
ABSTRACT

BEHERA, SUBHENDU SEKHAR. Adaptive Workflow Scheduling and Fault Tolerance to Manage HPC
Resources. (Under the direction of Dr. Frank Mueller.)

Large-scale AI and high-performance computing systems are breaking barriers with exascale

capabilities that accelerate research and development, driving scientific and technological innova-

tion. However, as scale and heterogeneity increase, failures — and the inefficiencies in recovering

from them — cause substantial loss of computation, degrading both workflow performance and

overall system efficiency. Moreover, even with massive computing capacity, users often struggle to

meet deadlines for large and complex workflows. Consequently, intelligent and adaptive resource

management becomes essential for workflow scheduling and fault tolerance to mitigate work loss,

enable efficient recovery, and ensure timely execution.

This work identifies and leverages opportunities for prioritization, predictability, and scalability

within the HPC ecosystem to alleviate these challenges. We integrate these principles into three

adaptive and complementary solutions across the HPC software stack. First, our predictive, failure-

aware Checkpoint/Restart model mitigates the limitations of short failure lead times by prioritizing

processes within an application, thereby improving efficiency. Second, we introduce a workflow

scheduling framework driven by resource availability prediction that overcomes the shortcomings

of traditional cloud bursting approaches and enables deterministic workflow execution. Finally, we

leverage the existing scalable scheduling techniques for workflow management that support efficient

and coordinated recovery from failures while reducing resource inefficiencies associated with

uniform, isomorphic failure handling. Together, these contributions offer cohesive and synergistic

resource management strategies that advance adaptive workflow scheduling and fault tolerance on

modern HPC systems.
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CHAPTER

1

INTRODUCTION

Adaptive and efficient resource management techniques are critical to achieving resilience and de-

terministic scheduling on modern large-scale High-performance Computing (HPC) systems. In the

absence of robust resiliency and timely scheduling mechanisms, HPC systems risk underutilization

and inefficient use of compute resources due to failures, as well as an inability to meet deadlines

for time-critical workloads. To highlight these concerns, we identify three key challenges faced by

today’s HPC ecosystem.

Challenge 1: Checkpoint/Restart (C/R) is widely used to enable reliable execution of applica-

tions ranging from exascale simulations to large language model training. When coupled with failure

prediction, C/R can further improve overall execution efficiency. However, existing failure-aware

C/R techniques fall short when handling failures with low lead time. Under high I/O contention,

vulnerable nodes cannot deterministically save state to persistent storage, such as a parallel file sys-

tem. In such scenarios, large-scale applications suffer from computation loss, resulting in resource

wastage.

Challenge 2: Beyond resiliency, efficient resource utilization and predictable performance across

heterogeneous HPC–Cloud systems remain open challenges. Meeting deadlines for data-intensive

workflows is difficult because HPC jobs experience variable queue wait times. Cloud Bursting can

provision additional public-cloud resources to meet demand, but it lacks deterministic scheduling

1



because it depends on local HPC resources that may not be available. Additionally, data movement

latency between HPC and cloud environments becomes a performance bottleneck, leading to

resource idleness and increased cost.

Challenge 3: As workflows grow more complex and distributed, fault tolerance must extend

beyond individual applications to entire workflow ecosystems. Existing fault-tolerance approaches,

such as C/R and resource over-provisioning, perform well for monolithic parallel jobs but fail

to support complex heterogeneous workflows due to limited awareness of the workflow–HPC

hierarchical ecosystem. Workflow management systems orchestrate such workflows but typically

provide only basic fault tolerance, such as job restarts or simple error handling via programming-

language mechanisms. These approaches lack the holistic, system-wide coordination required for

efficient recovery.

To address this diverse set of challenges, we propose the following hypothesis.

Hypothesis: To improve application and system efficiency in the presence of failures and inefficient

recovery, and to ensure the timely execution of workflows, modern HPC systems require intelligent

and adaptive resource management techniques for fault tolerance and scheduling that leverage

prioritization, predictability, and scalability within the HPC ecosystem.

To evaluate this hypothesis, we developed three primary solutions that leverage techniques

such as prioritization, predictability, and scalability within the HPC ecosystem. This thesis is orga-

nized into three main chapters. In Chapter 2, we develop p-ckpt, a novel checkpoint/restart (C/R)

technique driven by a failure prediction model that coordinates distributed processes to prioritize

checkpointing on vulnerable nodes, thereby enabling contention-free access to the parallel file

system (PFS). We further integrate complementary technologies, such as live migration and burst

buffers, into p-ckpt to reduce work loss and improve checkpointing efficiency. Our hybrid p-ckpt

C/R model considers prediction lead time and checkpoint latency to the PFS when deciding on fea-

sible proactive actions, such as proactive checkpointing or live migration. We evaluate our solution

through simulation using six real-world applications on the Summit supercomputer, comparing it

against state-of-the-art approaches in terms of overhead reduction. We assess our C/R models under

multiple failure distributions and analyze the impact of lead-time variability and failure prediction

accuracy. Based on this evaluation, we discuss the trade-offs associated with these models and their

effects on overall application overhead.

In Chapter 3, we present a predictive workflow scheduling approach that enables determin-

istic execution and controlled cost–deadline trade-offs across hybrid environments, providing

reliable guarantees on both cost and deadlines for large-scale workflows. We propose scheduling

data-intensive workflows deterministically over a combined HPC–cloud hybrid environment by

scavenging unused HPC resources. We predict the availability of HPC resources and exploit these

2



predictions to dynamically split resource allocation between unused HPC capacity and cloud on-

demand resources to complete workflows by a given deadline. Deterministic resource allocation

enables preloading of input data for workflow tasks, thereby avoiding execution delays. Furthermore,

we develop an adaptive scaling algorithm that effectively backs up the targeted HPC allocation with

cloud resources to prevent workflow execution delays in the event of inaccurate resource availability

estimation. We evaluate our framework against state-of-the-art solutions based on task completion

rate, impact on HPC production jobs, cost savings, and cost estimation error.

In Chapter 4, we present the Workflow Hierarchy-aware Distributed Exception Management

System (WHESL), a novel solution that standardizes FT specification and manages exceptions

among disparate components in workflows in a coordinated and programmable manner. WHESL

is primarily built on three core components: ESL, an Exception Specification Language that can

succinctly define a rich set of exceptions and relate them to the hierarchy of workflows; EMIL, the

Exception Management and Isolation Layer, which provides exception isolation and coordination

among the components of the workflow execution environment; and ERM, the Exception Resource

Management library that provides advanced recovery mechanisms. Our solution is built on top of

Flux, a next-generation hierarchical resource and job management system, from which we utilize

scalable and nested scheduling capabilities. By evaluating different types of exceptions, we show

that WHESL can significantly extend the traditional HPC FT support for modern workflows, thereby

enabling scalable, usable, and portable fault tolerance on modern HPC systems.
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CHAPTER

2

P-CKPT: COORDINATED PRIORITIZED

CHECKPOINTING

2.1 Introduction

Failures and I/O contention add significant overhead to application execution and become the

key challenge for C/R efficiency [Gei03; Sat12; Sch07; Luc14; Liu12; Isk08]. In past years, significant

progress has been made on failure prediction [Das18b; Das18c; Gai12b; Gai12a], live migration

(LM) [Wan08; Wan12], and Burst Buffers (BBs) utilization [Liu12; Fan] to address the challenges of

fault tolerance and PFS I/O contention. Based on these techniques, many hybrid solutions such

as failure-aware safeguard checkpointing [Bou13; Tiw14], and multi-level C/R by orchestrating

failure prediction, LM, BBs and periodic checkpointing [Beh20] have been proposed. Multi-level

Checkpoint models employ multiple storage layers with different latency to minimize checkpoint

latency while improving system efficiency [Moo10; Di17; Di14]. Safeguard Checkpoint [Bou13] tries

to minimize computation loss by checkpointing just-in-time before an anticipated failure. However,

effectiveness of these failure-aware C/R solutions depends on the accuracy of the failure prediction

model and the length of the lead times to predicted failures. Proactive techniques, such as LM, require

high lead times for a larger memory footprint while safeguard checkpoints require enough lead time

4



to complete a proactive checkpoint until the data is committed to the PFS amid I/O congestion.

Without adequate lead time, an effort to complete the safeguard checkpoint is not guaranteed to

succeed (i.e., complete before the failure) on vulnerable nodes given the unpredictable nature of

I/O completion on large HPC systems. Such challenges require solutions that can effectively meet

the deadline to commit checkpoint data to the PFS on vulnerable nodes. Prioritizing checkpoint

data bleed-off on individual nodes is a promising direction. A filesystem-level implementation of

prioritizing checkpoint data on vulnerable nodes to PFS requires complex changes in the filesystem,

I/O server layer, and interconnect network layer. Further, in a system with a high failure rate, simple

prioritization of an unhealthy node would fail given the Weibull distribution of failure arrival times

on HPC systems [Tiw14].

To address these challenges, we propose a novel coordinated prioritized checkpoint method,

called p-ckpt, that coordinates processes within an application in their effort to store checkpoint

data to the PFS in giving vulnerable nodes higher priority for such actions. The core idea is as follows:

In the event of failure predictions, a p-ckpt request gets initiated by the vulnerable node. It triggers

the checkpointing process to, in the first phase, checkpoint to the PFS on only the vulnerable nodes.

During this time, the healthy nodes await a checkpoint completion notification from vulnerable

nodes to move forward to the next phase, and a new node predicted to fail during this phase gets

queued in the node-local priority queue based on its lead time to failure. Once all the vulnerable

nodes commit their checkpoint data, the remaining nodes commit their checkpoint data to the PFS

in a second phase. Such coordination is facilitated by prioritizing vulnerable nodes based on the

lead time to the predicted failure. A lower lead time implies a higher priority. Further, we incorporate

LM into the C/R model, thereby creating a so-called hybrid p-ckpt. LM is the preferred proactive

choice over prioritized checkpoints as it is cost-effective in terms of network traffic and its ability to

let the application continue execution while LM is in progress [Wan08].

Our multi-level hybrid p-ckpt C/R model for modern HPC systems can benefit in performance

from failure prediction and an analysis model for effective use and coordination of multiple resilience

techniques such as p-ckpt, LM, and periodic checkpoints. Our adaptive C/R model is driven by failure

lead time prediction to select an appropriate proactive action with the smallest possible overhead

in the presence of failures. Desh’s [Das18b] log-based failure chain characterization technique is

utilized to detect instances of likely failures in real-world HPC system logs (three HPC systems) and

their lead time distribution, which provides the means for failure prediction and system failure rate

calculation. LM and p-ckpt checkpoints are integrated into our C/R model to provide just-in-time

mitigation of a predicted failure. The approach is unique in that it selects the best possible actions

dynamically based on the lead time to failure, either via p-ckpt, to checkpoint to the PFS, or via LM

with minimal interruption to application execution. The impact of this trade-off is subject to our
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evaluations.

In summary, we make the following contributions:

•We assess the impact of short lead times to predicted failures comparing existing safeguard

checkpoint and live migration [Bou13; Beh20] solutions.

•We propose a novel checkpoint technique, (p-ckpt), that allows coordination at application-

level to prioritize the saving of state on nodes with imminent health problems to avoid computational

loss due to failures.

•We develop a hybrid p-ckpt C/R model that coordinates fault tolerance techniques of LM

and coordinated prioritized checkpointing while considering the latency of multiple I/O layers for

storing checkpoints, driven by a log-based failure analysis and prediction model to reduce failure

overhead.

•We evaluate the p-ckpt and hybrid p-ckpt C/R models against multiple failure distributions

and measure their effectiveness while assessing sensitivity to lead times to failures. We test their

robustness against failure prediction accuracy. We discuss these evaluations and make suggestions

on their applicability. Further, we evaluate the impact of checkpoint size and LM transfer size on

the performance of LM and p-ckpt models and provide an analytical model.

2.2 System Model

Our work is modeled on an HPC system that resembles the Summit supercomputer architecture.

Each compute node has a BB serving as an intermediate storage device to absorb I/O write bursts

locally. Other HPC architectures historically employed a cluster of dedicated BB nodes, e.g., NERSC’s

Cori [Bhi16]. On Summit, each BB device has 1.6 TB capacity, compared to a 512 GB DRAM size,

with up to 2.1 GB/sec write and 5.5 GB/sec read I/O bandwidth [Vaz18]. BBs assist in reducing

PFS I/O contention in two situations in our C/R model: First, periodic checkpoints are cached on

the BBs and later asynchronously bled off to the PFS. The asynchronous bleed off is optimized by

limiting the number of nodes that transfer data to the PFS at any time. Second, during recovery

from unmitigated failures, only one node, the replacement node, needs to recover checkpoint data

from the PFS. The rest of the nodes recover data from their local BB.

Further, each node has an instance of a fault predictor using the Aarohi [Das20b]model running

on a separate core than the application. Aarohi suggests placing predictors on Hardware Supervisory

System (HSS) that manages a chassis on Cray systems. Their observations are based on the grounds

of application interference from the predictor. However, notifying the prediction handler subsys-

tem/thread on a compute node from a chassis controller can be challenging in terms of latency,

particularly when prediction lead times are in the range of a few seconds. Placing the predictor on
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the node itself eliminates this problem, preferably on a spare core or otherwise by core sharing with

applications. Aarohi itself is a lightweight monitor that predicts a failure by analyzing 18 different logs

within 0.31 msecs on average. Checkpoint data is transferred from BBs to the PFS asynchronously,

e.g., via the Spectral library on Summit [ORN20]. We assume that the integrity of the checkpoint

data stored on local BBs is maintained, and the checkpoint size per node never exceeds the DRAM

or BB size.

Checkpoint Model: Our proactive checkpoint technique (applicable to both p-ckpt and safe-

guard checkpoint) mandates that all the nodes commit their checkpoints to the PFS in the event

of failure prediction, thereby bypassing the BBs. In contrast, periodic checkpoints are staged on

to the BBs first and later drained to the PFS asynchronously. Other strategies have been pursued

in multi-level checkpointing models, such as neighbor checkpointing and local disk/BB check-

pointing [Moo10; BG11]. Evaluating these methods are beyond the scope of this work, but as they

are orthogonal, can themselves benefit from prioritization. Further, we mandate all the nodes in

an application to save their state to avoid application restart and synchronization issues. Thus, if

recovery happens from a non-handled failure, then all the healthy nodes recover checkpoint data,

which was stored in a periodic checkpoint on their local BBs, while the replacement node recovers

from the PFS. If a failure is mitigated with proactive checkpointing, then all the nodes recover from

the PFS.

Failure Model: We make the following assumptions in our failure model:

• Failures can happen at any point in time.

• The impact of failure is limited to a single node.

• Another failure, predicted or not, can occur on a node that already had a previous failure

predicted, but still with some lead time left before the failure is predicted to occur.

The Optimal Checkpoint Interval (OCI) is the near-optimal time gap between two consecutive

checkpoints that aims to lower the checkpoint frequency while minimizing the computation loss

due to failures. Young’s formula [You74] for OCI applies to single-level C/R models. Previous work

by Di et al. [Di14; Di17] and Benoit et al. [Ben17] focused on the optimal checkpoint interval for

multiple types of checkpoints, each of them stored on a separate storage medium. However, our HPC

system model employs intermediate storage devices (BBs in this case) that stage the checkpoints

before being bled off to the PFS asynchronously. Failures during the asynchronous checkpointing

can cause loss of computation performed during the current and previous iterations as shown in

Figure 2.1(B). However, during our evaluation, we found that this asynchronous checkpoint window

is negligible compared to the OCI because of the high performance of the PFS on Summit (see

Section 2.4). So we use Young’s formula in Eq. 2.1 for OCI calculation, where t
o p t
c mp t is the OCI, λ the

failure rate, c the number of compute nodes a job is running on, and t b b
c k p t the time required to
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Figure 2.1 Computation loss upon failure during (A) computation post checkpointing to PFS, (B) asyn-
chronous checkpointing to PFS, and (C) synchronous checkpointing to BB

write one checkpoint to the BBs by a job.

t
o p t
c mp t =

√

√

√2t b b
c k p t

λc
(2.1)

Figure 2.2 Failure prediction lead time distribution
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The OCI in our checkpoint model further includes a rigorous analysis of failures logs. The study

analyzes the system logs collected from three real-world HPC systems from Desh [Das18b] over a

period of six months. Using the Desh approach, the most common sequences of phrases in logs that

may lead to failure are considered. Our assumption in this work is that any sequence of phrases,

so-called failure chains, results in an actual failure. The time difference between the first phrase and

the last phrase in a chain is calculated as the lead time. Figure 2.2 shows the distribution of lead

times as box plots for different failure instances (sequence 1-10), each of which occurs repeatedly in

these logs. Failure sequence ID and the number of occurrences in the logs are on the x-axis. The

y-axis represents the lead time in seconds. Mean lead time is on the left side of each boxplot. We

observe that most failures are bounded by the whiskers, only a few outliers exist, with an exception

of failure sequences 3 and 4. In the following experiments, we consider the actual lead time of any

failure during simulation.

We introduce a parameterσ that represents the percentage of failures that can be predicted with

enough lead time in excess of the time required to migrate a process from a faulty node to a new and

healthy node. By considering aσ percent decrease in the rate of failures, we further improve the OCI.

That meansσ percent of failures can be predicted with a lead time in excess of θ seconds and thus

can be avoided with proactive live migration. We calculate the value θ by assuming that the total

amount of data transferred during live migration is equal to three times the processes’ checkpoint

data and is bounded by RAM size (512 GB). We account for a 3x higher footprint for LM as it migrates

an entire process rather than just a subset of application data. Consider a stencil with a temporal

domain of t-1, t, t+1, i.e., any particle point has 3 values in time (needed by LM whereas p-ckpt

only needs one as others can be recalculated). This approximates the overhead assuming that these

data structures dominate the memory consumption of an application. Note that Eq. 2.1 is used for

the p-ckpt model while Eq. 2.2 is applicable to the hybrid p-ckpt model. We do not incorporate the

percentage of failures handled by p-ckpt in the OCI as they cause the application to recover after

failure. In contrast, with live migration, failures are avoided, i.e., no recovery process is required.

t
o p t
c mp t =

√

√

√
2t b b

c k p t

λc (1−σ)
(2.2)

2.3 Simulation Framework

For evaluating the C/R models developed in this chapter, we rely on simulation. SimPy [Tea20], a

process-based discrete-event simulation framework in Python, is used for developing our simulation

framework. With SimPy, we simulate the time spent during computation, checkpointing to BBs
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Figure 2.3 Simulation framework

and PFS, proactive operations, and inject failure events. Our simulation framework comprises

multiple components (see Figure 2.3). Components boxed with dotted lines run as a SimPy process

during simulation. The boxes with solid lines represent the input to these components. Arrows of

dotted edges indicate either actions or input at runtime, arrows with solid lines are inputs during

initialization time. Each simulated application runs as a SimPy process performing computation

and periodic checkpointing iteratively. The OCI of each application SimPy process is updated

periodically using Eq. 2.1 and Eq. 2.2 to better account for a dynamically changing system failure rate.

