failures logs. The study
analyzes the system logs collected from three real-world HPC systems from Desh [Das18b] over a
period of six months. Using the Desh approach, the most common sequences of phrases in logs that
may lead to failure are considered. Our assumption in this work is that any sequence of phrases,
so-called failure chains, results in an actual failure. The time difference between the first phrase and
the last phrase in a chain is calculated as the lead time. Figure 2.2 shows the distribution of lead
times as box plots for different failure instances (sequence 1-10), each of which occurs repeatedly in
these logs. Failure sequence ID and the number of occurrences in the logs are on the x-axis. The
y-axis represents the lead time in seconds. Mean lead time is on the left side of each boxplot. We
observe that most failures are bounded by the whiskers, only a few outliers exist, with an exception
of failure sequences 3 and 4. In the following experiments, we consider the actual lead time of any
failure during simulation.

We introduce a parameter o that represents the percentage of failures that can be predicted with
enough lead time in excess of the time required to migrate a process from a faulty node to a new and
healthy node. By considering a o percent decrease in the rate of failures, we further improve the OCI.
That means o percent of failures can be predicted with a lead time in excess of 8 seconds and thus
can be avoided with proactive live migration. We calculate the value by assuming that the total
amount of data transferred during live migration is equal to three times the processes’ checkpoint
data and is bounded by RAM size (512 GB). We account for a 3x higher footprint for LM as it migrates
an entire process rather than just a subset of application data. Consider a stencil with a temporal
domain of t-1, t, t+1, i.e., any particle point has 3 values in time (needed by LM whereas p-ckpt
only needs one as others can be recalculated). This approximates the overhead assuming that these
data structures dominate the memory consumption of an application. Note that Eq. 2.1 is used for
the p-ckpt model while Eq. 2.2 is applicable to the hybrid p-ckpt model. We do not incorporate the
percentage of failures handled by p-ckpt in the OCI as they cause the application to recover after

failure. In contrast, with live migration, failures are avoided, i.e., no recovery process is required.

thb
opt ckpt
tcmpt_ Ac(l—0) (2.2)

2.3 Simulation Framework

For evaluating the C/R models developed in this chapter, we rely on simulation. SimPy [Tea20], a
process-based discrete-event simulation framework in Python, is used for developing our simulation

framework. With SimPy, we simulate the time spent during computation, checkpointing to BBs

! 1
i OClupdate F--==-=====---
1
N - —‘ - -’
1
1
]
] 4
1 !
] I
] I
[P 1
i Failure ! '
|Generation andk-=----- >I
\ Prediction 1 1
e AN
\\ |
\ \
\ \
N\ ittt
A i Proactive !
Failure MTBF| [Failure Analysis and —): Action 1
distribution Prediction Model [| C/RModel V' S=======-- !
S TTTTTTTT \
): Failure and |

1
1 Recovery !

Systemand [| [et
Application Config

Figure 2.3 Simulation framework

and PFS, proactive operations, and inject failure events. Our simulation framework comprises
multiple components (see Figure 2.3). Components boxed with dotted lines run as a SimPy process
during simulation. The boxes with solid lines represent the input to these components. Arrows of
dotted edges indicate either actions or input at runtime, arrows with solid lines are inputs during
initialization time. Each simulated application runs as a SimPy process performing computation
and periodic checkpointing iteratively. The OCI of each application SimPy process is updated
periodically using Eq. 2.1 and Eq. 2.2 to better account for a dynamically changing system failure rate.
The checkpoint period is constant as the applications store checkpoints to BBs while asynchronously
draining them to PFS.

The system and application configuration file contains input describing application characteris-
tics, PFS I/0 performance statistics, failure distribution parameters (Table 2.3), and failure analysis
(lead times) in detail. These data are fed into the simulation framework creating the static and dy-
namic components required for the simulation. The failure generation and prediction component
uses the failure distribution parameters to generate one of the failures along with its prediction lead
time using failure analysis described in Section 2.2 that is then injected into an application. For
each failure generation, a node is randomly selected from a uniform probability distribution. The
application on that node gets a failure prediction notification before the actual failure is triggered.
Upon prediction, the application selects one of two proactive actions; which one depends on the
C/R model algorithm being simulated.

10

When a failure is injected, the interrupted application uses the SimPy framework’s time mea-
surement APIs and the PFS I/O performance model to determine its state at the time of failure and
calculates the amount of computation loss. Hence, the I/O performance model is an integral part
of our simulation framework, which is described in the following section. Further, we make the
following assumptions in our simulation:

o The rate of failures is lower than the rate of recovery for failed nodes so that reserved nodes are
always available to the resource manager, such as Slurm [Yoo03] or Flux [al.18a].

e No distinction is made between soft failures and hard/node failures, i.e., both are handled
uniformly, except during the recovery process. A failed node is always replaced by a new and healthy
node.

¢ Checkpointing resembles application-level checkpointing.

2.4 1/0 Performance Model

I/O performance is known to be variable due to I/O contention between different jobs. Even on
modern HPC systems, the I/O bandwidth of an application is severely impacted by concurrent I/0
operations performed by other applications. This causes significant variability in I/O performance.
On Summit, IBM’s SpectrumScale GP FST™ PFS handles application 1/O using IBM’s GL4™™
Elastic Storage Servers as I/O nodes. The I/O subsystem evaluation in [Vaz18] shows an aggregate
bandwidth of 2.5 TB/sec can be realized. However, the evaluation measures the performance of
the I/0 node server. It does not measure the I/O performance realized within an application. The
objective here is to characterize the actual1/O performance seen by an application.

To characterize the I/O performance of the GPFS™™, two experiments are conducted. The first
experiment determines the optimal number of MPI processes that can achieve maximum aggregate
I/0 bandwidth on a single compute node. A compute node on Summit has 42 physical cores, which
are evenly distributed over two sockets along with DRAM. This experiment measures the average
I/0 bandwidth for different aggregate data transfer sizes over multiple MPI tasks from 1 to 42 in 10
different runs. These MPI tasks are evenly distributed over the two sockets on the compute node and
use POSIX write to transfer data. I/O buffers are flushed via the fsync() call to ensure that the data is
not cached but rather committed to the devices. Figure 2.4 depicts the aggregate I/O bandwidth
(y-axis) for different transfer sizes (x-axis) on curves ranging from 1 to 42 processes. These results
indicate that 8 MPI tasks on a single compute node result in the maximum I/O bandwidth. Hence, 8
MPI tasks are used to store checkpoints in the C/R model.

The second experiment assesses the effect of weak scaling on aggregate 1/O bandwidth for

different sizes of aggregate data transfer per node. 8 MPI tasks are used to perform I/O on a node and

11

14

12

Aggregate bandwidth (GB/second)
6 &8

10

—— 1 cores —4&— 16 cores
—o— 2 cores —<— 32 cores
—»— 4 cores —»— 42 cores
—¥— 8 cores

Q % NI N\ NG B NN RN\
Aggregate transfer size (GB)

Figure 2.4 I/0 performance on single compute node

No. of nodes
50109200 %09 509 S09 906900
259 S0y 7sp O0p sy
Aggregate bandwidth (GB/second)

5191940 40 Q. A0 40 o0
QEVENRPT A AT AT TR
Transfer size per node (GB)

Figure 2.5 Impact of scaling on I/O bandwidth

12

its aggregate bandwidth is averaged over 10 runs. Effectively, the I/O performance of the GPFS™™
parallel file system is modeled. Figure 2.5 shows the effect of scaling (nodes on the y-axis, transfer
size on the x-axis) on aggregate I/O bandwidth (indicated by the heat map). For weak scaling, a fixed
data size (each column) is exposed to an increasing number of nodes. We increase the data size
along the x-axis and construct the I/O performance matrix. In our simulation, this performance
matrix is used to calculate the time required to store checkpoint data in the PFS. Our simulation
is based on the assumption that the aggregate bandwidth of a job is not affected by the I/O traffic
generated by other running applications for now. I/O congestion will add more overhead for the
non-frequent and failure prediction driven proactive checkpoints (safeguard and p-ckpt) as they
checkpoint to the PFS directly, but not for the asynchronous periodic checkpoints from BBs to
PFS resulting in minimal impact on performance overhead across all the C/R models. Adding the
effect of background traffic impacts the checkpoint overhead across all models. For evaluation
purposes, we assume the same performance matrix for the I/0 read operations. PFS write achieves
better throughput than read because data is cached. But checkpoints must be committed to the
PFS before recovery. Hence, our I/O experiments use fsync() to purge caches. Further, as stated in
Section 2.2, all nodes recover checkpoint data from BBs, except for the new replacement node in
case of non-handled failures. This reduces PFS reads to a single node and thus no longer results
in PFS contention, i.e., I/O performance is well below the thresholds of the aggregate scenario as
discussed before. So recovery mainly depends on BBs speed, PES is not the bottleneck.

2.5 Impact of Lead Time Variability

We simulated the execution of six real-world scientific applications listed in Table 2.1 to assess the
impact of prediction lead time variability. Previous works [Wan17; Tiw14] use these application
characteristics with the OLCF’s Titan supercomputer as their platform. Since our experiments are
based on Summit, we scale up the checkpoint size for each application proportionately to the
change in DRAM size using Eq. 2.3.

S; Size,gx#Nodes, .., x DRAMSIZE,,,,
Lze =
new #Nodes, g« DRAMSIZE, ;4

2.3

To generate failures, we use the Weibull distribution parameters of Table 2.3 for OLCF’s Titan
in place of Summit’s because of unavailability of the latter. A total of 1000 simulation runs were
performed and then averaged.

We performed our analysis using three existing C/R models:

13

—e— (Checkpoint — Ml
—¥— Recomputation =~ e M2

—+— Recovery

Overhead Reduction (percentage)

+50 +40 +30 +20+10 0 -10 -20 -30 -40 -50
Failure Prediction Lead Time Change (percentage)

Figure 2.6 Impact of lead time variability on safeguard checkpointing and LM for application CHIMERA

—e— (Checkpoint — Ml
—¥— Recomputation =~ e M2
—— Recovery

Overhead Reduction (percentage)
-
S

+50 +40 +30 +20 +10 0 -10 -20 -30 -40 -50
Failure Prediction Lead Time Change (percentage)

Figure 2.7 Impact of lead time variability on safeguard checkpointing and LM for application XGC

14

Overhead Reduction (percentage)
J
(e

—e— (Checkpoint
—¥— Recomputation

—— Recovery

-

+50 +40 430 420 10 0 -10 -20 -30 -40 -50

Failure Prediction Lead Time Change (percentage)

Table 2.1 HPC workload characteristics

Figure 2.8 Impact of lead time variability on safeguard checkpointing and LM for application POP

Checkpoint
Number of | Size (GB) Computation
Application Nodes on Summit | Time (hour)

CHIMERA 2,272 646,382 360
XGC 1,515 149,625 240
S3D 505 20,199 240
GYRO 126 197.2 120
POP 126 102.5 480
VULCAN 64 3.27 720

15

* Model B: Periodic checkpointing + No prediction (base model);

* Model M1: Periodic checkpointing + Failure prediction & analysis model + Safeguard check-

pointing; and
e Model M2: Periodic checkpointing + Failure prediction & analysis model + Live migration.

Both models M1 and M2 are driven by failure predictions to perform proactive actions to avoid
losses due to failures. Model M2 represents the LM-C/R model [Beh20] and starts the LM process
with adequate time before failure. Model M1 [Boul3] performs just-in-time checkpoints or safeguard
checkpoints before a failure.

Figures 2.6, 2.7 and 2.8 illustrate the impact of prediction lead time variability on the applications
(results for S3D, VULCAN, and GYRO omitted as they behave similarly to POP). The curves represent
the percent change of overhead for each phase of M1 (red) and M2 (blue) relative to the base model
B (y-axis) over percent lead time variation (x-axis). When lead times are varied, failure prediction
timing is impacted. For example, with a 50% increase in lead time, failures are predicted 1.5x earlier
than the original lead times. At 0% (y-axis), the overhead remains unchanged, at 100% the overhead
is completely removed, i.e., higher is better. The phase of each model is indicated by the legend and
defined as follows:

eCheckpoint Overhead: Duration for which application execution is blocked for checkpointing.

e Recomputation Overhead: Duration to recompute the portion of execution that was lost due to
a failure.

e Recovery Overhead: Duration to recover from all failures.

Observation 1: Model M2 shows moderate improvement in reducing resilience overhead when
lead times increase for large applications, but its performance diminishes once lead times are shorter
than their reference values. In contrast, M1 reduces recomputation overhead by a larger amount
than M2, but only for the smallest of applications; other overheads, and recomputation for larger
applications remain unchanged.

For the large applications, CHIMERA and XGC, safeguard checkpoints (M1) do not add any
benefit while they eliminate 85% of recomputation cost for smaller applications (even for a 50%
decrease in lead time) and tolerate the impact of lead time variability. For S3D, in particular, M1’s
recomputation cost reductions gradually decrease from 77% (for 50% increased lead time) to 50%
reductions (for 40% decreased lead times) and evaporates with further decrements in lead times.
Safeguard checkpoints (M1) have no impact on checkpoint and recovery overhead regardless of

application size.

16

We observe a more differentiated pattern under model M2. The support of LM in M2 reduces all
types of overheads and changes with lead time variability at different rates depending on application
size. For the largest application, CHIMERA, M2 sees all types of reductions rise by 8-10% (for a 10%
increase in lead times relative to the reference) resulting in 35%-60% savings over the base model, and
then remaining stagnant for longer leads. However, a mere 10% decrease in lead times diminishes all
types of benefits provided by LM in M2. Similarly, for XGC, the second largest application, benefits
for all types of reductions gradually increase with longer lead times, and these benefits rise at a
faster rate than for CHIMERA. With a decrease in lead time, these benefits diminish only after lead
times decrease by 50% or more. For smaller applications, M2 provides consistent reductions in all
types of overheads that are not affected by lead time variability.

To understand the impact of lead time variability on M1 and M2, we define two terms: FT latency
and FT ratio. FT latency is the time required by M1 or M2 to complete its proactive action to mitigate
failures. FT ratio is the ratio of successfully mitigated failures to the total number of failures for
an application. Application size and FT latency are two key factors that impact the performance
benefits in M1 and M2 when lead time is varied. Table 2.2 represents the FT ratio in M1 and M2 for
CHIMERA, XGC, and POP under varied lead times. As application size increases, both M1 and M2
require larger lead times to mitigate failures. So there is a drop in FT ratio for a lead time reference
resulting in decreasing overhead reductions. This drop is also seen with increased reference lead
times. This suggests that both M1 and M2’s FT latencies are too high for large applications. Also, a
decrease in lead time brings the FT ratio for M2 to near zero for large applications (CHIMERA and
XGC) resulting in near-zero overhead reductions. However, since M2’s FT latency is lower than M1’s,
it results in a higher FT ratio in M2 for large applications. In contrast, for smaller applications, the
FT ratios remain similar and unchanged for both M1 and M2.

This experimentillustrates thatlead time variability can have a severe impact on failure prediction-
assisted fault tolerance solutions. First, Safeguard Checkpointing (M1) fails at providing any benefits
for large applications and only provides reductions in recomputation overhead for smaller appli-
cations. Second, a small decrease in lead time can reduce the performance benefits of LM (under
M2) for large applications. Given these results, our proposed p-ckpt solution aims to tackle these
challenges of short lead times as described in the following section, followed by an evaluation with

the same experimental methodology as discussed so far.

2.6 Priority-based Coordinated Checkpointing

In this section, we describe the overall design of our priority-based coordinated checkpointing
method, p-ckpt, and the hybrid p-ckpt model. The core idea behind p-ckpt is that it applies coor-

17

Table 2.2 FT Ratio for applications under M1 and M2

Lead
Time
Change FT Ratio
CHIMERA XGC popr
Ml | M2 | Ml | M2 | M1 | M2
+50% | 0.007 | 0.57 | 0.04 | 0.83 | 0.84 | 0.85
+10% 0.006 | 0.57 | 0.04 | 0.69 | 0.82 | 0.85
0% 0.006 | 0.47 | 0.04 | 0.66 | 0.84 | 0.85
-10% 0.004 | 0.04 | 0.04 | 0.58 | 0.83 | 0.86
-50% 0 0.04 | 0.009 | 0.04 | 0.83 | 0.85

dination among the nodes within an application before checkpointing to the PES. It supports the
prioritization of vulnerable nodes during the checkpointing to guarantee them contention-free
access to the PFS. The hybrid p-ckpt model orchestrates p-ckpt with another proactive choice LM.
However, LM is the preferred choice in our C/R model over p-ckpt as it allows the application
with a vulnerable node to continue its execution while its pages are being copied to a replacement
node [Wan08]. Further, checkpointing/restarting (to/from PFS) is more costly than LM in terms of

network traffic for medium to large applications.

p-ckpt
notification

e

Normal State

Waiting

pfs-commit
notification

Checkpointing

Figure 2.9 State diagram of a node in hybrid C/R model

18

failure

prediction

-

Vulnerable
State

=

D

Live
Migration

Figure 2.9 depicts the state transitions of a node in the hybrid p-ckpt model. The square boxes
with solid lines represent different states of a node. The ellipses with dotted transitions represent
notifications as required. The solid arrows represent state transitions. When a failure is predicted, a
node transitions from the normal state of periodic computation and checkpointing to the vulnerable
state. In this state, based on the predicted lead time, a decision is made on the proactive action. If
there is enough time to migrate the process from the vulnerable node to a new and healthy node,
then the live migration process starts. Otherwise, the vulnerable node sends a p-ckpt notification
to all other nodes and the p-ckpt process begins. When a p-ckpt notification is received, healthy
nodes transition to the waiting state and wait for the vulnerable nodes to finish checkpointing to the
PFS. Once the vulnerable nodes finish storing their state to the PFS, they broadcast the pfs-commit
message to all other nodes within the application. When the healthy nodes receive this notification,
they proceed with checkpointing to the PFS. The p-ckpt process is implemented with node-local
priority queues, where vulnerable nodes with lower lead time to failures have higher priority while
all healthy nodes have equal lower priorities. When live migration is in progress and another failure
prediction occurs with lower lead time, live migration is aborted and the p-ckpt process begins (see
state diagram).

P-ckpt performs a few global synchronizations and broadcast operations, which adds perfor-
mance overhead. However, these operations are in the order of microseconds on Summit [Vaz18]. A
global barrier with 2048 nodes takes only ~8usecs. We do not account for these small overheads
during simulation. Further, the p-ckpt threads run only when a p-ckpt is taken but otherwise do
not impact applications during execution. LM’s execution interleaves with application execution.
However, the overhead is quite low adding just 0.08-2.98% in runtime during live migration [Wan08].

2.7 Evaluation

The simulator used in Section 2.5 is also used for the evaluation of two new models as below relative
to the same base model B as before:

* Model P1: Periodic checkpointing + Failure prediction & analysis model + p-ckpt.

* Model P2: Hybrid of periodic checkpointing + Failure prediction & analysis model + p-ckpt +
LM.

Model P2 combines two different proactive fault tolerance techniques, LM and p-ckpt. The

objective is to showcase our contributed models’ benefits over fault tolerance models in prior work.

19

Overhead (percentage)

CHIMERA XGC

S3D

I Recovery Time
W Checkpoint Time
I Recomputation Time

GYRO POP VULCAN

Scientific Applications

Figure 2.10 Reduction in overhead for Summit under Titan’s Failure Distribution

No prior work combined M1+M2, and benefits may be limited for large applications (CHIMERA

and XGC) as M1 is ineffective for large applications (see Section 2.5).

Figure 2.10 depicts for each application (x-axis) the overhead of fault tolerance in percent (y-axis)
normalized to the base model (B) with periodic checkpoints (first bar) compared to failure prediction
models M1, M2, P1 (p-ckpt) and P2 (hybrid p-ckpt). All models are annotated with rounded total
overhead (in hours) on top of each bar. To test the robustness of our C/R model, we applied three
different failure distributions from systems referenced in Table 2.3 [Wan17; Tiw14]. Here, we make

the assumption that OLCF’s Titan’s failure distribution applies to Summit, i.e., Figure 2.10 depicts

the overhead distribution for Summit under Titan’s failure distribution.

Observation 2: p-ckpt (P1) and hybrid p-ckpt (P2) help reduce application overhead over the

base model by ~#42%-55% and ~53%-65% on Summit, respectively.

