
ABSTRACT

GHOLKAR, NEHA. On the Management of Power Constraints for High Performance Systems.
(Under the direction of Frank Mueller).

The supercomputing community is targeting exascale computing by 2023. A capable exascale

system is defined as a system that can deliver 50X the performance of today’s 20 PF systems while

operating in a power envelope of 20-30 MW [Cap]. Today’s fastest supercomputer, Summit, already

consumes 8.8 MW to deliver 122 PF [Top]. If we scaled today’s technology to build an exascale system,

it would consume 72 MW of power exceeding the exascale power budget. Hence, intelligent power

management is a must for delivering a capable exascale system.

The research conducted in this dissertation presents power management approaches that

maximize the power efficiency of the system. Power efficiency is defined as performance per Watt.

The proposed solutions achieve improvements in power efficiency by increasing job performance

and system performance under a fixed power budget. We also propose a fine-grained, resource

utilization-aware power conservation approach that opportunistically reduces the power footprint

of a job with minimal impact on performance.

We present a comprehensive study of the effects of manufacturing variability on the power

efficiency of processors. Our experimentation on a homogeneous cluster shows that there is a

visible variation in power draw of processors when they achieve uniform peak performance. Under

uniform power constraints, this variation in power translates to a variation in performance rendering

the cluster non-homogeneous even under uniform power bounds. We propose Power Partitioner

(PPartition) and Power Tuner (PTune), two variation-aware power scheduling approaches that in co-

ordination enforce system’s power budget and perform power scheduling across jobs and nodes of

a system to increase job performance and system performance on a power-constrained system. We

also propose a power-aware cost model to aid in the procurement of a more performant capability

system compared to a conventional worst-case power provisioned system.

Most applications executing on a supercomputer are complex scientific simulations with

dynamically changing workload characteristics. A sophisticated runtime system is a must to

achieve optimal performance for such workloads. Toward this end, we propose Power Shifter

(PShifter), a dynamic, feedback-based runtime system that improves job performance under a

power constraint by reducing performance imbalance in a parallel job resulting from

manufacturing variations or non-uniform workload distribution. We also present Uncore Power

Scavenger (UPS), a runtime system that conserves power by dynamically modulating the uncore

frequency during the phases of lower uncore utilization. It detects phase changes and automatically

sets the best uncore frequency for every phase to save power without significant impact on

performance.
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CHAPTER

1

INTRODUCTION

The supercomputing community is headed toward the era of exascale computing, which is slated to

begin around 2023. Today’s fastest supercomputer, Summit, consumes 8.8 MW to deliver 122 PF [Top].

If we scaled today’s technology to build exascale systems, they would consume 72 MW of power

leading to an unsustainable power demand. Hence, to maintain a feasible electrical power demand,

the US DOE has set a power constraint of 20-30 MW on future exascale systems. In order to deliver

an exaflop under this constraint, at least an order of magnitude improvement in performance with

respect to today’s systems needs to be achieved while operating under the power envelope of 20-

30 MW [Ber08; Dal11; Ins; Sar09; Cap]. Toward this end, the semiconductor industry is focussing on

designing efficient processing units mainly by means of developments in process technology as well

as in architecture. The supercomputing research needs to focus on using this hardware efficiently

by developing novel system software solutions to manage power and improve performance.

The research conducted in this dissertation proposes power scheduling solutions aimed at

improving performance of applications as well as system performance on a power-constrained

system.
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1.1 Challenges and Hypothesis

The challenges in power and performance for High Performance Computing (HPC) can be

summarized as follows:

• Power that can be brought into the machine room is limited.

• After the initial burn-in phase (LINPACK execution), the procured power capacity is never

utilized again [Pat15].

• Job performance is degraded by factors such as performance variation and imbalance, and

suboptimal resource utilization.

• To achieve exascale, a 50X performance improvement is needed with no more than a 3.5X

increase in power relative to today’s 20 PF systems.

This work proposes power management approaches that make power a first-class citizen in

resource management. The hypothesis of this dissertation can be stated as follows:

To design power-efficient systems, power needs to be managed discretely at both system-

level and job-level to both improve performance under a power constraint and to reduce wasteful

consumption of power that does not contribute to performance. Toward this end, it is crucial

to identify and reduce inefficiencies in the system with respect to performance imbalance and

suboptimal resource utilization.

1.2 Contributions

This work contributes a novel approach of enforcing a system-level power budget and a variation-

aware job-power scheduler that improves job performance under a power constraint. We also

propose a runtime system that dynamically shifts power within a parallel job to reduce imbalance

and to improve performance. We investigate the impact of Uncore Frequency Scaling (UFS) on

performance and propose a runtime system that dynamically modulates the uncore frequency to

conserve power without a significant impact on performance.

1.2.1 Power Tuner and Power Partitioner

A power-constrained system operates under a strict operational power budget. A naïve approach of

enforcing a system-level power constraint for a system is to divide the distribute power uniformly

across all its nodes. However, under uniform power bounds, the system is no longer

homogeneous [Rou12; Gho16]. There are many potential root causes of this variation, including,

but not limited to, process variation and thermal variation due to ambient machine room

temperature. Scheduling jobs on such a non-homogeneous cluster presents an interesting problem.
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We propose a 2-level hierarchical variation-aware approach of managing power at the machine-

level. At the macro level, PPartition partitions a machine’s power budget across jobs to assign a

power budget to each job running on the system such that the machine never exceeds its power

budget. At the micro level, PTune makes job-centric decisions by taking the performance variation

into account. For every moldable job (number of ranks is modifiable), PTune determines the optimal

number of processors, the selection of processors and the distribution of the job’s power budget

across them, with the goal of maximizing the job’s performance under its power budget. PTune

achieves a job performance improvement of up to 29% over uniform power. PTune does not lead

to any performance degradation, yet frees up 40% of the resources compared to uniform power.

PPartition and PTune together improve the throughput of the machine by 5-35% compared to

conventional scheduling. The limitation of the proposed solution is that it relies on the off-line

characterization data to make decisions before the beginning of job execution.

1.2.2 Power Shifter

Most production-level parallel applications suffer from computational load imbalance across

distributed processes due to non-uniform work decomposition. Other factors like manufacturing

variation and thermal variation in the machine room may amplify this imbalance. As a result, some

processes of a job reach blocking calls, collectives or barriers earlier and then wait for others to

reach the same point in execution. Such waiting results in a wastage of energy and CPU cycles that

degrades application efficiency and performance.

We propose Power Shifter (PShifter), a runtime system that maximizes a job’s performance

without exceeding its assigned power budget. Determining a job’s power budget is beyond the scope

of PShifter. PShifter takes the job power budget as an input. PShifter is a hierarchical closed-loop

feedback controller that makes measurement-based power decisions at runtime and adaptively. It

does not rely on any prior information about the application. For a job executing on multiple sockets

( where a socket is a multicore processor or a package), each processor is periodically monitored

and tuned by its local agent. A local agent is a proportional-integral (PI) feedback controller that

strives to reduce the energy wastage by its socket. For an “early bird” that waits at blocking calls and

collectives, it lowers the power of the socket to subsequently reduce the wait time. The cluster agent

oversees the power consumption of the entire job. The cluster agent senses the power dissipation

within a job in its monitoring cycle and effectively redirects the dissipated power to the sockets on

the critical path to improve the overall performance of the job (i.e., shorten the critical path).

Our evaluations show that PShifter achieves a performance improvement of up to 21% and energy

savings of up to 23% compared to the naïve approach. Unlike prior work that was agnostic of phase

changes in computation, PShifter is first to transparently and automatically apply power capping

non-uniformly across nodes of a job in a dynamic manner adapting to phase changes. It could
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readily be deployed on any HPC system with power capping capability without any modifications

to the application’s source code.

1.2.3 Uncore Power Scavenger

Chip manufactures have provided various knobs such as Dynamic Frequency and Voltage Scaling

(DVFS), Intel’s Running Average Power Limit (RAPL) [Int11], and software controlled clock

modulation [Int11] that can be used by system software to improve power efficiency of systems.

Various solutions [Lim06; Rou07; Rou09; Fre05b; Bai15; HF05; Ge07; Bha17] have been proposed

that use these knobs to achieve power conservation without impacting performance. While these

solutions focussed on the power efficiency of cores, they were oblivious of the uncore, which is

expected to be a growing component in future generations of processors [Loh].

0 1 2 3

LLC

MC QPI

Core

Uncore

D
R
A
M

Figure 1.1 A processor is a chip consisting of core and uncore. The uncore consists of memory controllers
(MC), Quick Path Interconnect (QPI) and the last level cache (LLC).

Fig. 1.1 depicts the architecture of a typical Intel server processor. A chip or a package consists

of two main components, core and uncore. A core typically consists of the computation units (e.g.,

ALU, FPU) and the upper levels of caches (L1 and L2) while the uncore contains the last level

cache (LLC), the Quick Path Interconnect (QPI) controllers and the integrated memory controllers.

With increasing core count and size of LLC and more intelligent integrated memory controllers

on newer generations of processors, the uncore occupies as much as 30% of the die area [Hil],

significantly contributing to the processor’s power consumption [Gup12; SF13; Che15]. The uncore’s

power consumption is a function of its utilization, which varies not only across applications but it

also varies dynamically within a single application with multiple phases. We observed that Intel’s

firmware sets the uncore frequency to its maximum on detecting even the slightest uncore activity

resulting in high power consumption. Replacing such a naïve scheme with a more intelligent

uncore frequency modulation algorithm can save power. Toward this end, we propose Uncore

Power Scavenger (UPS), a runtime system that automatically modulates the uncore frequency to

conserve power without significant performance degradation. For applications with multiple phases,

it automatically identifies distinct phases spanning from CPU-intensive to memory-intensive and
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dynamically resets the uncore frequency for each phase. To the best of our knowledge, UPS is the

first runtime system that focusses on the uncore to improve power efficiency of the system.

Our experimental evaluations on a 16-node cluster show that UPS achieves up to 10% energy

savings with under 1% slowdown. It achieves 14% energy savings with a worst-case slowdown of 5.5%.

We also show that UPS achieves up to 20% speedup and proportional energy savings compared

to Intel’s RAPL with equivalent power usage making it a viable solution for power-constrained

computing.
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CHAPTER

2

BACKGROUND

This chapter is structured as follows: Section 2.1 presents background information about a typical

HPC center and the HPC workloads. Section 2.2 describes “hardware-overprovisioning“, one of the

key foundational ideas of this research. Section 2.3 provides information about power measurement

and control mechanisms on state of the art server systems.

2.1 Fundamentals of High Performance Computing

An HPC system is a powerful parallel computing system that is used to solve some of the most

complex problems. It is used in various domains, including, but not limited to finance, biology,

chemistry, data science, physics, computer imaging and recognition. HPC users are typically

scientists and engineers utilizing HPC resources for applications such as defense and aerospace

work, weather and climate monitoring and prediction, protein folding simulations, urban planning,

oil and gas discovery, big data analytics, financial forecasting, etc.

2.1.1 Architecture

An HPC system is a collection of several server nodes connected by a high-bandwidth low-latency

network interconnect. It mainly consists of two types of nodes, login nodes and compute nodes.

Users access HPC resources via login nodes. Login nodes are shared by multiple users. A user can

start an interactive session on a login node for development purposes or for pre-processing or
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post-processing tasks. Users submit one or more batch jobs requests (consisting of the scientific

workload) to the job queue from the login node.

HPC jobs execute on one or more compute nodes. Compute nodes are connected to a shared

data storage. Each compute node mainly consists of one or more sockets hosting high-end

multicore processors, such as Intel Xeons, the memory subsystem, and network interface cards

(NIC) connecting the node to a high-bandwidth low-latency network such as Inifiniband. It may

also have additional accelerators such as Graphics Processing Units (GPUs). Figure 2.1 depicts the

architecture of an HPC system.

Comp-1 Comp-2 Comp-3 Comp-4 Comp-5 Comp-6 Comp-7 Comp-8

Login-1 Login-2

User 1            User 2          User 3

Public Network

Shared Storage

High-bandwidth Interconnect

Figure 2.1 HPC architecture

2.1.2 Coordinated job and power scheduling

When a job request is submitted by a user, it is enqueued to a job queue. A job request mainly

consists of information such as the link to the binary executable, application inputs and the resource

request, which includes the required number of compute nodes and the expected duration for

which the nodes need to be reserved during job execution. A job scheduler such as SLURM [Yoo03]

then determines which of the waiting jobs to dispatch depending on several factors such as job

priorities, resource request and availability. Each dispatched job is allocated a dedicated set of nodes

for the requested duration. In other words, compute nodes are not shared between jobs. This is
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Job Scheduler
(e.g., SLURM)

                   Job 1                                                    Job 2                                  
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Job Scheduler
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                                                                              Job 1                                  
                                     

                             Job 2                                  
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P2 Watts
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(a) Conventional job scheduling with dedicated compute nodes (Comp-X)

(b) Coordinated job and power scheduling

Comp-1 Comp-2 Comp-3 Comp-4 Comp-5 Comp-6 Comp-7 Comp-8

Comp-1 Comp-2 Comp-3 Comp-4 Comp-5 Comp-6 Comp-7 Comp-8

Figure 2.2 Resource management on future exascale systems

depicted in Figure 2.2 (a).

As future HPC systems are expected to be power-constrained, power management will be one

of the critical factors to delivering a capable exascale system. Hence, to manage power discretely

a hierarchical power management framework will be employed alongside the conventional job

scheduler on future systems. At the top-level, a system-level power scheduler needs to monitor

the power consumption of the whole cluster and ensure that the aggregate power consumption

of the system never exceeds the system’s power budget. It can achieve this objective by assigning

job power budgets to each of the jobs executing on the system in parallel such that the total power

consumption of all the jobs never exceeds the system’s power budget. A job-level power scheduler

per job further monitors the power consumption of all the resources allocated to that job. It is within

the purview of the job-level power scheduler to ensure that the total power consumption of the job

never exceeds its power budget (e.g., the power consumption of the job on comp1-comp3 never
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exceeds P1 Watts). The job-level power scheduler may then distribute the job’s power budget across

all the resources (e.g., nodes) of the job. The total power consumption of a job is the aggregation of

power consumed by the dedicated (i.e., nodes) and the shared (e.g., network, routers ) hardware

components on which it executes, of which the nodes are the largest contributors. Power consumed

by other facility level resources such as water cooling cannot be managed at job-level granularity.

Hence, we focus on power consumed by nodes in this work.

2.1.3 A Uniform Power Scheme

A naïve approach of enforcing a system’s power budget is to distribute the budget uniformly across

all the nodes of the system. We call this uniform power (UP). UP can be enforced by statically

constraining the power consumption of nodes to S y s t e m ′s P o w e r B ud g e t
N , where N is the number of

nodes in the system. A similar approach can be employed to enforce a job power budget. At job-level,

UP can be enforced by statically constraining the power consumption of nodes to J o b ′s P o w e r B ud g e t
Nj o b

,

where Nj o b is the number of nodes of the job. While UP enforces system-level or job-level power

bounds it leads to sub-optimal performance. The disadvantages of UP will be discussed in more

detail in Chapters 3-5.

2.2 Hardware-overprovisioning

Exascale systems are expected to be power-constrained: the size of the system will be limited by

the amount of provisioned power. Existing best practice requires to provision power based on the

theoretical maximum power draw of the system (also called Worst-Case Provisioning (WCP)), despite

the fact that only a synthetic workload comes close to this level of power consumption [Pat15]. One

of the key contributions in the power-constrained domain is “hardware overprovisioning” [Pat13;

Sar13a]. The idea is to provision much less power per node and thus provision more nodes. The

benefit is that all of the scarce resource (power) will be used. The drawback is that power must be

carefully scheduled within the system in order to approach optimal performance.

Fig. 2.3 depicts this foundational idea. Let the hardware overprovisioned system consist of Nma x

nodes and let the power budgeted for this system be Ps y s Watts. As shown in the figure, with Ps y s

Watts total system power, only a subset of nodes (say Na l l o c , where Na l l o c <Nma x nodes) can be

utilized at peak power (collection of nodes in red). Another valid configuration is to utilize the

entire system (all the nodes) at low power. One of the several other intermediate configurations

is to use medium power levels and utilize a portion of the system larger than that at peak power

but smaller than that at low power. In each of these configurations, the system’s power budget is

uniformly distributed across varying number of nodes, i.e, each node is allocated
Ps y s

Na l l o c
Watts of

power. This is a naïve approach of enforcing a system power budget. Depending on the application’s
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characteristics (memory-, compute-, and communication-boundedness), different applications

achieve optimal performance on different configurations. In a nutshell, power procured for a system

must be managed as a malleable resource to maximize performance of an overprovisioned system

under a power constraint.

Minimal Power

Figure 2.3 Hardware Overprovisioning under Power Constraint

2.3 Power control and measurement

As stated in Section 2.1.1, a compute node consists of multiple hardware components, each of which

consumes power contributing to its operational power budget. Processors on the node are the main

contributors to the node’s power budget. The power consumption of a node can be controller by

constraining the power of its processors.

2.3.1 Intel’s Running Average Power Limit (RAPL)

From Sandy Bridge processors onward, Intel provides the Running Average Power Limiting

(RAPL) [Int11] interfaces that allow a programmer to bound the power consumption of a processor,

also called package (PKG) or socket. Here, package is a single multi-core Intel processor. Bounding

the power consumption of a processor is called “power capping“. RAPL also supports “power

metering“ to provide energy consumption information.

To set a power cap, RAPL provides a Model Specific Register (MSR), MSR_PKG_POWER_LIMIT.

A power cap is specified in terms of average power usage (Watts) over a time window. Once a power

cap is written to the MSR, a RAPL algorithm implemented in hardware enforces it.

For power metering purposes, RAPL provides MSR_PKG_ENERGY_STATUS and

MSR_DRAM_ENERGY_STATUS registers. MSR_PKG_ENERGY_STATUS is a hardware counter that
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aggregates the amount of energy consumed by the package since the last time the register was

cleared. MSR_DRAM_ENERGY_STATUS is a hardware counter that aggregates the amount of

energy consumed by DRAM since the last time the register was cleared.

2.3.2 Dynamic Voltage Frequency Scaling (DVFS)

The power consumption of a processor (Pp r o c ) can be divided into three main constituents, viz.

dynamic power (Pd y n ), short-circuit power (Ps c ) , and static power (Ps t a t i c ):

Pp r o c = Pd y n +Ps t a t i c +Ps c .

Dynamic power consumption is attributed to the charging and discharging of capacitors to

toggle the logic gates during the instances of CPU activity. When logic gates toggle, there could

be a momentary short circuit from source to ground resulting in short-circuit power dissipation.