The checkpoint period is constant as the applications store checkpoints to BBs while asynchronously

draining them to PFS.

The system and application configuration file contains input describing application characteris-

tics, PFS I/O performance statistics, failure distribution parameters (Table 2.3), and failure analysis

(lead times) in detail. These data are fed into the simulation framework creating the static and dy-

namic components required for the simulation. The failure generation and prediction component

uses the failure distribution parameters to generate one of the failures along with its prediction lead

time using failure analysis described in Section 2.2 that is then injected into an application. For

each failure generation, a node is randomly selected from a uniform probability distribution. The

application on that node gets a failure prediction notification before the actual failure is triggered.

Upon prediction, the application selects one of two proactive actions; which one depends on the

C/R model algorithm being simulated.
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When a failure is injected, the interrupted application uses the SimPy framework’s time mea-

surement APIs and the PFS I/O performance model to determine its state at the time of failure and

calculates the amount of computation loss. Hence, the I/O performance model is an integral part

of our simulation framework, which is described in the following section. Further, we make the

following assumptions in our simulation:

• The rate of failures is lower than the rate of recovery for failed nodes so that reserved nodes are

always available to the resource manager, such as Slurm [Yoo03] or Flux [al.18a].

• No distinction is made between soft failures and hard/node failures, i.e., both are handled

uniformly, except during the recovery process. A failed node is always replaced by a new and healthy

node.

• Checkpointing resembles application-level checkpointing.

2.4 I/O Performance Model

I/O performance is known to be variable due to I/O contention between different jobs. Even on

modern HPC systems, the I/O bandwidth of an application is severely impacted by concurrent I/O

operations performed by other applications. This causes significant variability in I/O performance.

On Summit, IBM’s SpectrumScale G P F S T M PFS handles application I/O using IBM’s G L4T M

Elastic Storage Servers as I/O nodes. The I/O subsystem evaluation in [Vaz18] shows an aggregate

bandwidth of 2.5 TB/sec can be realized. However, the evaluation measures the performance of

the I/O node server. It does not measure the I/O performance realized within an application. The

objective here is to characterize the actual I/O performance seen by an application.

To characterize the I/O performance of the G P F S T M , two experiments are conducted. The first

experiment determines the optimal number of MPI processes that can achieve maximum aggregate

I/O bandwidth on a single compute node. A compute node on Summit has 42 physical cores, which

are evenly distributed over two sockets along with DRAM. This experiment measures the average

I/O bandwidth for different aggregate data transfer sizes over multiple MPI tasks from 1 to 42 in 10

different runs. These MPI tasks are evenly distributed over the two sockets on the compute node and

use POSIX write to transfer data. I/O buffers are flushed via the fsync() call to ensure that the data is

not cached but rather committed to the devices. Figure 2.4 depicts the aggregate I/O bandwidth

(y-axis) for different transfer sizes (x-axis) on curves ranging from 1 to 42 processes. These results

indicate that 8 MPI tasks on a single compute node result in the maximum I/O bandwidth. Hence, 8

MPI tasks are used to store checkpoints in the C/R model.

The second experiment assesses the effect of weak scaling on aggregate I/O bandwidth for

different sizes of aggregate data transfer per node. 8 MPI tasks are used to perform I/O on a node and
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Figure 2.4 I/O performance on single compute node

Figure 2.5 Impact of scaling on I/O bandwidth
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its aggregate bandwidth is averaged over 10 runs. Effectively, the I/O performance of the G P F S T M

parallel file system is modeled. Figure 2.5 shows the effect of scaling (nodes on the y-axis, transfer

size on the x-axis) on aggregate I/O bandwidth (indicated by the heat map). For weak scaling, a fixed

data size (each column) is exposed to an increasing number of nodes. We increase the data size

along the x-axis and construct the I/O performance matrix. In our simulation, this performance

matrix is used to calculate the time required to store checkpoint data in the PFS. Our simulation

is based on the assumption that the aggregate bandwidth of a job is not affected by the I/O traffic

generated by other running applications for now. I/O congestion will add more overhead for the

non-frequent and failure prediction driven proactive checkpoints (safeguard and p-ckpt) as they

checkpoint to the PFS directly, but not for the asynchronous periodic checkpoints from BBs to

PFS resulting in minimal impact on performance overhead across all the C/R models. Adding the

effect of background traffic impacts the checkpoint overhead across all models. For evaluation

purposes, we assume the same performance matrix for the I/O read operations. PFS write achieves

better throughput than read because data is cached. But checkpoints must be committed to the

PFS before recovery. Hence, our I/O experiments use fsync() to purge caches. Further, as stated in

Section 2.2, all nodes recover checkpoint data from BBs, except for the new replacement node in

case of non-handled failures. This reduces PFS reads to a single node and thus no longer results

in PFS contention, i.e., I/O performance is well below the thresholds of the aggregate scenario as

discussed before. So recovery mainly depends on BBs speed, PFS is not the bottleneck.

2.5 Impact of Lead Time Variability

We simulated the execution of six real-world scientific applications listed in Table 2.1 to assess the

impact of prediction lead time variability. Previous works [Wan17; Tiw14] use these application

characteristics with the OLCF’s Titan supercomputer as their platform. Since our experiments are

based on Summit, we scale up the checkpoint size for each application proportionately to the

change in DRAM size using Eq. 2.3.

Si z ene w =
Si z eo l d ∗#N o d e sne w ∗D R AM S I Z Ene w

#N o d e so l d ∗D R AM S I Z Eo l d
(2.3)

To generate failures, we use the Weibull distribution parameters of Table 2.3 for OLCF’s Titan

in place of Summit’s because of unavailability of the latter. A total of 1000 simulation runs were

performed and then averaged.

We performed our analysis using three existing C/R models:
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Figure 2.6 Impact of lead time variability on safeguard checkpointing and LM for application CHIMERA

Figure 2.7 Impact of lead time variability on safeguard checkpointing and LM for application XGC
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Figure 2.8 Impact of lead time variability on safeguard checkpointing and LM for application POP

Table 2.1 HPC workload characteristics

Application
Number of

Nodes

Checkpoint
Size (GB)

on Summit
Computation
Time (hour)

CHIMERA 2,272 646,382 360
XGC 1,515 149,625 240
S3D 505 20,199 240

GYRO 126 197.2 120
POP 126 102.5 480

VULCAN 64 3.27 720
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• Model B: Periodic checkpointing +No prediction (base model);

• Model M1: Periodic checkpointing + Failure prediction & analysis model + Safeguard check-

pointing; and

• Model M2: Periodic checkpointing + Failure prediction & analysis model + Live migration.

Both models M1 and M2 are driven by failure predictions to perform proactive actions to avoid

losses due to failures. Model M2 represents the LM-C/R model [Beh20] and starts the LM process

with adequate time before failure. Model M1 [Bou13]performs just-in-time checkpoints or safeguard

checkpoints before a failure.

Figures 2.6, 2.7 and 2.8 illustrate the impact of prediction lead time variability on the applications

(results for S3D, VULCAN, and GYRO omitted as they behave similarly to POP). The curves represent

the percent change of overhead for each phase of M1 (red) and M2 (blue) relative to the base model

B (y-axis) over percent lead time variation (x-axis). When lead times are varied, failure prediction

timing is impacted. For example, with a 50% increase in lead time, failures are predicted 1.5x earlier

than the original lead times. At 0% (y-axis), the overhead remains unchanged, at 100% the overhead

is completely removed, i.e., higher is better. The phase of each model is indicated by the legend and

defined as follows:

•Checkpoint Overhead: Duration for which application execution is blocked for checkpointing.

•Recomputation Overhead: Duration to recompute the portion of execution that was lost due to

a failure.

•Recovery Overhead: Duration to recover from all failures.

Observation 1: Model M2 shows moderate improvement in reducing resilience overhead when

lead times increase for large applications, but its performance diminishes once lead times are shorter

than their reference values. In contrast, M1 reduces recomputation overhead by a larger amount

than M2, but only for the smallest of applications; other overheads, and recomputation for larger

applications remain unchanged.

For the large applications, CHIMERA and XGC, safeguard checkpoints (M1) do not add any

benefit while they eliminate 85% of recomputation cost for smaller applications (even for a 50%

decrease in lead time) and tolerate the impact of lead time variability. For S3D, in particular, M1’s

recomputation cost reductions gradually decrease from 77% (for 50% increased lead time) to 50%

reductions (for 40% decreased lead times) and evaporates with further decrements in lead times.

Safeguard checkpoints (M1) have no impact on checkpoint and recovery overhead regardless of

application size.
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We observe a more differentiated pattern under model M2. The support of LM in M2 reduces all

types of overheads and changes with lead time variability at different rates depending on application

size. For the largest application, CHIMERA, M2 sees all types of reductions rise by 8-10% (for a 10%

increase in lead times relative to the reference) resulting in 35%-60% savings over the base model, and

then remaining stagnant for longer leads. However, a mere 10% decrease in lead times diminishes all

types of benefits provided by LM in M2. Similarly, for XGC, the second largest application, benefits

for all types of reductions gradually increase with longer lead times, and these benefits rise at a

faster rate than for CHIMERA. With a decrease in lead time, these benefits diminish only after lead

times decrease by 50% or more. For smaller applications, M2 provides consistent reductions in all

types of overheads that are not affected by lead time variability.

To understand the impact of lead time variability on M1 and M2, we define two terms: FT latency

and FT ratio. FT latency is the time required by M1 or M2 to complete its proactive action to mitigate

failures. FT ratio is the ratio of successfully mitigated failures to the total number of failures for

an application. Application size and FT latency are two key factors that impact the performance

benefits in M1 and M2 when lead time is varied. Table 2.2 represents the FT ratio in M1 and M2 for

CHIMERA, XGC, and POP under varied lead times. As application size increases, both M1 and M2

require larger lead times to mitigate failures. So there is a drop in FT ratio for a lead time reference

resulting in decreasing overhead reductions. This drop is also seen with increased reference lead

times. This suggests that both M1 and M2’s FT latencies are too high for large applications. Also, a

decrease in lead time brings the FT ratio for M2 to near zero for large applications (CHIMERA and

XGC) resulting in near-zero overhead reductions. However, since M2’s FT latency is lower than M1’s,

it results in a higher FT ratio in M2 for large applications. In contrast, for smaller applications, the

FT ratios remain similar and unchanged for both M1 and M2.

This experiment illustrates that lead time variability can have a severe impact on failure prediction-

assisted fault tolerance solutions. First, Safeguard Checkpointing (M1) fails at providing any benefits

for large applications and only provides reductions in recomputation overhead for smaller appli-

cations. Second, a small decrease in lead time can reduce the performance benefits of LM (under

M2) for large applications. Given these results, our proposed p-ckpt solution aims to tackle these

challenges of short lead times as described in the following section, followed by an evaluation with

the same experimental methodology as discussed so far.

2.6 Priority-based Coordinated Checkpointing

In this section, we describe the overall design of our priority-based coordinated checkpointing

method, p-ckpt, and the hybrid p-ckpt model. The core idea behind p-ckpt is that it applies coor-
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Table 2.2 FT Ratio for applications under M1 and M2

Lead
Time

Change FT Ratio
CHIMERA XGC POP
M1 M2 M1 M2 M1 M2

+50% 0.007 0.57 0.04 0.83 0.84 0.85
+10% 0.006 0.57 0.04 0.69 0.82 0.85

0% 0.006 0.47 0.04 0.66 0.84 0.85
-10% 0.004 0.04 0.04 0.58 0.83 0.86
-50% 0 0.04 0.009 0.04 0.83 0.85

dination among the nodes within an application before checkpointing to the PFS. It supports the

prioritization of vulnerable nodes during the checkpointing to guarantee them contention-free

access to the PFS. The hybrid p-ckpt model orchestrates p-ckpt with another proactive choice LM.

However, LM is the preferred choice in our C/R model over p-ckpt as it allows the application

with a vulnerable node to continue its execution while its pages are being copied to a replacement

node [Wan08]. Further, checkpointing/restarting (to/from PFS) is more costly than LM in terms of

network traffic for medium to large applications.

Figure 2.9 State diagram of a node in hybrid C/R model
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Figure 2.9 depicts the state transitions of a node in the hybrid p-ckpt model. The square boxes

with solid lines represent different states of a node. The ellipses with dotted transitions represent

notifications as required. The solid arrows represent state transitions. When a failure is predicted, a

node transitions from the normal state of periodic computation and checkpointing to the vulnerable

state. In this state, based on the predicted lead time, a decision is made on the proactive action. If

there is enough time to migrate the process from the vulnerable node to a new and healthy node,

then the live migration process starts. Otherwise, the vulnerable node sends a p-ckpt notification

to all other nodes and the p-ckpt process begins. When a p-ckpt notification is received, healthy

nodes transition to the waiting state and wait for the vulnerable nodes to finish checkpointing to the

PFS. Once the vulnerable nodes finish storing their state to the PFS, they broadcast the pfs-commit

message to all other nodes within the application. When the healthy nodes receive this notification,

they proceed with checkpointing to the PFS. The p-ckpt process is implemented with node-local

priority queues, where vulnerable nodes with lower lead time to failures have higher priority while

all healthy nodes have equal lower priorities. When live migration is in progress and another failure

prediction occurs with lower lead time, live migration is aborted and the p-ckpt process begins (see

state diagram).

P-ckpt performs a few global synchronizations and broadcast operations, which adds perfor-

mance overhead. However, these operations are in the order of microseconds on Summit [Vaz18]. A

global barrier with 2048 nodes takes only ≈8µsecs. We do not account for these small overheads

during simulation. Further, the p-ckpt threads run only when a p-ckpt is taken but otherwise do

not impact applications during execution. LM’s execution interleaves with application execution.

However, the overhead is quite low adding just 0.08-2.98% in runtime during live migration [Wan08].

2.7 Evaluation

The simulator used in Section 2.5 is also used for the evaluation of two new models as below relative

to the same base model B as before:

• Model P1: Periodic checkpointing + Failure prediction & analysis model + p-ckpt.

• Model P2: Hybrid of periodic checkpointing + Failure prediction & analysis model + p-ckpt +

LM.

Model P2 combines two different proactive fault tolerance techniques, LM and p-ckpt. The

objective is to showcase our contributed models’ benefits over fault tolerance models in prior work.
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Figure 2.10 Reduction in overhead for Summit under Titan’s Failure Distribution

No prior work combined M1+M2, and benefits may be limited for large applications (CHIMERA

and XGC) as M1 is ineffective for large applications (see Section 2.5).

Figure 2.10 depicts for each application (x-axis) the overhead of fault tolerance in percent (y-axis)

normalized to the base model (B) with periodic checkpoints (first bar) compared to failure prediction

models M1, M2, P1 (p-ckpt) and P2 (hybrid p-ckpt). All models are annotated with rounded total

overhead (in hours) on top of each bar. To test the robustness of our C/R model, we applied three

different failure distributions from systems referenced in Table 2.3 [Wan17; Tiw14]. Here, we make

the assumption that OLCF’s Titan’s failure distribution applies to Summit, i.e., Figure 2.10 depicts

the overhead distribution for Summit under Titan’s failure distribution.

Observation 2: p-ckpt (P1) and hybrid p-ckpt (P2) help reduce application overhead over the

base model by ≈42%-55% and ≈53%-65% on Summit, respectively.

Table 2.3 Weibull distributions for failure generation

HPC System Shape Scale
LANL System 8 (164 nodes) 0.7111 67.375

LANL System 18 (1024 nodes) 0.8170 6.6293
OLCF Titan (18868 nodes) 0.6885 5.4527
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In related work [Beh20], the LM-C/R model (M2) was guided by failure prediction and reduced

the application overhead by ≈31%-61%. This reduction was due to the assistance of LM. The safe-

guard checkpoint model (M1) by Bouguerra et al. [Bou13]when driven by lead time-based failure

prediction, reduced overall application overhead by≈0-52% without providing any benefits for large

applications. With hybrid p-ckpt, we observe a significantly higher reduction in cost, by ≈53%-65%

(see Figure 2.10), than in [Beh20; Bou13]. The savings can be attributed to a combination of prior-

itized coordinated checkpointing (p-ckpt) against failures with short lead times (model P1) and

lower failure rates due to prediction and successful mitigation via LM (model P2). The assistance of

p-ckpt alone brings a≈42%-55% reduction in application overhead (see Figure 2.10), which is higher

than model M2 for large applications. Table 2.4 represents the FT ratio in P1 and P2 for CHIMERA,

XGC, and POP under varied lead times. As can be seen, the lower FT latency of p-ckpt allows both

P1 and P2 to obtain a higher FT ratio compared to models M1 and M2 (see Table 2.2). Model M1

cannot handle failures with short lead times for large applications with safeguard checkpoints, and

its FT ratio remains near zero. However, p-ckpt successfully handles such failures as it commits the

checkpoint on the vulnerable nodes without any congestion in a prioritized manner. While M2’s

LM yielded an FT ratio of 0.5 and above for the base lead times and above for large applications,

p-ckpt pushed the FT ratio in P1 and P2 even higher, resulting in better overhead reductions. Notice

that the FT ratios for P1 and P2 are almost equal for all the applications. That means both P1 and

P2 can handle an equal amount of faults, but the overhead reduction difference between them is

significant, as discussed later.

Table 2.4 FT Ratio for applications under P1 and P2

Lead
Time

Change FT Ratio
CHIMERA XGC POP
P1 P2 P1 P2 P1 P2

+50% 0.84 0.83 0.85 0.84 0.88 0.86
+10% 0.76 0.76 0.84 0.84 0.87 0.85

0% 0.70 0.69 0.84 0.83 0.86 0.85
-10% 0.67 0.67 0.84 0.84 0.84 0.87
-50% 0.36 0.37 0.84 0.84 0.86 0.86
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The stacked bars break down overhead that can be attributed to checkpointing and, after a

failure, recovery to reload a checkpoint plus recomputation time to catch up with the execution to

the point of failure. Notice that recovery overhead is negligible for all the models except for P1. This

is due to our proactive checkpointing model, where all nodes commit their checkpoint to the PFS

bypassing the BBs unlike regular checkpointing. A mitigated failure by a proactive checkpoint takes

longer to recover, whereas failures unhandled are recovered faster with the assistance of BBs. We

observe that recovery contributes ≈2.5%-6% of total overhead for P1 compared to less than 1% for

other models.