Table 2.3 Weibull distributions for failure generation

HPC System Shape | Scale

LANL System 8 (164 nodes) 0.7111 | 67.375
LANL System 18 (1024 nodes) | 0.8170 | 6.6293
OLCEF Titan (18868 nodes) 0.6885 | 5.4527

20

In related work [Beh20], the LM-C/R model (M2) was guided by failure prediction and reduced
the application overhead by ~31%-61%. This reduction was due to the assistance of LM. The safe-
guard checkpoint model (M1) by Bouguerra et al. [Boul3] when driven by lead time-based failure
prediction, reduced overall application overhead by ~0-52% without providing any benefits for large
applications. With hybrid p-ckpt, we observe a significantly higher reduction in cost, by ~53%-65%
(see Figure 2.10), than in [Beh20; Boul3]. The savings can be attributed to a combination of prior-
itized coordinated checkpointing (p-ckpt) against failures with short lead times (model P1) and
lower failure rates due to prediction and successful mitigation via LM (model P2). The assistance of
p-ckpt alone brings a ~42%-55% reduction in application overhead (see Figure 2.10), which is higher
than model M2 for large applications. Table 2.4 represents the FT ratio in P1 and P2 for CHIMERA,
XGC, and POP under varied lead times. As can be seen, the lower FT latency of p-ckpt allows both
P1 and P2 to obtain a higher FT ratio compared to models M1 and M2 (see Table 2.2). Model M1
cannot handle failures with short lead times for large applications with safeguard checkpoints, and
its FT ratio remains near zero. However, p-ckpt successfully handles such failures as it commits the
checkpoint on the vulnerable nodes without any congestion in a prioritized manner. While M2’s
LM yielded an FT ratio of 0.5 and above for the base lead times and above for large applications,
p-ckpt pushed the FT ratio in P1 and P2 even higher, resulting in better overhead reductions. Notice
that the FT ratios for P1 and P2 are almost equal for all the applications. That means both P1 and
P2 can handle an equal amount of faults, but the overhead reduction difference between them is

significant, as discussed later.

Table 2.4 FT Ratio for applications under P1 and P2

Lead
Time
Change FT Ratio
CHIMERA XGC pop
P1 P2 P1 P2 P1 P2
+50% 0.84 | 0.83 | 0.85 | 0.84 | 0.88 | 0.86
+10% | 0.76 | 0.76 | 0.84 | 0.84 | 0.87 | 0.85
0% 0.70 | 0.69 | 0.84 | 0.83 | 0.86 | 0.85
-10% | 0.67 | 0.67 | 0.84 | 0.84 | 0.84 | 0.87
-50% | 0.36 | 0.37 | 0.84 | 0.84 | 0.86 | 0.86

21

The stacked bars break down overhead that can be attributed to checkpointing and, after a
failure, recovery to reload a checkpoint plus recomputation time to catch up with the execution to
the point of failure. Notice that recovery overhead is negligible for all the models except for P1. This
is due to our proactive checkpointing model, where all nodes commit their checkpoint to the PFS
bypassing the BBs unlike regular checkpointing. A mitigated failure by a proactive checkpoint takes
longer to recover, whereas failures unhandled are recovered faster with the assistance of BBs. We
observe that recovery contributes ~2.5%-6% of total overhead for P1 compared to less than 1% for
other models.

Observation 3: Both p-ckpt and hybrid p-ckpt can tolerate the impact of prediction lead time

variability better than prior models for large applications.

—e— (Checkpoint — P1
—¥— Recomputation =~ e P2
—4— Recovery

P o >4 r4

+50 +40 +30 +20 +10 0 -10 -20 -30 -40 -50
Failure Prediction Lead Time Change (percentage)

Overhead Reduction (percentage)
~J
(e

10 1 @ evee @ e ®-..... °

Figure 2.11 Impact of lead time variability on p-ckpt and hybrid p-ckpt for applications CHIMERA

Figures 2.11, 2.12 and 2.13 assess the impact of varied prediction lead time on models P1 and
P2 for all the applications (results for S3D, VULCAN, and GYRO omitted as they behave similarly to
POP) with the same x- and y-axes as in Figure 2.6 before. p-ckpt (P1) does not provide any additional
benefits for recovery and checkpoint overheads like the M1 model (Section 2.5). However, for the
largest application CHIMERA, it produces more recomputation overhead reductions than M2 and
P2 and can tolerate up to a negative 50% change (i.e., reduction) in lead times while still providing
some savings in recomputation relative to the base model due to the prioritization of vulnerable

nodes. In contrast, Model M1 (safeguard checkpoints) does not provide performance benefits for

22

gn —e— (Checkpoint — P1

b= —— Recomputation =~ e P2

% —— Recovery

oy

= |

) -
= 801 A - AT
% 70_ .““'::.:‘u‘::-' '___‘_,.y \ ZTTPE \ B ¥ v R 4
< 601 VT Se

& 50 DR

,.g 40_ "~.A‘ . QI @ e @ e)

o 301

£ 204
5 10' L 5 _ _ ~ ,

+50 +40 +30 +20+10 0 -10 -20 -30 -40 -50
Failure Prediction Lead Time Change (percentage)

Figure 2.12 Impact of lead time variability on p-ckpt and hybrid p-ckpt for applications XGC

gﬁ | —e— Checkpoint —— PI1
% —¥— Recomputation =~ - P2
5 —4— Recovery
o
g 4
.% gg
] & @ @ O @ i@ @ Qe
F“g) 601 v...... ... R, ; : : Q. g
~ 501 L T v
g 409
o 301
£ 207
> 101
o o

+50 +40 +30 +20 +10 0 -10 -20 -30 -40 -50
Failure Prediction Lead Time Change (percentage)

Figure 2.13 Impact of lead time variability on p-ckpt and hybrid p-ckpt for applications POP

23

CHIMERA, and M2’s benefits diminish when lead time decreases by 10% relative to the reference.
For XGC, P1 nearly eliminates the entire recomputation overhead regardless of lead time variations.
In contrast, M2’s performance benefits diminish with a 50% reduction in lead time while M1 is not
effective at all.

The overhead reduction pattern for checkpointing in model P2 (hybrid p-ckpt) with respect to
lead time changes follows model M2 for both CHIMERA and XGC. The pattern for recomputation
overhead follows M2 largely when lead time increases, but follows P1 when the lead time shrinks.
With the support of coordinated prioritized checkpointing (p-ckpt), P2 achieves a similar recompu-
tation overhead reduction pattern as model P1 gaining a significant advantage over model M2. For
large applications, both models, P1 & P2, not only achieve better recomputation overhead reduc-
tions, but increase their tolerance against prediction lead time variability. Further, because of our
checkpointing model (see Sec. 2.2) in p-ckpt and the recovery process after proactive checkpoints,
reductions in recovery overhead for P2 are not seen for XGC when lead time is less or equal to the
reference. These reductions completely diminish for CHIMERA. Patterns for P1 and P2 for smaller
applications follow M1 and M2, respectively.

Finding: Variability in prediction lead time has a significant impact on the performance benefit of
prediction-based C/R models, and our hybrid p-ckpt model outperforms prior related models under
such circumstances.

Observation 4: p-ckpt is more effective for large applications compared to LM. Higher lead
times favor LM; conversely, when lead times are low, p-ckpt takes over.

o~

[aB}

= =" -
3

)

5 50%

a: 0

&

=

S, —e— CHIMERA
= 0%

= —— XGC

& —— S3D

L o0, GYRO
R POP

= VULCAN
— T

NFINPANFINPN SN PN PN
RN O S S I S S SN
Lead Time Change (percentage)

Figure 2.14 Difference in LM and p-ckpt FT ratio in P2 model

24

Figure 2.14 demonstrates the difference in FT ratio by LM and p-ckpt in percent (y-axis) in model
P2 over lead time variation (x-axis) for all the applications. In this experiment, the lead time variation
range was within (-90%, +90%) expanding the earlier range (-50%, +50%). If the percent difference is
positive, then LM is the dominant proactive choice; otherwise, p-ckpt is more dominant. As can be
seen, for smaller applications, the FT ratio difference between LM and p-ckpt remains consistently
high (above 75%) across the lead time variation range. Since LM is the preferred choice ahead of p-
ckpt and its FT latency is small enough, it can tolerate the lead time changes for smaller applications.
When application size increases, the FT ratio difference between p-ckpt and LM decreases for the
base lead time (0% change in lead time). That means p-ckpt is more effective for large applications
compared to LM because of its lower FT latency. For larger applications, as lead times decrease, the
dominance of p-ckpt as the proactive choice increases. p-ckpt’s dominance over LM is seen earlier
for the largest application like CHIMERA followed by XGC and S3D. As lead time changes become
negative, p-ckpt completely takes over LM before the FT ratio difference reaches zero as lead times
completely diminish.

Observation 5: Under hybrid p-ckpt (P2), checkpoint overhead is reduced by ~42%-70% across
applications. In contrast, LM (M2) results in reductions of 34% compared to P2’s 42% for the largest
application.

Even though both P1 and P2 yield equal FT ratios (Table 2.4), P2 performs better than P1 in
reducing overhead as LM helps model P2 to reduce checkpoint overhead. There is a negligible
change in time spent in storing checkpoints under model P1 because of the adaptive nature of our
checkpoint model. That means the schedule of checkpoints is variable in our model depending
on the factors such as the time and location of failure prediction, and the proactive action chosen.
For example, the scheduled checkpoint changes due to a p-ckpt triggered by and completed before
a predicted failure. What is more significant is the reduced failure rate resulting from the failure
analysis model, which yields a ~#42%-70% decrease in checkpoint overhead in the hybrid p-ckpt
(P2) model. Further, for the largest application, CHIMERA, P2 reduces checkpoint overhead by
42% compared to just a 34% reduction by M2. Even though LM in both M2 and P2 have the same
configuration, the assistance of p-ckpt helps P2 in completing the execution earlier (2% faster than
M2) and thus reducing checkpoint overhead.

Observation 6: In the presence of frequent faults, applications can suffer higher recomputation
overhead with hybrid p-ckpt compared to p-ckpt.

For all the applications, the recomputation overhead increases under (compare blue bars be-
tween P1 and P2 in Figure 2.10 and Figure 2.15) due to the inclusion of LM and elongated checkpoint
intervals derived from our extended failure analysis model as per Eq. 2.2. The reduced failure rate

increases the optimal checkpoint interval by ~54%-340%, which indirectly impacts the compu-

25

tation losses due to failures that could not be predicted or avoided even if predicted in advance.
The elongated checkpoint interval increases the hours of computation loss when failures are not
proactively avoided. P2 experiences a ~11%-27% increase in recomputation overhead relative to
the base model when compared to P1. However, P2’s loss in performance benefits is compensated
by the reduced checkpoint overhead. This gives rise to the requirement of a careful selection of the
C/R model for fault tolerance.

Recommendation: Based on the analysis in observations 4 and 6, we suggest that HPC systems
with a high fault rate and low lead times should utilize p-ckpt (P1) for large applications with short
runtimes because of its ability to handle failures with short lead times and reduced computation loss
derived from more frequent checkpointing. In contrast, applications with long runtimes should use
the hybrid p-ckpt (P2), irrespective of size and failure rate, as checkpoint overhead can eclipse the
recomputation overhead.

mm B SN Pl I Recovery Time
B M1 wazs P2 8 Checkpoint Time
s M2 I Recomputation Time

Overhead (percentage)

CHIMERA XGC S3D GYRO POP VULCAN
Scientific Applications

Figure 2.15 Reduction in overhead for Summit under LANL System 18’s Failure Distribution

Observation 7: Reductions in overheads for model P2 are robust across different Weibull failure
distributions.

Figures 2.15 and 2.16 depict the reduction in overhead on the same x- and y-axes as before
(Figure 2.10), yet for Systems 18 with its failure distribution. The reduction in overhead follows a
similar pattern for all three failure distributions. For LANL System 8, the decrease in overhead is
~44%-73% while System 18 results in ~#52%-69% reduced overhead. Furthermore, the same pattern

26

mm B XN Pl I Recovery Time
| Ml Wiz P2 W Checkpoint Time
s M2 I Recomputation Time

Overhead (percentage)

CHIMERA XGC S3D GYRO POP VULCAN
Scientific Applications

Figure 2.16 Reduction in overhead for Summit under LANL System 8’s Failure Distribution

of increasing gains with decreasing checkpoint sizes is observed. This result is significant as it
demonstrates that our model is robust and generalizes to other failure distributions. In principle,
our C/R model can be deployed on any HPC system that supports BBs, LM, and failure analysis plus
prediction. It also shows that orchestrating failure prediction within a C/R model to drive decisions
about when and how to checkpoint and when to live migrate reduces the impact of failures and
shortens application execution over simpler failure models.

Observation 8: The larger an application’s checkpoint size is, the larger the advantage of p-ckpt
over LM will be.

As mentioned in Sec. 2.2, we assume that the amount of data transferred for successful LM is
three times that of the checkpoint data size per process. To understand how this factor impacts the
performance comparison of LM (M2) and p-ckpt, we varied the amount of data transfer for LM and
created multiple models designated with M2-*, where * indicates the factor of checkpoint data for
transfer. Figure 2.17 shows the impact of varying transfer size for LM. The horizontal bars represent
overhead reductions (similar to Figure 2.10) for all the models (B, P1, and M2-*) along the x-axis
for three applications on the y-axis. We observe that for large applications (CHIMERA and XGC),
p-ckpt (P1) performs better than LM (M2) overall until the LM transfer size becomes 1x and 2.5x
times the checkpoint size, respectively. For smaller applications, LM always performs better than
p-ckpt. Furthermore, reductions in recomputation overhead for p-ckpt (P1) are significantly larger
than for LM (M2).

27

} BN Recomputation Time!

/
‘lk‘, %(Checkpoint Time
§ %//// 3 Bl Recovery Time
2 77777 72D
.2 B
g
g
< &
t= A
g B
Q
wn
s ¢ /A‘]
S 77 N
& 1B
© 10 20 30 40 50 60 70 80 90 100

Overhead (percentage)

Figure 2.17 Reduction in overhead for LM vs p-ckpt

Based on this analysis, we provide an analytical model to compare LM and p-ckpt. We observe
that LM (M2) reduces checkpoint overhead significantly (Observation 5), whereas p-ckpt (P1) yields
better recomputation reductions than LM (Observation 4). For p-ckpt to perform better than LM,
the difference in recomputation overhead reductions between p-ckpt and LM must be greater than
the checkpoint overhead reduction by LM. This is captured by Eq. 2.4. Notice that we consider the
recovery overhead in model P1 as negligible.

LM P—-CKPT LM) (2.4)

Ckptreduction <(recompreduction_recompreduction

The first term can be expressed as Eq. 2.5, where the first term represents the total checkpoint
overhead in the base model (B) and the third term represents a fractional reduction in checkpoint

frequency due to LM (see Eq. 2.2).

ckp trLeAguction =ckp tfverhead*(l_ v (1—0')) (2.5)

P—-CKPT

Similarly, recomp? “EPT andrecomp®

B
oduction canberepresentedas(recompouerhead*/3)

and (re co mpfv erhead * 0'), respectively. o and f represent the fraction of failures that can be han-
dled by LM and p-ckpt, respectively, and recom pfver neaq YEPIEsents the total recomputation
overhead of model B.

28

The right side of Eq. 2.4 can be simplified as recom pfv erhead *(ﬁ — a). If we consider a uniform
distribution of lead times of failures, an equal inter-node network bandwidth and single node PFS
write bandwidth (which is the case for Summit with 12.5 GB/sec and 13-13.5 GB/sec, respectively),
then B can be expressed using Eq. 2.6. a is the ratio of LM’s transfer size to checkpoint data size.

_a—1+a
- a

B (2.6)

Eq. 2.4 can be re-written as

(1_ (1_0)) recompfyerhead

<
a—1+0 B
a 0 Ckptoverheud

2.7

Assuming application overhead is split in half between recomputation and checkpointing, Eq. 2.7

is further simplified to

o+1 < 2.8
— a .
o++/(1—0)
Based on the constraint that the sumof recomp™ . andckptt™ . mustbelessthan

recom pfv ernead» @ <0.61.Eq. 2.8 suggests that @ must increase non-linearly as o grows. Under the
constraints of 0 <=0 < 0.61, the LM transfer size to checkpoint size ratio implies 1.04 <=« < 1.30
for p-ckpt to perform better than LM.

Observation 9: All models (M1/M2/P1/P2) experience a steady decline in total overhead reduc-
tion as the false negative rate increases. However, LM-supported models (M2/P2) experience larger
declines in recomputation overhead reductions than the safeguard checkpoint and p-ckpt models
(M1/P1).

To observe the impact of false negatives, we kept the false positive rate constant at 18% (see [Das17])
and varied the false negative rate up to 40%. Models M2 and P2 observe a ~91%-180% and ~71%-
174% decline in recomputation overhead reduction, respectively, when the false negative rate
reaches up to 40%. However, M1 and P1 observe smaller reductions of ~48%-54% and ~35%-40%,
respectively. This means they actually can handle a fewer number of failures with an increasing
false negative rate. LM-assisted models, M2 and P2, overestimate the number of failures they can
handle and keep the checkpoint interval larger than models M1 and P1 (see Eq. 2.2). It confirms our
recommendation in Observation 6 that on failure-prone systems, P1 holds an advantage over P2. To

29

improve P2, the failure prediction accuracy factor needs to be included in Eq. 2.2, which is part of
our future work.

Drawbacks: We rely on simulation for evaluating the models as special privileges are required to
reserve nodes on Petascale systems (e.g., Summit) for large-scale experiments. To mitigate this, our
evaluated applications are compute-intensive and use I/O during checkpointing based on the real
machine data from Summit with a validated I/O write performance model [Beh20]. Simulated failures
are based on real-world HPC failure logs [Das18b; Das18c]. Some operations such as synchronization
and broadcast introduce overhead, but these are negligible. A p-ckpt barrier with 2048 Summit
nodes take 8 microseconds. We also ignore the overhead of failure prediction as Aarohi [Das20a]
predicts failures within 0.31 msec.

Feasibility: Utilization of two different proactive options under a single FT model (P2) requires
coordination among multiple software systems like LM, p-ckpt, and periodic checkpointing. Further,
to use a different proactive choice for individual applications, LM requires a global system view
to avoid migrations that can create conflicts. p-ckpt applies to individual applications only by
coordinating its processes. p-ckpt with a global system view is beyond the scope of this work, as is a
complete implementation of the whole system.

2.8 Related Work

Several C/R solutions leverage failure awareness [Boul3; Tiw14; Geol5; Gar18; Wan08; Liu08]. Wang
et al. [Wan08] monitor healthy nodes and migrate processes if the node’s health deteriorates. How-
ever, the evaluation of their model excludes failures and only evaluates the efficiency of the live
migration technique. Bouguerra et al. [Boul3] use proactive checkpoints upon failure prediction
along with preventive checkpoints to reduce computation waste. They use FTI's [BG11] level 0
checkpointing strategy for proactive checkpoints and regular periodic checkpointing to PFS for pe-
riodic/preventive checkpoints. At level 0, checkpoint data of the failing node is stored on a neighbor
node. Our model, for both p-ckpt and safeguard checkpoint, mandates the checkpoint data of all
the nodes to be committed to PFS. Bouguerra et al. [Boul3]’s proactive checkpointing adds 2%-6%
overhead to checkpoint time, whereas the adaptive nature of our model limits p-ckpt’s overhead
to less than 1%. Further, hybrid p-ckpt reduces the checkpointing overhead by ~42%-70% due to
reduced failure rate and faster execution completion. Bouguerra et al. [Boul3]’s model relies on the
failed node to restart for recovery purposes, whereas our model utilizes reserved nodes. Bouguerra
et al. [Boul3]’s model achieves a 22% reduction in total overhead due to proactive checkpointing
compared to a ~53%-65% reduction with our hybrid p-ckpt model. Recomputation overhead re-

duction in Bouguerra et al. [Boul3]’s model is 17%, whereas our model’s impact on recomputation

30

X / / /S /S X X uondIpald SWI], peaaIned | ‘Iv jo vioyag
X X X X / X X A1[ed07 aInyre ‘1D 39 14pM1]

X / X X / Vs X UONDIPaId dWIL], pPeaT aInfIe | 7v 12 vilon3nog
X X X / X X X SuriotuoN yiresy ‘v 18 Suvp|

/ / / / Va X Va UonoIpald WL peaamred | 1dyo-d prqAy

EeAIIU] | UoMIIPaLd | [BPOIN | uoneiSip | yurodypay) | 1urodoay) | 1urodoayd SsouaIBMY [SPOIN
adpoudsy | MBI o/1Sdd| OAT JIpoldd | prenSayeg | paznuond sInpreq 4/D
pajeuIpioo)

uosiredurod ppour ¥/ S°Z dqeL

31

overhead is a ~56%-73% reduction. Tiwari et al. [Tiw14] increase the checkpoint interval until failure
and skip selected checkpoints post-failure using a temporal distribution of failures. Our C/R model’s
uniqueness comes from the use of failure prediction that selects the best mitigation action based
on lead time. Further, we developed p-ckpt that replaces proactive checkpoints and improves fault
tolerance for predictions with short lead time, even for large applications. Tiwari et al. [Tiw14]'’s eval-
uation platform is based on OLCF’s Titan while ours is on Summit. Their scheme reduces checkpoint
time up to 70%, ours by ~42%-70%. However, our checkpoint overhead accounts for the commits
to the BBs while theirs commits to the PFS. Further, their recomputation overhead offsets most
of the gains made with checkpoint overhead reductions. In contrast, our model provides more
overhead reductions with less recomputation. George et al. [Geo15] deploy partial replication of
process sets and predict failures to change the replicated process group. Garg et al. [Gar18] exploit
failure locality to schedule applications with higher checkpoint overhead during lower failure rates
and applications with lower checkpoint overhead during higher failure rates. In contrast, our model
relies on dynamically predicted failures. Behera et al. [Beh20] developed a C/R model with live
migration and assessed its benefit under failure prediction. However, their work could not handle
faults with low prediction time. Table 2.5 compares our C/R model with other C/R models and

illustrates the uniqueness and comprehensiveness of our approach in contrast to prior work.

