
ABSTRACT

ELLIOTT III, JAMES JOHN. Resilient Iterative Linear Solvers Running Through Errors.
(Under the direction of Frank Mueller.)

Future extreme-scale computer systems may expose incorrect behavior to applications, in
order to save energy or increase performance. However, resilience research struggles to come
up with useful abstract programming models for reasoning about faults in applications. This
work mainly focuses on silent soft errors, that is, errors that do not cause the system to halt
and provide no indication that they occurred. The approach presented is not specific to silent
soft errors; it is a general model for tolerating abnormal behavior in numerical algorithms. We
present findings targeted at silent faults that impact the data used by an algorithm. Silent faults
in data, which we refer to as silent data corruption (SDC), may lead to the algorithm operating
on incorrect data and presenting invalid outputs. The overarching goal of this work is to ensure
that we obtain valid solutions given soft faults.

Existing work in algorithm fault tolerance randomly flips bits in running applications, but
this only shows average-case behavior for a low-level, artificial hardware model. Algorithm
developers need to understand worst-case behavior with the higher-level data types they actually
use, in order to make their algorithms more resilient. Also, we know so little about how soft
faults may manifest in future hardware, that it seems premature to draw conclusions about
the average case. We argue instead that numerical algorithms can benefit from a numerical
unreliability fault model, where faults manifest as unbounded perturbations to floating-point
data. Algorithms can use inexpensive “sanity” checks that bound or exclude error in the results
of computations. Given a selective reliability programming model that requires reliability only
when and where needed, such checks can make algorithms reliable despite unbounded errors.
Sanity checks, and in general a healthy skepticism about the correctness of subroutines, are wise
even if hardware is perfectly reliable.

c© Copyright 2015 by James John Elliott III

All Rights Reserved

Resilient Iterative Linear Solvers Running Through Errors

by
James John Elliott III

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2015

APPROVED BY:

Jon Doyle Blair Sullivan

Ralph Smith Mark Hoemmen

Frank Mueller
Chair of Advisory Committee

DEDICATION

To my parents, sister, and baby Zoie.

ii

BIOGRAPHY

James Elliott was born in Shreveport, Louisiana, and grew up on a rural farm. Both of Jamesâ
parents are schoolteachers, who left the public school system to open their own preschool,
the Summit Nursery School. James attended and then worked at the Summit for most of his
childhood. Enthralled by technology, James owes a debt of gratitude to Cheryl Vines who taught
him the basics of programming at Saint Mark Cathedral School in a third grade computer science
class. The integration of computer science, not gadgetry, into his early education was incredibly
impactful. James is a strong proponent of technology education, and a strong opponent of
gadgetry shoehorned into the educational system.

James graduated from Louisiana Tech University with a B.S. in Computer Science, a M.S. in
Mathematics and Statistics, and a Ph.D. in Computational Analysis and Modeling. James has
been involved with the fields of HPC and resilience since 2005, where he studied how to virtualize
a cluster using the Xen hypervisor. In 2007, he integrated various benchmarks into the OSCAR
cluster management suite as part of a Google Summer of Code project. He worked directly with
the Louisiana Optical Network Initiative as a graduate computational science fellow in 2009,
where he developed, among other things, an OpenCL implementation of differential quadrature.
James transitioned to North Carolina State to pursue a Ph.D. in Computer Science, where he
has studied alternatives to checkpoint/restart and soft error resilience. A strong component
of Mr. Elliottâs work is the use of analytic modeling, and one day he hopes to demystify the
“monster in the closet,” that is soft error resilience. Mr. Elliott has also taught at the middle
and high school levels as part of the NSF GK-12 Teaching fellowship.

iii

ACKNOWLEDGEMENTS

I would like to thank Frank Mueller for his support and open-mindedness. I also owe a debt of
gratitude to Mark Hoemmen for his mentorship and for finding time when I know his is precious.

iv

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

Chapter 1 Introduction . 1
1.1 Resilience . 2
1.2 Resilience and Fault Tolerance . 4
1.3 Detecting Errors and Selective Reliability . 5
1.4 Resilient Sparse Preconditioned Linear Solvers 8
1.5 Research Hypothesis . 10
1.6 Overview . 10

1.6.1 Bit Flip Model May Not Reflect Actual Hardware Behavior 11
1.6.2 Skeptical Programming: Bounding Soft Errors 11
1.6.3 Worst-Case Behavior: Adversarial vs. Practitioner 12
1.6.4 Abstract Fault Models Are Superior . 13

1.7 Summary of Contributions . 13

Chapter 2 Data Representation and Fault Tolerance 15
2.1 Introduction . 15
2.2 Related Work . 16
2.3 Project Overview . 18
2.4 Fault Model . 18

2.4.1 Fault Characterization via Semantic Analysis 19
2.4.2 Fault Characteristics of Perturbed Exponents 21
2.4.3 Operation Centric Fault Model . 24

2.5 Fault Model Evaluation . 25
2.5.1 Faults in the Mantissa or Sign . 27
2.5.2 Modeling Large Vectors . 28
2.5.3 Summary . 29

2.6 Case Study: Vector Dot Products . 29
2.6.1 Computational Challenges . 30
2.6.2 Monte Carlo Sampling . 30
2.6.3 Per Bit Analysis of Surface Plot . 32
2.6.4 Comparison of the Analytic Model and Monte Carlo Sampling 32

2.7 Extension to Matrices and Iterative Solvers . 32
2.7.1 Matrix Equilibration . 33
2.7.2 GMRES . 33
2.7.3 Instrumentation and Evaluation . 34
2.7.4 Results . 36
2.7.5 Multiple Bit Flips . 38

2.8 Conclusion . 38

v

Chapter 3 Model Driven Analysis of Faulty IEEE-754 Scalars 40
3.1 Errors in IEEE-754 Representation . 42

3.1.1 Mantissa . 44
3.1.2 Exponent . 45
3.1.3 Sign . 46

3.2 Model Statistics . 46
3.2.1 Mantissa . 47
3.2.2 Mantissa Errors . 49
3.2.3 Exponent . 51
3.2.4 Exponent by Range . 54
3.2.5 Exponent Errors . 55
3.2.6 Summary of Scalar Statistics . 58

3.3 Model Error Measures . 58
3.3.1 Mantissa . 59
3.3.2 Exponent . 60
3.3.3 Sign . 60

3.4 Scalar Expected Error Measures . 61
3.4.1 Expected Relative Error for a Scalar . 61
3.4.2 Expected Absolute Error for a Scalar . 65
3.4.3 Summary of Scalar Error Statistics . 71

3.5 Model Multiplication Error Measures . 72
3.5.1 Mantissa . 72
3.5.2 Exponent . 73
3.5.3 Sign . 73
3.5.4 Multiplication Expected Error . 74

3.6 Applications to Fault Tolerance . 74
3.6.1 Constrained Exponent Bit Flips . 75

3.7 Overall Effect of Constrained Exponent Bit Flips 76
3.7.1 Expected Absolute Error Given a Scalar 79
3.7.2 Expected Absolute Error Given Scalar Multiplication 79
3.7.3 Probability of an Absolute Error Larger Than One 84

3.8 Application of Constrained Exponent Bit Flips 85
3.9 Conclusion . 86

Chapter 4 Evaluating the Impact of Silent Data Corruption on the GMRES
Iterative Solver . 87

4.1 Introduction . 87
4.1.1 Silent Data Corruption . 88
4.1.2 Faults, Failures, and Persistence . 88

4.2 Project Overview . 89
4.2.1 Assumptions and Justification . 90

4.3 Motivation . 90
4.3.1 Relation to Prior Work . 91
4.3.2 Invariants as Detectors . 92

4.4 Sandbox Reliability . 93

vi

4.5 GMRES . 94
4.5.1 Fault Detection via Projection Coefficients 95
4.5.2 Bounds on the Arnoldi Process . 95
4.5.3 Bound Application . 96
4.5.4 Error Detection . 97

4.6 FT-GMRES . 97
4.6.1 FT-GMRES is Based on Flexible GMRES 97
4.6.2 Sandbox Reliability . 99
4.6.3 FGMRES’ Additional Failure Modes . 99
4.6.4 Fault Tolerance via Regularization . 100

4.7 Results . 101
4.7.1 Sample Problems . 101
4.7.2 Time to Solution Experiments . 103
4.7.3 Faults in an SPD Problem . 104
4.7.4 Faulting in a Nonsymmetric Problem . 106
4.7.5 Summary of Findings . 107

4.8 Conclusions . 108

Chapter 5 A Numerical Soft Fault Model for Iterative Linear Solvers109
5.1 Introduction . 109
5.2 Preconditioned Linear Solvers . 110

5.2.1 Soft Faults and Iterative Methods . 110
5.2.2 Selective Reliability . 111
5.2.3 Implementation . 111

5.3 Results . 111
5.3.1 Methodology . 111
5.3.2 Model Comparisons . 112
5.3.3 Computational Effort . 113
5.3.4 Expected Overhead Comparison . 113

5.4 Conclusion . 116

Chapter 6 Selective Reliability and Preconditioned Iterative Linear Solvers . .117
6.1 Introduction . 117

6.1.1 Fault-Tolerant Preconditioned Solvers . 118
6.1.2 Related Work . 118

6.2 Preconditioned Linear Solvers . 119
6.2.1 Selective Reliability . 121
6.2.2 Implementation . 122

6.3 Preconditioners . 122
6.3.1 Algebraic Multigrid . 122
6.3.2 Hierarchy and Corruption . 123

6.4 Fault Model and Injection Methodology . 123
6.4.1 Corrupting Preconditioner Outputs . 123
6.4.2 Granularity of Faults . 124
6.4.3 SDC and Solvers . 124

vii

6.5 Experiment Description . 124
6.5.1 Methodology . 124
6.5.2 Problem Specification . 125
6.5.3 Baseline and Preconditioner Effectiveness 125
6.5.4 Solver Configuration . 126

6.6 Experiments . 126
6.6.1 Figure Guide . 126
6.6.2 Overhead with No Detection . 128
6.6.3 Residual and Projection Lengths . 128
6.6.4 Tuned Residual Checks . 129
6.6.5 Strict Convergence Checks . 131
6.6.6 Inexact Krylov . 133

6.7 Comparisons . 133
6.7.1 ABFT Cholesky Comparison . 135
6.7.2 Self-Stabilizing CG . 137
6.7.3 Preconditioner Applies and Floating-Point Operations 137
6.7.4 Relation to Bit Flips . 138

6.8 Scalability . 139
6.9 Conclusion . 140

Chapter 7 Conclusion .142

References .144

viii

LIST OF TABLES

Table 1.1 Reliability of HPC Systems . 3

Table 2.1 Bit flip absolute error for a scalar λ represented using IEEE-754 double
precision, with λ = λexp × λfrac. Where λexp is the exponent 2x, and λfrac
is the fractional component. 23

Table 2.2 Sample Matrices . 36
Table 2.3 Norms of Sample Matrices † . 36

Table 3.1 Terminology . 42
Table 3.2 Common IEEE-754 Implementations . 43
Table 3.3 Statistics Terminology . 46
Table 3.4 Expected value for components of faulty scalars. 59
Table 3.5 Error measures for scalars. 60
70table.caption.49
Table 3.7 Expected value of the relative error given a bit flip in a scalar (ã). 71
Table 3.8 Expected value of the absolute error given a bit flip in a scalar (ã). 72
Table 3.9 Error measures for faulty multiplication. 74
Table 3.10 Expected value of the absolute error given a bit flip in scalar multiplication

(ã× b). 75
Table 3.11 Probability that the relative error will be less than one given a bit flip in a

scalar. 77
Table 3.12 Probability that the absolute error will be larger than one given a bit flip in

scalar multiplication with (a, b) ∈ (−1, 1). 86

Table 4.1 Sample Matrices . 102

Table 5.1 Additional preconditioner applies given no fault detection; percent additional
applies in parentheses. 115

Table 5.2 Additional preconditioner applies with reactive fault tolerance; percent
additional applies in parentheses. 115

Table 6.1 Problem specification . 125
Table 6.2 Maximum floating-point operation count on a single process for failure-free

nested CG and nested GMRES solvers, as well as total global floating-point
operations. 127

Table 6.3 Maximum operation count for a subdomain given worst-case performance in
faulty experiments. 136

Table 6.4 Operation count for solving the Poisson problem using self-stabilizing CG. 276
total iterations: 221 unreliable and 55 reliable. 138

ix

LIST OF FIGURES

Figure 1.1 Taxonomy of faults. 3
Figure 1.2 Taxonomy of errors as seen from the application level. 4
Figure 1.3 A reliable system that does not experience soft faults. 5
Figure 1.4 A system that experiences soft faults, and therefore is unreliable. 6
Figure 1.5 Selective reliability used to create the sandbox programming model and

realized as a nested solver implementation. 7

Figure 2.1 Graphical representation of data layout in the IEEE-754 Binary64 specification. 20
Figure 2.2 Relation of exponent, IEEE-754 double precision bias, and what data are

actually stored. 22
Figure 2.3 Examples of how a bit flip can impact an exponent represented using the

IEEE-754 Binary64 specification. 23
Figure 2.4 Example of perturbed values for large numbers. 26
Figure 2.5 Example of perturbed values for small numbers. 27
Figure 2.6 Probability of observing an absolute error larger than 1. 31
Figure 2.7 Comparison of observed error caused by a flip in the exponent, excluding the

most significant bit, for sampled vector sizes having similar relative magnitudes. 33
Figure 2.8 Number of possible absolute errors from dot products in Algorithm 1 in

orthogonalization kernel. Class 1: err < 1.0 (blue), Class 2: 1.0 ≥ err ≤ ‖A‖2
(light blue), Class 3: ‖A‖2 > err (yellow), and Class 4: Non-numeric (red). . 37

Figure 3.1 Exponent values, biased exponent values, and storage. 44
Figure 3.2 Expected value and variance of the an N -bit mantissa. 49
Figure 3.3 Expected value and variance of the absolute error from a single bit flip in an

N -bit mantissa. 51
Figure 3.4 Variance of the exponent and the dominant term in the growth of the variance

as a function of the number of exponent bits. 54
Figure 3.5 Lower and upper bounds for the expected value of a positive exponent error(

E
[
Xη+

])
. 57

Figure 3.6 Expected relative error of the mantissa given a single bit flip. 63
Figure 3.7 Expected absolute error given a bit flip in the mantissa and a scalar less than

one. The absolute error is shown for the fewest number of exponent bits, as
well as the number of exponent bits for half, single, double, and quad precision. 67

Figure 3.8 Expected absolute error given a bit flip in the exponent and a scalar less than
one, greater than one, and over the full range. Half (212), Single (256), Double
(21014), and Quad (216170) precision specifications are highlighted. 70

Figure 3.9 Expected absolute error given a bit flip in the exponent, excluding the most
significant bit for values less than one, and values greater than one. 76

Figure 3.10 Probability that the expected relative error is larger than one, given a single
bit flip in scalar multiplication for: (a) half, (b) single, and (c) double precision. 78

Figure 3.11 Probability that the expected absolute error is larger than one, given a single
bit flip in scalar multiplication for: (a) half, (b) single, and (c) double precision. 80

x

Figure 3.12 Absolute error experiment for half precision using the worst-case mantissa
error for all mantissa errors. 81

Figure 3.13 Probability that the expected absolute error is larger than one, given a single
bit flip in scalar multiplication for half precision and scalars in the range [0, 1). 82

Figure 3.14 Probability that the expected absolute error is larger than one, given scalars
in the range [0, 1) and a single bit flip in scalar multiplication for (a) single
and (b) double precision. 83

Figure 4.1 Taxonomy of faults and scope of this work. 89
Figure 4.2 Sandbox reliability implemented as reliable outer solves and unreliable inner

solves. 94
Figure 4.3 Upper Hessenberg and tridiagonal matrices. 103
Figure 4.4 Number of outer iterations required for convergence when solving a Poisson

equation given a single SDC event injected in the orthogonalization phase of
the inner solve. Vertical bars indicate the start of a new inner solve. 105

Figure 4.5 Number of outer iterations required for convergence when solving the mult_-
dcop_03 system of equations given a single SDC event injected in the orthog-
onalization phase of the inner solve. Vertical bars indicate the start of a new
inner solve. 106

Figure 5.1 Overhead comparison with no fault detection, for (a) a random bit flip
injection and (b) a numerical fault model. 113

Figure 5.2 Overhead comparison with fault detection on, for (a) a random bit flip
injection and (b) a numerical fault model. 114

Figure 6.1 Flowchart for a nested solver implementation. 122
Figure 6.2 Overhead comparison of (a) FGmres->Gmres->MueLu and (b) FGmres->Cg->MueLu,

given no attempt to directly detect or cope with errors. 129
Figure 6.3 Overhead when testing the explicit residual every iteration and using a pro-

jection length bound in FGmres->Gmres->MueLu. Explicit residual detections
are hatched left \ and norm bound detections are hatched right /. 130

Figure 6.4 Overhead comparison given two different frequencies of explicit residual
evaluation in FGmres->Gmres->MueLu. 131

Figure 6.5 Overhead when using a relaxed inner solver convergence test as well as a
projection length bound in FGmres->Gmres->MueLu. 133

Figure 6.6 Flowchart for responding to detectors in a nested solver. 134
Figure 6.7 Overhead when using a relaxed inner solver convergence test as well as a

projection length bound in FGmres->Gmres->MueLu, but no inexact tuning
of the inner GMRES convergence rate. 135

Figure 6.8 Global (aggregate) floating point overhead when using a relaxed inner solver
convergence test as well as a projection length bound in FGmres->Gmres->MueLu.
(see Figure 6.5) . 139

Figure 6.9 Overhead when using a relaxed inner solver convergence test as well as a
projection length bound in FGmres->Gmres->MueLu: (a) Bit flips and (b) our
pessimistic fault model. 140

xi

Figure 6.10 Overhead when using a relaxed inner solver convergence test as well as a
projection length bound in FGmres->Gmres->MueLu on a weakly scaled version
of the Poisson problem. (see Figure 6.5 or 6.9b for comparison.) 141

xii

Chapter 1

Introduction

Research and development has increasingly become model driven, where models are evaluated
computationally (in silico), and physical experimentation is minimized (in situ). This explosion
of computational science and engineering has driven the need for increasingly powerful systems
to perform such computation. Weapons, climate, car frames, baby diapers, and even toothpaste
are modeled, and optimizations to the design, manufacturing process, or product stability or
longevity are accessed [65]. The systems used to evaluate such models are tasked with demanding
performance and storage requirements, and we refer to computing on such devices as high
performance computing (HPC) or high-end computing (HEC).

The resources provided by a single computational unit are rarely sufficient. Therefore,
multiple systems are joined together to form a single HPC system. This coupling of independent
discrete components to form a larger, more capable system is the foundation of supercomputing.
The components used to compose these HPC systems are constantly changing. Beginning in the
1980s and continuing until 2004 [40], computer manufacturers obtained computational speedup
primarily through increasing the frequency at which the processors execute instructions, i.e.,
frequency scaling [43], and by optimizing execution and cache reuse. Using these techniques,
users were able to increase application performance by upgrading to faster processors. Starting
in 2005, frequency scaling no longer continued to be the dominant method for obtaining software
speedup. Now, without frequency scaling, the burden of increasing an application’s performance
lies on the back of the programmer. The programmer can attempt to find a faster algorithm, or
the algorithm can be parallelized so that it may run concurrently on multiple processors.

The emergence of multi-core technology started with the release of IBM’s Power4 dual core
CPU in 2001. Intel made a final attempt at frequency scaling with the Pentium4. Ultimately,
Intel drastically changed its processor roadmap and began producing only multi-core chips for
the high-end market starting in 2005. The trend of multi-core processors has now evolved to the
point of many-core systems. The Intel Xeon Phi architecture now exposes hundreds of lightweight

1

cores to the application developer. HPC systems have also embraced accelerator technologies
such as graphics processing units (GPUs), and advanced solid-state storage controllers that can
preprocess data before writing to stable storage, storing only a subset of the data. The impact
of these technologies on HPC systems is that a single “node” has become denser in terms of
components used, and they have become much denser with respect to transistor count.

While frequency scaling has ceased to enable faster systems, manufacturers have instead
increased the amount of parallelism that components support. Single-core CPUs transitioned to
multi-core, and now to many-core. These transitions have been partly enabled by the ability
to pack more transistors onto a piece of silicon, called a die. These “die shrinks” are made
possible by manufacturing components at smaller and smaller scales. A smaller manufacturing
process typically results in lower power consumption, but has the negative effect that it becomes
increasingly more difficult to distinguish between a one and a zero. Customers also wish to lower
peak power requirements, and in general reduce overall power consumption. For this reason
device manufactures are pressured to create chips that can operate near the device’s threshold
voltage, i.e., operate at a voltage where the difference between “on” and “off” is very small.
This lowers the power that a chip requires, but also makes the device more susceptible to faults
[81, 44, 59]. That is, small energetic disturbances can be sufficient to cause devices to fault.

This leads to the current U.S. Department of Energy (DOE) Exascale roadmap. There
are two types of leadership-class computing systems planned to achieve Exascale performance.
One system will utilize standard CPUs with GPU accelerators, while the other will follow the
many-core approach and use Intel Xeon Phis. Regardless of the architecture approach used, both
system types will continue to increase the number of computing units per physical node. This
increased component count also increases the probability that some component will fail. Hence,
the reliability of the machines is a key focus, (e.g., in [92]), where the concern for reliability
is pervasive throughout the “Top 10 Exascale Challenges.” The general approach of tolerating
faults in HPC systems is called HPC resilience or simply resilience, and this term encompasses
a superset of fault tolerance.

1.1 Resilience

Resilient computing is a broad response to the inherent unreliability of systems. This area of
study is birthed from the unreliability observed in large-scale HPC deployments. For example,
Table 1.1 shows the Mean Time Between Failure of specific HPC systems or vendor deployments.
The MTBF is a measure of the average time before a component fails, but the key is what
constitutes a failure. Prior works in resilience, including my own [28, 91, 90], have focused on
a hard fault model. A fault is the event after which a component does not operate according
to its specification. The cause of a fault may be a defect, or the effect of some external event,

2

Fault

Hard Soft

Transient Sticky Persistent

Key:

Dashed outline:
Beyond our scope.

Figure 1.1: Taxonomy of faults.

e.g., a charge particle hitting the gate of a transistor causing it to flip or become stuck. That is,
faults are events that occur at the hardware level, and we broadly classify such events as: 1) the
device continues to operate or 2) the device fails and ceases to operate. We present a taxonomy
of faults in Figure 1.1. Should the device continue to operate, we call this a soft fault, and if the
device ceases to function, we call this a hard fault. Our work focuses on the effects that a soft
fault can have.

Table 1.1: Reliability of HPC Systems

System Number of Cores MTBF [57]

ASCI Q 8,192 6.5 hrs
ASCI White (2001) 8,192 5 hrs
ASCI White (2003) 8,192 40 hrs

PSC Lemieux 3,016 9.7 hrs
Google 15,000 20 reboots/day

ASC BG/L 212,992 6.9 hrs (LLNL est.)

Exascale Projection 1,000,000+ < 1 hr [92]

Soft faults present several challenges and their effects are the focus of this work. If a fault
occurs and the device continues to operate, then it is possible that the data operated on have
become corrupt as a result of this fault. That is, a bit could have been flipped at some point,
and the results can become fictitious. We consider the case of transient soft faults, i.e., faults
that occur, but do not permanently damage the hardware. A fault could have the effect of being
sticky or persistent, and the distinction between the two is subjective [87]. The key is that we
are focused on the effects of a soft fault, which is an error.

An error is the manifestation of a soft fault at the application level. For example, a fault
can impact a register holding an IEEE-754 floating point value. When this perturbed value is

3

Fault

No Effect

Error

Numeric

Non-Numeric

Divergent Execution

Key:

Dashed outline:
Beyond our scope.

Figure 1.2: Taxonomy of errors as seen from the application level.

used, the application may become erroneous in terms of its calculations. Figure 1.2 presents our
view of what errors look like from the application level. This view is extremely generic, but is
sufficient for developing resilient algorithms, which is the over-arching goal of this work. Our
observation on how errors can affect applications is rooted in the fact that given an error, the
application will either continue execution and present a result, or the application will enter some
indefinite state where no solution is presented. Our classification of errors covers a broad set of
possible faults. For example, if a pointer is corrupted, but dereferencing the pointer is successful,
the data read will be treated as whatever numeric data type was intended. This wrong data will
then be interpreted leading to a either a valid representation (i.e., a numeric error), or it will
lead to an invalid representation creating a non-numeric value. The latter is a good case, as it
is easy to detect that an error was made, while the former is particularly damaging, since the
algorithm will operate on incorrect values and only introspection of some sort can identify that
the values returned are nonsensical. Divergent control paths due to errors are beyond the scope
of this work but have been considered elsewhere [75].

1.2 Resilience and Fault Tolerance

Resilience represents a broad response to unreliability in HPC. It encompasses more than fault
tolerance alone. The premise underlying resilient computing is that faults are the norm, rather
than the exception. The idea that faults, both hard and soft, will become more likely is expected
to continue into exascale computing [35, 63, 16]. Thus, novel approaches for scalable resilience,
not only at the hardware but also the software level, are required. The premise that faults are
the norm implies a more aggressive approach to fault tolerance that was previously conceived.
We seek to enable forward recovery in the presence of faults, rather than a rollback recovery
scheme. That is, we wish to devise algorithms that can tolerate the errors introduced by faults,
in a proactive manner without losing forward progress. We think of soft fault resilience as an

4

adversarial approach to fault-tolerance, whereas prior hard fault-tolerance viewed faults as rare
events. We contrast our view by presenting what constitutes a reliable machine if soft faults are
not allowed (see Figure 1.3). Without soft faults, the machine only needs to remain functional for
a valid solution to be presented. If soft faults are allowed, then the machine loses its numerical
reliability, which we show in Figure 1.4. Our work focuses on a general research approach to
harden algorithms to the errors presented in Figure 1.2 under the assumption that the machine
is unreliable as shown in Figure 1.4.

solutionsolutionoperationsstartstart

Reliable Machine

Figure 1.3: A reliable system that does not experience soft faults.

The errors of interest in Figure 1.2, “Non-Numeric” and “Numeric,” can be classified as
silent data corruption (SDC). Silent means that the system gives no indication that a soft fault
occurs, and this leads to silent corruption of the data operated on. Our goal is to ensure that
algorithms can either tolerate SDC, or the algorithm can indentify that the corruption has
occurred, making the error not silent. Attempts have been made to quantify the occurrence of
SDC. Michalak et al. [70] statistically analyzed failure data obtained from a beam study that
subjected hardware to blasts of charged particles. Their findings indicate that this type of error
is rare enough that it is still difficult to observe.

1.3 Detecting Errors and Selective Reliability

If machines lack numerical reliability, then there is one robust technique for identifying corrupt
values, redundant computing [28, 38, 39, 36]. A general idea underpinning redundant computing
is the ability to detect corruption by majority voting. This type of fault tolerance can be realized
by replicating computations onto different machines, and then voting on the result obtained. A
standard approach is called triple modular redundancy (TMR). The problem with redundancy
is that it requires N -redundant copies of data as well as operations on these duplicate data. This
implies an N -times cost, which is difficult to imagine in the realm of HPC, where performance
is at a premium.

5

ScopeScope

correct

solution

correct

solution

operationsstartstart

Unreliable Machine tainted

solution

tainted

solution

x

Soft fault(s)

Figure 1.4: A system that experiences soft faults, and therefore is unreliable.

If an application can detect and correct all errors, then it is preserving the illusion of a
reliable machine at all levels. We call this an illusion, because no machine is 100% reliable.
However, we simply expect that unreliability will be rare enough that it is not a concern. Heroux
[47] proposed the idea of Selective Reliability, which requires expert knowledge to specify which
calculations in an algorithm must be reliable, and which can be run in an unreliable mode.
Hoemmen and Heroux [13] realized this concept using a two-level iterative solver, FT-GMRES.
FT-GMRES preconditions Flexible GMRES (FGMRES) by GMRES, possibly with its own
preconditioner. The outer FGMRES iteration is identified as needing reliability, while the inner
GMRES (and its preconditioner) is marked as suitable for unreliability. In this setup, the outer
iteration absorbs the error introduced from numerical unreliability, while still making progress
towards the correct solution. They use selective reliability to develop a programming model that
“sandboxes” unreliable computations, and promises reliability on specific computations.

We illustrate the idea of selective reliability in Figure 1.5a, and then show the realization
using nested solvers in Figure 1.5b. The key is that selective reliability does not describe what can
be unreliable. Instead, it only declares what must be reliable. This approach enables phenomenal
flexibility. For example, a reliable FGMRES outer solver can wrap complicated (black box)
preconditioners, while still promising that if a solution is obtained it will be correct. This
approach is in stark contrast to current trends in fault-tolerant algorithms, where algorithm
developers are attempting to robustify every numerical method to handle faults.

Selective reliability and nested solvers ensure the correctness of calculations, and enable
forward progress by absorbing errors. This makes this approach susceptible to high overhead, as
some errors may introduce no or low overhead, while others may induce very high-overhead. A

6

reliablereliable

unreliable

(a) Sandbox programming model.

reliable

FGMRES

reliable

FGMRES

unreliable

GMRES

(b) FT-GMRES.

Figure 1.5: Selective reliability used to create the sandbox programming model and realized as
a nested solver implementation.

focus of our work is on making algorithmic decisions that, when composed, create a resilience
algorithm that avoids high-overhead, while still maintaining correctness.

There are three challenges a linear solver must cope with in an environment that emits soft
errors. First, one must assess how and how much incorrect intermediate results might affect a
solver. Consider solving the sparse linear system resulting from discretizing a partial differential
equation (PDE). If a bit flip corrupts a single entry of the matrix, how much that corruption
affects the computed solution depends on its magnitude, properties of the linear system, the
solution method, and whether the incorrect value stays corrupted or goes back to its correct
value. Second, one must design the solver (possibly with help from the hardware and operating
system) to produce the right answer despite occasionally incorrect data or arithmetic, whenever
possible. Our philosophy for exascale computing is “forward execution”: Instead of reacting
to faults by rolling global execution back to a checkpoint, a method known to be limited in
scalability [37, 28], we promote non-stop algorithmic / execution approaches where progress
continues toward obtaining a result even in the presence of failures. Third, if corruption is bad
enough to make forward progress impossible, the solver must detect this scenario and report it
back to the user, rather than silently computing the wrong answer. This is especially important
for simulations that support high-consequence decisions, where silently wrong answers have
unthinkably high cost and high impact. Our goal is to have high confidence in the solution, even
if we have lower confidence in the computer hardware that computes it.

Much resilience research has focused on tolerating parallel process failures through standard
techniques like checkpoint/restart (C/R) or process replication. The “monster in the closet”
[44] is incorrect hardware behavior that does not result in process failure. Faults like incorrect
arithmetic or memory corruption may make the application produce incorrect results or increase
run time, with no indication from the system that something went wrong. If systems cannot
correct these faults before they affect applications’ behavior, then the burden of tolerating them

7

shifts to algorithms: either to detect abnormal behavior and correct it, or to “absorb” its effects
while still making progress towards the correct solution.

1.4 Resilient Sparse Preconditioned Linear Solvers

In this work, we study a specific type of unreliability that is believed to become more prominent
in future architectures. At extreme scales of computation, applications will have to face the
possibility of incorrect computer arithmetic or storage. Incorrect arithmetic (or storage) creates
an extremely challenging problem, particularly for algorithms that are used in mission-critical
applications or are used in a decision making process. There are many fundamental kernels, and
we choose to focus on the solution of large, sparse linear systems. Asanovic et al. [6] classify
sparse methods as one of the fundamental “dwarfs” of parallel computing. The solution of
linear systems is the foundation of nonlinear solvers, they are at the heart of many iterative
eigensolvers, as well as the entire field of implicit time-stepping algorithms. Many scientific
computing problems approximate solutions to models evaluated on structured or unstructured
grids, which typically lead to large sparse linear systems. Much effort is expended by scientists
to ensure that systems are sparse, and then this sparsity is exploited for computational and
storage efficiency. A term sparse linear solvers is synonymous with is preconditioning. Most
linear solvers can be formulated to allow preconditioners to accelerate their performance by
preconditioning the linear system such that the solver is able to obtain a solution faster and
more accurately than if no preconditioner was used.

Sparse linear operations are so crucial that the current- and next-generation assessment of
HPC systems are being benchmarked using preconditioned sparse iterative linear solvers rather
than dense linear algebra. Dongarra et al. [26] proposed the High Performance Linpack (HPL)
benchmark in 1979 for benchmarking floating point computation. HPL solves a dense linear
system using a lower/upper (LU) factorization. The LU factorization is a direct method, i.e.,
it is not iterative, therefore the floating point cost can be precisely modeled. The benchmark
measures the runtime, and then determines how many floating point operations (FLOPs) are
performed each second (FLOPS). The dense calculations performed in HPL do not represent
the poor memory access patterns, load imbalance, and inherent serial components that many
modern scientific kernels experience. That is, HPL benchmarks raw floating point performance,
but is not characteristic of how systems are actually used. To address this, Heroux and Dongarra
[48] have developed a new benchmark, High Performance Conjugate Gradients (HPCG) [51],
that is intended to more accurately represent the type of problems and algorithms actually used
on peta- and exascale systems.

Unsurprisingly, HPCG is designed around a sparse, preconditioned linear solver, because
sparse operations are much more common than large dense factorizations. HPCG is a sparse

8

preconditioned conjugate gradient solver that uses a local symmetric Gauss-Seidel preconditioner,
which is an inherently serial algorithm. The point is that sparse linear solvers are largely consid-
ered a defining component of current and next-generation HPC. Further evidence supporting
the dominance of sparse solvers is the Mantevo mini-apps [67]. Mini-apps are intended to model
general scientific computing patterns. For example, MiniFE performs phases of computation
similar to how finite element codes would be structured. The solver used in miniFE is a sparse
iterative solver. Sparse techniques are also the state-of-the-art in large graph analysis. Often,
graph algorithms seek to determine the dominant eigenvalue or eigenvector, or perform a singular
value decomposition on the sparse matrix representation of the graph. Techniques often use the
graph Laplacian, which is typically formed as a large sparse matrix.

Because of the depth and importance of sparse linear solutions, we choose to focus our study
on the development of resilient preconditioned linear solvers. That is, we study the coupling of
current state-of-the-art numerical methods with the unreliability presented by high-performance
computing. We constrain our work to ensure that the techniques we propose are competitive
with the current linear solvers used.

Our goal is to develop and assess resilient sparse iterative solvers. In general, we seek to
advance algorithm-based fault tolerance (ABFT) for sparse iterative solvers. We propose and
demonstrate a very different research methodology from prior works. Traditional ABFT has
focused on preserving the illusion of a reliable machine at all levels, and has assessed their
prior approaches by synthetically injecting bit flips into data. We find this general approach
unproductive for assessing fault tolerance techniques, and we believe for iterative solvers, there
is a superior research philosophy to follow. First, attempting to enforce reliability at all levels
implies modifying all codes such that they are fault tolerant. We feel this is a poor path to follow,
because the breadth and depth of numerical codes is enormous. Following this path, one cannot
stop after hardening just one or two computational kernels (like sparse matrix-vector multiply)
that dominate run time; one must ensure that all kernels used in the application are hardened.
Given that most scientific codes take years to develop as-is, it seems infeasible to assume we
can harden all codes, or even a selected few. Second, assessing resilience techniques should not
depend heavily on the definition of a fault or the resulting error. Resilience research is rife with
speculation. Scientists must speculate about the reliability of future hardware. Moreover, given
a digital machine, all faults can be mapped to some number of bit flips, but this is not helpful
at the application level, because those bit flips may or may not impact a sensitive value. For
example, the error introduced by a bit flip may lie within the rounding or approximation error
of the technique used, rendering the error introduced negligible. Third, for iterative methods,
errors can change the runtime of the application, and so the impact of the error is extremely
meaningful, not its origin.

9

1.5 Research Hypothesis

We believe that the research methodology used in many algorithm-based fault tolerance schemes
is flawed. We believe that a different method will enable more theoretically sound resilience
algorithms, and enable quantifiable resilience. That is, we believe our method enables researchers
to clearly specify what faults algorithms and components of algorithms are capable of addressing
in a quantifiable way. This leads to a hypothesis that we will test in Chapters 4–6, and motivate
experimentally and analytically in Chapters 2–3.

I hypothesize that coupling numerical analysis and systems reliability can make
iterative numerical methods tolerate many types of soft errors (based on an abstract
fault model) more efficiently and with greater theoretical soundness than by using a
systems-only approach.

1.6 Overview

We begin by analyzing what a bit flip in the IEEE-754 specification entails. This is relevant
to our work, because prior studies have injected synthetic bit flips. We show experimentally in
Chapter 2 that bit flips injected into the representation of floating point data behave in very
specific ways. We support our experiments with bounds constructed through numerical analysis,
and show that our findings are expected given the bounds derived. In Chapter 3, we rigorously
analyze the expected absolute and relative error and prove that the observations from Chapter 2
hold given the standard IEEE-754 formats of half, single, double, and quad precision. We show
that the expected relative and absolute errors can be forced to behave predictably for a bit flip
in a scalar or in scalar multiplication. Furthermore, we use our analysis to assert that moving to
higher-precision formats is not bad. This is particularly important as the quad precision format
becomes more utilized. While we thoroughly analyze the errors introduced given a bit flip in
floating point data, the purpose of our study is not to advocate the use of bit flips as a research
approach. We conclude instead that bit flips are a poor fault model for algorithm design and
assessment, because

1. they can introduce a wide range of errors, and
2. the resulting errors are biased.

Our goal is to identify and assess algorithmic techniques for resilience, but not to speculate
about the origin of the errors introduced or verify if injection techniques follow a bit-flip error
distribution.

