ABSTRACT

GIRISH CHANDRA, HARSHA. Remote Data Collection and Analysi s using Mobile Agents
and Service-Oriented Architectures. (Under the direction of Dr. Frank Mueller).

The ubiquity of wireless systems have ushered us into a new &rof mobile com-
puting. With the emergence of superior input/output, commu nication hardware and cheap
data services, mobile phones have become a bed for o ering weand exotic services. Su-
perior GUI and remote connectivity make mobile phones and P[As good candidates for
data collection, but lacking battery life and computational prowess, they are poor com-
putational devices. We introduce a novel architecture that builds on agents on mobile
phones as the front end and a service-oriented architectureomposed of high performance
devices as the back end. Agent-based computing, which has gved to be advantageous
for desktops/servers, can also encompass handheld devicesprovide us with new service
management capabilities.

In this thesis, we discuss a new service deployment strategyn mobile phones based
on mobile agents. Mobile agent is an agent that can migrate fom one node to the other
node in the network while preserving its state. This solves lhe problem of introducing new
services manually and provides the advantage of on-the- y ode updates for existing services.
We also discuss the challenges of mobile agent development Java, mainly introducing
code migration in Java (J2ME), which is the critical component of a mobile agent, and
interoperability among di erent J2ME pro les and with Java standard edition (J2SE). As
a computational backbone for the architecture, we utilize hexpensive but powerful nodes
based on the IBM Cell Broadband architecture namely through PlayStation (PS3) devices
running on Linux. Powered by a RISC- based main processing uh (PPU) and eight
synergistic processing units (SPU), a PS3 can analyze largdata sets with great speed.
In this work, we also analyze the programming paradigm usedn the PS3 machines. We
discuss the design and implementation of several high perfmance kernels in the PS3 and
measure the speedup obtained corresponding to an x86 machdn Lastly, we introduce high-
performance computing as a service by using platform-neutil protocols such as XML-RPC,
to integrate the heterogeneous platform of mobile agents amh service-oriented architectures
(SOA).

Remote Data Collection and Analysis using Mobile Agents an8ervice-Oriented
Architectures

by
Harsha Girish Chandra

A thesis submitted to the Graduate Faculty of
North Carolina State University
in partial ful llment of the
requirements for the Degree of
Master of Science

Computer Science

Raleigh, North Carolina
2008

APPROVED BY:

Dr. Helen Gu Dr. Nagiza Samatova

Dr. Frank Mueller
Chair of Advisory Committee

DEDICATION

To my parents.

BIOGRAPHY

Harsha Girish was born on 27 November 1982, in Bangalore, Irid. He received his Bachelor
of Engineering in Computer Science and Engineering from theM.S. Ramaiah Institute
of Technology, aiated to Visvesvaraya Technological University, India, in 2004. In fall
of 2006, he came to the North Carolina State University to pursue graduate studies in
computer science. With the defense of this thesis, he is reiseng the Master of Science in

Computer Science degree from NCSU, in December 2008.

ACKNOWLEDGMENTS

I would like to thank Dr. Frank Mueller for his guidance and patience in the duration
of this thesis. | would like to thank Dr. Nagiza Samatova and Dr. Helen Gu for being
on my committee. | would like to thank Dr. Yu (Cathy) Jiao and D r. Ryan Kerekes for
mentoring me at ORNL and providing valuable suggestions in mproving my work. | would
also like to Dr. Robert Patton and Dr. Thomas Potok for provid ing me an oppurtunity to
work at Oak Ridge National Laboratory. | would like to thank P atricia Daugherty, Paul
Singley and Jenny Mueller who made my stay at Lenoir City memaable. | would like to
thank Chandra Mohan and Chaya N. Kutty for providing me support during this thesis. |
would like to thank my colleagues in the Systems Lab and my rom mates who were very

cooperative during this work. Lastly, |1 would like to thank m y family for everything.

TABLE OF CONTENTS

LIST OF TABLES. . ..o e e Vi
LIST OF FIGURES i e viii
1 INtrodUCHION. . ..o e e 1
1.1 Agent-Oriented Programming v i i 2
1.2 Service-Oriented Architectures 3
1.3 Mobile Agents 7
1.3.1 Mobile Agents as a Fluid SOA 8
1.4 Remote Data Collection and Analysis 8
1.4.1 Related Approaches to Remote Data Collection and Analsis 9
1.5 Mobile Agents Criticism e 13
1.6 System OVErVIEW e e e e e e a
1.7 The Main Contributions 15
1.8 Thesis Hypothesis e 15
2 Design and Implementation.............cooiiiiiiiiiis 18
2.0.1 Description of the Network 18
2.0.2 Agent Architecture Design of Ubimac 21
2.0.3 Security Considerations 00000 22
2.0.4 ltinerant Agent Structure o . 24
2.0.5 Agent Host Structure 24
2.0.6 Design of Agent Directory 26
2.0.7 DierentTypesof Agents. 27
2.1 Protocols 28
2.1.1 Mobile Agent Creation., 2
2.1.2 Mobile Agent Arrival 30
2.1.3 Mobile Agent Communication. 30
2.1.4 Mobile Agent Departure 3
215 ExceptionHandling, 31
2.2 J2ME Technology e 2
2.2.1 J2ME Congurationsand Proles 34
2.2.2 J2ME Development Environment 36
2.3 Implementation of Mobileagents L. 36
2.4 Interfacing with a Service-Oriented Architecture 38
2.4.1 Comparison of Messaging Technologies 39

2.4.2 Integration with SOA Using XML-RPC 41

Vi

3 High Performance Kernels on the Cell Processor.......... 43
3.1 Cell Broadband Engine Architecture 43
3.1.1 Scaling the Performance-Limiting Walls 44
3.2 Cell BE Architecture Elements, 45
3.2.1 Power ProcessingElement. 46
3.2.2 Synergistic Processing Elements, 46
3.2.3 Element InterconnectBus L Lo L. a7
3.2.4 DMA Transfers and Interprocessor Communication. 48
3.25 Run Time Environment 49
3.3 Cell Application Anity e .. 50
331 CellAnity Areas e 50
3.3.2 Cell Non-Applicable Areas. 50
3.4 Cell Programming Approach, 51
3.4.1 Bag-of-Tasks Paradigm 3
3.4.2 Double Buering Technique 53
3.5 Text Mining Problem 54
3.5.1 TF-IDF Algorithm 56
3.5.2 Parallelization Technique 57
353 MemoryHandling, 59
3.5.4 Performance Gain.o 59
3.6 Mersenne Twister. e 61
3.6.1 Parallelizing the Original Algorithm 63
3.6.2 Parallelizing Using Dynamic Creation Library 66
3.7 Smith Waterman 68
3.71 The Algorithm e 68
3.7.2 Approach e 69
3.7.3 Performance Gain o 69
4 Experimental Validation............. i i il e 71
4.04 Experimental Results 2
5 Related WOrK e e 77
6 Conclusion and Future Work i e 79

Bibliography e 81

Table 1.1
Table 1.2

Table 1.3

Table 2.1
Table 2.2
Table 2.3

Table 2.4

Table 3.1

Table 3.2

Table 4.1

Vii

LIST OF TABLES

Mobile agent solution for remote data collection 10
MoODile AQENt ISSUEBS ...ttt e e e e 16
Mobile Agent Issues... continued. ..ottt 17
Dierent devices inthe system. ...t e 20
Java Proles. ... 35
J2ME Development Environment. ...ttt i 37
Comparison of various Messaging Technologi€S...............coovoin... 40
Communication MmechaniSmMSt i a7
Cell A NIty [25]. et 52