2.9 Summary

We developed a multi-level C/R model that provides fault tolerance by orchestrating failure pre-
diction with proactive actions of coordinated prioritized checkpoints (p-ckpt) and live migration
via prioritization along critical failure paths, which results in reduced application overhead by
~53%-65% compared to a ~#31%-61% reduction by conventional LM-C/R.

Overall, proactive actions should resort to p-ckpt in an HPC system with short lead times and high
failure rates for short-running, large applications. In contrast, hybrid p-ckpt should be used for long-
running applications, irrespective of application size and system failure rate. Our hybrid p-ckpt’s
coordination of multiple fault tolerance techniques through failure prediction is unprecedented

while providing better tolerance against failures with short lead times.

32

CHAPTER

3

PREDICTIVE EXECUTION OF
WORKFLOWS IN A HPC+CLOUD
ENVIRONMENT

3.1 Introduction

Workflows represent a wide array of applications in data analysis, knowledge discovery, and complex
simulations in both Cloud and HPC environments [al.23; al.21b; Roy22a; Roy22b]. Cloud workflows
often handle big data in science and commerce (including many medical applications) while HPC
workflows tend to involve multi-science numerical problems spanning different abstraction levels or
are part of large device experiments, such as high-intensity lasers [She19; al.22a]. Many modern-day
scientific and big data workflows are also growing in scale, resource requirement diversity, and
complexity [al.18b].

Many studies have focused on scheduling workflows on the Cloud with deadline and cost con-
straints. However, data-intensive workflow execution on the Cloud incurs significant monetary cost.
To avoid such a cost, users schedule workflows on HPC systems in multiple ways. Typically, Workflow
Management Systems (WMS) split workflows into tasks and schedule them as individual jobs or

33

through executors that already run as jobs while satisfying dependency constraints [al.19; al.17].
However, HPC jobs are delayed when resources are not allocated immediately. Entire workflows
can be scheduled as a pilot job to reduce the wait times for individual tasks, but the larger resource
requirement delays execution startup. We can avoid the startup delay for pilot jobs by scheduling the
pilot job on a reservation with a special privilege, which needs to be approved by the system adminis-
trators and cannot meet the deadline constraint. Further, pilot jobs may cause resource wastage with
over-allocation. Recent works [al.22c; al.22b] in converged computing indicate a growing interest in
utilizing on-demand Cloud resources to address the ever-growing computation demand of HPC
workflows.

Cloud Bursting (CB) is a technique primarily used by private enterprises to scale up resources in
the Cloud on demand, in addition to their own permanent on-premises private Cloud [Guo14]. How-
ever, applying CB to workflow scheduling is different from the traditional CB for Cloud workloads.
Traditional CB usually relies on future workload prediction to allocate or scale additional resources
(bursting) on the Cloud for task offloading. However, this methodology has two drawbacks. First,
HPC system schedulers are complex and employ advanced strategies such as backfilling for better
resource utilization. Predicting workloads only characterizes users’ job submission behavior, not
a system'’s scheduling behavior. So task offloading to the Cloud — based on workload behavior —
may not utilize HPC resources optimally as it cannot estimate the resource availability (RA) on an
HPC system from batches of jobs submitted by users with inaccurately estimated job durations. CB
is dependent on workload behavior, such as spikes or drops in user requests, to perform bursting,
assuming dedicated and on-demand local resources, which are not guaranteed on HPC systems.
Second, because of the dynamic generation of input data for workflow tasks and on-the-fly offload-
ing tasks to the Cloud in CB, data needs to be migrated just before execution begins. The lack of
guidance (which and when) for offloading tasks to the Cloud prohibits data from being preloaded
before execution begins.

We contribute a novel combination of HPC and Cloud in a hybrid, orchestrated manner by
splitting computations across domains for a workflow to reduce delays resulting from on-the-fly
data movement. Specifically, we build an execution schedule for a workflow in a HPC+Cloud envi-
ronment by predicting the unused HPC resources complemented by the guaranteed on-demand
Cloud resources to meet the deadline. Concerted deterministic resource allocation and task as-
signment allow better utilization of unused HPC resources and preload the dynamically generated
intermediate input data on HPC and Cloud to avoid execution delays. Further, we use deterministic
resource allocation to compute Cloud cost by considering the required Cloud resources, storage,
and inter-domain data transfer.

We developed an adaptive resource allocation/scaling method to reserve resources both on

34

Cloud and HPC before executing a workflow per a schedule. This is accomplished by requesting the
determined number of resources on HPC and Cloud on an hourly basis, with a runtime limit of one
hour, thereby allowing the HPC system scheduler to allocate limited resources instantly, typically
for as many single-node requests as can be accommodated by the back-filling algorithm. These
underutilized resources may otherwise remain idle and are hence considered free in our model.
Without a bounded wait time for HPC resource allocation, we back up the requested HPC resources
with an equivalent redundant allocation on the Cloud to avoid execution delays. As the requested
HPC resources are allocated, the redundant backup Cloud instances are reduced (de-allocated). This
migration of computation from the Cloud back to HPC allows us to limit cost for Cloud resources to
a predictable level while satisfying deadline constraints.

In summary, we make the following contributions:

¢ We identify contemporary challenges of scheduling large-scale workflows exclusively on HPC
systems and analyze their root causes.

e We propose and develop a novel solution for scheduling large-scale workflows deterministically
in that both cost and deadline can have highly reliable guarantees that can be traded off. This is
accomplished by predicting RA of an HPC system, which facilitates the determination of resource
requirements split between HPC and Cloud for different deadlines and avoids execution delays due
to on-the-fly data movement.

o We developed an elastic resource allocation/scaling algorithm to scale up/down heterogeneous
resources on HPC and Cloud such that HPC resources are backed up by the Cloud to guarantee
deadlines while avoiding RA mispredictions.

o We evaluated our method by developing a simulator for HPC+Cloud hybrid execution. We first
validate our simulator by running a limited number of experiments in an HPC+Cloud setting to
assess its performance. We subsequently use the validated simulation as the cost of Cloud execution
in our runs would be prohibitive for the experiments we conduct. Our evaluation is based on factors
such as meeting deadlines, correct estimation of cost, cost savings, and impact on other production
jobs.

3.2 Background

To investigate the challenges and opportunities in scheduling large-scale workflows, we analyzed
production jobs submitted to the Lassen supercomputer [LLN24a].

Data Collection: Lassen, a Top500 [Top] supercomputer installed at Lawrence Livermore Na-
tional Laboratory (LLNL), comprises 795 compute nodes. Each node is equipped with an IBM Power9
CPU and four NVIDIA V100 GPUs. The job records from the IBM CSM database [al.20a] provide

35

o
S
S
S

4000

Wait Time (min)
[\
()
S
S
Wait Time (min)
)
S
S
S

1 8
S NSNS W N -
q a
SMALEDIUN ARGE DA SORT pptUM | GNGER
Job Types Job Types

(a) Wait time vs Job Size on Lassen (b) Wait time vs Job Run Time

Figure 3.1 Challenges with Large Job Scheduling

detailed information about the job lifecycle, resource utilization, performance statistics, and other
metrics. We used data from two years and two months [LLN24b], which includes production jobs
submitted by real users and subject to the primary allocation algorithm. The jobs are categorized
based on the requested number of nodes: small (1-7), medium (8-63), large (64-256), and DAT (256+).
Notably, Dedicated Access Time (DAT) jobs are exempt from the primary allocation. Instead, DAT
jobs are submitted with special privileges and are scheduled at a predetermined time.

To gain insights into the scheduling challenges, we examined the wait times for all job categories.
Figure 3.1aillustrates the distribution of wait times in minutes for jobs waiting to run. We focused on
jobs with wait times within three days and excluded those outside this range (only 2.2%) to improve
visibility of the plots. The data reveals that DAT jobs have the shortest wait times (quartiles Q1 and
Q3: 0-34) due to their privileged status. Small and medium jobs have wait time quartiles (Q1 and Q3):
0-171 and 0-158, respectively. In contrast, large jobs exhibit the longest wait times with quartiles
(Q1 and Q3): 0-411, primarily due to their increased node requirements and scheduling under the
primary allocation algorithm. Next, we categorized the jobs as SHORT (<2 hours), MEDIUM (2-6
hours), LONG (> 6 hours) according to their requested run-time limits and analyzed their wait times
as shown in Figure 3.1b. We observe that as the requested time limit increases, the wait times also
increase. SHORT and MEDIUM jobs have lower wait times quartiles (Q1 and Q3), i.e., 0-75 and 1-194
minutes, respectively, followed by LONG jobs with quartiles (Q1 and Q3) of 22-359 minutes.

These findings suggest that large jobs submitted without special privileges (non-DAT jobs) face
significant wait times. Large jobs, in terms of both run time limit and requested node size, experience

significantly higher wait times than other job categories. Our scheduling technique considers each

36

single node with a one-hour time limit so that jobs can maximize resource allocation on HPC while
offloading required execution to the Cloud. Further, the communication overhead between HPC
and Cloud systems can cause significant delays in application execution [Ben15]. We address these

challenges with our predictive and adaptive execution framework as described next.

3.3 System Design

3.3.1 Execution Model

In our execution model, the workflow tasks are processed on the executors launched by a WMS
or workflow scheduler. Each executor runs on an allocated HPC or Cloud resource and executes
tasks sequentially from an assigned stage in the workflow. Executors are limited to a one-hour
time limit, as jobs with a small runtime limit are more likely to be allocated faster, as shown in
Section 3.2. Before running out of their allocated hour, HPC executors checkpoint their task, where
the checkpoint size is assumed to be equal to the input data size. In contrast, Cloud executors exit
after completion of their current task, even after the one-hour time limit expires. We maintain two
mutually exclusive queues per stage in the workflow: one for HPC and one for the Cloud. The Cloud
and HPC executors pull a task for execution from its assigned stage’s respective queue along with
the required input data location. If the input does not exist in the same domain (HPC or Cloud),
it copies the data before executing. An input data is kept alive on any domain until all the tasks
dependent on the data complete execution. Shared filesystems on both HPC and the Cloud are used
to store the intermediate output files, whereas the final output is stored on the HPC filesystem.

The WMS runs on a reserved node of the HPC system, where we store runtime information
such as task queues, resource allocation details, and the storage location of the task’s outputs. This
information facilitates resource allocation/de-allocation and input data transfer between HPC and
the Cloud.

3.3.2 Design

Figure 3.2 depicts an overview of the design and identifies the different modules of our scheduling
framework and their relationship. Our framework consists of two phases, namely workflow schedule
construction (green) and workflow execution (blue). To build a workflow schedule, our system
needs the workflow’s execution profile and future RA prediction. We assume that the execution
profile is unknown to the user before scheduling. Hence, our framework runs a small-scale dynamic
performance benchmark (DPB) for all the stages in the workflow on the platforms resident on
HPC and Cloud. Next, we predict RA on the HPC system for a deadline using our developed RA

37

Dynamic Performance

HPC Queue State
Benchmark
i Resource Availability (RA) i
Resource Workflow
Availability —»{X1, X2.....Xn]—> Schedule Builder
Predictor (RAP) (WSB)
Schedule List
Adaptive
Resource Scaler
Resource

(ARS)

Request

Resource
Resource \ Allocation = Cloud
Allocation
Backup HP
Resource
HPC Release E

Pull Model-based
Task Scheduling Cloud

Parsl + Flux
Data Transfer

Figure 3.2 Overall System Design

predictor (RAP) and feed it to the schedule builder (WSB) along with the DPB. The WSB calculates
the additional Cloud resource requirements for each given RA to complete the execution before
a given deadline. We also calculate the associated Cloud cost with each deadline replayed to the
user as information to assist in the tradeoff between deadline and cost. Once the user selects an
execution schedule, execution begins. Our Adaptive Resource Scale (ARS) allocates resources per
the split between HPC and Cloud in the schedule on an hourly basis.

Our framework is built using Parsl [al.19] and Flux [al.18a] for resource allocation and commu-
nication. The Parsl library supports parallelization of Python and Bash functions with multiple
execution models across various platforms, such as an HPC system, Cloud, and a local computer.
We use Parsl to launch task executors on both HPC and Cloud. Flux is a workload and job manage-
ment system that can be nested within another system scheduler or itself at multiple levels while
providing various communication patterns among the instances of Flux. Our scheduler and the
task executors use Flux capabilities to exchange scheduling information and relevant notifications.
Next, we describe various components of our framework and their methodology in detail.

Resource Availability Predictor (RAP): The RAP is an integral part of our scheduling technique.
The RAP takes the HPC system’s job history as input and applies Machine Learning (ML) techniques

38

to predict future RA. The output of the RAP is a vector, X, where each element x; represents the
minimum number of unused/free nodes during the i*” hour. End-to-end training and the prediction
procedure are described in Section 3.4.

Dynamic Performance Benchmark (DPB): To estimate the resource allocation split between
HPC and Cloud for a workflow, the WSB needs to know the comparative performance of each
stage on multiple platforms of HPC and Cloud. The DPB provides the required performance model
along with a stage’s input/output size. It is constructed by dynamically running and recording
the performance benchmark for all stages of the workflow on all platforms (including HPC and
Cloud) before completion of either one hour of runtime or 5% of total tasks. Since HPC nodes may
not be immediately available, we continue building the pending HPC benchmarks. However, we
assume a default five-minute execution time for the missing benchmarks in the DPB for the initial
schedule construction and cost estimation. Once HPC nodes are allocated and their performance
benchmarks are constructed, they are integrated into the DPB. We then update workflow schedules
dynamically as discussed later. Since building such a multi-faceted DPB is expensive, we execute
these runs on HPC platform resources [AWS24] listed in Table 3.1. We assume that these are part of
the Cloud along with associated costs.

Cloud Cost Model (CCM): The CCM represents the hourly cost of using on-demand platforms
from a Cloud provider. We use multiple platforms, as shown in Table 3.1 to build the multi-faceted
DPB. Each platform has an associated per-hour cost for running workloads on it. Usually, GPU
platforms have higher per-hour reservation costs compared to CPU-only platforms. The CCM is
static and does not change over time as we use on-demand Cloud resources.

Table 3.1 Cloud Cost Model

HPC AWS Cost
Platform Platform | ($/hr) | Compute
Epyc Rome cba.4xlarge | 0.616 CPU
Intel Skylake c4.4xlarge | 0.796 CPU

Intel Broadwell cSn.4xlarge | 0.864 CPU
Nvidia RTX 2060 Super | g4ad.4xlarge | 0.867 GPU
Nvidia RTX 4060 til6g | g3.4xlarge | 1.14 | GPU
Nvidia RTX 4060 ti8g | gb.xlarge | 1.006 GPU

Building Workflow Schedule: Given the RA, CCM, and DPB, the WSB utilizes the following steps

39

to build a schedule to meet the required deadline with a targeted task size. The output schedule
contains hourly information about how many resources are required to run the executors on HPC
and Cloud to meet the deadline.

In our execution model, each stage is executed as a bag-of-tasks with input data dependency
between stages. This results in a pipeline execution as seen in Figure 3.3, where a stage’s execution
is comprised of slots from start to end. Stages with parents face a delay in execution start because of
dependencies, e.g., stage j in Figure 3.3. We apply depth-first search to find such delays to decide
the start time for each stage. Further, there are infeasible slots of parent stages whose output tasks
cannot be processed by their children due to alack of available slots before the deadline, as shown for

stage i. We remove such infeasible slots to determine the end times of each stage and the deadlines.

Stage i
deadline

< 3
< >

Execution { Infeasible
Slot ‘ Stage i — Execution
| : Slot
+ Startup l Stage j { J

delay

Start End

) Stage j
deadline

Figure 3.3 Pipelined execution of the stages in workflow

After deducing the start and end times, the next stage of schedule building is to allocate resources
with constraints in Eq. 3.1 and Eq. 3.2. Eq. 3.1 states that the sum of hourly throughput, T P(p);, for
each stage, p, in the workflow is greater than or equal to the task size to ensure all tasks are executed
before the deadline D. This is complemented by Eq. 3.2, which ensure that two stages p and g with
data dependency have almost equal hourly throughput so that the task pipeline of the workflow

never remains empty to avoid resource idleness.

D
VpeW, > TP(p)i2N (3.1)
i=1

VpeW,VqgeParent(p), TP(p);~TP(q);
forie{l,...,D}

(3.2)

To build the schedule for the entire workflow, we start with the stage with the highest Cloud

40

cost per Eq. (3.3) to reduce allocation cost by preferring HPC resources. Cloud cost is derived from
the sum of storage, data transfer cost, and the minimum execution cost on all the selected Cloud
platforms, given by set R for stage p per Eq. 3.3.

storage_cost(p)+xfe r_cost(p)+\rjnir}%exec_cost(p) (3.3)
re

We start with the allocation of HPC throughput (number of slots available times number of nodes
available) on an hourly basis in proportion to nodes in the predicted RA. Let T PZ.H PC be the HPC
throughput during the i*” hour and TPH”C be the total throughput available for the costliest stage.
We calculate the hourly throughput target on HPC using Eq. 3.4, where T is the total number of tasks.
If we cannot execute all T tasks solely on HPC, then tasks need to be offloaded to the Cloud. In that
case, we distribute the Cloud throughput (i.e., the remaining tasks beyond the HPC target) among
the hours where the allocated HPC throughput is under-allocated due to a lack of HPC resource
availability. This is driven by our aim to have a balanced throughput during the execution. We skip
the details of the Cloud target distribution for brevity. After the HPC and Cloud throughput targets
are decided, the required amount of resources on HPC and Cloud can be calculated by dividing the
throughput target TPl.H PC by the number of available execution slots during the hour. Specifically,
for Cloud, we choose the most cost-efficient resource from the DPB.

Target/""“ =min(T x TP"¢ + TPHPC TPHPC) (3.4)

Next, we allocate the targets for the other stages by traversing from the costliest stage and
applying the conditions shown in Figure 3.4. Here, we calculate the throughput targets at the slot
level for the immediate parents and children. In scenario A, a parent stage’s execution slot is longer
than that of its child. The tasks produced by a parent’s slot should be processed next in the child’s
slots, which start executing during the parent’s following slot (color-coded). In scenario B, the parent
stage’s execution slot is smaller than the child’s. In this case, the child’s slots should process all the

tasks produced by the parent’s slots that start during the child’s previous slot.

Parent Stage
Child Stage

Scenario A Scenario B

Figure 3.4 Execution slots and Throughput allocation

41

We calculate the hourly throughput by accumulating the throughput from the slots. Based on
the hourly targets, we calculate the required allocation from HPC, if available, and Cloud. The final
step is to combine HPC and Cloud allocations to form the workflow schedule. This method produces
one schedule given the start time and deadline for a workflow.

Cost Estimation: After constructing a schedule, we estimate the cost of workflow execution by
considering Cloud resource reservations in the schedule, deriving the Cloud filesystem operations,
and data transfers between HPC and Cloud. Since HPC execution utilizes only otherwise unused
single nodes via backfilling, its cost is considered free. The Cloud resource reservation cost is the
sum of hourly costs of allocation for all stages in the workflow over the schedule, given the CCM.
Further, we compute the amount of data read and written for the Cloud filesystem due to task
execution. To estimate the data transfers and the associated filesystem operations, we compute
the difference in Cloud throughput and HPC throughput between a stage and its parents. This
gives us the direction and amount of data movement per stage. These calculations are done on an
hourly basis and aggregated to be fed into the CCM model to get a dollar cost quote. The resource
reservation and filesystem costs are modeled based on Amazon EC2 platforms and Amazon’s EFS,
respectively. We only account for Cloud to HPC data movement cost since data movement into the
AWS cloud is free.

3.3.3 Data Preloading Strategy

Our splitting of workflow between HPC and Cloud may result in delayed execution of tasks when
large input data does not reside in the same domain. This results in delayed workflow execution
and increased cost because of resource idleness. As a mitigation, we built an adaptive preloading
strategy to place input data near the targeted computation. To this end, we create the task-to-
domain mapping as soon as a task spawns a stage in the workflow. The task-to-domain mapping
indicates whether a task executes on Cloud or HPC. We rely on the domain’s task load, i.e., task queue
size/number of executors, for a stage to determine the mapping. If the load is less than 1, we map
the task to the corresponding domain. To break ties, we prioritize Cloud to reduce resource idleness
cost and data movement latency, both contributing to execution time savings. After the mapping,
we copy the relevant input data to Cloud or HPC asynchronously without affecting computation.
To facilitate this, we maintain two separate task queues, each for HPC and Cloud per stage in the
workflow. Although the task-to-domain mapping dictates task enqueuing, our strategy is not strict
with respect to the mapping. Idle resources can still execute tasks from the other domain’s queue

when that domain’s load exceeds 1.

42

3.3.4 Adaptive Resource Scaler (ARS)

The second phase of workflow execution relies on the ARS to make adaptive and elastic resource
requests for both HPC and Cloud per the workflow schedule selected by the user. The scaling
mechanism of ARS executes at two different configurable intervals: long and short.