However, this loss is negligible [kim2003leakage]. Static power consumption is attributed to the

flow of leakage current.

In today’s systems, dynamic power is the main contributor to the power consumption of a

processor [Mud01]. Dynamic power is proportional to the frequency of the processor, f, the activity

factor, A, the capacitance, C, and the square of the supply voltage, VD D . Dynamic power consumption

of a processor can be managed by controlling its voltage and frequency. This is called voltage and

frequency scaling:

Pd y n = AC V 2
D D f .

Processor manufacturers have provided registers that can be used to configure the frequency of

the processor [Int11]. Software can control the power consumption of a processor by dynamically

modulating the frequency of the processor. This is called Dynamic Frequency and Voltage Scaling

(DVFS).

Power measurements at node component-level granularity (e.g., processors, memory, GPU,

hard-disk, fans) can be obtained via power acquisition systems such as Power Pack [Ge10] and Power

Insight [III13]. A typical HPC server node is powered by Advanced Technology eXtended (ATX) power

supply units (PSUs). The ATX PSU has three main voltage rails, 3.3V, 5V, and 12V, powering various

node components. Power Pack and Power Insight both intercept individual power rails connected to

the relevant node components and measure the current draw using shunts and Hall Effect sensors,

respectively. Power is then calculated as the product of voltage and current. Node power can be

measured using external power meters such as a Wattsup meter [Wat].
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CHAPTER

3

POWER TUNER - POWER PARTITIONER :

A VARIATION-AWARE POWER

SCHEDULER

Research focus has only recently shifted from just performance to minimizing energy usage of

supercomputers. Considering the US DOE mandate for a power constraint per exascale site, efforts

need to be directed towards using all of the limited amount of power intelligently to maximize

performance under this constraint.

3.1 Manufacturing variability and its impact on performance

As stated previously, uniform power capping is the naïve approach of enforcing a power constraint.

In order to understand what happens under such a scheme, we characterized the performance of

600 Ivy Bridge processors on a cluster. We ran three of the NAS Parallel Benchmark (NPB) suite

codes [Bai91], viz., Embarrassingly Parallel (EP), Block Tri-diagonal solver (BT), Scalar

Penta-tridiagonal solver (SP), and CoMD, a molecular dynamics proxy application from the

Mantevo suite [San11] at several different processor power bounds on all the processors. The

processor power bounds were set using RAPL. The results are depicted in Figure 3.1. The x-axis

represents operating power in Watts while the y-axis represents Instructions Retired per Second
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(IPS) in billions. A maximum performance of 77, 50, 80, and 60 billions IPS is achieved for CoMD, EP,

BT and SP, respectively. The cluster becomes non-uniform under power bounds with performance

variations of up to 30% across this cluster for these applications. The potential causes of variability

are discussed next but are effectively irrelevant as our proposed methods are agnostic of specific

causes. More significantly, our experiments will show that this variability in performance translates

into variation in peak power efficiency of the processors, which we exploit.
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Figure 3.1 IPS vs. Power for each processor. Each rainbow line represent one processor. Curves in red
(bottom) are least efficient, curves in orange (top) are most efficient.

Power Efficiency

Let power efficiency be defined as the number of instructions retired per second per Watt of operating

power. Figure 3.2 represents the power efficiency curves of the processors on the cluster for the
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same set of codes. The x-axis represents the operating power in Watts and the y-axis represents the

power efficiency in billion IPS/W. The rainbow palette represents different processors, where each

curve (or each color) in the plots corresponds to a unique processor.
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Figure 3.2 Power Efficiency in IPS/W vs. Operating power. One rainbow line per processor, red curves
(bottom) are least, orange ones (top) most efficient.

We make the following observations from these experiments:

• The power efficiency of a processor varies with its operating power and is non-monotonic. It

is also workload-dependent.

• Peak power efficiency varies across processors.

• Most importantly, efficient processors are most efficient at lower power bounds whereas the
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inefficient processors are most efficient at higher power bounds. The "peak" of every curve

is the point at which the processor achieves the maximum efficiency, i.e., maximum IPS/W.

Orange curves (efficient processors) have peaks at lower power compared to the peaks of the

red curves (less efficient processors) and the rest lie in between.
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Figure 3.3 Temperature and unbounded power of processors. Processors are sorted by unbounded power
consumption.

Figure 3.3 depicts the results of our thermal experiments. The x-axis presents processor IDs

(processors are sorted in the order of efficiency). The y-axis presents the measured temperature

(triangles) of the processors normalized with respect to the maximum temperature and the

unbounded power (crosses) of the processors also normalized with respect to the maximum power.

In these experiments, the processors were not capped, and they achieved uniform performance. We
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observe that the temperature increases as we go from efficient to inefficient processors (left to

right), as does the unbounded power. However, not all inefficient processors are hotter than the

efficient ones. This shows that thermal variation may be one of the potential causes of variation in

efficiency but there are other factors that counter the effect as we do not see a linear trend for

temperature (in contrast to the linear trend of unbounded power). We believe that one of the

contributing factors is process/manufacturing variation induced at the time of fabrication. In the

end, our proposed mechanism is agnostic of the actual cause of variation, it simply exploits the fact

that variation (due to whatever reason) exists.

In summary, there exists variation in power efficiency across processors. There is a unique

local maximum in every power efficiency curve that occurs at disparate power levels for different

processors. Starting from the minimum power, increasing the power assigned to a processor leads

to increasing gains in IPS. However, increasing the power beyond the peak efficiency point of a

processor leads to diminishing returns. Hence, when power is limited, processors should operate at

power levels close to their peak efficiency to maximize the overall efficiency of the system. Since

the peak efficiency points for efficient processors are at lower power levels than for the inefficient

processors, the optimal configuration should select lower power levels for efficient processors and

higher power levels for inefficient processors to maximize performance. On the contrary, a naïve /

uniform power scheme caps all the processors at identical power bounds. Hence, it is sub-optimal.

An optimal algorithm should aim at leveraging the non-uniformity of the cluster to maximize

the performance of a job under its power constraint.

To this end, we propose PTune, a power-performance variation-aware power tuner that exactly

does this for each job. For every job, given a power budget, it determines the following: (1) the optimal

number of processors (say no p t ); (2) selection of no p t processors; and (3) the power distribution

(say pk , where 1≤ k ≤ no p t ) across the selected no p t processors.

The problem statement can be stated as follows: Given a machine level power budget, how

should the machine’s power be distributed across (a) jobs and (b) tasks within jobs on a given

system, where (b) is discussed later. For (a), the process of making these decisions at the macro level

of jobs is called power partitioning. Each job on the machine receives its own power partition.

We address the following questions:

1. How many partitions do we need at a time? I.e., determine how many jobs should be scheduled

at a time.

2. What is the size of each of the power partitions? I.e., determine the power budget assigned to

each job.

For (b), at the micro level, given a hard job-level power budget PJ i , we need to determine the

optimal number of processors, no p t , with a power distribution (p1, p2, ... , p(no p t−1), pno p t
) such
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that performance of the job is maximized under its power budget. The constraint on the power

distribution is expressed as
n
∑

k=1
pk ≤ PJ i ; mi n_p o w e r ≤ pk ≤ma x _p o w e rk .

Here, min_power is the minimum power that needs to be assigned to a processor for reliable

performance and ma x _p o w e rk is the maximum power consumed by the k t h processor (uncapped

power consumption) for an application. The performance of a job can be quantified in terms of

number of instructions retired per second (IPS). The general model holds for other performance

metrics as well. We selected IPS here because it closely correlates to power in our experiments.

For a parallel application on n processors, the effective IPS is the aggregated IPS over n processors

(J o b I P Sn ). Hence, the objective function is

M a x i mi z e (J o b I P Sn ).

A processor’s IPS is a non-linear function of the power at which it operates. Each processor can

be power bounded at several levels using the RAPL capping capabilities, which forces it to operate at

various power levels within a fixed range. We know that unbounded power consumption is variable

across processors while achieving the same unbounded (peak) performance for a given application.

This is depicted in Figure 3.4. The x-axis indicates the power at which the processor operates and the

y-axis shows the IPS (in billions) of the processor of an application. Each solid curve corresponds to

the most efficient processor while the dotted curve correspond to the least efficient processor.

The following two observations are made from this data:

1. On a single processor, the performance (IPS) achieved at any fixed power level is different for

different workloads.

2. The performance of an application on two different processors at any fixed power level is not

the same.

This means that when determining the optimal distribution of power across processors it is necessary

to take the processor characteristics and the application characteristics into account. One solution

may not fit all applications. The optimal configuration for an application on one set of processors

may be different from that on another set of processors because of performance variations under a

power cap.
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Figure 3.4 IPS vs. Power for efficient and inefficient processors

To target the sub-optimal throughput problem we propose a 2-level hierarchical approach

of managing power as a resource (see Figure 3.5). The parameters of the model are described in

Table 3.1. Nma x , Pm/c and nr e q are the inputs to the model that we assume. no p t is calculated once

for every job at its dispatch time. Na l l o c , PJ i and pk are re-calculated every time any job is dispatched.

min_power is architecturally defined for every family of processors. Table 3.2 is populated off-line

using the characterization data. We make the assumption that the power consumption of the

interconnect is zero, i.e., interconnect power is beyond the scope, and so are task-to-node mapping

effects on power. We only consider processor power in this work and assume moldable jobs. DRAM

power could not be included due to motherboard limitations at the time of this work. We do not

expect the users of the system to predict and request power in their job request. Power decisions

are made by our system software (PTune and PPartition). Users may be allowed to influence these

decisions by assigning priorities to their jobs.
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Large Job Queue

Backfilling Jobs

PPartition
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PTune
Power Tuning

Macro Level 

Micro Level

For all jobs, determine: 
1. job's power budget 
2. nopt

3. selection of nopt
    processors  &
4. power distribution 
    across them

Figure 3.5 Hierarchical Power Manager

Table 3.1 Model Parameters

Parameter Description PPartition PTune

Nma x maximum number of Input N/A

processors on a machine

Na l l o c number of processors Output N/A

already allocated to jobs

Pm/c power budget of the machine Input N/A

Pm/c _un u s e d unused power budget of the machine Variable N/A

nr e q number of processors Input Input

requested by a job

no p t optimal number of Output Output

processors for a job

n number of processors for a job N/A Variable

under its power budget

PJ i power budget of the i t h job Output Input

pk power cap of k t h N/A Output

processor within a job

mi n_p o w e r minimum processor power cap Input Input

ma x _p o w e r j maximum processor power cap Input Input

of the j t h processors

power-ips table characterization data Table 3.2 Input Input
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Table 3.2 power-ips lookup table (last metric in Tab. 3.1)

Power Cap [W] IPS in Billions Measure Power [W]

60 46.43 59.99

80 64.83 79.88

100 76.33 99.43

120 79.13 104.66

At the macro level, we propose PPartition, a technique of partitioning a machine’s power budget

across jobs while scheduling them. Once a job is dispatched by a conventional scheduler (e.g., slurm

or Maui/pbs), PPartition calculates its power budget. If the required power is not available, it steals

power from the previously scheduled jobs and provisions this power for the new job. If sufficient

power cannot be obtained, PPartition overrides the conventional scheduler’s decision based on free

resources (nodes) and does not schedule this job until sufficient power is available.

At the micro-level, we propose PTune, a power balancing model that determines the distribution

of a job’s power budget (one job at a time) across an optimal selection of processors (among all free

resources) to maximize the performance of a job under its power budget.

PTune shrinks the job’s processor allocation by eliminating the less efficient processors that

are expensive in terms of power to maximize the performance of a job under its power budget.

Figure 3.6 depicts the micro-level power tuner. For each job Ji, a power budget PJ i is calculated at

the macro level by PPartition. For every job with this assigned power budget, PTune answers the

following questions:

1. How many (no p t ) and which processors should a job run on?

2. What should be the power (p1, ..., pno p t
) assigned to each of the no p t processors?

PTune(PJi , n)
 

Inputs:
- Job power budget PJi
- n, requested procs
- characterisation data

Outputs:
-  nopt selected processors
-  power distribution 
   across nopt procs

Figure 3.6 PTune
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3.2 PTune

Let us start by addressing the first question. In order to use a processor, it needs to be assigned at

least the minimum power (mi n_p o w e r ) that is constant across all processors. The upper limit on

the processor’s power (ma x _p o w e rk ) is variable across processors.

Figure 3.7 shows the maximum power consumption of 600 Ivy Bridge processors when they are

not power capped. The unbounded performance is uniform across all the processors. The x-axis

represents all the processor sorted by power consumption and the y-axis represents the maximum

power consumption in Watts. The optimal configuration for maximum performance of a job under

a strict power budget consists of the maximum number of most efficient processors (from the left)

such that their aggregate power consumption does not exceed the job’s power budget.
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Figure 3.7 Unbounded power consumption of processors under uniform performance
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3.2.1 Sort the Processors

The first step towards determining the optimal configuration is to sort the available processors

by their relative power efficiency. This is equivalent to sorting them by their unbounded power

consumption. Let the sorted set of processors be indexed by k.

We divide this distribution of processors into quartiles, viz., Q1, Q2, Q3 and Q4, in the order of

efficiency and pick processors from one or more of these quartiles for evaluation purposes.

3.2.2 Bounds on Number of Processors

The lower bound on n, n⊥, can be calculated by determining the maximum number of processors

that can be capped at their maximum power, ma x _p o w e rk , under the power budget. The selection

of processors is reformed in the sorted order as described above. n⊥ is given by the largest value of n

that satisfies the following constraint:

PJ i ≥
n
∑

k=1
ma x _p o w e rk .

The upper bound on n, n>, represents the maximum number of processors that can be operated

at mi n_p o w e r under the power budget. The bound n> is calculated as follows:

n> =
PJ i

mi n_p o w e r .

The processor count, n , is iterated from n⊥ to n>, and in each step, the next efficient processor

is added to the set of processors. Job-level performance, J o b I P Sn , is calculated in each iteration

by D i s t r i b u t e P o w e r () for the power budget PJ i and a given number of processors, n , where

n⊥ ≤ n ≤ n>.

The optimal number of processors, i.e., no p t , is the value of n at which a job’s IPS is maximized.

J o b I P Sno p t
=ma x (J o b I P Sn⊥ , J o b I P S(n⊥+1), ..., J o b I P Sn> ).

PTune leads to no p t ≤ n . Thus, PTune tends to reduce the number of processors required for a

moldable job The spare processors are returned back to the global pool of unused resources so that

they can be utilized by other jobs.

3.2.3 Distribute Power: Mathematical Model

DistributePower(), takes three inputs, viz., the number of processors n , the job’s power budget, PJ i ,

and the power distribution across n −1 processors determined in the previous iteration. The output

of this function is the maximum job IPS that can be achieved under PJ i Watts with n processors. It

also calculates the optimal power caps, (p1, ..., pn ), for n processors, which forms an input for the

next iteration. This can be mathematically expressed as follows:

D i s t r i b u t e P o w e r (n , PJ i , (p1, ..., pn )) =

D i s t r i b u t e P o w e r ((n −1), PJ i −pn , p1, ..., p(n−1)) +

g e t P r o c I P S (n , pn ).
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The function getProcIPS(k,pk ) performs a look-up in Tab. 3.2 to return the expected performance

(IPS) of the k t h processor when it is capped at pk Watts.

3.2.4 Power Stealing and Shifting

DistributePower() consists of two main steps, viz. Power Stealing and Power Shifting.

Step 1: Power is stolen in discrete quantities (d e l t a _p o w e r ) from the n − 1 processors to

provision power for the n t h processor (see Figure 3.8). The victim/donor processor is the one that

suffers minimum loss in IPS when d e l t a _p o w e r is stolen from it. If the aggregate stolen power is

at least mi n_p o w e r , an additional n t h processor is added to the processor set.

Step 2: Power is shifted from a donor to a receiver in discrete quantities, d e l t a _p o w e r , across

the n processors. The victim/donor processor is identified in the same way as in step 1. The receiver

is the processor that gains maximum IPS on receiving d e l t a _p o w e r .
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Figure 3.8 Donor and receiver of discrete power

3.3 PPartition

Figure 3.9 depicts the macro-level power partitioning algorithm. The power partitioner co-operates

with the conventional scheduler (simulated in R). PPartition receives information on the

performance variations across processors. It always chooses the most efficient nr e q processors of

the available processors (or a subset thereof) to schedule a job. The conventional scheduler

dispatches a job from the job queue when the requested number of processing resources are

available. When job Ji is dispatched, its initial power budget, PJ i , is calculated as follows:
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PJ i ← Pm/c ∗
nr e q

Nma x

If the required power is available, PTune determines the optimal configuration for the job and

the job is scheduled. It is important to note that even though the job power budget is proportionate

to the number of requested processors, PTune schedules jobs on reduced number of processors. As

a result, the machine’s power depletes at a faster rate that the processing resources. If the available

(unused) power is less than the calculated job power budget, power is stolen from already scheduled

jobs. This is called power repartitioning (lower right blue/shaded box in Figure 3.9) and detailed

next.

Power Partitioning  (macro-level)

Job request Ji(nreq)
N← nreq 
Job power budget PJi ←             x Pm/c

   
 

Pm/c_unused 
≥ PJi  

PTune(PJi, n)

Power Partitioning across Jobs

Decisions made:

1. What is the optimal power 
budget for Ji ?

2. How much power should be 
stolen from which of the jobs?

False

Outputs:
1. Schedulability of Job Ji 
2. nopt 
3. selection of nopt  processors
4. power distribution across nopt  
    processors

n
Nmax

Inputs:
1. Ji dispatched from the job 
    queue
2. Machine's Power Budget (Pm/c)
3. Availability of Processors across 
    the Cluster
4. Characterization data 
    (power-ips table)True

Figure 3.9 PPartitioning: Repartitioning Power

Power Repartitioning

The power repartitioning algorithm is shown in Algorithm 1. As all of the machine power budget is

already used up by the Na l l o c a t e d processors, a fair power share for the new job is calculated as

PJ i = Pm/c ∗ n
n+Na l l o c a t e d

, where n=nr e q .