TESE HBVICES . oot v ettt e e e 73

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4

Figure 1.5

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

Figure 2.6

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8

Figure 3.9

viii

LIST OF FIGURES

Generic Agent Interpreter]d].or it e 3
Canonical view of an agent-based system [7]...cee v, 4
Basic service-oriented architecture. ... 6
Service CompPOoSItioON[B]voi e 7
Panoramic view of the system e 14
Transport Level Diagramot i e e et 19
Agent ArChiteCtUNE i i i e e e e 21
Itinerant Agent StTUCIUNEo it e et et it e 25
Sequence Diagram of the operation...........ccuiiiii i 29
Java Editions and their target markets i 33
Interfacing Mobile Agents with SOA e 41
Cell ArChiItECIUIE e e e 44
Bag of tasks paradigm ... e 53
Double BU BING [22]. ..t ittt e e e e 54
TEeXE MINING .« oo i i e e i 55
TF-IDF algorithm. ... e e e 58
Memory Handling TeChniqQUeSttt e e e i i aas 60
TF-IDF PerformancCe.t 61
Mersenne Twister code (original)vuiei i i 64
Mersenne Twister (divided into three IoopS) ... ovvv vt 64

Figure 3.10 Mersenne Twister parallelization i e 65

Figure 3.11 Mersenne Twister Performanceouir ittt iiie e iieans 67

Figure 3.12 Smith Waterman Performanceo 70

Figure 4.1 Experimental Setup

Figure 4.2 Code Mobility overhead

Chapter 1

Introduction

Over the past few years, we have witnessed a tremendous imprement in the hard-
ware and software abilities of mobile phones. This has enceoaged the research community
and the industry to look at mobile phones as not just as call m&ing devices, but also as
something more than that. The ability to provide user-specic services has been the eye
candy of the search engine companies for a long time. Compaes like Google frequently
launch free applications with the aim to capture user inputs and leverage their business
model with the information obtained from these applications. So far, these applications
have only been introduced in desktops, but the day is not far vihen we will be able to see a
variety of applications on our mobile phones that capture ou activities and try to give us
intelligent recommendations to buy items or to prioritize our tasks in an useful manner. We
are talking about intelligent bots that can be downloaded dynamically and which emulate
our cognitive abilities to help us take intelligent decisions. Apart from this angle, we can
also consider mobile phones to be an advanced variant of samsnodes. They can be used
by personnel to collect location-speci ¢, situation-specc information in the eld, which
can later be analyzed using data mining algorithms to deriveuseful results. Starting with
a brief tour of the intelligent bot technology (agents), this chapter explores service-oriented
computing, mobile agent technology, tries to address somesues of mobile agents and nally
introduces the problem of remote data collection and analyis.

1.1 Agent-Oriented Programming

An agent is a computer program that acts autonomously on behH of a person
or organization. Agents can be considered a distinct kind ofsoftware abstraction in the
same way as functions and objects are software abstractiondMore speci cally, an agent is
a high-level software abstraction that explains the softwae behavior in a speci ¢ context.
The weak notion of an agent is that it is reactive (responds to the envionment), proactive
(ability to act in anticipation of future goals) and autonom ous (not centrally controlled).
A strong notion of an agent is that it is any entity whose state is viewad of consisting of
mental components (e.g.,beliefs, capabilities, decisiormd commitmentg [1] . The actions
of the agent are determined by itsdecisions The decisions are constrained bybeliefsthat
refer to

states of the world,
mental states of other agents, and

capabilitiesof this and other agents

The decisionsare constrained by previous decisionsCapabilitiesde ne what an agent can do
at a particular time. Commitmentsde ne guarantees of an agent to another agent regarding
a proposition. A decisioncan be viewed as a&commitmentto yourself. The basic interpreter
inside an agent is as shown in Figure 1.1.

When adopting an agent view of the world, it becomes apparentthat a single
agent cannot do everything. We have many agents with di erert beliefs and capabilities
that in uence their decisions. The agents have to interact with each other to achieve their
individual objectives and coordinate with other agents. The view of an agent system can be
seen as in Figure 1.2. The agents communicate with each otharsing the Agent Commu-
nication Language (ACL). An agent communication language onsists of primitives (called
performatives) that allow agents to communicate their beliefs capabilitiesand commitments
to other agents. Apart from the performative, ACL also indicates the sender, receiver, con-
tent, encoding language, protocol and other parameters neked for communication between
two parties. There are a xed number of performatives, such & inform, accept, refuse,
not-understood, call for proposal, propose, accept-propgal, query, request, con rm, failure
etc. There are currently two popular ACLs, the FIPA ACL and th e KQML. Through ACL,
the agents try to achieve the following objectives [3]:

¢ — — — — — — —

Figure 1.1: Generic Agent Interpreter[1]

query another agent about the value of some proposition,

inform an agent of some proposition and receive an acknowlegginent (of belief and

for receipt),
synchronize data with another agent about the value of some mposition, and

ask an agent if it will undertake some action, and, if it is agreeable, to tell (command)
it to do that action. The nal communication will be the resul t of executing the action

(if it succeeds or fails).

1.2 Service-Oriented Architectures

Service-oriented architectures make use of services as @tructs to support the de-
velopment of rapid, low-cost and easy composition of distthuted applications. Services are
autonomous, platform-independent computational entities that can be used in a platform-
independent way. Services can be described, published, disvered, and dynamically as-
sembled for developing massively distributed, interoperhle and evolvable systems. Since

Figure 1.2: Canonical view of an agent-based system [7]

services are expected to be reusable and interoperable in dient environments, the follow-
ing characteristics are attributed to a SOA [2]:

Technology neutral: Protocols, descriptions and discovery mechanisms shouldomply
with widely accepted standards.

Loosely coupled: They must not require knowledge, internal structures or corventions
at the client or service side.

Support location transparency: Services should have their de nitions and location
information stored in a repository such as UDDI and be accesble by a variety of

clients that can locate and invoke services irrespective otheir location.

Services come in two avors: simple and composite. Compost services are composed
of smaller services. A complicated e-trading web service Wing many aspects such as
trading rules analysis, risk assessment, data mining, prie forecasting, buying, selling may
be modeled as separate smaller services. Since servicezated computing (SOC) and multi-
agent systems share some common goals, building blocks inrgiees can also be agents. The
advantage of using agents for service composition is dynamideployment of new services

(of course using mobile agent technology that will be discused later)

The service-oriented approach is independent of speci ¢ gggramming languages or
operating systems. It allows organizations to expose theicore competencies over the Inter-
net or a variety of networks including LAN, mobile ad-hoc networks, GPRS, and Bluetooth.
Web services are the most promising technology based on sece-oriented computing. This
is because web services are composed of many services that drstributed over the network
and are available via standard interfaces and protocols. Far common protocols that are

used in web service-based SOC are

Simple Object Access Protocol (SOAP): A platform-independent protocol for exchang-
ing XML-based messages normally using HTTP/HTTPS.

Web Service Description Language (WSDL): An XML-based probcol that allows web
services to describe the capabilities, the interfaces, andddresses of end points.

Universal Description, Discovery and Integration (UDDI): A platform-independent,

XML-based registry for businesses to register their servies on the Internet.

Business Process Execution Language (BPEL): A protocol usketo orchestrate ser-

vices, i.e., discover and compose services.