ARS atlong intervals: ARS requests for resources on HPC and Cloud with a reservation time limit
that is equal to this longer ARS interval based on the schedule constructed using the RA prediction.
When a misprediction occurs, e.g., when over-estimating the available HPC resources, we may miss
the deadline due to a lack of resources. Further, an imbalance in resource allocation for workflow
stages can lead to resource wastage. When HPC resources are requested, there is no guarantee that
they are allocated immediately, unlike Cloud resources with modeled availability at a ~ two-minute
delay [Mao12]. HPC resources are released automatically, whereas Cloud resources require manual
termination.

ARS at short intervals: To avoid computation shortage from RA misprediction and delayed HPC
allocation, we request additional Cloud allocations on top of the scheduled ones. These excess
Cloud allocations mirror the scheduled HPC allocations at the longer intervals in the schedule. This
allows us to begin the execution of the stages without waiting for HPC resource requests to be met
and allocated. This also addresses the issue of mispredictions that overestimate the available HPC
resources. After scheduled requests are made at longer intervals, ARS executes at short intervals (five
minutes by default) to continuously check if HPC resource requests are allocated. As the requested
HPC allocations are granted, an equivalent amount of additional Cloud resources is released as they
are no longer needed during the remainder of the long interval. This incurs additional up-front
Cloud reservation costs for backing up the HPC allocations in a schedule, yet only for a short time if
HPC resources are granted; any remaining Cloud resources contribute to workflow allocation. This
up-front Cloud cost is subject to evaluation in our study.

Rebalancing Resource Allocation: We also adapt our allocation strategy at long intervals by
rebalancing the resource allocation based on the deficit (if any) on achieved throughput in the
past. We keep track of the targeted throughput and the achieved throughput on an hourly basis and
over-allocate Cloud resources as required.

3.4 Resource Availability Predictor (RAP)

The RAP is the key component that enables elastic workflow scheduling on HPC systems. By pre-
dicting resource availability, RAP constructs a schedule for a given workflow, providing informed

decision-making capabilities regarding resource allocation and estimating the cost of execution. We

43

describe the end-to-end build procedure of RAP on the Lassen HPC system, using data collected in
Section 3.2.

3.4.1 Feature Data Set

HPC systems typically distinguish between two primary job classes for scheduling: wait and run.
When a job is submitted, it first enters the wait queue. Once deemed ready to run, the scheduler
removes the job from the wait queue, enqueues it in the run queue, and starts executing it. The wait
queue tracks a job’s requested number of nodes, submission time, and requested hours of runtime.
Similarly, the run queue tracks a job’s allocated number of nodes, execution start time, and time left
to completion. The information in the run queue indicates the current number of nodes running
and those expected to be released soon. Conversely, the wait queue reveals the current and future
demand for nodes. By combining data from both queues, we can predict resource availability on an
HPC system.

We record states of the run and wait queues instead of their complete snapshots, as this was
sufficient in our experiments to make predictions. The captured state of the run queue represents
the number of busy nodes expected to be available in the future. We use a one-dimensional vector
data structure to represent this information up to 64 hours, with a maximum limit based on the fact
that this is the maximum number of hours of any job requested in the data logs collected from the
CSM database (likely also the upper bound per system configuration). The state of the wait queue
represents the number of requested nodes for different hours of runtime. Given a maximum of 64
hours, we represent the state of the wait queue as a one-dimensional vector of length 64.

Example: Consider three jobs waiting in the Wait queue with a descriptor of (jobid, no. of nodes
requested, no. of hours requested):

(job4, 3, 1), (jobs, 5, 5), (job6, 10, 2).

Given these jobs, the wait queue state will be [3,10,0,0,5]. Similarly, consider three jobs in
the run queue with a description (jobid, no. of nodes requested, no. of hours remaining):

(jobl, 3, 2), (job2, 5, 1), (job3, 10, 5).

Given these jobs, the run queue state will be [5,8,8,8, 18] with vector size 64.

The job submission and scheduling on Lassen is managed by IBM’s LSF [IBM24] workload
manager. LSF employs multiple scheduling policies, such as FCFS, Fair Scheduling, Backfill, SLA,
and preemption, to efficiently accommodate users’ resource requests. The Lassen supercomputer
employs fair share-based scheduling that requires user information and their past usage. Since
user information is unavailable, we assume that FCFS (primary) + Backfill (secondary) scheduling

policies are applied to the jobs submitted. We simulate the production jobs history on our HPC

44

simulator (see Section 3.5.1) and collect the feature data representing the temporal state of the wait
and run queues. We also use the day of the week and the hour of the day as feature variables during
ML training and prediction. Finally, we apply sampling to the collected feature data set with 30 and

60-minute frequencies.

3.4.2 Training and Results

To predict RA, we apply both time series and regression-based ML techniques to train our prediction
models. Specifically, for time series-based ML, we use the Recurrent Neural Network (RNN)-based
Long Short-Term Memory (LSTM) method [Yu19]. With LSTM, an input sample is comprised of the
history (input steps) of states within the run and wait queues, including the day of the week and the
hour of the day. The output indicates RA for up to 24 hours (output steps). Further, we use different
combinations in a tuple consisting of (resample frequency, training loss function, and optimizer)

during training as shown in Table 3.2.

Table 3.2 LSTM Training Parameters

Parameter Values
Input Steps (6, 12, 18, 24]
Output Steps (6, 12, 18, 24]
Resample Frequency [30, 60] (minutes)
Loss Function [MAPE, RMSE, RMSLE, HUBER]
Optimizer [SGD, ADAM]

We also trained ensembles of Decision Trees (DT) using Gradient Boosting via the XGBOOST
library [Dev24]. XGBOOST parallelizes Gradient Boosting to train ensembles of DTs to improve
performance while scaling. To train the DTs, we first transform the time series input samples into
regression data. We do this by considering a snapshot of the run and wait queue states as an input
sample and RA as an output sample (up to 24 hours). For DTs, we use combinations of output steps,
resample frequencies, and loss functions (without MAPE) from Table 3.2 as training parameters.

To verify the prediction accuracy and compare the ML models, we use Mean Absolute Error
(MAE) as a metric during validation. We consult Lassen’s records of jobs from September 18, 2018,
at 12 PM to November 18, 2020, at 11 AM. We use the records until May 18, 2020, 12 AM (18 months)
for training of the models. The records from May 18, 2020, 12 AM until October 18, 2020, at 12 AM (5

45

months) are used for testing, resulting in an 80%/20% split between training and testing data. We
observed that the MAE for LSTM (73.49-92.20) is higher than for DT (51.61-75.07) with the Huber
loss function and a 60-minute resample frequency. Consequently, we choose DTs trained with Huber
as the RA predictor for simulation/validation of our scheduling technique. We re-train the DTs by
concatenating the training and testing data to improve accuracy. We reserve the unseen records
from October 18, 2020, at 12 AM until November 18, 2020, at 11 AM (1 month) for simulation in
Section 3.5.

3.5 Evaluation

3.5.1 HPC+CLOUD Simulator

To evaluate our solution, we developed a simulation framework utilizing Python-based SimPy [Tea20],
a process-based discrete event simulation library. Given the prohibitive cost of conducting extensive
experiments on commercial Cloud resources, we opted for simulation as an alternative. In this
framework, we simulate an HPC system with wait and run queue managed by the FCFS+Backfill
scheduling policy. Further, the task executors (both HPC and Cloud) are simulated using SimPy event
generator functions, which pull tasks from the task queue and simulate the times of (a) execution
derived from the DPB, (b) reading input files, and (c) writing output files. The scheduling algorithm
on our simulator creates resource requests to the HPC scheduler for HPC executors and directly
creates Cloud executors to simulate the execution of a workflow.

AWS Cloud Validation: We validated our simulator by running the OAI Analysis workflow (see
Section 3.5) with our Flux+Parsl scheduling framework on an 80-node HPC cluster and AWS cloud.
We ran the workflow with static resource allocations on the HPC cluster and AWS cloud with input
data preloading support (see Section 3.3.2). We utilized GPUs on the HPC system (NVIDIA RTX 2060
Super) and CPUs on AWS EC2 (c4.large and c4.xlarge). We fed the traces from the execution to our
simulator to run the workflow. Figure 3.5a shows the execution times (y-axis) of the workflow on
the HPC-AWS Cloud hybrid platform and our simulator for task sizes ranging between 50 and 150
(x-axis), with annotations indicating the percentage difference between the two. The results show
that our HPC+Cloud simulator resembles the workflow execution on the HPC-AWS cloud system

with good accuracy.

3.5.2 Results

Experiments are conducted to simulate the HPC+Cloud hybrid execution of two real-world scientific
workflows, OAI analysis and RNASEQ, on Lassen backed up by Amazon AWS cloud. We evaluate

46

multiple scheduling algorithms, including ours:

¢ Pred+Adap: Ournew scheduling technique.

* Bicer:[Bic12] This technique dynamically allocates resources on the public Cloud and HPC by
considering unprocessed tasks, data transfer latency, and available HPC nodes. Bicer [Bic12]
developed two algorithms to complete bag-of-task applications either within a given deadline
or a budget constraint. We implemented the algorithm for a given deadline. Bicer requests

HPC nodes with runtime limit equal to the remaining of the deadline.

e Parsl-HPC: [al.19] We also compare it to an HPC-only solution based on Parsl’s execution
model. In this technique, we request a node for one hour runtime limit and assign the node,

when allocated, to an incomplete stage following a topologically sorted order.

OAI Analysis: The Osteoarthritis Initiative (OAI) collected large-scale imaging data to investigate
knee osteoarthritis. We build on developed analysis workflows [She19; al.22a] for the analysis of 3D
magnetic resonance images (MRIs) of the knee, which include imaging data such as segmentation,
thickness measurement, atlas-registration, and 3D to 2D mapping of thickness maps, all based on
the knee MRIs. An input image needs to be processed by all the stages in the workflow, creating a
task per stage. Figure 3.5b shows the DAG (Direct Acyclic Graph) of the workflow along with the
data dependencies among its nodes, and different stages require either CPU or GPU resources for
computation. The blue stages run on CPUs while green ones execute on GPUs.

RNASEQ: RNASEQ is an RNA sequence analysis pipeline [al.20b]. We use data from the bladder
cancer cells study as input [al.21a]. The workflow contains a total of 12 stages, each of which is
executed on a CPU. RNASEQ is larger compared to OAI in terms of the number of stages and
input/output data size.

Both workflows need significant data transfer, with some stages needing input data of size 240
MB and 14.5GB for OAI Analysis and RNASEQ, respectively. The data preloading technique and
dynamic task assignment work together to minimize the impact of data transfer delays.

To simulate workflow execution, we first collected the execution traces on different platforms
(see Table 3.1). On each platform, we process 200 images for OAI Analysis and 100 images for
RNASEQ, and record the execution times of tasks per stage. We use this execution time distribution
to resemble task execution during simulation. Further, we build multiple test cases with different
combinations of the number of tasks, deadlines, and workflow execution start time (see Table 3.3).
For HPC system simulation, we used job records from October 18, 2020, at 12 AM till November
18, 2020, at 11 AM (one month). Since our analysis is based on the distribution of results data, we

primarily use quartiles (Q1,Q3) to describe the quantitative results unless mentioned otherwise.

47

2.7%

? 41 I Real

é’ ! Simulation

2 31 0.7% segmentation

£

&= extract surface

= 21 preprocess GPU)
2 % stage mesh

= 3.8% \\\7 g CPU 7//

811 stage

=

m

0- register image
50 100 150 B o B ———>{ warp mesh
Task Size

(a) AWS Cloud Validation (b) OAI Analysis Workflow

Figure 3.5 Validation and OAI Analysis Workflow

Table 3.3 Test Cases

Workflow Input Sizes | Deadlines (hour) | #testcases
OAI Analysis | 12,000-96,000 6,12,18, 24 1,000
RANSEQ 1,000-8,000 6,12, 18,24 1,000

Observation 1: Our scheduling technique’s ability to accurately predict RA and make adaptive
resource allocation via backing up HPC allocation on Cloud achieves a high task completion rate
for a given deadline.

To assess the efficiency of our scheduling technique, we compared the task completion rates of
workflow runs. Figure 3.6 depicts boxplots of completion rates in percentage of total number of tasks
(y-axis) for all workflow runs over the different scheduling techniques for the stages (x-axis) in the
workflow. We observe that our scheduling strategy Pred+Adap achieves the highest completion rate
0f (97.79%,99.99%) and (94.44%,99.99%) for OAl and RNASEQ), respectively. Our RA prediction-based
scheduling strategy not only estimates the HPC+Cloud resource requirement via RA prediction, but
also handles uncertain delays in resource allocation for HPC with temporary redundant resources
on Cloud, which results in a high rate of task completion for the entire workflow, with a few outliers.
Parsl-HPC'’s scheduling strategy has the lowest completion rate (0%,100%) and (0%,0%) for OAI and
RNASEQ), respectively, due to a lack of HPC resource availability. Further, Bicer’s scheduling strategy
also exhibits a lower completion rate of (72.1%,93.6%) and (36.01%, 77.77%) for OAI and RNASEQ,
respectively. As Bicer requests longer HPC jobs and lacks the knowledge of the uncertainty of HPC
allocation, it results in lower HPC throughput than required. Further, we avoid resource idleness

48

I Pred+Adap [Pars] EEE Bicer I PredtAdap [Parsl BB Bicer

1001 & ¢

90‘ o Ag o o

801 p o 8 8
701 °) °

50 o o
40+ ° °
301

201 o
101

pre* regiéter* seg* extract* warp* 1 23 45 6 7 8
Pipelinestages Pipelinestages
(a) OAI Analysis (b) RNASEQ

Completion Rate (%)
D
S
Completion Rate (%)
D
S

O OO0 ®

—
—
—

Figure 3.6 Task Completion Rate

with our data preloading and resource allocation rebalancing strategies.

To better understand the importance of resource allocation strategy driven by RA prediction,
we analyzed the tasks processed by HPC, Cloud, and Backup HPC allocation. Figure 3.7 shows the
average percentage of total tasks (y-axis) completed by different resource groups in the applied
scheduling techniques for all the stages (x-axis) of a workflow. Bicer’s model can allocate the required
HPC resources to execute the tasks for the initial stages of both workflows, OAI Analysis (first) and
RNASEQ (first three). However, for the later stages, Bicer’s model cannot obtain the necessary
HPC resources, which leads to lower throughput by Cloud resources due to idleness. The incorrect
assumption made by Bicer’s model that the required resources are always available means it cannot
allocate enough HPC resources for all the stages in the workflow. Our Pred+Adap model’s ability to
predict RA yields better HPC resource allocation and adapts well with backup HPC resources.

Observation 2: Estimating RA accurately and backing up HPC resource requirements via Cloud
reservations minimizes the impact on the schedule of HPC production jobs.

To measure the impact of our RA prediction-based hybrid scheduling on production jobs (jobs
other than our backfilled workflow), we assess the change in wait times of the production jobs that
were submitted by other users on Lassen during the execution of our workflow. Figure 3.8 shows the
delays in hours (y-axis) experienced before starting production jobs over different job groups (x-axis)
over all 1000 workflow runs for all the scheduling strategies. A positive value means a production
job was delayed because of resource usage by our workflow. Conversely, a negative value indicates
an earlier start of a production job.

We observe that our scheduling technique Pred+Adap imposes small delays of (0, 0.12) hours in

49

BN Pred+Adap F@Z® Bicer B Pred+Adap #@Z® Bicer

—_ N HPC W Cloud W Backup —_ N HPC W Cloud W Backup
£ 100 £ 100-
T 90 T 90
= 801 = 801
£ 70/ £ 70/
© 601 © 601
E 50 g 50
= 401 = 401
8 301 8 301
= 201 = 201

101 101

pre* register* seg* extract®* warp* 4 5 6 7 8 9 10 11 12
pipelinestage pipelinestage

(a) OAI Analysis (b) RNASEQ

Figure 3.7 Percentage of tasks completed by resources

most cases on production jobs across all job groups. However, Bicer affects the production HPC
jobs by causing a larger delay of (.23, 0.99) hours for all jobs, as it does not limit the number of HPC
resources due to alack of RA prediction. Parsl-HPC'’s delay impact on production jobsis a little higher
than Pred+Adap with (.08, 0.40) hours. This impact is lower than that of Bicer as we request an HPC
resource only after the previous request is complete, resulting in shorter wait queues. In contrast,
Bicer’s requests for resources with maximum runtime limit (up to the deadline), while we benefit
from our one-hour runtime limit for both Pred+Adap and Parsl-HPC. We also observe that the delay
in start times increases with the node size of production jobs for all the scheduling techniques.
This is because larger jobs like DAT and LARGE are more sensitive to the FCES + backfilling HPC
scheduling strategy.

Observation 3: We provide cost predictions of workflow execution in the HPC+Cloud hybrid
environment with a mean underestimation of 14.75% and 7.11% for OAI and RNASEQ), respectively.

To measure the accuracy of our cost estimator, we measured the percentage difference between
predicted and actual costs relative to (divided by) actual cost for all workflow runs. A positive value
indicates cost underestimation. In contrast, a negative value indicates cost overestimation. Figure 3.9
shows the distribution of cost error in percentage (y-axis) for all workflow runs. Figure 3.9a provides
the cost estimation error with respect to the workflow deadline. Figure 3.9b depicts results for the
underestimated cost relative to input size. We removed 45 outliers out of 2000 data points for better
visibility of the data.

50

10 NN SMALL B LARGE 101 BN SMALL [LARGE
0 MEDIUM BB DAT ° I MEDIUM HEE DAT o
~ ° o V 8 ~ o (o] ©
g 5 ° 8 E | 8 E °
) 8 g > o o
5 o) 2 5 o 8]
> 9 8 > o o
< <
—_— 0 —_—
2 % % % s |2 o -
8 8 8 ° 8
[e]
=5 . 8
[e] _5_ [} [e]
Pred+Adap Parsl Bicer Pred+Adap Parsl Bicer
Policy Policy
(a) OAI Analysis (b) RNASEQ

Figure 3.8 Delay of Production Jobs

Our cost predictor results in errors that most commonly lie between (-7.95%, 38.47%). However,
we observe a cost estimation error of (-6.69%, 44.21%) for RNASEQ compared to OATI’s (-8.22%,
30.38%). Cost underestimation primarily happens because we do not account for the backup HPC
resource allocations on the Cloud. In contrast, cost overestimation is primarily due to overestimating
the Cloud allocation cost that results from an incomplete DPB. For a larger workflow, its DPB
construction may remain incomplete for the stages with a longer execution start. As we assume
a five-minute default execution time for the missing stages (mostly with less than 5 minutes of
execution times) in DPB, we may end up overestimating the cost.

Figure 3.9a shows that the cost estimation error (y-axis) distribution for the OAI Analysis workflow
remains steady as the deadlines become longer (x-axis). However, for RNASEQ, cost overestimation
grows with the deadline. Larger HPC usage due to longer deadlines can also result in cost overestima-
tion when the DPB for the HPC resources is incomplete and Cloud allocation cost is overestimated,
as it happens for RNASEQ. Figure 3.9b indicates that cost estimation error (y-axis) decreases as
input task size increases (x-axis). This is due to the cost of backup HPC resources that we do not
include in our predicted cost. For smaller input task sizes, the predicted dollar cost is so small that it
is often close to the cost of backing up HPC resources on the Cloud (i.e., approaching 100%), which
can be further amplified by data movement cost during execution.

Observation 4: Pred+Adap’s scheduling approach in an HPC+Cloud hybrid environment yields
significant cost savings.

To assess the dollar-cost benefits of our proposed scheduling technique, we compared the cost
of executing a workflow run completely on the Cloud against our Pred+Adap but exclude Parsl-HPC

51

—
(=3
(=)

e BLIET

Cost Estimation Error (%)
Cost Estimation Error (%)

~100- -100
o [o]
200 mmm oAl Analysis [RNASEQ © 2001 mmm oAl Analysis [RNASEQ
6 12 13 24 Ix 2x 4x 6x 8x
Deadline (hours) Input Tasks Size
(a) Over Deadline (b) Over Tasks Size

Figure 3.9 Difference between Predicted and Actual Costs

since it executes only on HPC. Figure 3.10 shows the distribution of cost savings in dollars (y-axis)
for all workflow runs for different deadlines. A positive value suggests a lower cost for a scheduling
technique compared to Cloud-only scheduling; conversely, a negative value implies a higher cost. As
can be seen, Pred+Adap yields better cost savings with a mean savings of 23.96% and 28.59% for OAI
and NASEQ, respectively, compared to Bicer’s 16.82% and 26.5% for OAI and RNASEQ), respectively.
The higher savings for Pred+Adap culminate from better usage of HPC resources than Bicer. Our
scheduling technique predicts RA to better understand how much Cloud resources will be required
and also addresses the uncertainty in HPC resource allocation with backup resources on Cloud.
Further, we observe that savings increase with longer deadlines as a larger number of unused HPC
nodes (void of dollar cost) is allocated. Overall, from Observations 3 and 4, we deduce that the higher
RA of HPC can yield better cost savings, but can also result in a higher cost overestimation error.

Observation 5: Accurate RA prediction leads to lower cost of backing up HPC resources via the
Cloud.