The job is power tuned for the requested nr e q (assigned to n) processors under PJ i Watts
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Algorithm 1 Repartitioning Power For Accommodating the i t h job

1: procedure POWERPARTITIONER(Ji ,nr e q )
2: no p t ← nr e q

3: n← no p t

4: PJ i ← Pm/c ∗ n
n+Na l l o c a t e d

. Recompute PJ i proportional to the portion of busy processors
requested

5: no p t ← P T une (PJ i , n ) . Recompute no p t no p t < n
. Repartition power across jobs to provision power for the i t h job

6: for k ← 1; k < i ; k ++ do
7: p o w e r_t o_b e_s t o l e n [k ]← (PJ i −Pm/c_un u s e d ) ∗

j o b p o w e r b ud g e t s [k ]
∑

j o b p o w e r b ud g e t s

8: t o t a l_s t o l e n_p o w e r ← t o t a l_s t o l e n_p o w e r
+ Sh r i nk P a r t i t i o n (p o w e r_t o_b e_s t o l e n [k ], k )

9: end for
10: if t o t a l _s t o l e n_p o w e r < PJ i then . If enough power cannot be stolen, recompute no p t

11: PJ i ← t o t a l _s t o l e n_p o w e r
12: no p t ← P T une (PJ i , n )
13: end if
14: end procedure

calculated above. PTune gets rid of the unaffordable less efficient processors, if any, leading to

no p t ≤ n . We recompute (in the while loop) the proportionate power the new job with no p t

processors should have due to power partitioning across all jobs. This new power budget, PJ i , then

becomes the base for another PTune, and so on, until the number of processors (monotonically

decreasing) for the new job reaches a fixed point (stabilizes) in the while loop. The fixed point

guarantees a fair power level (PJ i ) relative to other jobs, but we still need to find other jobs to steal

just enough power for this job.

In the following for loop, power is stolen from each of the scheduled jobs in a proportionate

manner to each other’s power budget. This is accomplished by ShrinkPartition, which consists of (1)

stealing just enough power and (2) power tuning for the remaining power of a job and the same

number of processors (since we assume moldable but not malleable applications). Here, we steal as

much power as possible while retaining heterogeneous power bounds across a job’s processors to

respect processor variations and thus ensure a high IPS under lower power budget.

The aggregate stolen power from other jobs is offered to the new job. If the stolen power is less

than the fixed power level for the new job, which was PJ i , then the new job needs to be tuned one

more time. If the stolen power was sufficient for this last tuning step, the new job is scheduled

and the power re-tuning decisions made by ShrinkPartition for the existing ones are enforced. If,

however, the stolen power is insufficient (as determined by PTune when the power budget cannot

accommodate more than n
2 processors), no power is redistributed, i.e., all jobs remain unchanged
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in their power settings and the new job is deferred until at least another job completes.

3.4 Implementation and Experimental Framework

We modified the libmsr [Sho14] library to gather the processor characterization data. We

implemented a power-performance profiler using the MPI profiling interface (PMPI) that invoked

various subroutines of the libmsr library to assess the power and the performance of MPI

applications. We captured several fixed counter values, power consumption, and completion times

for each application on all the processors. The processor power consumption was measured using

Intel’s RAPL interface. This characterization data is made available to PTune and PPartition.

We assume that the jobs are moldable. Our power manager works in co-ordination with the

conventional job scheduler. Once a job is dispatched by the conventional scheduler, the power

manager (PPartition+PTune) determines its power budget, the selection of processors from those

available, and the power distribution (or processor power caps) across them.

We assume a large job queue (> 384 processes) and a backfilling queue (< 48 processes). The

conventional job scheduler schedules as many large jobs as it can on the machine before scheduling

the backfilling jobs. We assume up to Nmax=550 nodes with 12 cores each (6600 processes). If the

power manager decides to schedule the job, power distribution across its processors (and power

repartitioning if required) is enforced using RAPL.

Experiments were conducted on a 324-node Ivy Bridge cluster. Each node has two 12-core

Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz processors and 128 GB of memory. We used MVAPICH2

version 1.7. The codes were compiled with the Intel compiler version 12.1. The msr-safe kernel

module provides direct access to Intel RAPL registers via libmsr [Sho14]. We used the package (PKG)

domain of RAPL that provided us the capability of capping power for each of the processors in an

experiment. The scheduling environment was simulated in R.

We again used EP, BT, and SP from the NPB suite and CoMD from the Mantevo suite in their

pure MPI versions. We exponentially increase the node count for our experiments. The inputs were

weakly scaled for different node counts. We report performance in terms of completion time in

seconds and power in Watt. The reported numbers are averages across ten runs.

3.5 Experimental Evaluation

Experiments were conducted for single job power tuning and multi-job power partitioning.
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Variation under Power Caps: Sorting Required

We now exploit the observed variability in the unbounded power consumption of the processor

chips, which translates into variation in performance under a power constraint. This variability may

be caused by factors such as manufacturing/process variation (at CMOS/transistor level), ambient

machine room temperature in different rack positions (higher/lower to the floor), or others. Yet,

our method handles variation irrespective of its causes. Previous work [Rou12] and Section 5.1 has

already established that a cluster is not homogeneous under a power constraint because of such

variation. We also observe that scheduling a job on different sets of fixed number of processors

under a constant power budget leads to variation in the performance of a parallel job.

We present a selection of configurations to demonstrate this behavior in Figures 3.10 and Fig. 3.11.

The x-axis represents the codes and the number of processors. The y-axis indicates the completion

time in seconds. The codes are run on several combinations of processors from one or more quartiles

of the processor distribution. The numbers on the top of the bars indicate percentage slowdown

with respect to the baseline. The processors are uniformly capped at 51W in this set of experiments,

i.e., they maintain a constant job power budget of 8KW, 16KW, and 32KW for 16, 32, and 64 processor

experiments, respectively. The baseline for 16 processor experiments (Figure 3.10) is the performance

on the processors belonging to quartile Q1. For 32 and 64 processors (Figure 3.11), the baseline is the

performance on the processors belonging to Q1 and Q4 (also see legends). Q1 consists of the most

efficient processors whereas Q4 consists of the least efficient processors. We observe a performance

slowdown ranging from 2% to 18%. We observe that performance deteriorates as we include less

efficient processors (Q2, Q3, Q4) in the mix. Hence, the optimal selection of no p t processors should

consist of the most efficient processors from the available ones.
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Figure 3.12 Evaluation of PTune on 16 processors from one or more quartiles

PTune

We evaluate the effectiveness of PTune using the aforementioned codes. In Figure 3.12, we present

results for three different combinations of processors belonging to different quartiles. There are

three data points corresponding to each code.

In the figures, nLOW E R (synonymous with n⊥) is the maximum number of processors that can

operate at maximum power such that their aggregate power does not violate the job level power

constraint. This configuration most closely resembles the worst case power provisioning as

processors are not power constrained. PTune is the data point corresponding to optimal

configuration suggested by the power tuner. Uniform power corresponds to the naïve approach of

distributing the job’s power budget evenly across all processors in a job. This is the baseline

configuration.

Performance

In Figure 3.12, the y-axis represents performance (top graph) in terms of wall-clock time (in seconds)

and the number of processors recommended by the power manager (bottom graph) over different

codes and quartiles to which the processors belong (x-axis). The numbers on the bars indicate the
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Figure 3.13 Evaluation of PTune on processors from Q1 and Q4 quartiles

runtime reduction and utilized number of processors relative to the baseline in percent.

We observe a performance improvement of up to 22%. The gains are dependent on the

combination of processors from different quartiles as well as on workload. PTune is able to free up

to 38% of the resources while achieving similar or higher performance than the baseline

configuration.

Scalability

We evaluate PTune on up to 128 processors. Figure 3.13 presents results addressing the scalability

of PTune. PTune achieves performance improvements of as much as 29% with a minimum of

1%. More significantly, in case of the minimal performance improvement, PTune frees up 23% of

the processors, which subsequently become available to the next scheduled jobs. We observe an

error of less than 2% between the total job power consumption (measured via RAPL) of the PTune

recommended configurations and the assigned job-level power budget across all experiments.
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PPartition

In this section, we perform a macro-level evaluation of our 2-level model. We simulate the

conventional scheduler that dispatches jobs from multiple queues, one at a time. Let np be the

number of processes. The scheduler handles 3 queues, 1 large job queue (np ≥ 768 or n ≥ 64

processors), and two backfill queues (np ≤ 48 or n ≤ 4 processors, 48 < np < 768 or 4 < n < 64

processors). Larger jobs are scheduled first followed by backfilling jobs to improve the system

utilization. We assume N ma x = 550 processors. Our job mix consists of 25% jobs from each EP, SP,

BT, and CoMD.

We assume a hardware overprovisioned machine with a machine power budget Pm/c = 28K W .

Figure 3.14 depicts a scenario in which the job scheduler is oblivious of power management. The

machine’s power budget is uniformly distributed across all the processors. We call this naïve

scheduling. The conventional scheduler schedules jobs as long as the required number of

processors are available. Figure 3.15 depicts the scenario when our power manager (PTune +

PPartition) co-ordinates with the conventional scheduler to make variation-aware power and job

scheduling decisions. The x-axes in both the plots represent job identifiers ordered by the time that

they are dispatched by the conventional scheduler. We can see that the large 64 processor job is

scheduled first followed by the backfilling jobs. The left y-axis denotes job performance in IPS. Each

of the red, green and blue curves represents a job’s performance as more and more jobs are

scheduled over time (moving right along the x-axis).

Our scheduler starts with jobs at high power budget and, hence, high performance. But as

more jobs are dispatched, power is stolen from the previously scheduled jobs. This leads to a

drop in their performance. In return, we are able to schedule more jobs at the expense of the

performance of already running jobs. In this scenario, our scheme is able to schedule 58 jobs

whereas the power-oblivious scheduler is able to schedule only 36 jobs to run at the same time. This

is because PTune schedules each job on a reduced number of processors compared to the naïve

scheme. The performance of most of the first 36 jobs (that are scheduled under both the schemes)

of our approach is at least as good as the naïve one. In addition to these jobs, our power control is

able to schedule 22 more backfill jobs that further improve the overall throughput (SysIPS) of the

machine (compared to the naïve approach) under the same power constraint.

The right y-axes depict the system’s power consumption as a fraction of (normalized to) the

overall provisioned system power, Pm/c , in one line graph (circles) and the system’s performance

(S y s I P S =
∑

J o b I P Si ) normalized to the maximum in the other (crosses). Both graphs track each

other closely, but under our power control, the machine power is fully utilized much earlier (after

≈ 10 jobs) whereas 36 jobs are required to reach this level in the naïve case. These initial jobs also

achieve higher performance under our scheme (>1500 Billions IPS) than that in the naïve case (900

to 1500 Billion IPS for backfill jobs and 2100 Billion IPS for the large job) before the other jobs are
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Uniform Power Distribution Pm/c=28KW
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Figure 3.14 Uniform power distributed across the machine. Pm/c = 28k W
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Figure 3.16 Throughput

scheduled, and these jobs would thus terminate earlier as they have progressed further under our

power control compared to the naïve case. This shows that when there are fewer jobs running on

a machine, our power manager is able to direct all machine power to jobs where it is needed to

maximize performance under a power constraint unlike the naïve approach.

Figure 3.16 presents a comparison of the throughput of our scheme compared to three other

naïve schemes. The x-axis denotes the machine’s power budget and the y-axis depicts the throughput

of the machine (SysIPS) normalized to a maximum throughput at 39KW (left bar per set). Uniform

capping schemes assume that an appropriate number of randomly selected processors on the

machine are already capped at Pm/c /Nma x , 75W (mid-way between minimum power and TDP),

and TDP, such that their aggregate power does not exceed the machine’s power budget. The rest

of the processors in these configurations are not available to the conventional scheduler in the

naïve scheme. PTune+PPartition represents our model that makes variation-aware decisions about

scheduling jobs across the entire machine under a machine-level power constraint. The percentages

on top of bars indicate how much lower the throughput per naïve scheme is compared to our

solution. Our model achieves 5-35% higher throughput.

Figure 3.17 depicts the performance of all the jobs that are scheduled under schemes 1-4 (top

left legend) indicated along the x-axis. The y-axis denotes job’s performance normalized wrt. to

the aggregate job performance (SysIPS) under the respective schemes. We see that our approach

(scheme 1) is able to schedule a much larger number of jobs (denser clusters in plot) than the naïve
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scheduling policy (scheme 2) by trading off performance of some jobs.

3.6 Related Work

Energy has been an important issue in high performance computing (HPC) for over a decade.

Supercomputers as old as BlueGene/L have been built with the goal of maximizing power efficiency.

Power-scalable clusters that are equipped with voltage and frequency scaling have existed for

over a decade that enabled researchers to study the energy problem in HPC. Freeh et al. [Fre05a]

investigated the energy-time trade off of MPI applications to prove that it is feasible to save energy

by scaling the processor down to lower energy levels with or without time penalty depending on

the application. Springer et al. [Spr06] proposed a combined approach of performance modeling

and performance prediction for minimizing the execution times of MPI applications under energy

bounds. They used voltage and frequency scaling on single cores of a small cluster of up to 10

nodes for their experiments. In addition, there is abundant work presenting algorithms that use

frequency and voltage scaling mechanisms for energy savings [Lim06; Rou07; Rou09; Fre05b; Bai15].

In contrast, our work uses power capping via the Intel RAPL interface. Totoni et al. [Tot14; Lan15]

presented an ILP-based runtime system that schedules work on a selective subset of cores of a

single multi-core chip to meet the power or performance constraint. Within-die or core-to-core

variation-aware DVFS schemes [4556740; 4798265] have been proposed for chip-multiprocessors.
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These schemes select optimal voltage and frequency set points for each of the cores to achieve

improved power to performance ratio for the chip. Our work differs from this work in terms of

granularity. We study variation across several processors or chips and not across cores of a single

multi-core chip. We manage resources at processor (or chip) level. We use either all or none of the

cores of the chips/multi-core processors on a machine. Our goal is to improve the performance of a

parallel job scheduled on multiple processors under a strict power budget.

System-wide solutions for power constraint systems have been proposed that aim at increasing

the throughput of systems by leveraging the idea of hardware overprovisioning [FF05b; Pat13; Sar13a;

Sar14; FF05a]. Sarood et al. [Sar13b] proposed a scheme of determining an optimal number of nodes

under strong scaling of applications executing on an overprovisioned system while distributing

power between CPU and memory. Etinski et al. [Eti10b; Eti10a] proposed the use of dynamic voltage

and frequency scaling (DVFS) at the job scheduling-level to save energy and improve overall job

performance. Patki et al. [patki2] proposed power-aware backfilling to improve the throughput

of the system. Ellsworth et al. [Ell15] presented a power scheduler that enforced a system-wide

power bound by reallocating power across the cluster. Our work differs from all of the above because

our approach takes the performance variation across processors of a cluster into account while

scheduling and tuning jobs for performance.

Inadomi et al. [Ina15] propose performance optimizations across inhomogeneous processors.

It provides a detailed analysis of the phenomenon across multiple clusters and provides a set of

simple algorithms for intelligent power balancing. These algorithms, while groundbreaking, suffered

from two serious limitations. First, the processor power model assumed that CPU clock frequency

increased proportionally with power. While that is a useful simplification, our work here shows

that the story is not nearly so simple. Second, the algorithms assumed the ideal number of nodes

to use was fixed a priori. In our approach, PPart and PTune jointly determine the ideal number of

nodes and the power budget for every job at the time of scheduling. While the result of both of our

approaches is a power schedule, we are solving a fundamentally different problem.

Kappiah et al. [Kap05] presented a system that saves energy at the expense of execution time by

scaling down the frequencies of the cores when they encounter slack time in an MPI application.

Rountree et al. [Rou07] used linear programming to establish a bound on optimal energy savings of

an MPI application and presented a runtime algorithm to save energy in HPC applications with

negligible delay [Rou09]. Power conservation by means of turning off unwanted nodes is proposed

in [Pin01]. In the above presented solutions, authors used one core per node and their goal was to

maximize energy savings with minimal impact on the execution time. In contrast to these solutions,

we are intolerant to performance degradation. We use multicore processors and our goal is to

minimize the completion time as long as we stay within the power budget.
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3.7 Summary

We presented a hierarchical variation-aware machine-wide solution for managing power on a

hardware overprovisioned machine. It consists of a macro-level Power Partitioner that makes power

and job scheduling decisions and a micro-level Power Tuner that determines the optimal processor

selection and their power caps for a job such that its performance is maximized under a power

constraint. PTune achieves up to 29% improvement in performance compared to uniform power

capping. It does not lead to any performance degradation, yet frees up to 40% of resources compared

to uniform power capping. PPartition is able to improve the throughput of the machine by 5-35%

compared to naïve scheduling under the same machine power budget.

We established that under a power constraint, the variability in performance transforms into

variation in peak power efficiency. We believe that this variation in power efficiency should be one

of the primary considerations in the future power management research.
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CHAPTER

4

A POWER-AWARE COST MODEL FOR

HPC PROCUREMENT

As we approach exascale, a supercomputer is expected to cost about $200 million and use only 20

megawatts of power in achieving an exaflop [pcworld]. Considering the least expensive power in

the U.S. (≈ 5 cents/kWh) [nersc_report], the cost of operating this machine is $8.76 million per year.

Considering a lifetime of five years, its operating cost is about $45 million or nearly 25% of the total

cost of ownership (TCO).

4.1 Motivation for power-aware procurement

The status quo of supercomputing procurements is that the power is provisioned for the worst case

(WCP). After the initial burn-in phase, which often entailed a Linpack run among other application

acceptance tests, the power utilization of the machine drops to 61% of the procured power [Pat15].

This implies that the infrastructure put in place for peak power is no longer fully utilizing this power.

Such overprovisioning can be considered a bad investment of budget during steady state operation.

Our prior work on power-efficient computing under manufacturing variations shows that

processors are not most power efficient at WCP [gholkar1]. Hence, a system with WCP

procurement is not power efficient. Processors achieve peak power efficiency at disparate power

bounds due to manufacturing variability [Rou12]. Efficient processors achieve peak power
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efficiency at lower power bounds than the inefficient processors. Increasing the operating power of

the processors beyond these bounds leads to diminishing returns in terms of performance. Instead,

some power of these processors can be redirected to additional processors to get better

performance. Given a hard power constraint, we proposed PTune, a power tuner that exploits this

concept to maximize the performance of the system while staying within the power budget.

In this work, we propose a procurement strategy to design a machine that achieves maximum

performance per dollar by determining the optimal partitioning of the total budget into capital

expenditure (CAPEX) and operating expenditure (OPEX). For the scope of this paper, we limit the

OPEX to the cost of power procured for the lifetime of the machine.

Previous research [Heikkurinen; Tak; walker; Koomey] has developed cost models for

predicting the total cost of ownership (TCO) for cloud computing centers and datacenters. These

models do not share our objective of maximizing performance under a fixed system (dollar) budget.

In recent work [TapasyaThesis], Patki has studied the effect of adding more infrastructure to the

system under a fixed power budget. System-wide solutions for power constraint systems have been

proposed that aim at increasing the throughput of systems and the runtime of the jobs under a

fixed power budget [FF05b; Pat13; Sar13a; Sar14; FF05a; Pat15; Ell15]. Unlike all of this work, we

consider the system’s power budget as a variable expenditure that we balance against the

infrastructure cost to determine the break down of the system’s total budget that leads to maximum

performance. Furthermore, our model takes the effects of manufacturing variation on the

processor’s performance into account.