10

1.6.1 Bit Flip Model May Not Reflect Actual Hardware Behavior

Bit flips can manifest all sorts of problems, from corrupting arithmetic results or storage to
changing the instruction stream. There are too many ways in which things could go wrong, so it
is not clear where to start predicting behavior. For example, what happens if data in a cache
are corrupted? It depends on whether the algorithm reads or writes the corrupted data, as well
as the cache eviction policy. It is also not clear whether possible future hardware, which reports
faults back to applications, will behave according to our models. For example, hardware may
change how floating-point data is stored, and only ensure that the representation follows the
IEEE-754 specification if the users interacts with the data through an API. There is too much
uncertainty surrounding exascale already. Using bit flips as a vehicle for algorithm analysis
and assessment only adds speculation and we get no benefits from making such unfounded
assumptions. Instead, we advocate an adversarial approach. Rather than allow errors to vary
from negligible to devastating, we develop a fault model that introduces errors that are always
bad. This removes the uncertainty over whether the fault impacted a key value, and allows us
to focus on how our algorithmic techniques behave when faced with faults that induce high
overhead, or even cause our resilient algorithm to fail. The latter is particularly useful, as we
must determine the weaknesses of our approach, if we are to promise that our algorithm is
resilient to errors.

1.6.2 Skeptical Programming: Bounding Soft Errors

The “random bit flip” fault model does not reflect what algorithms actually need to know.
Algorithm developers do not care whether a network packet dumped garbage into our reduction
or a cosmic ray blasted 20 entries in an array. All of these events can be modeled as numeric
perturbations in the algorithm. Furthermore, we can bound these errors by detecting their effects.
Then we can use numerical approaches that can tolerate “large” errors, where “large” means
“much larger than rounding error, but not large enough to detect.”

Traditional ABFT attempts to preserve the illusion of an always-reliable machine. Instead,
we favor an approach more compatible with numerical analysis. First, we bound the error that
faults can introduce. Second, we identify methods that can tolerate the largest error possible.
This strategy is based entirely on the algorithm theory and the data itself. That is, given specific
inputs, we can bound large portions of an algorithm using standard norm bounds and inner
product bounds. These bounds enforce that errors committed in intermediate computations do
not exceed the theoretical limit imposed by the algorithm in conjunction with the data provided.
We demonstrate this approach in Chapter 4.

Because operations are unreliable, the bounds allow us to be skeptical of key values. We use
a bound on orthogonal projections in Chapter 4, while van Dam et al. [93] use a bound on an

11

inner product. These bounds work as filters rather than error detectors. We make no promise to
detect and correct all errors, we merely promise bounded error. We refer to this approach as
Skeptical Programming.

Numerical research provides a continuous stream of results that could be used in our Skeptical
Programming strategy. The key factor is that these bounds be always 1) cheap to evaluate, and
2) be determined before the algorithm is run. We prefer to determine these bounds a priori
because the unreliability of the machine may affect any bound computed inside the algorithm.
That is, if we allow a bound to depend on unreliable computation, then the bound becomes
unreliable as well. We may have to relax (2) in some cases, but we desire (1) to be true. Chapter 6
explores in detail how detectors can drastically influence the computational cost of various
resilient algorithms. Specifically, we find that detectors must be of low overhead. Our results
from Chapter 4 are showcased, because the overhead to evaluate the detector is small.

1.6.3 Worst-Case Behavior: Adversarial vs. Practitioner

Our analysis of bit flips motivates the development of a better fault injection and algorithm
assessment strategy. We show in Chapter 4 that bounding errors tends to be effective, but it is
difficult to quantify how effective. Stochastic sampling is a natural tool to use for algorithm
assessment. Random sampling, in itself, is not bad, but as a means to justify the correctness of
a numerical method, it is inadequate. Numerical methods typically have proven behavior and
correctness. If operations can be unreliable, then we need to identify the bounds in which a
resilient algorithm is reliable. That is, we should understand the smallest and largest errors we
may commit. Relying on sampling alone leaves us prone to a practitioner design pattern, where
things are fixed only when someone (or a sample) identifies there is a problem. We feel a more
adversarial approach is required, and this approach fits naturally with a bounded error design
methodology. For a given numerical kernel, we wish to know the worst-case error that can be
committed, and with this knowledge, we can employ pure and applied mathematicians to aid us
in designing methods that can tolerate such error bounds.

When developing an algorithm, we cannot ignore the extreme cases, because if we do so, we
have unstated assumptions about the way in which the algorithm can be used. For numerical
methods, unstated assumptions make the method nearly worthless, given that we can never
anticipate what combinations of data the user will throw at the algorithm. For this reason, we
advocate moving from a bit flip model to a more abstract model that evaluates algorithms based
on their ability to absorb unexpected numerical variability.

12

1.6.4 Abstract Fault Models Are Superior

Resilience approaches used in daily practice, such as Checkpoint/Restart (C/R), are attractive
because they presume an abstract, minimal fault model. C/R assumes only that checkpoints
contain correct state, and are stored reliably to stable (shared, non-volatile) storage. It does not
care whether the application failed due to a crashed node, network errors, a power outage, or
the job running out of allocation time. This abstract fault model lets C/R recover from many
different kinds of faults.

SDC, by definition, does not trigger system actions like a restart. The silent error can
manifest in several ways, such as performance variation between parallel processes, convergence
to a wrong solution, or even an application crash sufficiently long after a checkpoint is written
that contains the tainted state. Given the success of C/R’s abstract fault model, why then has
soft error research focused so heavily on a low-level, fine-grained “bit flip” fault model? Bits
may go wrong if an error is introduced, but this does not aid in the design of algorithms that
work at a much higher abstraction layer than bits. Applications care about data types, such as
floating-point values and integers, not about the bits which compose them.

We argue that resilient numerical methods should be designed around an abstract fault
model of numerical unreliability, in much the same way C/R is designed around an abstract
model of system unreliability. We present a case for a radically different research methodology
that merges numerical analysis with systems fault tolerance. We demonstrate our adversarial
fault model in Chapter 5, and then show how we can use this research approach to compose a
better resilient preconditioned linear solver in Chapter 6.

We demonstrate that many types of soft errors can be tolerated by employing an abstract
fault model that does not presume the origin of the error. This methodology avoids root cause
analysis, which may be important for hardware designers, but has no real meaning to numerical
algorithm developers. At the numerical method level, soft errors manifest as potentially large
numerical error. We present findings supporting our claim that such large errors can be treated
using a hybrid approach of system reliability and numerical analysis.

1.7 Summary of Contributions

Our work is focused on the development and assessment of resilient preconditioned linear solvers.
To motivate our methodology, we present a thorough analysis of the error that a bit flip in an
IEEE-754 scalar introduces. We then use this analysis to motivate a superior fault injection
methodology that enables us to assess the overhead of our detection and forward recovery
mechanisms in the cases of detectable and undetectable errors.

13

• Chapter 2 shows an empirical study of a bit flip in dot products, as well as modeling
that shows loose bounds on what the absolute and relative errors can be. We expose the
probability that errors will behave as “small” or “large,” and show how this property
relates to the numerical concepts of normalization and matrix equilibration. Furthermore,
we show that exploiting this property is practical, and in some cases enabled by the
algorithms themselves.
This work is published at ScalA’14 [30] and submitted to the Elsevier Journal of Compu-
tational Science [32].
• Chapter 3 models the analytic expected absolute and relative errors given a bit flip in
IEEE-754 scalars. We show general models that are applicable to all standard IEEE-754
formats: half, single, double, and quad precision. We establish proofs that the properties
observed in Chapter 2 hold for the standard specifications, and are able to reason about
the impact of using different floating point formats.
This work is submitted to Arith’16 [33] and SIAM Journal on Scientific Computing [33].
• Chapter 4 derives the first error detector for the GMRES algorithm, and assesses the

impact of small and large errors on the number of iterations required for convergence using
a selective reliability nested solver scheme. We show empirical evidence that relatively
small errors introduce lower overhead than very large errors.
This work is published at IPDPS’14 [29].
• Chapter 5 develops a fault model and injection methodology that consistently introduces

overhead higher than random bit flip injection and is inherently parallel. Furthermore, our
fault model and method injects errors in a novel way that lets us control if the error is
detectable.
This work is published at HPDC’15 [31].
• Chapter 6 combines the detector from Chapter 4 with the fault model and methodology

from Chapter 5 to make quantifiable progress in resilient algorithm design. We identify a
high-overhead detector using our methodology and enable correct results with overhead
substantially lower than the original FT-GMRES algorithm would entail.
This work is submitted to PPoPP’16 [34]

14

Chapter 2

Data Representation and Fault Tolerance

In the field of high-end computing (HEC) the notion of reliability has tended to focus on keeping
thousands of physical nodes operating cooperatively for extended periods of time. As chip
manufacturing and power requirements continue to advance, soft errors are becoming more
apparent [70]. This implies that reliability research must address the case that the machine
does not crash, but that outputs during computation may be silently incorrect. There have
been many studies into hardening numerical kernels against soft errors, that is the researchers
attempt to preserve the illusion of a reliable machine by detecting and correcting all soft errors.
We take a more analytical approach. Instead of focusing on detection/correction, we seek to
study how the data operated on impacts the errors that we can observe given soft errors in data
— called silent data corruption (SDC).

2.1 Introduction

The driving motivation behind our work is the uncertainty surrounding the reliability of an
exascale-class machine [35, 63, 16]. We attempt to avoid speculation over what hardware may
be used in future (or present) HEC deployments, and instead analyze how a single soft error
in an IEEE-754 floating-point number behaves. It has already been shown that existing and
decommissioned HEC deployments have suffered from SDC [70, 46]. For the prior reasons, we
seek to study the link between the data operated on and soft errors. We intentionally perform
our research subject to the IEEE 754 specification, which we believe will be used regardless
of the architecture. We also restrict our analysis to single bit flips. This gives us a base line
from which to draw higher-level conclusions related to multiple bit flips, and lets us isolate the
impact of a bit flip. While the analytic model for IEEE-754 scalars motivates this chapter, we
use numerical upper bounds on how a bit flip will influence a scalar. That is, we explore the
general characteristics of a bit flip in an IEEE-754 scalar. In Chapter 3, we take a more nuanced

15

approach and analytically derive the expected value of the absolute and relative error given a
bit flip in a scalar or scalar multiplication.

IEEE 754 both defines the binary representation of data, and bounds the rounding error
committed by arithmetic operations. This work focuses on data representation. The effects
of rounding error on numerical algorithms, including those studied in this work, have been
extensively studied; see e.g., [74]. However, these results generally only apply to small errors,
such as those resulting from rounding. Bit flips can be huge and thus require different methods
of analysis, like those presented in this work.

We present the following contributions:
• We model single bit upsets in IEEE-754 scalars analytically, and extend this modeling to
dot products.
• We demonstrate both experimentally (via Monte Carlo sampling) and analytically that
dot products performed on normalized numbers have a significantly lower probability of
experiencing large error than dot products with values of varying magnitudes.
• We relate our finding that normalized vectors minimize absolute error to matrix equili-
bration, and correlate this finding to two highly used numerical kernels (Gram-Schmidt
orthogonalization and the Arnoldi process).
• We demonstrate the utility of our finding by instrumenting the Generalized Minimum

Residual Method (GMRES). We show that for the dot product intensive orthogonalization
kernel, we can restrict errors arising from single bit upsets to being less than one, or being
very large and easily detected.
• We articulate how studying single bit flips enables us to draw conclusions about multiple

bit upsets.

2.2 Related Work

Researchers have approached the problem of SDC in numerical algorithms in various ways. Many
take the approach of treating an algorithm as a black box and observing the behavior of these
codes when run with soft errors injected. Recently, [55, 56] analyzed the behavior of various
Krylov methods and observed the variance in iteration count based on the data structure that
experiences the bit flip. Shantharam et al. [82] analyzed how bit flips in a sparse matrix-vector
multiply (SpMV) impact the L2 norm and observe the error as CG is run. Bronevetsky et al.
[14, 86] analyzed several iterative methods documenting the impact of randomly injected bit
flips into specific data structures in the algorithms and evaluated several detection/correction
schemes in terms of overhead and accuracy. Exemplifying the concept of black-box analysis, [66]
presents BIFIT for characterizing applications based on their vulnerability to bit flips. Rather

16

than focusing on how to preserve the illusion of a reliable machine or devising a scheme to inject
soft errors, we investigate an avenue mostly ignored, which is how the data in the algorithm can
be used to mitigate the impact of a bit flip.

Heroux proposed a radically different approach. Rather than attempt to detect and correct
soft errors, he proposes a “selective reliability” programming model to make the algorithm
converge through soft errors [47]. Hoemmen and Heroux realized this model using nested linear
solvers [13]. Sao and Vuduc showed that reliably restarting iterative solvers enables convergence
in the presence of soft errors [79]. In the same vein, Elliott et al. showed that bounding the error
introduced in the orthogonalization phase of GMRES lets FT-GMRES converge with minimal
impact on time to solution [29]. Boley et al. applied backward error analysis to linear systems, in
order to distinguish small error due to rounding from inacceptably large error due to transient
hardware faults [12]. In general, our work complements this line of research. While Hoemmen
and Sao have investigated algorithms that can converge through errors, we show that in certain
numerical kernels, the data itself can have a “bounding” effect. For example, coupled with [29],
we improve the likelihood that errors fall within the derived bound.

Algorithm-based fault tolerance (ABFT) provides an approach to detect (and optionally
correct) faults, which comes at the cost of increased memory consumption and reduced perfor-
mance [58, 27]. The ABFT work by Huang et al. [58] was proven by Anfinson et al. [4] to work
for several matrix operations, and the checksum relationship in the input checksum matrices is
preserved at the end of the computation. Consequently, by verifying this checksum relationship
in the final computation results, errors can be detected at the end of the computation. Recent
work has looked at extending ABFT to additional matrix factorization algorithms [27] and
as an alternative to traditional checkpoint/restart techniques for tolerating fail-stop failures
[23, 21, 19].

Costs in terms of extra memory and computation required for ABFT may be amortized
for dense linear algebra, and such overheads have been analyzed by many (e.g., [2, 10, 62]).
Algorithms must be manually redesigned for ABFT support by accounting for numerical
properties (e.g., invariants). A more fundamental problem is that traditional checksums and
error-correcting codes do not suit floating-point computations well [12]. Such computations
naturally commit rounding error, which exact (bitwise) codes forbid. Inexact codes (that use
floating-point sums) can be sensitive to rounding error, and commit it themselves. It is possible
that more expensive recovery and significantly more redundant storage could help [15]. However,
works like [13, 79, 29, 12] suggest that correcting faults might not be necessary, if their effects
on the algorithm are detectable and bounded. In general, our work favors “opening up the black
box” and understanding the effects of soft error on algorithms, rather than trying to detect and
correct all such errors before they affect algorithms’ behavior.

17

2.3 Project Overview

To explore the relation between data representation and soft errors, we first construct an analytic
model of a soft error in an IEEE-754 floating-point scalar, and then extend this to a dot product.
We uncover through analysis that the binary pattern of the exponent can be exploited for
fault tolerance. We show this graphically via a case study using Monte Carlo sampling of
random vectors, and then extend the idea of data scaling to matrices by using sparse matrix
equilibration. To demonstrate the feasibly and utility of our work we analyze the GMRES
algorithm and instrument the computationally intensive orthogonalization phase. We count the
possible absolute errors that can be introduced via a bit flip in a dot product, and show that
scaling data lowers the likelihood of observing large, undetectable errors.

This chapter is organized as follows:
1. In § 2.4, we construct an analytic model of the absolute error for single bit upsets in

IEEE-754 floating-point numbers.
2. In § 2.5, we extend our model of faults in IEEE-754 scalars to vectors of arbitrary values,

and present examples of how data scaling impacts the binary representation and absolute
error we can observe.

3. In § 2.6, we perform a case study using Monte Carlo sampling of 10,404,000,000 random
vectors of various magnitudes, and graphically show how the error is minimized when
operating on values less than 1.

4. In § 2.7, we link data scaling to sparse matrix equilibration, and instrument and evaluate
the impact of a soft error in the computationally intensive orthogonalization phase of
GMRES.

2.4 Fault Model

The premise of our work is that a silent, transient bit flip impacts data. Before we can perform
any analysis or experimental work, we must define how such a bit flip would impact an algorithm,
and how we enforce that the bit flip was transient. To achieve this goal, we build our model
around the basic concept that when an algorithm uses data, this translates into some set of
operations being performed on the data. Should a bit flip perturb our data, some operation will
use a corrupt value, rather than the correct value. The output of this single operation will then
contain a tainted value, and this tainted value could cause the solution to be incorrect. Note
that a transient bit flip may cause a persistent error in the output depending on how the value
is used.

18

A side benefit of an operation-centric model is that we naturally avoid a pitfall to which
arbitrary memory fault injection succumbs, namely that if a bit flip impacts data (or memory)
that is never used (read) then this fault cannot lead to a failure. Our fault model allows a bit
flip to perturb the input to an operation performed on the data, while not persistently tainting
the storage of the inputs. This mimics how a transient bit flip would manifest itself, e.g., during
ALU activities. As a result, the data that experiences the bit flip need not show signs that it was
perturbed. This model allows us to observe the impact of transient flips on the inputs, which
results in sticky or persistent error in the result. We then utilize mathematical analysis to model
how this persistent error propagates through the algorithm.

2.4.1 Fault Characterization via Semantic Analysis

To derive a fault model we must first understand what a fault is. Since floating-point numbers
approximate real numbers and most numerical algorithms use real numbers, we start from the
definition of a real-valued scalar γ ∈ R. The range of possible values that γ can take is

γ ∈ [−∞,+∞].

We assume that the IEEE-754 specification for double-precision numbers, called Binary64, is
used to represent these numbers. This means that γ can take a fixed set of numeric values, and
these values lie in the range

γ ∈ [−1.80× 10308,+1.80× 10308],

or using base two for the exponent

γ ∈ [−1.9̄× 21023,+1.9̄× 21023],

where 1.9̄ indicates the largest possible fractional component, and 1.0 indicates the smallest
fractional component. A more informative range is that of |γ|, excluding 0 and denormalized
numbers,

|γ| ∈ [2.23× 10−308, 1.80× 10308], (2.1)

and in semi base two
|γ| ∈ [1.0× 2−1022, 1.9̄× 21023]. (2.2)

To approximate real numbers, Binary64 uses 64 bits, of which 11 are devoted to the exponent,
52 for the fractional component (we refer to as the mantissa), and one bit for the sign. Figure 2.1
shows how these bits are laid out. In addition to numeric values, Binary64 includes two non-
numeric values, Not-a-Number (NaN) and Infinity (Inf), which may be signed to account for

19

��������

�	
� �

�����������

Figure 2.1: Graphical representation of data layout in the IEEE-754 Binary64 specification.

infinity and values that result in undefined operations, e.g., division by zero. The range of values
in Equations (2.1) and (2.2) is not continuous and has non-uniform gaps due to the discrete
precision, which is a consequence of having a fixed number of bits in the fractional component.

We can further discretize the range of possible values by recognizing that there is a finite
number of exponents that are possible given IEEE-754 double precision, e.g.,

γ ∈ {0,±Inf,±NaN,±2−1022 × 1.x,±2−1021 × 1.x,

. . . ,±20 × 1.x, . . . ,±21023 × 1.x},

where 1.x indicates some fractional component.
Analytically, this is expressed as

γ = (−1)sign
(

1 +
51∑
i=0

bi2i−52
)
× 2e−1023, (2.3)

for IEEE-754 Binary64. Note, the specification does not include a sign bit for the exponent.
Rather, IEEE floating point numbers utilize a bias to allow the exponent to be stored without a
sign bit, which we will later exploit for fault-resilience. Another important characteristic that
stems from the general approach of expressing numbers in exponential notation is that we can
characterize numbers by their order of magnitude. Of particular interest is the following relation:

|2−1022| ≤ |2−1022 × 1.x|

< |2−1021| ≤ |2−1021 × 1.x| < . . .

< |20| ≤ |20 × 1.x| < . . .

< |21023| ≤ |21023 × 1.x|. (2.4)

This means that we can use the next order of magnitude as an upper bound for errors in
the fractional component of a number — which is practically achieved by incrementing the
exponent or multiplying by two. We can also analytically model the number of fractional bits
that could contribute an error larger than some tolerance, since the error that could arise from
each mantissa bit is relative to the exponent of the number. This final step is necessary since

20

the fractional term can take values in the range [1, 2), where the left parenthesis indicates that
2 is not a member of this interval. We can also characterize the error that a perturbed sign bit
can contribute, and, like the fractional component, this error is relative to the exponent of the
number. Suppose the sign is perturbed in a scalar γ, then we have γ̃ = −γ, the absolute error is
|γ − γ̃| = |γ − (−γ)| = 2γ. This means we can bound the error from a sign bit perturbation by
incrementing the exponent of the resulting value.

In summary, we have demonstrated that errors in IEEE-754 floating point numbers can be
characterized using the exponent of the numbers. This property allows us to reduce the number
of bits we need to consider in a fault model, since we know that a large number of errors are
bounded by the relatively small set of possible exponents.

2.4.2 Fault Characteristics of Perturbed Exponents

In the context of IEEE-754 double precision numbers and silent data corruption, we do not
model the exponents directly. Instead, we model the biased exponents, as they are the interesting
portion of the data that allows us to characterize the errors that the majority of the bits present
in the data can produce. For instance, in double precision data we can characterize the errors
from 53 of the 64 bits using our approach. This type of fault-characterization is impossible if
bit flips are injected randomly into the data’s memory, as that approach loses the semantic
information that is implicitly present in the data.

The Binary64 specification does not store exponents directly, instead it uses a bias of 1023.
From § 2.4.1 this means we can characterize all faults in double precision data by analyzing
perturbations to the possible biased exponents

{0, 1, 2, . . . , 1023, . . . , 2046}.

Note that zero is not a biased exponent and has special meaning. In IEEE-754, a zero pattern
in the exponent with zeros in the mantissa is used to represent the scalar zero, while a non-zero
pattern in the mantissa is used to represent subnormal numbers. We also assume the user does
not perform computation on the two non-numeric values NaN and Inf, which are represented
using the biased exponent 2047 (all ones). We do include zero in our analysis because it is a
valid real number.

Since we are concerned with bit perturbations in the exponent, we express the biased
exponents in their binary form, e.g., 11-bit unsigned integers presented in binary. We can further
expand Figure 2.2 to show the potential change to the original exponent should a bit flip occur,
which will form the basis for our fault model and analytic models.

In the context of bit flips, we can view a bit flip as adding or subtracting from the biased
exponent, which in turn translates to multiplying or dividing the number by some power of

21


2−1

20

21

 ⇒


1022
1023
1024

 ⇒


01111111110
01111111111
10000000000


Exponent Biased Storage

Figure 2.2: Relation of exponent, IEEE-754 double precision bias, and what data are actually
stored.

two. We model the impact of a bit flip in the exponent as the original scalar being magnified or
minimized by a specific power of two. We illustrate this in Figure 2.3, where reading left-to-right,
we have some initial exponent, which is represented using a bias of 1023. The biased exponent
translates to a discrete binary pattern. We consider all single bit flips in this binary pattern
and compute the actual perturbed exponent. Note, that the perturbation can be modeled
independent of the original exponent.

By characterizing the error introduced, we recognize that all mantissa bit flips introduce
error that has the same exponent as the original number, and a sign bit flip introduces error
that is only one order of magnitude larger than the original number. Furthermore, the exponent
bits can either introduce large error, or a bit flip introduces error roughly equivalent to the order
of magnitude of the original number.

Suppose we can enforce that all numbers used in calculations are less than 1.0, then we know
that the majority of the bits will produce error that is also less than one, since 51 of the total
52 mantissa bits will contribute an error less than 1.0. We also see that some of the exponent
bits have the potential to contribute an error less than 1.0, which indicates if we can enforce or
assume some properties of the data used in the calculations e.g., data less than one, then we
can greatly increase the likelihood that a bit flip introduces an error no greater than 1.0. This
phenomena is shown in Figure 2.3, where we show empirically that numbers with exponent 20

introduce a small error compared to the errors introduced with the exponent 21.
In summary, the exponent characterizes the error introduced by the sign or mantissa should

a bit flip occur. As discussed in § 2.4.1 and analytically presented in Eq. (2.4), we are able to
relate bit upsets to numerical error in terms of the exponent of the original number. Table 2.1
summarizes these analytical bounds for a bit upset in a scalar and highlights the change in order
of magnitude. Now that we have characterized a fault in a scalar, we will present a fault model
centered around operations on scalars assuming one will be perturbed.

22

2−1 ⇒ 1022 ⇒ 01111111110⇒



01111111111
01111111100
01111111010
01111110110
01111101110
01111011110
01110111110
01101111110
01011111110
00111111110
11111111110



⇒



20 = 2−1 × 2+1

2−3 = 2−1 × 2−2

2−5 = 2−1 × 2−4

2−9 = 2−1 × 2−8

2−17 = 2−1 × 2−16

2−33 = 2−1 × 2−32

2−65 = 2−1 × 2−64

2−129 = 2−1 × 2−128

2−257 = 2−1 × 2−256

2−513 = 2−1 × 2−512

21023 = 2−1 × 21024



20 ⇒ 1023 ⇒ 01111111111⇒



01111111110
01111111101

...
00111111111
11111111111


⇒



2−1 = 20 × 2−1

2−2 = 20 × 2−2

...
2−512 = 20 × 2−512

21024 = Inf or NaN



21 ⇒ 1024 ⇒ 10000000000⇒



10000000001
10000000010

...
11000000000
00000000000


⇒



22 = 21 × 2+1

23 = 21 × 2+2

...
2513 = 21 × 2+512

Zero or Subnormal


︸ ︷︷ ︸

Unperturbed Data
︸ ︷︷ ︸

Perturbed Binary
︸ ︷︷ ︸
Result

︸ ︷︷ ︸
Perturbation

Figure 2.3: Examples of how a bit flip can impact an exponent represented using the IEEE-754
Binary64 specification.

Table 2.1: Bit flip absolute error for a scalar λ represented using IEEE-754 double precision,
with λ = λexp × λfrac. Where λexp is the exponent 2x, and λfrac is the fractional component.

Bit Location Absolute Error Bit Range ∆ Order†

Scalar:
∣∣λ− λ̃∣∣ Multiplication: |αβ − α̃β|

Mantissa
∣∣λexp(1 + 2j−52)

∣∣ ∣∣αexp(1 + 2j−52)β
∣∣ for j = 0, . . . , 51 0

Exponent1→0

∣∣∣λ(1− 2−2j

)
∣∣∣ ∣∣∣αβ(1− 2−2j

)
∣∣∣ for j = 0, . . . , 10 and bitj+52 = 1 −2j

Exponent0→1

∣∣∣λ(1− 22j

)
∣∣∣ ∣∣∣αβ(1− 22j

)
∣∣∣ for j = 0, . . . , 10 and bitj+52 = 0 +2j

Sign |2λ| |2αβ| 1

† The change in order of magnitude.

23

2.4.3 Operation Centric Fault Model

This work distinguishes itself from related work in the field of silent data corruption by developing
a fault model that is not based on perturbing arbitrary memory locations. We seek a fault model
and experimental methodology that expresses all possible errors, and not the expected error,
which is what is obtained through random sampling.

Fault Model for Dot Products

We now describe a realization of our fault model that describes the error that could be injected
if an operation in a dot product experiences a single bit upset. We choose the dot product
because it is a common operation, and because we will use this model in § 2.7 to model the
worst-case errors that could be injected into a phase of the GMRES algorithm.

Given two real-valued n-dimensional vectors a,b ∈ Rn, the dot product is defined as

c =
n∑
i=1

ci, where ci = aibi. (2.5)

If we allow a single bit flip to impact the i-th element of the dot product, then we have a
perturbed solution c̃, which is the result of a perturbation to either ai, bi, or ci. In the context
of our fault model, this captures a bit upset impacting the inputs to the multiplication operator,
and it captures a bit upset in the intermediate value, ci, which is the input to the addition
operator.

Using Table 2.1, we have all of the tools necessary to compose an absolute error model
for a dot product, i.e., addition is modeled by a fault in a scalar |α+ β − (α̃+ β)| = |α− α̃|.
The potential change in order of magnitude is paramount. Consider an exponent flip from
1→ 0. These types of exponent bit flips produce an error that is bounded above by the original
magnitude of the result, which can be viewed as “zeroing out” the term if a perturbation occurs.
Similar to a perturbed scalar, the mantissa can contribute either no change in the order of
magnitude, or in the worst case a bit flip causes a carry, which will increment the order of
magnitude by one. The order of magnitude for a sign bit flip is exactly the same as that of
a perturbed scalar, which introduces an error one order of magnitude larger than the result.
These error models can be thought of as the largest additive error that we can inject into a dot
product from a bit flip, e.g.,

c̃ =
n∑
i=1

aibi + (error term). (2.6)

In summary, we have composed analytic models for the the absolute error that could be
introduced into a dot product. Our models are initially constructed from the IEEE-754 Binary64
model, which we extended to express how a bit upset impacts a singular double precision scalar.

24

We then composed a model for the multiplication operator, and analytically expressed the
absolute error. Using the absolute error, we have a model that explains how wrong a dot product
can be, assuming a bit flip in one of the input vectors or in an intermediate value. Next, we
refine these models to construct strict upper bounds on the error introduced by a bit flip in a
dot product.

Error Bounds for a Bit Flip in a Dot Product

The models presented in Table 2.1 make no assumptions about the bits present in the mantissa
of the operands. This is problematic if we want to consider all possible errors that could be
introduced into a dot product. To account for the mantissa, and to create strict upper bounds
on the error, we will use the relation presented in Eq. 2.4. From this relation, we know that
αβ < 2αexponent+12βexponent+1. We can write this as

αβ < 4αexpβexp, (2.7)

where αexp = 2αexponent . Using Eq (2.7), we are able to account for the mantissa bits, but we can
also show that a bit flip in the sign is bounded by Eq. (2.7). The sign bit introduces an absolute
error equivalent to incrementing the exponent of the result

αβ < 2αβ < 4αexpβexp, (2.8)

where 2αβ is the potential error introduced should the sign bit be perturbed, which must be
smaller than the bound constructed for the mantissa.

By utilizing Eq. (2.7), we are able to account for all possible mantissas and their potential
faults, as well as a perturbation to the sign bit. We will now discuss how to use this model to
understand the relationship between the data in an algorithm and the distribution of potential
errors that could occur should a bit flip in the data.

2.5 Fault Model Evaluation

In § 2.4 we proposed analytic models for errors should a bit flip occur in IEEE-754 double
precision data. We now illustrate how data can impact the size of errors that a bit flip can

25

create. Consider the following sample vectors

usmall =
[

0.5
0.25

]
, vsmall =

[
0.25
0.5

]
, and

ularge =
[
2
4

]
, vlarge =

[
4
2

]
.

If we compute the dot product λ = ularge · vlarge, we have a finite number of potential errors
should a bit flip in the data of ularge,vlarge, or in an intermediate value in the summation. We
can experience either 2̃ × 4 + 4 × 2, 2 × 4̃ + 4 × 2, or 8̃ + 8. We have previously shown what
2̃ can be (in Figure 2.3), but for clarity we will state what the perturbed values could be (in
Figure 2.4). By inspection it is clear that substituting any of the above perturbed scalars into

2̃ =



22

23

25

29

217

233

265

2129

2257

2513

Zero



, 4̃ =



21

24

26

210

218

234

266

2130

2258

2514

2−1020



, 8̃ =



24

21

27

211

219

235

267

2131

2259

2515

2−1018


Figure 2.4: Example of perturbed values for large numbers.

the dot product will produce an absolute error greater than one in all cases, and in the event
one chooses to substitute the near zero perturbed values, the absolute error of the dot product
still has magnitude 8, e.g., |16− (0 + 8)|.

Alternatively, consider the vectors usmall and vsmall. If we compute the dot product, λ =
usmall ·vsmall = 0.25. Then we have possible values to perturb: 0̃.5, 0̃.25, and 0̃.125. We construct
these from our model of a perturbed scalar, and present the perturbed variants in Figure 2.5.
By inspection, 0̃.5 can contribute an absolute error to the dot product larger than one only once,
e.g.,

∣∣0.25− (21022 × 0.25 + 0.125)
∣∣. Likewise, 0̃.25 and 0̃.125 can perturb the result of the dot

product with error greater than one only once, and for all 3 cases the perturbation will change
the result by hundreds of orders of magnitude.

26

0̃.5 =



20

2−3

2−5

2−9

2−17

2−33

2−65

2−129

2−257

2−513

21022



, 0̃.25 =



2−3

20

2−6

2−10

2−18

2−34

2−66

2−130

2−258

2−514

21019



, 0̃.125 =



2−2

2−1

2−7

2−11

2−19

2−35

2−67

2−131

2−259

2−515

21017


Figure 2.5: Example of perturbed values for small numbers.

Returning to Figure 2.3 explains what causes bit flips in the exponent to produce either a
majority of large or small errors. The binary pattern of the stored biased exponent contains
predominantly zeros for numbers greater than one, and predominantly ones for numbers less
than one.

One could also obtain primarily ones in the exponent as you approach the extrema of the
biased exponents, i.e., numbers larger than 2512. In this case, the biased exponent does contain
many ones, however, because the number is sufficiently large, i.e., the absolute error will remain
considerably large. This is because if one “zeroes out” a perturbed element in the dot product,
the error is proportional to the magnitude of the result.

2.5.1 Faults in the Mantissa or Sign

The error generated by the mantissa or sign bits is relative to the exponent of the number that
the flip occurred in. If the exponent is larger than one, then clearly the mantissa or sign bits
can generate an error larger than one. Alternatively, if the values all are less than one, then
mantissa errors will produce errors less than one because 2−1 × 1.x ≤ 20. The errors from the
sign bit cannot exceed 2 since 2× 2−1 × 1.x < 21.

It is reasonable to consider that the mantissa generates a carry, as discussed in § 2.4.3. To
account for this we construct a strict upper bound by incrementing the exponent of each element
of the vectors analyzed, similar to Eq. (2.7). For example,

uoriginal =
[
2.12332
1.24568

]
⇒ uupper bound =

[
4
2

]
. (2.9)

27

We then can evaluate our models on these vectors to determine a strict upper bound on the
errors we can experience in a dot product.

2.5.2 Modeling Large Vectors

We have shown how to exhaustively examine each element in a vector, and from this analysis we
can determine precisely which absolute errors we could experience. Given large vectors, where
the dimension n may have millions or billions of elements, exhaustively searching each element
would be time consuming, but it would also be a waste of time. As stated previously, there
is a discrete number of exponents supported by the IEEE-754 Binary64 specification. As we
have previously shown, the exponent characterizes the faults we can observe, so we only need to
consider the 2046 possible biased exponents and the special case of zero. The perturbations that
are possible can be determined independent of concrete data values, e.g., we can precompute the
perturbations and absolute error because we know the relation stated in Eq. (2.4) and Eq. (2.7).

To analyze arbitrarily large vectors, we construct a lookup table for the absolute error in
whatever operation we choose to model (we have chosen products and addition). The table size
is 2047× 2047, and allows us to consider the error introduced by performing an operation on
two exponents, which will map to a unique ij location.

For example, consider the vectors

u =


1.0
1.2
8.0

0.125

 , and v =


0.125

0.125001
0.125002

1.0

 . (2.10)

We first extract the biased exponents from the vectors

u⇒ uexponent =


20 × 1.0
20 × 1.x
23 × 1.0

2−3 × 1.0

⇒ ubiased =


1023
1023
1026
1020

 (2.11)

Now, we determine an interval of possible values, and account for the mantissa values that may
have been truncated

ui ∈ [1020, 1026] ⊆ [1020, 1027] for i = 1, . . . , 4. (2.12)

The range of biased exponents [1020, 1027] will contain all possible values that the original
vector contained, and include one value that was larger than any in the vector, the number

28

corresponding to the biased exponent 1027. Similarly, we can compute the interval for v

v =


0.125

0.125001
0.125002

0.25

⇒


2−3 × 1.0
2−3 × 1.x
2−3 × 1.x
2−2 × 1.0

⇒


1020
1020
1020
1021

 , (2.13)

which leads to the interval we consider errors

vi ∈ [1020, 1021] ⊆ [1020, 1022] for i = 1, . . . , 4. (2.14)

To allow us to analyze intervals efficiently, we create a lookup table, where each entry computes
the relevant perturbations and absolute errors for the operations being modeled. In the case
of multiplication, the table has symmetry because multiplication is commutative. In practice,
computing the full table (0, . . . , 2046) is simple and allows one to model errors for arbitrary
vectors.

A caveat of the above approach is that we must know the range of values that the vector
contains. This can be achieved by directly computing the min and max values for each vector.
Alternatively, an approximate range can be determined if the “length” of the vector is known,
e.g., the two-norm or if we know that the data is normalized, i.e., the two-norm is one. One
weakness to the proposed approach is that we do not consider a flip in the accumulating sum,
which we have left to future work. We also leave to future work analysis that shows how many
of these modeled errors lie within the rounding error bound for pairwise sums.

2.5.3 Summary

We have shown that the range of values used in the dot product has a direct impact on the size of
the errors that can be observed. A general rule in floating point algorithms has been to perform
operations on numbers as close to the same magnitude as possible, as doing so minimizes the
loss of precision. We have now shown that following this rule-of-thumb also gives the benefit of
making bit upsets generate a relatively small error when the numbers are no larger than one.
Next we present a motivating case study that focuses exclusively on dot products, and then in
§ 2.7 we show how to exploiting data scaling in an iterative solver.

2.6 Case Study: Vector Dot Products

To begin our investigation, we assess the susceptibility of the dot product of two N -dimensional
vectors to a silent bit flip in arithmetic. We make this choice since many linear algebra operations

29

can be decomposed into dot products, for example, Gram-Schmidt orthogonalization or matrix-
vector multiplications.

2.6.1 Computational Challenges

Given a single double-precision number, there are 64 bits that may be flipped. Extending this
to an N -dimensional vector, we have 64N bits that are candidates for flipping. Accounting
for different numbers results in a very large sample space, and, therefore, we utilized a hybrid
CPU-GPU cluster and created a parallel code that farms out specific Monte Carlo trials to
various nodes. In this context, a trial consists of creating two vectors, which is discussed in
the following section, and then determining pass/fail statistics given a bit flip on the input to
the dot-product kernel. We utilized the BLAS ddot() routine, and aggregated the output for
post-processing in MATLAB. Ensuring a sampling error of less than 0.001, which is discussed in
§ 2.6.4, required nearly 400,000 CPU hours parallelized over the processors of a 1700 core cluster
of AMD 6128 Opterons. The large search space coupled with ensuring statistically significant
results highlights why an analytic approach is not only more efficient, but may be required for
more advanced methods and data structures, e.g., matrices and linear solvers.