In this thesis a SOA will be built to provide services that are not related to e-commerce.
However, the services that are described in this thesis candeasily extended to operate as
or with web services.

A simple service-oriented architecture is composed of pragcer (of services), con-
sumer (of services) and a directory (of services). Optiond, many service-oriented technolo-
gies also have a broker, which helps in building scalable andistributed directory services.
A simple service-oriented architecture is based on three teractions: publishing a service,
nding a service and binding to a service provider. Figure 13 illustrates a basic SOA
architecture.

The basic SOA architecture does not capture the various fads of this vast eld.
A new extended SOA has been proposed by [8]. The components thiis extended SOA are

divided into three planes.

Service foundation: The bottom layer provides a service-oriented middleware bek-
bone that realizes the runtime SOA infrastructure that connects heterogeneous com-

ponents and systems and provides access to services via chais like Internet, LAN,

Figure 1.3: Basic service-oriented architecture

UMTS, GPRS, and Bluetooth etc. This layer describes basic iteractions involving
description publishing nding and binding of services.

Service composition: The middle plane de nes roles and functionality for aggregdion

of multiple services into a single composite service. The sps of a service compaosition
are as shown in Figure 1.4. The idea is that, based on a partidar problem, services
are chosen from a repository and among these services, somee grovisioned to be
used based on the domain knowledge/trust model. Finally, the services are invoked

in a certain order as de ned by the problem.

Service management: The top plane de nes mechanisms to monitor the health of
systems that implement the services.

Apart from these, there are service characteristics that cti across all three planes. These
include semantics, non-functional service properties andjuality of service (QoS). Quality of
service encompasses important functional and non-functioal service quality attributes, such
as performance metrics (response time, for instance), segty attributes, (transactional)
integrity, reliability, scalability, and availability [8].

As we can see, the service-oriented architecture is very vasand encompasses

various standards and protocols. For more information the eader is referred to [3]

N
/ N
/ \
n
|
f K
\ /
N

Figure 1.4: Service Composition[6]

1.3 Mobile Agents

A mobile agent is an agent that can migrate from one machine taanother, interact
with other agents in that environment, and take new decisiors based on that interaction.
A mobile agent has the following characteristics and bringghe following advantages to the

table:

It can roam the network, connect to di erent devices, discower new services in those

devices and, hence, help in better service provisioning.

It can interact with other agents in the system and arrive at new decisions faster than

static agents that rely on message passing over the networknducing delay.

It can roam the network without a speci c itinerary based on t he intelligence obtained
in the current environment and, hence, assimilate data in a nanner that was not pos-
sible in previous distributed computing paradigms. Mobile agent can choose di erent

migration strategies depending on its task and current netvork conditions.

It can operate in periods of intermittent connectivity with other peers and, hence, is

suitable for remote data collection.

It can improve the throughput of the entire system by attaching itself to nodes with
unused CPU cycles and executing in that environment.

It can save power and bandwidth on embedded devices by proceisg data locally and
transmitting only relevant data to the originator of the ser vice. In addition, mobile
agents are not always resident in a system, which may potendily help in power

conservation.

It enables exible service deployment on heterogeneous d@&es and on-the-y code

updates for the running services.

It enables load balancing and fault tolerance for the servie by replicating itself in

new environments.

It can monitor the health of the system and self heal the a ected system based on

intelligence acquired from the environment.

1.3.1 Mobile Agents as a Fluid SOA

The primary goal of a service-oriented architecture is to ceate a number of loosely
coupled, reusable services. These services could then bendynically assembled and re-
assembled into any number of dierent applications based upn ever changing business
requirements. Mobile agents provide a superior solution tobuilding a SOA compared to
the currently used distributed component object models tha are based upon application
servers. By deploying mobile agents from one node to anothemwe are introducing services
close to the data, which improves execution time. Also, it ircreases the number of services

available for provisioning.

1.4 Remote Data Collection and Analysis

Distributed data collection has been the subject of much resarch, mainly in sensor
networks, search engines and web crawlers, data mining andigtributed databases. Each
of the areas has explored distributed data collection in cosiderable depth. The algorithms
used in these approaches are traditional distributed algathms. The traditional distributed
algorithms are rigid in nature in the sense that they have bee established to solve a

particular problem. In addition, the traditional distribu ted algorithms solve a problem in
the same manner every time, leaving less room for intelligegndecisions. Apart from this,
note that most distributed algorithms involve many interac tions with the initiator, which
makes them useless when the network is disconnected.

Consider a specic scenario of distributed data collectionin a military opera-
tion. Soldiers are equipped with devices that have various /D capabilities like audio
input/output, text input/output, video, image and other se nsory input/outputs. These
devices may also be equipped with advanced communication hdware like Wireless LAN
(WLAN), General Packet Radio Service (GPRS), Bluetooth and Global Positioning System
(GPS). These devices are needed to collect various kinds ofth during runtime. Five major
problems must be dealt with when using these devices:

These devices have low battery and low CPU power.

They are mobile and, hence, can lose connectivity with the bse station.

They need to collect diverse data; not all of it can be foresae before hand.
They can be damaged by physical impact and may also have unrable rmware.

They use various communication methods, have di erent GUI and, hence, we need
interoperability.

Apart from this, there is one signi cant advantage of these devices. They are in the eld
for a long time and collect a lot of data. For this reason, the cevices are valuable assets to
the users as the devices themselves may provide intelligerstuggestions to the user.

There could be many distributed computing paradigms that sdve some of the
above problems individually, but no paradigm solves all of e above problems. There
has been no paradigm to solve the problem with intermittent mnnectivity and damageable
hardware. A mobile agent solves the above problems in a veryntuitive manner. We next

discuss how it addresses each of the issues.

1.4.1 Related Approaches to Remote Data Collection and Anal ysis

The related work in remote data collection and analysis is inmany areas that

are all connected in the broad paradigm of distributed compuing. This thesis considers

Table 1.1: Mobile agent solution for remote data collection

| Issue \

Mobile agent solution |

The devices have low battery
and low CPU power.

Mobile agents are not resident on the device
all the time. They can be sent to a device at a
particular time. Maintaining wireless connec-

tivity can also consume battery power. Mo-

bile agents can operate without network con-
nectivity for long periods.

The devices are mobile and,
hence, can lose connectivity
with the base station.

Mobile agents can operate during network dis-
connection. They can resume connection with
a network at a later time and communicate
with the base station.

The devices need to collect di-
verse data, all of it cannot be
foreseen before hand

Codes and queries can be dynamically upt

loaded to the devices at run time. This gives
a exibility to mobile agents that can not be
thought of in other paradigms.

The device can su er physical

Since mobile agents are capable of transport;

10

ing the code with the state and data, it can be
transported to another system (both proac-
tive and reactive strategies can be applied).
Since the agent code is generic, it can adapt
to di erent environments and gain informa-
tion about the environment and take decisions
based on it.

damage and lose data.

5. | The devices use many di erent
transports and GUI.

a type of mobile agent called the itinerant agents. Itinerart mobile agents are programs,
dispatched from a source computer, that roam among a prede ed set of networked nodes
until they accomplish their task. The approach taken in this thesis is to use Itinerant agents
for remote data collection and service-oriented architeatire for data analysis.

There are works similar to this in the areas of mobile agentsdistributed objects,
process migration, grid computing and service-oriented amputing. Let us consider each of

them in brief, and contrast them to this thesis work.