The paper is organized as follows. Section 4.2 states the problem statement. Section 4.3 gives an

overview of the cost model. Sections 4.4 describes our procurement strategy. Section 4.5 presents

the modeling results. Section 6.6 summarizes the contributions.

4.2 Problem Statement

Given a budget, S y s _B ud g e t , for a system acquisition, design a machine for optimal performance

under the assigned budget. The total budget can be divided into two main variable budgets: (1)

CAPEX or the cost of the infrastructure (S y s _I n f r a s t r u c t u r e _C o s t ); and (2) OPEX or the cost

of power (S y s _P o w e r _C o s t ) .

We propose a procurement strategy of building a system that achieves maximum performance

under the total budget by appropriately partitioning the budget into capital expenditure and

operating expenditure. To model the system, we quantify performance in terms of instructions

retired per second (IPS). System’s performance is represented by S y s I P S . Our objective is to

M a x i mi z e (S y s I P S ) (4.1)
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subject to S y s _B ud g e t ≥ S y s _P o w e r _C o s t +

S y s _I n f r a s t r u c t u r e _C o s t .

4.3 Cost Model

To demonstrate the model, let us consider a system of Intel Ivy Bridge (12 core Xeon E5-2697 v2

2.7GHz) processors. We make a number of assumptions about the system costs to simplify the

problem.

Capital Expenditure (CAPEX):

CAPEX is the cost of the physical assets (S y s _I n f r a s t r u c t u r e _C o s t ). We limit CAPEX to the cost

of purchasing racks. The cost of a rack (R a c k _I n f r a s t r u c t u r e _C o s t ) is assumed to be $366K.

This number is derived from the data for Jaguar [jaguar1; jaguar2]. A rack can host a maximum of

100 server nodes, where each node has two processor sockets. In this paper, we assume all racks

are identical, i.e., all the racks have the same set of processors and, hence, the same processor

characteristics. We assume a variation of 30% in performance across the processors of a rack due to

manufacturing variability [gholkar1].

Operational Expenditure (OPEX):

OPEX mainly consists of the fraction of the budget spent on power (S y s _P o w e r _C o s t ) required

to run the system for a pre-determined fixed duration. For simplicity, we limit ourselves to the power

associated with computing; networking and I/O is subject to future work, and so are secondary

operational costs, such as maintenance and support, including staff (typically subject to a separate

budget). We assume the minimum power required by the nodes (Pno d e ,mi n ) is 110W while the

maximum power (Pno d e ,ma x ) corresponding to the Thermal Design Power (TDP) of the processors

is 260W. We assume a flat power power of 5 cents per kWh [nersc_report]. Finally, we assume the

system’s lifetime of 5 years (T = 5×365×24 hours). This implies that the total cost of acquiring and

operating the machine for at least 5 years should not exceed the total budget.

4.3.0.1 Workload:

A supercomputing workload consists of multiple and often coupled parallel scientific simulations

that execute on several processors simultaneously. In the interest of simplicity, we assume that the

system runs a single application over the duration of its lifetime. To assess the differences between

codes, we study the effect of CAPEX and OPEX on performance for 4 different codes, viz., EP, SP, BT

from the NAS parallel benchmark suite and CoMD from the Mantevo suite, in the modeling results.
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4.4 Procurement Strategy

We propose a procurement strategy that builds a system with maximum performance under an

assigned total budget. We assume that a rack is always filled to capacity with compute nodes, i.e., it

hosts 200 processors. It can be powered at:

• Maximum Power: A rack is supplied with worst case power (WCP) to be able to run the

processors at their Thermal Design Power (TDP).

• Minimum Power: A rack is supplied with minimum power required by the computation

capability to be functional.

• Medium Power: A rack is supplied with less than required maximum power but greater than

the bare minimum power required by the computation capability it hosts.

The performance (and cost) of a rack is maximal under maximum power configuration. The

maximum power that can be provisioned to a rack (R a c k _ma x _p o w e r ) is 100×P(no d e ,ma x ). Its

power cost is 100×P(no d e ,ma x )×$0.05p e r k W h×T = $56, 940. Therefore, R a c k _To t a l C o s t(ma x ) =

$56, 940+$366, 197= $423, 137.

R a c k _To t a l C o s t(mi n ) represents the minimum budget required to add a rack to the system.

The infrastructure cost is the same as that of a packed rack. Its power cost is 100×P(no d e ,mi n ) ×
$0.05p e r k W h ×T = $21, 900. Therefore, R a c k _To t a l C o s t(mi n ) = $22, 338+$366, 197= $388, 535.

Given a fixed S y s _B ud g e t , the number of racks in the system (n um_r a c k ) that can be

procured ranges between n um_r a c k⊥ and n um_r a c k>.

The lower bound on num_rack (n um_r a c k⊥) is

n um_r a c k⊥ =
S y s _B ud g e t

R a c k _To t a l C o s t(ma x )
.

The upper bound on num_rack (n um_r a c k>) is

n um_r a c k> =
S y s _B ud g e t

R a c k _To t a l C o s t(mi n )
.

For n um_r a c k racks, the S y s _I n f r a s t r u c t u r e _C o s t is

n um_r a c k s ×R a c k _I n f r a s t r u c t u r e _C o s t .

The S y s _P o w e r _C o s t is calculated as

S y s _P o w e r _C o s t = S y s _B ud g e t

−S y s _I n f r a s t r u c t u r e _C o s t .

The S y s _P o w e r is calculated as

S y s _P o w e r =mi n (S y s _P o w e r _C o s t
$0.05 p e r k W h×T ,

n um_r a c k ×R a c k _ma x _p o w e r ).

The R a c k _P o w e r is calculated as

R a c k _P o w e r = S y s _P o w e r
n um_r a c k .
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At rack-level, for an assigned power budget of R a c k _P o w e r , PTune[gholkar1], our variation-

aware power tuner, determines the power distribution across the processors that achieves maximum

performance within this rack.

R a c k _P e r f o r ma n c e = P T une (R a c k _P o w e r )

As all racks are considered to be identical (statistically, given their large processor count), the

system’s performance can be calculated as

S y s I P S = n um_r a c k ×R a c k _P e r f o r ma n c e .

Given a R a c k _P o w e r budget, PTune[gholkar1] distributes the budget across the processors

of the rack systematically in a variation-aware, i.e., processor-sensitive, manner to maximize the

performance of this rack. A system configuration can be represented as a tuple over (1) the number

of racks in the system, (2) power allocated to a rack, and (3) the resulting performance of a system,

denoted as (< n um_r a c k s ,R a c k _p o w e r ,S y s I P S >). The winning design is the one that achieves

the objective of Eq.4.1.

4.5 Experimental Setup

Characterization experiments were conducted on the Catalyst cluster, a 324-node Ivy Bridge cluster

at Lawrence Livermore National Laboratory (LLNL). We used the performance and power data from

this entire cluster to represent one rack in the machine that we designed in the previous section.

Each node has two 12-core Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz processors and 128 GB of

memory. We used MVAPICH2 version 1.7. The codes were compiled with the Intel compiler version

12.1. The msr-safe kernel module provides direct access to Intel RAPL registers via libmsr [Sho14].

We used the package (PKG) domain of RAPL that provided us the capability of capping power for

each of the processors in an experiment. The environment was simulated in R. We used EP, BT, and

SP from the NPB suite and CoMD from the Mantevo suite in their pure MPI versions.

4.6 Results

We observe the impact of different breakdowns of the system’s budget (into CAPEX and OPEX) on

the performance of the system. At the rack-level, we use PTune [gholkar1] to get the maximum

performance under the rack’s power budget. Figure 4.1 depicts the performance of a rack at several

power budgets. The x-axis represents the rack’s power budget in watt and the y-axis represents the

rack performance normalized to the maximum performance across applications. We show results

for EP, SP, BT, and Comd. Data points corresponding to 26kW represent the performance at

maximum power (R a c k _ma x _p o w e r ). Every data point represents the performance

corresponding to variation-aware power tuning of the rack power across processors. We observe

that the performance increases non-linearly with rack power.
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Figure 4.1 PTune: Power Tuning Results for a rack at several rack power budgets.

Figure 4.2 shows the performance of a system under a fixed budget of $102 million. The x-axis

represents the number of racks and the y-axis represents the system performance normalized to the

optimal performance. The optimal design at 252 racks achieves 5% better performance compared

to the WCP. Purchasing more racks beyond this point (and effectively procuring less power) leads to

suboptimal capability. However, increasing the number of racks up to 255 gives at least as much

performance as the WCP design but addition capacity.

Purchasing more than 255 racks degrades the capability of the machine by up to 29% compared

to the optimal design. No more racks can be added beyond this point as the system budget will

not suffice to provision the bare minimum power required to power the system. It is important to

note that rack (n +1) is procured at the expense of the power stolen from the prior n racks. Since

the racks are always fully packed, their CAPEX is fixed. Hence, the only way to accommodate an

addition rack is to reduce the OPEX of the prior n racks. From this, we conclude that aggressively

purchasing infrastructure under a fixed system budget by disregarding the diminishing budget for

power does not lead to the best capability system design. A balance needs to be stricken between
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the CAPEX and the OPEX for an optimal system design.
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Figure 4.3 EP

Figures 4.3, 4.4, and 4.5, compare the results for 3 different codes under several system budgets.

(Results for SP are similar to EP and are omitted due to space). The x-axis represents number of racks

and the y-axis represents system performance. The figure shows 7 system budgets that correspond

to the cost of 40, 80, 120, 160, 200, 240, 280, and 320 racks at maximum power. The first data point in

each system budget curve represents the performance at WCP.

Overall, we make the following observations for these figures:

• Power-aware procurement can improve performance by up to 4%, 6%, 7%, and 4% for EP, SP,

BT, and Comd, respectively, compared to worst-case power provisioning.

•Without power-aware procurement, performance can degrade up to 25%, 28%, 41%, and 38%

for EP, SP, BT, and Comd, respectively, compared to worst-case power provisioning.

• Performance increases linearly with the system budget.
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Figure 4.4 BT

• Performance linearly increases with the number of racks before it reaches the peak, after which

there is a steep performance degradation. Peak performance is achieved relatively early in case of

BT (Figure 4.4) compared to EP and CoMD (Figures 4.3 and 4.5). BT has a longer tail that follows the

peak, representing the feasible system designs that lead to degraded system performance due to

aggressive infrastructure procurement.

• The absolute performance achieved by the system depends upon the application, i.e., the

optimal system design also depends on the application. The assumption that our system executes a

single application during the course of its lifetime does not hold in reality. Hence, it is necessary to

compromise on middle ground with a design that, on average, fits the needs of the applications

when run in capability mode.
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Figure 4.5 Comd

4.7 Summary

This work analyzed the effect of manufacturing variations on procurement and operations. It showed

that when partitioning the system’s budget into infrastructure cost and power cost, a balance needs

to be stricken between the two to achieve an optimal ratio of performance per cost (dollar). More

infrastructure does not necessarily mean more performance under a fixed total budget. Model-

based analysis provides the means to optimize power-aware procurement/operation for a set of

application codes. Such strategies may need to be adopted in the future to best utilize a compound

budget for systems and operations. Failure to plan ahead may either result in a nominal loss in

performance compared to such a balanced system, or a significant additional cost will be incurred

in operating cost to efficiently utilize an overprovisioned hardware installation.
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CHAPTER

5

POWER SHIFTER: A RUNTIME SYSTEM

FOR RE-BALANCING PARALLEL JOBS

The Uniform Power scheme (described in Chapter 2) is a naïve approach of enforcing a job’s power

budget. It suffers from two major drawbacks. First, processors on a cluster exhibit variations in

power efficiency that translate to variations in performance [Rou12; Gho16], which makes the

cluster non-homogeneous. Second, in practice, parallel applications tend to experience

computational imbalance across their processes (worker threads) due to uneven workload

distributions. As the simulation progresses, workloads can shift between processes leading to

dynamically load imbalance. Due to load imbalance, some processes finish computation early and

wait for others at barriers, collectives or blocking calls even on homogeneous systems. A

non-homogeneous system under a uniform power scheme can actually worsen performance if an

overloaded process is mapped to an inefficient socket, which lengthens its computation phases.

This leads to longer barrier wait times for underloaded processes. Such waiting results in unused

CPU cycles at barriers and other collectives, which further contributes to energy wastage. This is

depicted in Figure 5.1.
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5.1 Motivation for a power management runtime system

Prior work, PTune has addressed the problem of maximizing job’s performance under a power

budget. PTune is a processor variation-aware static job power management solution but it does not

handle the load imbalance. The application’s computation time profile differs across disjoint sets

of sockets under a power bound making it difficult to derive a static solution. This is depicted in

Fig. 5.2. The x-axis represents socket identifiers and the y-axis represent computation time between

two synchronization calls normalized with respect to the maximum compute time across all sockets

of a job (lower is faster). The application runs on 8 sockets. The socket finishing last, i.e., the socket

on the critical path, is circled.

The graph shows three jobs running on two distinct sets (A and B) of sockets. The job on Set A
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with no power bounds is represented by circles and A8 is the performance bottleneck. The job with

an average socket power bound of 50W on set A is represented by triangles and A8 is its performance

bottleneck. The job on Set B with an average socket power bound of 50W is represented by diamonds

and B5 is its performance bottleneck. The mapping of processes to socket IDs is identical in all three

jobs.

We observe the following:

•Uneven work distribution in a parallel job leads to different compute times across sockets leading

to wait times and wasted cycles and energy.

• The compute time curve with no power bounds (uniform performance) is different from that with

power bounds on sockets. For example, under power bounds, socket 4 finishes before sockets 2 and

3 unlike the no power bounds case.

• The compute time curve with identical power bounds on two different sets of sockets, A and B, is

different. The performance bottleneck shifts from socket A8 to socket B5. This is because B5 (set B)

is more power efficient than socket A8 (set A). Hence, under identical power bounds, the former

completes the same amount of computation significantly faster than the latter.

We address the inadequacies of PTune and other existing power [Mar15] assignment solutions

with Power Shifter (PShifter), a runtime system that maximizes job’s performance without exceeding

its assigned power budget. Determining a job’s power budget is beyond the scope of PShifter. PShifter

takes job power budget as an input.

PShifter is a hierarchical closed-loop feedback controller that makes measurement-based

power decisions at runtime and adaptively. At the top level, the cluster agent monitors the power

consumption of the entire job. It opportunistically improves the job’s performance by feeding its

unused power budget back into the job. Each socket is periodically monitored and tuned by a local

agent. A local agent is a proportional-integral (PI) feedback controller that strives to reduce the

energy wastage by its socket. It gives up socket power when its socket is an “early bird” that waits at

blocking calls and collectives. The cluster agent senses this power dissipation within a job in its

monitoring cycle and effectively redirects the dissipated power to where it can best improve the

overall performance of the job (i.e., reduce the critical path). In experiments, PShifter achieves a

performance improvement of up to 21% and energy savings of up to 23% compared to the naïve

approach.

Unlike PTune [Gho16] that relied on prior characterization data and was agnostic of phase

changes in computation, PShifter makes decisions based on runtime measurements and it

transparently and automatically applies power capping non-uniformly across nodes of a job in a

dynamic manner adapting to phase changes. It can readily be deployed on any HPC system with

power capping capability without modifications to the application’s source code.
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5.2 Design

PShifter is a hierarchical, closed-loop feedback controller that operates at runtime alongside the job.

The key idea is to make measurement-driven decisions dynamically about moving power within a

job from where it is wasted to where it is required (on the performance-critical path).

5.2.1 Closed-loop feedback controller

The general idea of a closed-loop feedback controller is depicted in Fig. 5.3. System is the component

whose characteristics are to be monitored and actuated by the controller. The current state of the

system is defined in terms of the process variable (PV). The desired state of the system, PV=K, where

K is a constant, is called the setpoint (SP). It is input to the feedback controller. A feedback-control

consists of three main modules, viz., sensor, control signal calculator, and actuator.

Control 
Calculations

System

Error
Set Point +

-
   Actuator 
ACT_SGNL

      Sensor
RD_SENSOR

Figure 5.3 Closed-loop Feedback Controller

Sensor: The sensor periodically monitors the state of the system defined in terms of process

variable. This is indicated by RD_SENSOR.

Control Signal Calculator: The error (err) in the system state is calculated as the difference between

the setpoint and the measured process variable. The feedback controller calculates the feedback

to the actuator as a function of this error. It also takes into account the history of error values. The

output of the feedback-control loop is calculated as the sum of the previous values of the actuator

and the calculated feedback.

Actuator: The actuator applies the calculated signal to the system. This is indicated by ACT_SGNL.

5.2.2 PShifter

PShifter consists of a dual-level hierarchy of closed-loop feedback controllers, a local agent and a

cluster agent. Fig. 5.4 depicts the high-level architecture of the controller and the mapping of its

components to the components of the underlying system.

Fig. 5.4(a) shows the architecture of a typical HPC cluster. It consists of multiple server nodes.
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Each server node hosts one or more sockets. Our server nodes have two sockets, each hosting a

single 12-core processor. Multiple parallel jobs spanning across one or more nodes can run on a

cluster, e.g., job1 runs on the top 4 nodes while job2 runs on bottom 4 nodes. An instance of PShifter

runs alongside each job and enforces its power budget while improving job performance under the

power constraint.

Cluster                        

Node

Socket/PKG/Processor

                 Job2– PShifter2                      

                      

                   Job1 – PShifter1                       

Cluster-agent

     PShifter                                                       
Socket/PKG/Processor RD_SENSOR ACT_SGNL

Local Agents

(a) Cluster (b) Power Control

Figure 5.4 PShifter Overview

PShifter’s controller hierarchy is depicted in Fig. 5.4(b). It consists of a cluster agent at the

root and several local agents at the leaves. At the bottom level, several local agents monitor the

performance and manage the energy consumption of the individual sockets of the job. At the top

level, the cluster agent overlooks the power consumption of the entire job.

Initialization

At job initialization, the cluster agent enforces a job’s power budget by uniformly distributing the

power across its sockets. This is the system state established by the naïve scheme. It enforces the

job level power budget but it does not address the problem of performance degradation due to

imbalanced jobs. Starting form this initial state, PShifter (local and cluster agents) gradually moves

power within the job to change the unbalanced performance state of the system to a desired, more

balanced performance.

Local agent

Local agents are the leaf nodes in PShifter’s hierarchy and implement a closed-loop feedback

controller. A local agent monitors and controls performance and energy consumption of a unique

socket in the job allocation. There is one local agent per socket in the job allocation. The local

agents are invoked periodically and asynchronously. The process variable, PV, for the local agent is
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defined as the ratio of the computation time to the total time (including computation, wait, and

communication time) between two subsequent invocations.