2.6.2 Monte Carlo Sampling

We next develop a better understanding of how vector magnitudes impact the expected absolute
error should a bit perturb a dot product. To conduct Monte Carlo sampling, we must first
determine a mechanism for tallying success, and we must define success and failure.
• Vector Creation
1) Mantissa generated randomly using C stdlib rand().
2) For each vector, we fix each element’s magnitude to the bit pattern 2−50 to 250 (101 bit

patterns). This corresponds to the base ten numbers in the range 8.8×10−16 to 1.1×10+15.
This range was chosen because 2−50 roughly is the machine precision. The numbers in this
range are utilizing the highest precision that Binary64 offers.
• Sample definition and Error Calculation
1) A random sample is defined by generating two random N length vectors and computing

the absolute error considering all possible 2× 64×N bit flips.
2) A tally is defined by failure, which we define to be any absolute error that is greater than

1.
3) An empirical estimate of the expected absolute error is computed by dividing the number of

failures by the number of bits considered times the vector length times 2 times the number
of random samples (M) taken for a given magnitude combination, i.e., failures/(2× 64×
N ×M).

30

−50
−40

−30
−20

−10
0

10
20

30
40

50

−50
−40

−30
−20

−10
0

10
20

30
40

50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Order of Exponent

Probability of Absolute Error Greater Than One

Order of Exponent

P
ro
b
(A

b
so
lu
te

E
rr
o
r>

1
.
0
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Monte Carlo experiment com-
puting dot products with vectors of
various magnitudes. Failure is de-
fined to be an absolute error larger
than 1.

−50 −40 −30 −20 −10 0 10 20 30 40 50

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

B
it

P
o
si
ti
o
n

Diagonal slice of surface plot: 2x × ~u and 2x × ~v

Per Bit Prob(Abs Error > 1): Similar Magnitudes

(b) Dot product with vec-
tors containing similar mag-
nitudes.

−50 −40 −30 −20 −10 0 10 20 30 40 50

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

B
it

P
o
si
ti
o
n

Slice of surface plot: 2x × ~u and 23 × ~v

Per Bit Prob(Abs Error > 1): Mixed Magnitudes

(c) Dot product containing
mixed magnitudes.

Figure 2.6: Probability of observing an absolute error larger than 1.

• Visualization
1) To visualize the expected absolute error, we construct tallies for each magnitude combina-

tion, i.e., 101× 101 unique combinations, and each combination is sampled M times.
2) We summarize this information in a surface plot, where the x- and y-axes denote the log2

of the relative magnitude of the vector u and v, respectively. The height of the surface
plot indicates the probability of seeing an absolute error larger than 1.

Figure 2.6a presents a surface plot as described in the Visualization bullet. To interpret this
graph, the x-axis indicates the magnitude that all elements of the vector u were forced to have
while the mantissa was randomly generated. Likewise, the y-axis indicates the magnitude that
all elements of the vector v were forced to have. Each x-y intersection represents 1,000,000
random vector samples, where the dot product was computed and failures tallied. The height of
the surface at an (x, y) location indicates the probability of observing an absolute error larger
than 1 given a single bit flip. From this surface, one may immediately recognize the unusual
structure of these graphs: When both vectors have magnitudes larger than 20, the probability of
failure is noticeably higher; yet, when both vectors have magnitudes less than or euqal to 20,
the probability of failure is approaching zero.

The key finding presented in Figure 2.6a, is that when we operate on vectors that are
normalized, e.g., values in the range [0, 1], we have a very low probability of seeing a large
error should a bit flip occur. The lowest probability, i.e., the flat region in the quadrant
[0,−50]× [0,−50], is precisely Prob(Abs Error > 1) = 0.015625, which is 1/64. The single bit
that can introduce absolute error larger than one is the most significant exponent bit. Also,
should the most significant exponent bit flip, the error is quite large and can be detected [29].

31

2.6.3 Per Bit Analysis of Surface Plot

To better understand the structure of the surface plot, we take two slices of the surface and
look at the per-bit probability of a failure (Figures 2.6b and 2.6c). The slices chosen feature
dot products of vectors with similar relative magnitudes and dot products of vectors of many
magnitudes (the x-axis) with a vector that contains magnitudes up to 23. Intuitively, these figures
slice from the back-most corner of Figure 2.6a to the front for similar magnitudes (Figure 2.6b),
and they slice from the left to right for Figure 2.6c.

We have shown why this shape should be expected in Figure 2.3, and in the example
presented in § 2.5. This feature is an artifact of how the exponent is implemented in the
IEEE-754 specification, i.e., a biased exponent. The lowest probability presented in the surface
plot is 0.015625 = 1/64, we can graphically show this in Figure 2.6b, where one can see that bit
#62 (2nd from the top), is the only bit that can contribute large error. We also show that the
sign and mantissa bits can not introduce large error when values are in the range [0, 1].

Conversely, Figure 2.6c shows that when mixing large and small values, we expect to see large
errors for faults. The green shading in Figure 2.6c (upper left quadrant) indicates a roughly 50%
chance that we see an absolute error larger than one. The reason for this is that values larger
than 2 have a binary pattern that introduces large error most of the time (recall Figure 2.4).The
increased likelihood of large error from the large numbers, coupled with the low chance from
small numbers, creates a scenario where it is equally likely to see both large and small absolute
errors. The more we deviate from operating on numbers in the range [0, 1], the closer we get to
having a 50/50 chance of seeing a large error (see the mantissa bits slowly becoming green as
well).

2.6.4 Comparison of the Analytic Model and Monte Carlo Sampling

In Figure 2.7, we compare the error observed while performing Monte Carlo sampling with the
expected error computed from our model. We sampled up to M = 1 million random vectors
per data point, which implies a Monte Carlo error of errorMC = 1/

√
M ≈ 0.001. We observe a

perfect fit, which is to be expected because we have analytically shown that the exponent bits
dictate the size of the absolute error we will observe. Even with random sign and mantissa bits
evaluated, we see that the likelihood of experiencing a large error is entirely determined by the
exponent bits.

2.7 Extension to Matrices and Iterative Solvers

Having recognized that dot products on numbers less than one can produce errors less than one,
we will relate this idea to matrix equilibration. We then provide an example of how to use this

32

−50 −40 −30 −20 −10 0 10 20 30 40 50
−7

−6

−5

−4

−3

−2

−1

0

Log2 of Vector Magnitude

L
o
g1

0
of

E
x
p
ec

te
d

R
el
at

iv
e

E
rr

or
(c

la
m

p
ed

to
0)

Expected relative error given similarly scaled vectors of different lengths

Predicted error for vector length 100
Predicted error for vector length 1000
Predicted error for vector length 10000
Predicted error for vector length 100000
Predicted error for vector length 1000000
Observed error for vector length 100
Observed error for vector length 1000
Observed error for vector length 10000
Observed error for vector length 100000
Observed error for vector length 1000000

Figure 2.7: Comparison of observed error caused by a flip in the exponent, excluding the most
significant bit, for sampled vector sizes having similar relative magnitudes.

concept in an sparse iterative solver (GMRES), while exhaustively counting the possible errors
that can be introduced.

2.7.1 Matrix Equilibration

The idea of scaled vectors is analogous to vector normalization, i.e., ‖u‖2 = 1. Applied to
matrices in the context of solving linear systems, scaling takes the form of matrix equilibration:
for a matrix A, scale the rows and columns such that ‖A‖∞ = 1. Scaling can also be performed
before a matrix is created, for example the equations leading to the matrix can be scaled prior
to assembling a matrix. To scale a sparse matrix after its creation, we use a sparse matrix
implementation of LAPACK’s equilibration routine DGEEQU [3]. Equilibration does not cause
fill, i.e., it will not increase the number of non-zeros. In general, equilibrating a matrix is only
beneficial, but equilibration may not be practical in all cases.

2.7.2 GMRES

The Generalized Minimum Residual method (GMRES) of Saad and Schultz [78] is a Krylov
subspace method for solving large, sparse, possibly non-symmetric linear systems Ax = b.

33

GMRES is based on the Arnoldi process [5], which uses orthogonal projections and basis vectors
normalized to length one. Arnoldi and GMRES relate to this work because the orthogonalization
phase of Arnoldi is often Modified Gram-Schmidt or Classical Gram-Schmidt, which are dot
product heavy kernels.

We present the GMRES algorithm in Algorithm 2.1. The Arnoldi process is expressed on
Lines 3–14 in Algorithm 2.1. At its core is the Modified Gram-Schmidt (MGS) process, which
constructs a vector orthogonal to all previous basis vectors qi. The MGS process begins on
Line 5 and completes on Line 8. We now describe how we instrument the orthogonalization
phase and count the absolute errors that could be injected.

Algorithm 2.1 GMRES
Input: Linear system Ax = b and initial guess x0
Output: Approximate solution xm for some m ≥ 0

1: r0 := b−Ax0 . Initial residual vector
2: β := ‖r0‖2, q1 := r0/β
3: for j = 1, 2, . . . until convergence do
4: vj+1 := Aqj . Apply the matrix A
5: for i = 1, 2, . . . , j do . Orthogonalize
6: hi,j := qi · vj+1
7: vj+1 := vj+1 − hi,jqi
8: end for
9: hj+1,j := ‖vj+1‖2

10: if hj+1,j ≈ 0 then
11: Solution is xj−1 . Happy breakdown
12: return
13: end if
14: qj+1 := vj+1/hj+1,j . New basis vector
15: yj := arg min

y
‖H(1:j + 1, 1:j)y− βe1‖2

16: xj := x0 + [q1,q2, . . . ,qj]yj . Compute solution update
17: end for

2.7.3 Instrumentation and Evaluation

To demonstrate the benefit of data scaling we have chosen 3 test matrices. We instrument the
code and for each dot product in the orthogonalization phase we determine an interval that
describes the range of values possible in the vectors. Then using our fault model, we compute the
absolute errors that are possible. Since we know the basis vectors (qi) are normal, the intervals
for the values in the vectors are (−1, 1). We compute the min and max for the unknown vector

34

v, and this determines the interval for the values in v. We use the intervals and our fault model
to evaluate all absolute errors that can be introduced from a single bit flip in the input vectors.
We classify the absolute error into four classes:

1. Absolute error less than 1.0,
2. Absolute error greater than or equal to 1.0, but less than or equal to ‖A‖2,
3. Absolute error greater ‖A‖2.
4. Error that is non-numeric, e.g., Inf or NaN.

We choose to include the 2nd class of errors due to recent work by by Elliott et al. [29] that
demonstrates how to use a norm bound on the Arnoldi process to filter out large errors in
orthogonalization.

Classes 1 and 2 are undetectable, while Classes 3 and 4 are detectable. Our goal is to ensure
that should a bit flip, the error falls into Classes 1, 3, and 4 while minimizing or eliminating the
occurrence of Class 2 errors. We refer to Class 2 errors as the grey area, as they are undetectable
errors that we consider to be large.

Sample Problems

We have chosen three sample matrices to demonstrate our technique. To ensure reproducibility,
we did not create any of these matrices from scratch, rather we used readily available matrices.
The first matrix arises from a second-order centered finite difference discretization of the Poisson
equation. We generated this matrix using MATLAB’s built-in Gallery functionality. The second
matrix, CoupCons3D, presents a more realistic linear system. It comes from the University of
Florida Sparse Matrix Collection [24] and arises from a fully coupled poroelastic problem. The
matrix is symmetric in pattern, but not symmetric in values. It is also fairly large, and has
explicitly stored zero values. The matrix is poorly scaled, with a mixture of large and small
values. The final matrix, mult_dcop_03, is also from the Florida Sparse Matrix Collection. It
arises from a circuit simulation problem, and has good scaling inherently. We have summarized
the characteristics of each matrix in Table 2.2.

We now scale the Poisson and CoupCons3D matrices and right-hand side vectors such that
they are equilibrated. Table 2.3 summarizes the norms for each of our test matrices. We use
the infinity norm (‖A‖∞ ≈ 1) to measure whether a matrix is well scaled. One can see that
both the Poisson and mult_dcop_03 matrices have infinity norms not too much larger than
one, while the CoupCons3D matrix is inherently poorly scaled. Our equilibration code ran out
of memory when attempting to equilibrate mult_dcop_03, but it is already well scaled.

35

Table 2.2: Sample Matrices

Properties Poisson100 CoupCons3D mult_dcop_03

number of rows 10,000 416,800 25,187
number of columns 10,000 416,800 25,187
nonzeros 49,600 17,277,420 193,216
structural full rank yes yes yes
explicit zero entries 0 5,044,916 0
type real real real
structure symmetric nonsymmetric nonsymmetric
positive definite yes no no

Table 2.3: Norms of Sample Matrices †

Norm Poisson Equation CoupCons3D

No Scaling Scaling No Scaling Scaling
‖A‖∞ 8.0 2.0 1.30× 106 1.0
‖A‖2 7.999 1.999 1.20× 106 1.0
‖A‖F 4.46× 102 1.12× 102 2.75× 106 2.91× 102

† mult_dcop_03 has ‖A‖∞ = 35.5.

2.7.4 Results

We ran Algorithm 2.1 for 1000 total iterations, using a restart value of 25. By instrumenting the
code, we determined the numerical range of values each vector contained, and then computed the
possible absolute error that a bit flip could introduce. We classified the absolute error according
to § 2.7.3, and counted each class of errors for the duration of the algorithm. Figure 2.8 shows
how these errors map to our classes of errors when the matrices are scaled versus not scaled.

A large proportion of the absolute errors possible in orthogonalization fall into Class
1 (undetectable and small). We can explain this distribution given that the vectors qi are
normalized (a side effect of GMRES being derived from the Arnoldi process). Given normalized
vectors, we know that of all the dot products in Gram-Schmidt orthogonalization, at least one of
the vectors has data in the interval (−1, 1). We previously established that the interval (−1, 1)
aids in minimizing absolute error if a bit perturbs a dot product. Now, we show how equilibrating
the input matrices can assist in forcing the non-normalized vector (vj+1) as close as possible to
being in the normalized interval.

The results show the benefits of using well-scaled matrices. Figures 2.8a and 2.8e show the
Poisson problem (with no equilibration) and the mult_dcop_03 matrices, which both have good

36

90.623%

0.066%

0.348%

8.963%

(a) Poisson, no scaling.
76.210%

9.840%

6.993%

6.957%

(b) CoupCons3D, no scaling.

Absolute error ≤ 1

1 < Absolute error ≤ ‖w‖2
‖w‖2 < Absolute error

Non− numeric

90.847%

0.015%

0.047%

9.091%

(c) Poisson, equilibrated
90.836%

0.023%

0.120%

9.021%

(d) CoupCons3D, equilibrated.
88.721%

0.973%
1.743%

8.563%

(e) mult_dcop_03, pre-scaled.

Figure 2.8: Number of possible absolute errors from dot products in Algorithm 1 in orthog-
onalization kernel. Class 1: err < 1.0 (blue), Class 2: 1.0 ≥ err ≤ ‖A‖2 (light blue), Class 3:
‖A‖2 > err (yellow), and Class 4: Non-numeric (red).

scaling (see Table 2.3). These problems experience a higher distribution of absolute errors less
than one than the poorly scaled CoupCons3D matrix (see Figure 2.8b). For the matrices that
can be equilibrated, we see that scaling the input matrices is never detrimental, and will only
improve fault tolerance, e.g., compare CoupCons3D before scaling in Figure 2.8b versus after
scaling in Figure 2.8d.

The pie charts are not probabilistic, that is, they do not convey the likelihood of observing
such an error. Rather, these charts characterize the possible errors when given specific data.
Consider an arbitrary length vector x, we can determine the range of values in the vector, e.g.,
xi ∈ [a, b], but we do not know how many of each value, or in what order they occur. Obtaining
fine-grained statistics would involve evaluating every element of the vector, or constructing a
probabilistic model that captures the distribution of values in each vector.

Since we consider the impact of a single bit flip, it is sufficient to follow the methodology
presented in § 2.5. That is, we may not know the distribution and order of numbers in the
vectors, but we can model every possible error by assuming that each value in the interval
could be used in an operation with every value of the other interval. This Cartesian product
guarantees that we have counted all possible errors for IEEE-754 double precision numbers in an

37

interval, including errors that may not occur because the vector does not contain that specific
number, or because of the ordering.

Error Distribution

Our results show that scaling tends to produce a distribution of absolute error that is roughly
91% less than or equal to one, while 9% are non-numeric. This is expected when most of the
numbers are near one. Flipping the most significant exponent bit produces 11111111111, which
will generate a non-numeric value. Similarly, the 10 remaining exponent bits will produce error
less than one — that is, 1/11 ≈ 9% and 10/11 ≈ 91%. As previously discussed, the mantissa
errors are determined entirely by the exponent bits.

2.7.5 Multiple Bit Flips

While this work intentionally focuses on single bit flips, the key finding that normalized data is
better to operate on when performing dot products, gives some insight into how multiple bit
flips in data may behave. For example, we know that a fault in the fractional component of a
floating point number will produce an absolute error bound above by the order of magnitude of
the original value. That is, we could flip all 52 bits of the mantissa and the error bound from
our model would still be valid (e.g., Eq. (2.8) or Eq.(2.4)). In regard to exponent flips, we have
shown both analytically and experimentally that when operating on normalized values, only 1
exponent bit per 64 bit value can introduce large error. Should the values all be normalized,
flipping 1→ 0 will minimize the value subject to Table 2.1. Experiencing more than a single bit
flip would only serve to “shrink” the value even more. We intentionally do not speculate about
how and why multiple bit flips can occur, but we have shown that operating on normalized
values skews the probability of experiencing large error.

2.8 Conclusion

Our results indicate a clear benefit to good scaling. We have shown that a widely used numerical
method (the Arnoldi process coupled with Gram-Schmidt orthogonalization) inherently minimizes
absolute error in dot products. Furthermore, standard matrix equilibration algorithms can be
used to scale input matrices, which further enhance the inherent robustness of the Arnoldi
process. We demonstrated our theoretical finding experimentally by instrumenting the GMRES
iterative solver, which is based on the Arnoldi process.

We cannot enforce that data are always normalized. Some linear systems may be inherently
poorly scaled, or it may be impractical to equilibrate them. We can advocate that scaling,
while typically used to improve numerical stability and reduce the loss of precision, can also

38

benefit fault resilience. We have shown that this result has broad applicability, because many
iterative solvers are based on orthogonal projections using normalized vectors, i.e., they create
an orthonormal basis. While this work does not propose an end-to-end solution to soft errors, it
does indicate that data scaling can help mitigate the impact of such errors should they occur.

39

Chapter 3

Model Driven Analysis of Faulty IEEE-754
Scalars

A trend in algorithm-based fault tolerance work has been to propose an algorithmic strategy,
and then inject synthetic bit flips into data operated on and present either the resulting runtime
or whether the final result was correct or incorrect. Examples of this methodology include a large
number of related algorithm-based fault tolerance works [14, 58, 94, 23, 22, 17, 82, 83, 79, 13].
The approaches proposed are not the motivation for our work, but the fault model used to
motivate and assess such works is. A common theme in algorithm-based fault tolerance is the
detection and correction of errors. This is a logical approach, if an algorithm has a mechanism for
knowing if its state is corrupted, then it can do something to remedy the problem. We refer to
this as fine-grained detection, as the approaches attempt to recover corrupt scalars. For example,
Huang and Abraham [58] proposes a scheme for detecting corruption in two dense matrices that
are being multiplied together or corruption in the resulting solution matrix. To evaluate the
technique, random bits are flipped in some entries of the the matrix operands or solution matrix.
This approach is motivated by soft errors in the early years of scientific computing, and the
detection/correction technique presented is still actively researched as a means to guard various
linear algebra operations. Davies and Chen [22] propose an approach that attempts to detect
and correct soft errors (bit flips) in the LU factorization of a matrix. Wu and Chen [94] present
an approach for detecting and correction soft errors in Cholesky, QR, and LU factorization.
Shantharam et al. [83] propose a detection/correction scheme for a sequential conjugate gradient
solver.

In all works listed, the goal is to identify if an operand or result have been silently corrupted
by a bit (or bits) being flipped. In the cases of [58, 82, 83, 79, 13] the corruption is introduced
into a matrix, which is then multiplied with another matrix [58] or vector [82, 83, 79, 13]. At

40

the scalar level, this can be modeled as a faulty operand to multiplication and the corrupted
result is then accumulated in a summation.

Unfortunately, few researchers have considered the characteristics of the errors that random
bit flip injection introduces. This is troubling, because, as we show, the errors introduced can
vary drastically. For example, Bronevetsky and de Supinski [14] injected bit flips into random
locations of various numerical kernels used in scientific computing and found that for all kernels
tested they tended to abort roughly 10-12% of the time. We will show that given random
bit flip injection, the expected value of the relative error is large approximately 10% of the
time. Furthermore, we will show statistics that show how the expected absolute and relative
errors behave given random bit flip injection into IEEE-754 scalars. We extend our models to
multiplication and show that the expected error (both absolute and relative) can be forced
to behave predictably using the standard numerical operations of normalization and matrix
equilibration.

The point is that bit flips introduced into the representation of floating point data will behave
in two broad categories: The expected error is either small (less than one) or it can extremely
large. We show this in three ways: 1) we observe this effect experimentally by injecting bit flips
into dot products and tallying the errors that fall into the two categories; 2) we expose this
effect by using numerical analysis to bound errors arising from a bit flip in different components
of the IEEE-754 representation; 3) we derive this effect by modeling the expected absolute and
relative error using the analytic model of IEEE-754 scalars. These analyses are presented in
Chapter 2 for (1) and (2), and Chapter 3 for (3).

The ways errors are distributed is important when it comes to assessing ABFT techniques,
because detectors may be incapable of detecting relatively small errors. The overhead introduced
can also depend on the properties of the fault. For example, in Chapter 4 we show that large
errors tend to cause more iterations than small errors. Through statistical analysis, we show
that errors will be relatively small most of the time and large infrequently. This broad range of
possible errors means that random injection is introducing small errors most of the time.

We also show that the distribution of errors can be skewed by standard numerical techniques
such as normalization and matrix equilibration. Based on the high variability of the absolute
and relative error models, we argue that researchers should instead introduce errors that are
known to be detectable, while clearly indicating which errors are undetectable. It is naïve to
assume by default, that an error detector will detect all possible errors. Instead, we advocate a
research methodology that shows overheads given detectable errors, and also shows the overhead
required to obtain a solution with a desired accuracy when an undetectable error is introduced.

41

Table 3.1: Terminology

a, b IEEE-754 scalars.
α Exponent of scalar. The desired exponent value, e.g., 2−7 or 25.
β Raw mantissa of scalar.
1.β Complete mantissa (1 + β).
1.ξ Error from a bit flip in the complete mantissa (1 + ξ).
ã Scalar that experiences a fault.
e Biased exponent, the unsigned integer value stored in the exponent bits.
bias Bias used in exponent storage.
η Error introduced from a corrupt biased exponent.
η+ η values with a positive sign.
η− η values with a negative sign.

N Number of mantissa bits.
M Number of mantissa values 2N .
ε 2−N .
Z Number of exponent bits.
K Number of biased exponents.

3.1 Errors in IEEE-754 Representation

Consider a scalar represented using the IEEE-754 specification,

a = (−1)sign
(

1 +
N−1∑
i=0

bi2i−N
)
× 2e−bias. (3.1)

We will analyze scalars represented using Eq. (3.1) by decomposing them into an unsigned form

a = α× 1.β, (3.2)

where α = 2e−bias and β =
N−1∑
i=0

bi2i−N . The notation 1.β is shorthand for 1+β. The specification
depends on two parameters: The number of mantissa bits N , and the number of exponent bits Z.
Table 3.1 summarizes our notation and terminology. Common implementations of the IEEE-754
specification are listed in Table 3.2 as well as the parameters that can be used to generate
our models. While we list various implementations, this work uses binary64 for examples and
experiments.

This analysis is different from floating point rounding analysis, e.g., Higham [54]. The most
notable difference is that values can be changed drastically and bit flips do not carry. A question
this work does not address is: Which bit flips (and under what conditions) would be masked by

42

Table 3.2: Common IEEE-754 Implementations

Common Name Spec. Name Mantissa Bits (N) Exponent Bits (Z)

Half Prec. binary16 10 5
Single Prec. binary32 23 8
Double Prec. binary64 52 11
Quad Prec. binary128 112 15

rounding effects. However, like rounding analysis the relative and absolute errors are used to
measure the error introduced.

The mantissa value, 1.β is bounded above by

1.β = 1 +
N∑
i=1

2−i

= 1 +
N−1∑
i=0

ari; for a = r = 1/2

= 2− 2−N

= 2− ε.

The smallest representable value larger than 1.0 is 1 + 2−N , and 2−N is often referred to as ε
(or machine epsilon). The smallest mantissa value is obtained by letting all bits be zero, yielding
1.β = 1.0. The range of the mantissa values is

1.0 ≤ 1.β < 2.0. (3.3)

The exponent value is not stored as a signed integer. Rather, it uses an offset, called the bias,
allowing the exponent bits to represent signed and unsigned values by subtracting a bias from
the stored biased exponent. For binary64 values, there are 11 exponent bits allowing unsigned
integers in the range of [0, 2047] to be stored. The specification uses two integers from this
range to allow special values to be stored. A biased exponent containing all zeros is used to
represent subnormal values, which are values with an exponent value of 21−bias and a mantissa
value of (0 + β) rather than (1 + β). A biased exponent containing all ones indicates either a
Not-a-Number (NaN) or an infinity (Inf) if all mantissa bits are zero. The total number of
representable exponent values K is

K = 2Z − 2. (3.4)

43


2−1

20

21

 ⇒


1022
1023
1024

 ⇒


01111111110
01111111111
10000000000


Exponent Biased Storage

Figure 3.1: Exponent values, biased exponent values, and storage.

Adjusting the biased exponent range to allow for the special values, the unsigned integer bits
can take integer values in the range [1, 2046]. To allow the exponents to be signed, the range is
divided in two, which allows the representation of values in the range [1, 1023]. This is expressed
analytically as

bias = 2Z/2− 1

= 2Z−1 − 1. (3.5)

The bias value for an 11 bit exponent is 1023. Examples of exponents and biased exponents are
shown in Figure 3.1. The representable exponents, (α) in our terminology, are the powers of two
in the range

α ∈ {2−1022, 2−1021, . . . , 21023}. (3.6)

The biased exponents e take integer values in the range [1, 2046], or

e =
Z−1∑
i=0

bi × 2i, (3.7)

where bi is the i-th exponent bit. The desired exponent value alpha can then be written as
α = 2e−bias.

3.1.1 Mantissa

Consider a corrupted scalar, ã. For corruption affecting the mantissa, the corruption can be
treated algebraically, regardless of the number of bits affected.

ã = α× 1.β̃

= α× (1.β ± 1.ξ)

= α× 1.β ± α× 1.ξ

= a± α× 1.ξ (3.8)

44

The error term 1.ξ belongs to a discrete set of values

1.ξ ∈ {1.0 + 2i−N} for i = 0, . . . , N − 1. (3.9)

The error introduced from a single bit flip is bounded by analyzing the largest and smallest
mantissa perturbations. The smallest possible value for ξ is the smallest power of two that can
be stored, e.g., 1 + 2−N = 1 + ε ≈ 1.0. The largest value is then 1 + 2−1 = 1.5. A mantissa error
from a single bit flip is bounded by

1.0 < 1.ξ ≤ 1.5. (3.10)

3.1.2 Exponent

Suppose a corrupted scalar, ã, experiences a fault that introduces an error into the exponent
bits. An exponent bit flip is really a bit flip in the biased exponent. That is

ã = α̃× 1.β. (3.11)

Expanding α̃,

α̃ = 2ẽ−bias

= 2e±η−bias

= 2e−bias × 2±η

= α× 2±η. (3.12)

Hence,
ã = a× 2±η (3.13)

The error term 2±η is key. Recall, the biased exponent e is an unsigned integer value stored
in the exponent bits, as shown in Eq. (3.7). Given a single bit flip in the j-th bit,

ẽ =
Z−1∑
i=0

bi × 2i ± 2j

= e± η.

The multiplicative error term is then 2±2j . Given a single bit flip and Z exponent bits, there are
2Z possible values for the error term’s exponent

± η ∈ {±20,±21,±22, . . . ,±2Z−1}. (3.14)

45

Table 3.3: Statistics Terminology

X∗ A random variable (R.V.).

Xβ R.V. taking values of the mantissa (1.β).
Xω R.V. taking values of the reciprocal of the mantissa (1

1.β).
Xξ R.V. taking values of the absolute error introduced into the mantissa

(1.ξ).
Xα R.V. taking values of the true exponent (α).
Xη R.V. taking values of the error introduced by a bit flip in the biased

exponent (2η).

E[X] The expected value of X.
Var(X) The variance of X.
Cov(X,Y) The covariance.

Recognize that error term’s exponent takes values that are positive or negative. A plus indicates
a bit that is flipped 0→ 1, while a minus indicates a bit was flipped 1→ 0. Because the error
is multiplicative, the sign of η determines if the scalar’s exponent is increased (addition in the
exponent) or decreased (subtraction in the exponent). For example, given a scalar with exponent
α = 20, the biased exponent is e = 1023 = 011 1111 1111. A bit flip in the lowest order exponent
bit toggles a 1→ 0. This introduces an error 2−η with η = 20, or α× 2−20 = α× 2−1.

3.1.3 Sign

For an error impacting the sign bit,
ã = −a. (3.15)

3.2 Model Statistics

Using Eq. (3.1) and the form presented in Eq. (3.11), we now analyze statistics for each component
and two error measures. The goal is to derive analytic representations of the expected value for
discrete operations, and then to determine how the error measures behave when perturbed with
a bit flip. Table 3.3 summarizes the variables and notation used for our statistical analysis.

46

3.2.1 Mantissa

The number of possible values representable using N bits is M = 2N . Recognize that the set of
all mantissa values is

1.β ∈ {1.0, 1 + ε, 1 + 2ε, . . . , 1 + (M − 1)ε}

1.β ∈

1.0 +
M∑
j=i

2−N
 for i = 1, . . . ,M

1.β ∈ {1.0 + 2−N (M − i)} for i = 1, . . . ,M (3.16)

Let Xβ be a discrete random variable that takes values from Eq. (3.16) with equally likely
probability. The expected value of the mantissa is

E[Xβ] = 1
M

M∑
i=1

1 +
M∑
j=i

2−N


= 1
M

M∑
i=1

[
1 + 2−N (M − i)

]

= 1
M

M∑
i=1

[
1 + 2−N2N − 2−N i

]

= 1
M

M∑
i=1

[
2− 2−N i

]

= 1
M

[
2M − 2−N

M∑
i=1

i

]

= 1
M

[
2M − 2−NM(M + 1)

2

]
= 2− 2−NM + 1

2

= 2− 1 + 2−N

2

= 2− 1
2 −

2−N

2
= 1.5− ε

2 (3.17)

Alternatively, consider the continuous interval [1, 2], the expected value is
∫ 2

1 xdx = 1
2x

2|21 =
1.5.

47

The variance of the mantissa is defined as

Var(Xβ) = E
[
X2
β

]
− E[Xβ]2. (3.18)

The expected value of X2
β is

E
[
X2
β

]
= 1
M

M∑
i=1

1 +
M∑
j=i

2−N
2

= 1
M

M∑
i=1

[
2− 2−N i

]2
= 1
M

M∑
i=1

[
4− 22−N i+ 2−2N i2

]
= 1
M

[
4M − 22−NM(M + 1)

2

+ 2−2NM(M + 1)(2M + 1)
6

]
= 4− 21−N (M + 1) + 2−2N (M + 1)(2M + 1)

6

= 4− 2− 21−N + 2−2N (2M2 + 3M + 1)
6

= 2− 21−N + 2 + 3× 2−N + 2−2N

6
= 2− 21−N + 2

6 + 3
62−N + 1

62−2N

= 2− 21−N + 1
3 + 1

22−N + 1
62−2N

= 7
3 − 2ε+ 1

2ε+ 1
6ε

2

= 7
3 −

3
2ε+ 1

6ε
2, (3.19)

and the square of the expectation of 1.β is

E[Xβ]2 =
(

1.5− ε

2

)2

= 9
4 −

3
2ε+ 1

4ε
2. (3.20)

48

Number of Mantissa Bits
10 20 30 40 50 60 70 80 90 100 110

E
x
p
ec
te
d
V
a
lu
e
o
f
M
a
n
ti
ss
a

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

1.35

1.50

Expected Value of Mantissa

(a) Expected value of the mantissa given N bits.
Number of Mantissa Bits

10 20 30 40 50 60 70 80 90 100 110

V
a
r
ia
n
c
e
o
f
M
a
n
t
is
s
a

0.00

0.01

0.02

0.03

0.03

0.04

0.05

0.06

0.07

0.07

0.08

Variance of Mantissa

(b) Variance of the mantissa given N bits.

Figure 3.2: Expected value and variance of the an N -bit mantissa.

Substituting Eqs. (3.19) and (3.20) into Eq.(3.18) yields the variance of the mantissa

Var(Xβ) = E
[
X2
β

]
− E[Xβ]2

= 1
12 −

1
12ε

2. (3.21)

Recognize that Eq. (3.21) is an increasing function that rapidly converges to 1
12 . Figure 3.2a

plots the expected value of the mantissa as a function of the number of bits used to store the
mantissa, while Figure 3.2b shows the variance as function of the number of bits used.

3.2.2 Mantissa Errors

Equation (3.9) shows the set of unscaled mantissa single bit errors. Let Xξ be a discrete random
variable taking values from Eq. (3.9) with equally likely probability. The expected value for an

49

N -bit mantissa is

E[Xξ] = 1
N

N∑
i=1

(
1 + 2−i

)

= 1
N

(
N +

N∑
i=1

2−i
)

= 1
N

(
N +

N−1∑
i=0

ari
)

; for a = r = 1/2

= 1
N

(
N + 1.0− 2−N

)
= 1 +N−1 − ε

N
. (3.22)

The variance of a mantissa error is

Var(Xξ) = E
[
X2
ξ

]
− E[Xξ]2. (3.23)

The expected value of X2
ξ is

E
[
X2
ξ

]
= 1
N

N∑
i=1

(
1 + 2−i

)2

= 1
N

N∑
i=1

(
1 + 21−i + 2−2i

)
= 1
N

(
N + 2[1− ε] + 1

3(1− ε2)
)

= 1
N

(
N + 2− 2ε+ 1

3 −
ε2

3

)

= 1 + 7
3N −

2ε
N
− ε2

3N , (3.24)

and the squared expected value is

E[Xξ]2 =
[
1 + 1

N
− ε

N

]2

= 1 + 21− ε
N

+ (1− ε)2

N2

= 1 + 2
N

+ 1
N2 −

2ε
N
− 2ε
N2 + ε2

N2 . (3.25)

50

Number of Mantissa Bits
10 20 30 40 50 60 70 80 90 100 110

E
x
p
ec
te
d
V
a
lu
e
o
f
M
a
n
ti
ss
a
E
rr
o
r

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

1.35

1.50

Expected Value of Mantissa Error

(a) Expected value of the absolute error.
Number of Mantissa Bits

10 20 30 40 50 60 70 80 90 100 110

V
a
r
ia
n
c
e
o
f
M
a
n
t
is
s
a
E
r
r
o
r

0.00

0.00

0.01

0.01

0.01

0.01

0.02

0.02

0.02

0.03

0.03

Variance of Mantissa Error

(b) Variance of the absolute error.

Figure 3.3: Expected value and variance of the absolute error from a single bit flip in an N -bit
mantissa.

The variance is obtained by substituting Eqs. (3.24) and (3.25) into Eq. (3.23)

Var(Xξ) = 1
3N + 2ε

N2 −
1
N2 −

ε2

3N −
ε2

N2 . (3.26)

Figure 3.3 plots the expected error and the variance of the error that is introduced if a bit is
flipped in the mantissa. Figure 3.3a plots the expected value of Xξ as a function of the number
of bits used to represent the mantissa. Figure 3.3b plots the variance as a function of the number
of mantissa bits (N). Note the differences in the y-axes.

Recognize that when N = 1, Var(Xξ) = 0, and as N → ∞, the variance increases before
tending towards 0. This increase may be seen by inspecting the derivative with respect to N .
The variance reaches a maximum at N = 5. As N � 5, the variance decreases towards zero,
and the expected value converges to 1.0. The important fact is that the expected mantissa error
is approximately 1.0, and the variance is roughly zero. Because the variance is small, and the
mean converges to one, we consider the mantissa errors to be “well behaved”.

3.2.3 Exponent

Let Xα be a discrete random variable taking values from Eq. (3.6). The number of representable
exponents is K (see Eq. (3.4)). Recall, because the exponent bits store an unsigned integer, K

51

represents an unsigned count of representable exponents. The expected value of Xα is

E[Xα] = 1
K

K∑
i=1

2i−bias

= 1
K

2−bias
K∑
i=1

2i

= 1
K

2−bias
[
K∑
i=0

2i − 1
]

= 1
K

2−bias
[
2K+1 − 2

]
= 1
K

[
2K+1−bias − 21−bias

]
Recognize from Eq. (3.5) that K can be written as a function of the bias, K = 2× bias. The
expected value may then be expressed as

E[Xα] = 1
K

[
2bias+1 − 21−bias

]
= 1
bias

[
2bias − 2−bias

]
. (3.27)

Recognize the expected value is dominated by 2bias, yielding, an approximation

E[Xα] ≈ 2bias

bias
.

Comparing Eq. (3.27) to the continuous expected value on the interval [2−1022, 21023],

∫ 1023

−1022
2xdx = 2x

ln 2

∣∣∣∣1023

−1022

= 2bias

ln 2 . (3.28)

The continuous expected value provides an upper bound on the discrete approximation, that is,
2bias
bias <

2bias
ln 2 .