We back up requested HPC resources via Cloud reservations (see Section 3.3.2) to avoid RA
mispredictions, which may delay workflow execution. To measure the accuracy of our RA prediction,
we calculated the reservation cost of the additional Cloud resources due to backing up delayed
HPC resources. Figure 3.11 shows this backup cost (y-axis) as a percentage of the total Cloud cost.
Figure 3.11a depicts this cost for different deadlines (x-axis) while Figure 3.11b plots the cost over
different input task sizes (x-axis). We observe that the additional backup cost is only ~0-4% and ~0-
14% for 75% of the workflow runs for OAI and RNASEQ), respectively. The overall average additional

backup cost is ~#10.5%. This suggests that our HPC resource requests are immediately satisfied

52

5000]
: — s 150001 — ¢ -
4000 ° /| 12 2 10000 /12 o
= g 8§ ® mm 3 |Z 3 o g o
23000 o 8 ——R- - 24 :
z o, 8 8 s |2 50001
»» 20001 © g n
S 1000- ; S 0
g o
0 —50001 ° o
Pred+'Adap Bicer PredJr'Adap Bicer
Policy Policy
(a) OAI Analysis (b) RNASEQ

Figure 3.10 Cost Savings

thanks to accurate RA predictions and the lower runtime limit of one hour, which contributes to
a better utilization of the backfilling capacity for the HPC scheduler. Considering this accuracy,
combined with the minimal impact our scavenging method has on production HPC jobs, our RAP

predictor and adaptive scheduler can be deemed highly effective in executing large-scale workflows

in an HPC+Cloud hybrid manner without perturbing normal HPC operations.

We further observe that larger deadlines lead to small increases in backup cost (see Figure 3.11a).
This is due to increased HPC resource usage with longer execution times. The results further indicate
that backup cost decreases as the input size grows (Figure 3.11b). This is due to the increment in

Cloud resource requirements as task sizes become larger, leading to a lower HPC-to-Cloud resource

usage ratio.

Table 3.4 Task completion rates (Q1, Q3) without Data Preloading, Rebalancing and Backup HPC

Model OAI Analysis RNASEQ
Full Model (97.79%, 99.99%) | (94.44%, 99.99%)
w/o Data Preloading | (93.27%, 99.97%) | (85.17%, 99.28%)
w/o Rebalancing (89.11%, 97.15%) | (84.11%, 97.3%)
w/o Backup (97.18%, 99.99%) | (91.32%, 99.9%)

Observation 6: The importance of techniques such as data preloading, backing up HPC, and

53

—~ I RNASEQ [EEE OAI Analysis ° —~ 8 o HEE RNASEQ [EEE OAI Analysis
< 80- . 8 5 o g 8 |Zsf® § B o
2 8 g 0 s @ 8 § e o o
S o © ° é 8 E S 8 § ° o
Yeo{ o ° ° o 8 | ©eof N o
O o g o 8 ®) 8 [e] o
o 6 e 8 9] ° 3 o
=y 8 g e =y 8 ° ° o
.40 o .40 8 o
= ° 8 § 9 § =) 8 °
SN I B - 2 : g2 8
£ 20 g £ 20 e 8 0
g g g :
as) as)
0 ‘ : .) 0 : : ,) :
6 12 18 24 1x 2x 4x 6x 8x
Deadline (hours) Input Tasks Size
(a) Backup Cost in % over Deadline Length (b) Backup Cost in % over Tasks Sizes

Figure 3.11 Cost of Backing up HPC in the Cloud

rebalancing resource allocation increases as workflow size grows.

Although our scheduling approach is primarily based on RA prediction, it is supported by
multiple techniques, including data preloading, backing up of HPC resources, and rebalancing of
resource allocation. We performed an ablation study to measure the impact of these techniques on
our model. Specifically, we compare the task completion rates (Q1, Q3) for our full model against
models without one of these techniques. The results, as shown in Table 3.4, show that all the
techniques have a significant performance impact, improving the task completion rate to meet
deadlines. More importantly, the impact of these techniques grows as the workflow size (both node
and data) grows, with lower completion rates of (85.17%, 99.28%), (84.11%, 97.3%) and (91.32%,
99.9%) without data preloading, rebalancing and backup HPC, respectively, for RNASEQ compared
to (93.27%, 99.97%), (89.11%, 97.15%) and (97.18%, 99.99%) for the OAI Analysis workflow. Further,
data preloading and resource rebalancing techniques are more impactful than the backup HPC
technique for both workflows.

Observation 7: Backup resources on Cloud for HPC allocations have minimal impact on task
processing.

To measure the impact of backup resources on the workflow scheduling, we analyze their average
reservation time and the number of tasks processed by them. A backup resource for HPC has an
average reservation time of 0.4 hours (1 hour time limit) and contributes only to 2.7% of total tasks
on average for OAI Analysis. For RNASEQ), the reservation time is 0.5 hours and the processing
contribution is 3.26%. This suggests that our RA prediction is effective in minimizing the impact on

HPC production jobs while providing a higher rate of task completion.

54

Observation 8: Our dynamic approach to building performance benchmarks with the DPB is
economical and avoids a bloated budget.

Instead of relying on expensive benchmarks, we built the DPB with a cumulative target of only
5% of total task size or 1 hour of run time, whichever finishes earlier, for all the platforms. The cost
and duration of building the DPB are included in the final cost and the set deadline, respectively.
The average cost of the DPB is only 3.24% and 3.13% for OAI and RNASEQ), respectively. The (Q1,
Q3) values are (.26%, 1.48%) and (0.25%, 1.45%) for OAI and RNASEQ), respectively.

3.6 Related Work

Workflow Management Systems (WMS), such as Pegasus [al.15], Nextflow [al.17], Parsl, and Snake-
make [K6s12], provide support for scaling and scheduling workflows across HPC and Cloud Environ-
ments. While they perform several scheduling optimizations, such as task clustering and data-aware
scheduling, the decision to offload tasks from HPC to Cloud is left to the user’s discretion. WMSs do
not provide insights or heuristics for informed decision-making regarding scheduling and scaling
based on factors such as RA, deadline, and cost.

Several techniques have been developed to schedule workflows in an HPC+Cloud or private-
public Cloud hybrid environment to meet deadlines. Aneka [Too18] and Bicer et al. [Bic12] employ
a dynamic approach where resources are scaled up/down at run time by periodically calculating
available resources from the local cluster, the pending tasks, data coordination overhead and the
required additional resources from Cloud. However, their assumption of on-demand HPC resources
seems unrealistic as it often results in delayed allocation and insufficient computational capacity,
leading to idle Cloud resources and lower completion rates. In contrast, our technique mitigates the
resource availability issue through RA prediction and backing up of HPC resources on Cloud with
temporary (until HPC requests are met) redundancy ensuring the necessary computational capacity
is maintained on both HPC and Cloud platforms. Another difference is that both Aneka and Bicer
overallocate resources to compensate for data movement overhead, whereas our technique applies
data preloading to avoid such overhead, thus not allocating additional Cloud resources.

Guo et al. [Guol4] primarily performs CB on private Cloud by offloading requests to public
Cloud while predicting when the private Cloud is overloaded using a workload forecaster. Further,
it optimizes the cost of offloading by selecting applications with lower Cloud costs and primarily
focuses on resource scaling under high workloads without a deadline constraint for workflows. Their
work does not focus on complex workflows and relies on workload behavior to scale up/down public
Cloud resources on demand. Gupta et al. [al.16] utilizes HPC jobs’ performance metrics and resource

requirements for optimal job placement on HPC and Cloud. Assuncao et al. [Ass09] evaluated the

55

X / X V/N 1uauadeyd pazrumdo pPno+0dH [91Te]
X , X V/N juswaoeld pazrumndo pnoD+1a1sny) [B207] [60SSV]
X , ' peopiiom a1niny| pnoy) 0l peo[jjo pnopD a1qnd+ajeatd [FTOND]
X X / V/N pno[y 01 peopjo | pnopy d1qnd+s1ealid/ddH | [8100L] [Z121d]
/ / / Aqerreay sepou DdH pnop+ddH Aom 1no
92In0say DdH pasnun 23uUdABIS
uonewrnsy | UONINPIY | JUTLIISUO) 10)21paid A3a1eng PO SuonNNLIUo)
150D 150D auljpead Surmpayog

uostreduo) Sunnpayds prqiy ¢°¢ I[qelL,

56

cost of using additional Cloud resources to supplement the lack of resources on a local cluster. They
evaluated multiple job placement strategies based on various performance metrics such as job wait
times, deadline violations, and the cost of Cloud. These studies primarily focus on optimizing the
local cluster scheduler by determining the optimal placement (local or cloud) for all jobs on an HPC
system. They do not account for workflows with complex data dependencies or data movement
costs. Additionally, they lack mechanisms for estimating future resource availability and rely on
users to estimate the required resources. In comparison, our work focuses on large-scale workflows
to split them across HPC and Cloud while taking advantage of unused resources on HPC.

Existing studies either do not consider deadline constraints, assume that resources are available
on demand, which is not true in HPC, or do not consider data dependencies between jobs. Therefore,
none of them is directly applicable to solve the deterministic scheduling problem. Deterministic
scheduling of large-scale workflows with deadline requirements has the following requirements:
estimation of required resources, estimation of resource availability, considering data overhead in
case of Cloud offloading, and estimation of cost of execution. Our work satisfies all of them. Table 3.5

compares our work with other models and illustrates the uniqueness of our approach.

3.7 Summary

We identified the challenges of scheduling large-scale workflows with deadlines on HPC systems
instead of solely utilizing costly Cloud systems. A lack of knowledge about future RA and complex
data dependencies in workflows limits the ability of WMS/users to make informed decisions on
scheduling workflows with respect to cost and deadline. To mitigate these challenges, we developed
a novel scheduling framework to orchestrate large-scale workflow execution in an HPC+Cloud
hybrid environment guided by the user’s choice of a schedule. To this end, we developed RAP and
WSB to generate multiple schedules of workflow execution, which helps users make informed
decisions utilizing factors such as cost and deadline. Further, our adaptive scheduler addresses
issues such as misprediction of RA and delayed HPC resource allocation by temporarily backing up
HPC resources on the Cloud. We use simulations to assess our techniques, as actual execution on
Cloud resources would incur prohibitively high costs for our study. The evaluations show that our
scheduling framework yields a mean 98%-99.4% rate of task completion, and with a mean 7.11%
to 14.75% cost estimation error of the final cost of execution in comparison to a mean of 74.77%
t0 93.98% and 45.35% to 51.1% task completion rates by Cloud bursting and HPC-only solutions,
respectively. Furthermore, our framework saves cost for more than 75% of diverse workflow runs.
Combining minimal impacts on production jobs and minimal backup cost of HPC resources on the
Cloud, our HPC+Cloud co-scheduling methodology shows good accuracy of our RAP model while

57

keeping cost at bay and considering deadlines.

58

CHAPTER

4

WHESL: A DISTRIBUTED EXCEPTION
MANAGEMENT FRAMEWORK FOR HPC

4.1 Introduction

Modern HPC systems rely on scale, hierarchy, and heterogeneity in both software and hardware stack
for the reliable and efficient execution of workflows ranging from large-scale scientific simulation
and Al/ML-guided drug discovery to large language model (LLM) training and inference [Mor18;
Lua25; Nar21; DN19]. However, failures continue to be a performance bottleneck for such large-
scale applications as the Mean Time Between Failures (MTBF) is in the order of hours for large
systems [Kok25; Jia24; Zu24; Gup17]. In the era of exascale computing, FT support for such large-scale
workflows presents multiple challenges.

First, the commonly used C/R-based solutions focus narrowly on monolithic parallel applica-
tions [Dil7; Sat12; Beh20; Beh22; Mau24]. Workflows are composed of multiple jobs with different
computation abstractions and dependencies. An exception in one of the jobs can have repercussions
in other components of a workflow. Since traditional C/R is primarily designed for MPI-based paral-
lel applications, it cannot address the dependencies and complexities associated with advanced

workflows. Although redundancy can be used with workflows, it is not scalable and efficient. Modern

59

HPC systems need FT solutions that handle system complexities and hierarchical dependencies in
workflows.

Second, no WMS currently supports advanced exception management. Any WMS plays a central
role in effectively automating and managing large-scale executions via coordination of complex
tasks such as workflow construction, efficient resource management, reproducible execution, and
monitoring. Such a WMS generally supports FT via automatic job re-execution, workflow check-
pointing or exception handlers in workflow scripts. However, scheduling and execution of workflows
involve multiple independent software entities, e.g., the system scheduler, the WMS itself, individual
jobs, the I/0 subsystem, all within a complex (and non-uniform) ecosystem of HPC computing.
Multiple such entities can detect failures in isomorphic form and may take individual actions to
recover. These entities lack knowledge of each other. They do not coordinate to reach a consensus
for efficient recovery. Hence, the resultant state of execution may become either redundant or
non-recoverable. Furthermore, FT solutions provided by a WMS, apart from C/R, are not efficient.
This includes widely used automatic job re-execution, where individual jobs are retried up to a
predefined number of times upon failure. For each restart, a WMS resubmits the failed jobs to the
system scheduler, which adds additional overhead such as requeuing and reallocation of resources.
Also, exception handling via programming, e.g., try...except blocks in Python, requires FT expertise
by application/workflow developers, which is uncommon. Finally, FT is not portable across the
plethora of WMS frameworks available to users. Each WMS provides a different interface for work-
flow construction and FT support. Managing and porting workflows from one to another WMS or
HPC system adds even more overhead. Overall, the HPC ecosystem lacks a common and standard
FT solution compatible with multiple WMS frameworks.

In short, today’s WMS frameworks lack in FT support for scalability, coordination, usability, and
portability on modern HPC systems. We address these gaps via WHESL, a standalone exception
management/runtime system that integrates with WMS frameworks to provide advanced FT solu-
tions for efficient recovery. WHESLs holistic system and workflow view helps manage exceptions
efficiently, specifically to detect, propagate, and perform recovery by letting users define exceptions
in a programmable fashion. To this end, we isolate exceptions from being detected by different
subsystems to eliminate redundant actions during recovery when taken independently. To achieve
that, we fluxify (schedule tasks via Flux [al.18a] on individual allocations) the jobs submitted to the
system scheduler by the WMS. This allows us to detect and isolate exceptions locally. After isolation,
we propagate the exceptions adhering to the workflow hierarchy and coordinate with multiple
subsystems to ensure efficient and orchestrated recovery. Without WHESL, when an exception
happens, a job fails and may be restarted redundantly by the WMS and the system scheduler with

new allocations. In contrast, with WHESL, the failed jobs are restarted locally whenever possible to

60

eliminate the inefficiency due to new resource allocations and the lack of coordination between the
WMS and the system scheduler.

At the core of WHESL lie three modules: ESL, EMIL, and ERM. The ESL module is comprised
of a user interface (UI) supported by a domain-specific language (DSL) that allows users to define
exceptions in terms of detection and recovery. The EMIL module isolates and propagates exceptions
and coordinates recovery among various workflow and system components to provide efficient
recovery, as it avoids redundant recoveries by different workflow and system components. The ERM
library is composed of multiple recovery methods with an HPC resource-centric view that ensures
ease of access and promotes simplicity for users. The ESL and ERM components are implemented as
standalone software packages. In contrast, the EMIL component is built on top of Flux, a hierarchical
and scalable RJMS to take advantage of its scalable and nested scheduling capability.

In summary, we make the following contributions:

¢ We identify and discuss the gaps present in the current Fault Tolerance systems for workflows
that need to be addressed.

e We propose, design, and develop a novel Exception Management System, WHESL, that can
efficiently recover from failures in a coordinated manner, leveraging a scalable and nested scheduler
such as Flux while relying on the workflow and system view.

e We demonstrate two important use cases of managing node failures and disk quota expiry
exceptions via WHESL.

¢ Experimental results indicate that WHESL provides low recovery time from failures in complex
workflows. It performs well in both failure scaling and task scaling with a ~1.6%-4.3% and ~-2.09%-
2.53% mean difference, respectively, against failure-free runs. Further, WHESL causes minimal

interference with application execution.

4.2 Background

Let us we briefly discuss the the relevant entities on HPC systems and their approaches to support
FT for workflows.

4.2.1 Resource and Job Management System

HPC systems are generally managed by a single instance of a central RIMS such as SLURM [Yoo03],
PBS [Nit04], Cobalt [Lab25], or Moab/TORQUE [Com25]. The key responsibilities of the RIMS include
resource allocation, job scheduling, execution, monitoring, failure handling, and recovery. A RIMS

usually supports FT for node failure or non-responsiveness via heartbeat-based monitoring to

61

[61ure(] uonid

[yzwo)] Axeren [21[01] SSAINOD/SSAINODAJ ‘[SZN] 01SIRIA ‘[L1°Te] MO[JIXoN

[czas] auIAdseL, ‘(61 Te] [sTed [TTIIM] L/WMS [Z11v] 9indwod-snqoo [S100y] ysed

SIS XS

SIS S (X

SRS S

X (X |X|X

[S1Te] snse8ad [ggpnH] a[quiasugqI] {ggun)] us[eao) ‘[L1AIA] 101, ‘{0zqnH] vAY
‘[21q1v] mopadeA ‘[STre(] sy1omaIr] [ggred] WISIRWS ‘[qSZASP] MO[JOUASY-TVDIAVY
‘[egzaap] ;omuwro) ‘[911ed] MIUH-TYOIAVY [61HO] 214D [1202I9P[ROIN] oY rWayeus

Id[pueHy
uondadxyg uroisn)

Anoy
JseL

4/0
MO[PLIOM

4/0
qof

wId)SAG Jusurageue\l MOIPIIOM

SwaIsAg 1JuduradeurIy MO[PIoM Ul 11oddns aoueIdfo], 3ned 1'% d[qeL

62

detect and isolate individual faulty nodes and then requeue/reschedule the canceled/failed job on
anew set of healthy nodes. The requeuing policy depends on job submission parameters and the
system site policy. However, this mechanism does not consider the hierarchy or dependency within
workflows, and it ignores how node isolation and job requeue policy may impact the workflow’s other
pending and running jobs with data dependencies. These shortcomings can result in catastrophic
failure for workflows during uninformed recovery attempts.

4.2.2 Workflow Management System

A WMS enables users to automate and orchestrate the execution of multiple tasks that are inter-
connected within a workflow. The WMS is also responsible for efficiently managing the execution
of workflows on heterogeneous HPC systems. To achieve that, a WMS needs to support multiple
FT techniques to provide resiliency for the workflows. Such methods include automatic job restart
upon failures, checkpointing at the workflow level, and error handling via exception handlers in
workflow scripts.

We surveyed the FT support provided by publicly available WMS frameworks. Due to the high
number of available WMS solutions, we narrow our focus to those listed on the WCI (Workflow
Community Initiative) website [Ini25]. WCI is a collaborative hub for driving workflow technologies
and methodologies [FDS21; FDS23; FDS24] to unite the workflow ecosystem. WCI lists 37 WMS
packages, out of which 25 provide WCI-metadata that describes the capabilities of a workflow
(structure, execution, data, and provenance), which indicates how workflows ensure the Findable,
Accessible, Interoperable, and Reusable (FAIR) properties on computational platforms. Furthermore,
we found that 23 of these WMS solutions provide some form of FT (see Table 4.1). Most of the listed
frameworks support custom exception handling via either programming constructs such as try..catch
blocks or domain-specific event hooks, allowing users to steer workflow execution upon failures.
However, managing such execution requires both workflow and FT expertise. Automatic task retry
is also a common feature. Automatic job restart enables individual tasks in a workflow to be re-
executed upon failure up to a given number of reties specified by the user. However, the resources
allocated for the failed task by the system scheduler are released, and the HPC job for the task is
requeued for new resource allocation and scheduling. Furthermore, applying automatic job restart
to all types of failures is inefficient. Workflow checkpointing allows a WMS to save the progress of
the whole workflow so that it does not re-execute the already completed part of the workflow upon
complete workflow restart from failure. However, restarting the entire workflow adds more overhead
due to re-planning of execution, resubmission of jobs that had been running at the time of failure.
Restarting either the entire workflow or a failed job has similar overheads at different scales. Further,

63

each WMS requires users to learn and use different FT interfaces to add such support.

Overall, popular WMS frameworks with their existing FT techniques do not focus on the key
challenges presented by scalability, coordination, usability, and portability, all of which are essential
to the ecosystem of HPC for efficiency and resiliency. In contrast, our solution, WHESL, addresses

these challenges as described next.

4.3 System Design

Let us discuss the overall architecture and technique of WHESL along with its core components in
detail.

4.3.1 Execution Model

Workflows can be run as a pilot job by reserving the required amount of resources before execution
begins. In such a scenario, the WMS has dedicated access to on-demand resources for executing
individual tasks and can perform optimizations for better resource utilization. However, resource
underutilization is a common side effect of pilot jobs. For a pilot job, the WMS relies on locally nested
RJMS such as Flux to request resources within the already allocated resources from the top-level
RJMS, e.g., SLURM. To avoid resource underutilization, the WMS dynamically creates workflow tasks
and requests resources as needed. Our solution applies to both scenarios. However, we establish the
dynamic resource allocation model for workflow task execution to show the performance benefits
of our solution.

Further, we assume that workflows are a mix of heterogeneous workloads ranging from single-
node jobs to MPI-based parallel applications. Workflows in general can be represented as a Directed
Acyclic Graph (DAG) displaying a unidirectional data/control flow due to dependencies. However,
we also consider coupled workflows where individual applications are running simultaneously,
producing data and control for each other at run time.