Mobile Agents: The concept of itinerant agents was introduced in 1995 by IBA
[12]. They considered an architecture whose prominent congnent is the Agent Meeting
Point (AMP). The AMP is the agent execution environment that contained various compo-
nents, such as resource manager, shallow router, linguistidirectory, authorization service
etc. Upon an agent's arrival to the AMP, the agent's credentials and availability of the

resources requested by the agent are checked. The AMP also ia shallow router that

11

routes the mobile agent to other nodes. This work illustrates how to build a mobile agent
architecture. However, this work does not include connectrity via wireless and does not
consider connectivity with handheld devices. This thesis ges the concept of an itinerary
from this paper and expands on it to include handheld devicesand wireless connectivity.
The work using D'Agents [11] also considers distributed inbrmation retrieval. This work
is attractive as it considers many interesting facets in molile agent computing. First, it
discusses the improvement in retrieval time of documents ampared to RPC, another tech-
nology that competes with mobile agents. Second, the paperidcusses how to plan an
itinerary to traverse di erent nodes based on the probability of nding a document in a sys-
tem. This probability is obtained by measuring some statisics of most common searches.
Again, the work using D'Agents did not cover mobile phones aml PDAs. There have been
many other applications using mobile agents, such as thosaidistributed forensics, network

management, mobile databases etc., but they all involve pesonal computers and servers.

JADE [13] is a Java agent deployment environment that is anoher popular mobile
agent framework. JADE has been extended to support mobile pbnes with the addition
of the LEAP[14] framework. JADE-LEAP (JADE powered by LEAP) has been used in
some applications, but none of them have been deployed widel The implementation in
this thesis is built upon the ORMAC (Oak Ridge Mobile Agent community) that has been
used in a variety of agent-based applications for the past te years [18, 19, 20]. Moreover,
JADE does not directly o er support for itinerant agents, wh ich further complicates the
software e ort.

Distributed Objects (CORBA and DCOM) : There are various distributed object-
oriented client server platforms that have been commercidy deployed and can also be used
for distributed data collection. The main issue with using this technique is that it is built
upon a client server type request-response model, which mea the connection has to be
maintained at all times during computation. This is not so suitable for remote data collec-
tion operation where intermittent hon-connectivity is common. Apart from this, CORBA
and DCOM do not o er code mobility, which means services canmwt be dynamically de-
ployed on those devices.

Process Migration: Process migration [15] is the act of transferring a process

12

between two machines during its execution. It enables dynanc load distribution, fault
resilience, eased system administration, and data accessdality. It resembles mobile agents
in its goals; However, process migration is more of a systerevel abstraction while mobile
agents that are more of an application-level abstraction. h process migration, the processes
can migrate between similar devices. Migration is platformdependent. In a heterogeneous
network of devices, process migration is not very useful, athe executable le formats of

the devices may be incompatible

Grid Computing: Grid computing [16] involves coordination, storage and netvork-
ing of resources across dynamic and geographically dispe organizations in a transparent
way for users. What distinguishes grid computing from typical cluster computing systems
is that grids tend to be more loosely coupled, heterogeneousnd geographically dispersed.
In addition, while a computing grid may be dedicated to a spetalized application, it is often
constructed with the aid of general-purpose grid software ibraries and middleware. Grid
computing enables the creation of Virtual Organizations (VO) for sharing resources that are
scattered across multiple geographically distributed or@nizations. Scheduling the accesses
to resources is one of the main research areas in grid compog. A grid-based architecture
is not a suitable paradigm for computation on mobile phonesas mobile phones do not have
many 1/O resources that can be used remotely and cannot take p computation for other

nodes as they do not have computational power.

Service-Oriented Architectures : SOAs provide a new programming paradigm
that enables publishing, discovery, and utilization of sewices o ered by heterogeneous de-
vices in a platform-neutral manner. The strength of SOA liesin the fact that a number
of smaller services can be orchestrated to provide exotic saces. SOA can be applied to
perform distributed data collection and analysis on mobile phones. SOA uses standards
like WSDL and SOAP for service description and communicatim, which are available on
mobile phones. While gaining the advantage of using multipé mobile phones to orchestrate
complex services, it must be realized that the services thatare deployed on the mobile
phones will be static, changes to the service will require stpping it and reinstalling a newer
version. This may cause problems with compatibility as someservices are old and some

new. We need to make the interfaces backward compatible, whh is not an elegant solution.

13

A new approach Mobile Agent + SOA:
Four main reasons to consider an architecture that integraes mobile agents with

service-oriented architecture are:

Mobile phones are good data collectors but poor compute dewgés. In addition, their
battery power is precious. Hence, compute-intensive tasksnust not be executed on
the mobile device.

Deployment of new services can be performed seamlessly ugimobile agents.

Even if the agent on the mobile phone could cooperate with otlkr agents in the agent
network, the performance of Java is signi cantly slower conpared to its C counterpart

in a high-performance application.

By utilizing SOA to execute our compute intensive task, a whde new library of services

can be used along with agents to solve speci ¢ problems.

1.5 Mobile Agents Criticism

Mobile agents have been criticized as a failure in the recenyears. There have
been many papers that discuss this [9, 10]. The main reasonsted for failure are related
to security and trust. There are some papers that defend the mbile agents, such as [4, 5,
21]. Table 1.3 is a summary of various allegations against ntwle agent from [9] and how
this thesis takes a stand on them.

14

SOA

{!ﬁ b

Di rec(ory

Internet i —é
-Q

/ SOA Proxy

Figure 1.5: Panoramic view of the system

1.6 System Overview

The high-level architecture of the system consists of two pes, the mobile agent
system architecture and the service-oriented architectue. The mobile agent system is com-
posed of a network of nodes on which the mobile agent can de deged. These nodes can
be mobile phones/PDAs, personal computers or servers. The obile agent can roam freely
on any of these nodes and communicate with other mobile agestand agents in the local
system. In this mobile agent design, we consider the itinemat agents (mobile agents with
an itinerary), that follow an itinerary in order to traverse the nodes in the network but can
decide to take certain run-time decisions based on the envimment.

The second part of the architecture is the service-orientedarchitecture. The
service-oriented architecture is a new form of software degn that utilizes services from
many vendors and forms a mesh of interoperable services. S#ge-oriented architectures
are very popular among web services owing to myriad ways of cobining them to pro-
vide attractive services. However, the domain of SOA is notimited to web services alone,
there can be applications that can use SOA to combine servigefrom various platforms and
languages. This thesis considers SOA to combine the serviaeered by the mobile agent
platform i.e., data collection with the services o ered by a high-performance device (e.g., a

15

PS3), in a platform and language neutral manner. Moreover, w also demonstrate how ser-
vices can be described, advertised and composed. Even thdughe mobile agent platform
can be made platform-independent, it is di cult to make it la nguage-independent. Not all
languages are suitable for all services. Having a SOA-baseatchitecture provides us both
with platform and language neutrality. Fig 1.5shows the high-level view of the system. The
system consists of many devices that can be interconnectingith each other by di erent

transport mechanisms.

1.7 The Main Contributions
This thesis has two main contributions

Design and implementation of a intelligent communication middleware (mobile agent)
that saves bandwidth, power, CPU on the mobile device, whilee ciently collecting
the relevant data from remote devices. The thesis discussdhle protocol of operation
of an itinerant agent framework, and the challenges of implenenting it in J2ME.
The author also describes the method of integrating the mollie agent with a service-

oriented architecture using platform neutral protocols such as XML-RPC

Implementation of high-performance kernels on Cell broadbnd engine, for e cient
analysis of data. The thesis measures the performance spaguobtained for solving

certain non-regular scienti ¢ kernels and attempts to provide reasons for the speedup.