The variance of the exponent is

Var(Xα) = E
[
X2
α

]
− E[Xα]2 (3.29)

52

with expected values

E
[
X2
α

]
= 1
K

K∑
i=1

(
2i−bias

)2

= 2−2bias

K

K∑
i=1

22i

= 2−K

K

K∑
i=1

4i

= 2−K

K

[
4K+1 − 1

3 − 1
]

= 2−K

3K
[
4K+1 − 4

]
= 22−K

3K
[
22K − 1

]
= 2K+2

3K − 22−K

3K . (3.30)

E[Xα]2 =
[1
K

(
2K+1−bias − 21−bias

)]2

= 1
K2

[
2K+2 − 23 + 22−K

]
. (3.31)

Substituting Eqs. (3.30) and (3.31) in Eq. (3.29) yields the variance

Var(Xα) = E
[
X2
α

]
− E[Xα]2

= 2K+2

3K − 22−K

3K − 1
K2

[
2K+2 − 23 + 22−K

]
= 2K+2

3K − 2K+2

K2 −
22−K

3K + 23

K2 −
22−K

K2 . (3.32)

Recognize the final three terms in Eq. (3.32) are small. The variance of Xα will be dominated by

O (Var(Xα)) = 2K+2

3K − 2K+2

K2 . (3.33)

To understand the growth of Eq. (3.33) we analyze the limit as K goes to infinity

O (Var(Xα)) = lim
k→∞+

2K+2K − 2K+23
3K2 .

53

Number of Bits in the Exponent
2 4 6 8 10 12 14

2−5000

20

25000

210000

215000

220000

225000

230000

235000
Variance and the Number of Bits in the Exponent

V
a
r(
X

α
)

Var(Xα)
O (Var(Xα))

Figure 3.4: Variance of the exponent and the dominant term in the growth of the variance as a
function of the number of exponent bits.

With two applications of L’Hôpital’s rule, we obtain

O (Var(Xα)) = 2K+2 ln2(2)(K − 3) + 2K+2 ln(2)× 2
6 . (3.34)

The limit as K → ∞ is ∞, and the dominant term in the summation is 2K+2 ln(2)/3, or
22×bias+2 ln(2)/3. Figure 3.4 plots the upper bound on the variance as a function of the number
of bits used to represent the exponent, as well as the variance. The variance is large, which means
that values are not clustered near the mean. The standard deviation (σ) is the square root of the
variance. Recognize that 22×bias+2 = (2bias+1)2, hence σ = 2bias+1. That is, σ is approximately
the mean. Compare this to the exponential distribution, where E

[
e−λx

]
= 1/λ, and the variance

is (1/λ)2. That is, our model follows the similar continuous exponential distribution, with the
variance approximately the square of the mean.

3.2.4 Exponent by Range

The expected value of the exponent falls into two broad ranges: values with positive exponents,
i.e., the biased exponent is larger than the bias, and negative exponents, where the biased
exponent is smaller than the bias. Partitioning α in two sets α+ ∈ {20, 21, . . . 2bias} and
α− ∈ {2−1, . . . , 21−bias}. We assign 20 to the positive set, because the resulting value is not a
fraction.

Let Xα+ be a discrete random variable that takes values from the set of positive exponents
with equally likely probability, and let Xα− be a discrete random variable that takes values from
the negative set of exponents with equally likely probability. The expected value of the positive

54

exponents is

E[Xα+] = 1
bias+ 1

bias+1∑
i=0

2i

= 2bias+1 − 1
bias+ 1 . (3.35)

The expected value of the negative exponents is

E[Xα−] = 1
bias− 1

bias−1∑
i=1

2−i

= 1− 21−bias

bias− 1 . (3.36)

Recall that Z is the number of bits used to store biased exponents. To implement the specification,
Z must be at least 2, because two values are reserved (zero and 2Z − 1). This requires at least 2
bits, otherwise, no exponents are representable. To store a negative exponent,

Z ≥ 3, (3.37)

because with Z = 2, only exponents with zero and +1 are representable. Hence, with Z ≥ 3,
bias ≥ 3 and the term 21−bias

bias−1 < 1.0. The expected value can then be bounded as

E[Xα−] < 1
bias− 1 . (3.38)

The point of deriving Equations (3.35) and (3.36) will become clearer when we apply these
findings to draw high-level conclusions about injecting a bit flip into the representation of a
floating point value. Specifically, E[Xα] will continue to be a dominant term in most errors
models. Once we have analyzed specific error models, we will show how a small subset of the
total possible bit flips can contribute excessively larger error relative to all other bit flips.

3.2.5 Exponent Errors

The expected error introduced from a bit flip in the exponent is the expected value of 2η. Let
Xη be a discrete random variable taking values from Eq. (3.14) with equally likely probability.
Partition this set into positive and negative subsets, and let Xη+ be a R.V. that takes values
from the positive set {20, . . . , 2Z−1} and let Xη− be a R.V. that takes values from the negative
set {−20, . . . ,−2Z−1}.

55

E[Xη] = 1
2Z

Z−1∑
i=0

22i + 1
2Z

Z−1∑
i=0

2−2i

= 1
2
[
E
[
Xη+

]
+ E

[
Xη−

]]
. (3.39)

The form 22n has been studied extensively, as Fn = 22n + 1 is a Fermat number, which are
studied in relation to prime numbers. No closed form exists for the sum of the Fermat numbers
or of its reciprocals.

Positive Exponent Set

The expected value of the positive set E
[
Xη+

]
can be bounded recognizing that

Z−1∑
i=0

22i <
2Z−1∑
j=0

2j = 22Z−1+1 − 1. (3.40)

Eq. (3.40) exploits the relation 2G+1 − 1 =
G∑
k=0

2k, where G is a positive integer. A lower bound

may be constructed by recognizing that

22Z−1
<

Z−1∑
i=0

22i , for Z ≥ 2. (3.41)

The inequality in Eq. (3.41) is strict, because Z ≥ 2. This gives a bound of

22Z−1
<

Z−1∑
i=0

22i < 22Z−1+1 − 1.

The expected value is then bounded by

22Z−1

Z
< E

[
Xη+

]
<

22Z−1+1 − 1
Z

,

2bias+1

Z
< E

[
Xη+

]
<

2bias+2 − 1
Z

. (3.42)

Figure 3.5 plots the expected value and its lower and upper bounds. The upper bound
is constructed by summing all positive powers of two, and using this sum as a strict upper
bound. The upper bound is an approximation of the continuous expected value

∫ bias+1
0 2xdx,

which is a good approximation of E[Xα], as shown in Eq. (3.28). This shows then when

56

Number of Bits in the Exponent
3 5 7 9 11 13 15

216 264
21024

216384

20

22000

24000

26000

28000

210000

212000

214000

216000

218000
Bound for Expected Value of 2+η

E
x
p
ec
te
d
V
a
lu
e
o
f
X

α
+

E[X
α
]

Ω(E[X
α
])

O(E[X
α
])

Figure 3.5: Lower and upper bounds for the expected value of a positive exponent error(
E
[
Xη+

])
.

summing exponentially distributed values, the large values will dominate the expected value,
E
[
Xη+

]
≈ 2bias, which is approximately the mean of the exponents E[Xα] (see Eq. (3.27)).

Negative Exponent Set

The second set of potential exponent errors fall in the class of negative values for η. The expected
value of interest is

E
[
Xη−

]
= 1
Z

Z−1∑
i=0

2−2i .

The sum has been shown to be less than one [1]. This gives an upper bound of

E
[
Xη−

]
<

1
Z
. (3.43)

Exponent Error Expected Value

The expected value of the exponent errors is obtained by substituting back into Eq. (3.39). An
upper bound on the expected value is obtained by substituting Eq. (3.40) for E

[
Xη+

]

E[Xη] <
1
2

[
22Z−1+1 − 1

Z
+ 1
Z

]

<
1
2

[
2bias+2

Z

]

<
2bias+1

Z
.

57

A lower bound on the expected value is obtained by substituting Eq. (3.42) for E
[
Xη+

]

E[Xη] >
1
2

[
22Z−1

Z
+ 1
Z

]

>
1
2

[
2bias+1

Z

]

>
2bias

Z
.

Bounding the exponent errors as

2bias

Z
< E[Xη] <

2bias+1

Z
(3.44)

Clearly, the expected value of an exponent error is dominated by the positive exponent set.

3.2.6 Summary of Scalar Statistics

We summarize the statistics for each component of the model in Table 3.4. These are models for
the correct and faulty components of the IEEE-754 representation when perturbed by a single
bit flip. In § 3.4, we use these terms to compose statistics for each error measure, and then extend
this analysis to specific operations. Key observations are: 1) Mantissa errors are well-behaved,
having an expected error of approximately one, with small variance. 2) The expected exponent
error, considering both positive and negative exponents, is approximately the expected value
of the exponent range. If a bit flips in the exponent 0 → 1 (2η+), then the expected error is
approximately the expected value of the entire exponent range. If a bit flips in the exponent
1 → 0 the expected error is less than one. Practically, this means that if bits are flipped at
random and each bit is equally likely to be a one or zero, then the expected error introduced
will be the expected value of the entire (or positive) exponents.

3.3 Model Error Measures

We now model the absolute and relative errors for a scalar a represented following Eq. (3.2).
The absolute error (errorabs) presents the actual error that a bit flip introduces

errorabs = |a− ã|.

58

Table 3.4: Expected value for components of faulty scalars.

Term R.V. E[·] Ref.

1.β Xβ 1.5− ε

2 Eq. (3.17)

1.ξ Xξ 1 +N−1 − ε

N
Eq. (3.22)

α Xα
1
bias

[
2bias − 2−bias

]
Eq. (3.27)

Pos. α Xα+
2bias+1 − 1
bias+ 1 Eq. (3.35)

Neg. α Xα− <
1

bias− 1 Eq. (3.38)

2η Xη
2bias

Z
< E[Xη] <

2bias+1

Z
Eq. (3.44)

2η+
Xη+

2bias+1

Z
< E

[
Xη+

]
<

2bias+2 − 1
Z

Eq. (3.42)

2η− Xη− <
1
Z

Eq. (3.43)

The relative error (errorrel) indicates how large an error is, relative to the correct value

errorrel = |a− ã|
|a|

.

3.3.1 Mantissa

Equation (3.8) presents the form of ã. The absolute error is

|a− ã| = |a− a± α× 1.ξ|

= |α× 1.ξ|, (3.45)

and the relative error is

|a− ã|
|a|

= |α× 1.ξ|
|α× 1.β|

= 1.ξ
1.β . (3.46)

Note, we may drop the absolute value as the sign is the same between both the perturbed scalar
and the correct.

59

Table 3.5: Error measures for scalars.

Location Absolute Error Ref Relative Error Ref

Mantissa |α× 1.ξ| Eq. (3.45) 1.ξ
1.β Eq. (3.46)

Exponent |a(1− 2η)| Eq. (3.47) |1− 2η| Eq. (3.48)
Sign |2a| Eq. (3.49) 2 Eq. (3.50)

3.3.2 Exponent

Equation (3.13) presents the form of ã. The absolute error is

|a− ã = |a− a× 2η|

= |a(1− 2η)|, (3.47)

and the relative error is

|a− ã|
|a|

= |a(1− 2η)|
|a|

= |1− 2η|. (3.48)

3.3.3 Sign

Equation (3.15) presents the form of ã. The absolute error is

|a− ã = |a− (−a)|

= |2a|, (3.49)

and the relative error is

|a− ã|
|a|

= |2a|
|a|

= 2. (3.50)

We summarize the scalar error measures in Table 3.5.

60

3.4 Scalar Expected Error Measures

Having shown statistics for components of the IEEE-754 model, we explore the expected value
of the absolute and relative error given a bit flip in an IEEE-754 floating point scalar.

3.4.1 Expected Relative Error for a Scalar

Mantissa

We now compute the expected relative error for a scalar with a mantissa error, E
[

1.ξ
1.β

]
. The R.V.

Xξ was defined and analyzed in Eq. (3.22). Let Xω be a discrete random variable taking values
from

1
1.β ∈

{ 1
1.0 + 2−N (M − i)

}
for i = 1, . . . ,M,

with equally likely probability. The expected value is

E
[1.ξ

1.β

]
= E[XξXω]

= Cov(Xξ, Xω) + E[Xξ]E[Xω], (3.51)

where Cov(u, v) is the covariance. The covariance is defined to be

Cov(u, v) = E[(u− E[u])(v − E[v])]

= E[XY]− E[X]E[Y].

61

We begin with

Cov(Xξ, Xω) = E[(Xξ − E[Xξ])(Xω − E[Xω])]

= 1
NM

N∑
i=1

M∑
j=1

[(
1 + 2−i − E[Xξ]

)
(Xω − E[Xω])

]

= 1
NM

N∑
i=1

M∑
j=1

[(
1 + 2−i −

(
1 + 1

N
− ε

N

))
(Xω − E[Xω])

]

= 1
NM

N∑
i=1

M∑
j=1

[(
2−i − 1

N
+ ε

N

)
(Xω − E[Xω])

]

= 1
NM

N∑
i=1

(
2−i + ε− 1

N

) M∑
j=1

(Xω − E[Xω])

= 1
NM

[
1− 2−N + ε− 1

N
×N

] M∑
j=1

(Xω − E[Xω])

= 1
NM

[1− ε+ ε− 1]
M∑
j=1

(Xω − E[Xω])

= 0. (3.52)

Therefore, E
[

1.ξ
1.β

]
= E[Xξ]E[Xω]. The expected value of Xξ is shown in Eq. (3.22). The expected

value of the reciprocal of the mantissa is

E[Xω] = 1
M

M∑
i=1

1
1 + 2−N (M − i) .

Recognize this as a left Riemann sum approximation of the integral

1
M

M∑
i=1

1
1 + 2−N (M − i) =

∫ 1

0

1
1 + x

dx

= ln(2). (3.53)

The error of a left Riemann sum is

EL = b− a
2 ×max(f ′(c))×∆x

= −1
2

(1− 0)2

M
,

62

Number of Mantissa Bits
10 20 30 40 50 60 70 80 90 100 110

E
x
p
ec
te
d
R
el
a
ti
v
e
E
rr
o
r

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Half Precision: 0.762

Single Precision: 0.723

Double Precision: 0.706

Quad Precision: 0.699

Expected Relative Error of the Mantissa

E

[

1.ξ

1.β

]

Figure 3.6: Expected relative error of the mantissa given a single bit flip.

where ∆x = b−a
M . Recognize that for f ′(x) = − 1

(1+x)2 , the maximum value over the interval [0, 1]
is 1 resulting in the approximation error

EL = −1
2

1
M

= − ε2 .

Note M = 2N , hence 1/M = ε. The expected value of the reciprocal of the mantissa is Eq. (3.53)
plus the approximation error

E[Xω] = ln(2)− ε

2 . (3.54)

Substituting Eqs. (3.54), (3.52), and (3.22) into Eq. (3.51) yields the expected value of the
relative error

E
[1.ξ

1.β

]
= E[Xξ]E[Xω]

=
[
1 + 1

N
− ε

N

]
×
[
ln(2)− ε

2

]
= ln(2)

[
1 + 1

N

]
− 2 ln(2) +N + 1

2N ε+ 1
2N ε2. (3.55)

Given that N > 0, then Eq. (3.55) obtains a maximum at N = 4. Figure 3.6 plots the expected
relative error as a function of the number of bits used in the mantissa.

A key point of Eq. (3.55) is that the expected relative error of a scalar that experiences a
bit flip in the mantissa is less than one. In prior work, we loosely bound the mantissa errors
by incrementing the exponent. That is, no bit flip in the mantissa could ever generate an error

63

larger than twice the scalar’s exponent. Clearly, our prior upper bound is an extreme case, while
the expected relative error is much smaller.

Statistical Independence

Theorem 3.4.1 The error introduced by a bit flip in the mantissa (xξ = 1.ξ) is independent of
the mantissa value (xβ = 1.β).

Proof 3.4.1 The joint probability mass function pXξ,Xβ (xξ, xβ) = P (Xξ = xξ and Xβ = xβ).
The marginal probability mass function for the error introduced from a single bit flip in the
mantissa is

pXξ(xξ) =
∑
xβ

p(xξ, xβ),

and the marginal probability mass function for the mantissa is

pXβ (xβ) =
∑
xξ

p(xξ, xβ).

The probability that Xξ = xξ is the probability of experiencing a bit flip in the i-th bit, which
is 1

N . The probability of having a specific mantissa is Xβ = xβ, which is 1
M .

The joint probability of experiencing a specific mantissa error (xξ) given a specific man-
tissa (xβ) is p(xξ, xβ) = 1

NM . Two random variables are independent if pXξ,Xβ (xξ, xβ) =
pXξ(xξ)pXβ (xβ).

pXξ(xξ) =
∑
xβ

p(xξ, xβ) =
M∑
i=1

1
NM

= M

NM
= 1
N

pXβ (xβ) =
∑
xξ

p(xξ, xβ) =
N∑
i=1

1
NM

= N

NM
= 1
M

pXξ,Xβ (xξ, xβ) = 1
NM

= pXξ(xξ)pXβ (xβ)

�

The proof for the reciprocal of the mantissa is similar and is omitted. Theorem 3.4.1 is
powerful, because it means that the relative error introduced from a bit flip in the mantissa
does not depend on the mantissa value. This arises because the error 1.ξ is ±, e.g., see Eq. (3.8).
Regardless of whether the bit flipped is and 1 to 0 or 0 to 1, the absolute error is the same, i.e.,
| ± 1.ξ| = 1.ξ. This implies that Figure 3.6 predicts the expected relative error for a mantissa bit
flip for all values represented using the IEEE-754 specification.

64

Exponent

We analyze the expectation of the relative error of the exponent |1 − 2η| in two ways. First,
recognize that the expected value of the relative error is E[2η − 1] = E[Xη]− 1. This is not very
informative, given that the expected value of η is dominated by the positive exponents. That is,

2bias

Z
< E[2η − 1] < 2bias+1

Z
(3.56)

Instead, consider the error term broken into positive and negative exponent sets, as shown
in Eq. (3.39). The expected relative error given a negative exponent is

E
[
|1−Xη− |

]
= |1− E

[
Xη−

]
|,

which is bounded by
|1− E

[
Xη−

]
| < 1. (3.57)

The expected relative error for an error creating a positive exponent is E
[
2+η − 1

]
, which

lies within the same bound as E
[
Xη+

]
.

2bias+1

Z
< E

[
2η+ − 1

]
<

2bias+2 − 1
Z

. (3.58)

3.4.2 Expected Absolute Error for a Scalar

Mantissa

Let Xξ be a discrete random variable taking values from Eq. (3.9). We break α into two ranges,
as we did in § 3.2.4. Xα is a discrete random variable taking values from Eq. (3.6), and Xα+

and Xα− are discrete random variables taking values from the positive and negative exponent
sets. The expected value of the absolute error given a mantissa bit flip is

E[α× 1.ξ] = E[XαXξ]

= Cov(Xξ, Xα) + E[Xξ]E[Xα]. (3.59)

The expected value of Xξ is shown in Eq. (3.22), and the expected value of Xα is shown in
Eq. (3.27). The covariance will be zero,

Cov(Xξ, Xα) = E[(Xξ − E[Xξ])(Xα − E[Xα])]

= 0, (3.60)

65

because E[(Xξ − E[Xξ])] = 0, as shown in Eq. (3.52). Substituting Eq. (3.60) into Eq. (3.59),

E[α× 1.ξ] = E[Xξ]E[Xα]

=
[
1 +N−1 − ε

N

]
×
[1
bias

[
2bias − 2−bias

]]
≈ 2bias

bias
+ 2bias

N × bias
− 2−N × 2bias

N × bias
. (3.61)

Clearly, the expected absolute error for a mantissa bit flip will be dominated by the exponent of
the scalar.

We now analyze the expected value over the positive and negative exponent sets. The
covariance is zero, therefore, E[Xα+Xξ] = E[Xα+]E[Xξ] and E[Xα−Xξ] = E[Xα−]E[Xξ]. The
expected value over the positive set of exponents is

E[Xα+]E[Xξ] = 2bias+1 − 1
bias+ 1 ×

[
1 +N−1 − ε

N

]
. (3.62)

The negative set of exponents yields an expected value

E[Xα−]E[Xξ] = 1− 21−bias

bias− 1 ×
[
1 +N−1 − ε

N

]
. (3.63)

Recognize that Eq. (3.63) is a decreasing function in both N and the bias. Recall that bias ≥ 3,
because Z ≥ 3 as shown in Eq. (3.37), and N > 0. The expected absolute error given a bit flip
in the mantissa and a negative exponent is bounded by

E[Xα−]E[Xξ] ≤
9
16 , (3.64)

which we show graphically in Figure 3.7. There are two important points: 1) The expected
absolute error is less than one, and 2) the expected absolute error is dominated by the number of
exponent bits. In Figure 3.7, eight exponent bits correspond to bias = 127, which is used in the
single precision specification. Single precision has an expected absolute error of approximately
10−2. Eleven exponent bits result in a bias value of 1023, which is used for IEEE-754 double
precision. The expected absolute error for double precision is approximately 10−3. Fifteen
exponent bits are used for quad precision, which has a bias of 16383. The expected absolute
error for a mantissa bit flip in quad precision is on the order of 10−5.

Figure 3.7 also shows that the absolute error given a bit flip in the mantissa can be forced
to be small. Combined with the relative error given a bit flip in the mantissa, as shown in
Figure 3.6, the absolute and relative errors are fairly well behaved if the scalar is in the interval
(−1, 1), i.e., α ≤ 2−1.

66

Number of Mantissa Bits
10 20 30 40 50 60 70 80 90 100 110

E
x
p
ec
te
d
A
b
so
lu
te

E
rr
o
r

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Half Precision: 7 × 10−2

Single Precision: 8 × 10−3

Double Precision: 9 × 10−4

Quad Precision: 6 × 10−5

Expected Absolute Error Given a Bit Flip in the

Mantissa and a Scalar Less Than One

Exponent Bits = 3

Exponent Bits = 5

Exponent Bits = 8

Exponent Bits = 11

Exponent Bits = 15

Figure 3.7: Expected absolute error given a bit flip in the mantissa and a scalar less than one.
The absolute error is shown for the fewest number of exponent bits, as well as the number of
exponent bits for half, single, double, and quad precision.

Exponent

The expected absolute error given a bit flip in the exponent is more tedious. We may algebraically
isolate the error term, but the error term depends on the exponent bits. That is, α = 2e−bias,
and α̃ = 2ẽ−bias = 2e−bias±η. Precisely,

α̃ = 2−bias × 2(−1)bitj×2j ×
Z−1∏
k=0

2bitk×2j ; for j-th bit flipped.

The expected absolute error is

1
ZK

K∑
i=1

Z−1∑
j=0

∣∣∣2i−bias (1− 2(−1)bitj×2j
)∣∣∣ . (3.65)

Knowing whether the bit flipped (bitj) is zero or one is difficult, which makes a closed form
difficult to express. Equation (3.65) is computable, and we can identify a critical component of
the summation.

First, recognize that for a biased exponent e ≤ bias, (i.e., α ≤ 20), the most significant
exponent bit is always zero.

Lemma 3.4.1 (e ≤ bias ⇐⇒ exponent_bitZ−1 = 0) A biased exponent e is less than or equal
to the bias, if and only if the most signficant exponent bit is 0.

Proof 3.4.2 (e ≤ bias ⇐⇒ exponent_bitZ−1 = 0.) Suppose e ≤ bias and exponent_bitZ−1 =

1. The bias is defined to be bias = 2Z−1 − 1 =
Z−2∑
i=0

2i. e is defined to be the unsigned integer

67

stored in the exponent bits, hence e =
Z−1∑
i=0

exponent_biti × 2i. If exponent_bitZ−1 = 1, then

e = 2Z−1 +
Z−2∑
i=0

exponent_biti × 2i > bias, which is a contradiction.

Suppose e > bias and exponent_bitZ−1 = 0. e =
Z−2∑
i=0

exponent_biti × 2i + 0 ≤ bias, which
is a contradiction. �

The property of biased exponents expressed in Lemma 3.4.1 implies that bias − 1 values
in the summation will be |a(1− 2bias+1)|, where a ∈ (−1, 1). That is, for all exponents in the
negative set, each exponent can always have the most significant bit flipped, creating an absolute
error of |a(1− 2bias+1)|, where a ∈ (−1, 1). The scalar’s unperturbed exponent will negate this
increase in the exponent to some extent. For example, a scalar x = 2−(bias−1) has the unsigned
integer 1 stored in binary in its Z exponent bits. With the most significant bit flipped, the
unsigned integer (bias+ 1) + 1 is now stored in x’s exponent bits. The (bias+ 1) term comes
from flipping the most significant bit, and +1 is the value already present in x’s lower-order
exponent bits. The scalar x, now x̃, represents the floating point value x̃ = 22. As we consider
the scalars x = 2−(bias−2), 2−(bias−3), . . . 2−1, the faulty scalars will be x̃ = 23, 24, . . . , 2bias. Given
that the correct (unperturbed) scalars are all less than one, the absolute error between the
correct and faulty scalars will always be larger than one given a bit flip in the most significant
bit. Given that the number representable negative exponents (bias− 1) is much smaller than
2bias, the summation is dominated by the summing of 2bias + 2bias−1 + . . .+ 22. This portion of
the summation is from the most significant exponent bit flipping. There are (Z − 1) lower-order
exponent bits, which can never cause the faulty scalar to be larger than 2. That is, the worst
the lower-order exponent flips can do is to create the binary pattern 20, which when combined
with the largest possible mantissa value would create a scalar x̃ = 2− ε.

For the positive set of exponents, the most significant bit will divide the number by large
power of two, but the remaining bit flips will all produce a perturbed scalar that is larger than
one. Conversely, the remaining bits of the exponent given a value a ∈ (−1, 1), will produce a
perturbed scalar that is less than two with probability 2Z−1

2Z , which we show in Theorem 3.4.2.
Because a ∈ (−1, 1) and ã ∈ (−2, 2) and the sign cannot change because we assume the bit flip
occurs in the exponent, then |a− ã| < 2. That is, for the negative set of exponents, the expected

68

absolute error is bounded by

E[errorabs]α− <
2bias − C + 2bias−1 − C + · · ·+ 22 − C +D × (Z − 1)(bias− 1)

Z(bias− 1)

<

bias−1∑
i=1

2i+1 − (bias− 1)× C +D × (Z − 1)(bias− 1)

Z(bias− 1)

<

bias−1∑
i=1

2i+1 + E × Z(bias− 1)

Z(bias− 1)

<
2bias+1 − 4
Z(bias− 1) + E, (3.66)

where C = max{1.0, 1 + ε, 1 + 2ε, . . . , 2− ε} = 2− ε. That is, C is the largest possible mantissa
value. Because we consider the negative set of exponents, the largest (unscaled) mantissa also
bounds the scalars 2−j × 1.β ≤ C, because the largest scalar obtainable given the negative
exponent set is |amax| = |2−1 × (2− ε)| < 1.0. We introduce a constant, D, which represents the
largest possible absolute difference if the most significant exponent bit is not flipped. That is,
D = max |a− ã|, which will always be less than two if the bit flipped is not the most significant,
i.e., D < 2. The term D × (Z − 1)(bias− 1) accounts for the absolute error of the remaining
Z − 1 exponent bits being flipped in the bias− 1 scalars, which always produce a faulty scalar
strictly less than two, i.e., |a − ã| < 2. Recognize that D < 2 and C < 2. To impose a strict
(gross) upper bound, we may let E = 2, and substitute E for C and D, creating an over estimate
of the expected absolute error given a bit flip in the exponent of scalars strictly less than one.

Theorem 3.4.2 A bit flip in the exponent bits of an IEEE-754 scalar (a) that has a biased
exponent e ≤ bias will produce a perturbed scalar (ã) that is less than two, with a probability of
2Z−1

2Z .

Proof 3.4.3 If the k-th bit is flipped 0→ 1 and k ∈ 0, 1, 2, . . . , Z − 2, then

ẽ =

Z−2∑
i=0
i 6=k

exponent_biti × 2i

+ 2k ≤
Z−2∑
i=0

2i.

If the k-th bit is flipped 1→ 0 and k ∈ 0, 1, 2, . . . , Z − 2, then

ẽ =

Z−2∑
i=0
i 6=k

exponent_biti × 2i

 ≤ Z−2∑
i=0

2i.

69

Number of Bits in the Exponent
3 5 7 9 11 13 15

212 258
21014

216370

20

22000

24000

26000

28000

210000

212000

214000

216000

218000
Expected absolute error given a bit flip in the exponent

E
[|
α
−
α̃
|]

21−bias
≤ α ≤ 2bias

21−bias
≤ α ≤ 2−1

20 ≤ α ≤ 2bias

Figure 3.8: Expected absolute error given a bit flip in the exponent and a scalar less than one,
greater than one, and over the full range. Half (212), Single (256), Double (21014), and Quad
(216170) precision specifications are highlighted.

Table 3.6: Expected absolute error given a bit flip in exponent for scalar in the range |a| ≥ 1
compared to the expected value of the positive set of exponents E[Xα].

Spec. E[Xα] Approximate E[|a− ã|]; for |a| ≥ 1.

Half Prec. 212 212

Single Prec. 258 258

Double Prec. 21014 21014

Quad Prec. 216370 216370

By Lemma 3.4.1, the most significant bit is zero. Hence, if the bit flipped is k = Z − 1, it cannot
flip 1→ 0.

The probability of creating a faulty scalar with exponent ẽ ≤ bias is Z−1+Z−1+1 = 2Z−1.
The total number of potential bit flips is 2Z. Hence, if e ≤ bias, then the resulting faulty scalar
will have an exponent α̃ ≤ 20 with probability 2Z−1

2Z .

We numerically evaluate the expected absolute error given a bit flip in the exponent in
Figure 3.8. Recognize the positive and negative set give approximately the same expected value,
because the most significant bit of values a ∈ (−1, 1) forces the summation to include a large
power of two. We also compare the the expected absolute error to that of the expected value
of the exponent in Table 3.6. If all exponent bits are allowed to be faulty, then the expected
absolute error behaves like the expected value of an exponential function.

70

Table 3.7: Expected value of the relative error given a bit flip in a scalar (ã).

Error Loc. errorrel Constraint E[errorrel] Ref.

Mantissa 1.ξ
1.β — ln(2)

[
1 + 1

N

]
Eq. (3.55)

Exponent |2±η − 1| — 2bias

Z
< E <

2bias+1

Z
Eq. (3.56)

positive η 2bias+1

Z
< E <

2bias+2 − 1
Z

Eq. (3.58)

negative η < 1 Eq. (3.57)

Sign 2 — 2 Eq. (3.50)

Sign

A bit flip in the sign can be treated two ways, we may compute the expected value over the
positive and negative sets, or we may treat a as constant, e.g., E[2a] = 2a. Recognize that the
negative set of exponents restricts the scalar such that a ∈ (−1, 1) if α−. If a ∈ (−2, 2), then the
sign bit will create an absolute error less than one, while if |a| ≥ 2, then the absolute error will
be larger than one.

3.4.3 Summary of Scalar Error Statistics

We summarize the statistics for each error measure derived in § 3.4.1 and § 3.4.2 in Tables 3.7
and 3.8. These are models for the correct and faulty components of the IEEE-754 representation
when perturbed by a single bit flip. Consider the wide range of possible errors, e.g., the relative
error from an exponent bit flip falls into two broad categories: very large and less than one.
Similarly, the absolute error for a mantissa bit flip is dominated by the (non-faulty) exponent
of the scalar. We consider an expected measure less than one to be “well behaved”. This is a
somewhat arbitrary definition, but the motivation stems from numerical analysis. If we can
enforce that errors behave predictably, then we can devise schemes to dampen or maintain those
errors, or possibly detect a subset of such errors. The choice of one also comes from observations
in § 3.2. We have shown that the expected error tends to fall into two broad categories: larger
than one, and less than one. We now extend these models to the multiplication operation, and
the drawn higher-level conclusions about how the expected error models behave.

71

Table 3.8: Expected value of the absolute error given a bit flip in a scalar (ã).

Error Loc. errorabs Constraint E[errorabs] Ref.

Mantissa |α× 1.ξ| — ≈ 2bias Eq. (3.61)

Pos. α 1 ≤ |a| ≈ 2bias+1 Eq. (3.62)

Neg. α |a| < 1 ≤ 9
16 Eq. (3.63)

Exponent |a(1− 2±η)| — ≈ 2bias+1 Eq. (3.35)

Pos. α 1 ≤ |a| ≈ 2bias+1 Eq. (3.35)

Neg. α |a| < 1 ≈ 2bias+1 Eq. (3.66)

Sign |2a| |2a| —

Pos. α and 2−1 1/2 ≤ |a| > 1 —

Neg. α except 2−1 |a| < 1/2 < 1 —

3.5 Model Multiplication Error Measures

Extending our analysis to multiplication is straight-forward, because only one operand can be
faulty. We treat the non-faulty operand as a constant, and hence it operates as a scaling factor
applied to our previous absolute error models and has no impact on the relative error. Consider
two scalars, a and b. We now model the absolute and relative error measures for the operation
a× b.

3.5.1 Mantissa

For an error impacting the mantissa of one operand, the absolute error for multiplication is

errorabs = |ab− ãb|

= |ab− b(a± α× 1.ξ)|

= |ab− ab± bα× 1.ξ|

= |bα× 1.ξ|, (3.67)

72

where ã has the form of Eq. (3.8). The relative error is

errorrel = |ab− ãb|
|ab|

= |bα× 1.ξ|
|ab|

= |α× 1.ξ|
|a|

= |α× 1.ξ|
|α× 1.β|

= 1.ξ
1.β . (3.68)

3.5.2 Exponent

For an error impacting the exponent, ã takes the form of Eq. (3.13), resulting in an absolute
error of

errorabs = |ab− ãb|

= |ab− ab× 2±η|

= |ab(1− 2±η)|. (3.69)

The relative error is

errorrel = |ab− ãb|
|ab|

= |ab(1− 2±η)|
|ab|

= |1− 2±η|. (3.70)

3.5.3 Sign

For an error in the sign bit, ã = −a. The absolute error is

errorabs = |ab− ãb|

= |ab− b(−a)|

= |ab+ ab|

= |2ab|, (3.71)

73

Table 3.9: Error measures for faulty multiplication.

Location Absolute Error Ref Relative Error Ref

Mantissa |bα× 1.ξ| Eq. (3.67) 1.ξ
1.β Eq. (3.68)

Exponent |ab(1− 2±η)| Eq. (3.69) |1− 2±η| Eq. (3.70)
Sign |2ab| Eq. (3.71) 2 Eq. (3.72)

and the relative error is

errorrel = |ab− ãb|
|ab|

= |2ab|
|ab|

= 2. (3.72)

We summarize the error measures for multiplication in Tables 3.9.

3.5.4 Multiplication Expected Error

The expected relative error is the same as our scalar models, e.g., See Table 3.7. The absolute
error is simply the scalar model’s expected absolute error scaled by the non-faulty operand,
which we consider to be b.

Table 3.10 summarizes the expected absolute error. Note that, we have not stated all possible
conditions for |b|. It is possible that if b = 1/errorabs, then you could clearly have an absolute
error less than one. We have stated the conditions for |a| and |b| such that we know when the
expected value will behave as we have modeled.

3.6 Applications to Fault Tolerance

We have analyzed IEEE-754 scalars that experience a single bit flip, and have shown models for
the errors introduced. A key point from the analysis is that the expected error, either absolute or
relative, can fall into two very broad categories: greater than one and less than one. A common
technique in our analysis has been to partition the exponents into positive and negative exponent
sets (α+, and α− respectively). We now consider how these characteristics relate to injecting bit
flips into scalars (or into scalar multiplication).

74

Table 3.10: Expected value of the absolute error given a bit flip in scalar multiplication (ã× b).

Error Loc. errorabs Constraint E[errorabs] Ref.

Mantissa |bα× 1.ξ| — ≈ 2bias Eq. (3.61)

Pos. α 1 ≤ |b| and 1 ≤ |a| ≈ 2bias+1 Eq. (3.62)

Neg. α |b| < 1 and |a| < 1 ≤ 9
16 Eq. (3.63)

Exponent |ab(1− 2±η)| — ≈ 2bias+1 Eq. (3.35)

Pos. α 1 ≤ |b| and 1 ≤ |a| ≈ 2bias+1 Eq. (3.35)

Neg. α |b| < 1 and |a| < 1 ≈ 2bias+1 Eq. (3.66)

Sign |2ab| |2ab| —

Pos. α and 2−1 1 ≤ |b| and 1/2 ≤ |a| > 1 —

Neg. α except 2−1 |b| < 1 and |a| < 1/2 < 1 —

3.6.1 Constrained Exponent Bit Flips

In § 3.4.2, we showed that the most significant bit being flipped dominates the expected absolute
error, e.g., see Theorem 3.4.2. We now consider the case that we are able to exclude the most
significant bit from the expected value. We compute the expected absolute error excluding the
most significant exponent bit for both the negative and positive set of exponents. Figure 3.9a
plots the expected absolute error given a bit flip in the positive set of exponents, while excluding
the most significant bit. We see the expected absolute error behaves like the expected value of
the exponent, e.g., Eqs. (3.35) or (3.27).

Figure 3.9b plots the expected absolute error over the negative set of exponents, while
excluding the most significant bit. The point is that if the most significant bit is excluded the
expected absolute error is less than one. That is, we can remove the large error term from
Eq. (3.66), yielding an expected absolute error that is strictly less than one when given a scalar

75

Number of Bits in the Exponent
3 5 7 9 11 13 15

212 258
21014

216370

20

22000

24000

26000

28000

210000

212000

214000

216000

218000

Expected absolute error given a bit flip in the exponent

of all values greater than or equal to one

excluding the highest order exponent bit.

E
[|
α
−

α̃
|]

20 ≤ α ≤ 2bias

(a) Values greater than or equal to one.

Number of Bits in the Exponent
3 5 7 9 11 13 15

Half Precision: 2−4

Single Precision: 2−6

Double Precision: 2−10

Quad Precision: 2−14

2−15

2−10

2−5

20

Expected absolute error given a bit flip in the exponent

of all values less than one

excluding the highest order exponent bit.