4.3.2 Failure Model

In our model, failures are detectable and manifest at the application level. A failure can be detected
by multiple entities, such as the WMS, RIMS, and an application’s runtime system. We also allow
failures in a task of a workflow to impact the other dependent tasks, resulting in the propagation
of failures. But failures are confined to workflow task execution, only, and are not observed in or

propagated to the application runtime system, system scheduler, and WMS. Further, a failure may

64

or may not result in an application crash. After detection, we refer to a failure as an exception, and

our work primarily focuses on managing such exceptions efficiently.

4.3.3 Design

R A== a Fmmmmmm-—- !

i I :

i [Fluxified Workflow' WHESL Exception | |

HESL P: ! ! ! :
:Speciﬁcation/Scriptl : List '
H 1 :

Uy

s mm nn \ soTTTETEEEST \ l A4
1 1 Workflow
. Workflow ' | User-defined ' WHESL HPC System
'Speciﬁcation/Script: ! Exceptions : Management Coordinator Scheduler
T y o K System
\ /7 Launch and Coordination 0 Coordination
Monitoring
; Workflow Exception
— Jobs Notification and
| GEEE— Coordinated
Data Dependency [[WHESL Isolator Recovery
and Workflow I:

Hierarchy

Figure 4.1 Overall WHESL Architecture

Figure 4.1 shows the overall architecture of WHESL, where the blue boxes represent static com-
ponents executed before workflow execution, and the green boxes represent dynamic components
executed at runtime. The dashed boxes represent inputs to or outputs of a subsystem, whereas the
solid boxes represent a subsystem or an application. WHESL has primarily three subsystems: the
WHESL Parser built on top of the ESL, WHESL Isolator, and the WHESL Coordinator; both built as
part of the EMIL. Both the WHESL Isolator and the WHESL Coordinator use the ERM library for
efficient recovery from exceptions.

WHESL Parser: Users provide two input files to the parser to execute the workflow with WHESL-
enabled FT support. The workflow specification/script defines the tasks and their resource require-
ments, input files, and the dependencies among the tasks. The exceptions list provides details about
exceptions and their detection and recovery steps defined using the ESL. The parser primarily has
two responsibilities. It first validates the exception list, which must follow the grammar defined by
the ESL. The ESL is a domain-specific language developed using Antlr4 [Par14]. It provides users
with syntax to define exceptions, their detection, and recovery mechanisms in a declarative manner.
Users also define additional details, such as different entities and resources in the HPC ecosystem.

65

Listing 4.1 shows the important rules for representing exceptions, resources, and entities while
omitting the details for brevity. The ESL primarily defines three major constructs: entities, excep-
tions, and resources. Entities are the stakeholders involved in workflow execution, namely, the
WMS, the system scheduler, and the running job. Entities (lines 8-9) are the actors that perform
recovery actions. Resources (lines 10-14) are the objects in an HPC ecosystem on which different
operations, such as add, remove, or replace, are performed to recover from exceptions. With the
exception-related rules in the ESL, users define exceptions (line 16), their detection process (line
17), and a set of operations on different resources by multiple entities (line 18) to recover from them.
The ESL essentially provides mechanisms to describe exception management in a holistic manner.

After validation, the WHESL Parser produces the exception details in JSON format that is ac-
cepted by the WHESL Isolator and WHESL Coordinator to manage them at runtime. The parser
further modifies the workflow specification file or script to embed isolator instantiation code and
identification details for the workflow tasks. We refer to this process as fluxification, which serves as
ameans to create a Flux instance first, followed by a WHESL Isolator instance for a newly allocated
job. The parser also preserves all other aspects in a workflow, such as input data, dependencies, and
resource allocation configuration for the tasks. Users submit or run the fluxified file to the WMS to
start execution of the workflows.

Listing 4.1 Rules subset of Exception Specification Language

grammar whesl2;

expression: declare_entity declare_exception_type \
exception_statement EOF ;

exception_statement: declare_resource

| declare_exception

| exception_detection

| exception_recovery ;
declare_entity: 'DECLARE ENTITY’ entity_list ;
entity_name: ’SCHEDULER’ | '"WMS’ | 'JOB’ | 'DEPENDEND_JOB’ ;
declare_resource: ’'DECLARE RESOURCE’ resource_name \

[’ resource_op_handle_list ']’ ;

resource_name: 'NODE’ | ’'JOB’ | ’FILESYSTEM’ ;
resource_op_handle_list: resource_op_handle (',

’

resource_op_handle) ;
resource_op_handle: resource_op custom_handler? ;

resource_op: 'ADD’ | 'REMOVE’ | ’'REPLACE’;

declare_exception_type: ’'DECLARE EXCEPTION_TYPE’ exception_type_list ;
declare_exception: 'DECLARE EXCEPTION’ exception_name exception_type \

66

'JOB’ [’ jobs_list "]’ ;
exception_detection: exception_detection_log_match

| exception_detection_log _recurring_match

| exception_detection_log_multiple_match

| exception_detection_log_hang

| exception_detection_exception;
exception_recovery: ’'EXCEPTION RECOVERY STEP’ exception_name \

entity_name resource_name .’
exception_type: ’'JOB_LEVEL’ | 'WORKFLOW_LEVEL’ ;

resource_op args ?;

WHESL Isolator: An isolator instance primarily encapsulates one workflow task at runtime
and performs the following operations. It manages the job’s life cycle in terms of launching the
workflow task as a Flux job, subscribing to the Flux job’s logs to parse for exceptions, performing
relevant exception handling per the exception specification provided by the user, while planning
execution together with the WHESL Coordinator. These operations are performed per workflow
task by one isolator, managing exceptions locally whenever possible. Because the workflow tasks
are fluxified, when the Flux jobs fail, it does not translate to an HPC or workflow job failure, thus
isolating exceptions to the local allocation. When an exception is detected by an isolator, it begins
orchestrating with the coordinator to recover by relaunching the failed job with a new configuration
locally. If an exception cannot be managed locally, then the isolator exits, leading to an HPC or
workflow job failure. Such failures are managed by transforming the local exception to a higher-level
exception and handling it via the coordinator. During initialization, the isolator registers its workflow
task details with the coordinator to build the workflow hierarchy in terms of task dependencies.

WHESL Coordinator: Our framework operates with one instance of the coordinator functioning
as the central management system for exceptions, which can operate on multiple workflow instances.
It primarily coordinates the tasks within a workflow to maintain and update its hierarchy in the
presence of exceptions. To do that, it identifies and stores the workflow hierarchy via both the
workflow specification/script and the runtime workflow task details received from the isolator
at registration time. Using the hierarchy and past exception details, it dynamically updates the
workflow tasks to avoid future failures. Further, it coordinates with other subsystems such as the
WMS and the system scheduler as and when required for exception recovery, following the recipe
defined by the user.

Both the coordinator and isolator are built on top of Flux to leverage its ability for nested/hierar-
chical scheduling within itself and other RJMS frameworks. We leverage Flux’s rich communication
APIs, event and log management features to perform multiple tasks, such as to communicate be-
tween WHESL Isolators and WHESL Coordinator, manage workflow tasks as Flux jobs locally, and

67

subscribe to logs from the jobs to parse for exceptions. Next, we discuss the details of detecting and
isolating exceptions using WHESL.

4.3.4 Exception Detection and Isolation

[
1
i Exception List
1

output log

store log in
output file

stream
Submit/Cancel
WHESL Isolator — > Flux RIMS
Job state and lLaunch
Standard
output Flux Job
(Workflow Task)

Figure 4.2 Exception Detection in WHESL

Submit

3 HPC System Redundant
WMS Scheduler New Running Job
A P 4 Allocation
1 -7 New

Finish

! e -7 Allocation

------ Running Job
Failure

Figure 4.3 Inefficient Recovery without WHESL

Figure 4.2 depicts the overall design of the exception detection technique. The oval-shaped

68

Submit

WMS 3 HPC System

Scheduler

New
Allocation

Finish WHESL Exception

Isolator

Launch

Running Flux Failure

Job

Figure 4.4 Exception Isolation with WHESL Isolator

orange objects represent different operations performed by the isolator, and the green colored
square boxes represent running subsystems or applications. The blue-dashed boxes represent input
to a subsystem. WHESL primarily relies on application logs to detect exceptions. However, other
advanced failure detection techniques [Das18b; Das18a] and tools can be easily integrated with via
RPC calls to raise exceptions. The isolators detect exceptions at the workflow task level by parsing
the output logs from individual jobs. An isolator leverages Flux’s built-in features to subscribe to
various events related to Flux jobs, including job state changes and standard I/O logs. The isolator
subscribes to these events, manages the assigned workflow task’s life cycle as a Flux job, and parses
its output logs to detect exceptions. A task’s standard output is usually directed to a log file. By
subscribing to the job’s events, the isolators intercept logs and perform a match with the patterns
provided by users to detect exception conditions. Upon a match, the relevant exception is raised.
Otherwise, the Isolator stores the output to the log file.

The WHESL Parser enables users to match logs with different patterns for exceptions (line 17),
as shown in Listing 4.1. For example, a pattern can be a single log match or multiple log matches,
potentially over a recurring number of retries, which are tracked. These types of matches are needed
when an exception manifests in a job’s output logs. WHESL also provides mechanisms to detect
a hang exception by leveraging the timers provided by Flux. The WHESL Isolator raises a hang
exception when a particular log pattern does not appear within a given time. Finally, WHESL allows
users to raise a new exception that is based on the occurrence of another exception. For example,
users can raise a job failure exception for an MPI task if MPI-related failures happen a certain

number of times. Both isolator and coordinator store past exceptions and evaluate an exception

69

to determine whether it transforms to another before raising it to identify the final exception to
handle. Furthermore, users can define different recovery methods for both MPI and job failures
resulting from different MPI failures. WHESL also requires exceptions to be tied to specific tasks in
the workflow per ESL rules (line 16).

Failures can be detected by multiple entities in the HPC ecosystem, such as the WMS, the HPC
system scheduler, and the application runtime system. Upon detection, they perform recovery
independently, which can be either redundant or cause conflicts. Consider the case where a node
becomes non-responsive during an MPI-based workflow task, and the submitted HPC job fails. In
such a situation, the WMS observes that the HPC workflow task has failed and will reschedule it
via the HPC system scheduler per the workflow configuration. Simultaneously, the HPC system
scheduler via the slurmd daemon will detect a node failure and may reschedule the job on a new set
of healthy nodes. Such independent actions are redundant and may result in future catastrophic
failures for reasons such as data overriding or lack of resource availability.

To avoid such problems, we fluxify each workflow task that is scheduled via the system scheduler.
With fluxification, we start a Flux instance as the SLURM/HPC job. The Flux instance spawns a non-
interactive Bash shell, where a WHESL Isolator is executed within it. The isolator receives the actual
workflow task command, the coordinator’s communication address, and other details related to role
and workflow identification. During initialization, isolator and coordinator exchange information
to establish a communication channel and the workflow hierarchy. With fluxification, we achieve
exception isolation where job failures are shielded within the allocation by not emitting the failure
signals to other subsystems (e.g., WMS and system scheduler). Further, the fluxified workflow tasks
are reconfigured in such a way that the system scheduler, even though they identify the node failures
within the allocation, do not resubmit the job automatically. Figure 4.3 and Figure 4.4 show two
contrasting scenarios, without and with WHESL, respectively, depicting how exceptions are isolated.
The squared blocks represent a job or a subsystem. Oval-shaped blocks represent actions. The dotted
directed lines represent control flow during failures, whereas the solid lines represent control flow
during normal operation. In Figure 4.3, upon node and job failures, both the WMS and the system
scheduler get notified, resulting in redundant job resubmissions due to a lack of coordination. In
Figure 4.4, due to the WHESL Isolator, the workflow tasks are run as Flux jobs and managed via local
Flux schedulers. Any job failures are constrained by their isolators to avoid any redundancy. Next,
we discuss the details of the coordinated recovery performed by WHESL.

70

4.3.5 Coordination and Recovery

After an exception is detected by an isolator, it initiates recovery by orchestration with the coordinator.
WHESL manages exceptions that are categorized as job-level or workflow-level (line 19 of Listing 4.1).
For job-level exceptions, only the isolator performs the recovery actions. In contrast, both isolator
and coordinator share the recovery actions for workflow-level exceptions.

Since the recovery operations of job-level exceptions are limited to local allocation, the corre-
sponding isolator performs all required actions and notifies the coordinator about the local job
reconfiguration and its restart at the end. The coordinator reconfigures future jobs dependent on
the failed job and sends a restart notification to running dependent jobs along with the reconfigu-
ration details. However, for workflow-level exceptions, additional operations are required by the
coordinator via orchestration. Figure 4.5 depicts the sequence diagram for the coordination and
recovery steps performed by different entities in WHESL.

The following are the sequence of steps for coordinated recovery:

* Step 1: Once the detected exception is determined to be workflow-level type, the isolator
notifies the coordinator to execute its own set of recovery actions and waits for its response.
After the coordinator executes its set of actions, it notifies the Isolator to execute its set of

recovery actions.

e Step 2:The failed workflow task is restarted with a new configuration. The new configuration
is determined via the recovery steps defined in the exception specification file. In this work, we
primarily focus on resource allocation and I/O configurations. Depending on the exception
and the new configuration, the failed workflow task has to be restarted either on the already
allocated previous set of resources, i.e., by restarting the Flux job, or on a newly allocated set

of resources for which an HPC job restart is needed.

¢ step 3:Next, the coordinator updates the configuration of dependent jobs so that they become
compatible with the restarted job. However, the coordinator does not update the configuration
immediately after exception recovery. Instead, it stores the revised configuration and updates
it when the dependent jobs’ Isolators are initialized. For already running jobs, updates are

performed immediately.

A WMS primarily provides mechanisms to define exception recovery in a declarative format that
are specific to an action, i.e., restart of the failed job. For example, users can declare the number of
times the WMS restarts a job before stopping the workflow execution. Or, if a job failed a certain
number of times, then WMS migrates the job to a different HPC system, per user specification.

71

. . :WHESL Isolator (Failed :WHESL Isolator
: WHESL Coordinator | | Job) | | (Dependent Job)

Exception Notification

Exceute

T T
1 1
1 1
1 1
1 1
[1
[l 1
] 1
1 1
' Recovery '
1 1
1
1
1
1
1
)
1

Steps

Recovery Steps
' Done Notification

i Execute
' Recovery

1
, |:|47 Steps
1
1

' alternative J

:[IF HPC JOB RESTART]
! Restart Failed Job

Restart

[IF FLUX JOB RESTART] Failed Job

Job Restart
_ Complete Notification |
) '

Reconfigure
Dependent Jobs
Reconfigure

Job Restart Notification and Restart

\ 4

Figure 4.5 Sequence Diagram for Recovery Coordination in WHESL for workflow-level exceptions

72

Further, language-based exception handlers lack a generic model that makes it easy for users to
define recovery steps for any exception. To address these challenges, WHESL developed a resource-
centric action model to define recovery steps for any exception. Users can define recovery steps in a
declarative format that is extensible and allows customization.

WHESLs recovery model is defined in two sections of the ESLin Listing 4.1: resource management
and exception recovery. The resource management section (lines 10-14) lets the user define different
types of resources and the operations that are performed on them. A resource is an object in the
HPC ecosystem that is created or used during workflow execution. For example, the parallel file
system, an HPC job, a node, etc. Exceptions are found in workflow tasks primarily due to failures
in these resources and can be recovered by managing these resources during workflow execution
in a coordinated manner. Managing resources includes operations such as the addition of more
resources, removing the faulty ones, and replacing the faulty resources with healthy ones. For
example, in the case of anode failure, the failed node can be either removed or replaced with a healthy
node in the allocation. Similarly, if the primary filesystem is non-responsive, it can be replaced with
anew one. Furthermore, if the job throughput does not meet the expectation, then additional nodes
can be added to improve processing speed. To support such management, we currently support
three operations: add, remove, and replace. Users can use such resource-operation constructs
to build recovery mechanisms for each exception (line 18) per Listing 4.1. WHESL currently has
support for resources such as job, filesystem, and nodewith add, remove, and replacement operations.
However, WHESLs recovery model is extensible as users can add more resources and their supported

operations.

4.4 Evaluation

We demonstrate WHESLS efficient recovery management for three types of exceptions: Disk Quota
Exceeded (DQE), Application Crash due to node failure, and Application Hang due to communication
failure. We implemented WHESL on top of Flux version 0.60.0. We conducted the experiments on an
80-node institutional cluster featuring heterogeneous mixes of CPUs and GPUs. For application crash
and hang exceptions, we use only CPU (AMD Epyc Rome) platforms with the LULESH application.
For the DQE exception, we use both CPU and GPU (NVIDIA RTX 4060 Ti) platforms as required by
the OAI workflow described next. The HPC cluster also supports two different filesystems: Maestro
WMS manages the execution of both LULESH and OAI on the cluster.

73

4.4.1 Managing Disk Quota Exceeded Exception

Workflow: The Osteoarthritis Initiative (OAI) provides a plethora of publicly available imaging data
of knees to investigate the causes of osteoarthritis. The OAI Analysis workflow is built on top of
analysis workflows focusing on 3D magnetic resonance images (MRIs) of the knee [She19; al.22a].
The workflow comprises analysis techniques such as segmentation, thickness measurement, atlas
registration, and 3D-to-2D mapping of cartilage thickness maps for knee MRIs. It is built as a bag-
of-tasks structure consisting of various applications, each identified as a stage in the workflow’s
Directed Acyclic Graph (DAG) (see Figure 4.6). Green stages run on GPUs, while the blue ones utilize
CPUs. Workflow edges represent the data flow. As a bag-of-tasks workflow, each scanned image
needs to be processed by all the stages in the DAG. The OAI Analysis workflow runs on large-scale
HPC systems, generating a significant amount of data. The OAI data repository contains =27
million images combining MRI and X-ray scans. Running analysis for 10,000 images will produce
~3.5 terabytes of output data. For one image, Table 4.2 shows the total number of files and their

cumulative size in megabytes generated per stage of the workflow.

extract
surface mesh

CPU Stage

GPU Stage

register

segmentation .
image to atlas

Figure 4.6 OAI Analysis Workflow

Exception: To meet this I/O load, HPC systems usually adopt tier-based storage systems, where
top-tier filesystems provide lower latency and higher bandwidth, but are smaller in terms of capacity.
Further, users are provided a personal disk quota limit on all the filesystems to allow fair use of
resources. Running a large-scale OAI Analysis can create a large amount of data, resulting in an
exception due to exceeding a user’s quota. In such scenarios, workflows should be able to trans-

74

Table 4.2 OAI Analysis workflow’s output per image

Pipeline Stage Output Size (MB) # Output Files
preprocess 28.20 1
segmentation 76.80 2
extract_surface_mesh 5.99 1
register_image_to_atlas 234.75 1
warp_mesh 2.09 6

parently switch their output location to another filesystem, possibly a slower, but larger-capacity
one. Furthermore, such changes to input/output paths must be updated for the relevant dependent
stages in a workflow, which the existing WMSes do not support. For example, with the Snakemake
WMS, users can set up rules for job re-execution with a secondary filesystem on disk quota failures
and even move files from the primary to the secondary filesystem. However, this update is not propa-
gated throughout the jobs across the workflow, which will lead to future job failures. Similar behavior
can be achieved with Nextflow, but users need to manually restart the workflow execution. Pegasus
can automatically switch to a secondary filesystem, but cannot migrate already produced files and
requires full re-execution to produce the complete output from the failed job on the secondary
filesystem. In addition, none of the WMSes support such failure recovery for workflows under a
dynamic paradigm where both the producer and consumer applications are running simultaneously

exchanging data and control.