Observation 3: Both p-ckpt and hybrid p-ckpt can tolerate the impact of prediction lead time

variability better than prior models for large applications.

Figure 2.11 Impact of lead time variability on p-ckpt and hybrid p-ckpt for applications CHIMERA

Figures 2.11, 2.12 and 2.13 assess the impact of varied prediction lead time on models P1 and

P2 for all the applications (results for S3D, VULCAN, and GYRO omitted as they behave similarly to

POP) with the same x- and y-axes as in Figure 2.6 before. p-ckpt (P1) does not provide any additional

benefits for recovery and checkpoint overheads like the M1 model (Section 2.5). However, for the

largest application CHIMERA, it produces more recomputation overhead reductions than M2 and

P2 and can tolerate up to a negative 50% change (i.e., reduction) in lead times while still providing

some savings in recomputation relative to the base model due to the prioritization of vulnerable

nodes. In contrast, Model M1 (safeguard checkpoints) does not provide performance benefits for
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Figure 2.12 Impact of lead time variability on p-ckpt and hybrid p-ckpt for applications XGC

Figure 2.13 Impact of lead time variability on p-ckpt and hybrid p-ckpt for applications POP
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CHIMERA, and M2’s benefits diminish when lead time decreases by 10% relative to the reference.

For XGC, P1 nearly eliminates the entire recomputation overhead regardless of lead time variations.

In contrast, M2’s performance benefits diminish with a 50% reduction in lead time while M1 is not

effective at all.

The overhead reduction pattern for checkpointing in model P2 (hybrid p-ckpt) with respect to

lead time changes follows model M2 for both CHIMERA and XGC. The pattern for recomputation

overhead follows M2 largely when lead time increases, but follows P1 when the lead time shrinks.

With the support of coordinated prioritized checkpointing (p-ckpt), P2 achieves a similar recompu-

tation overhead reduction pattern as model P1 gaining a significant advantage over model M2. For

large applications, both models, P1 & P2, not only achieve better recomputation overhead reduc-

tions, but increase their tolerance against prediction lead time variability. Further, because of our

checkpointing model (see Sec. 2.2) in p-ckpt and the recovery process after proactive checkpoints,

reductions in recovery overhead for P2 are not seen for XGC when lead time is less or equal to the

reference. These reductions completely diminish for CHIMERA. Patterns for P1 and P2 for smaller

applications follow M1 and M2, respectively.

Finding: Variability in prediction lead time has a significant impact on the performance benefit of

prediction-based C/R models, and our hybrid p-ckpt model outperforms prior related models under

such circumstances.

Observation 4: p-ckpt is more effective for large applications compared to LM. Higher lead

times favor LM; conversely, when lead times are low, p-ckpt takes over.

Figure 2.14 Difference in LM and p-ckpt FT ratio in P2 model
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Figure 2.14 demonstrates the difference in FT ratio by LM and p-ckpt in percent (y-axis) in model

P2 over lead time variation (x-axis) for all the applications. In this experiment, the lead time variation

range was within (-90%,+90%) expanding the earlier range (-50%,+50%). If the percent difference is

positive, then LM is the dominant proactive choice; otherwise, p-ckpt is more dominant. As can be

seen, for smaller applications, the FT ratio difference between LM and p-ckpt remains consistently

high (above 75%) across the lead time variation range. Since LM is the preferred choice ahead of p-

ckpt and its FT latency is small enough, it can tolerate the lead time changes for smaller applications.

When application size increases, the FT ratio difference between p-ckpt and LM decreases for the

base lead time (0% change in lead time). That means p-ckpt is more effective for large applications

compared to LM because of its lower FT latency. For larger applications, as lead times decrease, the

dominance of p-ckpt as the proactive choice increases. p-ckpt’s dominance over LM is seen earlier

for the largest application like CHIMERA followed by XGC and S3D. As lead time changes become

negative, p-ckpt completely takes over LM before the FT ratio difference reaches zero as lead times

completely diminish.

Observation 5: Under hybrid p-ckpt (P2), checkpoint overhead is reduced by ≈42%-70% across

applications. In contrast, LM (M2) results in reductions of 34% compared to P2’s 42% for the largest

application.

Even though both P1 and P2 yield equal FT ratios (Table 2.4), P2 performs better than P1 in

reducing overhead as LM helps model P2 to reduce checkpoint overhead. There is a negligible

change in time spent in storing checkpoints under model P1 because of the adaptive nature of our

checkpoint model. That means the schedule of checkpoints is variable in our model depending

on the factors such as the time and location of failure prediction, and the proactive action chosen.

For example, the scheduled checkpoint changes due to a p-ckpt triggered by and completed before

a predicted failure. What is more significant is the reduced failure rate resulting from the failure

analysis model, which yields a ≈42%-70% decrease in checkpoint overhead in the hybrid p-ckpt

(P2) model. Further, for the largest application, CHIMERA, P2 reduces checkpoint overhead by

42% compared to just a 34% reduction by M2. Even though LM in both M2 and P2 have the same

configuration, the assistance of p-ckpt helps P2 in completing the execution earlier (2% faster than

M2) and thus reducing checkpoint overhead.

Observation 6: In the presence of frequent faults, applications can suffer higher recomputation

overhead with hybrid p-ckpt compared to p-ckpt.

For all the applications, the recomputation overhead increases under (compare blue bars be-

tween P1 and P2 in Figure 2.10 and Figure 2.15) due to the inclusion of LM and elongated checkpoint

intervals derived from our extended failure analysis model as per Eq. 2.2. The reduced failure rate

increases the optimal checkpoint interval by ≈54%-340%, which indirectly impacts the compu-
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tation losses due to failures that could not be predicted or avoided even if predicted in advance.

The elongated checkpoint interval increases the hours of computation loss when failures are not

proactively avoided. P2 experiences a ≈11%-27% increase in recomputation overhead relative to

the base model when compared to P1. However, P2’s loss in performance benefits is compensated

by the reduced checkpoint overhead. This gives rise to the requirement of a careful selection of the

C/R model for fault tolerance.

Recommendation: Based on the analysis in observations 4 and 6, we suggest that HPC systems

with a high fault rate and low lead times should utilize p-ckpt (P1) for large applications with short

runtimes because of its ability to handle failures with short lead times and reduced computation loss

derived from more frequent checkpointing. In contrast, applications with long runtimes should use

the hybrid p-ckpt (P2), irrespective of size and failure rate, as checkpoint overhead can eclipse the

recomputation overhead.

Figure 2.15 Reduction in overhead for Summit under LANL System 18’s Failure Distribution

Observation 7: Reductions in overheads for model P2 are robust across different Weibull failure

distributions.

Figures 2.15 and 2.16 depict the reduction in overhead on the same x- and y-axes as before

(Figure 2.10), yet for Systems 18 with its failure distribution. The reduction in overhead follows a

similar pattern for all three failure distributions. For LANL System 8, the decrease in overhead is

≈44%-73% while System 18 results in ≈52%-69% reduced overhead. Furthermore, the same pattern
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Figure 2.16 Reduction in overhead for Summit under LANL System 8’s Failure Distribution

of increasing gains with decreasing checkpoint sizes is observed. This result is significant as it

demonstrates that our model is robust and generalizes to other failure distributions. In principle,

our C/R model can be deployed on any HPC system that supports BBs, LM, and failure analysis plus

prediction. It also shows that orchestrating failure prediction within a C/R model to drive decisions

about when and how to checkpoint and when to live migrate reduces the impact of failures and

shortens application execution over simpler failure models.

Observation 8: The larger an application’s checkpoint size is, the larger the advantage of p-ckpt

over LM will be.

As mentioned in Sec. 2.2, we assume that the amount of data transferred for successful LM is

three times that of the checkpoint data size per process. To understand how this factor impacts the

performance comparison of LM (M2) and p-ckpt, we varied the amount of data transfer for LM and

created multiple models designated with M2-*, where * indicates the factor of checkpoint data for

transfer. Figure 2.17 shows the impact of varying transfer size for LM. The horizontal bars represent

overhead reductions (similar to Figure 2.10) for all the models (B, P1, and M2-*) along the x-axis

for three applications on the y-axis. We observe that for large applications (CHIMERA and XGC),

p-ckpt (P1) performs better than LM (M2) overall until the LM transfer size becomes 1x and 2.5x

times the checkpoint size, respectively. For smaller applications, LM always performs better than

p-ckpt. Furthermore, reductions in recomputation overhead for p-ckpt (P1) are significantly larger

than for LM (M2).
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Figure 2.17 Reduction in overhead for LM vs p-ckpt

Based on this analysis, we provide an analytical model to compare LM and p-ckpt. We observe

that LM (M2) reduces checkpoint overhead significantly (Observation 5), whereas p-ckpt (P1) yields

better recomputation reductions than LM (Observation 4). For p-ckpt to perform better than LM,

the difference in recomputation overhead reductions between p-ckpt and LM must be greater than

the checkpoint overhead reduction by LM. This is captured by Eq. 2.4. Notice that we consider the

recovery overhead in model P1 as negligible.

c k p t LM
r e d u c t i o n <

�

r e c o mp P−C K P T
r e d u c t i o n − r e c o mp LM

r e d u c t i o n

�

(2.4)

The first term can be expressed as Eq. 2.5, where the first term represents the total checkpoint

overhead in the base model (B) and the third term represents a fractional reduction in checkpoint

frequency due to LM (see Eq. 2.2).

c k p t LM
r e d u c t i o n =c k p t B

o v e r he a d ∗
�

1−
p

(1−σ)
�

(2.5)

Similarly, r e c o mp P−C K P T
r e d u c t i o n and r e c o mp LM

r e d u c t i o n can be represented as
�

r e c o mp B
o v e r he a d ∗β

�

and
�

r e c o mp B
o v e r he a d ∗σ

�

, respectively.σ and β represent the fraction of failures that can be han-

dled by LM and p-ckpt, respectively, and r e c o mp B
o v e r he a d represents the total recomputation

overhead of model B.
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The right side of Eq. 2.4 can be simplified as r e c o mp B
o v e r he a d ∗

�

β −σ
�

. If we consider a uniform

distribution of lead times of failures, an equal inter-node network bandwidth and single node PFS

write bandwidth (which is the case for Summit with 12.5 GB/sec and 13-13.5 GB/sec, respectively),

then β can be expressed using Eq. 2.6. α is the ratio of LM’s transfer size to checkpoint data size.

β =
α−1+σ
α

(2.6)

Eq. 2.4 can be re-written as

�

1−
p

(1−σ)
�

α−1+σ
α −σ

<
r e c o mp B

o v e r he a d

c k p t B
o v e r he a d

(2.7)

Assuming application overhead is split in half between recomputation and checkpointing, Eq. 2.7

is further simplified to

σ+1

σ+
p

(1−σ)
<α (2.8)

Based on the constraint that the sum of r e c o mp LM
r e d u c t i o n and c k p t LM

r e d u c t i o n must be less than

r e c o mp B
o v e r he a d ,σ< 0.61. Eq. 2.8 suggests thatαmust increase non-linearly asσ grows. Under the

constraints of 0<=σ< 0.61, the LM transfer size to checkpoint size ratio implies 1.04<=α< 1.30

for p-ckpt to perform better than LM.

Observation 9: All models (M1/M2/P1/P2) experience a steady decline in total overhead reduc-

tion as the false negative rate increases. However, LM-supported models (M2/P2) experience larger

declines in recomputation overhead reductions than the safeguard checkpoint and p-ckpt models

(M1/P1).

To observe the impact of false negatives, we kept the false positive rate constant at 18% (see [Das17])

and varied the false negative rate up to 40%. Models M2 and P2 observe a ≈91%-180% and ≈71%-

174% decline in recomputation overhead reduction, respectively, when the false negative rate

reaches up to 40%. However, M1 and P1 observe smaller reductions of ≈48%-54% and ≈35%-40%,

respectively. This means they actually can handle a fewer number of failures with an increasing

false negative rate. LM-assisted models, M2 and P2, overestimate the number of failures they can

handle and keep the checkpoint interval larger than models M1 and P1 (see Eq. 2.2). It confirms our

recommendation in Observation 6 that on failure-prone systems, P1 holds an advantage over P2. To
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improve P2, the failure prediction accuracy factor needs to be included in Eq. 2.2, which is part of

our future work.

Drawbacks: We rely on simulation for evaluating the models as special privileges are required to

reserve nodes on Petascale systems (e.g., Summit) for large-scale experiments. To mitigate this, our

evaluated applications are compute-intensive and use I/O during checkpointing based on the real

machine data from Summit with a validated I/O write performance model [Beh20]. Simulated failures

are based on real-world HPC failure logs [Das18b; Das18c]. Some operations such as synchronization

and broadcast introduce overhead, but these are negligible. A p-ckpt barrier with 2048 Summit

nodes take 8 microseconds. We also ignore the overhead of failure prediction as Aarohi [Das20a]

predicts failures within 0.31 msec.

Feasibility: Utilization of two different proactive options under a single FT model (P2) requires

coordination among multiple software systems like LM, p-ckpt, and periodic checkpointing. Further,

to use a different proactive choice for individual applications, LM requires a global system view

to avoid migrations that can create conflicts. p-ckpt applies to individual applications only by

coordinating its processes. p-ckpt with a global system view is beyond the scope of this work, as is a

complete implementation of the whole system.

2.8 Related Work

Several C/R solutions leverage failure awareness [Bou13; Tiw14; Geo15; Gar18; Wan08; Liu08]. Wang

et al. [Wan08]monitor healthy nodes and migrate processes if the node’s health deteriorates. How-

ever, the evaluation of their model excludes failures and only evaluates the efficiency of the live

migration technique. Bouguerra et al. [Bou13] use proactive checkpoints upon failure prediction

along with preventive checkpoints to reduce computation waste. They use FTI’s [BG11] level 0

checkpointing strategy for proactive checkpoints and regular periodic checkpointing to PFS for pe-

riodic/preventive checkpoints. At level 0, checkpoint data of the failing node is stored on a neighbor

node. Our model, for both p-ckpt and safeguard checkpoint, mandates the checkpoint data of all

the nodes to be committed to PFS. Bouguerra et al. [Bou13]’s proactive checkpointing adds 2%-6%

overhead to checkpoint time, whereas the adaptive nature of our model limits p-ckpt’s overhead

to less than 1%. Further, hybrid p-ckpt reduces the checkpointing overhead by ≈42%-70% due to

reduced failure rate and faster execution completion. Bouguerra et al. [Bou13]’s model relies on the

failed node to restart for recovery purposes, whereas our model utilizes reserved nodes. Bouguerra

et al. [Bou13]’s model achieves a 22% reduction in total overhead due to proactive checkpointing

compared to a ≈53%-65% reduction with our hybrid p-ckpt model. Recomputation overhead re-

duction in Bouguerra et al. [Bou13]’s model is 17%, whereas our model’s impact on recomputation
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overhead is a≈56%-73% reduction. Tiwari et al. [Tiw14] increase the checkpoint interval until failure

and skip selected checkpoints post-failure using a temporal distribution of failures. Our C/R model’s

uniqueness comes from the use of failure prediction that selects the best mitigation action based

on lead time. Further, we developed p-ckpt that replaces proactive checkpoints and improves fault

tolerance for predictions with short lead time, even for large applications. Tiwari et al. [Tiw14]’s eval-

uation platform is based on OLCF’s Titan while ours is on Summit. Their scheme reduces checkpoint

time up to 70%, ours by ≈42%-70%. However, our checkpoint overhead accounts for the commits

to the BBs while theirs commits to the PFS. Further, their recomputation overhead offsets most

of the gains made with checkpoint overhead reductions. In contrast, our model provides more

overhead reductions with less recomputation. George et al. [Geo15] deploy partial replication of

process sets and predict failures to change the replicated process group. Garg et al. [Gar18] exploit

failure locality to schedule applications with higher checkpoint overhead during lower failure rates

and applications with lower checkpoint overhead during higher failure rates. In contrast, our model

relies on dynamically predicted failures. Behera et al. [Beh20] developed a C/R model with live

migration and assessed its benefit under failure prediction. However, their work could not handle

faults with low prediction time. Table 2.5 compares our C/R model with other C/R models and

illustrates the uniqueness and comprehensiveness of our approach in contrast to prior work.

2.9 Summary

We developed a multi-level C/R model that provides fault tolerance by orchestrating failure pre-

diction with proactive actions of coordinated prioritized checkpoints (p-ckpt) and live migration

via prioritization along critical failure paths, which results in reduced application overhead by

≈53%-65% compared to a ≈31%-61% reduction by conventional LM-C/R.

Overall, proactive actions should resort to p-ckpt in an HPC system with short lead times and high

failure rates for short-running, large applications. In contrast, hybrid p-ckpt should be used for long-

running applications, irrespective of application size and system failure rate. Our hybrid p-ckpt’s

coordination of multiple fault tolerance techniques through failure prediction is unprecedented

while providing better tolerance against failures with short lead times.
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CHAPTER

3

PREDICTIVE EXECUTION OF

WORKFLOWS IN A HPC+CLOUD

ENVIRONMENT

3.1 Introduction

Workflows represent a wide array of applications in data analysis, knowledge discovery, and complex

simulations in both Cloud and HPC environments [al.23; al.21b; Roy22a; Roy22b]. Cloud workflows

often handle big data in science and commerce (including many medical applications) while HPC

workflows tend to involve multi-science numerical problems spanning different abstraction levels or

are part of large device experiments, such as high-intensity lasers [She19; al.22a]. Many modern-day

scientific and big data workflows are also growing in scale, resource requirement diversity, and

complexity [al.18b].

Many studies have focused on scheduling workflows on the Cloud with deadline and cost con-

straints. However, data-intensive workflow execution on the Cloud incurs significant monetary cost.

To avoid such a cost, users schedule workflows on HPC systems in multiple ways. Typically, Workflow

Management Systems (WMS) split workflows into tasks and schedule them as individual jobs or
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through executors that already run as jobs while satisfying dependency constraints [al.19; al.17].

However, HPC jobs are delayed when resources are not allocated immediately. Entire workflows

can be scheduled as a pilot job to reduce the wait times for individual tasks, but the larger resource

requirement delays execution startup. We can avoid the startup delay for pilot jobs by scheduling the

pilot job on a reservation with a special privilege, which needs to be approved by the system adminis-

trators and cannot meet the deadline constraint. Further, pilot jobs may cause resource wastage with

over-allocation. Recent works [al.22c; al.22b] in converged computing indicate a growing interest in

utilizing on-demand Cloud resources to address the ever-growing computation demand of HPC

workflows.