E
[|
α
−

α̃
|]

21−bias
≤ α ≤ 2−1

(b) Values less than one.

Figure 3.9: Expected absolute error given a bit flip in the exponent, excluding the most
significant bit for values less than one, and values greater than one.

less than one, e.g., Eq. (3.73).

E[errorabs]α− <

Excluded︷ ︸︸ ︷
2bias+1 − 4
Z(bias− 1) +E

E[errorabs]α− < 2. (3.73)

This property is particularly useful, as it shows that a bit flip in the exponent does not necessarily
result in a large error, or even the expectation of a large error. The absolute error given a bit
flip can be somewhat well-behaved if α can be constrained to the negative set of exponents.

Equation (3.73) and its original form, Eq. (3.66), present an upper bound on the expected
absolute error. This is because E is an upper bound for the absolute error |a− ã| < 2. If the
scalars are constrained such that a ∈ (−1, 1), the perturbed scalar is only order 2 if the bit
flip creates the binary form of the bias. That is, the bit flip must create an exponent that
corresponds to 20. The mantissa forces the bound to be less than 2, because the mantissa is
bounded in the interval [1, 2).

3.7 Overall Effect of Constrained Exponent Bit Flips

We have considered bit flips in specific locations of the representation. What matters is how
these various effects interplay. A main observation is that bit flips in values less than one will
produce absolute and relative errors less than one most of the time. The expected relative errors

76

Table 3.11: Probability that the relative error will be less than one given a bit flip in a scalar.

Specification Mantissa Exponent Sign Pr(errorrel < 1) Pr(errorrel ≥ 1)

Half Prec. 10
16

1
2 ×

5
16

0
16 0.78125 0.21875

Single Prec. 23
32

1
2 ×

8
32

0
32 0.84375 0.15625

Double Prec. 52
64

1
2 ×

11
64

0
64 0.89844 0.10156

Quad Prec. 112
128

1
2 ×

15
128

0
128 0.93359 0.06641

for multiplication, shown in Table 3.7, show that the mantissa is expected to have a relative
error of approximately ln(2). An exponent bit flip can be both less than one and very large.

We consider an IEEE-754 scalar, which has Nbits = Z +N + 1, where Z is the number of
exponent bits, N is the number of mantissa bits, and one sign bit. The probability that a bit
will impact a specific region of the representation is then N/Nbits for a mantissa bit flip, Z/Nbits

for an exponent bit flip, and 1/Nbits for a sign bit flip. Table 3.11 computes the probability that
the relative error will be less than one, based on the expected value. The probability increases
as the format increases from Half to Quad precision. This is because the mantissa bits dominate
the expected value. Assuming bits are equally likely to be one or zero, then only half of the
exponent bits will satisfy our condition of relative error less than one. A sign bit flip will always
fail.

The values in Table 3.11 also model the expectation of the relative error for multiplication.
We explore the behavior of the expected relative error by analyzing two scalars multiplied in
half, single, and double precision, each with a fixed exponent, in Figure 3.10. Note that the
probability of failure is the probability that the expected error is larger than one. Figure 3.10a
evaluates the possible relative errors for half precision. Observe that the center value of the
colorbar is approximately 22%. Our model for half precision predicts 21.875% (see Table 3.11).
If we compute the expected value across all scalars less than one, i.e., compute the expected
value over the entire surface plot in the quadrant [0,−14], we observe a probability of 0.21875,
which agrees exactly with our model.

Figures 3.10b and 3.10c repeat our study using single and double precision. We observe that
the relative error is larger than one approximately 16% of the time for single precision, and
approximately 10% of the time for double precision. Computing the expected value over the
scalars that are less than one, we observe the relative error larger than one 15.625% of the time
for single precision, and 10.156% of the time for double precision. These values agree exactly
with what our model predicts, as shown in Table 3.11.

77

This result is significant, because it shows that moving to quad precision is not necessarily
bad. Naively, it would seem that the more bits used for a representation, the worse the errors
should behave. The latter is not true, because the number of mantissa bits has increased
significantly more than the number of exponent bits. Quad precision adds only 4 additional
exponent bits compared to double precision, but adds 60 additional mantissa bits. The relative
error of a bit flip in the mantissa is still quite large, ln(2), but this provides a clear direction for
resilient algorithm design.

Order of Exponent

10
5

Modeled Pr(fail) for Multiplication

0
-5

-10
-10

-5

Order of Exponent

0

5

10

0.1

0.15

0.2

0.25

0.3

0.35

P
ro
b
(R

el
at
iv
e
E
rr
o
r
>

1.
0)

P
ro

b
ab

il
it

y
 o

f
F

ai
lu

re

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(a) Half Precision
Order of Exponent

100

50

Modeled Pr(fail) for Multiplication

0

-50

-100-100

-50

Order of Exponent

0

50

100

0.05

0.1

0.15

0.2

0.25

P
ro
b
(R

el
at
iv
e
E
rr
o
r
>

1.
0)

P
ro

b
ab

il
it

y
 o

f
F

ai
lu

re

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

(b) Single Precision

(c) Double Precision

Figure 3.10: Probability that the expected relative error is larger than one, given a single bit
flip in scalar multiplication for: (a) half, (b) single, and (c) double precision.

78

3.7.1 Expected Absolute Error Given a Scalar

We now compute the probability that the absolute error will be less than one given a scalar
less than one. If the scalars are strictly less than one, then the biased exponent will be in the
range [1, 1022]. We must exclude the bit pattern of 1023, because scalars with exponents 20 are
strictly less than two. Table 3.10 summarized the expected absolute error for a bit flip in scalar
multiplication. We showed in Eq. (3.73) that the expected absolute error for scalars less than
one, is dominated by the most significant exponent bit. For scalars less than one, a ∈ (−1, 1),
the mantissa and sign can never introduce an absolute error larger than one. Of all exponent
bit flips, the majority will not create an absolute error larger than one. Specifically, there are
bias− 2 exponents representable for scalars less than one. Because we constrain the scalars to be
less than one, but must count the excluded biased exponent 1023, the total number of possible
bit flips is

Totalbitflips = (bias− 1)× (N + Z + 1).

The probability of observing an absolute error less than one is then

Mantissa︷ ︸︸ ︷
(bias− 2)×N +

Sign︷ ︸︸ ︷
(bias− 2)× 1 +

Exponent︷ ︸︸ ︷
(bias− 2)× (Z − 1)−

Excluded︷ ︸︸ ︷
(Z − 1)

(bias− 1)× (N + Z + 1) . (3.74)

Note that the “Excluded” term removes the Z − 1 possible bit flips that would create the
excluded exponent 20 (i.e., the bias). Because we consider a single bit flip, there are exactly
Z − 1 bit flips that can create the binary pattern corresponding to 20. These excluded bit flips
all take the form of flipping a zero to a one, to create the binary pattern 0111 . . . 1. That is,
we must not count the exponent bit flips that would create the the bias value in the exponent
storage. If we allowed these, the absolute error would be bounded by 2.

3.7.2 Expected Absolute Error Given Scalar Multiplication

We compute the probability that the absolute error will be less than one given a bit flip in scalar
multiplication. Unlike the relative error, both scalars impact the absolute error. Figure 3.11
visualizes the probability that the absolute error will be larger than one for the half, single and
double precision formats. We construct each figure by fixing the exponent of each scalar and
using the expected value of the mantissa. In Chapter 2, we constructed similar figures, but used
Monte Carlo trials to approximate the expected value of the mantissa. That is, we fixed the
exponent and generated random mantissas. Figure 2.6a showed the result of our experiment
using dot products rather than scalars. Notice the structure of our plots are very similar. The
region showing the probability when both scalars are less than one is flat and near zero. The
difference is the gradient that transitions from low probability to high. This is expected, because

79

outside of the region where both scalars are less than one, the absolute error can be both small
and large. Specifically, mantissa bit flips can “fail”, e.g., see Eq. (3.67).

Order of Exponent

10
5

Modeled Pr(fail) for Multiplication

0
-5

-10
-10

-5

Order of Exponent

0

5

10

0.6

1

0.8

0.4

0.2

0P
ro
b
(A

b
so
lu
te

E
rr
or

>
1.
0)

P
ro

b
ab

il
it

y
 o

f
F

ai
lu

re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Half Precision
Order of Exponent

100

50

Modeled Pr(fail) for Multiplication

0

-50

-100-100

-50

Order of Exponent

0

50

100

1

0.4

0.2

0

0.8

0.6

P
ro
b
(A

b
so
lu
te

E
rr
or

>
1.
0
)

P
ro

b
ab

il
it

y
 o

f
F

ai
lu

re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Single Precision

(c) Double Precision

Figure 3.11: Probability that the expected absolute error is larger than one, given a single bit
flip in scalar multiplication for: (a) half, (b) single, and (c) double precision.

To emphasize the impact of the mantissa, Figure 3.12 repeats our experiment and fixes the
mantissa errors such that we observe the largest possible mantissa error for all mantissa bit
flips. That is, we always flip the most significant mantissa bit, rather than show the average.
Clearly, this is not realistic. We have shown the analytic form of the expected mantissa error in
Eq. (3.22), which is much smaller than the largest mantissa error (1.5). The effect of modeling
all worst-case mantissa errors is that the mantissa fails more often. This effect is most easily
visualized by the reduction in the “drip” effect seen in Figure 3.11a, but the impact is essential
in understanding how the low probability region behaves.

80

Order of Exponent

10
5

Modeled Pr(fail) for Multiplication

0
-5

-10
-10

-5

Order of Exponent

0

5

10

0

0.2

0.4

0.6

0.8

1

P
ro
b
(A

b
so
lu
te

E
rr
o
r
>

1
.0
)

P
ro

b
ab

il
it

y
 o

f
F

ai
lu

re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.12: Absolute error experiment for half precision using the worst-case mantissa error
for all mantissa errors.

We explore the region of scalars strictly less than one in Figure 3.13 for the half precision
format. Figures 3.13a and 3.13b perform the experiment using the expected value of the mantissa
error, and Figures 3.13c and 3.13d use the worst-case mantissa error. The right-most plots
avoid the interpolation that the surface plot introduces and provide a clearer picture of which
combination of scalars are producing absolute errors larger than one. The difference between the
two experiments is the increased failure of scalars with exponents of 2−2 and 2−1. This maps
to the two extra orange squares in Figure 3.13d. We show a zoomed-in view for the single and
double precision formats in Figures 3.14a and 3.14b, respectively. Recognize the spikes in each.
The spikes indicate a higher probability of observing an absolute error larger than one. Due to
lack of fidelity with single and double precision, we use half precision in latter examples.

The structure in Figure 3.13 is the result of two side effects introduced from multiplication:
• First, the green spikes map to the excluded bits from Eq. (3.74). Given scalars in the range

of [0, 1) there are Z − 1 bit flips that create the exponent 20, i.e., the bias value. We must
exclude the exponent 20, because it enables the mantissa bits to fail.
• Second, the non-faulty scalar functions as a “scaling factor”. There are cases where the

operands are sufficiently small that they annihilate the large error produced by the most
significant bit flipping.

We now address the effect of each case.

Excluded Bits

To ensure the absolute error remains less than one, we require that the scalars operated on be
strictly less than one, e.g., see Eq. (3.74). If we require that both scalars have exponent values

81

Order of Exponent

-2
-4

-6

Modeled Pr(fail) for Multiplication

-8
-10

-12
-14-14

-12

-10

Order of Exponent

-8

-6

-4

-2

0.05

0

0.15

0.1

P
ro
b
(A

b
so
lu
te

E
rr
o
r
>

1
.0
)

P
ro

b
ab

il
it

y
 o

f
F

ai
lu

re
0

0.02

0.04

0.06

0.08

0.1

0.12

(a) Half precision surface using the expected man-
tissa error.

Order of Exponent
-14 -12 -10 -8 -6 -4 -2

O
rd
er

o
f
E
x
p
o
n
en
t

-14

-12

-10

-8

-6

-4

-2

Modeled Pr(fail) for Multiplication

P
ro

b
ab

il
it

y
 o

f
F

ai
lu

re

0

0.02

0.04

0.06

0.08

0.1

0.12

(b) Half precision overhead view using the ex-
pected mantissa error.

Order of Exponent

-2
-4

-6

Modeled Pr(fail) for Multiplication

-8
-10

-12
-14-14

-12

-10

Order of Exponent

-8

-6

-4

-2

0.05

0.1

0.15

0P
ro
b
(A

b
so
lu
te

E
rr
or

>
1.
0
)

P
ro

b
ab

il
it

y
 o

f
F

ai
lu

re

0

0.02

0.04

0.06

0.08

0.1

0.12

(c) Half precision surface using the worst-case man-
tissa error.

Order of Exponent
-14 -12 -10 -8 -6 -4 -2

O
rd
er

of
E
x
p
on

en
t

-14

-12

-10

-8

-6

-4

-2

Modeled Pr(fail) for Multiplication

P
ro

b
ab

il
it

y
 o

f
F

ai
lu

re

0

0.02

0.04

0.06

0.08

0.1

0.12

(d) Half precision overhead view using the worst-
case mantissa error.

Figure 3.13: Probability that the expected absolute error is larger than one, given a single bit
flip in scalar multiplication for half precision and scalars in the range [0, 1).

82

Order of Exponent

-20
-40

Modeled Pr(fail) for Multiplication

-60
-80

-100
-120-120

-100

-80

Order of Exponent

-60

-40

-20

0.04

0.02

0.08

0.06

0P
ro
b
(A

b
so
lu
te

E
rr
o
r
>

1
.0
)

P
ro

b
ab

il
it

y
 o

f
F

ai
lu

re

0

0.01

0.02

0.03

0.04

0.05

0.06

(a) Single precision surface using the worst-case
mantissa error.

(b) Double precision surface using the worst-
case mantissa error.

Figure 3.14: Probability that the expected absolute error is larger than one, given scalars in the
range [0, 1) and a single bit flip in scalar multiplication for (a) single and (b) double precision.

α ≤ 2−1, then the Z − 1 bit flips that will create the exponent 20 are only impactful if the
non-faulty operand has exponent 2−1.

Lemma 3.7.1 Given two scalars with exponents in the interval [2−(bias−1), 2−1), it is impossible
for a bit flip in an exponent bit, bit ∈ {exponent_bitZ−2, exponent_bitZ−3, . . . ,exponent_bit0},
to create a absolute error larger than one if the non-faulty operand has exponent α ≤ 2−2.

Proof 3.7.1 Let two scalars be (a, b) ∈ (−1, 1). Suppose a bit flip perturbs a such that it creates
the bias pattern in the exponent, i.e., α̃a = 20. Suppose the exponent for the non-faulty scalar
b is less than 2−1. The resulting perturbed exponent will be ã × b = 20 × 1.βa × 2−2 × 1.βb =
2−2 × 1.βa × 1.βb.

Any mantissa, 1.β, is bounded above by 1.β < 2. Hence, the faulty multiplication is bounded
by |ã× b| < 2−2 × 4, and the absolute error cannot be larger than one, because |a× b| < 1. �

The spikes in Figures 3.13c, 3.14a, and 3.14b occur when the non-faulty scalar has exponent
2−1. This effect is symmetric because multiplication is commutative. Recognize the number
of spikes in Figure 3.13c is Z − 1 = 5 − 1 = 4 along either boundary, because the boundary
represents a scalar with exponent 2−1.

Most Significant Bit Flip Mitigated

Next, we explain the two-level structure seen in Figure 3.13c. Given scalars in the range
2bias−1, 2−1, there are bias− 1 such scalars, and therefore bias− 1 most significant exponent bits
that can be flipped leading to a large absolute error. Given scalar multiplication, it is possible

83

that if both scalars are sufficiently small, their product will produce an exponent sufficient to
cancel the large multiplicative error. Given scalars in the range [0, 1), a bit flip in the most
significant exponent bit of an operand in scalar multiplication will produce an absolute error
less than one (bias− 4)× (bias− 3) number of times.

Lemma 3.7.2 Given two scalars with exponents in the interval [2−(bias−1), 2−1) the most sig-
nificant bit flip in either operand of scalar multiplication will produce an absolute error less than
one (bias− 4)× (bias− 3) number of times.

Proof 3.7.2 Let two scalars be (a, b) ∈ (−1, 1). Suppose a bit flip perturbs a such that it creates
the bias pattern in the exponent, i.e., α̃ = 20. Suppose the most significant exponent bit is
flipped in either operand of scalar multiplication. The multiplicative error introduced by the most
significant exponent bit flip is 2bias+1. To ensure the absolute error is less than one, the resulting
complete exponent (α) from the faulty product must be α ≤ 2−2, otherwise the mantissa values
can cause failure.

To have α ≤ 2−2, the sum of the exponents must satisfy expa + expb + bias+ 1 ≤ −2. That
is, the exponents of the operands must be sufficiently small to cancel the large multiplicative
error 2bias+1 and remain small enough to ensure that the mantissa bits cannot produce a large
absolute error.

The smallest exponent representable is 2−(bias−1). Suppose expb = −(bias− 1). This yields a
bound of expa − (bias− 1) + bias+ 1 ≤ −2, expa ≤ −4 if b has an exponent of 2−(bias−1). If b
becomes larger, than a must become smaller. The number of products satisfying this constraint is
the triangle sum of (bias−4)×(bias−3)

2 . Repeating this analysis considering a as the smallest value,
and b as the largest yields 2 × (bias−4)×(bias−3)

2 , or (bias − 4) × (bias − 3) number of products
will cancel the most significant bit flip while ensuring the mantissa cannot force the error to be
larger than one. �

The reasoning used in Proof 3.7.2 is clear when observing Figure 3.13. To compute the
number of products that will negate the most significant bit flipping, we only need to sum the
blue triangle in Figure 3.13d. For half precision, the bias is 15, and bias − 4 = 12. The blue
triangular region represents the scalar products that satisfy expa + expb + bias+ 1 ≤ −2. That
is, −4 + (−14) + 15 + 1 = −2 ≤ −2.

3.7.3 Probability of an Absolute Error Larger Than One

The prior subsections have addressed two effects that multiplication has on the absolute error
created should a bit flip in either operand. We now unify the concepts presented to compute
the probability that the absolute error will be greater than or equal to one given scalars
(a, b) ∈ (−1, 1) and scalar multiplication.

84

First, the number of exponents possible given scalars in the interval (−1, 1) is (bias − 1).
Multiplication has two operands each having N + Z + 1 bits. Therefore, the total number of
bits that can be flipped are

Total_bits = 2× (bias− 1)2 × (N + Z + 1). (3.75)

The bit flips that can create the bias were addressed in Lemma 3.7.1. These “excluded” bit flips
can only be impactful if the one of the scalars has exponent 2−1, and there are only Z − 1 such
bit flips given all representable exponents in the range [0, 1). The total ways to have a bit flip
create 20 is

Bit_flips_to_bias = 2× (Z − 1). (3.76)

The most significant exponent bit flip is not impactful for (bias− 4)× (bias− 3) of the total bit
flips.

bad_significant_exp_bit_flips = 2× (bias− 1)2 − (bias− 4)× (bias− 3). (3.77)

The probability that the absolute error will be larger than one is

Pr(errorabs > 1) = Bit_flips_to_bias+ bad_significant_exp_bit_flips
Total_bits . (3.78)

We evaluate Eq. (3.78) for the formats half, single, double, and quad precision in Table 3.12.
We also compared our modeled probability against what we observed in our experiments using
the worst-case mantissa error, and obtained a perfect fit. That is, the difference between our
modeled probability and what we observed is zero. Our model represents an upper bound
because our proofs and derivations are designed to address the largest possible mantissa values,
i.e., 1.β = 2− ε. This difference is visuallized in Figure 3.13. Figure 3.13a has fewer spikes than
Figure 3.13c. This is because the product of the expected mantissa error is 1 + 1/N , which is
less than 1.5 (the worst-case).

3.8 Application of Constrained Exponent Bit Flips

It is not immediately obvious how we could simply remove a bit from consideration in the
expected value. Recognize that restricting values to be less than one is the same effect that
normalizing a vector or equilibrating a matrix achieves. The concept of operating on values in
the interval (−1, 1) is very common in numerical mathematics. For example, the Arnoldi process
[5], which forms the basis for many Krylov subspace linear solvers and eigensolvers constructs

85

Table 3.12: Probability that the absolute error will be larger than one given a bit flip in scalar
multiplication with (a, b) ∈ (−1, 1).

Specification Pr(errorabs ≥ 1)

Half Prec. 0.04273

Single Prec. 0.01625

Double Prec. 0.00785

Quad Prec. 0.00391

an orthonormal set of basis vectors. Elliott et al. [30] instrumented the GMRES solver, and
showed that the probabilities we have shown, hold inside the Arnoldi process.

This is a strong result. The errors from a bit flip seem extremely unpredictable, yet if data
is scaled, then the errors are “well behaved” most of the time. Clearly, our definition of well
behaved is arbitrary, but there is strong evidence that bounding errors is an effective fault
tolerance mechanism for iterative linear solvers, e.g., see Elliott et al. [29].

Another implication of this work stems from § 3.7.2. Lemma 3.7.2 established that as values
become smaller, the expected absolute error goes to zero. That is, given sufficiently small scalars,
the product is sufficiently small to cancel the large error introduced. The relative error will
always have a 50/50 chance of being large or small, but the absolute error will be less than one
the majority of the time. This is important for algorithms that generate normalized values, as
these values may becomes very small, but the absolute error will always be less than one.

3.9 Conclusion

We have used analytic modeling and statistical analysis to show how a bit flip in the representation
of an IEEE-754 floating point behaves. We have computed the expected absolute and relative
error, and shown that these measures fall into two broad categories: less than one, and very large.
We have rigorously justified the observations in related work, and shown that the findings in [30]
hold for formats besides binary64. We have shown that the number of bits is only marginally
important; rather the scaling of the values is more important when it comes to the errors
introduced from a bit flip.

86

Chapter 4

Evaluating the Impact of Silent Data
Corruption on the GMRES Iterative Solver

4.1 Introduction

Incorrect arithmetic or corruption of stored data could have dire effects on the execution of
a numerical algorithm. Experiments show that a single bit flip in memory can cause certain
algorithms to “crash” (terminate abnormally, due to invalid states or actions detected by the
application or operating system), “stagnate” (keep running but fail to make progress), or, worst
of all, produce the wrong solution, silently.

Rather than focusing exclusively on bit flips, this work studies the impact of Silent Data
Corruption (SDC) on the Generalized Minimal Residual Method (GMRES) iterative linear
solver. The source of the corruption, while interesting, gives no insight into its impact on the
algorithm and the correctness of its result. By generalizing bit flips in floating-point data into
potentially unbounded numerical errors, we are able to use mathematical analysis both to reason
about algorithms’ behavior should an SDC event occur, and to harden them against the event’s
effects.

Fortunately, some numerical algorithms only need reliability for certain data and phases of
computation. If the system can guard just those parts of the algorithm in space and time, then
the algorithm can compute the right answer — or at least be able to detect failure and report it
“loudly” — despite faults in unreliable phases of execution. This suggests a “layered” approach
to the design of reliable numerical algorithms. A reliable outer layer can recover from faults in a
less reliable inner layer. If the solver spends most of its time in unreliable mode, it can mitigate
the cost of reliable computation in the outer mode. We begin the analysis with GMRES, and
then extend it to the Fault-Tolerant GMRES (FT-GMRES) inner-outer iteration.

87

We present the following contributions:
• We use mathematical analysis of the GMRES algorithm to construct a detector that

bounds the error that SDC may introduce.
• We combine the above detection scheme with the sandbox reliability model presented in

[13].
• We illustrate experimentally that bounded error originating in the faulty inner solve has

little impact on time-to-solution.

4.1.1 Silent Data Corruption

In this work, we address a very specific type of fault, i.e., a fault that silently introduces bad
data, while not persistently tainting the data that was used in the calculation. For example, let
a = 2 and b = 2, then c = a+ b = 10, while simplistic, this model presumes no knowledge of the
nature of the fault, only that c is incorrect. This model assumes that the machine is unreliable
in an unpredictable way, and therefore we are skeptical of the output it presents. This type of
unreliability can be mitigated via redundant computation and introspection, but then the cost
of running the algorithm increases drastically.

4.1.2 Faults, Failures, and Persistence

Our goal is to ensure that should transient SDC occur, we either obtain the correct solution or
make the fault not silent by alerting the user. We consider two perspectives: the user and the
system. A fault occurs at the system level, e.g., a bit flips or a node crashes. A fault becomes a
failure if it impacts the user. Figure 4.1 depicts a visual taxonomy of how we consider faults and
the scope of our work. We further classify faults into those that interrupt the user’s program
(hard faults), and those that do not immediately or ever interrupt the user’s code (soft faults). A
hard fault results in a failure if the user is running an application (though a checkpoint / restart
recovery system can “mask out” hard faults, making them not failures). In contrast, the very
nature of soft faults implies that they may emit no indication that something has gone wrong.
In the event that soft faults allow the program to continue execution with tainted data, we must
understand how algorithms behave in the presence of faulty data. Furthermore, if the algorithm
uses tainted data and still obtains the correct solution, then the fault does not constitute a
failure. If the soft fault leads to an incorrect solution, then the fault leads to a silent failure,
which is an outcome we wish to make very rare or impossible.

We further classify soft faults by how long the underlying hardware remains faulty. Persistent
faults arise from hardware that is permanently faulty, e.g., a stuck bit in memory, or the Intel
Pentium FDIV bug [60]. Sticky faults indicate hardware that is faulty for some duration but

88

Fault

Soft Hard

Transient Sticky Persistent

Abnormal
operation

Failure

Relative to current
level of abstraction.

A fault happens inside a function.
It may or may not produce correct

output as a result.

A failure is a fault that
"leaks out," so the function

misbehaves from an
outside perspective.

"Soft" faults do not interrupt the
program immediately. User code
can detect them via introspection. "Hard" faults interrupt the program.

The program that suffers them
cannot detect them directly.

Dotted outline:
Beyond our

scope

Key:

Figure 4.1: Taxonomy of faults and scope of this work.

returns to normal operation. Transient faults occur once, and while the fault is transient the
effect of the fault may be persistent.

4.2 Project Overview

To quantify the possible effects of a single silent data corruption event in GMRES, we propose a
multifaceted approach. We combine the sandbox reliability model from [47, 13], Flexible GMRES
from Saad [76], and mathematical analysis of the GMRES algorithm to create a nested solver
strategy that combines an unreliable inner solver with a reliable outer solver, while enforcing
that, should SDC occur in the unreliable phase, the error is bounded. We then show through
experiments how our scheme “runs through” single SDC events in the unreliable solver. Using
this approach, we ultimately seek to present analyses of solvers such that we can quantitatively
choose solvers based on their resiliency to single events of SDC.
This chapter is organized as follows:

1. In § 4.4, we describe the sandbox reliability model.
2. In § 4.5, we present standard GMRES, and uncover through mathematical analysis an

invariant in the Arnoldi process contained within GMRES.
3. We describe how to check this invariant when using Modified Gram-Schmidt orthogonal-

ization.
4. In § 4.6, we introduce Saad’s Flexible GMRES and Heroux et al.’s FT-GMRES, and

explain the relation between flexible solvers and the sandbox reliability model.
5. In § 4.7, we compose a nested solver using the Trilinos framework [49], and present

experimental results illustrating how our invariant check impacts time-to-solution.

89

4.2.1 Assumptions and Justification

We restrict SDC to the numerical data used and generated by the algorithm. We explicitly exclude
faults in control flow, data structures, loop counters and other metadata used to implement
the algorithm. The reason for this exclusion is that these issues represent a different class of
problems.

Our assumption that SDC occurs only once is fundamental. The implied source of SDC is
typically a bit flip, but we do not restrict our model to silent bit upsets, given that there is
limited data available today to base such a model on. We justify our choice of single transient
SDC, based on what we do know about bit flips and the reliability of the system:

1. Hardware employs techniques to ensure that so-called “single event upsets” (SEUs) – that
is, bit flips – do not occur. Therefore, it is expected that SEUs will be rare events.

2. If we can understand the best- and worst-case scenarios for the error that an SDC can
contribute, we will have a baseline to conjecture about multiple bit flips, i.e., multiple
occurrences of SDC.

3. There currently is no solid theory, e.g., a statistical distribution, of the rate at which bit
flips occur. Therefore, speculation about flip rates may or may not prove useful.

4. Assuming a particular fault rate makes bold assertions about future hardware, especially
given the reluctance of hardware manufacturers to divulge this information.

By following this research path, we are able to avoid the pitfalls presented in items 3 and 4
above, and we are able to isolate the impact of SDC without other factors polluting our analysis.

4.3 Motivation

Energy and peak power increasingly constrain modern computer hardware, yet hardware
approaches to protect computations and data against errors cost energy. This holds at all scales
of computation, but especially for the largest parallel computers being built and planned today.
This results from a confluence of factors:
• Increasing parallelism (and therefore more components to fail) [6, 7]
• Decreasing transistor feature sizes, making individual components more vulnerable
• Extremely tight peak power requirements [63], limiting the use of hardware redundancy

to increase reliability
As these trends continue, hardware vendors may succumb to the temptation to expose incorrect
arithmetic or memory corruption to application codes [61, 63, 71]. Some studies already indicate
that this behavior is appearing at the user level [46]. In fact, some researchers actively promote
relaxing hardware correctness to save energy [64].

90

4.3.1 Relation to Prior Work

Much of the prior work on fault-tolerant iterative solvers has taken the approach of assuming
some fault model for bit flips, and then injecting bit flips into specific numerical operations
[82, 83, 86], or treating the application as a black box and injecting bit flips arbitrarily [14]. A
popular operation to analyze is sparse matrix-vector multiply [82, 86], a key kernel in iterative
linear solvers. These approaches typically engineer a response that mitigates, detects, or detects
and corrects bit flips injected following the assumed fault model. The focus in this type of
research has been to detect errors, and then respond – e.g., correct the tainted values, or roll
back and resume computation from an assumed valid state – assuming that the fault does not
occur frequently enough to cause stagnation.

In addition, all prior work on sparse iterative methods is based on a fault model that assumes
multiple bit flips injected at some rate. Most studies are also carried out with little care for
whether the bit flipped is a 0→ 1 or a 1→ 0, and most studies flip bits at random locations.
We question many of the assumptions made, and in general question the research approach.

SDC is a Rare Event

We begin by questioning models and experiments that assume SDC happens at a sufficiently
high rate for multiple events to occur in a single linear solve.

We have a strong reason to believe that SDC is a rare event. Hardware incorporates a fairly
large amount of safeguards in-place to protect data and instructions. For example, Intel provides
the Machine Check Architecture, which provides reporting of bit errors at the register, cache
(L1-L3), QuickPath Interconnect, and DRAM (via ECC) layers. We do not attempt to conjecture
about the likelihood of bit flips, rather we turn to the theoretical basis that an algorithm is
built on, and study how the algorithm behaves when perturbed within the bounds imposed by
mathematical analysis.

Current research by Michalak et al. found SDC occurred rarely [70]. They placed a Roadrunner
node in front of a neutron cannon and bombarded it with particles. While the neutron fluxes
are far beyond realistic, their observations showed a startlingly low occurrence of SDC, while
outright node failure occurred far more frequently. Why then has current SDC research focused
on failure rates?

In practice, SDCs should remain rare, even at extreme scales of parallelism. Nevertheless,
little if any current research has attempted to explain how a single SDC event impacts an
algorithm and ultimately the solution. Research on how to counter multiple bit flips has not
provided additional insight on the cause/effect relationship.

Also, an application may attribute much of its run time to linear solves, but typically these
are multiple linear solves, e.g., an implicit time stepping algorithm that solves a nonlinear system

91

at each time step. For example, see Müller and Scheichl where a nonlinear system of size 1010 is
solved and the linear solver is restricted to 0.003 seconds per solve [73].

Fault Models and Silent Data Corruption

At a higher level, we challenge the research approach of assuming a fault model for SDC. By
definition, the origin of silent data corruption is unknown, with one such origin being a silent bit
flip. Instead of characterizing SDC, the studies propose solutions to a problem we understand
only poorly. It is our goal first to analyze the effects of SDC, and then to propose both specific
algorithmic techniques and general heuristics that minimize its impact, should it occur. With
this ability, mathematicians, scientists, and engineers can take quantifiable steps to develop
algorithms and applications that are inherently resilient to SDC.

In numerical algorithms using IEEE-754 floating-point data, regardless of the cause, SDC
will produce either numeric values or the non-numeric infinity (Inf) and not-a-number (NaN)
values. Injecting bit flips will produce either type of error, making the act of injecting a bit
flip to study transient SDC unnecessary as the outcome could have been achieved by merely
setting the memory location equal to some value. We know from the IEEE-754 specification
precisely what numeric values are possible, and given the mystery of how, when, and where
SDC originates, any of the possible floating-point values are plausible.

We advocate a drastically different approach, namely that SDC impacts the underlying
mathematical assumptions that guarantee convergence of an algorithm. Rather than focusing
on detecting binary errors, we treat bit flips as numerical errors and evaluate how these errors
relate to the theoretical basis that the algorithm is built on. In this sense, we filter values that
are theoretically impossible, while accepting variations that are allowable by the theory. While
our approach does not “solve” the SDC problem, we exploit modern mathematical techniques,
so-called flexible solves, to cope with the bounded error we “run through”.

4.3.2 Invariants as Detectors

Numerical algorithms often have invariants that they can check inexpensively to decide whether
hardware faults have corrupted an intermediate result enough for it not to be useful. For
example, Chen [20] performs additional computation and parallel communication in order to
check invariants of the iterative linear solvers GMRES [78], CG, and BiCG. If those invariants are
violated, the solver can roll back one or more iterations and resume from the last known correct
point. In this work, we develop invariants that require no additional parallel communication
and very little extra computation to check. This reduces the amount of state needed to roll back
correctly, since we can afford to check these invariants at every iteration. In fact, GMRES (and

92

variants, like “Flexible GMRES”) keeps enough state on its own that, unlike in Chen’s work, we
do not need to save anything to a persistent store.

Checking invariants naturally fits into the layered approach we mentioned in the introduction.
In the case of FT-GMRES, the outer solver (based on Flexible GMRES [76]) can check the
results of the unreliable inner solves by computing a residual reliably. The outer solver will
never compute the wrong answer, no matter what the inner solves do. We present findings in
this work that indicated that a layered approach coupled with our theory-based detector can
tolerate a single SDC event with little (if any) impact on convergence.

4.4 Sandbox Reliability

Relaxing reliability of all data and computations may result in all manner of undesirable and
unpredictable behavior. If instructions, pointers, array indices, and Boolean values used for
decisions may change arbitrarily at any time, we cannot assert anything about the results of a
computation or the side effects of the program, even if it runs to completion without abnormal
termination. One node may even corrupt the state of other nodes, for example by overwriting
parts of memory owned by a user-space communication library, or performing incorrect output
to a shared filesystem. The least we can do is force the fault-susceptible program to execute in a
sandbox. This is a general idea from computer security, that allows the execution of untrusted
“guest” code in a partition of the computer’s state (the “sandbox”) that protects the rest of the
computer (the “host”) from the guest’s possibly bad behavior. Sandboxing can even protect the
host against malicious code that aims to corrupt the system’s state, so it can certainly handle
code subject to unintentional faults in data and instructions.

Sandboxes ensure isolation of a possibly unreliable phase of execution. They allow data to
flow between reliable and unreliable phases of execution. Also, they let the host force guest code
to stop within a predefined finite time, or if the host suspects the guest may have wandered
astray. This feature is especially important in distributed-memory computation for preventing
deadlock and other failures due to “crashed” or unresponsive nodes. In general, sandboxing
converts some kinds of hard faults into soft faults, and limits the scope of soft faults to the guest
subprogram.

Sandboxing may be implemented in different ways. For example, the guest may run in a
virtual machine on the same hardware as the host, or the host may be implemented as redundant
processes or systems. Guests may run on a fast but unreliable subsystem, and the controlling
host program may run on a reliable but slower subsystem. We do not specify or depend on a
particular implementation of sandboxing in this work.

The fault-tolerant inner-outer iteration, described in § 4.6, uses the sandbox model. There,
the guest program performs the task “Solve a given linear system.” The host program invokes

93

Outer
solve

Inner
solve

Figure 4.2: Sandbox reliability implemented as reliable outer solves and unreliable inner solves.

the guest repeatedly for different right-hand sides, and the host performs its own calculations
reliably. Finer-grained models of reliability may improve the accuracy of the inner solves, which
is what our detector in § 4.5.2 accomplishes.

The sandbox model of reliability makes only two promises of the unreliable guest: it returns
something (which may not be correct), and it completes in fixed time. These already suffice to
construct a working fault-tolerant iterative method, as we will show in § 4.6. However, detecting
faults or being able to limit how faults may occur would also be useful. These finer-grained
models of reliability can be used to improve accuracy of the iterative method, or to prove more
specific promises about its convergence.

4.5 GMRES

The Generalized Minimum Residual method (GMRES) of Saad and Schultz [78] is a Krylov
subspace method for solving large, sparse, possibly non-symmetric linear systems of the form
Ax = b. GMRES is based on the Arnoldi process [5], which can also be used to approximate a
matrix’s eigenvalues and eigenvectors. GMRES has the convenient property that the residual
norm of the approximate solution at each iteration is monotonically non-increasing, assuming
correct arithmetic and storage. Its use of orthogonal projections and normalized (to length one)
basis vectors also has advantages, that we will discuss below.

We begin this section by explaining how to use properties of the Arnoldi process to detect
faults in an iteration of GMRES. We then apply the SDC models we developed above to show
how to scale the linear system in a way that enhances fault detection and bounds the possible
error of the major computational kernels. We will show in future work that these bounds by
themselves do not suffice to bound the solution error. Nevertheless, they can, if one makes
inexpensive changes to how GMRES computes the solution update coefficients.

94

4.5.1 Fault Detection via Projection Coefficients

The norms and inner products that occur in each iteration of the Arnoldi process in GMRES have
a bounded absolute value. The bound depends on the norm of the preconditioned matrix, which
is inexpensive to estimate. We use this bound to detect faults in all the major computational
kernels in GMRES.