P V = C o mp u t a t i o nT i me
To t a l T i me

It is a measure of the socket’s computational load. In other words, it measures the proportion of

the total time spent doing useful work. Sockets with comparatively lower PV are called underloaded

sockets while sockets with higher PV re called overloaded sockets. Notice that computation time

includes memory access time. Thus, the process variable captures the memory-boundedness of the

job.

A local agent uses the power cap of the associated socket as its actuator. Each socket hosts

multiple (12) processes, each pinned to a unique core. Pinning processes to cores avoids unnecessary

overhead of Linux process migrations and longer memory access delays due to remote Non-Uniform

Memory Accesses (NUMA). The P Vp is measured by each process and for each socket’s local agent.

The process with the maximum P Vp is called the representative process of the socket and the

socket’s PV is equal to the representative process’s P Vp . The processes that have shorter computation

tasks finish early and wait for other processes (with longer computation tasks) before engaging in

communication or synchronization. These wait times lead to wastage of power that is not utilized for

any work (computation). The PV of a socket with “early bird” processes tends to be much less than

that of sockets with a bottleneck process, which tend to have a PV of almost one (as communication

takes some finite time). The goal of the local agent is to maximize the PV (Note: P V ≤ 1) and thus to

minimize the wait time. The setpoint (SP) is initialized to 0.95. It is experimentally determined. The

local agent strives to achieve this setpoint by lowering the power of the socket with PV < 0.95. This

slows down the processes that originally had shorter computation tasks and subsequently reduces

their wait times in future iterations. It is important to note that local agents make decisions based

only on local information, i.e., they do not need to communicate or synchronize with others.

The local agent is implemented as a proportional-integral (PI) controller. The PI controller makes

power decisions dynamically at runtime based on measured values of the process variable. The PI

feedback from the local agent is calculated as

f bl o c a l _a g e n t = P t e r m + I t e r m ,

where Pterm denotes the proportional term and Iterm stands for integral term. Pterm is

calculated as

P t e r m = K p ∗ e (t ),

where Kp is a constant. Iterm is calculated as

I t e r m = K i ∗
∫

e (t )d t ,

where Ki is a constant. The error, (e(t)) at time t, is calculated as

e r r = P V −SP.

The constants were application specific (but vary only 5% between applications) and were

determined experimentally, a common method in feedback-control systems: We set the integral
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gain, Ki, to zero and increase the proportional gain, Kp, until the outputs oscillate. We then increase

Ki to reduce the steady state error to an acceptable level of 5%.

Pterm accounts for the current error and calculates a response proportional to this error. Iterm is

calculated as the product of aggregated past errors over time and the constant Ki. Iterm is dependent

on the magnitude of past errors and the time for which they stay uncorrected. If the output generated

by the proportional term is small and does not reach the setpoint over multiple invocations, the

error aggregated over several invocations helps in strengthening the output (larger Iterm) and, in

turn, approaches the setpoint faster. This may cause the controller output to overshoot the setpoint.

Hence, we use a bandpass filter to limit Iterm. Error values are accumulated for Iterm only until it

reaches the upper or lower (error can be positive or negative) saturation point of the filter. The power

cap of a socket is the actuator. The output of the local agent or the new power cap is calculated as

P c a p(c u r r e n t ) = P c a pp r e v + f bl o c a l _a g e n t ,

where P c a pp r e v is the previous power cap of the socket and

f bl o c a l _a g e n t is the calculated feedback.

The impact of power modulation on the socket’s performance or PV depends on the memory-

boundedness and the CPU-boundedness of a job. As the local agent monitors PV and keeps track of

the error history as it sets power caps at each invocation, it indirectly learns about the nature of the

job. It incorporates this knowledge into feedback in the form of Iterm.

Cluster agent

The PV of the cluster agent is the job’s power consumption measured using Intel’s RAPL interface, i.e.

the aggregate power consumption of all of its sockets. The cluster agent’s SP is set to the job’s power

budget (Pj o b _b ud g e t ). where Pi is the measured power consumption of the i t h socket. Note that the

error is indicative of a job’s unused power (Pj o b _un u s e d ) budget. The cluster agent distributes this

unused power uniformly across all sockets. The feedback from the cluster agent ( f bc l u s t e r _a g e n t )

is calculated simply as

f bc l u s t e r _a g e n t =
Pj o b _un u s e d

N ,

where N is the total number of sockets of the job.

The cluster agent and the local agents share their actuators, i.e., the cluster agent also uses

the power actuators of the sockets. When the cluster agent is invoked, it overwrites the power

caps of sockets. The new power caps are calculated as P c a pc u r r e n t = P c a pp r e v + f bc l u s t e r _a g e n t .

The cluster agent is invoked less frequently than the local agent giving the local agent multiple

opportunities to give up just enough power to reach the local setpoint. When the cluster agent is

invoked, it effectively feeds the unused power back into the job by redistributing it uniformly across

sockets. This step results in redirecting some power from the sockets that have shorter computation

to the sockets that have longer computation (bottleneck processes that determine the completion
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time of the job) in every invocation. This opportunistically speeds up bottleneck processes and

reduces the overall completion time of the job.

Fig. 5.5 summarizes the design of PShifter. The local agents of sockets 2, 3, and 4 reduce the

power of the sockets to slow down the processing resulting in reduced wait times. When the cluster

agent is invoked, it calculates the unused power of the job and distributes this uniformly across all

of its sockets. As a result, socket 1, which never gave up any power, now gets some additional power

to finish its computation faster, resulting in an overall improvement in performance.
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Figure 5.5 Cluster agent and Local agent

5.3 Implementation and Experimental Framework

Our solution was developed on the Catalyst cluster at Lawrence Livermore National Laboratory

(LLNL). It is a 324-node Intel Ivy Bridge cluster. Each node has two 12-core Intel(R) Xeon(R) E5-2695

v2 @ 2.40GHz processors and 128 GB of memory. Each MPI job runs on a dedicated set of nodes on

this cluster. No two jobs share nodes. For the power measurement and actuation, we leverage Intel’s

Running Average Power Limiting (RAPL) feature [Int11]. From Sandy Bridge processors onward,

Intel supports this interface that allows the programmer to measure and constrain the power

consumption of the package (PKG) by writing a power limit into the RAPL model specific register

(MSR). Here, a package is a single multi-core processor chip or a socket. RAPL is implemented in

hardware. It guarantees that the power consumption stays at the power limit specified by the user.

The msr-safe kernel module installed on this cluster enabled us to read from and to write to the

Intel RAPL model specific registers in userspace via the libmsr library [Sho14].

We used MVAPICH2 version 1.7. The codes were compiled with the Intel compiler version 12.1.

PShifter is a library that can be linked with the application. It is implemented using the MPI standard

profiling interface[MG97] (PMPI). The feedback controllers are called in the wrapper functions
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of MPI calls, which are invoked by an MPI application. Hence, our solution does not require any

modifications to the application. Applications only need to be linked to our library. We pin each MPI

process to different cores of the job’s sockets. The term process is used to refer to an MPI process.

At initialization, i.e., in the MPI_Init wrapper, PShifter sets the RAPL power cap of all the sockets

within a job to J o b ′s P o w e r B ud g e t
N . It creates two types of MPI sub-communicators, viz.,

MPI_LOCAL_COMM per socket and MPI_CLUSTER_COMM per job using MPI_Comm_split. Each

MPI_LOCAL_COMM communicator consists of all the processes pinned to the cores on the same

socket. The process pinned to core 0 acts as sub-root (sub-rank 0) and runs the local agent. The

MPI_CLUSTER_COMM consists of all the local agents with the local agent at MPI rank 0 acting as

the root or the cluster agent. Each process records its computation time and the total time

(computation+wait time). It then calculates its PV at every invocation. The local agent of every

socket selects the process with maximum PV across all its processes as a representative. It also

measures the power consumption of its socket. The local agent computes f bl o c using this PV and

sets the new power cap for its processor. To set the power cap, it calls set_rapl_limit of the libmsr

library.

The cluster agent invocation involves three steps. First, it measures the power consumption of

the job by aggregating the power consumption across its sockets. This is done using MPI_Reduce

over the MPI_CLUSTER_COMM communicator. The feedback is calculated and broadcasted (using

MPI_Bcast) by the cluster agent to all the local agents that enforce the new power caps.

5.4 Experimental Evaluation

We evaluated PShifter with MiniFE and CoMD proxy applications from the Mantevo [Her09]

benchmark suite, and a production application, ParaDiS [Bul04]. miniFE is representative for

unstructured finite element codes. CoMD is a proxy application for molecular dynamics codes.

Explicit load imbalancing was turned on for these proxy applications. ParaDiS [Bul04] is a

dislocation dynamics simulation code. We weakly scaled the inputs to miniFE and CoMD by

increasing the input sizes proportionally to the number of nodes. For ParaDiS we used two LLNL

inputs, small scale (≤ 384 cores) and large scale (> 384 cores). We weakly scaled each of these two

inputs as we ran them on up to 32 and 256 sockets, respectively.

We used the MPI versions of these codes in our experiments. We report performance in terms of

job completion time in seconds, average power in Watts, and energy in Joules. The reported numbers

are averages across five runs. with a maximum standard deviation of 7%. The baseline for evaluation

is uniform power (UP), where the job’s power budget is distributed uniformly across all the sockets

of a job. The maximum socket power consumption across our applications was observed to be 90,

i.e., none of these benchmarks, would ever exceed 90W on a socket. Hence, we show evaluation

results for power constraints ranging from 90% to 60% (80W to 55W, respectively) of maximum
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5.4.1 Comparison with Uniform Power (UP)

Fig. 5.6 shows the performance imbalance that persists within 8, 16, and 32 socket jobs of miniFE.

The job’s power budget is set to 440W, 880W, and 1760W for 8, 16, and 32 socket jobs, respectively. The

y-axis represents execution time of the job in seconds. Each stacked bar in the plot represents the

computation (gray) and non-computation (white) time for each socket’s representative process. The

total height of the bars (gray+white) indicates the completion time of the job. For each job size, there

are two groups of bars, one corresponding to the UP scheme and the other corresponding to the

PShifter scheme as labeled in the plots. The x-axis represents the socket IDs within each job. It can be

observed that some sockets spend more time in the computation phase than other sockets causing

performance imbalance within the job. This imbalance can be quantified as I = ma x (Ci )−mi n (Ci )
me a n (Ci )

,

where Ci is the computation time of the i t h socket’s representative process.

Observation 1: PShifter moves power from underloaded sockets to overloaded sockets.

For example, in case of the 16 socket job, it can be observed that under UP, even numbered

sockets have longer computation phases and, hence, high PVs (overloaded sockets) than odd

numbered sockets (underloaded sockets). PShifter effectively moves power from underloaded
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sockets to overloaded sockets within the same job.

This is shown in Fig. 5.7. The y-axis represents average power consumption in Watts over the same

x-axis as before (socket IDs). UP indicates uniform power distribution across different sockets of a

job while PShifter enforces a non-uniform distribution of the job’s power budget, with underloaded

sockets (e.g., odd sockets in the 16 socket job) at lower power than overloaded sockets (e.g., even

sockets).

Observation 2: PShifter leads to a balanced execution of a parallel job.

As a result of shifting power from underloaded sockets to overloaded sockets, the rate of

computation on the underloaded sockets slows down while that on the overloaded sockets speeds

up. This leads to a reduction in the computation time on the overloaded sockets and an increase in

the computation time on the underloaded sockets, resulting into a balanced parallel execution. The

wait times for underloaded sockets are also reduced under PShifter. This can be observed in Fig. 5.6

by comparing the corresponding UP and PShifter bar plots for 8, 16 and 32 sockets.

Table 5.1 summarizes the imbalance values for each of the jobs. PShifter reduces the imbalance

by 75%, 87%, and 80% for 8, 16, and 32 socket, respectively.

Table 5.1 Imbalance Reduction

Socket Count Imbalance with UP Imbalance with PShifter

8 16% 4%
16 31% 4%
32 49% 10%

Observation 3: PShifter reduces the completion time of the power-constrained parallel job without

violating its power budget.

The completion time of a parallel job is constrained by the completion time of the socket with

the largest PV value as it hosts the bottleneck process with the longest computation time. Such a

socket is on the critical path of parallel execution. Moving power to this overloaded socket speeds

up its rate of computation and thus reduces the length of the critical path of parallel execution and

the job’s completion time. This can be observed in Fig. 5.6, where PShifter reduces the completion

times by 2%, 10%, and 14%, for 8, 16, and 32 socket jobs, respectively.

Observation 4: The power consumption of sockets under PShifter is proportional to the respective

computational loads (or computation times under UP).

It is interesting to note that the shape of the computation time curve under UP in Fig. 5.7 matches

the power curve under PShifter for each job. This shows that PShifter shifts just the right amount of

power between sockets such that the resulting power consumption of each socket is proportional

to its computational load. However, it is important to note that PShifter does not need any prior
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information about the job’s computation time profile. Instead, the decisions about the amount of

power to be shifted, the source and the destination of shifted power are made by the local agents

and the cluster agent together based on their runtime sensor inputs.

Observation 5: PShifter reduces the energy consumption of the parallel job.

PShifter reduces the energy consumption of 8, 16 and 32 socket jobs by 2%, 14%, and 16%,

respectively, over UP. This has two aspects. First, PShifter reduces the completion time of the job

without exceeding its power budget. This leads to energy savings. Appropriate shifting of power by

PShifter leads to a reduction in wait times of the underloaded sockets. Also the power assigned to

the underloaded sockets is lower under PShifter. Hence, while they wait for reduced durations, they

consume lower energy even in their waiting phases compared to that in case of UP. This further

adds to the energy savings.

Scalability

We evaluated PShifter on up to 3072 cores on 256 sockets. Fig. 5.8 - 5.10 compare the performance

of miniFE, CoMD, and ParaDiS under UP and PShifter at six different job power budgets for each job

size. The x-axis denotes the number of sockets (n) in a job. Average power per socket (Av g _P o w ) is

indicated at the top of the plot. A job’s power budget is set at n ×Av g _P o w . The y-axis represents a

job’s completion time in seconds. As indicated in the legend, the performance under UP and PShifter

is represented by gray and white bars, respectively. The percentages on the top of the PShifter bars

indicate performance improvement or reduction in completion time achieved by PShifter over UP.

The error bars show the maximum and minimum completion times across five repetitions of each

experiment.

PShifter achieves performance improvements of up to 17%, 21%, and 21% for miniFE, CoMD,

and ParaDiS, respectively. The geometric mean is 6.5%, 5%, and 7.5% for Fig 5.8 - 5.10, respectively.

The overhead of running PShifter is no more than 5% (included in the results). In most cases, PShifter

causes less run-to-run variation across several repetitions of every experiment compared to UP. This

can be observed by comparing the error bars on PShifter and UP in Fig. 5.8 - 5.10.

In some exceptional cases, we observe 0% performance gains. For example, consider the 128

socket experiments of miniFE with an average socket power of 55W. PShifter reduces the imbalance

by 32% over UP. However, this is countered by the added communication time leading to 0%

improvement in performance. Nonetheless, PShifter never loses in performance.

Fig. 5.11 - 5.13 compare the energy consumption of miniFE, CoMD, and ParaDiS under UP

and PShifter for the six different job power budgets as before. The x-axis is the same as in case of

Fig. 5.8 - 5.10. The y-axis represents the energy consumption in KiloJoule. The percentages on top of

the PShifter bars represent percentage energy savings of PShifter over UP. PShifter achieves energy

savings of up to 22%, 16%, and 23% with geometric means of 10.5%, 5.3%, and 9.15%, for miniFE,
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CoMD, and ParaDiS, respectively. It is important to note here that even in case of 0% performance

improvement for the 128 socket job of miniFE at an average socket power of 55W, PShifter achieves

12% energy savings, i.e., when PShifter is at par in performance, it may still gain energy savings over

UP. PShifter never loses in energy either.

Observation 6: PShifter scales well with increasing socket count.

Under each power budget (Av g _P o w ), PShifter achieves sustainable performance gains even

at higher (64, 128, 256) socket counts. Exceptions to this observation are data for miniFE at lowest

(55W) and higher (75-80W) power budget. The reasoning for the former case is discussed above.

In cases of higher power budgets, it is observed that most of the overloaded sockets are already

operating at maximum power (i.e., they are not power constrained) and, hence cannot benefit from

additional power. PShifter shifts power away from underloaded to overloaded sockets but these

overloaded sockets cannot consume any additional power but underloaded sockets now consume

lower power. Hence, the job’s energy consumption reduces (5-9%) but performance gains are not

significant. This also explains why the performance gains of PShifter at the highest power budget

are not as good as in cases of lower power budgets.

Observation 7: PShifter compliments application-specific load balancing and further improves

application performance.

Some applications (e.g., ParaDiS) have a built-in application-specific load balancer that moves

data from overloaded processes to underloaded ones to reduce the imbalance within a job. This

leads to shorter wait times and thus better performance. Our experiments (Fig. 5.14) indicate when

PShifter is combined with the application-specific load balancer, it leads to up to 6% and on an

average 3.25%, 4.5% and 1% additional performance improvements on top of load balancing at 60W,

70W, and 80W average power per socket, respectively.
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Figure 5.14 PShifter compliments application-specific load balancer for ParaDiS.

However, not all applications are equipped with an application-specific load balancer and
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developing one requires domain-specific knowledge and modifications to the application. PShifter

avoids this developmental effort and provides a general system software solution that can be

deployed across applications to reduce workload imbalance by using power as an actuator.

Dynamic Phase-change Detection and Power Management

Observation 8: PShifter detects phase changes at runtime and accordingly shifts power to minimize

the new imbalance.

We illustrate the dynamic power management by PShifter in in two figures. Fig. 5.15 shows the

performance imbalance within a 16 socket job for two consecutive phases (shown in the legend)

of miniFE. The x-axis represents socket ID and the y-axis represents computation time for each

socket per phase without our scheme. The sockets can be grouped into four groups, G1 (socket 1,

3, 5, and 7), G2 (socket 9, 11, 13, and 15), G3 (socket 10, 12, 14, and 16), and G4 (socket 2, 4, 6, and

8) in the increasing order of their computation times in the first phase. In the second phase, loads

are reversed between groups, i.e., group G1 becomes the group of overloaded sockets compared to

the other groups. G2 and G3 have more or less the same computational load while G4 becomes the

group with the least load.