Cloud Bursting (CB) is a technique primarily used by private enterprises to scale up resources in

the Cloud on demand, in addition to their own permanent on-premises private Cloud [Guo14]. How-

ever, applying CB to workflow scheduling is different from the traditional CB for Cloud workloads.

Traditional CB usually relies on future workload prediction to allocate or scale additional resources

(bursting) on the Cloud for task offloading. However, this methodology has two drawbacks. First,

HPC system schedulers are complex and employ advanced strategies such as backfilling for better

resource utilization. Predicting workloads only characterizes users’ job submission behavior, not

a system’s scheduling behavior. So task offloading to the Cloud — based on workload behavior —

may not utilize HPC resources optimally as it cannot estimate the resource availability (RA) on an

HPC system from batches of jobs submitted by users with inaccurately estimated job durations. CB

is dependent on workload behavior, such as spikes or drops in user requests, to perform bursting,

assuming dedicated and on-demand local resources, which are not guaranteed on HPC systems.

Second, because of the dynamic generation of input data for workflow tasks and on-the-fly offload-

ing tasks to the Cloud in CB, data needs to be migrated just before execution begins. The lack of

guidance (which and when) for offloading tasks to the Cloud prohibits data from being preloaded

before execution begins.

We contribute a novel combination of HPC and Cloud in a hybrid, orchestrated manner by

splitting computations across domains for a workflow to reduce delays resulting from on-the-fly

data movement. Specifically, we build an execution schedule for a workflow in a HPC+Cloud envi-

ronment by predicting the unused HPC resources complemented by the guaranteed on-demand

Cloud resources to meet the deadline. Concerted deterministic resource allocation and task as-

signment allow better utilization of unused HPC resources and preload the dynamically generated

intermediate input data on HPC and Cloud to avoid execution delays. Further, we use deterministic

resource allocation to compute Cloud cost by considering the required Cloud resources, storage,

and inter-domain data transfer.

We developed an adaptive resource allocation/scaling method to reserve resources both on
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Cloud and HPC before executing a workflow per a schedule. This is accomplished by requesting the

determined number of resources on HPC and Cloud on an hourly basis, with a runtime limit of one

hour, thereby allowing the HPC system scheduler to allocate limited resources instantly, typically

for as many single-node requests as can be accommodated by the back-filling algorithm. These

underutilized resources may otherwise remain idle and are hence considered free in our model.

Without a bounded wait time for HPC resource allocation, we back up the requested HPC resources

with an equivalent redundant allocation on the Cloud to avoid execution delays. As the requested

HPC resources are allocated, the redundant backup Cloud instances are reduced (de-allocated). This

migration of computation from the Cloud back to HPC allows us to limit cost for Cloud resources to

a predictable level while satisfying deadline constraints.

In summary, we make the following contributions:

•We identify contemporary challenges of scheduling large-scale workflows exclusively on HPC

systems and analyze their root causes.

•We propose and develop a novel solution for scheduling large-scale workflows deterministically

in that both cost and deadline can have highly reliable guarantees that can be traded off. This is

accomplished by predicting RA of an HPC system, which facilitates the determination of resource

requirements split between HPC and Cloud for different deadlines and avoids execution delays due

to on-the-fly data movement.

•We developed an elastic resource allocation/scaling algorithm to scale up/down heterogeneous

resources on HPC and Cloud such that HPC resources are backed up by the Cloud to guarantee

deadlines while avoiding RA mispredictions.

•We evaluated our method by developing a simulator for HPC+Cloud hybrid execution. We first

validate our simulator by running a limited number of experiments in an HPC+Cloud setting to

assess its performance. We subsequently use the validated simulation as the cost of Cloud execution

in our runs would be prohibitive for the experiments we conduct. Our evaluation is based on factors

such as meeting deadlines, correct estimation of cost, cost savings, and impact on other production

jobs.

3.2 Background

To investigate the challenges and opportunities in scheduling large-scale workflows, we analyzed

production jobs submitted to the Lassen supercomputer [LLN24a].

Data Collection: Lassen, a Top500 [Top] supercomputer installed at Lawrence Livermore Na-

tional Laboratory (LLNL), comprises 795 compute nodes. Each node is equipped with an IBM Power9

CPU and four NVIDIA V100 GPUs. The job records from the IBM CSM database [al.20a] provide
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(a) Wait time vs Job Size on Lassen (b) Wait time vs Job Run Time

Figure 3.1 Challenges with Large Job Scheduling

detailed information about the job lifecycle, resource utilization, performance statistics, and other

metrics. We used data from two years and two months [LLN24b], which includes production jobs

submitted by real users and subject to the primary allocation algorithm. The jobs are categorized

based on the requested number of nodes: small (1-7), medium (8-63), large (64-256), and DAT (256+).

Notably, Dedicated Access Time (DAT) jobs are exempt from the primary allocation. Instead, DAT

jobs are submitted with special privileges and are scheduled at a predetermined time.

To gain insights into the scheduling challenges, we examined the wait times for all job categories.

Figure 3.1a illustrates the distribution of wait times in minutes for jobs waiting to run. We focused on

jobs with wait times within three days and excluded those outside this range (only 2.2%) to improve

visibility of the plots. The data reveals that DAT jobs have the shortest wait times (quartiles Q1 and

Q3: 0-34) due to their privileged status. Small and medium jobs have wait time quartiles (Q1 and Q3):

0-171 and 0-158, respectively. In contrast, large jobs exhibit the longest wait times with quartiles

(Q1 and Q3): 0-411, primarily due to their increased node requirements and scheduling under the

primary allocation algorithm. Next, we categorized the jobs as SHORT (<2 hours), MEDIUM (2-6

hours), LONG (> 6 hours) according to their requested run-time limits and analyzed their wait times

as shown in Figure 3.1b. We observe that as the requested time limit increases, the wait times also

increase. SHORT and MEDIUM jobs have lower wait times quartiles (Q1 and Q3), i.e., 0-75 and 1-194

minutes, respectively, followed by LONG jobs with quartiles (Q1 and Q3) of 22-359 minutes.

These findings suggest that large jobs submitted without special privileges (non-DAT jobs) face

significant wait times. Large jobs, in terms of both run time limit and requested node size, experience

significantly higher wait times than other job categories. Our scheduling technique considers each
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single node with a one-hour time limit so that jobs can maximize resource allocation on HPC while

offloading required execution to the Cloud. Further, the communication overhead between HPC

and Cloud systems can cause significant delays in application execution [Ben15]. We address these

challenges with our predictive and adaptive execution framework as described next.

3.3 System Design

3.3.1 Execution Model

In our execution model, the workflow tasks are processed on the executors launched by a WMS

or workflow scheduler. Each executor runs on an allocated HPC or Cloud resource and executes

tasks sequentially from an assigned stage in the workflow. Executors are limited to a one-hour

time limit, as jobs with a small runtime limit are more likely to be allocated faster, as shown in

Section 3.2. Before running out of their allocated hour, HPC executors checkpoint their task, where

the checkpoint size is assumed to be equal to the input data size. In contrast, Cloud executors exit

after completion of their current task, even after the one-hour time limit expires. We maintain two

mutually exclusive queues per stage in the workflow: one for HPC and one for the Cloud. The Cloud

and HPC executors pull a task for execution from its assigned stage’s respective queue along with

the required input data location. If the input does not exist in the same domain (HPC or Cloud),

it copies the data before executing. An input data is kept alive on any domain until all the tasks

dependent on the data complete execution. Shared filesystems on both HPC and the Cloud are used

to store the intermediate output files, whereas the final output is stored on the HPC filesystem.

The WMS runs on a reserved node of the HPC system, where we store runtime information

such as task queues, resource allocation details, and the storage location of the task’s outputs. This

information facilitates resource allocation/de-allocation and input data transfer between HPC and

the Cloud.

3.3.2 Design

Figure 3.2 depicts an overview of the design and identifies the different modules of our scheduling

framework and their relationship. Our framework consists of two phases, namely workflow schedule

construction (green) and workflow execution (blue). To build a workflow schedule, our system

needs the workflow’s execution profile and future RA prediction. We assume that the execution

profile is unknown to the user before scheduling. Hence, our framework runs a small-scale dynamic

performance benchmark (DPB) for all the stages in the workflow on the platforms resident on

HPC and Cloud. Next, we predict RA on the HPC system for a deadline using our developed RA
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Figure 3.2 Overall System Design

predictor (RAP) and feed it to the schedule builder (WSB) along with the DPB. The WSB calculates

the additional Cloud resource requirements for each given RA to complete the execution before

a given deadline. We also calculate the associated Cloud cost with each deadline replayed to the

user as information to assist in the tradeoff between deadline and cost. Once the user selects an

execution schedule, execution begins. Our Adaptive Resource Scale (ARS) allocates resources per

the split between HPC and Cloud in the schedule on an hourly basis.

Our framework is built using Parsl [al.19] and Flux [al.18a] for resource allocation and commu-

nication. The Parsl library supports parallelization of Python and Bash functions with multiple

execution models across various platforms, such as an HPC system, Cloud, and a local computer.

We use Parsl to launch task executors on both HPC and Cloud. Flux is a workload and job manage-

ment system that can be nested within another system scheduler or itself at multiple levels while

providing various communication patterns among the instances of Flux. Our scheduler and the

task executors use Flux capabilities to exchange scheduling information and relevant notifications.

Next, we describe various components of our framework and their methodology in detail.

Resource Availability Predictor (RAP): The RAP is an integral part of our scheduling technique.

The RAP takes the HPC system’s job history as input and applies Machine Learning (ML) techniques
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to predict future RA. The output of the RAP is a vector, X , where each element xi represents the

minimum number of unused/free nodes during the i t h hour. End-to-end training and the prediction

procedure are described in Section 3.4.

Dynamic Performance Benchmark (DPB): To estimate the resource allocation split between

HPC and Cloud for a workflow, the WSB needs to know the comparative performance of each

stage on multiple platforms of HPC and Cloud. The DPB provides the required performance model

along with a stage’s input/output size. It is constructed by dynamically running and recording

the performance benchmark for all stages of the workflow on all platforms (including HPC and

Cloud) before completion of either one hour of runtime or 5% of total tasks. Since HPC nodes may

not be immediately available, we continue building the pending HPC benchmarks. However, we

assume a default five-minute execution time for the missing benchmarks in the DPB for the initial

schedule construction and cost estimation. Once HPC nodes are allocated and their performance

benchmarks are constructed, they are integrated into the DPB. We then update workflow schedules

dynamically as discussed later. Since building such a multi-faceted DPB is expensive, we execute

these runs on HPC platform resources [AWS24] listed in Table 3.1. We assume that these are part of

the Cloud along with associated costs.

Cloud Cost Model (CCM): The CCM represents the hourly cost of using on-demand platforms

from a Cloud provider. We use multiple platforms, as shown in Table 3.1 to build the multi-faceted

DPB. Each platform has an associated per-hour cost for running workloads on it. Usually, GPU

platforms have higher per-hour reservation costs compared to CPU-only platforms. The CCM is

static and does not change over time as we use on-demand Cloud resources.

Table 3.1 Cloud Cost Model

HPC
Platform

AWS
Platform

Cost
($/hr) Compute

Epyc Rome c5a.4xlarge 0.616 CPU
Intel Skylake c4.4xlarge 0.796 CPU

Intel Broadwell c5n.4xlarge 0.864 CPU
Nvidia RTX 2060 Super g4ad.4xlarge 0.867 GPU
Nvidia RTX 4060 ti16g g3.4xlarge 1.14 GPU
Nvidia RTX 4060 ti8g g5.xlarge 1.006 GPU

Building Workflow Schedule: Given the RA, CCM, and DPB, the WSB utilizes the following steps
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to build a schedule to meet the required deadline with a targeted task size. The output schedule

contains hourly information about how many resources are required to run the executors on HPC

and Cloud to meet the deadline.

In our execution model, each stage is executed as a bag-of-tasks with input data dependency

between stages. This results in a pipeline execution as seen in Figure 3.3, where a stage’s execution

is comprised of slots from start to end. Stages with parents face a delay in execution start because of

dependencies, e.g., stage j in Figure 3.3. We apply depth-first search to find such delays to decide

the start time for each stage. Further, there are infeasible slots of parent stages whose output tasks

cannot be processed by their children due to a lack of available slots before the deadline, as shown for

stage i. We remove such infeasible slots to determine the end times of each stage and the deadlines.

Figure 3.3 Pipelined execution of the stages in workflow

After deducing the start and end times, the next stage of schedule building is to allocate resources

with constraints in Eq. 3.1 and Eq. 3.2. Eq. 3.1 states that the sum of hourly throughput, T P (p )i , for

each stage, p, in the workflow is greater than or equal to the task size to ensure all tasks are executed

before the deadline D. This is complemented by Eq. 3.2, which ensure that two stages p and q with

data dependency have almost equal hourly throughput so that the task pipeline of the workflow

never remains empty to avoid resource idleness.

∀p ∈W,
D
∑

i=1

T P (p )i ≥N (3.1)

∀p ∈W , ∀q ∈ P a r e n t (p ), T P (p )i ≈ T P (q )i

for i ∈ {1, . . . , D }
(3.2)

To build the schedule for the entire workflow, we start with the stage with the highest Cloud
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cost per Eq. (3.3) to reduce allocation cost by preferring HPC resources. Cloud cost is derived from

the sum of storage, data transfer cost, and the minimum execution cost on all the selected Cloud

platforms, given by set R for stage p per Eq. 3.3.

s t o r a g e _c o s t (p ) + x f e r _c o s t (p ) +min
∀r∈R

e x e c _c o s t (p ) (3.3)

We start with the allocation of HPC throughput (number of slots available times number of nodes

available) on an hourly basis in proportion to nodes in the predicted RA. Let T P H P C
i be the HPC

throughput during the i t h hour and T P H P C be the total throughput available for the costliest stage.

We calculate the hourly throughput target on HPC using Eq. 3.4, where T is the total number of tasks.

If we cannot execute all T tasks solely on HPC, then tasks need to be offloaded to the Cloud. In that

case, we distribute the Cloud throughput (i.e., the remaining tasks beyond the HPC target) among

the hours where the allocated HPC throughput is under-allocated due to a lack of HPC resource

availability. This is driven by our aim to have a balanced throughput during the execution. We skip

the details of the Cloud target distribution for brevity. After the HPC and Cloud throughput targets

are decided, the required amount of resources on HPC and Cloud can be calculated by dividing the

throughput target T P H P C
i by the number of available execution slots during the hour. Specifically,

for Cloud, we choose the most cost-efficient resource from the DPB.

Ta r g e t H P C
i =mi n (T ×T P H P C

i ÷T P H P C , T P H P C
i ) (3.4)

Next, we allocate the targets for the other stages by traversing from the costliest stage and

applying the conditions shown in Figure 3.4. Here, we calculate the throughput targets at the slot

level for the immediate parents and children. In scenario A, a parent stage’s execution slot is longer

than that of its child. The tasks produced by a parent’s slot should be processed next in the child’s

slots, which start executing during the parent’s following slot (color-coded). In scenario B, the parent

stage’s execution slot is smaller than the child’s. In this case, the child’s slots should process all the

tasks produced by the parent’s slots that start during the child’s previous slot.

Figure 3.4 Execution slots and Throughput allocation
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We calculate the hourly throughput by accumulating the throughput from the slots. Based on

the hourly targets, we calculate the required allocation from HPC, if available, and Cloud. The final

step is to combine HPC and Cloud allocations to form the workflow schedule. This method produces

one schedule given the start time and deadline for a workflow.

Cost Estimation: After constructing a schedule, we estimate the cost of workflow execution by

considering Cloud resource reservations in the schedule, deriving the Cloud filesystem operations,

and data transfers between HPC and Cloud. Since HPC execution utilizes only otherwise unused

single nodes via backfilling, its cost is considered free. The Cloud resource reservation cost is the

sum of hourly costs of allocation for all stages in the workflow over the schedule, given the CCM.

Further, we compute the amount of data read and written for the Cloud filesystem due to task

execution. To estimate the data transfers and the associated filesystem operations, we compute

the difference in Cloud throughput and HPC throughput between a stage and its parents. This

gives us the direction and amount of data movement per stage. These calculations are done on an

hourly basis and aggregated to be fed into the CCM model to get a dollar cost quote. The resource

reservation and filesystem costs are modeled based on Amazon EC2 platforms and Amazon’s EFS,

respectively. We only account for Cloud to HPC data movement cost since data movement into the

AWS cloud is free.

3.3.3 Data Preloading Strategy

Our splitting of workflow between HPC and Cloud may result in delayed execution of tasks when

large input data does not reside in the same domain. This results in delayed workflow execution

and increased cost because of resource idleness. As a mitigation, we built an adaptive preloading

strategy to place input data near the targeted computation. To this end, we create the task-to-

domain mapping as soon as a task spawns a stage in the workflow. The task-to-domain mapping

indicates whether a task executes on Cloud or HPC. We rely on the domain’s task load, i.e., task queue

size/number of executors, for a stage to determine the mapping. If the load is less than 1, we map

the task to the corresponding domain. To break ties, we prioritize Cloud to reduce resource idleness

cost and data movement latency, both contributing to execution time savings. After the mapping,

we copy the relevant input data to Cloud or HPC asynchronously without affecting computation.

To facilitate this, we maintain two separate task queues, each for HPC and Cloud per stage in the

workflow. Although the task-to-domain mapping dictates task enqueuing, our strategy is not strict

with respect to the mapping. Idle resources can still execute tasks from the other domain’s queue

when that domain’s load exceeds 1.
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3.3.4 Adaptive Resource Scaler (ARS)

The second phase of workflow execution relies on the ARS to make adaptive and elastic resource

requests for both HPC and Cloud per the workflow schedule selected by the user. The scaling

mechanism of ARS executes at two different configurable intervals: long and short.

ARS at long intervals: ARS requests for resources on HPC and Cloud with a reservation time limit

that is equal to this longer ARS interval based on the schedule constructed using the RA prediction.

When a misprediction occurs, e.g., when over-estimating the available HPC resources, we may miss

the deadline due to a lack of resources. Further, an imbalance in resource allocation for workflow

stages can lead to resource wastage. When HPC resources are requested, there is no guarantee that

they are allocated immediately, unlike Cloud resources with modeled availability at a ≈ two-minute

delay [Mao12]. HPC resources are released automatically, whereas Cloud resources require manual

termination.