Algorithm 4.1 GMRES
Input: Linear system Ax = b and initial guess x0
Output: Approximate solution xm for some m ≥ 0

1: r0 := b−Ax0 . Unpreconditioned initial residual vector
2: β := ‖r0‖2, q1 := r0/β
3: for j = 1, 2, . . . until convergence do
4: vj+1 := Aqj . Apply the matrix A
5: for i = 1, 2, . . . , j do . Orthogonalize
6: hi,j := qi · vj+1
7: vj+1 := vj+1 − hi,jqi
8: end for
9: hj+1,j := ‖vj+1‖2

10: if hj+1,j ≈ 0 then
11: Solution is xj−1 . Happy breakdown
12: return
13: end if
14: qj+1 := vj+1/hj+1,j . New basis vector
15: yj := arg min

y
‖H(1:j + 1, 1:j)y− βe1‖2

16: xj := x0 + [q1,q2, . . . ,qj]yj . Compute solution update
17: end for

4.5.2 Bounds on the Arnoldi Process

We start our analysis by bounding the dot product which determines the i-th upper Hessenberg
entry, hi,j of the j-th Arnoldi iteration. The Arnoldi process is expressed on Lines 3–14 in
Algorithm 4.1. At its core is an orthogonalization kernel, which we have chosen to be the Modified
Gram-Schmidt (MGS) process. Classical Gram-Schmidt or Householder transformations may
also be used. As we will demonstrate, our bound is invariant of the orthogonalization algorithm
chosen.

The MGS process begins on Line 5 and completes on Line 8. To bound hi,j on Line 6, we
exploit a property of orthogonal projections. It is well known that linear transforms utilizing
orthogonal matrices are isometric. That is, they preserve the length of the vectors. In Rn,

95

the dot product of a vector with a unit-length vector is bounded by the length of the first
vector. This means that each hi,j entry is bounded by the length of the vector that starts the
orthogonalization process (the vector we wish to make orthogonal). To clarify what “starts” the
orthogonalization process means, we step back from an algorithmic formulation, and instead
write the orthogonalization kernel as a mathematical expression. For clarity, we will use the
Classical Gram-Schmidt expression:

w =
[
I−QTQ

]
u (4.1)

In Eq (4.1), the vector u is what “starts” the orthogonalization process, and w is the resulting
vector, which is orthogonal to all vectors in Q, where Q = {q1, . . . ,qj}.

Returning to Algorithm 4.1, what “starts” the orthogonalization process is the vector resulting
from Line 4. If we can bound the length of this vector, then we know the maximum absolute
value that hi,j can take. Since we want to bound the length of the resulting vector, we take the
induced `2 norm, ‖vj+1‖2 =

∥∥∥Aqj
∥∥∥

2
,

‖vj+1‖2 ≤ ‖A‖2
∥∥∥qj∥∥∥2

. (4.2)

We can further reduce the bound, recognizing that the basis vector qj is a unit vector, i.e.,
‖q‖2 = 1. We may deal with ‖A‖2 in several ways:

1. ‖A‖2 is defined to be the largest singular value, e.g., σmax(A), or
2. the 2-norm is bounded above by the Frobenius norm, which is likely cheaper to compute

than the largest singular value.
This leads us to an upper bound on all entries in the upper Hessenberg matrix

|hi,j | ≤ ‖A‖2 ≤ ‖A‖F . (4.3)

The bound presented in Eq. (4.3) is crucial, as it demonstrates that the upper Hessenberg entries
are bounded entirely by the input matrix. In § 4.6, we discuss Flexible GMRES with GMRES
(Algorithm 4.1) as a preconditioner. In this scenario, the bound presented is invariant for all
applications of the preconditioner, or, in other words, the bound depends only on the input
matrix.

4.5.3 Bound Application

We have shown what the theoretical upper limit is for the values in the upper Hessenberg. This
essentially tells us what is theoretically possible inside the Arnoldi process. Using this approach

96

to construct an SDC detector is significant. By building a detection scheme in this way, we know
precisely what errors we can detect, and, more importantly, we know what is not detectable.

The important factor to keep in mind is that exactly how an error is committed is irrelevant,
the norm bounds allow us to filter out values that are invalid by theory — we either detect
a large error or commit a small error, and in § 4.6 we will demonstrate how restricting the
magnitude of the error committed allows Flexible GMRES to tolerate the error.

4.5.4 Error Detection

In the context of error detection, we can only detect an error that exceeds the bound on the
upper Hessenberg entry hij . To do this, we insert a conditional between Lines 6 and 7 and
Lines 9 and 10 and test whether |hij | ≤ ‖A‖F . Should this condition be invalid, then we assume
that we have committed an error at some point.

4.6 FT-GMRES

This section describes the Fault-Tolerant GMRES (FT-GMRES) algorithm, a Krylov subspace
method for an iterative solution of large sparse linear systems of the form Ax = b. FT-GMRES
computes the correct solution x even if the system experiences uncorrected faults in both data
and arithmetic [13]. It promises “eventual convergence”, i.e., it will always either converge to
the right answer, or (in rare cases) stop and report immediately to the caller if it cannot make
progress. FT-GMRES accomplishes this by dividing its computations into reliable and unreliable
phases, using the sandbox model of reliability described in § 4.4. Rather than rolling back any
faults that occur in unreliable phases, as a checkpoint / restart approach would do, FT-GMRES
“rolls forward” through any faults in unreliable phases, and uses the reliable phases to drive
convergence. FT-GMRES can also exploit fault detection in order to correct corrupted data
during unreliable phases.

4.6.1 FT-GMRES is Based on Flexible GMRES

FT-GMRES is based on Flexible GMRES (FGMRES) [76]. FGMRES, presented in Algorithm 4.2,
extends the Generalized Minimal Residual (GMRES) method of Saad and Schultz [78] by “flexibly”
allowing the preconditioner to change in every iteration. An important motivation of flexible
methods are “inner-outer iterations,” which use an iterative method itself as the preconditioner
(e.g., use GMRES as a preconditioner). In this case, “solve qj := Mjzj” Line 4 means “solve the
linear system Azj = qj approximately using a given iterative method.” For example, suppose
GMRES is implemented as a function x = gmres(A,b), meaning solve Ax = b for x. Then
Line 4 is equivalent to zj = gmres(A,qj).

97

Algorithm 4.2 Flexible GMRES (FGMRES)
Input: Linear system Ax = b and initial guess x0
Output: Approximate solution xm for some m ≥ 0

1: r0 := b−Ax0 . Unpreconditioned initial residual
2: β := ‖r0‖2, q1 := r0/β
3: for j = 1, 2, . . . until convergence do
4: Solve qj = Mjzj . Apply current preconditioner
5: vj+1 := Azj . Apply the matrix A
6: for i = 1, 2, . . . , k do . Orthogonalize
7: hi,j := qi · vj+1
8: vj+1 := vj+1 − hi,jqi
9: end for

10: hj+1,j := ‖vj+1‖2
11: Update rank-revealing decomposition of H(1:j, 1:j)
12: if H(j + 1, j) is less than some tolerance then
13: if H(1:j, 1:j) not full rank then
14: Did not converge; report error
15: else
16: Solution is xj−1 . Happy breakdown
17: end if
18: else
19: qj+1 := vj+1/hj+1,j
20: end if
21: yj := arg min

y
‖H(1:j + 1, 1:j)y− βe1‖2

22: xj := x0 + [z1, z2, . . . , zj]yj . Compute solution update
23: end for

98

This inner solve step preconditions the outer solve (in this case FGMRES). Changing
right-hand sides and possibly changing stopping criteria for each inner solve means that if one
could express the “inner solve operator” as a matrix, it would be different on each invocation.
This is why inner-outer iterations require a flexible outer solver.

Flexible methods let the preconditioner change significantly from one iteration to another;
they do not depend on the difference between successive preconditioners being small. This
is the key observation behind FT-GMRES: flexible iterations allow successive inner solves to
differ arbitrarily, even unboundedly. This suggests modeling faulty inner solves as “different
preconditioners.” Taking this suggestion leads to FT-GMRES.

There are flexible versions of other iterative methods besides GMRES, such as CG [45] and
QMR [89], which could also be used as the outer solver. We chose FGMRES because it is easy
to implement, robust, and can handle nonsymmetric linear systems. Experimenting with other
flexible outer iterations is future work.

4.6.2 Sandbox Reliability

FT-GMRES further specifies different reliability for inner and outer solves. Only inner solves
(Line 4) are allowed to run unreliably. FT-GMRES expects that inner solves do most of the work,
so inner solves run in the less expensive unreliable mode. Inner solvers need only return with a
solution in finite time (see §4.4). That solution may be completely wrong if errors occurred.

This inner-outer solver approach reduces disruption of existing solvers. The outer FGMRES
iteration wraps any existing solver with any preconditioner that it might be using as the inner
solver. Any solver works, but since we have developed a fault detector in § 4.5, we chose GMRES
as the inner solver.

4.6.3 FGMRES’ Additional Failure Modes

FGMRES (and therefore FT-GMRES) have an additional failure mode beyond those of standard
GMRES. On Line 11 of standard GMRES (Algorithm 4.1), hj+1,j = 0 indicates that the current
iteration produced an invariant subspace. This means either that we converged to the exact
solution, or that the solve cannot make further progress given the initial guess. For FGMRES, if
the quantity hj+1,j = 0, this does not necessarily indicate either case. This is because H(1:j, 1:j)
is always nonsingular in GMRES if j is the smallest iteration index for which hj+1,j = 0, whereas
in FGMRES, H(1:j, 1:j) may nevertheless be singular in that case. (This is Saad’s Proposition
2.2 [76].) This can happen even in exact arithmetic. It may occur due to unlucky choices of
the preconditioners, e.g., M−1

j = A and M−1
j+1 = A−1. In practice, this case is rare, even when

inner solves are subject to faults. Furthermore, it can be detected inexpensively, since there are
algorithms for updating a rank-revealing decomposition of an m×m matrix in O(m2) time (see

99

e.g., Stewart [88]). This incurs no more time than it takes to update the QR factorization of
the upper Hessenberg matrix at iteration m. The ability to detect this rank deficiency ensures
“trichotomy” of FGMRES: it either

1. converges to the desired tolerance,
2. correctly detects an invariant subspace, with a clear indication (hj+1,j = 0 and H(1:j, 1:j)

is nonsingular), or
3. gives a clear indication of failure (detected rank deficiency of H(1:j, 1:j)).

We base FT-GMRES’ “eventual convergence” on this trichotomy property. In the following
section, we will discuss how the techniques used to detect the third failure case can also be used
to keep the inner solves’ solutions bounded, as long as faults in the inner solves are bounded.

4.6.4 Fault Tolerance via Regularization

Both GMRES and Flexible GMRES compute the solution update coefficients (yj in all algorithms)
by solving a small least-squares problem. This problem originates from projecting the matrix A
onto the Krylov basis, so we call it the projected least-squares problem. At iteration k (counting
from k = 1), it has the form

Find y satisfying min
y
‖Hky− βe1‖2, (4.4)

where Hk is a k + 1 by k upper Hessenberg matrix, y the k coefficients of the solution update,
β the norm of the initial residual vector, and e1 the length k + 1 vector whose first entry is one
and whose remaining entries are zero.

Saad and Schultz [78] solve this problem by a structured QR factorization. This method
lets implementations keep the intermediate reductions of Steps 1 and 2 at each iteration. This
makes the cost to compute the solution update O(k2) coefficients rather than O(k3). However,
it can produce unboundedly inaccurate coefficients if the upper triangular matrix Rk is singular
or ill-conditioned. In GMRES without faults, this does not normally occur if the matrix A is
not numerically rank deficient. A numerically rank-deficient upper Hessenberg matrix normally
indicates convergence1 at the iteration where it becomes rank deficient.

Linear least-squares problems like (4.4) always have a solution. However, a singular upper
Hessenberg matrix may make the solution set infinite, with unbounded norm. Unbounded
norm in GMRES’ update coefficients means unbounded error in its solution to Ax = b. A
nearly singular upper Hessenberg matrix may similarly result in large inaccurate coefficients,
by increasing sensitivity to rounding error in the triangular solve. In § 4.6.3, we recommended
detecting this case by using a rank-revealing decomposition that supports incremental updates

1It may also indicate that the algorithm cannot make further progress for the user’s choice of initial guess,
given A and b.

100

in order to preserve the O(k2) cost while detecting rank deficiency. This only detects whether
the matrix is close to singular; it does not prescribe a policy for handling (near) singularity.

We define this policy by introducing an additional constraint, that the solution to (4.4) have
minimum norm. We can do this by using a rank-revealing decomposition that truncates zero
singular values. We can also introduce a tolerance in order to allow small but nonzero singular
values. This approach bounds the update coefficients as a function of the largest singular value
of the upper Hessenberg matrix, divided by the least singular value not truncated. This is more
robust than Saad and Schultz’s method, where “robust” means “insensitivity to errors in the
input.”

We can apply the robust technique to the upper triangular system Rky = zk, after computing
and applying the Givens rotations. This is equivalent (in terms of accuracy with respect to
rounding error) to a rank-revealing factorization of Hk, and lets us easily switch “robustness”
on or off for experiments. We implemented the following approaches to solve Rky = zk:

1. Standard triangular solve (Saad and Schultz’s approach)
2. Attempt a standard triangular solve, and only use a rank-revealing method if its solution

has Inf or NaN values
3. Always use a rank-revealing method

For our experiments, we used a singular-value decomposition as the rank-revealing factorization,
as an easier to implement and more accurate substitute for the factorization suggested in
our previous work. We recommend either Approach 1 or 3. Approach 2 conceals the natural
error detection that comes with IEEE-754 floating-point data, without detecting inaccuracy or
bounding the error.

4.7 Results

To evaluate FT-GMRES and our inner solver bound we explore the impact on time-to-solution
(iteration count) given a fault in all inner solves. To perform these experiments we developed a
two-level solver (“nested solver”) that uses FT-GMRES as the outer solver, and GMRES as
the inner solver (preconditioner). We used the Trilinos framework [49] with FT-GMRES and
GMRES implemented as Tpetra operators.

4.7.1 Sample Problems

We have chosen two sample matrices to demonstrate our technique. To ensure reproducibility,
we did not create either of these matrices from scratch, rather we used readily available matrices.
The first matrix is fairly common and arises from the finite difference discretization of the
Poisson equation. This matrix is symmetric and positive definite, meaning that it could be solved

101

using the Conjugate Gradient method. We generated this matrix using MATLAB’s built-in
Gallery functionality. The second matrix chosen presents a more realistic linear system. The
mult_dcop_03 matrix comes from the University of Florida Sparse Matrix Collection [24]. It
arises from a circuit simulation problem. The matrix is nonsymmetric and not positive definite,
meaning Conjugate Gradient could not be used to solve the system. The matrix is fairly small,
but is very ill-conditioned, which means that small perturbations may have a large impact. We
have summarized the characteristics of each matrix in Table 4.1. Note that we have included the

Table 4.1: Sample Matrices

Properties Poisson Equation mult_dcop_03

number of rows 10,000 25,187
number of columns 10,000 25,187
nonzeros 49,600 193,216
structural full rank? yes yes
nonzero pattern symmetry symmetric nonsymmetric
type real real
positive definite? yes no
Condition Number 6.0107× 103 7.27261× 1013

Potential Fault Detectors
‖A‖2 8 17.1762
‖A‖F 446 42.4179

potential fault detectors in Table 4.1. These represent the upper bound on what is acceptable
for an upper Hessenberg entry.

Significance of Test Problems

The test problems above represent two classes of matrices: symmetric positive definite (SPD)
and nonsymmetric. Different linear solvers require matrices to have specific attributes. Conjugate
Gradient expects an SPD matrix, while GMRES can accept both symmetric and nonsymmetric
matrices. Relevant to this work, the H matrix discussed throughout this chapter has a unique
structure if the input matrix is symmetric. By structure, we refer to the nonzero pattern of H.
For nonsymmetric systems, H is upper Hessenberg, while for SPD systems, H is tridiagonal (a
special case of upper Hessenberg), e.g., see Figure 4.3. The fact that solving the Poisson matrix
with GMRES should create a tridiagonal matrix is key. This means that specific dot products in
the orthogonalization phase should create entries “near zero”. If we perturb those entries (as we
are about to do) we can see large penalties in time to solution.

102


× × × ×
× × × ×
0 × × ×
0 0 × ×

 vs.


× × 0 0
× × × 0
0 × × ×
0 0 × ×



Figure 4.3: Upper Hessenberg and tridiagonal matrices.

4.7.2 Time to Solution Experiments

In this experiment, we solve a linear system and determine how many iterations are required to
obtain a solution. This is a failure-free run that tells us how many outer iterations (and inner
iterations) are required to obtain a solution. We then solve the same linear system again (same
matrix, right-hand side, and initial guess), and, on the first iteration of the first inner solve, we
perturb the upper Hessenberg entry (hi,j) on the first iteration of the orthogonalization loop
(Line 6 in Algorithm 4.1). We then repeat this process, applying the fault on all possible inner
solve iterations on the first step of the orthogonalization process. Note that each experiment
injects a single occurrence of SDC.

For example, in Figure 4.4 the x-axis denotes a specific experiment. The x-axis range is
determined by how many outer iterations are required to obtain a solution in a failure-free
environment (the aggregate number of inner iterations is 25× num_outer). The y-axis denotes
the number of outer iterations required to obtain a solution given a specific error injected. The
three top subplots represent error introduced at the start of orthogonalization, while the lower
three subplots represent error introduced at the end of orthogonalization.

The choice to inject the fault on the first iteration of the orthogonalization loop is justified
as follows: By faulting early in the orthogonalization phase, you “corrupt” the basis vector from
the start, i.e., because we choose Modified Gram-Schmidt the fault will “taint” all subsequent
iterations of the orthogonalization loop (worst-case scenario).

Fault Values

To inject a fault, we only need to modify or replace the current hi,j in Algorithm 4.1 Line 6 with
an incorrect value. Directly injecting NaN or Inf reveals nothing, since we can clearly detect
such faults. We inject an SDC that that represents 3 classes of faults, and these fault values are
relative to the correct value:

1. very large, h̃i,j = hi,j × 10+150,
2. slightly smaller, h̃i,j = hi,j × 10−0.5, and
3. very small (nearly zero), h̃i,j = hi,j × 10−300.

103

In this experiment, we only record how many iterations it takes to obtain a solution. It should
be noted that for this experiment parallelism is not a factor, and we are interested in observing
how the solvers behave when perturbed. In particular, this experiment investigates the solver’s
behavior when undetectable faults are injected, and it demonstrates a benefit from filtering
obviously faulty (i.e., large) values. In the following figures, class 2 and 3 faults represent
undetectable faults, while class 1 represents a case that we could detect and to which we could
respond, e.g., by halting the application or restarting the inner solve.

4.7.3 Faults in an SPD Problem

Figure 4.4 illustrates the case of using GMRES to solve an SPD system of equations. In a
failure-free solve FT-GMRES required 9 outer iterations, with each inner solve
performing 25 inner iterations. In this case, H should be tridiagonal, meaning that in
Figure 4.4a for the first inner solve, the first entry created by the Modified Gram-Schmidt (MGS)
loop, h1,∗, should be zero from inner iteration 3 onward. In contrast, Figure 4.4b faults on the
last iteration of the MGS loop, and the last entry in this column of H can theoretically be
nonzero.

Faulting on the First Modified Gram-Schmidt Iteration

In Figure 4.4a, we see a large penalty in time to solution for large faults. This is due to making
entries in H that should be zero, clearly nonzero. In contrast, if we only slightly perturb these
“near zero” entries (class 2 and 3 errors), we see very little impact on time to solution. The
largest increase in outer iterations is two, while the majority of experiments resulted in no
increase in time to solution. It should be noted that if our fault detector on hi,j was used, the
top plot (large fault) would not be possible.

Faulting on the Last Modified Gram-Schmidt Iteration

Faulting on the last Modified Gram-Schmidt iteration is much different from faulting on the
first for an SPD problem, because the last hi,j entry created in the orthogonalization phase
could theoretically be nonzero. From figure 4.4b we see that the worst case is that we incur one
additional outer iteration. Considering both faults at the start and end of the MGS process, we
see that with our detector we see a maximum increase in outer iterations to be 2, in contrast if
our detector were not used, we see increase in outer iterations of 5.

104

0 25 50 75 100 125 150 175 200 225
8

10
12
14
16
18

Number of Outer Iterations to Convergence (Poisson)
25 inner iterations per outer iteration. Failure-Free number of outer iterations = 9

h̃1,j = h1,j × 10+150

0 25 50 75 100 125 150 175 200 225
8

10
12
14
16

N
um

be
r

of
O

ut
er

It
er

at
io

ns

h̃1,j = h1,j × 10−0.5

0 25 50 75 100 125 150 175 200 225
Aggregate Inner Solve Iteration That Faults (25 inner× 9 outer)

8
10
12
14
16

h̃1,j = h1,j × 10−300

(a) SDC on the first iteration of the Modified Gram-Schmidt loop.

0 25 50 75 100 125 150 175 200 225
8

10
12
14

h̃i,j = hi,j × 10+150

0 25 50 75 100 125 150 175 200 225
8

10
12
14

N
um

be
r

of
O

ut
er

It
er

at
io

ns

h̃i,j = hi,j × 10−0.5

0 25 50 75 100 125 150 175 200 225
Aggregate Inner Solve Iteration That Faults (25 inner× 9 outer)

8
10
12
14

h̃i,j = hi,j × 10−300

(b) SDC on the last iteration of the Modified Gram-Schmidt loop.

Figure 4.4: Number of outer iterations required for convergence when solving a Poisson equation
given a single SDC event injected in the orthogonalization phase of the inner solve. Vertical
bars indicate the start of a new inner solve.

105

0 100 200 300 400 500 600 700

28
30
32
34

Number of Outer Iterations to Convergence (mult dcop 03)
25 inner iterations per outer iteration. Failure-Free number of outer iterations = 28

h̃1,j = h1,j × 10+150

0 100 200 300 400 500 600 700
26
28
30
32
34
36

N
um

be
r

of
O

ut
er

It
er

at
io

ns

h̃1,j = h1,j × 10−0.5

0 100 200 300 400 500 600 700

Aggregate Inner Solve Iteration That Faults (25 inner× 28 outer)

26
28
30
32
34
36

h̃1,j = h1,j × 10−300

(a) SDC on the first iteration of the Modified Gram-Schmidt loop.

0 100 200 300 400 500 600 700
26
28
30
32
34

h̃i,j = hi,j × 10+150

0 100 200 300 400 500 600 700
26
28
30
32
34

N
um

be
r

of
O

ut
er

It
er

at
io

ns

h̃i,j = hi,j × 10−0.5

0 100 200 300 400 500 600 700

Aggregate Inner Solve Iteration That Faults (25 inner× 28 outer)

26
28
30
32
34

h̃i,j = hi,j × 10−300

(b) SDC on the last iteration of the Modified Gram-Schmidt loop.

Figure 4.5: Number of outer iterations required for convergence when solving the mult_dcop_03
system of equations given a single SDC event injected in the orthogonalization phase of the
inner solve. Vertical bars indicate the start of a new inner solve.

4.7.4 Faulting in a Nonsymmetric Problem

We now consider a problem that is not symmetric, meaning that all hi,j we perturb may be zero,
but could also be nonzero — but each entry in H is still subject to the bound from Eq. (4.3). In
a failure-free solve FT-GMRES required 28 outer iterations, with each inner solve
performing 25 inner iterations. As in our prior analysis, we consider faults in both the first
and last iteration of the Modified Gram-Schmidt process.

Faulting on the first Modified Gram-Schmidt iteration

As expected, in Figure 4.5 we see a very different characteristic for faults on the first MGS
iteration. For large faults we see a maximum increase in time to solution to be 2 outer iterations.
For small faults, we see that the first iteration of the MGS of the first inner solve is extremely
vulnerable to small faults. For class 2 and 3 faults, we see a maximum increase in outer iterations
of 4. If we ignore the first 3 iterations of the inner solve we see at most 1 additional outer

106

iteration. The worst-case increase in time to solution actually occurs on the 2nd inner solve
iteration, and we leave to future work further analysis of the Arnoldi process to explain this
phenomenon. This indicates that additional robustness should be added at the very start of the
first inner solve, and we discuss this briefly in our summary.

Faulting on the last Modified Gram-Schmidt iteration

Faulting on the last iteration of the orthogonalization loop again presents a worst case compared
to faulting early. That is, by faulting on the last orthogonalization iteration, we see an increase
in outer iterations in more cases. We do not the see the sharp increase in iteration count for
faults early in the first inner solve iterations. Note, that the first MGS iteration is also the last
on the first inner solve iteration, and as stated previously, the first iteration did not exhibit a
large increase in iterations.

4.7.5 Summary of Findings

A common feature seen between both SPD and nonsymmetric solves is that faulting early in
the first inner solves’ orthogonalization is universally bad, resulting in a 33% increase in time to
solution for the Poisson problem and 14% increase in time to solution for the mult_dcop_03
problem. These percent increases are not general findings, but we believe this characteristic will
hold true in most, if not all, cases. This may indicate that additional effort should be expended
early in the first inner solve.

Performance Characteristics of GMRES

The amount of work per-iteration of GMRES increases linearly. This is seen in Algorithm 4.1
in the orthogonalization phase, where the inner loop iterates from 1 to j. Adding redundant
computation early in the inner solve would have minimal performance impact because the
orthogonalization kernel has substantially less work to perform than in latter iterations. If we
included additional robustness only on the first invocation of the inner solver, we can mitigate
the one edge-case where we see high variability in time to solution. We leave this to future work.

Filtering values is cheap and effective

In all experiments, we find that exploiting the bound on the upper Hessenberg entries is beneficial,
and, in doing so, we typically observe one additional outer iteration as the penalty should a
single SDC event occur. We believe that this research approach will yield additional invariants
that are cheap to evaluate, and that by combining light-weight mechanisms we drastically reduce
the damage that SDC can introduce.

107

4.8 Conclusions

In summary, we developed a cheap fault detector for the computational intensive orthogonal-
ization stage of GMRES. We then present the FT-GMRES algorithm, and discuss robustness
improvements in the local least squares solve. We then explained how are detector and robustness
modifications can be used to limit the amount of error that the inner solve may return.

We presented results from two experiments on common classes of matrices that illustrate
that our filtering technique is beneficial, and identified the early stages of the first inner solve
as being the most vulnerable. Furthermore, we observe that the inner/outer iteration scheme
based on FGMRES is extremely robust to single events of SDC in the orthogonalization phase.
We find that this nested approach, even when not coupled with invariant checks can cope with
even large perturbations introduced by SDC.

108

Chapter 5

A Numerical Soft Fault Model for Iterative
Linear Solvers

5.1 Introduction

Recent studies indicate that large parallel computers will continue to become less reliable as
energy constraints tighten, component counts increase, and manufacturing sizes decrease [63, 44].
This unreliability may manifest in two different ways: either as “hard” faults, which cause the
loss of one or more parallel processes, or as “soft” faults, which cause incorrect arithmetic or
storage, but do not kill the running application. Large-scale systems today experience frequent
process loss, from which applications recover using variations of checkpoint / restart (C/R).
with current research looking at optimizing the process through, e.g., multi-level checkpointing
[72] or by using domain knowledge of algorithms to create checkpoint schemes that have lower
overhead [19].

This chapter focuses on soft faults. Specifically, we consider those that corrupt data or
computations, without the hardware or system detecting them and notifying the application
that a fault occurred. We call this type of soft fault Silent Data Corruption (SDC). SDC is
much less frequent than process failures, but much more threatening, since the application may
silently return an incorrect answer. In physical simulations, the wrong answer could have costly
and even life-threatening consequences. Users’ trust in the results of numerical simulations can
lead to disaster if those results are wrong, as for example in the 1991 collapse of the Sleipner A
oil platform [80]. Unlike with hard faults, applications currently have few recovery strategies.
Hardware detection without correction may cost nearly as much as full hardware correction.
Hardware vendors can harden chips against soft faults, but doing so will increase chip complexity
and likely either increase energy usage or decrease performance. An open field of research and
the focus of this work is designing algorithms that can tolerate SDC.

109

5.2 Preconditioned Linear Solvers

Our fault model assesses iterative, possibly preconditioned, linear solvers under faults that
are not detectable in standard implementations, and that can remain undetectable using low
overhead detectors. The model introduces a pessimistic fault. This accounts for our lack of
knowledge of exactly which physical events can lead to the worst case for a particular problem
and solver combination. We argue that if a numerical approach can tolerate these types of
perturbations, then it should be able to tolerate transient arithmetic errors. This minimizes
fruitless speculation about how faults manifest in real hardware, and instead asks whether an
algorithm can handle challenging numerical faults. The latter presents a fault model that we
show produces a much worse case than random bit flips. If it is true that future hardware
will allow some transient soft errors, we should assess fault tolerance in algorithms based on a
worst-case scenario, rather than the extremely biased case of random bit flips.

5.2.1 Soft Faults and Iterative Methods

Given a direct solver, if a soft fault corrupts arithmetic, the method will reach a (possibly
unacceptable) solution in a bounded, known number of steps. Iterative methods behave differently.
They may 1) “converge through” the error, taking no more iterations than in the error-free case;
2) converge but take more iterations; 3) stagnate — reach the maximum iteration count without
improving the initial approximation; or 4) become divergent — oscillate wildly or have rapid
error growth such that the solver “explodes” toward infinity. In the latter two cases, the solver
fails to produce an acceptable solution. Stagnation relates to the maximal attainable accuracy,
which bounds below the accuracy an iterative solver can reach in finite-precision arithmetic. If a
soft error introduces error sufficient to damage the maximal attainable accuracy, then the solver
may stagnate.

Pessimistic faults have mathematical interpretations. For example, they may introduce a
fictitious, abnormally large eigenvalue to the matrix A. Iterative solvers approximate the solution
as a linear combination of basis vectors that are weighted by the largest eigenvalues in the
system. The fault will thus make the solver converge to a bogus solution dominated by the
fictitious eigenvalue. Also, iterative solvers are often used for solving discretized versions of
elliptic partial differential equations (PDEs). Their solutions must satisfy the maximum principle:
their maximum must be found on the boundary. One may view a soft fault as a (transient)
violation of this principle. Alternatively, a “bad” soft error may make the problem appear to
have a nonmathematical discontinuity.

Our fault model evolves from these mathematical interpretations. We model faults as a
specific MPI process returning a bad vector from its preconditioner application. We generate
faults in two ways: a fault may 1) scale its contribution to the global vector, or 2) permute

110

its local portion of the global vector. Permutations preserve the vector’s norm, while making
its contents incorrect. This models discontinuity. Scaling increases or decreases the norm of
the vector predictably. This, or directly corrupting inner product or norm results, perturbs the
eigenvalue approximations. Corrupting the basis vectors also makes the algorithm search for
a solution in the wrong direction. Our numerical fault model suffices to cause stagnation or
divergence in non-restarted solvers.

5.2.2 Selective Reliability

Our fault-tolerance strategy rests on relating numerical methods that naturally correct errors
to system-level fault tolerance. In particular, we assume a selective reliability or “sandboxing”
programming model [47] that lets algorithm developers isolate faults to certain parts of the
algorithm in a coarse-grained way. In our scheme, we enforce that the outer solver be reliable,
while letting the inner solver run in an unreliable mode. We aim to spend most of our computation
time in cheap “unreliable” computations, while minimizing the time we spend in the presumably
expensive outer solve.

Analytically, any faults that occur in the inner solver manifest as a “different preconditioner”
to the outer solver. We choose Flexible GMRES [77] as the outer solver, since it can tolerate
a preconditioner that changes between iterations. As an inner solver, we use the Generalized
Minimal Residual Method (GMRES) from Saad and Schultz [78]. We show results for this
inner/outer solver system, called FT-GMRES, that uses a multigrid preconditioner (MueLu)
and solves a Poisson problem. Multigrid is the preferred preconditioner for Poisson problems.

5.2.3 Implementation

We implemented our solvers using the Tpetra [9] sparse linear algebra package in the Trilinos
framework [52] and validated them against both MATLAB and the solvers in Trilinos’ Belos
package [11]. Implementing our solvers using Trilinos lets us benefit from the scalability and
performance of its sparse matrices and dense vectors.

5.3 Results

5.3.1 Methodology

We previously described how we corrupt the preconditioner’s output. To evaluate the impact of
our preconditioned solvers in the presence of SDC, we perform the following steps:

1. Solve the problem injecting no SDC, and compute the number of times, K, the precondi-
tioner was applied.

111

2. For all j in [1,K], reattempt the solve, introducing SDC at the j-th preconditioner
application. This results in K total solves.

3. For allK solves with SDC, compute the relative percent of additional preconditioner applies
over the SDC-free solve, e.g., Appliesobserved −AppliesFailureFree

AppliesFailureFree
× 100. If observed −

FailureFree < 0, i.e., SDC accelerated convergence, we record zero overhead.
4. Repeat Steps 2 and 3, letting various numbers of MPI processes participate in the SDC

injection.
5. Repeat Steps 2-4, varying the scaling factor applied to the SDC.
6. For each combination of scaling factor and number of faulty processes, plot the average

number of additional preconditioner applies as a percentage. 0% means no additional
applies; 100% means twice as many.

5.3.2 Model Comparisons

Fig. 5.1 shows a side-by-side comparison of the overhead introduced from random bit flips and
our numerical fault model. Here, we use no detection mechanism and force our solver to roll
through all errors.

Each plot represents a different fault model, so the results cannot be compared geometrically.
The intent of the figure is to illustrate the overhead we observe given faults from each model.
Recognize the overheads have roughly the same range, yet the variance in Fig. 5.1a is considerably
higher than our model (Fig. 5.1b). We address this in greater detail in § 5.3.4.

Note, Fig. 5.1a shows the highest overhead when all 32 subdomains inject the 58th or 59th
exponent bit flips. This is not a weakness in our model. Those specific faults introduce very large
magnifications into the vector, but not large enough to create an infinite or not-a-number value.
Elliott et al. [29] explored exactly this scenario of faults and proposed a low overhead detector
that efficiently filters such errors with O(1) cost. For this exact reason our results analyze scaling
factors that would slip through such a filter. Only the largest scaling factor, 1× 105, would be
detected by a projection bound.

Next, we enable both explicit residual (‖Ax− b‖) and projection bound tests per each inner
iteration in Fig. 5.2. The resulting colorbar bounds are similar for both the numerical model
and the bit flip model. That is, both models require a maximum overhead in the range of
100%− 120%. This also exposes the trouble with bit flip injection: bit position does not affect
the introduced overhead consistently. For example, exponent bits sometimes introduce high
overhead, while mantissa bits can introduce overhead proportional to exponent bits. Notice that
the right-most column of the numerical fault model is not the highest overhead — this is due to
a very low overhead detector, whereas checking the explicit residual requires a preconditioner
apply.

112

Bit Position Flipped
0 16 32 52 63

N
u
m
b
er

o
f
F
a
u
lt
y
S
u
b
d
o
m
a
in
s

1

2

8

16

32

%
A
d
d
it
io
n
a
l
P
re
co
n
d
it
io
n
er

A
p
p
li
es

0%

114%

229%

343%

457%

572%

686%

max : 686%surface mean : 137%± 170%

(a) Overhead given no attempt to detect and respond
to faults with a random bit flip model.

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

max : 501%surface mean : 431%± 26%

0%

114%

229%

343%

457%

572%

686%

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(b) Overhead given no attempt to detect and
respond to faults with a numerical fault model.

Figure 5.1: Overhead comparison with no fault detection, for (a) a random bit flip injection
and (b) a numerical fault model.

5.3.3 Computational Effort

Our fault model captures hard to detect, yet numerically challenging faults. The largest overhead
is easily characterized by our model and requires substantially less experimentation. For example,
each shaded region constitutes one trial (of which we compute a mean). Clearly evaluating
25 unique experiments is much cheaper than evaluating 64× 5 experiments. Moreover, if the
experiment is not designed to account for the bias introduced by random bit flips, the mean will
approximate optimistic overheads.

5.3.4 Expected Overhead Comparison

We compute the expected overhead across all experiments, i.e., compute the expected value for
each row of these graphs. It becomes clear by inspection that our approach captures a worst-case
scenario well beyond that of random bit flipping. That is, we are ensuring our algorithms can
tolerate “bad” undetectable errors — error cases that random bit flips fail to expose — since we
lack knowledge of exactly which values are the most sensitive. If an algorithm can handle our
fault model, it can certainly handle the errors introduced by random bit flips.

We now compute the expected overhead given all samples for a given number of faulty
subdomains. This computes the expected value for a “row” of the prior figures. For our numerical
model, this entails grouping all scaling factors together, while for the bit flip model this considers
an equally likely chance of flipping any of the 64 bits in the IEEE-754 representation.

113

Bit Position Flipped
0 16 32 52 63

N
u
m
b
er

o
f
F
a
u
lt
y
S
u
b
d
o
m
a
in
s

1

2

8

16

32

%
A
d
d
it
io
n
a
l
P
re
co
n
d
it
io
n
er

A
p
p
li
es

0%

21%

42%

63%

83%

104%

125%

max : 94%surface mean : 28%± 31%

(a) Overhead when utilizing detection with a random
bit flip model.

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

max : 125%surface mean : 118%± 8%

0%

21%

42%

62%

83%

104%

125%

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(b) Overhead when utilizing detection with a
numerical fault model.

Figure 5.2: Overhead comparison with fault detection on, for (a) a random bit flip injection
and (b) a numerical fault model.

Table 5.1 summarizes the expectation across all experiments for a given number of faulty
subdomains when no reactive fault tolerance is used. This corresponds to Figures 5.1a and 5.1b.
Clearly, our numerical faults are much worse than bit flips. Our model tends to create roughly
25 additional preconditioner applies, because our inner solver iterates 25 iterations (max) per
inner solve. Our faults are sufficient to require an entire inner solve. We then obtain our solution
in the next inner iteration, requiring roughly the failure free number of iterations (6). This
gives a total iteration (and preconditioner apply) count of approximately 25+6. Our model has
significantly smaller variance than what random bit flips would have introduced. This indicates
that our model consistently introduces poor behavior, which is our intent.