1.8 Thesis Hypothesis

It is our hypothesis that, the approach of combining mobile agents with a service-
oriented architecture is useful for remote data collectionand analysis, where the devices
have low bandwidth, low computational power, intermittent non-connectivity and dynamic

service requirements.

Table 1.2: Mobile Agent Issues

Issue

Argument

Mobile agents do not per-
form well.

This is not necessarily true. The work using
D'Agents [11] has shown that mobile agents per-
form better than RPC in a general scenario and in
particular, data retrieval applications.

Mobile agents are di cult
to design: Most distributed
systems have a complex;
ity that can be addressed
using normal distributed
computing paradigms.

Mobile agents provide an intuitive solution for
some distributed applications that operate in in-
termittent connectivity or need computation to be
done closer to data. Mobile agents are ideal fol
such applications. Mobile agents that are intelli-
gent may be di cult to design, but they are scal-
able.

Mobile agents are di cult
to develop: It is hard
to foresee the heteroge
neous environments that
the agent operates in.

This is an issue with agent-based computing, not
mobile agents in specic. All agents involve se-
mantics by which they take intelligent decisions.
Formulating the semantics is not an easy task.
However, once developed the system is highly sca
able.

Mobile agents are di cult
to authenticate and con-
trol: The Identity of an
agent is dicult to estab-
lish as the agent moves
from one system to another

It is true that mobile agents are dicult to au-
thenticate in a completely new environment. Trust
management is a very complicated problem that
researchers are still working on. However, in
trusted environments, mobile agents can easily
be authenticated using third party authentication
systems, such as Kerberos.

Access control over remote devices can be er
forced by not allowing the mobile agent direct ac-
cess to resources of the system, but via anothe
agent/context. Also, agent attributes can be in-
ferred from the agent directory before providing

N

resource access.

16

Table 1.3: Mobile Agent Issues... continued
Issue Argument
Mobile agents can be| This attack is extremely di cult to prevent. But it
\brainwashed”: A mali- | can be handled in an application-speci ¢ manner:

cious host can modify the
state of the agent.

Cooperative agents: The Agent hosts are
trustable and, hence, the mobile agents can
roam the network freely in this network.

Service agent: The hosts are registered with
the service provider, but the host can have
software that is not trustable. We take ad-

vantage of using mobile agents for service de
ployment, but we do not allow the agents to
roam freely. Instead, we deploy them only
from the originator. Hence, any change to
the state of the mobile agent state is local.

Mobile agents cannot pro-
tect secrets.

The mobile agent must not carry data of one de-
vice to another. Only state changes should be car
ried when a mobile agent moves from one devics
to another. The ideal way of solving this problem
is to clone the mobile agent without the data of
the current device and send it to the next device.
The data residing on the current device is collected
later using a request-response mechanism. If the
mobile agent wants to communicate useful results
to another node, it should do so using agent comj
munication messages.

D

v

Mobile agents lack a shared
language/ontology.

This is a very ambitious goal to achieve. However,
a shared ontology can be formed among coopel
ating organizations. Mobile agents could be useg
in dynamic service provisioning in those organiza-
tions

Mobile agents lack a ubig-
uitous infrastructure.

Mobile agents that have been implemented in some
languages such as Java, can migrate and execut
in other nodes. However, Java inherently does
not support code migration. This thesis addresses
some of the issues of code migration in Java.

Mobile agents are suspi-
ciously similar to worms:
mobile agents can repli-
cate themselves in remote
hosts similar to the way the
worms replicate themselves

As the agents execute under an agent context, it i
not possible for them to harm the machine directly.
Moreover, based on agreements while deployin
mobile agents, the service deployer can limit the
number of agents of a particular kind.

17

18

Chapter 2

Design and Implementation

This chapter describes an abstract framework for itinerantmobile agents that can
be used to implement secure, remote applications in large tranets and public networks such
as the Internet. Itinerant mobile agents are programs dispached from a source computer
that roam among a set of networked nodes until they accomplil their task. An additional
feature of itinerant agents is their ability to migrate from node to node, perhaps seeking
one that can help with the user's task or perhaps collecting mformation from all of them.
A major focus of this work is the design of a middleware to enale the agents to discover
other nodes, move from one node to another and communicate thi other agents in the
system.

We start by describing the network in which the mobile agent runs, i.e., description
of various nodes in the system, followed by design of the mola agent architecture, followed

by the protocol of operation for the Itinerant mobile agents.

2.0.1 Description of the Network

The low-level picture of the system is as shown in Figure 2.1.mobile agents are
essentially apeer-to-peer network The above picture gives us a low-level decomposition of
the system. There are di erent kinds of nodes in the system, .ie., proxy/edge router, core
router, agent directory, SOA node, PDA, cell phone and laptg. A brief description of each

node and its modes of connectivity is given in Table 2.1. Note that the devices behind the

19

Figure 2.1: Transport Level Diagram

proxy are invisible to the outside world, but they can see thenodes that have a public IP
address. In order to connect to these devices, messages mimst sent to the proxy, which
will forward the messages to the devices. There are speciabekets called JXTA (Juxtapose)
sockets in Java for peer-to-peer systems. While using JXTA ackets, the nodes that do not
have a public IP address rely on super peers to forward the meages to them. We are,
however, not going to consider using JXTA sockets in our thess.

Apart from this, we may also have DHCP issues. Every time a noé behind the
DHCP reconnects to the network, it may have a dierent IP addr ess that it must notify
the agent directory and the proxy. The agents must be addressd by an agent-id. All
communications must be done using this identi er because te agent may not have the
same IP address and may not be associated with same proxy alhé time. When an agent
enters a system, the agent directory and the proxy associatk with that node need to be
noti ed to update their tables.

The handheld devices can connect to the network in various wgs: Bluetooth,

Table 2.1: Dierent devices in the system

| Device

Purpose

[Mode of Connectivity |

Agent Directory

It contains the descriptions of
all the di erent agents in the
system. This device must have
a public IP address.

accessible via the In-

ternet

Service Directory

It contains the descriptions of
various services in a SOA

accessible via the In-

ternet

Proxy/Edge Router

This device has a public IP
address. It can also act as
a NAT/DHCP server. A

proxy has a shallow router
that maintains a mapping be-
tween agent-id and agent ad-
dress.

accessible via the In-

ternet

Core Router

This router is capable of con-
necting di erent nodes in the
Internet.

accessible via the In-

ternet

SOA node

This node hosts services that
can be used by other nodes.

LAN/WLAN/Ad-hoc

Personal computer

This device hosts the J2SE

LAN/WLAN/Ad-hoc

/Laptop agent execution environment

PDA This device hosts J2ME (CDC | LAN/WLAN/Ad-
pro le) agent execution envi- | hoc/Bluetooth
ronment.

Cellphone This device hosts the J2ME| LAN/WLAN/Ad-

(CLDC prole) agent execu-
tion environment.

hoc/Bluetooth/GPRS

20

GPRS, WLAN (Access point and Ad hoc), UpNp, to name a few. Apar from this, there

are a number of transport protocols that can be used for conngtion, namely stream (TCP),

datagram (UDP), HTTP (Even though HTTP is not a transport pro tocol, the devices han-

dle HTTP request/responses in a di erent manner than stream/datagram sockets. Many

operators prefer to block datagram connections to the mobg phones), SMTP (same expla-

nation as HTTP). Bluetooth, by itself, cannot be used to connect to the network. However,

it can connect via another device in the network. Therefore,the handheld devices can be

connected in a variety of ways, so it is necessary for the Agernost on the device to indicate

how it would like to get connected when it starts up.