Fig. 5.16 shows the power profile for the same job as power decisions are made by PShifter during

runtime. The x-axis shows the timeline in seconds, the left y-axis shows socket and the right one

shows total job power. Power consumed by the 16 sockets of the job and job power are represented

by the symbols shown in the legend. The job’s power budget is set to 55W*16=880W. All the sockets

are initially capped at 55W. As the execution progresses starting from Phase 1, sockets belonging to

groups G1 and G2 start giving up power as they are underloaded sockets compared to the rest of

the groups while sockets from groups G3 and G4 gradually gain more power in the order of their

computational load. After the initial power shifting (from 0 to 7 seconds), socket power stabilizes for

each socket until the phase change occurs. After the phase change at 33 secs, power is shifted from

groups G2, G3, and G4 to G1 as it is the most overloaded group of sockets. Sockets from groups G2

and G3 stabilize in the range of 40W to 55W while G4 sockets stay at minimum power as they have

the least load.

For each curve, you can see multiple data points that show drops in socket power followed

by a steep rise in a periodical fashion. The drops are a result of local agent’s invocations that

lead to lowering of power caps in case of P V < 0.95. The rise in power caps is a result of cluster

agent invocation that feeds back the unused power into the sockets. The total job power remains

consistently below the job’s power budget. With PShifter the job completes in 85 seconds.
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Figure 5.15 Imbalance in two phases of a 16 socket job
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Figure 5.16 Power Profile for a 16 socket job with PShifter
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Figure 5.17 Power Profile for a 16 socket job with PTune
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5.4.2 Comparison with PTune

In recent work, Gholkar et al. [Gho16] presented PTune, a process variation-aware power tuner

that uses performance characterization data for all sockets on a cluster and application execution

characteristics to minimize the runtime of a job under its power budget. PTune makes static (at

the time of job scheduling) decisions for every job about the choice of sockets and the distribution

of the job power budget across them. It eliminates inefficient sockets from the job allocation that

are unaffordable under an assigned power budget and distributes power non-uniformly across the

chosen sockets to counter the effect of performance variation across the cluster. To enforce its policy,

PTune requires an application to be moldable (number of ranks is modifiable) as the number of

nodes in the optimal configuration for a power budget varied based on availability of nodes and the

power characteristics of their sockets.

While PTune shares the common objective of achieving performance improvement under a

fixed job power budget, it is oblivious of the algorithmic or workload imbalance within a job. As

PShifter makes measurement-driven dynamic power decisions at runtime, it detects such workload

imbalance. Hence, unlike PTune, PShifter rebalances a job with or without workload imbalance

on a non-homogeneous machine operating under a power constraint. In addition to this, PShifter

easily compliments today’s parallel computing system software. It is a stand-alone runtime system

that can run alongside every job once it is scheduled by a conventional scheduler. It does not need

to co-ordinate in any way with other modules of the system — unlike PTune, which needs to work

with the conventional scheduler as it modifies the job allocation for power-constrained jobs. PTune

also requires applications to be moldable, which they currently are not.

Table 5.2 compares the completion times of perfectly balanced miniFE jobs with the two power

management schemes, PTune and PShifter, for 8, 16 and, 32 socket jobs at 55W per socket. PShifter

achieves an average performance improvement of 9%, 12% and 22% over PTune for 8, 16, and 32

socket jobs, respectively.

Table 5.2 Completion time of MiniFE with PShifter and with prior work, Power Tuner (PTune)

Socket Count PTune PShifter

8 154s 139s
16 174s 153s
32 181s 141s

Unlike PTune, PShifter achieves these speedups without requiring any prior information about

the sockets or the application’s power-performance curves. It is important to note here that the data

(completion time) for PTune does not take the training time (for characterization runs) into account.
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It only represents the final completion time for the jobs once they are configured by PTune. Even

though this gives PTune an advantage, PShifter outperforms PTune for balanced codes. Generation

of training data would require additional time and energy for PTune that is not accounted for in

Table 5.2.

PTune is oblivious of the runtime imbalances within a job and, hence, is not designed for

optimization of load imbalanced jobs unlike PShifter. This is depicted is Fig. 5.17, which shows the

power profile for PTune with static decisions running the same application as shown in Fig. 5.16

(same axes and power budget as before). At the job initialization, PTune caps sockets

non-uniformly by taking the power and performance characteristics of the sockets into account

using prior information. This power distribution configuration remains constant throughout the

execution. With PTune, this job completes in 144 seconds (40% slower than with PShifter) as the

power distribution is not aligned with the load distribution which can only be detected at runtime.

The phase change is delayed compared to PShifter as shown in the figure. PTune neither detects nor

responds to this phase change as it makes static decisions at job scheduling time unlike PShifter,

which makes measurement-driven dynamic decisions.

5.4.3 Comparison with Conductor

Conductor is a dynamic scheme closest to PShifter with an on-line power-constrained runtime

system [Mar15]. Conductor requires applications to be configured with one MPI task per RAPL

domain (per processor or socket depending on the Intel chip), and to be OpenMP enabled since it

exploits thread parallelism. This hard requirement for hybrid MPI+OpenMP limits Conductor to

a subset workloads that excludes MiniFE, which supports MPI only, but not in conjunction with

OpenMP. We therefore exclude MiniFE from this comparison.

Conductor speeds up an application’s critical path through an adaptive socket power-allocation

algorithm that periodically performs dynamic voltage frequency scaling (DVFS) and dynamic

concurrency throttling (DCT) based on application behavior and power usage. Conductor consists

of two main steps: (a) Configuration space exploration determines the best frequency and thread

concurrency level for individual computation tasks under the power limit. (B) Power reallocation

intelligently re-assigns power to the application’s critical path.

A typical time step in an application may comprise several computational sections. Conductor

selects the best configuration (concurrency level and DVFS state) per section. (1) Conductor records

power and performance profiles per section for all possible configurations. To reduce the run-time

overhead, Conductor performs this step in a distributed fashion by assigning a unique configuration

subset to each MPI process and then gathers these profiles at the end of the time step. From these

profiles, Conductor creates a list of of power-efficient configurations (that are Pareto-efficient) per

code section and subsequently selects any new (lower power) configurations during execution.
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(2) Conductor monitors power usage per MPI process, estimates the critical path of the

application using historical data collected on-line, and reallocates power to speed up the critical

path. In more detail, monitoring provides the means to reduce the power consumption on

non-critical paths via a low-power configuration that finishes computation just in time without

perturbing the critical path. This frees up some power. Differences between MPI processes and

paths may be due to an application’s load imbalance or differences in power efficiency between

sockets. Conductor allocates more power to the processes on the critical path to speed up the

application without violating the job power constraint. Conductor performs the power reallocation

step at the end of several time steps demarcated using source-level annotations, which must be

added by the user.
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Figure 5.18 Comparison of PShifter with prior work, Conductor for CoMD.

Fig. 5.18 and Fig. 5.19 depict the performance improvement (y-axes) of PShifter and Conductor

over Uniform Power for CoMD and ParaDiS, respectively, for different numbers of sockets (x-axes).

We used one MPI process with up to 12 threads per socket. For both applications, Conductor

consistently performs worse than PShifter. Conductor’s lower performance is due to three reasons:

(1) Conductor’s heuristic for power re-allocation has limitations. The heuristic re-distributes

unused job-level power to processors in the order of fraction of time spent near the processor

power limit. But this results in inefficient power allocation compared to PShifter’s power allocation

because for long-running computation Conductor’s heuristic depends on average power usage,

which ignores spikes in power demands of the computation tasks. (2) Conductor’s configuration

selection phase relies on the repetitive nature of code in terms of the computational load and

execution paths across processors. Since both the applications were load imbalanced across
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Figure 5.19 Comparison of PShifter with prior work, Conductor for ParaDiS.

processors (ParaDiS also being non-deterministic over time), Conductor was forced to perform

configuration exploration sequentially per process, which contributed to the performance

degradation, especially at lower operating frequencies and core counts. Although amortized over a

large number of timesteps in our evaluation, this degradation in the configuration exploration step

offset the performance gains in subsequent power re-allocation steps. (3) Conductor’s heuristic for

power management depends on algorithm-level knobs such as number of samples before

re-allocating power, fraction of power donated/re-distributed among processors, and the power

threshold to trigger power balancing. While it is easy to set up these knobs for repetitive,

load-balanced applications, selecting a performance-optimizing combination of them for

load-imbalanced applications results in exhaustive search. Our analysis showed that even the

best-performing combination of these knobs resulted in thrashing between disjoint power

schedules as the load imbalance changed over the run-time for ParaDiS. The performance

degradation due to inefficient power schedules offset the performance gains of efficient power

schedules. Table 5.3 summarizes the comparison of PShifter with the closest prior work.

5.5 Related Work

High performance computing (HPC) has increasingly been driven by power constraints in the past

ten years. BlueGene/L was an early system originally based on an embedded processing core to limit

power consumption. HPC facilities with DVFS have been studied for a long time. MPI applications

were shown to often benefit by trading a slight increase in execution time (or sometimes even

none when memory bound) due to running at lower frequencies for a significant reduction in
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Table 5.3 Comparison of PShifter with PTune and Conductor

Feature PShifter PTune Conductor
Power dynamic static dynamic
management
MPI X
MPI+OpenMP
Non-moldable jobs X
Load-imbalance X

low performance
No prior data X
required
Overheads low high high
Deployment needs
no modification to X
status-quo system

power [Fre05a]. DVFS has been combined with performance modeling and prediction to reduce

the runtime of MPI codes under energy constraints [Spr06]. A plethora of algorithms exploit DVFS

to save energy of HPC jobs [4118669; Lim06; Rou07; Rou09; Fre05b; Bai15; HF05; Ge07; Bha17].

Prior work [CM06; Li10] has also leveraged the effect of concurrency throttling and thread locality

to save power and increase performance. While these approaches successfully lower the energy

footprint of the jobs, they are ineffective in enforcing caps on job-level power budgets. Our work, on

the other hand, uses power actuators via Intel’s RAPL interface and guarantees that the job-level

power constraint is never violated. While RAPL has been explored previously, PShifter is first (to

our knowledge) to demonstrate that feedback-driven power reallocation transparently and without

any training, results in effective computational load balancing. The novelty of the submission is the

combination of the PID controller and RAPL for HPC applications, even across phase changes.

Early work exploited DVFS to reduce CPU frequencies during idle time, e.g., due to early arrival

at MPI barriers and collectives [Kap05]. An ILP-based approach to model energy [Rou07] was

demonstrated to be effective during the runtime of MPI codes to determine optimal power levels

with little to no impact on execution time [Rou09]. Another effective method is to simply power

down nodes when not needed to reduce energy [Pin01]. These works were trying to reduce power

without sacrificing performance by much when utilizing just one core of a node resulting in

underutilization of the system. PShifter differs in that its foremost objective is to guarantee a power

constraint followed by trying to not degrade performance — and, as experiments showed,

successfully so, as most runtimes are reduced — while utilizing all cores of a node.

An ILP-based runtime approach has been shown to determine how many cores an application

should be run on to stay within a given power budget [Tot14; Lan15]. Our work differs from this

work in terms of granularity and adaptivity. We manage power across resources at processor chip
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level exploiting dynamically adaptive feedback methods.

Capacity-improving schemes that increase job throughput have been developed under power

limitations by exploiting “hardware overprovisioning”, i.e., by deploying more nodes that will be

powered at a time [FF05b; Pat13; Sar13a; Sar14; FF05a]. In such a system, the characteristics of a

code under strong scaling were used to calculate the optimal number of processors considering

core and memory power [Sar13b]. Just by exploiting DVFS at the granularity of a job, runtime and

power can also be reduced [Eti10b; Eti10a]. Modifications to the batch scheduler in how small jobs

are backfilled depending on their power profile can further increase job capacity [patki2]. These

schemes do not deal with application imbalance. They, directly or indirectly, assign power budgets to

the jobs running on the machine and assume a uniform power distribution within a job. Our solution

compliments these approaches by dynamically detecting the imbalance and shifting power within

a job to the resources where it is required with the objective of improving the job’s performance.

We do not explicitly aim at maximizing the machine’s throughput, which is beyond the scope of

this paper, but we often improve throughput as a side effect of PShifter. More specifically, each

job finishes early under our scheme compared to the uniform power distribution scheme. This

effectively improves the overall throughput of the system.

In other work, power was shifted within systems via scheduling while adhering to a global

power cap [Ell15]. While this approach salvages the unused power, it does not detect wasteful power

consumption of the processors at the barriers or other collectives resulting from any imbalance in

the job. Our approach is able to reduce this waste and redirect power where it can be better utilized.

Power balancing is a technique shown to be able to leverage differences in performance across a set

of nodes and their cores [Ina15]. However, one pitfall of this method is its assumption, even though

resulting in a good balance, that power and processor frequency have a proportional relationship.

Later work indicated that power and processor frequency do not have a linear correlation opening

up leverage for more refined power tuning [Gho16]. In a more recent work, waiting cores in the

communication phase were power-gated and the saved power was then redirected to other active

cores [7573800]. This work made an assumption that the time to power-gate and wake-up a

processor is greater than the communication delay. First, PShifter does not rely on any such

assumption. Second, with PShifter, sockets that are not on the critical path operate at lower power

not just during communication but also during longer computation phases leading to significant

power savings that can be used to accelerate the computation of other sockets on the critical path.

Our PShifter work is unique in that it neither makes any assumptions about the

power-performance relationship of the processors nor does it require prior information about the

variation across the processors. This, and the fact that it adapts dynamically to changes in

execution behavior, are the biggest virtues of our scheme. PShifter makes measurement-based

decisions by monitoring the state of the system. As this is a dynamic runtime system, it can also

sense the imbalance resulting from the unequal division of work across processors in iterations in
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addition to the static imbalance induced due to performance variation across processors under

power caps. Proposed frameworks like Redfish, the PowerAPI, and Intel’s GEOPM [Red; Gra16; Api]

can integrate PShifter as a unique closed-loop feedback-based policy for job power management

on a cluster. PShifter also relieves the application developers of the burden to explicitly indicate

phase changes as required by the APIs (like GEOPM) as PShifter automatically detects phases

without any explicit information from the developer.

5.6 Summary

We presented PShifter, a feedback-based hierarchical solution for managing power of a job on a

power-constrained system. PShifter makes dynamic decisions at runtime solely based on

measurements. Unlike prior work, it does not depend on any a prior data about the application or

the processors. At job level, PShifter employs a cluster agent that opportunistically improves the

performance of a job while operating strictly under its power constraint. It does so by dynamically

re-directing power to where it is needed. At processor level, PShifter employs local agents that aim

to reduce the energy of the processors they manage. They achieve this by reducing the power of the

processors that incur long wait times. Our evaluations show that PShifter achieves a performance

improvement of up to 21% and energy savings of up to 23% compared to a naïve approach.

Compared to a static power scheme, PShifter improves performance by up to 40% and 22% for

codes with and without phase changes, respectively. Compared to a dynamic power scheme, it

improves performance by up to 19%. PShifter transparently and automatically applies power

capping non-uniformly across nodes in a dynamic manner adapting to changes during execution,

simply by linking the PShifter library with or preloading it to an application.
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CHAPTER

6

UNCORE POWER SCAVENGER: A

RUNTIME FOR UNCORE POWER

CONSERVATION ON HPC SYSTEM

One approach of achieving the goal of an exaflop under 20-30 MW power envelope was to develop

solutions that improve the power efficiency (performance per Watt) of an HPC system by maximizing

performance under a fixed power budget. Prior work presented in Chapters 3- 5 (Power Tuner, Power

Partitioner and Power Shifter) focussed on this approach. Another direction of advancing toward

this goal is to reduce the wasteful consumption of power that does not contribute to performance. In

this work, we propose the Uncore Power Scavenger (UPS). UPS attempts to conserve power without

significant impact on performance.

6.1 Uncore Frequency Scaling

From Haswell processors onward, Intel has introduced uncore frequency scaling (UFS) that can

be used to modulate the frequency of the uncore independent of the core’s operating state. UFS is

exposed to software via a model-specific register (MSR) addressed at 0x620. Bits 15 through 8 of

this MSR encode the minimum uncore frequency multiplier while bits 7 to 0 encode the maximum

uncore frequency multiplier. The product (frequency multiplier x 100MHz) gives us the frequency.
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For our architecture the minimum and the maximum uncore frequency multipliers are 12 and 27,

respectively. We use the msr-safe [Sho14] kernel module to read from and write to the UFS MSR.

6.1.1 Single Socket Performance Analysis of UFS

We conducted our experiments on Broadwell nodes. Each node has two sockets. Each socket hosts

one Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz processor. Each processor has 8 cores. Each node

has 128GB memory. For performance analysis we present datasets for Embarrassingly Parallel (EP),

the Block Tri-diagonal solver (BT) and the Multi-grid solver (MG) from the NAS parallel

benchmark [Nas] suite. as they have distinct characteristics. EP is a compute-intensive benchmark,

BT is a last level cache-bound benchmark and MG is a memory-bound benchmark. We used the

MPI version of these codes in our experiments. The uncore frequency was modulated from 2.7GHz

to 1.2GHz in steps of 0.1GHz. We report performance in terms of job completion time in seconds,

average package power and DRAM power in Watts, memory bandwidth and LLC misses per second.

Each experiment was repeated five times. We report averages across five runs.

Figures 6.1(a), 6.1(b) and 6.1(c) depict the effects of uncore frequency scaling on EP, BT and

MG, respectively. The x-axis represents uncore frequency (from high to low). The default uncore

frequency is 2.7GHz. Each figure presents five datasets, viz., completion time in seconds, package

power and DRAM power reported by Intel’s Running Average Power Limit (RAPL) [Int11] registers,

memory bandwidth and LLC misses per second. The y-axis represents data normalized with respect

to the default configuration (UF=2.7GHz). Table 6.1 shows the raw data for EP, BT and MG at 2.7GHz.

Table 6.1 Metrics for EP, BT and MG at 2.7GHz

Metric EP BT MG
PKG power 40W 46W 50W
DRAM power 19W 23W 54W
Memory Bandwidth [mbps] 8 3983 37327
LLC misses per second 0.003M 3M 33M

Observation 1: UFS leads to (package) power savings without significant performance degradation

for CPU-bound applications.

This is illustrated by Figure 6.1(a) showing data for EP, a representative CPU-bound benchmark.

EP uses L1 and L2 caches aggressively but otherwise has a negligible memory footprint. For EP,

package power decreases linearly with the uncore frequency. However, completion time and DRAM

power remain constant. This is because EP neither uses the LLC nor the memory controllers heavily.

The reduction in package power can be attributed to the uncore’s idle power consumption.
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Figure 6.1 Effects of UFS on EP, BT and MG.
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Observation 2: UFS reduces power for cache-bound applications but aggressive frequency reduction

may lead to performance degradation.