Table 5.2 analyzes the overhead if we check explicit residuals and projection lengths [29]
inside the inner solver (Fig. 5.2a). Again, we show that random bit flips present very optimistic
overheads. The reason for this was rigorously addressed by Elliott et al. [30]. Even with fault
detection enabled, our fault model is still sufficient to show high overhead. This is desired. The
faults we introduce are not necessarily detectable immediately. This forces our solvers to iterate
2-3 iterations before finally reaching a divergent state that is detectable. These are precisely
the events we wish to study — faults that are undetectable, yet cause the solvers to eventually
reach an invalid state. This motivates the study of low-overhead detection mechanisms.

114

Table 5.1: Additional preconditioner applies given no fault detection; percent additional applies
in parentheses.

Additional Preconditioner Applies

Faulty Bit Flips Numerical
Subdomains mean StdDev mean StdDev

1 7.28 (121%) 10.94 24.73 (412%) 5.05
2 7.56 (126%) 11.08 24.93 (416%) 5.07
8 8.11 (135%) 11.35 26.40 (440%) 1.90
16 8.56 (143%) 12.08 26.43 (441%) 1.89
32 9.51 (158%) 13.38 26.93 (449%) 2.85

Table 5.2: Additional preconditioner applieswith reactive fault tolerance; percent additional
applies in parentheses.

Additional Preconditioner Applies

Faulty Bit Flips Numerical
Subdomains mean StdDev mean StdDev

1 1.49 (25%) 2.54 7.00 (117%) 2.12
2 1.56 (26%) 2.48 7.00 (117%) 2.12
8 1.69 (28%) 2.35 7.27 (121%) 1.72
16 1.81 (30%) 2.74 7.07 (118%) 1.74
32 1.83 (30%) 2.54 6.97 (116%) 1.83

115

5.4 Conclusion

We have presented results based on a fault model that allows us to characterize the numerical
errors introduced by faults, and have shown that this model encompasses the range of overhead
that the random bit flip model can introduce. Our fault model does not aim to predict the
actual behavior of SDC. Rather, it shows a case sufficiently “bad” for us to assess how our
fault-tolerance strategies behave when presented with very damaging SDC.

Our approach is a very different way of assessing preconditioned iterative linear solvers given
an uncertain fault model. Rather than focus on what specifically constitutes a fault, we force
our solvers to work through numerically challenging events. We specifically tune our fault model
to inject errors that are not necessarily detectable. Our errors live inside the solvers’ valid norm
bounds, and empirically we observe our errors may cause divergence in latter iterations rather
than immediately.

We compare our model to that of random bit flips, showing that random bit flip injection is
not likely to show worst-case overhead. We support this through a methodical injection of bit
flips, and by computing statistics over all experiments, as well as per bit position. Furthermore,
we show our approach produces very predictable variance, irrespective of the number of processes
that are faulty.

116

Chapter 6

Selective Reliability and Preconditioned
Iterative Linear Solvers

6.1 Introduction

As semiconductors in modern microprocessors get smaller, and computers get increasingly parallel
and energy-constrained, we expect that hardware will misbehave more and more [35, 63, 16, 44].
“Misbehavior” includes both hard faults that stop the running program, and soft faults, in which
computers silently corrupt values or arithmetic results, and the program runs to completion and
gets the wrong answer without any indication. Both kinds of faults matter a lot at extreme scales
of parallelism, but the same issues (increasing parallelism, decreasing semiconductor feature
sizes, and ever tighter energy and power constraints) may show up in hardware at all scales.

Soft faults particularly worry both users and algorithm developers. First, they may be hard
to detect, especially if the results “look sensible.” Second, even if an algorithm can recover, they
may increase its run time dramatically (see e.g., [29]). As an example of the latter, consider a
transient fault in the solution vector of a Jacobi iteration, run on an M-matrix. Third, they may
have many possible sources in hardware, which means that it is hard to predict how they might
corrupt data or computations. The continued rapid evolution of computer hardware adds even
more uncertainty.

We present the following contributions:
• We develop an algorithm-based fault tolerance approach for iterative linear solvers that
enables the use of opaque preconditioners without algorithmic or code modifications.
• We demonstrate our approach for two different iterative solvers: the method of Conjugate
Gradients (CG) and the Generalized Minimal Residual Method (GMRES). We evaluate
each solver with a state-of-the-art algebraic multigrid (AMG) preconditioner.

117

• We explore the performance of two detection techniques in the context of single faults and
compute the overhead of our approach with these detectors activated.
• We compare our numerical fault model to flipping specific bits in the output of the

preconditioner and discuss the strengths and weaknesses of each fault model.
• We assess the impact of residual evaluation and propose a strategy that lowers solver

overheads under faults by 100%.
• We compare directly against related work in the field and show our approach requires

orders of magnitude less computation.

6.1.1 Fault-Tolerant Preconditioned Solvers

Many engineering and scientific applications solve large sparse linear systems using iterative
algorithms. Almost all of these solves use preconditioners. They may take time to set up and
will add to the time per iteration, but aim to save overall run time by reducing the total number
of iterations. An important contribution of our work is that we treat preconditioners as opaque.
That is, we do not need to modify the preconditioning algorithm or implementation. This
matters because preconditioners are often orders of magnitude more complex than the iterative
solvers that utilize them, in terms of both algorithms and lines of code. For example, one can
express CG in a dozen lines of code, but the algebraic multigrid implementation MueLu [42]
we use in this work includes over half a million lines of code from several Trilinos packages,
as of the 12.0 Trilinos release, not counting third-party sparse direct factorization libraries for
coarse-grid solves.

6.1.2 Related Work

Prior work in algorithm-based fault tolerance for linear algebra problems focused on introducing
checksums or other error-correcting codes into the algorithm itself. One designs the algorithm to
maintain a checksum relationship either while it is running, or after it completes [23, 22, 18, 83].
This requires in-depth knowledge of and modifications to the algorithms and data structures.
Even if this could be done for preconditioner algorithms as complicated as algebraic multigrid,
adding checksums to an implementation would be impractical and error-prone, given the sheer
amount of code to modify. Such a code would need to be rewritten from the ground up to use
checksums. Sao and Vuduc[79] proposed Self-Stabilizing Conjugate Gradient (SS-CG), which is
a selective reliability approach based on performing reliable correction steps periodically in the
Conjugate Gradient algorithm. Unfortunately, SS-CG does not allow preconditioning.

Rather than attempting to rewrite every method to use an encoding scheme, we advocate a
selective reliability approach that focuses the fault tolerance effort on iterative solvers rather
than preconditioners. The primary focus of this work is the use of preconditioners in linear

118

solvers, where the preconditioner may silently introduce faults. That is, we intentionally do not
explore hardening the preconditioner, which has been explored by [17]. We intentionally choose
a discretization of the Poisson equation and an algebraic multigrid (AMG) preconditioner to
assess our approach. For many Poisson-like problems, AMG has provably optimal efficiency; it
requires only a small constant number of solver iterations. As a result, even small inefficiencies
due to faults will manifest as high relative overhead. That is, rather than compare our solver
against an arbitrary problem, we choose an extremely effective base-line case. This exacerbates
the overhead we incur for dealing with faults, and we show that even with such a challenging
base-line we are able to obtain solutions at 2x cost (or less) even though we utilize triple modular
redundancy.

We also assess a concept presented by Elliott et al. [29] showing that enforcing bounded error
is effective for guarding iterative linear solvers against data corruption. We consider the “Skeptical
Programming” approach and draw conclusions about the amalgamation of these approaches.
The faults that motivate these fault tolerance approaches require scale to be observed. We
conjecture that any approach has to consider the implications of both strong and weak scaling.
Specifically, we evaluate a preconditioning strategy that runs at scale and keeps faults local,
while also evaluating a preconditioning approach that may spread corruption to other processes
as part of preconditioning. We also propose an enhancement to convergence testing that allows
our solvers to cut overhead by 100%.

This chapter is organized as follows:
1. In §6.2, we introduce the preconditioned linear solvers we evaluate.
2. In §6.3, we describe the type of preconditioner we chose and discuss how it can propagate

errors.
3. In §6.4, we describe our fault injection methodology, and explain how we characterize

faults.
4. In §6.6, we present findings that show the average number of extra preconditioner calls,

given various numbers of faults.
5. In §6.7, we compare our overheads to two competing approaches to soft error resilience.
6. In §6.8, we observe our approach when scaled.

6.2 Preconditioned Linear Solvers

We consider two solvers for two classes of problems. The Generalized Minimal Residual Method
(GMRES) [78] can solve nonsymmetric problems. The Method of Conjugate Gradients (CG) [53]
can only solve symmetric positive definite (SPD) linear systems, but is faster for doing so. CG
is used in the NAS Parallel Benchmarks [8] and in Mantevo miniapps like HPCCG [50]. Both

119

iterative solvers are popular in numerical simulations, e.g., Sierra’s low Mach fluid application
[68].

Linear solvers often utilize preconditioners as a means to accelerate convergence. Specifically,
preconditioning is a transformation that attempts to improve some aspect of the linear system.
We consider preconditioning in two different ways. First, we consider an algorithm that applies
the preconditioner initially and every iteration thereafter, but does not require a preconditioner
application to compute a solution, Preconditioned Conjugate Gradients (CG), which is shown in
Algorithm 6.2; Second, we consider an algorithm that does not apply the preconditioner initially,
but requires a preconditioner application every iteration and a preconditioner application to
compute a solution, Right-preconditioned GMRES, which is shown in Algorithm 6.1. GMRES
applies the preconditioner in lines 5 and 14. Note that the solution update (Line 14) need not
be calculated every iteration, and is often not computed until the solver exits. Algorithm 6.2

Algorithm 6.1 (Right-preconditioned) GMRES
Input: Linear system Ax = b and initial guess x0
Output: Approximate solution xm for some m ≥ 0

1: r0 := b−Ax0 . Unpreconditioned initial residual vector
2: β := ‖r0‖2
3: q1 := r0/β
4: for j = 1, 2, . . . until convergence do
5: Solve Mzj = qj for zj . Apply preconditioner
6: vj+1 := Azj . Apply the matrix A
7: for i = 1, 2, . . . , j do . Orthogonalize
8: hi,j := q∗i vj+1
9: vj+1 := vj+1 − qihi,j

10: end for
11: H(j + 1, j) := ‖vj+1‖2
12: qj+1 := vj+1/H(j + 1, j) . New basis vector
13: yj := arg min

y
‖H(1 : j + 1, 1 : j)y − βe1‖2

14: xj := x0 +M−1[q1, q2, . . . , qj]yj . Solution update
15: end for

presents preconditioned CG. The preconditioner applications occur on Lines 2 and 8. Note that
preconditioned CG does not require a preconditioner application to compute its solution update.

Our results center around observing the number of extra preconditioner applications relative
to solving the problem without SDC. That is, we observe the impact of z̃ = M−1w, where z̃
indicates the corrupted output of a preconditioner call. In § 6.3 we give more details on how we

120

Algorithm 6.2 Preconditioned CG
Input: Linear system Ax = b and initial guess x0
Output: Approximate solution xm for some m ≥ 0

1: r0 := b−Ax0 . Unpreconditioned initial residual vector
2: Solve Mz0 = r0 for z0 . Apply preconditioner
3: p0 := z0
4: for j = 1, 2, . . . until convergence do
5: αj := (rj , zj)/(Apj , pj)
6: xj+1 := xj + αjpj
7: rj+1 := rj − αjApj
8: Solve Mzj+1 = rj+1 for zj+1 . Apply preconditioner
9: βj := (rj+1, zj+1)/(rj , zj)

10: pj+1 := zj+1 + βjpj
11: end for

decompose problems across multiple processes, and in § 6.4 we explain what z̃ looks like given
faults on some (or all) parallel processes.

6.2.1 Selective Reliability

Our fault-tolerance strategy rests on relating numerical methods that naturally correct errors
to system-level fault tolerance. In particular, we assume a selective reliability or “sandboxing”
programming model [47] that lets algorithm developers isolate faults to certain parts of the
algorithm in a coarse-grained way. In our scheme, we enforce that the outer solver be reliable,
while letting the inner solver and its preconditioner run in an unreliable mode. An underlying goal
is to spend most of our computation time in cheap “unreliable” computations, while minimizing
the time we spend in expensive triple modular redundancy outer solve computations.

Analytically, any faults that occur in the inner solver manifest as a “different preconditioner”
to the outer solver. The outer solver is chosen to be Flexible GMRES [77], which can tolerate a
preconditioner that changes between iterations. The choice of Flexible GMRES as the outer
“wrapper” allows our solvers to absorb any corruption introduced by the inner solver.

In our scheme, the preconditioner apply in FGmres is implemented as calling the inner
solver (Algorithm 6.1 or 6.2), which will call its own preconditioner (MueLu). We provide more
detail on how these approaches are implemented in Figure 6.1 and (later) in Figure 6.6. In
this chapter, we express our solvers as OuterSolver->InnerSolver-> Preconditioner. For
example FGmres->Gmres captures the outer solver FGmres and the inner solver Gmres. Should
the inner solver use a preconditioner, e.g., MueLu, we then write FGmres-> Gmres->MueLu.

121

6.2.2 Implementation

We implemented our solvers using the Tpetra [9] sparse linear algebra package in the Trilinos
framework [52] and validated them against both MATLAB and the solvers in Trilinos’ Belos
package [11]. Implementing our solvers using Trilinos lets us benefit from the scalability and
performance of its sparse matrices and dense vectors. In addition, basing our research on Trilinos
also gives us access to a wealth of numerical algorithms, on which we elaborate in § 6.3. We
present a flowchart of a nested solver in Figure 6.1.

Figure 6.1: Flowchart for a nested solver implementation.

6.3 Preconditioners

This work explores how solvers behave in the presence of faulty preconditioners. Given that our
solvers are parallel, we must consider parallel preconditioners. We choose a depth, rather than
breadth study, and focus on a single widely used preconditioning strategy that is particularly
effective for strongly elliptic problems, such as the Poisson equation. Poisson-like equations arise
in many areas, such as the pressure term in the Navier-Stokes equations (fluid flow).

6.3.1 Algebraic Multigrid

Algebraic Multigrid (AMG) is a robust multilevel preconditioner. While geometric Multigrid
requires knowledge of a grid, AMG operates directly on the matrix. In a setup phase, restriction

122

operators are defined that “coarsen” the matrix, creating consecutively smaller matrices. Likewise,
prolongation operators are determined that interpolate the coarse level information back to
finer levels of the multigrid hierarchy. Coarsening from the finest level to coarsest and back is
referred to as a V-cycle. Prior to prolongation, AMG applies a smoother to the current level.
Smoothers are often cheap solvers, e.g., a single sweep of Jacobi or Gauss-Seidel. We choose a
single Gauss-Seidel sweep at all but the coarsest level, and we use SuperLU [25] as the solver for
our coarsest matrix.

6.3.2 Hierarchy and Corruption

Due to AMG’s hierarchical structure, a fault in a multigrid method may propagate from the
process where the fault occurs to other processes. Should an SDC occur at the coarsest level,
it is possible that half (or all) of the nodes absorb some amount of corruption into their final
solutions. Alternatively, if SDC occurs in one process’ data at the finest level, the error will
remain local if no further V-cycles are performed. (In our setup, with MueLu as a preconditioner,
we enforce only one V-cycle.)

6.4 Fault Model and Injection Methodology

This work is motivated by the premise that soft errors will become more likely in future systems,
and that SDC has been observed in current systems. Much uncertainty remains about how
often soft errors will occur and how they will manifest in applications. Most prior work modeled
soft errors as one or more flipped bits, e.g., [86]. Researchers injected bit flips and observed
their effects on running applications [82, 22, 79]. These works showed that current algorithms
can misbehave badly if their data are corrupted. In the presence of SDC, iterative methods
can return the wrong answer, fail to converge and iterate forever, or require more iterations to
obtain a solution.

For this reason, we intentionally use a fault model that is abstract and brings out the worst
behavior in iterative solvers. We use a numerical fault model [31], that has been shown to
consistently trigger more severe faults. This results in poor performance with substantially less
variance than a random bit flip model.

6.4.1 Corrupting Preconditioner Outputs

We denote the vector output of a preconditioner as z (see, e.g., Line 8 of Algorithm 6.2). In
numerical analysis, vectors are described using norms. GMRES minimizes the residual error
with respect to the L-2 norm, and CG minimizes the A-norm of the solution error, which is also
an L-2 norm of a different vector. For this reason, we choose to characterize errors with respect

123

to the L-2 norm. This leads us to two classifications of errors: Those that change the L-2 norm
of the output, and those that preserve its L-2 norm.

Following the approach of [31], a fault constitutes a faulty subdomain permuting its portion
of the global vector. Permutations preserve the L-2 norm. We also consider the case that this
bad error changes the L-2 norm. To change the L-2 norm, a faulty subdomain may also scale its
portion of the vector by some constant (faulty domains always permute). A single permuted
subdomain’s vector is sufficient to cause the solver to stagnate, never producing a solution that
meets our convergence criteria.

6.4.2 Granularity of Faults

We let subdomains (one subdomain per MPI process) return completely corrupt solutions. That
is, we consider faults at the MPI process level rather than single values. The intent of such a
pessimistic model is to capture poor behavior, e.g., a black box library may perform operations
that affect more than one entry of its output vector, and possibly even more than one process.
For example, an incorrect pivot in a sparse factorization for AMG’s coarse-grid solve may cause
incorrect values on all processes.

6.4.3 SDC and Solvers

In our preliminary work, GMRES was chosen as the inner solver because it is commonly accepted
as “more robust” than CG. Given that CG can only solve SPD linear systems, if a fault occurs
in CG, the error can cause problems by appearing to be nonsymmetric [69], and CG can behave
very poorly. It is for these reasons that CG is not considered as an outer solver. SDC may also
change the sign of key values, e.g., a negative projection length.

6.5 Experiment Description

6.5.1 Methodology

We described in § 6.4 how we corrupt the preconditioner’s output. To evaluate the impact of
our preconditioned solvers in the presence of catastrophic SDC, we perform the following steps:

1. Solve the problem without introducing SDC, and compute the number of times, K, the
preconditioner was applied.

2. For all j in [1,K], reattempt the solve, introducing SDC at the j-th preconditioner
application. This results in K total solves.

124

3. For allK solves with SDC, compute the relative percent of additional preconditioner applies
over the SDC-free solve, e.g.,Appliesobserved −AppliesFailureFree

AppliesFailureFree
× 100. If observed −

FailureFree < 0, i.e., SDC accelerated convergence, we record zero overhead.
4. Repeat Steps 2 and 3, letting various numbers of MPI processes participate in the SDC

injection.
5. Repeat Steps 2-4, varying the scaling factor applied to the SDC.
6. For each combination of scaling factor and number of faulty processes, plot the average

number of additional preconditioner applies as a percentage. 0% means no additional
applies; 100% means twice as many.

6.5.2 Problem Specification

Our Poisson problem is generated from a 3D finite element discretization. Since our matrix
is sparse, a common measure of sparsity is the average number of nonzeros (nnz) per row
(denoted nnzr). We also report the total number of nonzeros in Table 6.1. Using MueLu’s default
partitioning (and repartitioning), we obtain a 4 level hierarchy, which is configured to perform
one V-cycle per application.

Table 6.1: Problem specification

Global Size Global nnz Local Size nnzr Num. Proc.

3,263,696 86,936,980 101,990 27 32

6.5.3 Baseline and Preconditioner Effectiveness

In the following sections, we present relative overheads. The choice of what to compare against
is paramount. If we choose to compare against an inefficient solver, then it is trivial for our
technique to excel. Instead, we compare against a very good solver. We chose for our baseline
FGmres->Gmres->MueLu, with the inner solver configured to perform only the work necessary
to obtain a solution, that is without fault tolerance overhead. We choose to compare against a
nested solver with a reliable outer shell, because our assumption is that in the future, applications
will need to use our approach all the time. A reasonable question is why not FGmres->Cg->MueLu.
To address this, we breakdown our failure-free runs in Table 6.2. We show the maximum work
performed by a single process as well as the total aggregate work performed by all processes.
Recognize that CG costs more than GMRES in terms of computation. We are not considering
storage overhead in this work (CG would have a slight advantage).

125

The key is that efficient preconditioners diminish the differences between CG and GMRES.
In this case, GMRES converged in 7 iterations, while CG required 9. GMRES’s work increases
linearly, and so as the iteration count increases, GMRES quickly outpaces the work performed in
a CG iteration. To obtain the total number of floating-point operations, multiply the local total
in Table 6.2 by 32. In our graphs, we use the slightly smaller correct count (obtained through
our instrumented code). This accounts for the slight load imbalance that occurs when MueLu
repartitions the work at each level of the hierarchy. One may also use this table to determine
the work needed to solve this problem without a nested solver, i.e., the “Sub Total.” As an
“always-on” overhead, our cost is low. We observe that the inner preconditioner (MueLu) is the
dominant cost, not the solver.

6.5.4 Solver Configuration

Our solvers have two key parameters: The maximum number of inner iterations (25), and the
stopping criteria for the relative residual norm 1× 10−8. Our outer solver uses triple modular
redundancy, and so the cost of an outer iteration is equal to 3×FGmres(m), where m is the
current outer iteration number. Note, the inner solver never restarts, nesting solvers is often
considered a smarter way to imlpement restarted linear solvers [84].

6.6 Experiments

We now systematically evaluate our solvers, incrementally adding features. There are two main
challenges:

1. Fault detection using the explicit residual can nearly double the cost of a GMRES iteration.
2. Many faults make the inner solver stagnate, so that it iterates without making progress.

The second is particularly damaging because the implicit residual, the residual obtained in
GMRES as the residual of the small upper Hessenberg least-squares problem, may decrease
to the desired level, but the explicit (true) residual ‖Ax − b‖ may not. If we use the strict
convergence criteria ‖Axk − b‖/‖b‖, we may incur high overhead trying to converge, while the
maximal attainable accuracy has been damaged enough to cause the explicit residual to cease
making progress. This causes our inner solve to iterate to its maximum number of iterations,
while making little progress. We will explore this in detail below.

6.6.1 Figure Guide

We present overheads in a unique way. Each square of a figure represents the average overhead
we observed for that specific fault scenario, when injecting a fault at every possible iteration and
computing the mean overhead. The y-axis indicates the number of subdomains that participate

126

Table 6.2: Maximum floating-point operation count on a single process for failure-free nested
CG and nested GMRES solvers, as well as total global floating-point operations.

Operation # Model Single
Op. Cost Total Percent

Work

FG
mr

es
->

Gm
re

s-
>M

ue
Lu

Iterations 7
SpMV† 8 2 nnz 5.51e+6 4.41e+7 17.3%
PCApply‡ 8 - 1.97e+7 1.57e+8 61.9%
Dot 28 2n 2.04e+5 5.71e+6 2.2%
Update 36 2n 2.04e+5 7.34e+6 2.9%
Norm 8 2n 2.04e+5 1.63e+6 0.6%
Scale 8 n 1.02e+5 8.16e+5 0.3%

Sub Total 2.17e+8 85.3%

Outer Iter. 1 - - 3.73e+7 14.7%

Local Total 2.54e+8 100%
Global Total 8.14e+9

FG
mr

es
->

Cg
->

Mu
eL

u

Iterations 9
SpMV† 10 2 nnz 5.51e+6 5.51e+7 18.5%
PCApply‡ 10 - 1.97e+7 1.97e+8 66.0%
Dot 19 2n 2.04e+5 3.88e+6 1.3%
Update 26 2n 2.04e+5 5.30e+6 1.8%
Norm 0 2n 2.04e+5 0.0 0.0%
Scale 0 n 1.02e+5 0.0 0.0%

Sub Total 2.61e+8 87.5%

Outer Iter. 1 - - 3.73e+7 12.5%

Total 2.98e+8 100%
Global Total 9.55e+9

† nnz = Local nnz(A); ‡ see Gahvari et al. [41]

127

in the fault. The x-axis indicates a scaling factor that is applied to the permuted output of the
preconditioner. The choice of scaling factors is not arbitrary. The fault model we use is designed
to create errors that preserve the L-2 norm, as well as those that increase or decrease it. In prior
work, we developed a cheap detector for “large” perturbations to the norm. All but five (the
right-most column) of faults are likely to be undetectable by the norm bound [29].

6.6.2 Overhead with No Detection

First, consider how our scheme behaves if we do nothing and allow the inner solver to return
detectably incorrect results to the outer solver, i.e., allowing large errors to corrupt the inner
solver’s solution. This is dangerous, as the Flexible GMRES (the outer solver) can easily break if
the inner solver fluctuates too much. We omit a graph showing this behavior, but the overhead
is easy to compute: 1) the outer solver will never converge, and 2) it will iterate until it reaches
whatever limit is imposed on it. This can lead to very significant overhead. Figure 6.2a shows
how FT-GMRES behaves given our pessimistic faults. These faults are sufficient to stagnate
a standard solver, i.e., we observe that the inner solver becomes divergent or stagnant. This
“wastes” 25 inner iterations and returns detectably incorrect results to the outer solver. The
outer solver absorbs this result as a basis for the solution. These highly inaccurate inner solves
corrupt the state of the outer solver, leading to 3-4 outer iterations of failure-free execution
before we are able to obtain a solution. If we increase the scaling factor, e.g., 1× 10100, we can
break the outer solver, forcing it into divergent behavior.

We intentionally allow the color bars to differ. This is because CG performs significantly
better than GMRES. Note that we are not changing the sign with our scaling factor. This
breaks CG in a single iteration, but this is easy to detect. We think this drastically different
behavior is due to GMRES preserving state (having “memory”) while CG is mostly stateless. A
fault in GMRES is embedded into the subspace that is built, whereas CG is effectively a 3-term
recurrence. This gives CG as an inner solver a chance to recover without wasting an entire inner
solve. GMRES appears to have difficulty recovering from corruption to its basis.

6.6.3 Residual and Projection Lengths

Having shown how “bad” things can be, we evaluate two detectors. These detectors only work
inside GMRES. The first, the explicit residual, exploits GMRES’ promise of a monotonic non-
increasing residual. The second is the projection length bound, which tests the values on Line 8
of Algorithm 6.1. Using Figure 6.2a, we repeat the experiment without detectors enabled in
Figure 6.3. We have fixed the color bar range to that of CG’s overhead. This allows an easy
comparison between GMRES and CG as inner solvers. We hatch the cells based on whether a
detector indicated an incorrect value.

128

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32
N

u
m

b
er

of
F

au
lt

y
S

u
b

d
om

ai
n

s

max : 790%surface mean : 707%± 38%

0%

132%

263%

395%

526%

658%

789%

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(a) FGmres->Gmres->MueLu

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

max : 282%surface mean : 206%± 69%

0%

47%

93%

140%

187%

233%

280%

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(b) FGmres->Cg->MueLu

Figure 6.2: Overhead comparison of (a) FGmres->Gmres->MueLu and (b) FGmres->Cg->MueLu,
given no attempt to directly detect or cope with errors.

It is expected that the projection length detector will not be able to detect any corruption
that is small, which corresponds to the left half of the plot. This does not imply that the small
errors cannot lead to large detectable errors. E.g., consider the top most row, where many
subdomains return corrupted values.

The explicit residual (hatched ‘\’ in Figure 6.3) is an excellent detector, and can detect the
majority of errors. Recognize the explicit residual detected no errors in the right-most column.
This is because the norm bound detected all errors before the residual test was performed. The
experiments (squares) that benefited from norm bound detections show lower overhead than
those with explicit residual detections. This is because the norm bound enables the solver to exit
without wasting effort to compute a solution update that will likely be wrong. The overhead is
still quite high, with an average overhead of approximately 200%, which means the solve costs
3x as much as the original failure free one in Table 6.2.

6.6.4 Tuned Residual Checks

Testing the explicit residual every iteration lowered overhead compared to doing nothing, but
the test is too expensive. Specifically, the solution update nearly doubles the cost of a GMRES
iteration. This is because the solution update requires k + 1 vector updates to compute the
linear combination of basis vectors weighted by the least squares solution. The solution update
also requires a preconditioner application. Given that orthogonalization requires k updates and

129

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

max : 222%surface mean : 206%± 16%

0%

47%

93%

140%

187%

233%

280%

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

Figure 6.3: Overhead when testing the explicit residual every iteration and using a projection
length bound in FGmres->Gmres->MueLu. Explicit residual detections are hatched left \ and
norm bound detections are hatched right /.

k dot products, the solution update is prohibitively expensive, but we must have a solution to
enforce monotonicity (we rarely see monotonicity violations from the implicit residual).

Now, we test the explicit residual at different frequencies: 1) we test every 3 iterations, and
2) we test only once. In all cases, we always test the explicit residual if we believe
we have converged, due to the implicit residual meeting our convergence tolerance.
Figure 6.4 shows two overhead plots, Figure 6.4a evaluates the explicit residual only once, unless
the implicit residual converges. In the case the implicit residual converges, a solution must
be computed so the solver can test the explicit residual to determine if the solver has really
converged. Recognize the right-most column now shows overhead equivalent to 2x (100%) of the
original failure-free run. This is possible because the detector is extremely cheap, and we have
removed some of the expensive solution updates. Recall that our outer solver is operating in
triple modular redundancy, yet we are now seeing costs proportional to 2x. Unfortunately, we
still incur near 200% overhead in a substantial number of experiments. Figure 6.4b attempts to
find a middle ground between testing every iteration and testing only once. The latter shows
a slight improvement overall, but increases the overhead in the right-most column, where the
projection bound is very effective.

130

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32
N

u
m

b
er

of
F

au
lt

y
S

u
b

d
om

ai
n

s

max : 184%surface mean : 130%± 27%

0%

47%

93%

140%

187%

233%

280%

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(a) Explicit residual evaluated once.

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

max : 158%surface mean : 133%± 17%

0%

47%

93%

140%

187%

233%

280%

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(b) Explicit residual evaluated every 3 iterations.

Figure 6.4: Overhead comparison given two different frequencies of explicit residual evaluation
in FGmres->Gmres->MueLu.

6.6.5 Strict Convergence Checks

Previously, we found that testing only once or thrice offered lower overhead than testing every
iteration, but we still observe high overheads. We identified the cause of this overhead to be our
convergence test. We know the implicit residual is highly inaccurate in a faulty environment,
which is why we always rely on the explicit residual to determine if the inner solver should
return. The implicit residual easily becomes inaccurate because it represents the residual of the
problem being solved, not necessarily the problem we want solved. This is because faults corrupt
the basis, and then taint all subsequent basis vectors (and the upper Hessenberg matrix). What
tends to happen is, the implicit residual converges, but the explicit residual stagnates. This is
because our faults damage the maximal attainable accuracy.

Our “strict” convergence test is shown in Algorithm 6.3. We modified our inner solver
convergence test so that we avoid repeated solution updates if the explicit residual is stagnant,
while the implicit residual is convergent. Ideally, if we had a condition number estimate, we could
test the gap between the explicit and implicit. This is not practical since obtaining a condition
estimate requires work proportional to a linear solve. Instead, we exploit the knowledge that
we have nested solvers. That is, we would rather make some progress if the implicit residual is
converged, and we would prefer not to incur the high cost of computing a solution update often.

We modify our inner solver’s convergence test to Algorithm 6.4. This effectively lets the
inner solver “believe the lie” the implicit residual tells, but only if the implicit residual is not

131

Algorithm 6.3 Strict Inner Solver Convergence Test
Input: implicit residual
Output: boolean: converged

1: if implicit residual is less than some tolerance then
2: Compute solution
3: if explicit residual is less than some tolerance then
4: return converged=True
5: else if explicit residual > prior explicit residual then
6: return last valid solution or RHS, exit inner solve
7: else
8: return converged=False
9: end if

10: end if

lying too much. We still get the benefits of enforcing monotonicity, which has a side effect of
ensuring the basis vectors returned to the outer solver are reasonable. In the worst case, we
return the right-hand side, which allows the inner solver to be “rejected” and the outer solver
makes progress as if no preconditioner was present (i.e., the inner solver becomes the identity
matrix!)

Algorithm 6.4 Relaxed Inner Solver Convergence Test
Input: implicit residual
Output: boolean: converged

1: if implicit residual is less than some tolerance then
2: Compute solution
3: if explicit residual > prior explicit residual then
4: return last valid solution or RHS, exit inner solve
5: end if
6: return converged=True
7: end if

We now repeat the same experiment using our detectors plus relaxed inner solver convergence.
Figure 6.5 shows a marked improvement over Figure 6.2a. The techniques we use are not problem
specific either, and focus instead on avoiding expensive unreliable operations. To help summarize
how these fault tolerance techniques come together, we illustrate how our nested approach works
in Figure 6.6.

132

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

max : 170%surface mean : 106%± 18%

0%

47%

93%

140%

187%

233%

280%

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

Figure 6.5: Overhead when using a relaxed inner solver convergence test as well as a projection
length bound in FGmres->Gmres->MueLu.

6.6.6 Inexact Krylov

Inexact Krylov theory [85] rigorously addresses how accurate a Krylov method needs to be.
Practically, this means the convergence criteria can be allowed to vary based on monitoring
the residual norm. Nested solvers in particular can benefit from inexact tuning, since the inner
solver’s convergence criteria can be relaxed as the outer solver makes progress. It has been difficult
to see a benefit from inexact Krylov in prior studies, because our inner solver’s convergence
test was too strict. To illustrate the savings that inexact Krylov gives us, we have repeated
the experiment with inexact tuning turned off in Figure 6.7. We see a noticeable increase in
overhead, particularly for experiments that made faults small (left-most column). This means
that those particular experiments did not require as many iterations on the next inner solve as
our fixed convergence criteria required. In other words, the outer solver did not need the inner
solver to work as hard the next time it was invoked. This is an encouraging finding, as detecting
or coping with small errors has been difficult.

6.7 Comparisons

We now analyze our final overheads and compare these against our nested Conjugate Gradients
solver. In a sense, CG already has a “relaxed” convergence test, as its implicit residual is
computed as part of the algorithm and is always used for convergence testing. Table 6.3
compares the highest overhead observed from Figures 6.5 and 6.2b. Even though GMRES is

133

Figure 6.6: Flowchart for responding to detectors in a nested solver.

134

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

max : 170%surface mean : 117%± 22%

0%

47%

93%

140%

187%

233%

280%

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

Figure 6.7: Overhead when using a relaxed inner solver convergence test as well as a projection
length bound in FGmres->Gmres->MueLu, but no inexact tuning of the inner GMRES convergence
rate.

typically considered an “expensive” solver, when coupled with a good preconditioner it beats
CG as an inner solver. While GMRES does require more work per iteration, it also gives several
strong benefits: Monotonicity of the residual; Not sensitive to sign errors.

6.7.1 ABFT Cholesky Comparison

Since we have presented results given an extremely pessimistic fault model, our overheads appear
extremely high. This is because we have chosen to compare our work against a very high bar,
that being a state-of-the-art preconditioner. Our final solver configuration results in relatively
low overhead. We get the right answer in roughly twice the work of today’s solvers, and that is
with an extremely difficult fault model. Given no faults, we incur a very low “always-on” cost.
Our low always-on cost is key, as we should not expect devastating errors to occur often, we
simply wish to be prepared should they manifest.

We select the cheapest checksum type solver for solving an SPD problem, a Cholesky
factorization. This is cheaper than a QR or LU factorization, and Wu and Chen have shown a
checksum ABFT variant [94]. We now compare our worst-case operation count (Table 6.3) to
such an approach. Our Poisson matrix’s characteristics are specified in Table 6.1. To determine
the cost of a dense ABFT Cholesky factorization (A = LLT) we use [94, Table 2]. The cost for

135

Table 6.3: Maximum operation count for a subdomain given worst-case performance in faulty
experiments.

Operation Inner Iter. Single
Op. Cost Total Percent

of Work1 2

FG
mr

es
->

Gm
re

s-
>M

ue
Lu

Iterations 9 11
SpMV 9 11 5.51e+6 1.21e+8 17.2%
PCApply 10 12 1.97e+7 4.33e+8 61.5%
Dot 45 66 2.04e+5 2.26e+7 3.2%
Update 55 78 2.04e+5 2.71e+7 3.9%
Norm 10 12 2.04e+5 4.49e+6 0.6%
Scale 10 12 1.02e+5 2.24e+6 0.3%

Sub Total (6.11e+8) (86.7%)

Outer Iterations 9.39e+7 13.3%

Local Total 7.05e+8 100%
Global Total 2.25e+10

FG
mr

es
->

Cg
->

Mu
eL

u

Iterations 25 5
SpMV 25 5 5.51e+6 1.65e+8 19%
PCApply 25 5 1.97e+7 5.90e+8 67%
Dot 50 10 2.04e+5 1.22e+7 1%
Update 75 15 2.04e+5 1.84e+7 2%

Sub Total (7.86e+8) (89%)

Outer Iterations 9.39e+7 11%

Local Total 8.80e+8 100%
Global Total 2.82e+10

136

the factorization is given by

Costfactorization = N3/3 = O(1019). (6.1)

Once factored (yielding L), the solution for a given right-hand side is obtained by performing two
triangular solves, once with LT , and again with L. These triangular solves require approximately

Costtriangle solves = 2×O((N + 1)N/2) = 2×O(1013). (6.2)

This comparison does not include the overhead introduced by the checksum operations: the
cost to maintain the checksums, error location, error correction. We feel it should be clear that
O(1010)� O(1019), e.g., see Table 6.3. Practically, this shows why sparse approaches are used
when possible. This also motivates the study of resilient sparse direct approaches.

We did not account for the setup cost of MueLu or the cost of computing our projection
length detector. The latter requires computing a matrix norm, which is O(nnz). MueLu’s setup
is not free, but, e.g., setup is a small amount of work relative to a solve [68]. Even if we doubled
our operation counts we are still well below those of [94].