In this thesis, we explore the connectivity of mobile device to the network via
WLAN, GPRS and Bluetooth.

21

2.0.2 Agent Architecture Design of Ubimac

AN =

T U8y

2 uady
ouwoR(g
01800

;

i
|
/
7/491[:) 1018007]
/

K4

et =

I"#$

\ v
:
\\
\\
E \
II# $

Figure 2.2: Agent Architecture

The agent architecture designed as a part of this thesis is ¢ed Ubimac (Ubiqui-
tous Mobile Agent Community) .The design of Ubimac is as illustrated in the Figure 2.2.
There are three layers: transport layer, core components, rad application-speci ¢ Ul. The
application-speci ¢ Ul is not a part of Ubimac, the user is free to register his own Ul and
have agent-speci ¢ functionality here. The users can alsoe&gister their own transport layer.
Right now, Ubimac supports two transports, the DatagramTransport_J2SE and Datagram-
Transport_J2ME, but the user can add other transports such as RMI and TCP if these
transports supports the target devices.

Design Motivations: The design of Ubimac considered the following important

factors:

Modularity: Modularity addresses the separation of concerns and suppis quick up-
dates and additions to address new requirements. Each of theore components are

22

essentially independent and can execute in their own contgs. They have access to
the transport layer and the GUI. Each of the modules can have heir own GUI and

transport-providers.

Extensibility. The transport layer is uni ed across all platforms. Each type of transport
is called a transport provider. The user of Ubimac can regisér his choice of transport
provider. In the same lines, the Agent Ul can be implemented sparately for di erent

devices.

Open/closed principle The open/closed principle is a popular concept in software
engineering. This means that certain components (for e.g.Ul and Transport) must
be open while keeping the interfaces to the core component$osed because accidental

changes to core components can result in unpredictable refs.

Enable greater code reuse via conditional compilatidio facilitate greater code reuse
across platforms, Ubimac considers having one code for allgtforms and conditionally
add/remove certain blocks (which use a platform-speci ¢ API) from the code by using

preprocessor directives.

2.0.3 Security Considerations

The security goals of the agent system can be as follows:

Protect the system: agent must not be able execute code thatsi harmful to the

machine ;
Protect other agents: execution of one agent must not distub other agents ;
Protect a group of machines: The agent must not consume in nie resources ;

Protect the agent: A malicious node should not be able to mody the state of the
agent. This is impossible to achieve on a malicious node, bubnce the agent returns
to a trusted node, the state must be reverted to a harmless ste.

The system is protected in three ways.

Controlled access to 1/O: All direct access to I/O classes mst be disallowed. The
agent must be able to get an I/O class only via a factory. The conpiled user code must

23

run through a preveri er designed speci cally for Ubimac. T his preveri er checks if
the class uses some I/O classes directly. The preveri er cabe written using the ASM
library[17], which allows you to look through the bytecode for instances of specic
classes. On nding an I/O class in the eld section or inside amethod, precompilation
is deemed to have failed.

Controlled execution of instructions: The agents run in their own context and, hence,
cannot in uence the execution of other agents. Access to remirces is controlled via
the context. Whenever the agent is created/moved, its agenthost must communicate
with the remote agent host and request a speci ¢ set of rolesquch as le accessor,
socket writer, data generator etc). Based on the agreed setfaoles, the remote agent
host creates a context speci c to the agent. This context albws accesses to particular

resource types based on the roles the agent is playing.

Role-based access management: Some components of the sys{such as the locator
daemon and agent host) are trustworthy whereas the agents tat come from the
network may not be trustable. Trustworthy resources get full access to the system
whereas agents must execute within their own context and anyexceptions caught

while running the agent should not a ect the execution of other agents.

Message-authentication layer: As in Figure 2.2, the messagauthentication layer applies
to all components of the system, i.e., agent host, agents, ator daemon (program at the
agent directory) and locator client. When two nodes talk for the rst time, a authentication
session is established between them. The responsibility dbing this authentication lies with
the agent hosts. This establishes a private key with which tle messages are encrypted at the
sender side and decrypted at the receiver side. The method albing this authentication is by
using a trusted third party authentication system, such as Kerberos. This security feature
has been widely explored in research communities, and has ee successfully deployed in
many systems, hence, it is less exposed in this thesis.

Using the above strategies, this thesis addresses the rstiiree goals. The last goal

is left for future work.

24

2.0.4 Itinerant Agent Structure

The structure of an agent is as shown in the Figure 2.3. Every gent has a header
that consists of a unique agent-ID that is obtained when the gent rst registers with the
agent directory. The agent-ID is not related to the host address. It is a unique identi er
comprised of class name and a random number generated by thgent directory. The proxy
address is the public IP address of the proxy to which the agenis connected. If the agent
moves to a di erent location, then the proxy address will also need to be updated. The
proxy address is needed for the sake of bi-directional conweévity. As most nodes either
are behind NAT or receive a dynamic DHCP address, they are notisible to the outside
world. However, they can access nodes with public IP via the pxy and can also receive
messages from the outside world via the proxy that maintainsa table of agent-ID to local
-IP address mapping.

The agent has an itinerary, which consists of a list of nodeshat needs to be
accessed. If a node is reachable, then the node is marked as/ead, and the code (with
the modi ed itinerary) is sent to next node. If the node is not reachable, then the node is
marked as uncovered, and the next node in the itinerary is cheked for connectivity. The
itinerary can be modi ed dynamically if new nodes are discoered and are reachable via
the current node. This typically happens if the node receive connections via other means
of communication, such as the Bluetooth.

The agent can have some roles, such as le accessor, le writeUl accessor etc.,
based on which it can be decided if the agent can run on that dee. If it can run, then a
speci ¢ agent context is created at the agent host permitting those accesses. The agent can
have certain attributes through which it can be queried in the agent directory. It can relate
to agent functionality, capabilities and beliefs. Also, cdlection of these attributes can be
used to infer new decisions.

The agent has a main execute() function that is invoked on itsarrival at an agent
host after its credentials are checked. Apart from these, tlere are functions in the agent

that aid the communication. The agent can carry other application-speci ¢ functions.

2.0.5 Agent Host Structure

The agent host is comprised of following components

25

Roles Attributes Execgte Transport App Spfsaﬁc
Function | Functions | Functions
1 ? FileAccessor Name Value
Proxy Address ? FileWriter Name Value
? UIAccessor Name Value

Figure 2.3: Itinerant Agent Structure

Agent Context ManagerWhen an agent arrives at an agent host, the roles assigned to
the agent are checked to decide if this device can satisfy tme. If so, then a specic
agent context is created that allows resource access reqeid by that role. Agents
must not be allowed direct access to any resource; the agentilvsend a message to
the context that accesses the resource on the behalf of the agt. The agent context
can check any suspicious activity of the agent. This may slondown the processing,

but is very important from the point of view of security.

Resource ManagerThere can be many agents running in the system at the same
time, and they may request the same resource. The resource mager can arbitrate
the requests to the resource. Deadlocks can be avoided by mdating the agents to

request all resources it needs before starting and relingahing the same on exit.