ARS at short intervals: To avoid computation shortage from RA misprediction and delayed HPC

allocation, we request additional Cloud allocations on top of the scheduled ones. These excess

Cloud allocations mirror the scheduled HPC allocations at the longer intervals in the schedule. This

allows us to begin the execution of the stages without waiting for HPC resource requests to be met

and allocated. This also addresses the issue of mispredictions that overestimate the available HPC

resources. After scheduled requests are made at longer intervals, ARS executes at short intervals (five

minutes by default) to continuously check if HPC resource requests are allocated. As the requested

HPC allocations are granted, an equivalent amount of additional Cloud resources is released as they

are no longer needed during the remainder of the long interval. This incurs additional up-front

Cloud reservation costs for backing up the HPC allocations in a schedule, yet only for a short time if

HPC resources are granted; any remaining Cloud resources contribute to workflow allocation. This

up-front Cloud cost is subject to evaluation in our study.

Rebalancing Resource Allocation: We also adapt our allocation strategy at long intervals by

rebalancing the resource allocation based on the deficit (if any) on achieved throughput in the

past. We keep track of the targeted throughput and the achieved throughput on an hourly basis and

over-allocate Cloud resources as required.

3.4 Resource Availability Predictor (RAP)

The RAP is the key component that enables elastic workflow scheduling on HPC systems. By pre-

dicting resource availability, RAP constructs a schedule for a given workflow, providing informed

decision-making capabilities regarding resource allocation and estimating the cost of execution. We
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describe the end-to-end build procedure of RAP on the Lassen HPC system, using data collected in

Section 3.2.

3.4.1 Feature Data Set

HPC systems typically distinguish between two primary job classes for scheduling: wait and run.

When a job is submitted, it first enters the wait queue. Once deemed ready to run, the scheduler

removes the job from the wait queue, enqueues it in the run queue, and starts executing it. The wait

queue tracks a job’s requested number of nodes, submission time, and requested hours of runtime.

Similarly, the run queue tracks a job’s allocated number of nodes, execution start time, and time left

to completion. The information in the run queue indicates the current number of nodes running

and those expected to be released soon. Conversely, the wait queue reveals the current and future

demand for nodes. By combining data from both queues, we can predict resource availability on an

HPC system.

We record states of the run and wait queues instead of their complete snapshots, as this was

sufficient in our experiments to make predictions. The captured state of the run queue represents

the number of busy nodes expected to be available in the future. We use a one-dimensional vector

data structure to represent this information up to 64 hours, with a maximum limit based on the fact

that this is the maximum number of hours of any job requested in the data logs collected from the

CSM database (likely also the upper bound per system configuration). The state of the wait queue

represents the number of requested nodes for different hours of runtime. Given a maximum of 64

hours, we represent the state of the wait queue as a one-dimensional vector of length 64.

Example: Consider three jobs waiting in the Wait queue with a descriptor of (jobid, no. of nodes

requested, no. of hours requested):

(job4, 3, 1), (job5, 5, 5), (job6, 10, 2).
Given these jobs, the wait queue state will be [3,10,0,0,5]. Similarly, consider three jobs in

the run queue with a description (jobid, no. of nodes requested, no. of hours remaining):

(job1, 3, 2), (job2, 5, 1), (job3, 10, 5).
Given these jobs, the run queue state will be [5,8,8,8,18] with vector size 64.

The job submission and scheduling on Lassen is managed by IBM’s LSF [IBM24] workload

manager. LSF employs multiple scheduling policies, such as FCFS, Fair Scheduling, Backfill, SLA,

and preemption, to efficiently accommodate users’ resource requests. The Lassen supercomputer

employs fair share-based scheduling that requires user information and their past usage. Since

user information is unavailable, we assume that FCFS (primary) + Backfill (secondary) scheduling

policies are applied to the jobs submitted. We simulate the production jobs history on our HPC
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simulator (see Section 3.5.1) and collect the feature data representing the temporal state of the wait

and run queues. We also use the day of the week and the hour of the day as feature variables during

ML training and prediction. Finally, we apply sampling to the collected feature data set with 30 and

60-minute frequencies.

3.4.2 Training and Results

To predict RA, we apply both time series and regression-based ML techniques to train our prediction

models. Specifically, for time series-based ML, we use the Recurrent Neural Network (RNN)-based

Long Short-Term Memory (LSTM) method [Yu19]. With LSTM, an input sample is comprised of the

history (input steps) of states within the run and wait queues, including the day of the week and the

hour of the day. The output indicates RA for up to 24 hours (output steps). Further, we use different

combinations in a tuple consisting of (resample frequency, training loss function, and optimizer)

during training as shown in Table 3.2.

Table 3.2 LSTM Training Parameters

Parameter Values
Input Steps [6, 12, 18, 24]

Output Steps [6, 12, 18, 24]
Resample Frequency [30, 60] (minutes)

Loss Function [MAPE, RMSE, RMSLE, HUBER]
Optimizer [SGD, ADAM]

We also trained ensembles of Decision Trees (DT) using Gradient Boosting via the XGBOOST

library [Dev24]. XGBOOST parallelizes Gradient Boosting to train ensembles of DTs to improve

performance while scaling. To train the DTs, we first transform the time series input samples into

regression data. We do this by considering a snapshot of the run and wait queue states as an input

sample and RA as an output sample (up to 24 hours). For DTs, we use combinations of output steps,

resample frequencies, and loss functions (without MAPE) from Table 3.2 as training parameters.

To verify the prediction accuracy and compare the ML models, we use Mean Absolute Error

(MAE) as a metric during validation. We consult Lassen’s records of jobs from September 18, 2018,

at 12 PM to November 18, 2020, at 11 AM. We use the records until May 18, 2020, 12 AM (18 months)

for training of the models. The records from May 18, 2020, 12 AM until October 18, 2020, at 12 AM (5
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months) are used for testing, resulting in an 80%/20% split between training and testing data. We

observed that the MAE for LSTM (73.49-92.20) is higher than for DT (51.61-75.07) with the Huber

loss function and a 60-minute resample frequency. Consequently, we choose DTs trained with Huber

as the RA predictor for simulation/validation of our scheduling technique. We re-train the DTs by

concatenating the training and testing data to improve accuracy. We reserve the unseen records

from October 18, 2020, at 12 AM until November 18, 2020, at 11 AM (1 month) for simulation in

Section 3.5.

3.5 Evaluation

3.5.1 HPC+CLOUD Simulator

To evaluate our solution, we developed a simulation framework utilizing Python-based SimPy [Tea20],

a process-based discrete event simulation library. Given the prohibitive cost of conducting extensive

experiments on commercial Cloud resources, we opted for simulation as an alternative. In this

framework, we simulate an HPC system with wait and run queue managed by the FCFS+Backfill

scheduling policy. Further, the task executors (both HPC and Cloud) are simulated using SimPy event

generator functions, which pull tasks from the task queue and simulate the times of (a) execution

derived from the DPB, (b) reading input files, and (c) writing output files. The scheduling algorithm

on our simulator creates resource requests to the HPC scheduler for HPC executors and directly

creates Cloud executors to simulate the execution of a workflow.

AWS Cloud Validation: We validated our simulator by running the OAI Analysis workflow (see

Section 3.5) with our Flux+Parsl scheduling framework on an 80-node HPC cluster and AWS cloud.

We ran the workflow with static resource allocations on the HPC cluster and AWS cloud with input

data preloading support (see Section 3.3.2). We utilized GPUs on the HPC system (NVIDIA RTX 2060

Super) and CPUs on AWS EC2 (c4.large and c4.xlarge). We fed the traces from the execution to our

simulator to run the workflow. Figure 3.5a shows the execution times (y-axis) of the workflow on

the HPC-AWS Cloud hybrid platform and our simulator for task sizes ranging between 50 and 150

(x-axis), with annotations indicating the percentage difference between the two. The results show

that our HPC+Cloud simulator resembles the workflow execution on the HPC-AWS cloud system

with good accuracy.

3.5.2 Results

Experiments are conducted to simulate the HPC+Cloud hybrid execution of two real-world scientific

workflows, OAI analysis and RNASEQ, on Lassen backed up by Amazon AWS cloud. We evaluate
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multiple scheduling algorithms, including ours:

• Pred+Adap: Our new scheduling technique.

• Bicer: [Bic12] This technique dynamically allocates resources on the public Cloud and HPC by

considering unprocessed tasks, data transfer latency, and available HPC nodes. Bicer [Bic12]

developed two algorithms to complete bag-of-task applications either within a given deadline

or a budget constraint. We implemented the algorithm for a given deadline. Bicer requests

HPC nodes with runtime limit equal to the remaining of the deadline.

• Parsl-HPC: [al.19]We also compare it to an HPC-only solution based on Parsl’s execution

model. In this technique, we request a node for one hour runtime limit and assign the node,

when allocated, to an incomplete stage following a topologically sorted order.

OAI Analysis: The Osteoarthritis Initiative (OAI) collected large-scale imaging data to investigate

knee osteoarthritis. We build on developed analysis workflows [She19; al.22a] for the analysis of 3D

magnetic resonance images (MRIs) of the knee, which include imaging data such as segmentation,

thickness measurement, atlas-registration, and 3D to 2D mapping of thickness maps, all based on

the knee MRIs. An input image needs to be processed by all the stages in the workflow, creating a

task per stage. Figure 3.5b shows the DAG (Direct Acyclic Graph) of the workflow along with the

data dependencies among its nodes, and different stages require either CPU or GPU resources for

computation. The blue stages run on CPUs while green ones execute on GPUs.

RNASEQ: RNASEQ is an RNA sequence analysis pipeline [al.20b]. We use data from the bladder

cancer cells study as input [al.21a]. The workflow contains a total of 12 stages, each of which is

executed on a CPU. RNASEQ is larger compared to OAI in terms of the number of stages and

input/output data size.

Both workflows need significant data transfer, with some stages needing input data of size 240

MB and 14.5GB for OAI Analysis and RNASEQ, respectively. The data preloading technique and

dynamic task assignment work together to minimize the impact of data transfer delays.

To simulate workflow execution, we first collected the execution traces on different platforms

(see Table 3.1). On each platform, we process 200 images for OAI Analysis and 100 images for

RNASEQ, and record the execution times of tasks per stage. We use this execution time distribution

to resemble task execution during simulation. Further, we build multiple test cases with different

combinations of the number of tasks, deadlines, and workflow execution start time (see Table 3.3).

For HPC system simulation, we used job records from October 18, 2020, at 12 AM till November

18, 2020, at 11 AM (one month). Since our analysis is based on the distribution of results data, we

primarily use quartiles (Q1,Q3) to describe the quantitative results unless mentioned otherwise.
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(a) AWS Cloud Validation (b) OAI Analysis Workflow

Figure 3.5 Validation and OAI Analysis Workflow

Table 3.3 Test Cases

Workflow Input Sizes Deadlines (hour) #testcases
OAI Analysis 12,000-96,000 6, 12, 18, 24 1,000

RANSEQ 1,000-8,000 6, 12, 18, 24 1,000

Observation 1: Our scheduling technique’s ability to accurately predict RA and make adaptive

resource allocation via backing up HPC allocation on Cloud achieves a high task completion rate

for a given deadline.

To assess the efficiency of our scheduling technique, we compared the task completion rates of

workflow runs. Figure 3.6 depicts boxplots of completion rates in percentage of total number of tasks

(y-axis) for all workflow runs over the different scheduling techniques for the stages (x-axis) in the

workflow. We observe that our scheduling strategy Pred+Adap achieves the highest completion rate

of (97.79%,99.99%) and (94.44%,99.99%) for OAI and RNASEQ, respectively. Our RA prediction-based

scheduling strategy not only estimates the HPC+Cloud resource requirement via RA prediction, but

also handles uncertain delays in resource allocation for HPC with temporary redundant resources

on Cloud, which results in a high rate of task completion for the entire workflow, with a few outliers.

Parsl-HPC’s scheduling strategy has the lowest completion rate (0%,100%) and (0%,0%) for OAI and

RNASEQ, respectively, due to a lack of HPC resource availability. Further, Bicer’s scheduling strategy

also exhibits a lower completion rate of (72.1%,93.6%) and (36.01%, 77.77%) for OAI and RNASEQ,

respectively. As Bicer requests longer HPC jobs and lacks the knowledge of the uncertainty of HPC

allocation, it results in lower HPC throughput than required. Further, we avoid resource idleness
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(a) OAI Analysis (b) RNASEQ

Figure 3.6 Task Completion Rate

with our data preloading and resource allocation rebalancing strategies.

To better understand the importance of resource allocation strategy driven by RA prediction,

we analyzed the tasks processed by HPC, Cloud, and Backup HPC allocation. Figure 3.7 shows the

average percentage of total tasks (y-axis) completed by different resource groups in the applied

scheduling techniques for all the stages (x-axis) of a workflow. Bicer’s model can allocate the required

HPC resources to execute the tasks for the initial stages of both workflows, OAI Analysis (first) and

RNASEQ (first three). However, for the later stages, Bicer’s model cannot obtain the necessary

HPC resources, which leads to lower throughput by Cloud resources due to idleness. The incorrect

assumption made by Bicer’s model that the required resources are always available means it cannot

allocate enough HPC resources for all the stages in the workflow. Our Pred+Adap model’s ability to

predict RA yields better HPC resource allocation and adapts well with backup HPC resources.

Observation 2: Estimating RA accurately and backing up HPC resource requirements via Cloud

reservations minimizes the impact on the schedule of HPC production jobs.

To measure the impact of our RA prediction-based hybrid scheduling on production jobs (jobs

other than our backfilled workflow), we assess the change in wait times of the production jobs that

were submitted by other users on Lassen during the execution of our workflow. Figure 3.8 shows the

delays in hours (y-axis) experienced before starting production jobs over different job groups (x-axis)

over all 1000 workflow runs for all the scheduling strategies. A positive value means a production

job was delayed because of resource usage by our workflow. Conversely, a negative value indicates

an earlier start of a production job.

We observe that our scheduling technique Pred+Adap imposes small delays of (0, 0.12) hours in
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(a) OAI Analysis (b) RNASEQ

Figure 3.7 Percentage of tasks completed by resources

most cases on production jobs across all job groups. However, Bicer affects the production HPC

jobs by causing a larger delay of (.23, 0.99) hours for all jobs, as it does not limit the number of HPC

resources due to a lack of RA prediction. Parsl-HPC’s delay impact on production jobs is a little higher

than Pred+Adap with (.08, 0.40) hours. This impact is lower than that of Bicer as we request an HPC

resource only after the previous request is complete, resulting in shorter wait queues. In contrast,

Bicer’s requests for resources with maximum runtime limit (up to the deadline), while we benefit

from our one-hour runtime limit for both Pred+Adap and Parsl-HPC. We also observe that the delay

in start times increases with the node size of production jobs for all the scheduling techniques.

This is because larger jobs like DAT and LARGE are more sensitive to the FCFS + backfilling HPC

scheduling strategy.

Observation 3: We provide cost predictions of workflow execution in the HPC+Cloud hybrid

environment with a mean underestimation of 14.75% and 7.11% for OAI and RNASEQ, respectively.

To measure the accuracy of our cost estimator, we measured the percentage difference between

predicted and actual costs relative to (divided by) actual cost for all workflow runs. A positive value

indicates cost underestimation. In contrast, a negative value indicates cost overestimation. Figure 3.9

shows the distribution of cost error in percentage (y-axis) for all workflow runs. Figure 3.9a provides

the cost estimation error with respect to the workflow deadline. Figure 3.9b depicts results for the

underestimated cost relative to input size. We removed 45 outliers out of 2000 data points for better

visibility of the data.
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(a) OAI Analysis (b) RNASEQ

Figure 3.8 Delay of Production Jobs

Our cost predictor results in errors that most commonly lie between (-7.95%, 38.47%). However,

we observe a cost estimation error of (-6.69%, 44.21%) for RNASEQ compared to OAI’s (-8.22%,

30.38%). Cost underestimation primarily happens because we do not account for the backup HPC

resource allocations on the Cloud. In contrast, cost overestimation is primarily due to overestimating

the Cloud allocation cost that results from an incomplete DPB. For a larger workflow, its DPB

construction may remain incomplete for the stages with a longer execution start. As we assume

a five-minute default execution time for the missing stages (mostly with less than 5 minutes of

execution times) in DPB, we may end up overestimating the cost.

Figure 3.9a shows that the cost estimation error (y-axis) distribution for the OAI Analysis workflow

remains steady as the deadlines become longer (x-axis). However, for RNASEQ, cost overestimation

grows with the deadline. Larger HPC usage due to longer deadlines can also result in cost overestima-

tion when the DPB for the HPC resources is incomplete and Cloud allocation cost is overestimated,

as it happens for RNASEQ. Figure 3.9b indicates that cost estimation error (y-axis) decreases as

input task size increases (x-axis). This is due to the cost of backup HPC resources that we do not

include in our predicted cost. For smaller input task sizes, the predicted dollar cost is so small that it

is often close to the cost of backing up HPC resources on the Cloud (i.e., approaching 100%), which

can be further amplified by data movement cost during execution.

Observation 4: Pred+Adap’s scheduling approach in an HPC+Cloud hybrid environment yields

significant cost savings.

To assess the dollar-cost benefits of our proposed scheduling technique, we compared the cost

of executing a workflow run completely on the Cloud against our Pred+Adap but exclude Parsl-HPC
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(a) Over Deadline (b) Over Tasks Size

Figure 3.9 Difference between Predicted and Actual Costs

since it executes only on HPC. Figure 3.10 shows the distribution of cost savings in dollars (y-axis)

for all workflow runs for different deadlines. A positive value suggests a lower cost for a scheduling

technique compared to Cloud-only scheduling; conversely, a negative value implies a higher cost. As

can be seen, Pred+Adap yields better cost savings with a mean savings of 23.96% and 28.59% for OAI

and NASEQ, respectively, compared to Bicer’s 16.82% and 26.5% for OAI and RNASEQ, respectively.

The higher savings for Pred+Adap culminate from better usage of HPC resources than Bicer. Our

scheduling technique predicts RA to better understand how much Cloud resources will be required

and also addresses the uncertainty in HPC resource allocation with backup resources on Cloud.

Further, we observe that savings increase with longer deadlines as a larger number of unused HPC

nodes (void of dollar cost) is allocated. Overall, from Observations 3 and 4, we deduce that the higher

RA of HPC can yield better cost savings, but can also result in a higher cost overestimation error.

Observation 5: Accurate RA prediction leads to lower cost of backing up HPC resources via the

Cloud.