Listing 4.2 Exception Specification for Disk Quota Exceeded

DECLARE ENTITY WMS, JOB
DECLARE EXCEPTION_TYPE WORKFLOW_LEVEL
DECLARE RESOURCE FILESYSTEM [REPLACE]

DECLARE EXCEPTION DISKQUOTAEXPIRED WORKFLOW_LEVEL JOB [run—preprocess]
EXCEPTION DETECTION DISKQUOTAEXPIRED LOG "Disk Quota Expired" stdout
EXCEPTION RECOVERY STEP DISKQUOTAEXPIRED JOB FILESYSTEM.REPLACE \
{"filesystem":"<filesystem root>", "defaultpath": \
"default path for workflow execution"}
EXCEPTION RECOVERY STEP DISKQUOTAEXPIRED WMS FILESYSTEM .REPLACE \
{"filesystem":"filesystem root", "defaultpath": \
"default path for workflow system output"}

Recovery: The desired recovery from a DQE exception is to move data or create soft links from
the partial output of the failed job to the secondary filesystem, and to ensure that all the dependent

75

jobs (both running and pending) of the failed job are updated to read outputs of the failed jobs
from the secondary filesystem. To add such recovery support to their workflows, users need to
provide an exception specification file (see Listing 4.2). As per specification (lines 1-3), there are two
entities in the ecosystem, the WMS and jobs, and only the filesystem resource needs to be managed
upon failure. The DQE exception is categorized as a workflow-level exception (line 5) as output
staging areas for both jobs, and the WMS may need to be moved to a secondary filesystem. Here,
the exception is to be detected and recovered only for the run-preprocess job instances. WMSes
such as Maestro and Parsl can parameterize tasks to create multiple instances of them. WHESL
will enable exception management for all the job instances of the task. Further, line 6 shows the
exact log that needs to be matched against to detect this exception. For recovery, WHESL needs
to perform two updates. First, the WHESL Coordinator needs to make sure that the staging area
for the WMS is moved to the new filesystem (line 8). Second, the WHESL Isolator of the failed job
needs to move its output from the older staging area to a new location (line 7). As per the ESL,
exception recovery statements accept user-defined arguments that are passed as key-value pairs to
the resource management operations (line 18, Listing 4.1). In case of an exception due to DQE, the
root of the new filesystem and the path of the current filesystem are passed as arguments to the
handler governing a filesystem resource’s replacement. In our implementation, the replacement
operation automatically creates soft links from the already produced output files within the new
filesystem before it restarts just the job (but not the entire workflow) with a new configuration that
includes the new filesystem path as the output staging area. Further, the Coordinator updates the
running dependent jobs’ configurations immediately by coordinating with their Isolator instances,
including updates of the future dependent jobs’ configuration as and when they are started.
Analysis: To evaluate the impact of integrating WHESL with workflows, we ran the OAI Analysis
workflow with and without WHESL support. In this experiment, the OAI Analysis workflow comprises
five tasks (see DAG in Figure 4.6). Each workflow task was further partitioned into two instances,
each processing 5 MRI-based images from the OAI repository on one node. In short, the workflow
creates 10 HPC jobs, two per workflow task. First, the workflow was integrated with the Maestro
WMS without WHESL support and executed without any failures. We refer to this testcase as the
Baseline execution. Next, we scaled the number of DQE failures from 20% to 100% for the jobs in
the workflow while executing with WHESL support. That means for each HPC job, the DQE failure
was induced and then recovered by WHESL. Each testcase was executed five times, and without
any resource allocation delay, as only 2-4 nodes were required for the whole workflow execution
at any point in time. We compare the distribution of makespan for each testcase to analyze the
efficiency of WHESLs exception management. Figure 4.7 depicts the makespan for all the testcases.

As can be seen, the additional recovery time due to failures remains almost constant with increasing

76

number of failures. When failures are induced, WHESL's support helps complete execution with
an additional ~1.6%-4.3% overhead even when every file access for writing results in an exception

once for each job. This suggests that WHESL can provide robust FT against false failure detections.

1000
g 900
S L, = T = 6 e
@/ ==
= 800
o
£
s 700+
=

00— ; ‘
Baseline0% 20% 40% 60% 80% 100%
Percentage of Tasks with Failures

Figure 4.7 Impact of WHESL during Failure scaling without any queue wait times for jobs

To compare WHESLs recovery with the methods from existing WMSes, we introduced the
additional overhead of waiting in the queue for HPC job submission. This is the wait time for
the HPC jobs before the HPC RJMS grants the requested resources to begin their execution. With
traditional recovery in WMSes, jobs are re-executed via resubmission of a failed job as a new job to
the RJMS. This additional overhead is considered every time an HPC job is submitted. To model
the wait queue for small jobs (in this case, 1 node), we analyzed the production jobs [LLN24b] of
the LASSEN supercomputer and considered the median wait queue time. Figure 4.8 depicts the
makespan of the OAI Analysis workflow with and without WHESL support. With increasing failure
rate and without WHESL support, the makespan of the workflow increases linearly because of the
added wait time overhead in the HPC job queue. As WHESL can isolate exceptions to the local
allocation and restart the jobs in-place, workflow executions do not experience additional wait
overhead.

Next, we analyze WHESLs performance under task scaling. To this end, we scale up the number
of tasks per stage in the OAI workflow from 2 to 10, which results in 10-50 tasks for the complete

workflow. We also induce one DQE exception per task at a 100% failure rate. We then compare the

7

50001 ® WHESL No WHESL

N
(o]
(=]
(=)

(%)
=
(=]
o

Makespan (Seconds)

20005 | | | .
0% 20% 40% 60% 80% 100%
Percentage of Tasks with Failures

Figure 4.8 Impact of WHESL during Failure scaling with expected queue wait time for jobs

performance of WHESL in the presence of failures (WHESL runs) for larger workflows against the
baseline runs, where workflow runs do not experience any failure while executing without WHESL
support. Figure 4.9 shows the distribution of makespan (y-axis) of the baseline, and WHESL runs at
100% failure rate. We observe that makespan increases steadily for both baseline and WHESL runs
with the task scaling due to the scheduling overhead at the WMS and HPC scheduler level. However,
even with a 100% failure rate, WHESL runs’ makespan closely match the baseline runs with a mean
difference range between -2.09% and 2.53%.

We induce failures in the tasks around the same time when 50% of the execution is complete. As
the segmentation and registerimagetoatlas stages run simultaneously, there can be twice the number
of tasks per stage failures that can happen at the same time, and WHESL needs to handle 4-20 failures
quickly. To analyze WHESL:s efficiency, we measured the recovery time per failure. The recovery
time is the duration between when a failure is detected and the replacement(restarted) job starts
executing. Figure 4.10 shows the distribution of recovery times (y-axis) in seconds against different
total numbers of tasks (x-axis) in the workflow. We observe that the recovery time distribution
remains fairly similar as we scale the total number of tasks with the mean time in the range from
4.08 to 4.74 seconds. This shows the efficiency of WHESL in terms of recovery latency in handling

failures for a large number of tasks.

78

I Baseline B 100% Failures P

~ 1000-
o]
5
g 950 _— ——
5 B =
&' 900
=
< le]
E =

8501 o & T

——
0 20 30 40 50

Total Number of Tasks

Figure 4.9 Impact of WHESL during task scaling without any queue wait time for jobs

o)
= 12.5
= 0
8 o)
é 10.0
()
g 8 8
= 7.5
2
)
g 5.0
5
(%7
2.51
10 20 20 AQ 50

Total Number of Tasks

Figure 4.10 Recovery times for OAI from DQE

79

4.4.2 Managing Application Crash and Hang Exceptions

Application: LULESH [Kar13] is hydrodynamics proxy application developed by Lawrence Livermore
National Laboratory (LLNL) to help evaluate performance of large-scale HPC systems. It has been
ported to a number of programming models and we utilize the MPI-based LULESH for our evaluation
purpose. The MPI model can execute only with a process of size p3, where p € N.

Exception: With LULESH, we evaluate WHESL with two exceptions: Application Hang (AC)
and Application Crash (AH). An AH exception causes applications to get stuck permanently. AC
causes applications to fail by crashing during execution. There are many root causes behind AC
exceptions, with hardware failures, illegal device access by applications, and network-related errors
being some of them. Similarly, AH exceptions happen because of deadlocks, communication-related
problems such as network degradation and resource starvation. In this work, we focus on AC and AH
exceptions resulting from network degradation. LULESH follows the execution of a typical parallel
application on HPC systems, performing computation and communication/data synchronization
iteratively. To cause the AC and AH exceptions, we deactivate and then reactivate the InfiniBand
(IB) interface of one nodes. This causes IB link flaps during the library calls within the application
to synchronize and exchange results for the simulation update. The IB link flaps cause LULESH to
either get stuck in MPI blocking calls with an AH exception, or they experience an AC exception
due to a crash. In our experiments, the resulting exception was non-deterministic. We performed
repeated experiments to collect a sufficient number of samples for evaluation. The faults are injected
atrandom intervals during the application execution. Further, we added SCR [Moo10] checkpointing
support to LULESH every 10 timesteps.

Listing 4.3 Exception Specification for Application Crash
DECLARE ENTITY WMS, JOB

DECLARE EXCEPTION_TYPE JOB_LEVEL
DECLARE RESOURCE NODE[ADD, REMOVE, REPLACE)]

DECLARE EXCEPTION CRASH JOB_LEVEL JOB [run—lulesh]
EXCEPTION DETECTION CRASH LOG "An error occurred in MPI_" stdout
EXCEPTION RECOVERY STEP CRASH JOB NODE.REPLACE

Listing 4.4 Exception Specification for Application Hang

DECLARE ENTITY WMS, JOB
DECILARE EXCEPTION_TYPE JOB_LEVEL
DECLARE RESOURCE NODE[ADD, REMOVE, REPLACE)]

80

DECLARE EXCEPTION HANG JOB_LEVEL JOB [run—lulesh]
EXCEPTION DETECTION HANG LOG "cycle = " stdout TIMEOUT 120
EXCEPTION RECOVERY STEP HANG JOB NODE.REPLACE

Recovery: The desired recovery for AC and AH exceptions is to isolate the faulty node with IB
link flaps and replace it with a healthy reserved node. A failed job should be restarted locally by
the WHESL Isolator without a resubmission by the WMS. To achieve this, users provide exception
specifications (see Listing 4.3 and Listing 4.4 for AC and AH exceptions, respectively). Lines 1-3 in
both the listings define the execution ecosystem’s entities, resources, and exception types managed
by WHESL. Similarly, line 5 defines the exceptions AC and AH, indicating which jobs should be
subject to such exceptions. Line 6 in Listing 4.3 indicates the log monitored for AC exceptions. In
contrast, Line 6 in Listing 4.4 specifies the exact log pattern whose appearance within the specified
time limit does not raise any AH exception. Conversely, if the given log appearance exceeds the
timeout, WHESL raises an AH exception. The recovery step for both exceptions (line 7) is to replace
the faulty node with a healthy one for a restart.

To this end, WHESL reserves two additional nodes per job (in our experiment). When Flux is
instantiated, the broker services run on each node of the allocation. These brokers form a hierarchical
overlay network and collectively provide services such as job scheduling, resource management,
and RPC routing. By default, the rank 0 broker is the leader among the brokers, which is where
WHESL runs. For that reason, WHESL reserves that node from being allocated for the job and fault
injection. Further, an additional node is reserved for replacing the faulty node.

Analysis: To evaluate the impact of WHESL on LULESH, we executed it using Maestro WMS
with and without WHESL’s support. Each testcase was run with AC and AH fault injection, as well
as without any fault injection. This serves as the baseline case. We repeated experiments for each
test case five times and collected execution times. For testcases without WHESL support (e.g., OAI
Analysis) we added additional overheads, such as resource allocation wait time, checkpoint read
time, recomputation time for lost work, and failure detection time, to the baseline case. We also
assume that a fault detection technique is integrated with Maestro WMS to detect AH exceptions.
When an AC exception occurs, jobs exit with failures, and Maestro automatically detects it.

Figure 4.11 demonstrates the overall impact of WHESL on application performance in terms of
makespan under AC and AH exceptions. Without any fault injection, the addition of WHESL support
adds only a 0.6% to the mean makespan. However, when AC and AH faults are injected, WHESLs
ability to manage exceptions locally within an allocation reduces makespan by 16.9% and 10.5%,
respectively. Without WHESL support, Maestro needs to resubmit the failed job, which introduces
additional overhead in waiting for new resources.

81

2400 I WHESL EE No WHESL
2
5 2200
3
2
= 2000
<
723
< 1800+ o
E ;;

1600

None Ha'ng Crash
Exceptions

Figure 4.11 Impact of WHESL on LULESH Application

I Without WHESL [With WHESL

RS ﬁ
10! {2 =

‘9(e% Se%% e A acxéie %'\S‘ex% \Nam%LOLES“

Execution Time (Seconds)
[\

Applications

Figure 4.12 Impact of WHESL on HPC Jobs

82

4.4.3 Impact of WHESL on Application Performance

WHESL subscribes to the Flux job’s output log events and parses them to detect failures. This may
interfere with the execution of the actual workload running on a node. Further, Flux brokers run as an
event-driven process on each node. To measure their impact on workload execution, we measured
and plotted the individual applications” execution times from OAI Analysis and LULESH when run
with and without WHESLSs support (see Figure 4.12). We do not observe a significant difference
in execution times, which is good news. We conclude that running WHESL in the background on
actual workloads in the absence of exception has minimal performance impact.

4.5 Related Work

Prior research on fault tolerance for workflow systems has largely overlooked the hierarchical struc-
ture and operational complexity of modern HPC ecosystems. Existing approaches typically restrict
failure recovery to task dependencies defined within the workflow, without considering broader
system-level interactions. Grid Workflow [Hwa03] addresses this limitation in part by separating
failure-handling logic from application code and allowing users to manage recovery policies within
the WMS. The framework supports multiple recovery mechanisms, including retries, checkpointing,
replication, and alternative task execution, enabling adaptability to heterogeneous and unreliable
Grid resources. Unlike WHESL, it does not account for dependencies within workflow tasks or prop-
agate the side effects of recovery actions to downstream dependent tasks. Moreover, the framework
does not consider inefficiencies arising from redundant or conflicting recovery actions initiated by
entities outside the WMS.

[TCO08] enabled propagation of failures within the workflow hierarchy by adaptively restructuring
workflows at runtime. Recovery patterns are defined within the workflow structure or specifica-
tion based on the Reference-Nets-within-Nets formalism, enabling workflows to self-modify their
structure when specific failure conditions are detected. Even after facilitating such propagation
of failures, its failure management scope is limited to the workflow structure. Multiple WMSes
discussed in Section 4.2 support similar failure management techniques. Our investigation indicates
that Pegasus WMS provides the most comprehensive failure management among the systems listed
in Table 4.3. Pegasus can propagate failures to dependent tasks within a workflow and dynamically
reconfigure the dependent tasks. Unlike WHESL, it does not address the inefficiency that may arise
due to multiple entities performing recovery from failures independently. Pegasus also requires each
recovered task to be re-executed completely. Moreover, existing designs are limited to individual

WMSs and lack portability across different workflow systems. [NVI25] supports in-process restart

83

Y Y 2 pamqinsiq 2 MOTPJIOM dANRIR[IA(YLOM N0
X / X paInquusiq X -+MO[PIIOM X WADIN
X X X SIAM V. MOTPIOM dANRIR[IA(snsv3ad
% % Vs SIAM X MOTPHIOM-gNS | dARBIR[DIJ ‘v 30 SUpmpy
X X X SIAM Vs MO[PIOM aaneIddwl] | ‘I 12 ZUDSVIP)-DUDSO]O].
AIqe1iod | uoneurpioo) | AIdA039Y | 2OUIPISAY | AYdIRISIY adoog uonedyrads [PPOIN
pauyap-19sn MOJPLIOM uondaoxy

uosireduro) surasAg juswagdeuey uondadxy €% d[qeL

84

for MPI applications, but are not applicable to workflows.

MCEM [Her19] introduced a conceptual model for hierarchical exception management, bringing
cooperation between different subsystems to address redundant and inefficient recovery processes.
Our work builds on this model to provide a practical and novel solution aimed at standardizing fault
tolerance in HPC systems. The primary difference between WHESL and MCEM lies in their design
choices. MCEM proposed embedding coordinators within various subsystems (namely the Network
Manager, File System Manager, WMS, and system scheduler) to detect exceptions and coordinate
recovery. However, MCEM lacked a practical coordination and recovery mechanism. In contrast,
WHESL uses an exception isolation mechanism to avoid the performance overhead of commu-
nication between multiple subsystems. Exceptions are first isolated locally and then coordinated
through a central coordinator to execute user-defined recovery steps, managing HPC resources via
add, remove, and replace operations. Furthermore, MCEM does not consider workflow hierarchy for
propagating exceptions, omitting a key requirement for managing failures in hierarchical workflows.
Finally, MCEM has not been validated through practical evaluation. Table 4.3 compares WHESL
with other systems and shows their unique differences.

4.6 Summary

We developed a distributed exception management system to mitigate the inefficiencies in recovery
mechanisms of existing WMSes, runtime systems, and RJMSes. These inefficiencies are primarily
due to a lack of coordination among the disparate components of the workflow ecosystem. Wastage
of resources and loss of work occur as the existing recovery methods often result in unwanted
redundancy or non-recoverable failures. Contrary to prior solutions, our developed system, WHESL,
provides scalability for large workflows by leveraging Flux’s nested scheduling capability and im-
proves the efficiency of recovery from exceptions via coordination among the independent system
entities. Its resource-centric recovery model allows users to define steps for exception management
with ease. Furthermore, support for other WMSes can be added to WHESL without significant
effort. Evaluations of WHESL demonstrate that for exceptions such as exceeding disk quota, it can
withstand a 100% failure rate to provide near-baseline performance for the OAI Analysis work-
flow. Moreover, WHESL has negligible overhead under task scaling, with a mean difference ranging
from -2.09% to 2.53%. For exceptions, Crash and Hang, WHESL can reduce the makespan by 16.9%
and 10.5% for the LULESH application. Moreover, WHESL's impact on workload performance is
negligible, which, in summary, is unprecedented.

85

CHAPTER

5

CONCLUSION

The extreme scale and heterogeneity of today’s HPC systems pose significant challenges to achieving
effective fault tolerance and deterministic execution for large-scale applications and workflows.
Failure to address these challenges results in resource wastage, increased work loss, and inadequate
support for time-critical workloads. In this thesis, we demonstrated that these challenges can
be effectively addressed through three orthogonal but complementary solutions that leverage
prioritization, predictability, and scalability across the HPC ecosystem.

First, we identified the limitations of existing failure-aware C/R solutions when failures have
short lead times. Under such conditions, vulnerable nodes in large parallel applications cannot
reliably store their program state to a persistent PFS due to I/O congestion. We further investigated
the performance of state-of-the-art failure-aware C/R solutions under varying lead times to highlight
their shortcomings. To address these limitations, we applied prioritization and coordinated the par-
allel ranks of the application, enabling vulnerable nodes to access the PFS without congestion. We
also integrated complementary techniques, such as live migration, to reduce checkpoint frequency
and overhead. We evaluated our hybrid C/R model against state-of-the-art solutions to measure
its efficiency in terms of application execution overhead under multiple failure distributions. Fur-
thermore, we analyzed the results to explain why the proposed technique outperforms previous
approaches and discussed the trade-offs associated with these solutions.

86

Next, we investigated the challenges of scheduling large-scale workflows on HPC systems under
deadline constraints. We found that the non-deterministic resource allocation policies adopted
by HPC system schedulers prevent cloud-bursting-based solutions from effectively allocating and
utilizing on-demand resources, resulting in resource idleness and missed deadlines. To address
this issue, we explored predicting resource availability on HPC systems to construct predictive and
timely workflow execution schedules that enable users to trade off cost and timeliness. Execution of
such schedules is supported by techniques including dynamic resource allocation based on the
workflow schedule, preloading of input data, and backing up HPC resources with cloud capacity. We
evaluated and analyzed our framework against state-of-the-art solutions and found that it achieves
higher task completion rates and cost savings, incurs lower impact on HPC production jobs, and
exhibits low cost estimation error.

Finally, we developed a distributed exception management framework to address inefficient
failure recovery caused by a lack of coordination among different entities in HPC systems. Without
coordination, components such as workflow management systems and HPC schedulers detect and
recover from failures independently. This can result in redundant recovery actions, resource wastage,
and, in the worst case, data corruption or catastrophic failures. Our solution, WHESL, coordinates
disparate components of the HPC ecosystem, mitigates redundant recovery actions through failure
isolation, and provides scalable and portable fault tolerance.

Overall, we show that our approaches significantly reduce execution overhead, improve resource
utilization, increase workflow completion rates, and provide reliable guarantees for time-critical
workloads. Through rigorous evaluation and analysis, this thesis establishes that applying prioriti-
zation, predictability, and scalability to resource management is essential for resilient and efficient
execution on next-generation HPC systems and provides practical foundations for future HPC

workflow and system designs. In summary, we have empirically shown that our hypothesis holds.

87

[al.16]

[al.19]

[al.22a]

[al.22b]

[al.22c]

[al.18a]

[al.15]

[al.18Db]

[al.21a]

[al.23]

[al.20a]

[al.17]

BIBLIOGRAPHY

al.,, A. Gupta et. “Evaluating and Improving the Performance and Scheduling of HPC
Applications in Cloud”. IEEE Transactions on Cloud Computing 4.3 (2016), pp. 307-321.

al., B. Yadu et. “Parsl: Pervasive Parallel Programming in Python”. 28th ACM International
Symposium on High-Performance Parallel and Distributed Computing (HPDC). 2019.

al.,, C. Huang et. “DADP: Dynamic abnormality detection and progression for longitudi-
nal knee magnetic resonance images from the Osteoarthritis Initiative”. Medical Image
Analysis (2022), p. 102343.

al., C. Misale et. “Towards Standard Kubernetes Scheduling Interfaces for Converged
Computing”. Driving Scientific and Engineering Discoveries Through the Integration
of Experiment, Big Data, and Modeling and Simulation. Cham: Springer International
Publishing, 2022, pp. 310-326.

al., D.]. Milroy et. “One Step Closer to Converged Computing: Achieving Scalability with
Cloud-Native HPC”. 2022 IEEE/ACM 4th International Workshop on Containers and
New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-HPC). 2022,
pp. 57-70.

al., D. Ahn et. “Flux: Overcoming Scheduling Challenges for Exascale Workflows”. 2018,
pp. 10-19.

al,, E. Deelman et. “Pegasus, a workflow management system for science automation”.
Future Generation Computer Systems 46 (2015), pp. 17-35.

al,, E. Deelman et. “The Future of Scientific Workflows”. Int. J. High Perform. Comput.
Appl. 32.1 (2018), 159-175.

al,, J. L. Green et. “Molecular characterization of type I IFN-induced cytotoxicity in
bladder cancer cells reveals biomarkers of resistance”. Molecular Therapy-Oncolytics
23 (2021), pp. 547-559.

al., L. Ward et. “Cloud Services Enable Efficient AI-Guided Simulation Workflows across
Heterogeneous Resources”. 2023 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 2023, pp. 32-41.

al., N. Besaw et. “Cluster system management”. IBM Journal of Research and Develop-
ment64.3/4 (2020), 7:1-7:9.

al., P Di Tommaso et et al. “Nextflow enables reproducible computational workflows”.
Nature biotechnology 35.4 (2017), pp. 316-319.