Mobility Manager As the devices are mobile, the devices can be associated twit
di erent networks. The way the device is associated with a nev network is out of
the scope of this thesis. This can be done either manually orwomatically. The
agent host must track this change and respond. The agent hoshust notify the agent
directory of the current proxy it is associated with (if it is associated with a proxy) of
the new IP address. This is necessary as any node that wants tcommunicate with

agent host/agents on this device will need to contact it via the new address.

Authentication Manager When two nodes talk for the rst time, an authentication
session needs to be established between them. As discussethie previous section, the

authentication session is established via a trusted third @rty authentication system,

26

such as Kerberos.

There can be other subsystems, such as the ontology directar However, this thesis assumes
that all agents can understand a common language. Hence, thientity is not used. However,
in larger systems that need interoperability, we need an onblogy directory to determine
which messages received from di erent agent systems can beapped to some other well-
known messages (if possible), or to at least partially undestand the message and derive

some facts that can later be used to infer some decisions.

2.0.6 Design of Agent Directory

The agent directory must be available on the Internet so thatany node can access
it. The agent directory consists of agent descriptions and lst descriptions. Sometimes, a
host can be contacted via more than one transport method, sayia GPRS and WLAN. The
host description provides all the addresses associated vhitthe node and transport-speci ¢
attributes. The agent description gives the agent name, hasaddress, and agent attributes.
The entries for host and agent are:

Directory Entry for Host A:
Host-Name A
Host-Locator:
Transport-Type HTTP
Proxy-Addressttp://sys01.csc.ncsu.edu:8080
Local-Addressttp://192.168.0.11:8080

Transport-Speci c-Propertynone

Transport-Type Datagram
Proxy-Addresgdatagram://sys08.csc.ncsu.edu:8005
Local-Addresshttp://192.168.2.11:8005
Transport-Speci c-Propertynone

Host-Attributes:

Device-TypePDA

Java-Pro le:CDC

Has-File-Supportyes

Has-Camera\o

27

Has-BluetoothYes

Using the host information from the agent directory, other nodes can make an
informed decision whether the agent needs to move to that daee. If a particular service
needs to access the le but the device has a Java installatiorthat does not support le
access, then there is no point in sending the agent to that dece.

Directory Entry for Agent X:
Agent-ID:edu.ncsu.ubimac.agent.DataCollector@ 768768
Host-Name A
Agent-Attributes:

Type: Data-Collector
Roles FileAccessor, FileWriter, UlAccessor

The program running on the agent directory is called a locate daemon that listens

on a dedicated port number. Every host that wants to communiate with the locator daemon

starts a locator client that is common to all agents running in the system.

2.0.7 Dierent Types of Agents.

Meta-agent. A meta-agent is an agent that creates other ageils. The agent does not
run on the device itself but is sent to other devices. The metaagent is also a part
of the service-oriented architecture. It o ers certain sewices (in this case the data
collection service) to the world. In providing this service, it utilizes the capability of
other agents in the network.

Data collector: This agent identi es the context-speci ¢ i nformation and stores it in
the le system if le writing is allowed, or it carries the inf ormation to another node
if le writing is not allowed. Once the data collection operation is completed, the
data collector agent moves to the next node in the itinerary. If the next node does
not respond, it marks the node as non-responsive and moves t@nother node in the
itinerary. Later, if the data is requested by another agent, it either accepts or rejects
to send the collected data to the device (based on its crederals).

Static agent: The static agent in the system is another agenin the system that existed

in the device as a part of another multi-agent system. The molle agent can interact

28

with the static agent to get some information. The complication in this activity is
that the language spoken by the agents may be di erent, whichnecessitates putting
an ontology directory in the agent host. This can be done, butit is out of the scope
of this thesis.

Proxy agent: The proxy agent is a static agent installed on a poxy device. The
proxy agent enables a bidirectional communication with the agents behind a NAT
and other devices in the Internet. A proxy agent has a mappingof host names of all
agents in its network and their local IP addresses. When it g a message from the
outside network for a device in the local network, it forwards the message to it. It also

forwards all the messages sent by a device in the local networto the outside world.

Relay agent: A relay agent is an agent that forwards messagef®r another device on
its behalf. This agent is helps to connect to devices via Blu@oth.

Service agent. A service agent connects the mobile agent tdhé SOA. It receives the
information from the mobile agent, creates a XML-RPC reque$ and invokes a data
analysis service on a SOA node.

2.1 Protocols

The Figure 2.4 shows the sequence diagram of the normal opdmn of data col-

lection and analysis.

2.1.1 Mobile Agent Creation
On the creation of a mobile agent, the following steps are undrtaken:
Create an agent context based on the roles requested and atlated for the agent ;
Set the agent state to AGENT_CREATED ;
Register the agent with the agent directory ;
Register the agent with the proxy ;

Check the itinerary and see if the node has to execute here. lfes, start execution.

29

|

2.Store Data

1.

Code

Code
Code

2 Store Data

1

V_ _

request

Figure 2.4: Sequence Diagram of the operation

30

2.1.2 Mobile Agent Arrival

While moving the agent, check if the next node in the itinerary is reachable. If not,
mark the node as \unreachable” and try the next node until at least one node is reachable.
If no future nodes in the itinerary are reachable, then the mdile agent must take no action.
It should store the data and expect it to get connected anothe node in the near future.
The mobility manager in the agent host will notify all the agents in the system when the
node gets associated with a new network. If this happens, thenobile agent should try to
connect to other nodes in the itinerary. From time to time, th e originator of the agent tries
to handle exceptions and this scenario in section 2.1.5.

If a mobile agent nds that another node is reachable and has he same proxy as
itself, then it does not need to do authentication. It marks the next node in the itinerary as
covered, creates a clone of itself and jumps to the next nodeOn moving to the next node,
it need not carry the data with it, but it needs to carry the iti nerary with it.

If there is already an agent of the same kind running there, tle agent terminates
without doing anything. If there is no agent of the same kind running there, then the
same steps as mobile agent creation are followed. If the ageis migrating to an un-trusted
domain, it should request the agent host to start an authentication session with the remote
node. If the authentication session succeeds, then the agemoves to the new node. If
the authentication fails, then the node is marked as uncoveed, and the agent migrates to
the next node in the itinerary. If no node can be authenticated from this node, the the
mobile agent takes no action. From time to time, the originator of the agent tries to handle

exceptions and this scenario will be covered in section 2.4.

2.1.3 Mobile Agent Communication

As Shoham [1] put it, a computation in an agent-based system a@nsists of these
agents informing, requesting, o ering, accepting, rejecing, competing, and assisting one
another. A mobile agent system di ers from conventional aget-based system where there
is extensive cooperation among agents. The problems mobikgent computing addresses are
mostly those that involve disconnected operation and asynigronous responses to requests.

Therefore, this thesis mainly restricts agent communicaton to:

Inform: Inform the other agents (mainly the originator) of s ome events like \comple-

31

tion of activity”, \unable to authenticate”, \aborted unco nditionally”, \register" and
\unregister" (to proxy agent and locator daemon).

Request: An agent can request another agent to perform somectvity for it, e.g.,
return the collected data to a destination or relay a messagen its behalf etc.

Accept: Response to the requests can be an accept or a rejedn case of an accept,
the response contains some data speci c to the request.

Reject: In case of a reject, the reason for reject will be speed.