We back up requested HPC resources via Cloud reservations (see Section 3.3.2) to avoid RA

mispredictions, which may delay workflow execution. To measure the accuracy of our RA prediction,

we calculated the reservation cost of the additional Cloud resources due to backing up delayed

HPC resources. Figure 3.11 shows this backup cost (y-axis) as a percentage of the total Cloud cost.

Figure 3.11a depicts this cost for different deadlines (x-axis) while Figure 3.11b plots the cost over

different input task sizes (x-axis). We observe that the additional backup cost is only ≈0-4% and ≈0-

14% for 75% of the workflow runs for OAI and RNASEQ, respectively. The overall average additional

backup cost is ≈10.5%. This suggests that our HPC resource requests are immediately satisfied
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(a) OAI Analysis (b) RNASEQ

Figure 3.10 Cost Savings

thanks to accurate RA predictions and the lower runtime limit of one hour, which contributes to

a better utilization of the backfilling capacity for the HPC scheduler. Considering this accuracy,

combined with the minimal impact our scavenging method has on production HPC jobs, our RAP

predictor and adaptive scheduler can be deemed highly effective in executing large-scale workflows

in an HPC+Cloud hybrid manner without perturbing normal HPC operations.

We further observe that larger deadlines lead to small increases in backup cost (see Figure 3.11a).

This is due to increased HPC resource usage with longer execution times. The results further indicate

that backup cost decreases as the input size grows (Figure 3.11b). This is due to the increment in

Cloud resource requirements as task sizes become larger, leading to a lower HPC-to-Cloud resource

usage ratio.

Table 3.4 Task completion rates (Q1, Q3) without Data Preloading, Rebalancing and Backup HPC

Model OAI Analysis RNASEQ
Full Model (97.79%, 99.99%) (94.44%, 99.99%)

w/o Data Preloading (93.27%, 99.97%) (85.17%, 99.28%)
w/o Rebalancing (89.11%, 97.15%) (84.11%, 97.3%)

w/o Backup (97.18%, 99.99%) (91.32%, 99.9%)

Observation 6: The importance of techniques such as data preloading, backing up HPC, and
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(a) Backup Cost in % over Deadline Length (b) Backup Cost in % over Tasks Sizes

Figure 3.11 Cost of Backing up HPC in the Cloud

rebalancing resource allocation increases as workflow size grows.

Although our scheduling approach is primarily based on RA prediction, it is supported by

multiple techniques, including data preloading, backing up of HPC resources, and rebalancing of

resource allocation. We performed an ablation study to measure the impact of these techniques on

our model. Specifically, we compare the task completion rates (Q1, Q3) for our full model against

models without one of these techniques. The results, as shown in Table 3.4, show that all the

techniques have a significant performance impact, improving the task completion rate to meet

deadlines. More importantly, the impact of these techniques grows as the workflow size (both node

and data) grows, with lower completion rates of (85.17%, 99.28%), (84.11%, 97.3%) and (91.32%,

99.9%) without data preloading, rebalancing and backup HPC, respectively, for RNASEQ compared

to (93.27%, 99.97%), (89.11%, 97.15%) and (97.18%, 99.99%) for the OAI Analysis workflow. Further,

data preloading and resource rebalancing techniques are more impactful than the backup HPC

technique for both workflows.

Observation 7: Backup resources on Cloud for HPC allocations have minimal impact on task

processing.

To measure the impact of backup resources on the workflow scheduling, we analyze their average

reservation time and the number of tasks processed by them. A backup resource for HPC has an

average reservation time of 0.4 hours (1 hour time limit) and contributes only to 2.7% of total tasks

on average for OAI Analysis. For RNASEQ, the reservation time is 0.5 hours and the processing

contribution is 3.26%. This suggests that our RA prediction is effective in minimizing the impact on

HPC production jobs while providing a higher rate of task completion.
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Observation 8: Our dynamic approach to building performance benchmarks with the DPB is

economical and avoids a bloated budget.

Instead of relying on expensive benchmarks, we built the DPB with a cumulative target of only

5% of total task size or 1 hour of run time, whichever finishes earlier, for all the platforms. The cost

and duration of building the DPB are included in the final cost and the set deadline, respectively.

The average cost of the DPB is only 3.24% and 3.13% for OAI and RNASEQ, respectively. The (Q1,

Q3) values are (.26%, 1.48%) and (0.25%, 1.45%) for OAI and RNASEQ, respectively.

3.6 Related Work

Workflow Management Systems (WMS), such as Pegasus [al.15], Nextflow [al.17], Parsl, and Snake-

make [Kös12], provide support for scaling and scheduling workflows across HPC and Cloud Environ-

ments. While they perform several scheduling optimizations, such as task clustering and data-aware

scheduling, the decision to offload tasks from HPC to Cloud is left to the user’s discretion. WMSs do

not provide insights or heuristics for informed decision-making regarding scheduling and scaling

based on factors such as RA, deadline, and cost.

Several techniques have been developed to schedule workflows in an HPC+Cloud or private-

public Cloud hybrid environment to meet deadlines. Aneka [Too18] and Bicer et al. [Bic12] employ

a dynamic approach where resources are scaled up/down at run time by periodically calculating

available resources from the local cluster, the pending tasks, data coordination overhead and the

required additional resources from Cloud. However, their assumption of on-demand HPC resources

seems unrealistic as it often results in delayed allocation and insufficient computational capacity,

leading to idle Cloud resources and lower completion rates. In contrast, our technique mitigates the

resource availability issue through RA prediction and backing up of HPC resources on Cloud with

temporary (until HPC requests are met) redundancy ensuring the necessary computational capacity

is maintained on both HPC and Cloud platforms. Another difference is that both Aneka and Bicer

overallocate resources to compensate for data movement overhead, whereas our technique applies

data preloading to avoid such overhead, thus not allocating additional Cloud resources.

Guo et al. [Guo14] primarily performs CB on private Cloud by offloading requests to public

Cloud while predicting when the private Cloud is overloaded using a workload forecaster. Further,

it optimizes the cost of offloading by selecting applications with lower Cloud costs and primarily

focuses on resource scaling under high workloads without a deadline constraint for workflows. Their

work does not focus on complex workflows and relies on workload behavior to scale up/down public

Cloud resources on demand. Gupta et al. [al.16] utilizes HPC jobs’ performance metrics and resource

requirements for optimal job placement on HPC and Cloud. Assuncao et al. [Ass09] evaluated the
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cost of using additional Cloud resources to supplement the lack of resources on a local cluster. They

evaluated multiple job placement strategies based on various performance metrics such as job wait

times, deadline violations, and the cost of Cloud. These studies primarily focus on optimizing the

local cluster scheduler by determining the optimal placement (local or cloud) for all jobs on an HPC

system. They do not account for workflows with complex data dependencies or data movement

costs. Additionally, they lack mechanisms for estimating future resource availability and rely on

users to estimate the required resources. In comparison, our work focuses on large-scale workflows

to split them across HPC and Cloud while taking advantage of unused resources on HPC.

Existing studies either do not consider deadline constraints, assume that resources are available

on demand, which is not true in HPC, or do not consider data dependencies between jobs. Therefore,

none of them is directly applicable to solve the deterministic scheduling problem. Deterministic

scheduling of large-scale workflows with deadline requirements has the following requirements:

estimation of required resources, estimation of resource availability, considering data overhead in

case of Cloud offloading, and estimation of cost of execution. Our work satisfies all of them. Table 3.5

compares our work with other models and illustrates the uniqueness of our approach.

3.7 Summary

We identified the challenges of scheduling large-scale workflows with deadlines on HPC systems

instead of solely utilizing costly Cloud systems. A lack of knowledge about future RA and complex

data dependencies in workflows limits the ability of WMS/users to make informed decisions on

scheduling workflows with respect to cost and deadline. To mitigate these challenges, we developed

a novel scheduling framework to orchestrate large-scale workflow execution in an HPC+Cloud

hybrid environment guided by the user’s choice of a schedule. To this end, we developed RAP and

WSB to generate multiple schedules of workflow execution, which helps users make informed

decisions utilizing factors such as cost and deadline. Further, our adaptive scheduler addresses

issues such as misprediction of RA and delayed HPC resource allocation by temporarily backing up

HPC resources on the Cloud. We use simulations to assess our techniques, as actual execution on

Cloud resources would incur prohibitively high costs for our study. The evaluations show that our

scheduling framework yields a mean 98%-99.4% rate of task completion, and with a mean 7.11%

to 14.75% cost estimation error of the final cost of execution in comparison to a mean of 74.77%

to 93.98% and 45.35% to 51.1% task completion rates by Cloud bursting and HPC-only solutions,

respectively. Furthermore, our framework saves cost for more than 75% of diverse workflow runs.

Combining minimal impacts on production jobs and minimal backup cost of HPC resources on the

Cloud, our HPC+Cloud co-scheduling methodology shows good accuracy of our RAP model while
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keeping cost at bay and considering deadlines.
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CHAPTER

4

WHESL: A DISTRIBUTED EXCEPTION

MANAGEMENT FRAMEWORK FOR HPC

4.1 Introduction

Modern HPC systems rely on scale, hierarchy, and heterogeneity in both software and hardware stack

for the reliable and efficient execution of workflows ranging from large-scale scientific simulation

and AI/ML-guided drug discovery to large language model (LLM) training and inference [Mor18;

Lua25; Nar21; DN19]. However, failures continue to be a performance bottleneck for such large-

scale applications as the Mean Time Between Failures (MTBF) is in the order of hours for large

systems [Kok25; Jia24; Zu24; Gup17]. In the era of exascale computing, FT support for such large-scale

workflows presents multiple challenges.

First, the commonly used C/R-based solutions focus narrowly on monolithic parallel applica-

tions [Di17; Sat12; Beh20; Beh22; Mau24]. Workflows are composed of multiple jobs with different

computation abstractions and dependencies. An exception in one of the jobs can have repercussions

in other components of a workflow. Since traditional C/R is primarily designed for MPI-based paral-

lel applications, it cannot address the dependencies and complexities associated with advanced

workflows. Although redundancy can be used with workflows, it is not scalable and efficient. Modern
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HPC systems need FT solutions that handle system complexities and hierarchical dependencies in

workflows.

Second, no WMS currently supports advanced exception management. Any WMS plays a central

role in effectively automating and managing large-scale executions via coordination of complex

tasks such as workflow construction, efficient resource management, reproducible execution, and

monitoring. Such a WMS generally supports FT via automatic job re-execution, workflow check-

pointing or exception handlers in workflow scripts. However, scheduling and execution of workflows

involve multiple independent software entities, e.g., the system scheduler, the WMS itself, individual

jobs, the I/O subsystem, all within a complex (and non-uniform) ecosystem of HPC computing.

Multiple such entities can detect failures in isomorphic form and may take individual actions to

recover. These entities lack knowledge of each other. They do not coordinate to reach a consensus

for efficient recovery. Hence, the resultant state of execution may become either redundant or

non-recoverable. Furthermore, FT solutions provided by a WMS, apart from C/R, are not efficient.

This includes widely used automatic job re-execution, where individual jobs are retried up to a

predefined number of times upon failure. For each restart, a WMS resubmits the failed jobs to the

system scheduler, which adds additional overhead such as requeuing and reallocation of resources.

Also, exception handling via programming, e.g., try...except blocks in Python, requires FT expertise

by application/workflow developers, which is uncommon. Finally, FT is not portable across the

plethora of WMS frameworks available to users. Each WMS provides a different interface for work-

flow construction and FT support. Managing and porting workflows from one to another WMS or

HPC system adds even more overhead. Overall, the HPC ecosystem lacks a common and standard

FT solution compatible with multiple WMS frameworks.

In short, today’s WMS frameworks lack in FT support for scalability, coordination, usability, and

portability on modern HPC systems. We address these gaps via WHESL, a standalone exception

management/runtime system that integrates with WMS frameworks to provide advanced FT solu-

tions for efficient recovery. WHESL’s holistic system and workflow view helps manage exceptions

efficiently, specifically to detect, propagate, and perform recovery by letting users define exceptions

in a programmable fashion. To this end, we isolate exceptions from being detected by different

subsystems to eliminate redundant actions during recovery when taken independently. To achieve

that, we fluxify (schedule tasks via Flux [al.18a] on individual allocations) the jobs submitted to the

system scheduler by the WMS. This allows us to detect and isolate exceptions locally. After isolation,

we propagate the exceptions adhering to the workflow hierarchy and coordinate with multiple

subsystems to ensure efficient and orchestrated recovery. Without WHESL, when an exception

happens, a job fails and may be restarted redundantly by the WMS and the system scheduler with

new allocations. In contrast, with WHESL, the failed jobs are restarted locally whenever possible to
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eliminate the inefficiency due to new resource allocations and the lack of coordination between the

WMS and the system scheduler.

At the core of WHESL lie three modules: ESL, EMIL, and ERM. The ESL module is comprised

of a user interface (UI) supported by a domain-specific language (DSL) that allows users to define

exceptions in terms of detection and recovery. The EMIL module isolates and propagates exceptions

and coordinates recovery among various workflow and system components to provide efficient

recovery, as it avoids redundant recoveries by different workflow and system components. The ERM

library is composed of multiple recovery methods with an HPC resource-centric view that ensures

ease of access and promotes simplicity for users. The ESL and ERM components are implemented as

standalone software packages. In contrast, the EMIL component is built on top of Flux, a hierarchical

and scalable RJMS to take advantage of its scalable and nested scheduling capability.

In summary, we make the following contributions:

•We identify and discuss the gaps present in the current Fault Tolerance systems for workflows

that need to be addressed.

•We propose, design, and develop a novel Exception Management System, WHESL, that can

efficiently recover from failures in a coordinated manner, leveraging a scalable and nested scheduler

such as Flux while relying on the workflow and system view.

•We demonstrate two important use cases of managing node failures and disk quota expiry

exceptions via WHESL.

• Experimental results indicate that WHESL provides low recovery time from failures in complex

workflows. It performs well in both failure scaling and task scaling with a ≈1.6%-4.3% and ≈-2.09%-

2.53% mean difference, respectively, against failure-free runs. Further, WHESL causes minimal

interference with application execution.

4.2 Background

Let us we briefly discuss the the relevant entities on HPC systems and their approaches to support

FT for workflows.

4.2.1 Resource and Job Management System

HPC systems are generally managed by a single instance of a central RJMS such as SLURM [Yoo03],

PBS [Nit04], Cobalt [Lab25], or Moab/TORQUE [Com25]. The key responsibilities of the RJMS include

resource allocation, job scheduling, execution, monitoring, failure handling, and recovery. A RJMS

usually supports FT for node failure or non-responsiveness via heartbeat-based monitoring to
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detect and isolate individual faulty nodes and then requeue/reschedule the canceled/failed job on

a new set of healthy nodes. The requeuing policy depends on job submission parameters and the

system site policy. However, this mechanism does not consider the hierarchy or dependency within

workflows, and it ignores how node isolation and job requeue policy may impact the workflow’s other

pending and running jobs with data dependencies. These shortcomings can result in catastrophic

failure for workflows during uninformed recovery attempts.

4.2.2 Workflow Management System

A WMS enables users to automate and orchestrate the execution of multiple tasks that are inter-

connected within a workflow. The WMS is also responsible for efficiently managing the execution

of workflows on heterogeneous HPC systems. To achieve that, a WMS needs to support multiple

FT techniques to provide resiliency for the workflows. Such methods include automatic job restart

upon failures, checkpointing at the workflow level, and error handling via exception handlers in

workflow scripts.

We surveyed the FT support provided by publicly available WMS frameworks. Due to the high

number of available WMS solutions, we narrow our focus to those listed on the WCI (Workflow

Community Initiative) website [Ini25]. WCI is a collaborative hub for driving workflow technologies

and methodologies [FDS21; FDS23; FDS24] to unite the workflow ecosystem. WCI lists 37 WMS

packages, out of which 25 provide WCI-metadata that describes the capabilities of a workflow

(structure, execution, data, and provenance), which indicates how workflows ensure the Findable,

Accessible, Interoperable, and Reusable (FAIR) properties on computational platforms. Furthermore,

we found that 23 of these WMS solutions provide some form of FT (see Table 4.1). Most of the listed

frameworks support custom exception handling via either programming constructs such as try..catch

blocks or domain-specific event hooks, allowing users to steer workflow execution upon failures.

However, managing such execution requires both workflow and FT expertise. Automatic task retry

is also a common feature. Automatic job restart enables individual tasks in a workflow to be re-

executed upon failure up to a given number of reties specified by the user. However, the resources

allocated for the failed task by the system scheduler are released, and the HPC job for the task is

requeued for new resource allocation and scheduling. Furthermore, applying automatic job restart

to all types of failures is inefficient. Workflow checkpointing allows a WMS to save the progress of

the whole workflow so that it does not re-execute the already completed part of the workflow upon

complete workflow restart from failure. However, restarting the entire workflow adds more overhead

due to re-planning of execution, resubmission of jobs that had been running at the time of failure.

Restarting either the entire workflow or a failed job has similar overheads at different scales. Further,
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each WMS requires users to learn and use different FT interfaces to add such support.

Overall, popular WMS frameworks with their existing FT techniques do not focus on the key

challenges presented by scalability, coordination, usability, and portability, all of which are essential

to the ecosystem of HPC for efficiency and resiliency. In contrast, our solution, WHESL, addresses

these challenges as described next.

4.3 System Design

Let us discuss the overall architecture and technique of WHESL along with its core components in

detail.

4.3.1 Execution Model

Workflows can be run as a pilot job by reserving the required amount of resources before execution

begins. In such a scenario, the WMS has dedicated access to on-demand resources for executing

individual tasks and can perform optimizations for better resource utilization. However, resource

underutilization is a common side effect of pilot jobs. For a pilot job, the WMS relies on locally nested

RJMS such as Flux to request resources within the already allocated resources from the top-level

RJMS, e.g., SLURM. To avoid resource underutilization, the WMS dynamically creates workflow tasks

and requests resources as needed. Our solution applies to both scenarios. However, we establish the

dynamic resource allocation model for workflow task execution to show the performance benefits

of our solution.

Further, we assume that workflows are a mix of heterogeneous workloads ranging from single-

node jobs to MPI-based parallel applications. Workflows in general can be represented as a Directed

Acyclic Graph (DAG) displaying a unidirectional data/control flow due to dependencies. However,

we also consider coupled workflows where individual applications are running simultaneously,

producing data and control for each other at run time.