6.7.2 Self-Stabilizing CG

Another option to compare against is Sao and Vuduc’s Self-Stabilizing CG [79]. Unfortunately,
SS-CG does not allow preconditioning. Table 6.4 reports the operation counts required to
solve our Poisson matrix using SS-CG with no faults injected. Clearly, injecting corruption
would make these counts worse. Our solver required substantially less work, thanks to our inner
preconditioner. Our cost, with faults, is significantly lower than that of SS-CG with no faults,
O(1010) versus O(1011). This highlights why we seek to enable preconditioned sparse iterative
methods. This does not degrade the usefulness of SS-CG, but when compared against a solver
coupled with a good preconditioner, it becomes very difficult to stay competitive. We also
considered modifying SS-CG to allow preconditioning. The modifications effectively changed the
algorithm to that of Nonlinear CG, the details of this are beyond the scope of this work.

6.7.3 Preconditioner Applies and Floating-Point Operations

We report cost by the additional number of preconditioner applications as a percent relative to
a fault-free run, with no fault tolerance overhead. A reasonable question is how applies relate to
floating-point operations (FLOPs). We present FLOP counts, not rates. That is, we have not
measured the relative performance of a machine, which would yield floating-point operations
per second. Instead, we have measured the work performed invariant of the machine on which
we run. Table 6.3 shows that our inner solver’s preconditioner, MueLu, accounts for over 60%

137

Table 6.4: Operation count for solving the Poisson problem using self-stabilizing CG. 276 total
iterations: 221 unreliable and 55 reliable.

Operation # Single
Op. Cost Total Percent

Work

Se
lf-
St
ab

ili
zi
ng

-C
G

Iterations 221
SpMV 221 5.51e+6 1.22e+9 34%
Dot 443 2.04e+5 9.04e+7 3%
Update 663 2.04e+5 1.35e+8 4%

Sub Total 1.44e+9 41%

Reliable 55
SpMV 110 5.51e+6 1.82e+9 51%
Dot 220 2.04e+5 1.35e+8 4%
Update 220 2.04e+5 1.35e+8 4%

Local Total 3.53e+9 100%
Global Total 1.13e+11

of the work. It follows that the dominant cost will characterize the work performed, which we
show in Figure 6.8. Compared to Figure 6.5, the relative overheads are identical. This measure
would not be accurate if our solvers required a varying number of outer iterations based on a
fault. Our solvers with faults required 2 outer iterations always, hence the the outer solvers cost
is a constant (see Table 6.3’s Outer Iteration cost).

6.7.4 Relation to Bit Flips

We designed our fault model to make iterative solvers perform poorly. Instead of speculating on
what a fault is, we focus on the effect a fault can have, which is silent corruption of algorithms’
state. We now briefly compare our findings to that of bit flip fault injection in the IEEE
representation of a number. We introduce faults at the same location as our model, the output of
the preconditioner. Since we considered corruption that “wrecked” some number of subdomains,
we allow bit flips to corrupt the entire output vector of the preconditioner, i.e., 101,990 bit flips
per faulty subdomain. We systematically perform this corruption a single bit position at a time.
This allows us to see how bit position impacts overhead. We have replotted Figure 6.5 allowing
the overhead (color bar) to not exceed the maximum we observe (≈ 160%) in Figure 6.9b. We
also show the overhead for systematic bit flip injection in Figure 6.9a. We forced the bit flip
color bar to have the same maximum as our numerical fault experiment. This is because the
bit flip experiments generated a maximum overhead of 148%, and this only occurred once. In
general, if bits had been flipped at random, the large swatch of dark blue (zero overhead) would

138

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

max : 164%surface mean : 105%± 16%

0%

47%

93%

140%

187%

233%

280%

%
A

d
d

it
io

n
al

F
lo

at
in

g
P

oi
n
t

O
p

s.

Figure 6.8: Global (aggregate) floating point overhead when using a relaxed inner solver
convergence test as well as a projection length bound in FGmres->Gmres->MueLu. (see Figure 6.5)

dominate the expected value. Also, flipping only exponent bits would not suffice to cause our
solvers to exhibit poor behavior [30]. This has two interpretations: 1) we may congratulate
ourselves on running through millions of bit flips, or 2) (the correct interpretation) we can draw
no conclusion from these results because the variance is significant.

This exacerbates the point of our numerical model: we are not trying to discover the “expected”
manifestation of faults. It is possible that a single bit flip in a sensitive operation could cause
high overhead. We do not know exactly where (or when) such an event can occur. But the result
(poor behavior of the solver) will be the same outcome. We specifically focus on silent data
corruption, i.e., the faults that do not crash the system, and therefore our numerical model is
doing a much better job of showing us how our solvers behave when things go catastrophically
wrong.

6.8 Scalability

In § 6.6 we used a fixed number of processes and increased the number of faulty subdomains. In a
sense, we “strong scaled” our faults. The more subdomains that introduced corruption, the larger
the global amount of corruption becomes. We now weakly scale our problem to 320 subdomains,
and allow the same percentage of faulty subdomains. We introduced no new calculations to
our solvers, and our detectors take place around collective operations, e.g., dot products use
an Allreduce, which is how projection lengths are tested. Since we show overhead relative to

139

Bit Position Flipped
0 16 32 52 63

N
u
m
b
er

o
f
F
a
u
lt
y
S
u
b
d
o
m
a
in
s

1

2

8

16

32

%
A
d
d
it
io
n
a
l
P
re
co
n
d
it
io
n
er

A
p
p
li
es

0%

27%

53%

80%

107%

133%

160%

max : 152%surface mean : 37%± 45%

(a) Bit Flip Faults

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

2

8

16

32

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

max : 170%surface mean : 106%± 18%

0%

27%

53%

80%

107%

133%

160%

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

(b) Numerical Faults

Figure 6.9: Overhead when using a relaxed inner solver convergence test as well as a projection
length bound in FGmres->Gmres->MueLu: (a) Bit flips and (b) our pessimistic fault model.

a failure free run, the relative overhead naturally accounts for the increased difficulty of the
problem solved. The global size of our matrix is now 32, 258, 556 with 865, 520, 320 nonzeros. In
Figure 6.10, we observe approximately the same overhead. Weak scaling does slightly reduces
the impact of faults. We suspect this may be caused by two factors: 1) the increased condition
number of the linear system, and 2) the increased impact of numerical error (e.g., rounding
error). Both factors are closely related, but are beyond the scope of this work. We leave further
investigation of weak scaling to future work. Our hypothesis is true: Our approach “scales” in
the sense that we see the same increase in overhead at large scales, given equal percentages of
corruption.

6.9 Conclusion

This work demonstrates that iterative linear solvers can get the right answer despite incorrect
arithmetic or storage in their preconditioners. They can do so without algorithmic or implemen-
tation changes to preconditioners by combining selective reliability and inner-outer iterations.
Fault detection in inner solves need not catch all incorrect preconditioner results in order to
reduce overhead much below just running the solver twice. This justifies even an expensive
implementation of reliability in outer solves, since most of the work goes into inner solves with
their more effective preconditioner. We have also shown that analytical approaches that detect
and filter out large errors scale well and significantly reduce faults’ overhead. This is particularly

140

1e
-0

5
5e

-0
1

1e
+
00

2e
+
00

1e
+
05

Scaling Factor

1

20

80

160

320

N
u

m
b

er
of

F
au

lt
y

S
u

b
d

om
ai

n
s

max : 152%surface mean : 92%± 16%

0%

27%

53%

80%

107%

133%

160%

%
A

d
d

it
io

n
al

P
re

co
n

d
it

io
n

er
A

p
p

li
es

Figure 6.10: Overhead when using a relaxed inner solver convergence test as well as a projection
length bound in FGmres->Gmres->MueLu on a weakly scaled version of the Poisson problem. (see
Figure 6.5 or 6.9b for comparison.)

true for effective preconditioners like algebraic multigrid, that require only a few solver iterations.
We have also shown that the overhead of detection is critical. While some detectors are extremely
effective, the cost to evaluate the detector is proportional to the work it seeks to verify.

We have presented results based on a fault model that allows us to characterize the numerical
errors introduced by faults, and have shown that this model encompasses the range of overhead
that the bit flip model can introduce. Our fault model does not aim to predict actual behavior
of future SDC. Rather, it shows how our fault tolerance strategies behave when presented with
very damaging SDC. We also compared our approach against two recent algorithm based fault
tolerance works. In both cases, our approach requires substantially less work. We have shown
our approach preserves the efficiency that is desired for large sparse systems of equations.

Whether SDC turns out to be a real “monster in the closet” or not, our findings are relevant
for other fields of research. We observe a consistent trend in our data: Faults that increase the
2-norm are worse than faults that maintain or decrease the 2-norm. We also see that when the
number of faulty ranks is low, returning data that is wrong but “small” (in the L-2 norm sense)
is clearly better than returning results that are incorrect by large orders of magnitude. Future
work will pursue with our collaborators this common strategy for recovery from both soft and
hard faults. Finally, we will investigate the development and use of programming models that
provide selective reliability.

141

Chapter 7

Conclusion

Expectations of the reliability of future computing hardware have suggested that soft errors
may become more likely. We have presented a different approach for both hardening and
assessing algorithmic components given an uncertain fault model. We have shown experimentally
and analytically that bit flips in floating point data behave exactly as the model prescribes.
Furthermore, we have shown how the existing techniques of normalization and equilibration can
be used to skew the distribution of errors such that a bit flip in the representation will introduce
a small error most of the time. We have demonstrated the applicability of finding bit flips to the
GMRES solver, and shown that the characteristics of data are very important when considering
soft error resilience.

We have argued that bounding errors is an effective technique for iterative linear solvers,
and shown experimentally that bounded errors introduce lower overhead than unbounded.
Additionally, we have derived a new error detector for the Arnoldi process, and shown how this
bound can be applied to the GMRES iterative linear solver. Our error detector is based on a
theoretical model of data corruption, and is extremely low overhead to implement. We have
shown that an abstract fault model that introduces pessimistic errors is more useful for designing
and assessing resilient algorithms. We compare the overhead introduced by our numerical fault
model to those of synthetic bit flips, and show that our approach is consistently bad, even if the
numerical errors are very small. We then use our fault model to assess various algorithmic knobs
available to linear solvers, and construct a solver configuration that handles catastrophic errors
with overheads of 1-2x the cost of solving the system with no faults injected. Furthermore, we
show that our approach is capable of using arbitrary numerical routines as preconditioners, and
that our resilient solver works through errors more than an order of magnitude more efficiently
that related works. These findings validate the hypothesis of this dissertation.

142

Acknowledgment

This work was supported in part by grants from NSF (awards 1058779 and 0958311). This material
is based upon work supported by the U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research, under Program Manager Dr. Karen Pao. Sandia National
Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. This
research was supported by the Consortium for Advanced Simulation of Light Water Reactors
(http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling
and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-
00OR22725.

143

REFERENCES

[1] B. Adamczewski. The many faces of the Kempner number. J. Integer Seq., 16(2):34, 2013.

[2] A. Al-Yamani, N. Oh, and E. J. McCluskey. Performance evaluation of checksum-based

ABFT. In Symposium on Defect and Fault Tolerance in VLSI Systems (DFT 2001), pages

461–466, Oct. 2001.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.

SIAM, Philadelphia, PA, USA, third edition, 1999. ISBN 0-89871-447-8.

[4] C. J. Anfinson and F. T. Luk. Linear algebraic model of algorithm-based fault tolerance.

IEEE Transactions on Computers, 37(12):1599–1604, 1988.

[5] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue

problem. Quarterly of Applied Mathematics, 9:17–29, 1951.

[6] K. Asanovic, R. Bodik, B. Christopher, J. Gebis, P. Husbands, K. Keutzer, D. Patterson,

W. Plishker, J. Shalf, S. Williams, and K. Yelick. The landscape of parallel computing

research: A view from berkeley. Technical Report UCB/EECS-2006-183, EECS Department,

University of California, Berkeley, Dec. 2006. URL http://www.eecs.berkeley.edu/

Pubs/TechRpts/2006/EECS-2006-183.html.

[7] K. Asanovic, R. Bodik, J. W. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,

D. A. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. A. Yelick. A View of the Parallel

Computing Landscape. Comm. ACM, 52(10):56–67, 2009.

[8] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A.

Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrish-

nan, and S. K. Weeratunga. The NAS Parallel Benchmarks. The International Journal of

Supercomputer Applications, 5(3):63–73, Fall 1991. URL citeseer.ist.psu.edu/article/

bailey94nas.html.

144

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
citeseer.ist.psu.edu/article/bailey94nas.html
citeseer.ist.psu.edu/article/bailey94nas.html

[9] C. G. Baker and M. A. Heroux. Tpetra, and the use of generic programming in scientific

computing. Scientific Programming, 20(2):115–128, 2012.

[10] P. Banerjee, J. T. Rahmeh, C. Stunkel, V. S. Nair, K. Roy, V. Balasubramanian, and J. A.

Abraham. Algorithm-based fault tolerance on a hypercube multiprocessor. Computers,

IEEE Transactions on, 39(9):1132–1145, 1990.

[11] E. Bavier, M. Hoemmen, S. Rajamanickam, and H. Thornquist. Amesos2 and Belos: Direct

and iterative solvers for large sparse linear systems. Scientific Programming, 20(3):241–255,

2012.

[12] D. Boley, G. H. Golub, S. Makar, N. Saxena, and E. J. Mccluskey. Floating point fault

tolerance with backward error assertions. IEEE Transactions on Computers, 44:302–311,

1995.

[13] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen. Fault-tolerant linear

solvers via selective reliability. ArXiv e-prints, June 2012. Provided by the SAO/NASA

Astrophysics Data System.

[14] G. Bronevetsky and B. de Supinski. Soft error vulnerability of iterative linear algebra

methods. In Proceedings of the 22nd Annual International Conference on Supercomputing,

ICS ’08, pages 155–164, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-158-3. doi:

10.1145/1375527.1375552.

[15] E. J. Candès and P. Randall. Highly robust error correction by convex programming. IEEE

Trans. Inform. Theory, 54:2829–2840, 2006.

[16] F. Cappello, G. A. A. Geist, W. D. B. Gropp, L. V. S. Kale, W. T. C. B. Kramer, and

M. Snir. Toward exascale resilience. Technical Report TR-JLPC-09-01, University of

Illinois at Urbana-Champaign (UIUC) - Institut National de Recherche en Informatique

et en Automatique (INRIA) Joint Laboratory on PetaScale Computing, June 2009. URL

http://institutes.lanl.gov/resilience/docs/TowardExascaleResilience.pdf.

145

http://institutes.lanl.gov/resilience/docs/Toward Exascale Resilience.pdf

[17] M. Casas, B. R. de Supinski, G. Bronevetsky, and M. Schulz. Fault resilience of the

algebraic multi-grid solver. In Proceedings of the 26th ACM International Conference

on Supercomputing, ICS ’12, pages 91–100, New York, NY, USA, 2012. ACM. ISBN

978-1-4503-1316-2. doi: 10.1145/2304576.2304590. URL http://doi.acm.org/10.1145/

2304576.2304590.

[18] Y. Chen and Y. Deng. A detailed analysis of communication load balance on BlueGene

supercomputer. Comp. Phys. Comm., 180(8):1251–1258, 2009.

[19] Z. Chen. Algorithm-based recovery for iterative methods without checkpointing. In

Symposium on High-Performance Parallel and Distributed Computing, pages 73–84, June

2011.

[20] Z. Chen. Online-ABFT: An online algorithm based fault tolerance scheme for soft error

detection in iterative methods. In PPOPP, PPoPP ’13, pages 167–176, New York, NY,

USA, 2013. ACM. ISBN 978-1-4503-1922-5. doi: 10.1145/2442516.2442533.

[21] Z. Chen and J. Dongarra. Algorithm-based fault tolerance for fail-stop failures. IEEE

Trans. Parallel Distrib. Syst., 19:1628–1641, Dec. 2008.

[22] T. Davies and Z. Chen. Correcting soft errors online in LU factorization. In Proceedings of

the 22nd International Symposium on High-Performance Parallel and Distributed Computing,

pages 167–178, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1910-2. doi: 10.1145/

2462902.2462920.

[23] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen. High performance LINPACK

benchmark: A fault tolerant implementation without checkpointing. In Proceedings of the

25th Annual International Conference on Supercomputing, pages 162–171, May 2011.

[24] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM

Transactions on Mathematical Software, 38(1):1:1–1:25, 2011.

146

http://doi.acm.org/10.1145/2304576.2304590
http://doi.acm.org/10.1145/2304576.2304590

[25] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A supernodal

approach to sparse partial pivoting. SIAM J. Matrix Analysis and Applications, 20(3):

720–755, 1999.

[26] J. J. Dongarra, P. Luszczek, and A. Petitet. The linpack benchmark: Past, present, and

future. Concurrency and Computation: Practice and Experience, 9(15):803–820, Aug. 2003.

ISSN 1532-0634.

[27] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra. Algorithm-based fault

tolerance for dense matrix factorizations. SIGPLAN Not., 47(8):225–234, Feb. 2012.

[28] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, C. Engelmann, and K. Ferreira. Combining

partial redundancy and checkpointing for HPC. In International Conference on Distributed

Computing Systems, 2012. doi: DOI10.1109/ICPP.2012.21.

[29] J. Elliott, M. Hoemmen, and F. Mueller. Evaluating the impact of SDC on the GMRES

iterative solver. In 28th IEEE International Parallel & Distributed Processing Symposium,

Phoenix, USA, May 2014.

[30] J. Elliott, M. Hoemmen, and F. Mueller. Exploiting data representation for fault tolerance.

In Proceedings of the 5th Workshop on Latest Advances in Scalable Algorithms for Large-

Scale Systems, pages 9–16, 2014. ISBN 978-1-4799-7562-4. doi: 10.1109/ScalA.2014.5. URL

http://dx.doi.org/10.1109/ScalA.2014.5.

[31] J. Elliott, M. Hoemmen, and F. Mueller. A numerical soft fault model for iterative linear

solvers. In Proceedings of the 24nd International Symposium on High-Performance Parallel

and Distributed Computing, HPDC ’15, Portland, OR, 2015. ACM. doi: 10.1145/2749246.

2749254.

[32] J. Elliott, M. Hoemmen, and F. Mueller. Exploiting data representation for fault tolerance.

Elsevier Journal of Compuitational Science, (): , 2015.

147

http://dx.doi.org/10.1109/ScalA.2014.5

[33] J. Elliott, M. Hoemmen, and F. Mueller. On the expected error of a bit flip in an IEEE-754

scalar. SIAM J. Sci. Comput., (): , 2016.

[34] J. Elliott, M. Hoemmen, and F. Mueller. Selective reliability and preconditioned linear

solvers. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’16, Barcelona, Spain, 2016. ACM.

[35] E. N. M. Elnozahy, R. Bianchini, T. El-Ghazawi, A. Fox, F. Godfrey, A. Hoisie,

K. McKinley, R. Melhem, J. S. Plank, P. Ranganathan, and J. Simons. Sys-

tem resilience at extreme scale. Technical report, Defense Advanced Research

Project Agency (DARPA), 2008. URL http://institutes.lanl.gov/resilience/docs/

IBMMootazWhitePaperSystemResilience.pdf.

[36] K. Ferreira, J. Stearley, J. H. L. III, R. Oldfield, K. Pedretti, R. Brightwell, R. Riesen,

P. Bridges, and D. Arnold. Evaluating the viability of process replication reliability for

exascale systems. In Supercomputing, Nov. 2011.

[37] K. Ferreira, K. Pedretti, P. G. Bridges, R. Brightwell, D. Fiala, and F. Mueller. Evaluating

operating system vulnerability to memory errors. In Workshop on Runtime and Operating

Systems for Supercomputers, June 2012. doi: DOI10.1145/2318916.2318930.

[38] D. Fiala, K. Ferreira, F. Mueller, and C. Engelmann. A tunable, software-based DRAM error

detection and correction library for HPC. In Workshop on Resiliency in High Performance

Computing (Resilience) in Clusters, Clouds, and Grids, pages 110–121, Sept. 2011. doi:

DOI10.1007/978-3-642-29740-3_29.

[39] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell. Detection

and correction of silent data corruption for large-scale high-performance computing. In

Supercomputing, pages 78:1–78:12, Nov. 2012.

[40] L. Flynn. Intel halts development of 2 new microprocessors. The New York Times, (8),

May 2004.

148

http://institutes.lanl.gov/resilience/docs/IBM Mootaz White Paper System Resilience.pdf
http://institutes.lanl.gov/resilience/docs/IBM Mootaz White Paper System Resilience.pdf

[41] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and W. Gropp. Modeling

the performance of an algebraic multigrid cycle on HPC platforms. In Proceedings of the

International Conference on Supercomputing, pages 172–181, New York, NY, USA, 2011.

ACM. ISBN 978-1-4503-0102-2. doi: 10.1145/1995896.1995924. URL http://doi.acm.

org/10.1145/1995896.1995924.

[42] J. Gaidamour, J. Hu, C. Siefert, and R. Tuminaro. Design considerations for a flexible

multigrid preconditioning library. Scientific Programming, 20(3):223–239, 2012. doi:

10.3233/SPR-2012-0344.

[43] D. Geers. Chip makers turn to multicore processors. Computer, 38(5):11–13, May 2005.

ISSN 0018-9162. doi: 10.1109/MC.2005.160.

[44] A. Geist. What is the monster in the closet? Invited Talk at Workshop on Architectures I:

Exascale and Beyond: Gaps in Research, Gaps in our Thinking, Aug. 2011.

[45] G. H. Golub and Q. Ye. Inexact preconditioned conjugate gradient method with inner-outer

iteration. SIAM J. Sci. Comput., 21:1305–1320, 1999.

[46] I. S. Haque and V. S. Pande. Hard data on soft errors: A large-scale assessment of real-world

error rates in GPGPU. In Proceedings of the 2010 10th IEEE/ACM International Conference

on Cluster, Cloud and Grid Computing, CCGRID ’10, pages 691–696, Washington, DC,

USA, 2010. IEEE Computer Society. ISBN 978-0-7695-4039-9. doi: http://dx.doi.org/10.

1109/CCGRID.2010.84. URL http://dx.doi.org/10.1109/CCGRID.2010.84.

[47] M. A. Heroux. Scalable Computing Challenges: An Overview. Minisymposium talk at

SIAM Annual Meeting: Supercomputing Challenges: Petascale and Beyond, July 2009.

[48] M. A. Heroux and J. Dongarra. Toward a New Metric for Ranking High Performance

Computing Systems. Technical Report SAND2013-4744, Sandia National Laboratories,

2013.

149

http://doi.acm.org/10.1145/1995896.1995924
http://doi.acm.org/10.1145/1995896.1995924
http://dx.doi.org/10.1109/CCGRID.2010.84

[49] M. A. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long,

R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, and

A. Williams. An Overview of Trilinos. Technical Report SAND2003-2927, Sandia National

Laboratories, 2003.

[50] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards, A. Williams,

M. Rajan, E. R. Keiter, H. K. Thornquist, , and R. W. Numrich. Improving performance

via mini-applications. Technical Report SAND2009-5574, Sandia National Laboratories,

September 2009.

[51] M. A. Heroux, J. Dongarra, and P. Luszczek. HPCG technical specification. Technical

Report SAND2013-8752, Sandia National Laboratories, 2013.

[52] M. A. Heroux et al. An overview of the Trilinos project. Transactions on Mathematical

Software, 31(3):397–423, Sept. 2005.

[53] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving Linear Systems.

Journal of Research of the National Bureau of Standards, 49(6):409–436, Dec. 1952.

[54] N. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial

and Applied Mathematics, second edition, 2002. doi: 10.1137/1.9780898718027. URL

http://epubs.siam.org/doi/abs/10.1137/1.9780898718027.

[55] V. Howle and P. Hough. The effects of soft errors on krylov methods. Invited Talk. SIAM

Parallel Processing., Feb. 2012.

[56] V. Howle, P. Hough, M. A. Heroux, and E. Durant. Soft errors in linear solvers as integrated

components of a simulation. Invited talk at the Copper Mountain Conference on Iterative

Methods, Apr. 2010.

[57] C.-H. Hsu and W.-C. Feng. A power-aware run-time system for high-performance computing.

In Supercomputing, 2005.

150

http://epubs.siam.org/doi/abs/10.1137/1.9780898718027

[58] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix operations.

IEEE Trans. Comput., C-33(6):518–528, June 1984.

[59] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cosmic rays don’t strike twice: under-

standing the nature of DRAM errors and the implications for system design. In Architectural

Support for Programming Languages and Operating Systems, pages 111–122, 2012.

[60] Intel. FDIV replacement program: Description of the flaw, July 2004. Available online: http:

//support.intel.com/support/processors/pentium/sb/CS-013007.htm [last accessed

04 Sep 2013].

[61] T. Karnik, P. Hazucha, and J. Patel. Characterization of soft errors caused by single

event upsets in CMOS processes. IEEE Trans. Dependable Secur. Comput., 1:128–143,

April 2004. ISSN 1545-5971. doi: http://dx.doi.org/10.1109/TDSC.2004.14. URL http:

//dx.doi.org/10.1109/TDSC.2004.14.

[62] Y. Kim, J. S. Plank, and J. J. Dongarra. Fault tolerant matrix operations using checksum

and reverse computation. In Symposium on the Frontiers of Massively Parallel Computing,

pages 70–77, Oct. 1996.

[63] P. Kogge et al. ExaScale computing study: Technology challenges in achieving exas-

cale systems. Technical report, Defense Advanced Research Project Agency, Informa-

tion Processing Techniques Office, 2008. URL http://users.ece.gatech.edu/mrichard/

ExascaleComputingStudyReports/exascale_final_report_100208.pdf.

[64] D. Lammers. The era of error-tolerant computing. IEEE Spectr., 47(11):15, Nov. 2010.

[65] T. Lange. Complex engineered systems at proctor & gamble. Smoky

Mountain2 Computational Science and Engineering Conference, Sept. 2012.

URL http://computing.ornl.gov/workshops/FallCreek12/presentations/

Lange-ComplexEngineeredSystems-SMC12.pdf.

151

http://support.intel.com/support/processors/pentium/sb/CS-013007.htm
http://support.intel.com/support/processors/pentium/sb/CS-013007.htm
http://dx.doi.org/10.1109/TDSC.2004.14
http://dx.doi.org/10.1109/TDSC.2004.14
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/exascale_final_report_100208.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/exascale_final_report_100208.pdf
http://computing.ornl.gov/workshops/FallCreek12/presentations/Lange-ComplexEngineeredSystems-SMC12.pdf
http://computing.ornl.gov/workshops/FallCreek12/presentations/Lange-ComplexEngineeredSystems-SMC12.pdf

[66] D. Li, J. Vetter, and W. Yu. Classifying soft error vulnerabilities in extreme-scale scientific

applications using a binary instrumentation tool. In Supercomputing, Nov. 2012.

[67] P. Lin, C. Vaughn, R. Barrett, M. A. Heroux, and A. Williams. Mini-applications: Vehicles

for co-design. Technical report, Sandia National Laboratories, Nov. 2011. Best Conference

Poster Award.

[68] P. Lin, M. Bettencourt, S. Domino, T. Fisher, and M. Hoemmen. Towards extreme-scale

simulations with next-generation Trilinos: a low mach fluid application case study. In

Workshop on Large-Scale Parallel Processing, May 2014.

[69] A. Meek, V. Howle, and M. Hoemmen. Fault Tolerant QMR. Minisymposium talk at

SIAM Computational Science and Engineering, Feb. 2013.

[70] S. Michalak, A. Dubois, C. Storlie, H. Quinn, W. Rust, D. DuBois, D. Modl, A. Manuzzato,

and S. Blanchard. Assessment of the impact of cosmic-ray-induced neutrons on hardware

in the Roadrunner supercomputer. Device and Materials Reliability, IEEE Transactions

on, 12(2):445–454, 2012. ISSN 1530-4388. doi: 10.1109/TDMR.2012.2192736.

[71] N. Miskov-Zivanov and D. Marculescu. Soft error rate analysis for sequential circuits. In

Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’07, pages

1436–1441, San Jose, CA, USA, 2007. EDA Consortium. ISBN 978-3-9810801-2-4. URL

http://portal.acm.org/citation.cfm?id=1266366.1266680.

[72] A. Moody, G. Bronevetsky, K. Mohror, and B. de Supinski. Design, modeling, and evaluation

of a scalable multi-level checkpointing system. In Supercomputing, Nov. 2010.

[73] E. Mueller and R. Scheichl. Massively parallel solvers for elliptic PDEs in numerical weather

and climate prediction. ArXiv e-prints, June 2013. URL http://arxiv.org/abs/1307.

2036.

[74] C. C. Paige, M. Rozložník, and Z. Strakoš. Modified Gram-Schmidt (MGS), least squares,

and backward stability of MGS-GMRES. SIAM J. Matrix Anal. Appl., 28(1):264–284, 2006.

152

http://portal.acm.org/citation.cfm?id=1266366.1266680
http://arxiv.org/abs/1307.2036
http://arxiv.org/abs/1307.2036

[75] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. SWIFT: Soft-

ware implemented fault tolerance. In International Symposium on Code Generation and

Optimization, pages 243–254, 2005. doi: 10.1109/CGO.2005.34.

[76] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput.,

14(2):461–469, Mar. 1993. ISSN 1064-8275. doi: 10.1137/0914028. URL http://dx.doi.

org/10.1137/0914028.

[77] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 2nd edition, 2003. ISBN 0898715342.

[78] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856–869, July 1986. ISSN

0196-5204. doi: 10.1137/0907058.

[79] P. Sao and R. Vuduc. Self-stabilizing iterative solvers. In Proceedings of the Workshop on

Latest Advances in Scalable Algorithms for Large-Scale Systems, pages 4:1–4:8, New York,

NY, USA, 2013. ACM. ISBN 978-1-4503-2508-0. doi: 10.1145/2530268.2530272.

[80] J. Schlaich and K.-H. Raineck. Die Ursache für den Totalverlust der Betonplattform

Sleipner A. Beton- und Stahlbetonbau, 88:1–4, 1993.

[81] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the wild: a large-scale field

study. In SIGMETRICS Conference on Measurement and Modeling of Computer Systems,

pages 193–204, 2009.

[82] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Characterizing the impact of soft

errors on iterative methods in scientific computing. In Proceedings of the 25th International

Conference on Supercomputing, ICS ’11, pages 152–161, New York, NY, USA, 2011. ACM.

ISBN 978-1-4503-0102-2. doi: 10.1145/1995896.1995922.

[83] M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Fault tolerant preconditioned

conjugate gradient for sparse linear system solution. In Proceedings of the 26th ACM

153

http://dx.doi.org/10.1137/0914028
http://dx.doi.org/10.1137/0914028

International Conference on Supercomputing, ICS ’12, pages 69–78, New York, NY, USA,

2012. ACM. ISBN 978-1-4503-1316-2. doi: 10.1145/2304576.2304588.

[84] V. Simoncini and D. B. Szyld. Flexible inner-outer krylov subspace methods. SIAM Journal

on Numerical Analysis, 40(6):2219–2239, 2002. doi: 10.1137/S0036142902401074. URL

http://dx.doi.org/10.1137/S0036142902401074.

[85] V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and applications

to scientific computing. SIAM J. Sci. Comput., 25(2):454–477, Feb. 2003. ISSN 1064-8275.

doi: 10.1137/S1064827502406415.

[86] J. Sloan, R. Kumar, and G. Bronevetsky. Algorithmic approaches to low overhead fault

detection for sparse linear algebra. In Proceedings of the 2012 42nd Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN), pages 1–12, Wash-

ington, DC, USA, 2012. ISBN 978-1-4673-1624-8. URL http://dl.acm.org/citation.

cfm?id=2354410.2355166.

[87] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf, and

S. Gurumurthi. Memory errors in modern systems: The good, the bad, and the ugly.

SIGARCH Comput. Archit. News, 43(1):297–310, Mar. 2015. ISSN 0163-5964. doi: 10.1145/

2786763.2694348. URL http://doi.acm.org/10.1145/2786763.2694348.

[88] G. W. Stewart. Updating a rank-revealing ULV decomposition. SIAM J. Matrix Anal.

Appl., 14(2):494–499, April 1993.

[89] D. B. Szyld and J. A. Vogel. FQMR: A flexible quasi-minimal residual method with inexact

preconditioning. SIAM J. Sci. Comput., 23(2):363–380, 2001.

[90] N. Taerat, N. Naksinehaboon, C. Chandler, J. Elliott, C. Leangsuksun, G. Ostrouchov, and

S. L. Scott. Using log information to perform statistical analysis on failures encountered by

large-scale hpc deployments. In High Availability and Performance Computing Workshop,

HAPCW ’08, pages 6–15. IEEE Computer Society Press, Apr. 2008.

154

http://dx.doi.org/10.1137/S0036142902401074
http://dl.acm.org/citation.cfm?id=2354410.2355166
http://dl.acm.org/citation.cfm?id=2354410.2355166
http://doi.acm.org/10.1145/2786763.2694348

[91] N. Taerat, N. Naksinehaboon, C. Chandler, J. Elliott, C. Leangsuksun, G. Ostrouchov, S. L.

Scott, and C. Engelmann. Blue gene/l log analysis and time to interrupt estimation. In

Proceedings of the International Conference on Availability, Reliability and Security, AReS

’09, pages 173–180. IEEE Computer Society Press, Mar. 2009.

[92] U.S. Department of Energy. Top ten exascale research challenges. Technical report,

U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research,

Feb. 2014. URL http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/

20140210/Top10reportFEB14.pdf.

[93] H. J. J. van Dam, A. Vishnu, andW. A. de Jong. A case for soft error detection and correction

in computational chemistry. Journal of Chemical Theory and Computation, 9(9):3995–4005,

2013. doi: 10.1021/ct400489c. URL http://pubs.acs.org/doi/abs/10.1021/ct400489c.

[94] P. Wu and Z. Chen. FT-ScaLAPACK: Correcting soft errors on-line for ScaLAPACK

Cholesky, QR, and LU factorization routines. In Proceedings of the 23rd International

Symposium on High-performance Parallel and Distributed Computing, pages 49–60, New

York, NY, USA, 2014. ACM. ISBN 978-1-4503-2749-7. doi: 10.1145/2600212.2600232. URL

http://doi.acm.org/10.1145/2600212.2600232.

155

http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://pubs.acs.org/doi/abs/10.1021/ct400489c
http://doi.acm.org/10.1145/2600212.2600232

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Resilience
	Resilience and Fault Tolerance
	Detecting Errors and Selective Reliability
	Resilient Sparse Preconditioned Linear Solvers
	Research Hypothesis
	Overview
	Bit Flip Model May Not Reflect Actual Hardware Behavior
	Skeptical Programming: Bounding Soft Errors
	Worst-Case Behavior: Adversarial vs. Practitioner
	Abstract Fault Models Are Superior

	Summary of Contributions

	Data Representation and Fault Tolerance
	Introduction
	Related Work
	Project Overview
	Fault Model
	Fault Characterization via Semantic Analysis
	Fault Characteristics of Perturbed Exponents
	Operation Centric Fault Model

	Fault Model Evaluation
	Faults in the Mantissa or Sign
	Modeling Large Vectors
	Summary

	Case Study: Vector Dot Products
	Computational Challenges
	Monte Carlo Sampling
	Per Bit Analysis of Surface Plot
	Comparison of the Analytic Model and Monte Carlo Sampling

	Extension to Matrices and Iterative Solvers
	Matrix Equilibration
	GMRES
	Instrumentation and Evaluation
	Results
	Multiple Bit Flips

	Conclusion

	Model Driven Analysis of Faulty IEEE-754 Scalars
	Errors in IEEE-754 Representation
	Mantissa
	Exponent
	Sign

	Model Statistics
	Mantissa
	Mantissa Errors
	Exponent
	Exponent by Range
	Exponent Errors
	Summary of Scalar Statistics

	Model Error Measures
	Mantissa
	Exponent
	Sign

	Scalar Expected Error Measures
	Expected Relative Error for a Scalar
	Expected Absolute Error for a Scalar
	Summary of Scalar Error Statistics

	Model Multiplication Error Measures
	Mantissa
	Exponent
	Sign
	Multiplication Expected Error

	Applications to Fault Tolerance
	Constrained Exponent Bit Flips

	Overall Effect of Constrained Exponent Bit Flips
	Expected Absolute Error Given a Scalar
	Expected Absolute Error Given Scalar Multiplication
	Probability of an Absolute Error Larger Than One

	Application of Constrained Exponent Bit Flips
	Conclusion

	Evaluating the Impact of Silent Data Corruption on the GMRES Iterative Solver
	Introduction
	Silent Data Corruption
	Faults, Failures, and Persistence

	Project Overview
	Assumptions and Justification

	Motivation
	Relation to Prior Work
	Invariants as Detectors

	Sandbox Reliability
	GMRES
	Fault Detection via Projection Coefficients
	Bounds on the Arnoldi Process
	Bound Application
	Error Detection

	FT-GMRES
	FT-GMRES is Based on Flexible GMRES
	Sandbox Reliability
	FGMRES' Additional Failure Modes
	Fault Tolerance via Regularization

	Results
	Sample Problems
	Time to Solution Experiments
	Faults in an SPD Problem
	Faulting in a Nonsymmetric Problem
	Summary of Findings

	Conclusions

	A Numerical Soft Fault Model for Iterative Linear Solvers
	Introduction
	Preconditioned Linear Solvers
	Soft Faults and Iterative Methods
	Selective Reliability
	Implementation

	Results
	Methodology
	Model Comparisons
	Computational Effort
	Expected Overhead Comparison

	Conclusion

	Selective Reliability and Preconditioned Iterative Linear Solvers
	Introduction
	Fault-Tolerant Preconditioned Solvers
	Related Work

	Preconditioned Linear Solvers
	Selective Reliability
	Implementation

	Preconditioners
	Algebraic Multigrid
	Hierarchy and Corruption

	Fault Model and Injection Methodology
	Corrupting Preconditioner Outputs
	Granularity of Faults
	SDC and Solvers

	Experiment Description
	Methodology
	Problem Specification
	Baseline and Preconditioner Effectiveness
	Solver Configuration

	Experiments
	Figure Guide
	Overhead with No Detection
	Residual and Projection Lengths
	Tuned Residual Checks
	Strict Convergence Checks
	Inexact Krylov

	Comparisons
	ABFT Cholesky Comparison
	Self-Stabilizing CG
	Preconditioner Applies and Floating-Point Operations
	Relation to Bit Flips

	Scalability
	Conclusion

	Conclusion
	References