This is illustrated by Figure 6.1(b) showing data for BT, a cache-bound applications. It uses

LLC aggressively. With the default configuration, the LLC cache miss rate is only 3M per second as

most of its LLC accesses are hits and memory bandwidth consumption is 3.9GB/s. Package power

decreases linearly with the uncore frequency. However, completion times increase slightly at lower

uncore frequencies. Reducing the uncore frequency leads to fewer LLC misses per second and lower

memory bandwidth which leads to nominal performance degradation (slowdown) only beyond

1.5GHz. It is important to note that the DRAM power remains constant.

Observation 3: UFS leads to significant performance degradation for memory-bound applications.

This is illustrated by Figure 6.1(c) showing data for MG, a memory-bound application. With

the default configuration, its LLC miss rate is 33M per second while it consumes 37GB/s (≈10X

that of BT) of memory bandwidth. Consistent with previous observations, even for MG package

power decreases linearly with the uncore frequency. The completion time increases linearly with

the uncore frequency under 2.1GHz. Reducing the uncore frequency leads to slower LLC and slower

memory controllers. Slower memory controllers send memory requests at a lower rate to DRAM

leading to lower DRAM power consumption as shown in the figure. Unlike EP and BT, DRAM power

reduces with the uncore frequency beyond 2.1GHz for MG. This decline in DRAM power is also

coupled with significant performance degradation beyond 2.1GHz reaffirming our previously stated

inference.

From observations 1-3, we conclude the following:

• The decline in DRAM power as a result of lowering the uncore frequency is an indication of

potential significant performance degradation.

• The uncore frequency can be reduced safely without a significant impact on performance only

up to the point until which the DRAM power remains unchanged.

Observation 4: Applications consist of multiple distinct phases spanning across the spectrum from

compute-intensive to memory-intensive.

This is illustrated by Figure 6.2 depicting the DRAM power profile and the IPC profile of MiniAMR.

The x-axis represents the timeline while the y-axis represents data normalized with respect to the

maximum data points. Five distinctly identifiable phases, P1-P5, are annotated in the plot. P1-P5

are short compute-intensive phases characterized by low DRAM power and high IPC occurring

between relatively long memory-intensive phases characterized by high DRAM power and low IPC.

Hence, the phase transitions can be detected as follows:

• The transition from a compute-intensive phase to a memory-intensive phase can be identified

by a rise in DRAM power.
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• The transition from a memory-intensive phase to a compute-intensive phase can be identified

by a decline in DRAM power.
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Figure 6.2 Phases in MiniAMR

Phase Change Detection

Let ∆I P C be the change in IPC and ∆D R AM _p o w e r be the change in DRAM power during a

fixed time interval. Algorithm 2 depicts the pseudo code for phase change detection.

Algorithm 2 Phase Change Detection

1: procedure DETECT_PHASE_CHANGE

2:

3: if∆D R AM _p o w e r == 0 then
4: no phase change detected
5: else if∆D R AM _p o w e r > 0 then
6: phase change detected
7: compute-intensive to memory-intensive
8: else .∆D R AM _p o w e r < 0
9: phase change detected

10: memory-intensive to compute-intensive
11: end if
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Hypothesis: Static UFS is sub-optimal for applications with distinct phases.

By combining observations 1-4 we hypothesize that for an application consisting of multiple

phases with distinct uncore utilization, DRAM access rates and CPU intensities, statically setting

single uncore frequency for entire execution is sub-optimal. Hence, we need a dynamic approach

that automatically detects phase changes and determines the best uncore frequency for each phase.

While techniques like power gating can be leveraged to save power for phases with zero uncore

utilization [Mei11; GK06; MW12; Sam13], i.e., while all processes are suspended, uncore frequency

scaling achieves power conservation during phases with non-zero but low uncore utilization, which

is often the case for HPC applications. Using techniques like sleep states requires prediction of the

length of the zero utilization phases to evaluate the trade-offs of the overheads of entering and

exiting from a sleep state. Uncore frequency scaling is free of such overheads. Hence, we use uncore

frequency scaling in our proposed approach.
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6.2 Uncore Power Scavenger (UPS)

We propose UPS, a power-aware runtime system that aims at conserving power by dialing down

the uncore’s operating frequency opportunistically without significant performance degradation.

Figure 6.3 depicts the high-level architecture of UPS and the mapping of its components to the

components of an HPC system. Figure 6.3(a) shows the architecture of a typical HPC cluster. It

consists of multiple server nodes. Each server node hosts two sockets with a single 12-core processor.

Multiple parallel jobs spanning across one or more nodes can run on a cluster, e.g., job1 runs on the

top 4 nodes while job2 runs on bottom 4 ones. An instance of UPS runs alongside each job.

The high-level design of the UPS runtime is depicted in Figure 6.3(b). The UPS runtime system

allocates one UPS agent to each socket in a job. Each UPS agent monitors its socket’s performance

and DRAM power. It dynamically and automatically manages a socket’s uncore frequency to conserve

power. UPS agents make asynchronous decisions based only on the local information pertaining

to their respective sockets. Hence, UPS does not require any global synchronization across the

individual UPS agents. The UPS agent is a closed-loop feedback controller [SC]. The general idea of

a closed-loop feedback controller is depicted in Figure 6.4.

Parallel Job running on multiple processors

Cluster                        

Node
Socket/PKG/Processor

                 Job2– UPS2                      

                      

                   Job1 – UPS1                       

READ_SENSOR ACTUATOR_SIGNAL

(a) Cluster

(b) UPS Controller for a job

UPS agents

UPS Runtime

Figure 6.3 UPS Overview
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A feedback-control loop consists of three stages that are repeated periodically, viz., sensor,

control signal calculator, and actuator.

Control 
Calculations

System

Error
Set Point +

-

   Actuator 
ACTUATE_SIGNAL

      Sensor
READ_SENSOR

Figure 6.4 Closed-loop Feedback Controller

System is the component whose characteristics are to be monitored and actuated by the

controller. The current state of the system is defined in terms of the process variable (PV). The

desired state of the system, PV=K, where K is a constant, is called the setpoint (SP). It is input to the

feedback controller. A feedback-control consists of three main modules, viz., sensor, control signal

calculator, and actuator.

Sensor

The sensor periodically monitors the state of the system defined in terms of process variable. This is

indicated by READ_SENSOR.

Control Signal Calculator

The error (err) in the system state is calculated as the difference between the setpoint and the

measured process variable. The feedback controller determines the new value for the actuator as a

function of this error to drive the system closer to the setpoint.

Actuator

The actuator applies the calculated signal to the system. This is indicated by ACTUATE_SIGNAL.
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6.2.1 UPS Agent

Each UPS agent is a closed-loop feedback controller that performs three tasks. First, it periodically

monitors the socket by measuring its performance in terms of instructions per cycle (IPC) and its

DRAM power consumption. Second, dependending on the measured power and IPC, it determines

the uncore frequency that would drive the system closer to the setpoint and actuates. Third, it

detects phase changes at runtime and resets the setpoint for every new phase. The architecture of a

UPS agent is depicted in Figure 6.5.

 Processor
D
R
A
M

Control Signal Calculator
determines best uncore frequency

System

error Set 
Point

+
-

      Actuator
sets uncore frequency

             Sensor
measures DRAM power & IPC ACTUATE_SIGNAL

READ_SENSOR

Figure 6.5 UPS Agent

System, Process Variable and Setpoint

UPS agent’s system is a socket consisting of a processor and its local DRAM. The process variable of

a UPS agent is its socket’s DRAM power consumption, i.e., PV =DRAM power, measure of socket’s

DRAM utilization, which again, correlates with the uncore utilization. Prior work [GK06; Mei11;

WM08] has used models that rely on multiple performance counter to determine application

characteristics. This approach has higher overhead. UPS relies on a single register (DRAM RAPL

MSR) and hence, issues just one MSR request to quantify/determine the state of the system. This

has very low overhead. UPS automatically determines the setpoint, which is the maximum DRAM

power consumption for every phase of the application, i.e., For an application with multiple phases,

UPS agent automatically resets the setpoint on detecting a phase change.

Sensor

The sensor periodically monitors DRAM power and IPC of the socket. This is indicated by

READ_SENSOR.
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Control Signal Calculator

The control signal calculator takes the socket’s DRAM power consumption and IPC measured at

runtime as inputs. It then determines the current state of the system to decide the next course of

action. Table 6.2 describes the variables used by the control signal calculator. Figure 6.6 presents

the control logic.

Table 6.2 Variables in Control Signal Calculation

Variable Description
ucf uncore frequency
PV_DRAM_power DRAM power consumption measured during

current sampling interval
SP_DRAM_power setpoint
err =∆D R AM p o w e r PV_DRAM_power - SP_DRAM_power
previous_IPC IPC measured during previous sampling interval
current_IPC IPC measured during current sampling interval
∆I P C current_IPC - previous_IPC
MAX_UCF maximum uncore frequency for the architecture

During its first invocation (INITIALIZATION), the UPS agent sets the setpoint,

SP_DRAM_power, to the observed DRAM power, PV_DRAM_power. After initialization, the system

enters into a periodic control loop. IPC and DRAM power are measured for each sampling interval.

∆DRAM_power is calculated as P V _D R AM _p o w e r −SP _D R AM _p o w e r .

Decrement ucf

    DRAM power 

==0

  IPC 
<0

<0

Increment ucf

>0

ucf = MAX_UCF
SetPoint = current DRAM power

    State 2:
Performance 
Degradation

State 1:
Candidate for 
UCF reduction

Monitor IPC &
DRAM Power

INITIALIZATION

≥0
   Phase Transition
       M→C

   Phase Transition
       C→M

State 3:

Figure 6.6 Control Logic: A State Machine

80



State 1: Candidate for UCF reduction

If∆DRAM_power is zero, it implies that the DRAM power has not declined (from the setpoint for

the current phase) as a result of the previous actuation. This puts the system in state 1, i.e., it is a

candidate for lowering uncore frequency in the current iteration of the control loop. Therefore, the

actuator decrements the uncore frequency and control returns to the monitoring block.

State 2: Performance Degradation

If∆DRAM_power is less than zero, it is an indication of a drop in DRAM power from the setpoint for

the current phase. This drop could either be an indication of a phase transition from a

memory-intensive to a compute-intensive phase or a detrimental effect of excessive uncore

frequency lowering in the previous iteration of the control loop. To identify the cause of the

observed drop, we monitor IPC. ∆IPC is the difference between IPC during the current and the

previous sampling intervals. If ∆IPC is less than zero, it is an indication of performance

degradation. Hence, this observation puts the system in state 2. In response to this state, the

actuator increments the uncore frequency and control returns to the monitoring block.

State 3: Phase Transitions

If∆DRAM_power is less than zero and∆IPC is greater than or equal to zero, it is an indication of a

rise in CPU activity with a decline in DRAM power. This implies that a phase transition from

memory-intensive to compute-intensive phase occurred. Hence, this observation puts the system

in state 3 (3a).

If∆DRAM_power greater than zero, it implies that the measured DRAM power is higher than

the setpoint (maximum) for the current phase. This implies that there has a phase transition from

compute-intensive to memory-intensive phase. Hence, this observation puts the system in state 3

(3b).

Actuator

The actuator is responsible for taking action in response to the determined state of the sytem. This

is indicated by ACTUATE_SIGNAL. The UPS agent sets the socket’s uncore frequency by writing to

the MSR (at 0x620).

State 1: The actuator decrements the uncore frequency to conserve power.

State 2: The actuator increments the uncore frequency to revert the detrimental effects of the

previous actuation.

State 3: On detecting a transition to a different phase, the actuator sets the uncore frequency to the

maximum value (MAX_UCF) and sets the setpoint (say SP_DRAM_power’) to the measured DRAM

power (PV_DRAM_power).

Resetting the Setpoint to maximum DRAM power for a new phase: It is important to note here that
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in response to both the phase transitions (even in case of M->C) we set the uncore frequency to

MAX_UCF. As a result of this, the socket is guaranteed to draw maximum DRAM power (at MAX_UCF)

during the subsequent sampling interval of the new phase. If this maximum DRAM power (measured

as PV_DRAM_power during the subsequent sampling interval) is greater than SP_DRAM_power’, the

system enters state 3 again. In this case, SP_DRAM_power is now intentionally set to the maximum

DRAM power for the new phase.

After actuation, the control returns to the monitoring block of the control logic.

Sample Interval

We invoke the UPS agents periodically every 200ms in our experiments. We conducted a sensitivity

study by varying the sample interval from 200ms to 1s. We observed that our runtime system has

negligible overheads at 200ms while a longer sampling interval makes it sluggish because of two

reasons. First, it has fewer opportunities of detecting phase changes and modulating the uncore

frequency. Second, it leads to longer reaction times. A sampling interval of 200ms is sufficiently long

to actuate the uncore frequency modulation and observe its effect and it is sufficiently frequent to

have a fast reacting runtime system.

6.3 Implementation and Experimental Framework

We conducted our experiments on a cluster of 17 Broadwell nodes. Each node has two Intel(R)

Xeon(R) CPU E5-2620 v4 @ 2.10GHz processors and each processor has 8 cores. Typical HPC systems,

like ours, provide exclusive node access. Each MPI job runs on uniquely allocated nodes. No two

jobs (or applications) share nodes. We use all the cores of every socket in a job. We pin one MPI

rank to a unique core on every socket. Typical MPI applications are NUMA-aware, i.e., all the cores

access memory on the socket-local DRAM via the local memory channel consuming the local

memory bandwidth. We observed that the remote memory bandwidth consumption is negligible

and constant over time compared to the local memory bandwidth for all applications. Hence, we

can use each socket’s DRAM power as an approximation of the socket’s uncore utilization.

UPS is a library that can be linked with the application at the time of compilation. It is

implemented leveraging the MPI standard profiling interface [MG97] (PMPI). The UPS agents are

initiated in the wrapper function of the MPI_Init MPI call, which is the first MPI function call

invoked by an MPI application. We use signals to set timers for periodic invocation of UPS agents

on every socket in a job. The system in restored to the default state (maximum uncore frequency

multiplier is set to 27) in the wrapper function of the MPI_Finalize MPI call, which is the final MPI

call invoked by an MPI application indicating its completion. As UPS is a shared library that can be

linked to the application and it leverages the PMPI interface for intialization and termination, no
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modifications to the application’s source code are required to use UPS. Applications only need to be

linked to our library by modifying their makefile at the time of compilation.

At each invocation, a UPS agent periodically monitors the state of the system by measuring

DRAM power consumption and IPC. For the DRAM power measurement, we leverage Intel’s

Running Average Power Limit (RAPL) [Int11]. From Sandy Bridge processors onward, Intel supports

this interface that allows the programmer to measure (or constrain) the power consumption of a

processor/socket/package (PKG) as well as the DRAM by reading from (or writing to) the RAPL MSR.

We also use RAPL in some of our experiments to constrain the power consumption of the

processors. RAPL has a power capping mechanism implemented in hardware that guarantees that

the power consumption does not exceed the power limit specified by the user. The UPS agent

measures IPC by reading the fixed counters [Int11].

Depending on the control calculations, the UPS agent modulates the uncore frequency by

writing to the bits 0 to 7 of the UFS MSR addressed at 0X620 that encode the maximum uncore

frequency multiplier. The minimum uncore frequency multiple is set to 12, the default value. The

msr-safe kernel module installed on this cluster enabled us to read from and to write to Intel’s RAPL

and UFS MSRs and fixed counters indirectly via the libmsr library [Sho14].

In Figure 6.6, we compare ∆DRAM_power and ∆IPC to absolute zero. However, in the

implementation we use an error margin of ±5% to account for minor fluctuations in the

measurements.

UPS agents in a job do not need any global synchronization or communication with other agents.

They monitor their respective sockets and make local decisions based on local knowledge about the

system. Hence, UPS is a very light weight runtime system with only nominal overheads of reading

and writing to MSRs that are several orders of magnitude lower than the total completion time of a

typical HPC job.

6.4 Experimental Evaluation on a Multi-node Cluster

For evaluation we used Embarrassingly Parallel (EP), Scalar Penta-diagonal solver (SP), Block Tri-

diagonal solver (BT), Multi-Grid (MG) and Fourier Transform (FT) from the NAS parallel benchmark

suite [Nas] and CoMD and MiniAMR from the ECP proxy applications suite [Ecp]. We used the MPI

version of these codes in our experiments. Our selection of applications ensures that we evaluate

UPS with applications spanning across the spectrum from compute-intensive to memory-intensive.

For example, EP is a CPU-bound application that uses uncore minimally, SP and BT use uncore

(LLC) intensively with moderate memory (DRAM) access rates while other applications have high

memory (DRAM) access rates. We report average power savings over the duration of the job and

slowdowns caused by the UPS runtime system with respect to the baseline. We chose the default

configuration, where Intel’s firmware modulates the uncore frequency, as the baseline. We also
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compare an application’s performance with UPS to its performance with Intel’s Running Average

Power Limit (RAPL) with equal power consumption. Each experiment was repeated five times. We

report averages across all repetitions with standard deviation of 1-5%.

Figure 6.7 depicts power savings achieved with UPS, resulting slowdowns and energy savings

with respect to the baseline. We show results for 64, 128 and 256 core experiments as shown in

the legend. X-axes represent the benchmarks and applications. Y-axes represent (top to bottom)

package and DRAM power savings, slowdown and energy saving with respect to the baseline.

Observation 1: UPS achieves up to 11% package power savings.

For applications like EP, MiniAMR, BT and SP that have longer CPU-bound phases than others

(such as MG, FT, CoMD), UPS achieves higher package power savings. These codes keep the cores

busy and incur fewer LLC misses per second. As a result, they are not as dependent on long latency

memory accesses and the uncore as the rest. Hence, the uncore frequency can be lowered for the

CPU-intensive phases to save power.

Observation 2: UPS has a marginal impact on DRAM power.

This is a desired effect. UPS is designed to reduce uncore frequency so long as it does not impact

DRAM utilization. We measure DRAM utilization in terms of DRAM power. Hence, a substantial

decline in DRAM power is an indication of decline in DRAM utilization (unless a phase change

occurs) which can lead to performance degradation.

Observation 3: UPS causes worst-case slowdown of 5.5%.

In some cases, UPS achieves power savings at the cost of marginal slowdown for a few applications.

This includes the overhead of the runtime system, i.e., measuring DRAM and PKG power, IPC,

calculating the feedback and setting appropriate uncore frequency. The observed performance

degradation is under 5.5% across all codes with some codes experiencing no slowdown.

Observation 4: UPS achieves up to 14% energy savings. UPS achieves energy savings of at least 5%

across all applications and core counts, despite the slowdown incurred in some cases. UPS conserves

energy by simply reducing the uncore’s energy usage when it is underutilized, thus reducing energy

wastage and shifting towards more energy efficient execution.
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Figure 6.7 Package and DRAM power savings achieved with UPS and the resulting slowdowns and energy
savings with respect to the baseline
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Figure 6.8 Uncore frequency profiles for EP with UPS and the default configuration.