4.3.2 Failure Model

In our model, failures are detectable and manifest at the application level. A failure can be detected

by multiple entities, such as the WMS, RJMS, and an application’s runtime system. We also allow

failures in a task of a workflow to impact the other dependent tasks, resulting in the propagation

of failures. But failures are confined to workflow task execution, only, and are not observed in or

propagated to the application runtime system, system scheduler, and WMS. Further, a failure may
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or may not result in an application crash. After detection, we refer to a failure as an exception, and

our work primarily focuses on managing such exceptions efficiently.

4.3.3 Design

Figure 4.1 Overall WHESL Architecture

Figure 4.1 shows the overall architecture of WHESL, where the blue boxes represent static com-

ponents executed before workflow execution, and the green boxes represent dynamic components

executed at runtime. The dashed boxes represent inputs to or outputs of a subsystem, whereas the

solid boxes represent a subsystem or an application. WHESL has primarily three subsystems: the

WHESL Parser built on top of the ESL, WHESL Isolator, and the WHESL Coordinator; both built as

part of the EMIL. Both the WHESL Isolator and the WHESL Coordinator use the ERM library for

efficient recovery from exceptions.

WHESL Parser: Users provide two input files to the parser to execute the workflow with WHESL-

enabled FT support. The workflow specification/script defines the tasks and their resource require-

ments, input files, and the dependencies among the tasks. The exceptions list provides details about

exceptions and their detection and recovery steps defined using the ESL. The parser primarily has

two responsibilities. It first validates the exception list, which must follow the grammar defined by

the ESL. The ESL is a domain-specific language developed using Antlr4 [Par14]. It provides users

with syntax to define exceptions, their detection, and recovery mechanisms in a declarative manner.

Users also define additional details, such as different entities and resources in the HPC ecosystem.
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Listing 4.1 shows the important rules for representing exceptions, resources, and entities while

omitting the details for brevity. The ESL primarily defines three major constructs: entities, excep-

tions, and resources. Entities are the stakeholders involved in workflow execution, namely, the

WMS, the system scheduler, and the running job. Entities (lines 8-9) are the actors that perform

recovery actions. Resources (lines 10-14) are the objects in an HPC ecosystem on which different

operations, such as add, remove, or replace, are performed to recover from exceptions. With the

exception-related rules in the ESL, users define exceptions (line 16), their detection process (line

17), and a set of operations on different resources by multiple entities (line 18) to recover from them.

The ESL essentially provides mechanisms to describe exception management in a holistic manner.

After validation, the WHESL Parser produces the exception details in JSON format that is ac-

cepted by the WHESL Isolator and WHESL Coordinator to manage them at runtime. The parser

further modifies the workflow specification file or script to embed isolator instantiation code and

identification details for the workflow tasks. We refer to this process as fluxification, which serves as

a means to create a Flux instance first, followed by a WHESL Isolator instance for a newly allocated

job. The parser also preserves all other aspects in a workflow, such as input data, dependencies, and

resource allocation configuration for the tasks. Users submit or run the fluxified file to the WMS to

start execution of the workflows.

Listing 4.1 Rules subset of Exception Specification Language

grammar whesl2 ;

expression : d e c l a r e _ e n t i t y declare_exception_type \
exception_statement EOF ;

exception_statement : declare_resource

| declare_exception

| exception_detect ion

| exception_recovery ;

d e c l a r e _ e n t i t y : ’DECLARE ENTITY ’ e n t i t y _ l i s t ;

entity_name : ’SCHEDULER ’ | ’WMS’ | ’ JOB ’ | ’DEPENDEND_JOB ’ ;

declare_resource : ’DECLARE RESOURCE ’ resource_name \
’ [ ’ r es o ur c e_ o p_ h an d le _ l i s t ’ ] ’ ;

resource_name : ’NODE’ | ’ JOB ’ | ’FILESYSTEM ’ ;

r es o ur c e_ o p_ h an d le _ l i s t : resource_op_handle ( ’ , ’ resource_op_handle ) ;

resource_op_handle : resource_op custom_handler ? ;

resource_op : ’ADD ’ | ’REMOVE ’ | ’REPLACE ’ ;

declare_exception_type : ’DECLARE EXCEPTION_TYPE ’ e x c e p t i o n _ t y p e _ l i s t ;

declare_exception : ’DECLARE EXCEPTION ’ exception_name exception_type \
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’ JOB ’ ’ [ ’ j o b s _ l i s t ’ ] ’ ;

exception_detect ion : exception_detection_log_match

| exception_detection_log_recurring_match

| exception_detection_log_multiple_match

| exception_detection_log_hang

| exception_detect ion_exception ;

exception_recovery : ’EXCEPTION RECOVERY STEP ’ exception_name \
entity_name resource_name ’ . ’ resource_op args ? ;

exception_type : ’ JOB_LEVEL ’ | ’WORKFLOW_LEVEL ’ ;

WHESL Isolator: An isolator instance primarily encapsulates one workflow task at runtime

and performs the following operations. It manages the job’s life cycle in terms of launching the

workflow task as a Flux job, subscribing to the Flux job’s logs to parse for exceptions, performing

relevant exception handling per the exception specification provided by the user, while planning

execution together with the WHESL Coordinator. These operations are performed per workflow

task by one isolator, managing exceptions locally whenever possible. Because the workflow tasks

are fluxified, when the Flux jobs fail, it does not translate to an HPC or workflow job failure, thus

isolating exceptions to the local allocation. When an exception is detected by an isolator, it begins

orchestrating with the coordinator to recover by relaunching the failed job with a new configuration

locally. If an exception cannot be managed locally, then the isolator exits, leading to an HPC or

workflow job failure. Such failures are managed by transforming the local exception to a higher-level

exception and handling it via the coordinator. During initialization, the isolator registers its workflow

task details with the coordinator to build the workflow hierarchy in terms of task dependencies.

WHESL Coordinator: Our framework operates with one instance of the coordinator functioning

as the central management system for exceptions, which can operate on multiple workflow instances.

It primarily coordinates the tasks within a workflow to maintain and update its hierarchy in the

presence of exceptions. To do that, it identifies and stores the workflow hierarchy via both the

workflow specification/script and the runtime workflow task details received from the isolator

at registration time. Using the hierarchy and past exception details, it dynamically updates the

workflow tasks to avoid future failures. Further, it coordinates with other subsystems such as the

WMS and the system scheduler as and when required for exception recovery, following the recipe

defined by the user.

Both the coordinator and isolator are built on top of Flux to leverage its ability for nested/hierar-

chical scheduling within itself and other RJMS frameworks. We leverage Flux’s rich communication

APIs, event and log management features to perform multiple tasks, such as to communicate be-

tween WHESL Isolators and WHESL Coordinator, manage workflow tasks as Flux jobs locally, and
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subscribe to logs from the jobs to parse for exceptions. Next, we discuss the details of detecting and

isolating exceptions using WHESL.

4.3.4 Exception Detection and Isolation

Figure 4.2 Exception Detection in WHESL

Figure 4.3 Inefficient Recovery without WHESL

Figure 4.2 depicts the overall design of the exception detection technique. The oval-shaped

68



Figure 4.4 Exception Isolation with WHESL Isolator

orange objects represent different operations performed by the isolator, and the green colored

square boxes represent running subsystems or applications. The blue-dashed boxes represent input

to a subsystem. WHESL primarily relies on application logs to detect exceptions. However, other

advanced failure detection techniques [Das18b; Das18a] and tools can be easily integrated with via

RPC calls to raise exceptions. The isolators detect exceptions at the workflow task level by parsing

the output logs from individual jobs. An isolator leverages Flux’s built-in features to subscribe to

various events related to Flux jobs, including job state changes and standard I/O logs. The isolator

subscribes to these events, manages the assigned workflow task’s life cycle as a Flux job, and parses

its output logs to detect exceptions. A task’s standard output is usually directed to a log file. By

subscribing to the job’s events, the isolators intercept logs and perform a match with the patterns

provided by users to detect exception conditions. Upon a match, the relevant exception is raised.

Otherwise, the Isolator stores the output to the log file.

The WHESL Parser enables users to match logs with different patterns for exceptions (line 17),

as shown in Listing 4.1. For example, a pattern can be a single log match or multiple log matches,

potentially over a recurring number of retries, which are tracked. These types of matches are needed

when an exception manifests in a job’s output logs. WHESL also provides mechanisms to detect

a hang exception by leveraging the timers provided by Flux. The WHESL Isolator raises a hang

exception when a particular log pattern does not appear within a given time. Finally, WHESL allows

users to raise a new exception that is based on the occurrence of another exception. For example,

users can raise a job failure exception for an MPI task if MPI-related failures happen a certain

number of times. Both isolator and coordinator store past exceptions and evaluate an exception
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to determine whether it transforms to another before raising it to identify the final exception to

handle. Furthermore, users can define different recovery methods for both MPI and job failures

resulting from different MPI failures. WHESL also requires exceptions to be tied to specific tasks in

the workflow per ESL rules (line 16).

Failures can be detected by multiple entities in the HPC ecosystem, such as the WMS, the HPC

system scheduler, and the application runtime system. Upon detection, they perform recovery

independently, which can be either redundant or cause conflicts. Consider the case where a node

becomes non-responsive during an MPI-based workflow task, and the submitted HPC job fails. In

such a situation, the WMS observes that the HPC workflow task has failed and will reschedule it

via the HPC system scheduler per the workflow configuration. Simultaneously, the HPC system

scheduler via the slurmd daemon will detect a node failure and may reschedule the job on a new set

of healthy nodes. Such independent actions are redundant and may result in future catastrophic

failures for reasons such as data overriding or lack of resource availability.

To avoid such problems, we fluxify each workflow task that is scheduled via the system scheduler.

With fluxification, we start a Flux instance as the SLURM/HPC job. The Flux instance spawns a non-

interactive Bash shell, where a WHESL Isolator is executed within it. The isolator receives the actual

workflow task command, the coordinator’s communication address, and other details related to role

and workflow identification. During initialization, isolator and coordinator exchange information

to establish a communication channel and the workflow hierarchy. With fluxification, we achieve

exception isolation where job failures are shielded within the allocation by not emitting the failure

signals to other subsystems (e.g., WMS and system scheduler). Further, the fluxified workflow tasks

are reconfigured in such a way that the system scheduler, even though they identify the node failures

within the allocation, do not resubmit the job automatically. Figure 4.3 and Figure 4.4 show two

contrasting scenarios, without and with WHESL, respectively, depicting how exceptions are isolated.

The squared blocks represent a job or a subsystem. Oval-shaped blocks represent actions. The dotted

directed lines represent control flow during failures, whereas the solid lines represent control flow

during normal operation. In Figure 4.3, upon node and job failures, both the WMS and the system

scheduler get notified, resulting in redundant job resubmissions due to a lack of coordination. In

Figure 4.4, due to the WHESL Isolator, the workflow tasks are run as Flux jobs and managed via local

Flux schedulers. Any job failures are constrained by their isolators to avoid any redundancy. Next,

we discuss the details of the coordinated recovery performed by WHESL.
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4.3.5 Coordination and Recovery

After an exception is detected by an isolator, it initiates recovery by orchestration with the coordinator.

WHESL manages exceptions that are categorized as job-level or workflow-level (line 19 of Listing 4.1).

For job-level exceptions, only the isolator performs the recovery actions. In contrast, both isolator

and coordinator share the recovery actions for workflow-level exceptions.

Since the recovery operations of job-level exceptions are limited to local allocation, the corre-

sponding isolator performs all required actions and notifies the coordinator about the local job

reconfiguration and its restart at the end. The coordinator reconfigures future jobs dependent on

the failed job and sends a restart notification to running dependent jobs along with the reconfigu-

ration details. However, for workflow-level exceptions, additional operations are required by the

coordinator via orchestration. Figure 4.5 depicts the sequence diagram for the coordination and

recovery steps performed by different entities in WHESL.

The following are the sequence of steps for coordinated recovery:

• Step 1: Once the detected exception is determined to be workflow-level type, the isolator

notifies the coordinator to execute its own set of recovery actions and waits for its response.

After the coordinator executes its set of actions, it notifies the Isolator to execute its set of

recovery actions.

• Step 2: The failed workflow task is restarted with a new configuration. The new configuration

is determined via the recovery steps defined in the exception specification file. In this work, we

primarily focus on resource allocation and I/O configurations. Depending on the exception

and the new configuration, the failed workflow task has to be restarted either on the already

allocated previous set of resources, i.e., by restarting the Flux job, or on a newly allocated set

of resources for which an HPC job restart is needed.

• step 3: Next, the coordinator updates the configuration of dependent jobs so that they become

compatible with the restarted job. However, the coordinator does not update the configuration

immediately after exception recovery. Instead, it stores the revised configuration and updates

it when the dependent jobs’ Isolators are initialized. For already running jobs, updates are

performed immediately.

A WMS primarily provides mechanisms to define exception recovery in a declarative format that

are specific to an action, i.e., restart of the failed job. For example, users can declare the number of

times the WMS restarts a job before stopping the workflow execution. Or, if a job failed a certain

number of times, then WMS migrates the job to a different HPC system, per user specification.
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Figure 4.5 Sequence Diagram for Recovery Coordination in WHESL for workflow-level exceptions
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Further, language-based exception handlers lack a generic model that makes it easy for users to

define recovery steps for any exception. To address these challenges, WHESL developed a resource-

centric action model to define recovery steps for any exception. Users can define recovery steps in a

declarative format that is extensible and allows customization.

WHESL’s recovery model is defined in two sections of the ESL in Listing 4.1: resource management

and exception recovery. The resource management section (lines 10-14) lets the user define different

types of resources and the operations that are performed on them. A resource is an object in the

HPC ecosystem that is created or used during workflow execution. For example, the parallel file

system, an HPC job, a node, etc. Exceptions are found in workflow tasks primarily due to failures

in these resources and can be recovered by managing these resources during workflow execution

in a coordinated manner. Managing resources includes operations such as the addition of more

resources, removing the faulty ones, and replacing the faulty resources with healthy ones. For

example, in the case of a node failure, the failed node can be either removed or replaced with a healthy

node in the allocation. Similarly, if the primary filesystem is non-responsive, it can be replaced with

a new one. Furthermore, if the job throughput does not meet the expectation, then additional nodes

can be added to improve processing speed. To support such management, we currently support

three operations: add, remove, and replace. Users can use such resource-operation constructs

to build recovery mechanisms for each exception (line 18) per Listing 4.1. WHESL currently has

support for resources such as job, filesystem, and node with add, remove, and replacement operations.

However, WHESL’s recovery model is extensible as users can add more resources and their supported

operations.

4.4 Evaluation

We demonstrate WHESL’s efficient recovery management for three types of exceptions: Disk Quota

Exceeded (DQE), Application Crash due to node failure, and Application Hang due to communication

failure. We implemented WHESL on top of Flux version 0.60.0. We conducted the experiments on an

80-node institutional cluster featuring heterogeneous mixes of CPUs and GPUs. For application crash

and hang exceptions, we use only CPU (AMD Epyc Rome) platforms with the LULESH application.

For the DQE exception, we use both CPU and GPU (NVIDIA RTX 4060 Ti) platforms as required by

the OAI workflow described next. The HPC cluster also supports two different filesystems: Maestro

WMS manages the execution of both LULESH and OAI on the cluster.
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4.4.1 Managing Disk Quota Exceeded Exception

Workflow: The Osteoarthritis Initiative (OAI) provides a plethora of publicly available imaging data

of knees to investigate the causes of osteoarthritis. The OAI Analysis workflow is built on top of

analysis workflows focusing on 3D magnetic resonance images (MRIs) of the knee [She19; al.22a].

The workflow comprises analysis techniques such as segmentation, thickness measurement, atlas

registration, and 3D-to-2D mapping of cartilage thickness maps for knee MRIs. It is built as a bag-

of-tasks structure consisting of various applications, each identified as a stage in the workflow’s

Directed Acyclic Graph (DAG) (see Figure 4.6). Green stages run on GPUs, while the blue ones utilize

CPUs. Workflow edges represent the data flow. As a bag-of-tasks workflow, each scanned image

needs to be processed by all the stages in the DAG. The OAI Analysis workflow runs on large-scale

HPC systems, generating a significant amount of data. The OAI data repository contains ≈27

million images combining MRI and X-ray scans. Running analysis for 10,000 images will produce

≈3.5 terabytes of output data. For one image, Table 4.2 shows the total number of files and their

cumulative size in megabytes generated per stage of the workflow.

Figure 4.6 OAI Analysis Workflow

Exception: To meet this I/O load, HPC systems usually adopt tier-based storage systems, where

top-tier filesystems provide lower latency and higher bandwidth, but are smaller in terms of capacity.

Further, users are provided a personal disk quota limit on all the filesystems to allow fair use of

resources. Running a large-scale OAI Analysis can create a large amount of data, resulting in an

exception due to exceeding a user’s quota. In such scenarios, workflows should be able to trans-
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Table 4.2 OAI Analysis workflow’s output per image

Pipeline Stage Output Size (MB) # Output Files
preprocess 28.20 1
segmentation 76.80 2
extract_surface_mesh 5.99 1
register_image_to_atlas 234.75 1
warp_mesh 2.09 6

parently switch their output location to another filesystem, possibly a slower, but larger-capacity

one. Furthermore, such changes to input/output paths must be updated for the relevant dependent

stages in a workflow, which the existing WMSes do not support. For example, with the Snakemake

WMS, users can set up rules for job re-execution with a secondary filesystem on disk quota failures

and even move files from the primary to the secondary filesystem. However, this update is not propa-

gated throughout the jobs across the workflow, which will lead to future job failures. Similar behavior

can be achieved with Nextflow, but users need to manually restart the workflow execution. Pegasus

can automatically switch to a secondary filesystem, but cannot migrate already produced files and

requires full re-execution to produce the complete output from the failed job on the secondary

filesystem. In addition, none of the WMSes support such failure recovery for workflows under a

dynamic paradigm where both the producer and consumer applications are running simultaneously

exchanging data and control.