88

[al.20b] al., P A. Ewels et. “The nf-core framework for community-curated bioinformatics pipelines”.
Nature biotechnology 38.3 (2020), pp. 276-278.

[al.21Db] al,, R. E da Silva et. “A Community Roadmap for Scientific Workflows Research and
Development”. 2021 IEEE Workshop on Workflows in Support of Large-Scale Science
(WORKS). 2021, pp. 81-90.

[Alb12] Albrecht, M. et al. “Makeflow: a portable abstraction for data intensive computing on
clusters, clouds, and grids”. Proceedings of the 1st ACM SIGMOD Workshop on Scalable
Workflow Execution Engines and Technologies. SWEET ’12. Scottsdale, Arizona, USA:
Association for Computing Machinery, 2012.

[All12] Allen, B. et al. “Software as a service for data scientists”. Commun. ACM 55.2 (2012),
81-88.
[Ass09] Assuncao, M. D. de et al. “Evaluating the cost-benefit of using cloud computing to extend

the capacity of clusters”. Proceedings of the 18th ACM International Symposium on
High Performance Distributed Computing. HPDC ’09. Garching, Germany: Association
for Computing Machinery, 2009, 141-150.

[AWS24] AWS. 2024. URL: https://aws.amazon.com/ec2/instance-types.

[Ball6] Balasubramanian, V. et al. “Ensemble toolkit: Scalable and flexible execution of ensem-
bles of tasks”. 2016 45th International Conference on Parallel Processing (ICPP). IEEE.
2016, pp. 458-463.

[BG11] Bautista-Gomez, L. et al. “FTI: High Performance Fault Tolerance Interface for Hybrid
Systems”. Supercomputing. 2011.

[Beh20] Behera, S. et al. “Orchestrating Fault Prediction with Live Migration and Checkpointing”.
Symposium on High Performance Distributed Computing. 2020.

[Beh22] Behera, S. et al. “P-ckpt: Coordinated Prioritized Checkpointing”. 2022 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). 2022, pp. 436-446.

[Benl5] Ben Belgacem, M. & Chopard, B. “A hybrid HPC/cloud distributed infrastructure: Cou-
pling EC2 cloud resources with HPC clusters to run large tightly coupled multiscale
applications”. Future Generation Computer Systems 42 (2015), pp. 11-21.

[Benl7] Benoit, A. et al. “Towards Optimal Multi-Level Checkpointing”. IEEE Transactions on
Computers 66.7 (2017), pp. 1212-1226.

[Bhil6] Bhimji, W. et al. “Accelerating Science with the NERSC Burst Buffer Early User Program”.
2016.

89

https://aws.amazon.com/ec2/instance-types

[Bicl2] Bicer, T. et al. “Time and Cost Sensitive Data-Intensive Computing on Hybrid Clouds”.
2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(ccgrid 2012). 2012, pp. 636-643.

[Boul3] Bouguerra, M. et al. “Improving the Computing Efficiency of HPC Systems Using a
Combination of Proactive and Preventive Checkpointing”. International Parallel and
Distributed Processing Symposium. 2013, pp. 501-512.

[Com24] Community, T. G. “The Galaxy platform for accessible, reproducible, and collaborative
data analyses: 2024 update”. Nucleic Acids Research 52.W1 (2024), W83-W94. eprint:
https://academic.oup.com/nar/article-pdf/52/W1/W83/58436305/gkae410.
pdf.

[Com25] Computing, A. Moab HPC Suite. Advanced workload and resource orchestration plat-
form often used with TORQUE/PBS. Adaptive Computing. 2025.

[Cun23] Cunningham, W. et al. AgnostigHQ/covalent: v0.228.0-rc.0. Version v0.228.0-rc.0. 2023.

[Das20a] Das, A. “Aarohi: Making Real-Time Node Failure Prediction Feasible”. International
Parallel and Distributed Processing Symposium. 2020.

[Dasl8a] Das, A. & Mueller, E “Aarohi: Automaton-based Low-cost Online Failure Prediction”. SC
Poster Session. 2018.

[Dasl17] Das, A. etal. “Desh: Deep Learning for HPC System Health Resilience”. SC Poster Session.
2017.

[Dasl8b] Das, A. et al. “Desh: Deep Learning for System Health Prediction of Lead Times to Failure
in HPC”. Symposium on High Performance Distributed Computing. 2018, pp. 40-51.

[Das18c] Das, A. et al. “Doomsday: Predicting Which Node Will Fail When on Supercomputers”.
Supercomputing. 2018, 9:1-9:14.

[Das20b] Das, A. et al. “Aarohi: Making Real-Time Node Failure Prediction Feasible”. International
Parallel and Distributed Processing Symposium. 2020, pp. 1092-1101.

[dev25a] developers, C. Cromwell documentation. Web page.https://cromwell .readthedocs.
io/en/latest/ (accessed 2025-12-08). 2025.

[dev25b] developers, R. RADICAL.AsyncFlow — Workflow & Asynchronous Execution. Web page.
https://radical - cybertools.github.io/radical.asyncflow/ (accessed
2025-12-08). 2025.

[Dev24] Developers, S. 2024. URL: https://xgboost.readthedocs.io/en/stable/.

90

https://academic.oup.com/nar/article-pdf/52/W1/W83/58436305/gkae410.pdf
https://academic.oup.com/nar/article-pdf/52/W1/W83/58436305/gkae410.pdf
https://cromwell.readthedocs.io/en/latest/
https://cromwell.readthedocs.io/en/latest/
https://radical-cybertools.github.io/radical.asyncflow/
https://xgboost.readthedocs.io/en/stable/

[Dil4]

[Di17]

[DN25]

[DN19]

[Fan]

[FDS21]

[FDS23]

[FDS24]

[Gail2a]

[Gail2b]

[Garl8]

[Gei03]

Dj, S. et al. “Optimization of Multi-level Checkpoint Model for Large Scale HPC Applica-
tions”. International Parallel and Distributed Processing Symposium. 2014, pp. 1181-
1190.

Dij, S. et al. “Toward an Optimal Online Checkpoint Solution under a Two-Level HPC
Checkpoint Model”. IEEE Transactions on Parallel and Distributed Systems 28.1 (2017),
pp. 244-259.

Di Natale, E Maestro Workflow Conductor (maestrowf). Version 1.1.11. accessed 2025-
12-07. 25, 2025.

Di Natale, E et al. “A massively parallel infrastructure for adaptive multiscale simula-
tions: modeling RAS initiation pathway for cancer”. Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis. SC
’19. Denver, Colorado: Association for Computing Machinery, 2019.

Fang, A. & Chien, A. A. “How Much SSD Is Useful for Resilience in Supercomputers”.
Workshop on Fault Tolerance for HPC at eXtreme Scale, pp. 47-54.

Ferreira Da Silva, R. et al. “A Community Roadmap for Scientific Workflows Research
and Development”. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United
States). 2021.

Ferreira Da Silva, R. et al. Workflows Community Summit 2022: A Roadmap Revolution.
Tech. rep. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States), 2023.

Ferreira Da Silva, R. et al. Workflows Community Summit 2024: Future Trends and
Challenges in Scientific Worktlows. Tech. rep. Oak Ridge National Laboratory (ORNL),
Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF), 2024.

Gainaru, A. et al. “Fault Prediction under the Microscope: A Closer Look into HPC
Systems”. Supercomputing. 2012.

Gainaru, A. et al. “Taming of the Shrew: Modeling the Normal and Faulty Behaviour
of Large-scale HPC Systems”. 2012 IEEE 26th International Parallel and Distributed
Processing Symposium (2012), pp. 1168-1179.

Garg, R. et al. “Shiraz: Exploiting System Reliability and Application Resilience Char-
acteristics to Improve Large Scale System Throughput”. International Conference on
Dependable Systems and Networks. 2018, pp. 83-94.

Geist, A. & Engelmann, C. “Development of Naturally Fault Tolerant Algorithms for
Computing on 100,000 Processors” (2003).

91

[Geol5]

[Guol4]

[Gup17]

[Her19]

[Hub20]

[Hud22]

[Hwa03]

[IBM24]
[[ni25]

[1sk08]

[Jail5]

[Jan19]

[Jia24]

George, C. & Vadhiyar, S. “Fault Tolerance on Large Scale Systems using Adaptive Process
Replication”. IEEE Transactions on Computers 64.8 (2015), pp. 2213-2225.

Guo, T. et al. “Cost-Aware Cloud Bursting for Enterprise Applications”. 13.3 (2014).

Gupta, S. et al. “Failures in large scale systems: long-term measurement, analysis, and
implications”. Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis. 2017, pp. 1-12.

Herbein, S. et al. “Mcem: Multi-level cooperative exception model for hpc workflows”.
Proceedings of the 9th International Workshop on Runtime and Operating Systems for
Supercomputers. 2019, pp. 27-32.

Huber, S. P. et al. “AiiDA 1.0, a scalable computational infrastructure for automated
reproducible workflows and data provenance”. Scientific Data 7.1 (2020), p. 300.

Hudson, S. et al. “libEnsemble: A Library to Coordinate the Concurrent Evaluation of
Dynamic Ensembles of Calculations”. IEEE Transactions on Parallel and Distributed
Systems 33.4 (2022), pp. 977-988.

Hwang, S. & Kesselman, C. “Grid workflow: a flexible failure handling framework for
the grid”. High Performance Distributed Computing, 2003. Proceedings. 12th IEEE
International Symposium on. IEEE. 2003, pp. 126-137.

IBM. 2024. URL: https://www.ibm.com/docs/en/spectrum-1sf/10.1.0.
Initiative, W. C. 2025. URL: https://workflows.community/.

Iskra, K. et al. “ZOID: I/O-forwarding Infrastructure for Petascale Architectures”. Sym-
posium on Principles and Practice of Parallel Programming. 2008, pp. 153-162.

Jain, A. et al. “FireWorks: a dynamic workflow system designed for high-throughput
applications”. Concurrency and Computation: Practice and Experience 27.17 (2015),
pp. 5037-5059. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
cpe.3505.

Janssen, J. et al. “pyiron: An integrated development environment for computational
materials science”. Computational Materials Science 163 (2019), pp. 24 —-36.

Jiang, Z. et al. “{MegaScale}: Scaling large language model training to more than 10,000
{GPUs}". 21st USENIX Symposium on Networked Systems Design and Implementation
(NSDI 24). 2024, pp. 745-760.

92

https://www.ibm.com/docs/en/spectrum-lsf/10.1.0
https://workflows.community/
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3505
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3505

[Karl3]

[Kok25]

[K6s12]

[Lab25]

[Liul2]

[Liu08]

[LLN24a]

[LLN24b]

[Lua25]

[Lucl4]

[Maol2]

[Mau24]

[Moo10]

Karlin, I. et al. Tuning the LULESH mini-app for current and future hardware. Tech. rep.
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2013.

Kokolis, A. et al. “Revisiting reliability in large-scale machine learning research clus-
ters”. 2025 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE. 2025, pp. 1259-1274.

Koster, J. & Rahmann, S. “Snakemake—a scalable bioinformatics workflow engine”.
Bioinformatics 28.19 (2012), pp. 2520-2522.

Laboratory, I. A. N. Cobalt Scheduler. Resource management and job scheduling system
used on Blue Gene supercomputers; includes multi-dimensional scheduling capabilities.
2025.

Liu, N. et al. “On the role of burst buffers in leadership-class storage systems”. Sympo-
sium on Mass Storage Systems and Technologies (MSST). 2012, pp. 1-11.

Liuy, Y. et al. “An optimal checkpoint/restart model for a large scale high performance
computing system”. International Parallel and Distributed Processing Symposium. 2008,

pp. 1-9.

LLNL. 2024. URL: https : //hpc . 11nl . gov/hardware/ compute - platforms/
lassen.

LLNL. 2024. UrL: https://github.com/LLNL/LAST/tree/main.

Luan, E S. et al. “The streaming batch model for efficient and fault-tolerant heteroge-
neous execution”. arXiv preprint arXiv:2501.12407 (2025).

Lucas, R. et al. “DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC)
Report: Top Ten Exascale Research Challenges” (2014).

Mao, M. & Humphrey, M. “A Performance Study on the VM Startup Time in the Cloud”.
2012 IEEE Fifth International Conference on Cloud Computing. 2012, pp. 423-430.

Maurya, A. et al. “DataStates-LLM: Lazy Asynchronous Checkpointing for Large Lan-
guage Models”. Proceedings of the 33rd International Symposium on High-Performance
Parallel and Distributed Computing. HPDC "24. Pisa, Italy: Association for Computing
Machinery, 2024, 227-239.

Moody, A. et al. “Design, Modeling, and Evaluation of a Scalable Multi-Level Checkpoint-
ing System”. Supercomputing. 2010, 1-11.

93

https://hpc.llnl.gov/hardware/compute-platforms/lassen
https://hpc.llnl.gov/hardware/compute-platforms/lassen
https://github.com/LLNL/LAST/tree/main

[Morl8]

[Nar21]

[Nit04]

[NVI25]

[Oli19]

[ORN20]

[Parl4]

[Par22]

[Rocl5]

[Roy22a]

[Roy22b]

[Satl12]

Moritz, P. et al. “Ray: A distributed framework for emerging {Al} applications”. 13th
USENIX symposium on operating systems design and implementation (OSDI 18). 2018,
pp. 561-577.

Narayanan, D. et al. “Efficient large-scale language model training on gpu clusters
using megatron-lm”. Proceedings of the international conference for high performance
computing, networking, storage and analysis. 2021, pp. 1-15.

Nitzberg, B. et al. “PBS Pro: Grid computing and scheduling attributes”. Grid resource
management: state of the art and future trends. Springer, 2004, pp. 183-190.

NVIDIA. nvidia-resiliency-ext: NVIDIA Resiliency Extension. https://github.com/
NVIDIA/nvidia-resiliency-ext.Accessed: 2025-01-07. 2025.

Oliver, H. et al. “Workflow Automation for Cycling Systems”. Computing in Science &
Engineering 21.4 (2019), pp. 7-21.

ORNL. Spectral Library. 2020. URL: https : //www . olcf . ornl . gov/spectral -
library/.

Parr, T. et al. “Adaptive LL(*) parsing: the power of dynamic analysis”. Proceedings of
the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications. OOPSLA ’14. Portland, Oregon, USA: Association for
Computing Machinery, 2014, 579-598.

Partee, S. et al. “Using Machine Learning at scale in numerical simulations with Smart-
Sim: An application to ocean climate modeling”. Journal of Computational Science 62
(2022), p. 101707.

Rocklin, M. “Dask: Parallel Computation with Blocked algorithms and Task Scheduling”.
Proceedings of the 14th Python in Science Conference. Ed. by Huff, K. & Bergstra, J. 2015,
pp. 130 -136.

Roy, R. B. et al. “DayDream: Executing Dynamic Scientific Workflows on Serverless
Platforms with Hot Starts”. SC22: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. 2022, pp. 1-18.

Roy, R. B. et al. “Mashup: making serverless computing useful for HPC workflows via
hybrid execution”. Proceedings of the 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. PPoPP ’22. Seoul, Republic of Korea: Association
for Computing Machinery, 2022, 46-60.

Sato, K. et al. “Design and modeling of a non-blocking checkpointing system”. Super-
computing. 2012, pp. 1-10.

94

https://github.com/NVIDIA/nvidia-resiliency-ext
https://github.com/NVIDIA/nvidia-resiliency-ext
https://www.olcf.ornl.gov/spectral-library/
https://www.olcf.ornl.gov/spectral-library/

[Sch07]

[Shel9]

[SD23]

[Tea20]

[Tej17]

[Tiw14]

[TCo8]

[Too18]

[Top]

[Vaz18]

[Vivl7]

[Wan17]

Schroeder, B. & Gibson, G. A. “Understanding failures in petascale computers”. Journal
of Physics: Conference Series 78 (2007), p. 012022.

Shen, Z. et al. “Networks for joint affine and non-parametric image registration”. Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 4224-4233.

Sly-Delgado, B. et al. “TaskVine: Managing In-Cluster Storage for High-Throughput
Data Intensive Workflows”. Proceedings of the SC 23 Workshops of the International
Conference on High Performance Computing, Network, Storage, and Analysis. SC-W
'23. Denver, CO, USA: Association for Computing Machinery, 2023, 1978-1988.

Team, S. SimPy: Discrete-Event Simulation for Python. 2020. URL: https://pypi.org/
project/simpy/.

Tejedor, E. et al. “PyCOMPSs: Parallel computational workflows in Python”. The Inter-
national Journal of High Performance Computing Applications 31.1 (2017), pp. 66-82.
eprint: https://doi.org/10.1177/1094342015594678.

Tiwari, D. et al. “Lazy Checkpointing: Exploiting Temporal Locality in Failures to Mitigate
Checkpointing Overheads on Extreme-Scale Systems”. International Conference on
Dependable Systems and Networks. 2014, pp. 25-36.

Tolosana-Calasanz, R. et al. “Exception handling patterns for hierarchical scientific
workflows”. Proceedings of the 6th international workshop on Middleware for grid
computing. 2008, pp. 1-6.

Toosi, A. N. et al. “Resource provisioning for data-intensive applications with deadline
constraints on hybrid clouds using Aneka”. Future Generation Computer Systems 79
(2018), pp. 765-775.

“Top 500 List”. http://www.top500.org/. 2023.

Vazhkudai, S. S. et al. “The Design, Deployment, and Evaluation of the CORAL Pre-
Exascale Systems”. Supercomputing. 2018.

Vivian, J. et al. “Toil enables reproducible, open source, big biomedical data analyses”.
Nature Biotechnology 35.4 (2017), pp. 314-316.

Wan, L. et al. “Optimizing checkpoint data placement with guaranteed burst buffer en-
durance in large-scale hierarchical storage systems”. Journal of Parallel and Distributed
Computing 100 (2017), pp. 16 -29.

95

https://pypi.org/project/simpy/
https://pypi.org/project/simpy/
https://doi.org/10.1177/1094342015594678

[WanO08]

[Wan12]

[Will1]

[Yoo03]

[You74]

[Yul9]

[Zu24]

Wang, C. et al. “Proactive Process-Level Live Migration in HPC Environments”. SC '08:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. 2008.

Wang, C. et al. “Proactive Process-Level Live Migration and Back Migration in HPC
Environments”. Journal of Parallel Distributed Computing72.2 (2012), pp. 254-267.

Wilde, M. et al. “Swift: A language for distributed parallel scripting”. Parallel Computing
37.9 (2011). Emerging Programming Paradigms for Large-Scale Scientific Computing,
pp. 633-652.

Yoo, A. B. et al. “SLURM: Simple Linux Utility for Resource Management”. Job Scheduling
Strategies for Parallel Processing. Ed. by Feitelson, D. et al. 2003, pp. 44-60.

Young, J. W. “A first order approximation to the optimum checkpoint interval”. Commun.
ACM17.9 (1974), pp. 530-531.

Yu, Y. et al. “A Review of Recurrent Neural Networks: LSTM Cells and Network Architec-
tures”. Neural Computation 31.7 (2019), pp. 1235-1270. eprint: https://direct .mit.
edu/neco/article-pdf/31/7/1235/1053200/neco_a_01199.pdf.

71, Y. et al. “Resiliency at Scale: Managing {Google’s}{TPUv4} Machine Learning Super-

computer”. 21st USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 24). 2024, pp. 761-774.

96

https://direct.mit.edu/neco/article-pdf/31/7/1235/1053200/neco_a_01199.pdf
https://direct.mit.edu/neco/article-pdf/31/7/1235/1053200/neco_a_01199.pdf

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	P-ckpt: Coordinated Prioritized Checkpointing
	Introduction
	System Model
	Simulation Framework
	I/O Performance Model
	Impact of Lead Time Variability
	Priority-based Coordinated Checkpointing
	Evaluation
	Related Work
	Summary

	Predictive Execution of Workflows in a HPC+Cloud Environment
	Introduction
	Background
	System Design
	Execution Model
	Design
	Data Preloading Strategy
	Adaptive Resource Scaler (ARS)

	Resource Availability Predictor (RAP)
	Feature Data Set
	Training and Results

	Evaluation
	HPC+CLOUD Simulator
	Results

	Related Work
	Summary

	WHESL: A Distributed Exception Management Framework for HPC
	Introduction
	Background
	Resource and Job Management System
	Workflow Management System

	System Design
	Execution Model
	Failure Model
	Design
	Exception Detection and Isolation
	Coordination and Recovery

	Evaluation
	Managing Disk Quota Exceeded Exception
	Managing Application Crash and Hang Exceptions
	Impact of WHESL on Application Performance

	Related Work
	Summary

	Conclusion
	Bibliography