Observation 5: Intel’s default scheme consists of a naive algorithm that sets the uncore frequency

to its maximum.

Intel’s default algorithm sets uncore frequency to 2.7GHz on detecting even the slightest uncore

activity. Figure 6.8 depicts the uncore frequency profile for runs of EP with default configuration

(top) and UPS (bottom). X-axes represent the timeline while y-axes represent the uncore frequency.

EP is a CPU-intensive embarrassingly parallel benchmark that does not use the uncore at all. It

operates on core-local cache and incurs nominal LLC misses per second. Even in case of such a

workload, the default scheme sets the uncore frequency to 2.7GHz, which is the maximum for our

specific architecture.

Unlike this scheme, UPS intelligently modulates uncore frequency by making measurement-

driven decisions at runtime based on DRAM power and IPC achieved by the socket. Our automatic

and dynamic algorithm leads to a constant uncore frequency of 2GHz for the entire duration of EP.

For other applications like CoMD and MiniAMR, the uncore frequency continuously changes.

Figure 6.9 and 6.10 depict job profiles of MiniAMR and CoMD, respectively, for 4 node (8 socket)

runs. We show two sets of plots (left and right). Plots on the left are the job profiles with the default

configuration (baseline) while those on the right are with UPS. X-axes represent the timeline while

y-axes represent the uncore frequency, DRAM power, package power (top to bottom) for each of the

sockets of the job. Each socket is represented by a unique color as depicted in the legend. With the

default configuration, all sockets operate at the maximum uncore frequency (2.7GHz) constantly

for both MiniAMR and CoMD. Hence, the uncore frequency profiles of all the sockets coincide.

However, with UPS, the UPS agents dynamically modulate the uncore frequency of sockets.

Observation 6: UPS detects phase change and increases the uncore frequency to UCF_MAX leading

to spikes in package power.

UPS detects phase changes based on deflection in DRAM power and IPC. Figure 6.9 shows the

DRAM power profile for MiniAMR. At least five phase changes indicated by dips in DRAM power
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Figure 6.9 Power and uncore frequency profiles for 8 socket runs of MiniAMR with default configuration
(left) and UPS (right).

can be observed. When each of these phase changes occurs, UPS agents automatically detect it

and reset the uncore frequency of their corresponding sockets to UCF_MAX. This leads to a spike

in the package power consumption as the uncore consumes higher power when operating at a

higher uncore frequency. Even with the default configuration, the power consumption varies across

packages in a job. This is a result of manufacturing variation across processors [Gho16; Ina15].

Observation 7: With UPS, packages spend more time at lower power than with the default

configuration.

After the initial spike in package power for each newly detected phase, UPS gradually lowers the

unore frequency to the lowest level before it starts affecting DRAM power. At this low uncore

frequency, the packages consume less power than at UCF_MAX (depicted in PKG power plots in

Figure 6.9 and Figure 6.10), thus leading to power savings.

Observation 8: Even in case of codes with frequent phase changes, UPS saves power.

For applications such as CoMD depicted in Figure 6.10 that incur frequent phase changes with short-

lived phases, UPS does not stabilize at a constant lower uncore frequency for an extended duration.

Instead, it intelligently and automatically modulates the uncore frequency between several (higher

and lower) levels. As a result, packages spend some time at frequencies lower than that selected by

the default scheme. This leads to overall power savings over baseline as shown in Figure 6.7.
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Figure 6.10 Power and uncore frequency profiles for 8 socket runs of CoMD with default configuration
(left) and UPS (right).

Observation 9: UPS outperforms Intel’s RAPL.

Intel’s RAPL is a power capping mechanism implemented in hardware that restricts the power

consumption of a processor to a value specified in the RAPL MSR. Figure 6.11 depicts the comparison

of UPS with RAPL. We first recorded the completion time and the resulting power consumption (say

P Watts) of an application with UPS. We then measured the application’s performance without UPS

under a P Watt power bound enforced by restricting power consumption of the processors in the

job using RAPL. Figure 6.11 depicts the total (package and DRAM) power savings obtained by UPS,

resulting performance improvements and energy savings with respect to RAPL. We show results for

64, 128 and 256 core experiments (see legend). X-axes represent the benchmarks and applications.

Y-axes represent (top to bottom) total power savings, speedup and energy saving with respect to

RAPL. The power consumption with UPS is within ±2% of RAPL. Interestingly, UPS achieves up

to 20% speedup over RAPL leading to proportional energy savings. This indicates that even for a

power-constrained computing paradigm that aims at maximizing performance under a strict power

budget, UPS outperforms RAPL.

Observation 10: UPS deducts power from the uncore while Intel’s RAPL deducts power from the

cores to stay within the power limit.

This is illustrated in Figure 6.12, which depicts the effective per core frequency achieved with RAPL

and with UPS for equivalent power consumption of BT. We first recorded the effective core

frequency measured via Intel’s APERF and MPERF MSRs [Int11] and the resulting power

consumption (say P Watts) of an application with UPS. The effective frequency is calculated as
∆AP E R F ∗B AS E _F R E QU E N C Y

∆M P E R F , where the base frequency on our architecture is 2.1GHz. We then

measured the effective core frequency without UPS under a P Watt power bound enforced by

restricting power consumption of the processors in the job using RAPL. The x-axis represents the

timeline while the y-axis represents the effective core frequency.

RAPL lowers the core frequency from 2.3GHz down to 1.8GHz to save power, which leads to

performance degradation. UPS achieves equivalent power savings by opportunistically reducing

the uncore frequencies without affecting the core frequencies allowing the cores to operate at the
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Figure 6.11 Package and DRAM power savings, speedups and energy savings achieved by UPS with respect
to RAPL
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Figure 6.12 Effective core frequency profiles for BT with RAPL and UPS for equal power consumption.

maximum frequency of 2.3GHz.

6.5 Related Work

Chip manufactures have provided various knobs to modulate power directly, e.g., power capping,

or indirectly, e.g., dynamic voltage frequency scaling (DVFS), of various components of a server.

Conventionally, DVFS has been used to modulate the frequency of cores [Int11]. Intel processors

prior to Haswell maintained all cores at a common operating state, i.e., voltage and frequency.

Starting with Haswell, Intel introduced per core DVFS. From Sandy Bridge processors onward, Intel

introduced running average power limit (RAPL) [Int11], a power capping mechanism implemented

in hardware that constrains the average collective power consumption of the cores and the uncore

of a processor. A plethora of solutions [Lim06; Rou07; Rou09; Fre05b; Bai15; HF05; Ge07; Gho16;

Gho18; Fre05a; Spr06] have been proposed that leverage these knobs to improve the power efficiency

of a system. DVFS-based solutions were oblivious of the power consumption of the uncore, which

is expected to be a growing component in the future generations of processors [Loh]. RAPL-based

solutions off-loaded the management of the uncore’s power to Intel’s RAPL implementation, which

we show is sub-optimal.

Early work exploited DVFS to reduce CPU frequencies during idle time, e.g., due to early arrival

at MPI barriers and collectives [Kap05]. An ILP-based approach to model energy [Rou07] was

demonstrated to be effective during the runtime of MPI codes to determine optimal power levels

for the cores [Rou09]. These works were trying to conserve energy without sacrificing performance

by much when utilizing just one core of a node resulting in underutilization of the system. UPS

differs in that its foremost objective is to reduce the inefficient power consumption of the uncore of

each processor of an HPC job without reducing system utilization, i.e., using all cores of a processor.

It conserves power and achieves energy savings by dynamically modulating the frequency of the
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uncore based on real-time feedback from the system.

Prior work [CM06; Li10] leveraged the effect of concurrency throttling and thread locality to save

power and increase performance. An ILP-based runtime approach has been shown to determine

how many cores an application should be run on to stay within a given power budget [Tot14; Lan15].

Marathe et al. [Mar15] proposed Conductor, a runtime system that speeds up an application’s critical

path through an adaptive socket power-allocation algorithm that periodically performs dynamic

voltage frequency scaling (DVFS) and dynamic concurrency throttling (DCT) based on application

behavior and power usage. Our work differs in terms of granularity and adaptivity. First, we reduce

uncore power across resources at processor chip level, exploiting dynamically adaptive feedback

methods. Second, UPS does not modify the concurrency or the thread locality, which can be tightly

coupled with the application’s input.

In recent work, Gholkar et al. [Gho16] presented PTune, a process variation-aware power tuner

that uses performance characterization data for all sockets on a cluster and application execution

characteristics to minimize the runtime of a job under its power budget. It assumes that the jobs are

moldable, i.e., the number of MPI ranks can be varied at the time of job scheduling. UPS does not

require jobs to be moldable. It also does not require any prior characterization data to make uncore

frequency decisions at runtime. In [Gho18], they proposed PShifter, a feedback-based mechanism

that shifts power from processors idling at barriers and collectives to the processors on the critical

path to improve performance under a power constraint. PShifter does not strive to save power. Its

control calculations depend on the utilization of the cores while being oblivious of the uncore’s

utilization. Our approach is a dynamic closed-loop feedback controller that specifically monitors the

uncore and depending on its utilization reduces any wasteful power consumption by modulating

the uncore frequency at runtime. Ellsworth et al. proposed Pow, a system-wide power manager

that re-distributed the power budget across a system via scheduling while adhering to a global

machine-level power cap [Ell15]. This approach salvaged the unused power but did not address

inefficient power usage. Our approach goes one step further by detecting and reducing the wasteful

power consumption within a job.

Capacity-improving schemes that increase job throughput have been developed under power

limitations by exploiting “hardware overprovisioning”, i.e., by deploying more nodes that will be

powered at a time [FF05b; Pat13; Sar13a; Sar14; FF05a]. In such a system, the characteristics of a

code under strong scaling were used to calculate the optimal number of processors considering

core and memory power [Sar13b]. Modifications to the batch scheduler in how small jobs are

backfilled depending on their power profile can further increase job capacity [patki2]. While these

solutions aimed at achieving performance or throughput improvement while utilizing as much

of the power budget as possible, our approach aims at conserving power by reducing wasteful

power consumption with marginal impact on performance. We do not explicitly aim at maximizing

the machine’s throughput, which is beyond the scope of this paper, but our runtime reduces the
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overall power and energy footprint of the jobs making more power available for more new jobs to

be scheduled on an overprovisioned system.

Hackenberg et al. [Hac15] observed that the uncore frequency depends on the core frequency

even when there is no uncore activity. Sundriya et al. [Sun18] compared the impact of uncore

frequency scaling to that of core DVFS on power consumption of Gammes, a quantum chemistry

application. In other work, a neural network-based uncore frequency scaling approach was

simulated for chip multi-core (CMP) power management [Hil]. Unlike this work, we implement and

evaluate our runtime system on real hardware, i.e., a Broadwell cluster. Our runtime is suitable for

power management of a multi-node and a multi-core system.

Our UPS work is unique in that it is the first of its kind that targets the otherwise neglected

uncore component of a chip. It dynamically modulates the frequency of the uncore depending on

its utilization measured at runtime. It automatically detects new phases within an application and

resets the uncore frequency for each phase. Proposed frameworks like Redfish, the PowerAPI, and

Intel’s geopm [Red; Gra16; Api] can integrate UPS as a unique closed-loop feedback-based policy for

job power management on a cluster. UPS will also relieve the application developers of the burden to

explicitly indicate phase changes as required by the APIs (like geopm) as UPS automatically detects

phases without any explicit information from the developer.

6.6 Summary

We explored uncore frequency scaling and its impact on performance, power and energy

consumption of various HPC applications. To the best of our knowledge, this is the first study of

uncore frequency scaling conducted on Broadwell processors. We proposed UPS, a runtime system

that automatically modulates the uncore frequency to conserve power without significant

performance degradation. As a part of UPS, we also introduced an algorithm that automatically

detects phase changes at runtime. Our evaluations indicate that UPS achieves up to 10% energy

reduction with less than 1% slowdown. It achieves up to 15% energy savings with a worst case

slowdown of 5.5% compared to the default configuration. We also show that UPS achieves up to

20% speedup with proportional energy savings compared to Intel’s RAPL with equivalent power

usage.
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CHAPTER

7

CONCLUSIONS

In this chapter, we summarize the key contributions of the research conducted in this dissertation.

We conclude with presenting the future directions of this research.

7.1 Summary

The objective of this work is to maximize the power efficiency of a power-constrained system. We

identified power and performance bottlenecks for jobs executing on a power-constrained system.

We then proposed strategic solutions that either achieved performance improvements under fixed

power budget or achieved power savings with minimal impact of performance.

We started this research with a study of power and performance characteristics of processors,

with and without power bounds. We observed a significant variability in the power draw of

processors when they achieved uniform peak performance. Under uniform power bounds, this

variation in power draw translated to variations in performance. As a result of this variation, an

otherwise homogeneous cluster was rendered non-homogeneous under power bounds. We

developed Power Partitioner (PPartition) and Power Tuner (PTune), two variation-aware power

scheduling approaches that achieved improvements in job performance and system performance

on such a non-homogeneous power-constrained system. PPartition coordinated with the job

scheduler and assigned power budgets to jobs ensuring that the system never exceeded its power

budget. For every job, PTune enforced the job-level power budget and maximized its performance
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by determining the optimal selection of processors and the distribution of the job’s power budget

across them. PTune and PPartition achieve job speedups of up to 29% and overall system

throughput improvements of 5-35% compared to naïve approaches.

We also developed a power-aware cost model to aid in the procurement of a more performant

capability system compared to the conventional worst-case power provisioned system. This study

reinforced the need for hardware overprovisioning.

We studied the power and performance profiles of typical scientific simulations executing on

a supercomputer. The dynamically changing nature of the workload characteristics of these jobs

emphasized the need for sophisticated runtime systems to achieve optimal performance for such

workloads. Toward this end, we developed Power Shifter (PShifter), a dynamic, feedback-based

runtime system that improved job performance under a power constraint by reducing performance

imbalance in a parallel job. It used the key concept of a Proportional-Integral-Derivative (PID)

controller from control theory to detect the imbalance and shift power from the nodes incurring

wait times to the nodes on the critical path, which, in turn, shortened the critical path to improve

job performance. PShifter achieved performance improvements of up to 21% and energy savings of

up to 23% compared to uniform power allocation. It outperformed static approaches by up to 40%

and 22% for codes with and without phase changes, respectively, and outperformed prior dynamic

schemes by up to 19%.

We investigated uncore frequency scaling (UFS) as a potential knob for reducing the power

footprint of HPC jobs. We presented Uncore Power Scavenger (UPS), a runtime system that

leveraged UFS to conserve power during the phases of lower uncore utilization. It performed

measurement-based automatic phase detection to dynamically set the best uncore frequency for

every phase of execution. UPS achieved up to 10% energy savings with under 1% slowdown. For a

worst-case slowdown of 5.5%, it achieved 14% energy savings. UPS achieved up to a 20% speedup

and proportional energy savings compared to Intel’s RAPL with equivalent power usage, making it a

viable solution for power-constrained computing.

Overall, this work presented a conglomerate of power management strategies that improved the

power efficiency of the system by either improving performance under a power constraint or by

conserving power without any significant impact on performance. Therefore, this work showed that

the hypothesis holds.

7.2 Future Work

With the end of Moore’s law on the horizon [Sni; Shu; HP], we cannot rely on scaling today’s process

technology to achieve improvements in power efficiency in the future. Now, more than ever, the

research community needs to focus on architectural advances to be able to achieve continued

growth in computing. In addition, novel system software solutions need to be employed on power
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constrained systems to maximize resource utilization and performance under a power budget.

7.2.1 Architectural Designs

In a post Moore era, consecutive generations of processors will possibly belong to the same process

technology, so the benefits in performance or power are expected to come from the architecture

domain. Toward this end, it is necessary to revisit the conventional node and processor architecture

to identify performance bottlenecks for newly emerging classes of applications with the objective of

designing architectures that alleviate them.

Conventionally, general purpose CPUs have several identical complex cores, each supporting

features such as multi-issue pipelines, branch prediction and out-of-order processing to maximize

performance. However, these CPUs are not fully utilized all the time during workload execution. In

a post Moore era, transistors will not be free and CMOS real estate will be a design constraint.

Hence, we will have to design the sleekest processors by maximizing utilization of transistors on the

chip to achieve improvements in performance and power efficiency. Toward this end, we need to

evaluate Heterogeneous System Architectures (HSA), such as the “Big Little“ architecture [biglittle ;

Vil14], that fit the bill. A first step in this direction will be to conduct thorough performance analysis

of the state of the art workloads on these architectures. Such architectures under load pose

interesting problems such as determining the optimal workload distribution across different types

of cores, the choice of cores to execute a workload, and dynamic scheduling of tasks across

heterogeneous processing elements to meet the performance and power targets. The ideas

presented in this dissertation can be foundational in solving these problems but HSA would

provide more and finer knobs to support optimal resource allocation for maximizing the power

efficiency of the system.

7.2.2 Resource Contention and Shared Resource Management

Historically, HPC applications were CPU-bound. Over the past years, the performance bottleneck

has shifted from CPU to memory, more so with the advent of big data, artificial intelligence,

machine learning. The memory hierarchy consists of small private caches, shared resources such as

LLC, and memory modules accessed via memory controller and channels. General purpose

architecture promotes uniform sharing of resources. However, depending on the characteristics of

workloads executing on the cores and their data access patterns, uniform sharing can prove

sub-optimal. We need to design “workload-aware“ resource management schemes (such as UPS)

that dynamically allocate shared resources such as LLC ways, memory channels or bandwidth to

cores to obtain optimal performance. To enable solutions like these, we need to collaborate with

chip manufacturers to design and export architectural knobs (e.g., Intel’s Cache Allocation

Technology) and measurement infrastructure that support fine-grained resource management.
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7.2.3 Runtime Systems

Another important direction of future research is runtime systems for dynamic resource

management. We need to explore and evaluate the potential utility of various architectural features

in unconventional ways to achieve our objective. As demonstrated in Chapter 5 and Chapter 6,

Intel’s RAPL and UFS were used as actuation mechanisms in the two proposed runtime systems to

achieve the objectives of performance improvement and power conservation, respectively. We need

to focus on developing more such light-weight configurable runtime systems for achieving various

objectives at different levels of the system hierarchy (such as processor-level, node-level, job-level,

cluster-level). Instead of envisioning a single monolithic runtime system managing various

resources, the focus should be on employing multiple complimenting runtime systems achieving

their respective objectives. An interesting area of investigation would then be to understand how

these systems influence and interact with each other.
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