Listing 4.2 Exception Specification for Disk Quota Exceeded

DECLARE ENTITY WMS, JOB

DECLARE EXCEPTION_TYPE WORKFLOW_LEVEL

DECLARE RESOURCE FILESYSTEM [REPLACE ]

DECLARE EXCEPTION DISKQUOTAEXPIRED WORKFLOW_LEVEL JOB [ run−preprocess ]
EXCEPTION DETECTION DISKQUOTAEXPIRED LOG " Disk Quota Expired " stdout

EXCEPTION RECOVERY STEP DISKQUOTAEXPIRED JOB FILESYSTEM . REPLACE \
{ " f i l e s y s t e m " : "< f i l e s y s t e m root>" , " defaultpath " : \
" d e f a u l t path f o r workflow execution " }

EXCEPTION RECOVERY STEP DISKQUOTAEXPIRED WMS FILESYSTEM . REPLACE \
{ " f i l e s y s t e m " : " f i l e s y s t e m root " , " defaultpath " : \
" d e f a u l t path f o r workflow system output " }

Recovery: The desired recovery from a DQE exception is to move data or create soft links from

the partial output of the failed job to the secondary filesystem, and to ensure that all the dependent
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jobs (both running and pending) of the failed job are updated to read outputs of the failed jobs

from the secondary filesystem. To add such recovery support to their workflows, users need to

provide an exception specification file (see Listing 4.2). As per specification (lines 1-3), there are two

entities in the ecosystem, the WMS and jobs, and only the filesystem resource needs to be managed

upon failure. The DQE exception is categorized as a workflow-level exception (line 5) as output

staging areas for both jobs, and the WMS may need to be moved to a secondary filesystem. Here,

the exception is to be detected and recovered only for the run-preprocess job instances. WMSes

such as Maestro and Parsl can parameterize tasks to create multiple instances of them. WHESL

will enable exception management for all the job instances of the task. Further, line 6 shows the

exact log that needs to be matched against to detect this exception. For recovery, WHESL needs

to perform two updates. First, the WHESL Coordinator needs to make sure that the staging area

for the WMS is moved to the new filesystem (line 8). Second, the WHESL Isolator of the failed job

needs to move its output from the older staging area to a new location (line 7). As per the ESL,

exception recovery statements accept user-defined arguments that are passed as key-value pairs to

the resource management operations (line 18, Listing 4.1). In case of an exception due to DQE, the

root of the new filesystem and the path of the current filesystem are passed as arguments to the

handler governing a filesystem resource’s replacement. In our implementation, the replacement

operation automatically creates soft links from the already produced output files within the new

filesystem before it restarts just the job (but not the entire workflow) with a new configuration that

includes the new filesystem path as the output staging area. Further, the Coordinator updates the

running dependent jobs’ configurations immediately by coordinating with their Isolator instances,

including updates of the future dependent jobs’ configuration as and when they are started.

Analysis: To evaluate the impact of integrating WHESL with workflows, we ran the OAI Analysis

workflow with and without WHESL support. In this experiment, the OAI Analysis workflow comprises

five tasks (see DAG in Figure 4.6). Each workflow task was further partitioned into two instances,

each processing 5 MRI-based images from the OAI repository on one node. In short, the workflow

creates 10 HPC jobs, two per workflow task. First, the workflow was integrated with the Maestro

WMS without WHESL support and executed without any failures. We refer to this testcase as the

Baseline execution. Next, we scaled the number of DQE failures from 20% to 100% for the jobs in

the workflow while executing with WHESL support. That means for each HPC job, the DQE failure

was induced and then recovered by WHESL. Each testcase was executed five times, and without

any resource allocation delay, as only 2-4 nodes were required for the whole workflow execution

at any point in time. We compare the distribution of makespan for each testcase to analyze the

efficiency of WHESL’s exception management. Figure 4.7 depicts the makespan for all the testcases.

As can be seen, the additional recovery time due to failures remains almost constant with increasing

76



number of failures. When failures are induced, WHESL’s support helps complete execution with

an additional ≈1.6%-4.3% overhead even when every file access for writing results in an exception

once for each job. This suggests that WHESL can provide robust FT against false failure detections.

Figure 4.7 Impact of WHESL during Failure scaling without any queue wait times for jobs

To compare WHESL’s recovery with the methods from existing WMSes, we introduced the

additional overhead of waiting in the queue for HPC job submission. This is the wait time for

the HPC jobs before the HPC RJMS grants the requested resources to begin their execution. With

traditional recovery in WMSes, jobs are re-executed via resubmission of a failed job as a new job to

the RJMS. This additional overhead is considered every time an HPC job is submitted. To model

the wait queue for small jobs (in this case, 1 node), we analyzed the production jobs [LLN24b] of

the LASSEN supercomputer and considered the median wait queue time. Figure 4.8 depicts the

makespan of the OAI Analysis workflow with and without WHESL support. With increasing failure

rate and without WHESL support, the makespan of the workflow increases linearly because of the

added wait time overhead in the HPC job queue. As WHESL can isolate exceptions to the local

allocation and restart the jobs in-place, workflow executions do not experience additional wait

overhead.

Next, we analyze WHESL’s performance under task scaling. To this end, we scale up the number

of tasks per stage in the OAI workflow from 2 to 10, which results in 10-50 tasks for the complete

workflow. We also induce one DQE exception per task at a 100% failure rate. We then compare the
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Figure 4.8 Impact of WHESL during Failure scaling with expected queue wait time for jobs

performance of WHESL in the presence of failures (WHESL runs) for larger workflows against the

baseline runs, where workflow runs do not experience any failure while executing without WHESL

support. Figure 4.9 shows the distribution of makespan (y-axis) of the baseline, and WHESL runs at

100% failure rate. We observe that makespan increases steadily for both baseline and WHESL runs

with the task scaling due to the scheduling overhead at the WMS and HPC scheduler level. However,

even with a 100% failure rate, WHESL runs’ makespan closely match the baseline runs with a mean

difference range between -2.09% and 2.53%.

We induce failures in the tasks around the same time when 50% of the execution is complete. As

the segmentation and registerimagetoatlas stages run simultaneously, there can be twice the number

of tasks per stage failures that can happen at the same time, and WHESL needs to handle 4-20 failures

quickly. To analyze WHESL’s efficiency, we measured the recovery time per failure. The recovery

time is the duration between when a failure is detected and the replacement(restarted) job starts

executing. Figure 4.10 shows the distribution of recovery times (y-axis) in seconds against different

total numbers of tasks (x-axis) in the workflow. We observe that the recovery time distribution

remains fairly similar as we scale the total number of tasks with the mean time in the range from

4.08 to 4.74 seconds. This shows the efficiency of WHESL in terms of recovery latency in handling

failures for a large number of tasks.
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Figure 4.9 Impact of WHESL during task scaling without any queue wait time for jobs

Figure 4.10 Recovery times for OAI from DQE
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4.4.2 Managing Application Crash and Hang Exceptions

Application: LULESH [Kar13] is hydrodynamics proxy application developed by Lawrence Livermore

National Laboratory (LLNL) to help evaluate performance of large-scale HPC systems. It has been

ported to a number of programming models and we utilize the MPI-based LULESH for our evaluation

purpose. The MPI model can execute only with a process of size p 3, where p ∈N .

Exception: With LULESH, we evaluate WHESL with two exceptions: Application Hang (AC)

and Application Crash (AH). An AH exception causes applications to get stuck permanently. AC

causes applications to fail by crashing during execution. There are many root causes behind AC

exceptions, with hardware failures, illegal device access by applications, and network-related errors

being some of them. Similarly, AH exceptions happen because of deadlocks, communication-related

problems such as network degradation and resource starvation. In this work, we focus on AC and AH

exceptions resulting from network degradation. LULESH follows the execution of a typical parallel

application on HPC systems, performing computation and communication/data synchronization

iteratively. To cause the AC and AH exceptions, we deactivate and then reactivate the InfiniBand

(IB) interface of one nodes. This causes IB link flaps during the library calls within the application

to synchronize and exchange results for the simulation update. The IB link flaps cause LULESH to

either get stuck in MPI blocking calls with an AH exception, or they experience an AC exception

due to a crash. In our experiments, the resulting exception was non-deterministic. We performed

repeated experiments to collect a sufficient number of samples for evaluation. The faults are injected

at random intervals during the application execution. Further, we added SCR [Moo10] checkpointing

support to LULESH every 10 timesteps.

Listing 4.3 Exception Specification for Application Crash

DECLARE ENTITY WMS, JOB

DECLARE EXCEPTION_TYPE JOB_LEVEL

DECLARE RESOURCE NODE[ADD, REMOVE, REPLACE ]

DECLARE EXCEPTION CRASH JOB_LEVEL JOB [ run−l u l e s h ]
EXCEPTION DETECTION CRASH LOG "An e r r o r occurred in MPI_" stdout

EXCEPTION RECOVERY STEP CRASH JOB NODE. REPLACE

Listing 4.4 Exception Specification for Application Hang

DECLARE ENTITY WMS, JOB

DECLARE EXCEPTION_TYPE JOB_LEVEL

DECLARE RESOURCE NODE[ADD, REMOVE, REPLACE ]
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DECLARE EXCEPTION HANG JOB_LEVEL JOB [ run−l u l e s h ]
EXCEPTION DETECTION HANG LOG " c y c l e = " stdout TIMEOUT 120

EXCEPTION RECOVERY STEP HANG JOB NODE. REPLACE

Recovery: The desired recovery for AC and AH exceptions is to isolate the faulty node with IB

link flaps and replace it with a healthy reserved node. A failed job should be restarted locally by

the WHESL Isolator without a resubmission by the WMS. To achieve this, users provide exception

specifications (see Listing 4.3 and Listing 4.4 for AC and AH exceptions, respectively). Lines 1-3 in

both the listings define the execution ecosystem’s entities, resources, and exception types managed

by WHESL. Similarly, line 5 defines the exceptions AC and AH, indicating which jobs should be

subject to such exceptions. Line 6 in Listing 4.3 indicates the log monitored for AC exceptions. In

contrast, Line 6 in Listing 4.4 specifies the exact log pattern whose appearance within the specified

time limit does not raise any AH exception. Conversely, if the given log appearance exceeds the

timeout, WHESL raises an AH exception. The recovery step for both exceptions (line 7) is to replace

the faulty node with a healthy one for a restart.

To this end, WHESL reserves two additional nodes per job (in our experiment). When Flux is

instantiated, the broker services run on each node of the allocation. These brokers form a hierarchical

overlay network and collectively provide services such as job scheduling, resource management,

and RPC routing. By default, the rank 0 broker is the leader among the brokers, which is where

WHESL runs. For that reason, WHESL reserves that node from being allocated for the job and fault

injection. Further, an additional node is reserved for replacing the faulty node.

Analysis: To evaluate the impact of WHESL on LULESH, we executed it using Maestro WMS

with and without WHESL’s support. Each testcase was run with AC and AH fault injection, as well

as without any fault injection. This serves as the baseline case. We repeated experiments for each

test case five times and collected execution times. For testcases without WHESL support (e.g., OAI

Analysis) we added additional overheads, such as resource allocation wait time, checkpoint read

time, recomputation time for lost work, and failure detection time, to the baseline case. We also

assume that a fault detection technique is integrated with Maestro WMS to detect AH exceptions.

When an AC exception occurs, jobs exit with failures, and Maestro automatically detects it.

Figure 4.11 demonstrates the overall impact of WHESL on application performance in terms of

makespan under AC and AH exceptions. Without any fault injection, the addition of WHESL support

adds only a 0.6% to the mean makespan. However, when AC and AH faults are injected, WHESL’s

ability to manage exceptions locally within an allocation reduces makespan by 16.9% and 10.5%,

respectively. Without WHESL support, Maestro needs to resubmit the failed job, which introduces

additional overhead in waiting for new resources.
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Figure 4.11 Impact of WHESL on LULESH Application

Figure 4.12 Impact of WHESL on HPC Jobs
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4.4.3 Impact of WHESL on Application Performance

WHESL subscribes to the Flux job’s output log events and parses them to detect failures. This may

interfere with the execution of the actual workload running on a node. Further, Flux brokers run as an

event-driven process on each node. To measure their impact on workload execution, we measured

and plotted the individual applications’ execution times from OAI Analysis and LULESH when run

with and without WHESL’s support (see Figure 4.12). We do not observe a significant difference

in execution times, which is good news. We conclude that running WHESL in the background on

actual workloads in the absence of exception has minimal performance impact.

4.5 Related Work

Prior research on fault tolerance for workflow systems has largely overlooked the hierarchical struc-

ture and operational complexity of modern HPC ecosystems. Existing approaches typically restrict

failure recovery to task dependencies defined within the workflow, without considering broader

system-level interactions. Grid Workflow [Hwa03] addresses this limitation in part by separating

failure-handling logic from application code and allowing users to manage recovery policies within

the WMS. The framework supports multiple recovery mechanisms, including retries, checkpointing,

replication, and alternative task execution, enabling adaptability to heterogeneous and unreliable

Grid resources. Unlike WHESL, it does not account for dependencies within workflow tasks or prop-

agate the side effects of recovery actions to downstream dependent tasks. Moreover, the framework

does not consider inefficiencies arising from redundant or conflicting recovery actions initiated by

entities outside the WMS.

[TC08] enabled propagation of failures within the workflow hierarchy by adaptively restructuring

workflows at runtime. Recovery patterns are defined within the workflow structure or specifica-

tion based on the Reference-Nets-within-Nets formalism, enabling workflows to self-modify their

structure when specific failure conditions are detected. Even after facilitating such propagation

of failures, its failure management scope is limited to the workflow structure. Multiple WMSes

discussed in Section 4.2 support similar failure management techniques. Our investigation indicates

that Pegasus WMS provides the most comprehensive failure management among the systems listed

in Table 4.3. Pegasus can propagate failures to dependent tasks within a workflow and dynamically

reconfigure the dependent tasks. Unlike WHESL, it does not address the inefficiency that may arise

due to multiple entities performing recovery from failures independently. Pegasus also requires each

recovered task to be re-executed completely. Moreover, existing designs are limited to individual

WMSs and lack portability across different workflow systems. [NVI25] supports in-process restart
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for MPI applications, but are not applicable to workflows.

MCEM [Her19] introduced a conceptual model for hierarchical exception management, bringing

cooperation between different subsystems to address redundant and inefficient recovery processes.

Our work builds on this model to provide a practical and novel solution aimed at standardizing fault

tolerance in HPC systems. The primary difference between WHESL and MCEM lies in their design

choices. MCEM proposed embedding coordinators within various subsystems (namely the Network

Manager, File System Manager, WMS, and system scheduler) to detect exceptions and coordinate

recovery. However, MCEM lacked a practical coordination and recovery mechanism. In contrast,

WHESL uses an exception isolation mechanism to avoid the performance overhead of commu-

nication between multiple subsystems. Exceptions are first isolated locally and then coordinated

through a central coordinator to execute user-defined recovery steps, managing HPC resources via

add, remove, and replace operations. Furthermore, MCEM does not consider workflow hierarchy for

propagating exceptions, omitting a key requirement for managing failures in hierarchical workflows.

Finally, MCEM has not been validated through practical evaluation. Table 4.3 compares WHESL

with other systems and shows their unique differences.

4.6 Summary

We developed a distributed exception management system to mitigate the inefficiencies in recovery

mechanisms of existing WMSes, runtime systems, and RJMSes. These inefficiencies are primarily

due to a lack of coordination among the disparate components of the workflow ecosystem. Wastage

of resources and loss of work occur as the existing recovery methods often result in unwanted

redundancy or non-recoverable failures. Contrary to prior solutions, our developed system, WHESL,

provides scalability for large workflows by leveraging Flux’s nested scheduling capability and im-

proves the efficiency of recovery from exceptions via coordination among the independent system

entities. Its resource-centric recovery model allows users to define steps for exception management

with ease. Furthermore, support for other WMSes can be added to WHESL without significant

effort. Evaluations of WHESL demonstrate that for exceptions such as exceeding disk quota, it can

withstand a 100% failure rate to provide near-baseline performance for the OAI Analysis work-

flow. Moreover, WHESL has negligible overhead under task scaling, with a mean difference ranging

from -2.09% to 2.53%. For exceptions, Crash and Hang, WHESL can reduce the makespan by 16.9%

and 10.5% for the LULESH application. Moreover, WHESL’s impact on workload performance is

negligible, which, in summary, is unprecedented.
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CHAPTER

5

CONCLUSION

The extreme scale and heterogeneity of today’s HPC systems pose significant challenges to achieving

effective fault tolerance and deterministic execution for large-scale applications and workflows.

Failure to address these challenges results in resource wastage, increased work loss, and inadequate

support for time-critical workloads. In this thesis, we demonstrated that these challenges can

be effectively addressed through three orthogonal but complementary solutions that leverage

prioritization, predictability, and scalability across the HPC ecosystem.

First, we identified the limitations of existing failure-aware C/R solutions when failures have

short lead times. Under such conditions, vulnerable nodes in large parallel applications cannot

reliably store their program state to a persistent PFS due to I/O congestion. We further investigated

the performance of state-of-the-art failure-aware C/R solutions under varying lead times to highlight

their shortcomings. To address these limitations, we applied prioritization and coordinated the par-

allel ranks of the application, enabling vulnerable nodes to access the PFS without congestion. We

also integrated complementary techniques, such as live migration, to reduce checkpoint frequency

and overhead. We evaluated our hybrid C/R model against state-of-the-art solutions to measure

its efficiency in terms of application execution overhead under multiple failure distributions. Fur-

thermore, we analyzed the results to explain why the proposed technique outperforms previous

approaches and discussed the trade-offs associated with these solutions.
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Next, we investigated the challenges of scheduling large-scale workflows on HPC systems under

deadline constraints. We found that the non-deterministic resource allocation policies adopted

by HPC system schedulers prevent cloud-bursting–based solutions from effectively allocating and

utilizing on-demand resources, resulting in resource idleness and missed deadlines. To address

this issue, we explored predicting resource availability on HPC systems to construct predictive and

timely workflow execution schedules that enable users to trade off cost and timeliness. Execution of

such schedules is supported by techniques including dynamic resource allocation based on the

workflow schedule, preloading of input data, and backing up HPC resources with cloud capacity. We

evaluated and analyzed our framework against state-of-the-art solutions and found that it achieves

higher task completion rates and cost savings, incurs lower impact on HPC production jobs, and

exhibits low cost estimation error.

Finally, we developed a distributed exception management framework to address inefficient

failure recovery caused by a lack of coordination among different entities in HPC systems. Without

coordination, components such as workflow management systems and HPC schedulers detect and

recover from failures independently. This can result in redundant recovery actions, resource wastage,

and, in the worst case, data corruption or catastrophic failures. Our solution, WHESL, coordinates

disparate components of the HPC ecosystem, mitigates redundant recovery actions through failure

isolation, and provides scalable and portable fault tolerance.

Overall, we show that our approaches significantly reduce execution overhead, improve resource

utilization, increase workflow completion rates, and provide reliable guarantees for time-critical

workloads. Through rigorous evaluation and analysis, this thesis establishes that applying prioriti-

zation, predictability, and scalability to resource management is essential for resilient and efficient

execution on next-generation HPC systems and provides practical foundations for future HPC

workflow and system designs. In summary, we have empirically shown that our hypothesis holds.
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