2.1.4 Mobile Agent Departure

Usually, after the data collection, the mobile agent is stil resident in the system.
In order to move to another node, it creates a clone. The mobé agent departs from a
system when it receives a inform message containing \comgien of activity” from the
originator of the mobile agent. On departure, the agent conext that is used to run the
agent is destroyed, and the agent sends an inform message taining \deregister” to the
proxy agent and the locator daemon.

2.1.5 Exception Handling

The following exceptions may occur in the system:

The mobile agent reaches a point where it is unable to reach annode in the system.
The mobile agent cannot do much at this stage, so it just collets the data and
stays resident. After a certain time, the originator sends at a request to all the

nodes in the network. If the originator gets a reject messageontaining \agent not

present”, then the originator sends a new mobile agent to th&anode. This agent will

try to cover the other uncovered agents in the itinerary. If the originator gets an
\accept” for the request data message, then it stores the dai received in the accept
message. When the unreachable node reaches a new network,sénds an inform
message to the originator containing \relocated" with the new proxy address and
local IP address. The originator (meta-agent) sends a requst data message to the

previously unreachable node.

32

The mobile agent reaches a point where no new nodes can be aethticated by this
node. Even in this case, the mobile agent will stay resident ad wait for the request

data message from the originator.

The mobile agent may not complete its activity and abort unconditionally. In this
case, the agents itinerary is still marked as uncovered. At dater time, other agents
will attempt to connect to it. Each time the host is unreachable, a note will be made
recording the number of retries. If the number of retries is dove a threshold, the
other agents will stop trying to connect to it, and the data collected by that node is
lost.

2.2 J2ME Technology
Mobile phone applications can be written using two developrent platforms [35]:

Native code: Native code development is usually done in C or €. Native code
is useful when one needs the absolute maximum performanceofn a system or one
needs low-level access to the hardware. Native code is prasor dependent. Hence,
deployment of the code has to be processor and compiler depdent. Usually, the
native code developers manage their own memory, provide theown libraries, and

have application-speci ¢ security mechanisms.

Managed code: Managed code development is usually performieising the J2ME or
the .NET compact frameworks. These platforms run the code ina managed run-time
environments that manage memory usage, security, and use ach set of libraries and
components that are available for all processor platforms Managed code development
right now dominates the mobile phone applications as the foas of most mobile ap-
plications is not to be compute intensive but rather to be interoperable with a wide

range of devices.

There are two important managed code solutions (J2ME and .NH Compact Framework).
There have been many studies comparing the J2ME with the .NETframework, such as
[36][37]. Both the platforms o er some similar bene ts, e.g, support for rich user interfaces,

byte code support, garbage collection etc. But both have som ne dierences: .NET

33

provides users with a working environment that mirrors what users are used to seeing
on PCs. Due to the fact that the majority of companies' applications are in a Microsoft
environment, back end interoperability is easier. Both J2ME and .NET have a great IDE
and support emulators to ease development and installatiorof the code. The main di erence
between J2ME and .NET however, is that J2ME supports a wider range of devices whereas
.NET is supported by Pocket PCs under a Windows OS. In order tobe interoperable with

a maximum number of devices, this thesis chooses Java as there technology.

Figure 2.5: Java Editions and their target markets

The networking features and the platform independence havenade Java a popular
technology for Internet applications. Since the diversity of devices is increasing, Java's
platform independence becomes a key feature. Many handheddset-top boxes, smart cards,
and other embedded devices provide a JVM. Furthermore, the amber of Java-capable
platforms is increasing, while the number of features in theJava programming language
and class library are also increasing. Because of this, Surak de ned many di erent avors
of the Java environment, as shown in Figure 2.5. The Java 2 Stadard Edition (J2SE)
is the default language pro le for workstations and small severs. The Java 2 Enterprise
Edition o ers addition features on top of the standard editi on. It is meant for large scale

34

servers, such as web servers. The J2ME is meant for restriadedevices, such as handhelds
and digital television. The Java Card is the smallest Java edtion available. It is meant
to be used with smart cards with very limited memory and processing power. In order to
cope with the variability of the hardware resources found inthe mobile computers with
limited capability (e.g., memory size, CPU power, system dsign, availability of keypad
etc.), the J2ME consists of 3 layers (virtual machine, con guration and pro le) that can be
customized to the speci ¢ hardware needs of the used mobilelatform.

2.2.1 J2ME Con gurations and Pro les

A con guration consists of a virtual machine that implement s some portion of the
Java language, virtual machine speci cations, and a minimd supporting set of class libraries
and APIs. These libraries are built for all devices of a partcular segment. Pro les are built
on top of con gurations to support device-speci ¢ features such as networking and Uls.

Each valid combination of con guration and pro le targets a speci ¢ type of device.

Connected Limited Device Con guration (CLDC): addresses cevices with a signi cant

resource limitations, such as cell phones and pagers.

Connected Device Con guration (CDC): addresses devices wh a higher set of physical

resources, like PDAs or set top boxes.

The list of devices that support J2ME and their Java con guration and supported pro les
can be obtained from [39].The main pro les that are used in JME are listed in the Table
2.2.

CDC is backward compatible with Java 1.2. It has support for more classes and
operations than CLDC. CLDC has the following limitations, t hat are not present in the
CDC environment:

No oating point support,

No serialization and re ection: This means that we cannot transmit objects over the
network.

Dynamic Class Loader: This is one of the major drawbacks of CDC platform. As

the support for a dynamic class loader has been removed fromhe virtual machine,

Table 2.2: Java Pro les

Pro le

Description

MIDP

This pro le is used with CLDC. The MIDP
speci cation addresses issues, such as user i
terface, persistence storage, networking, andg
application life cycle on CLDC devices. The
programs written in MIDP are called Midlets.

Foundation Pro le (JSR-219)

This pro le is used with CDC. It provides ap-
plication supported classes like network and
I/O support without a GUI API

Personal Basis Prole (JSR-
217)

This prole is used with CDC. It pro-
vides a standards-based GUI framework with
lightweight components.

Personal Pro le (JSR-216)

This pro le is used with CDC. It provides an
AWT-based GUI toolkit. It support the de-
velopment of applets.

File Connection (JSR 75)

This is an optional package used with CLDC
con guration. It gives access to the local le

systems on devices like PDAs. It allows read
and/or write access to the le system of the

PDA.

The Remote Method Invoca-
tion (RMI) Optional Package
(JSR-66)

It provides a subset of the J2SE RMI API for
networked devices based on Java technology

The Java Database Connectiv-
ity (JDBC) Optional Package
(JSR-169)

It provides a subset of the JDBC 3.0 API that
can be used by Java application software to
access tabular data sources, such as spred

1d

sheets and SQL databases

35

36

there is no support to dynamically deploy code. There have ben various approaches,
such as [40, 42, 41], that aim at re-engineering the kernel tsupport a dynamic class
loader. This limitation, coupled with the absence of seriaization framework, creates

a major hurdle to code mobility in mobile devices.

Threading features. CLDC provides threads, but it does not dlow the creation of
a daemon thread (a thread that is automatically terminated when all nhon-daemon
threads in the VM terminate) or thread groups.

Java Native Interface. CLDC does not provide the J2SE JNI fedure, which allows
native code to be called from Java classes.

2.2.2 J2ME Development Environment

The mobile agent code was tested on three JVMs NSICom CreME JWM (CDCQC),
Esmertec Jbed (CLDC 1.1) and Symbian CLDC (CLDC 1.1). There ae various tools that
are available for J2ME development. Table 2.3 summarizes th various development tools

that are used for the development of J2ME code.

2.3 Implementation of Mobile agents

There are some unique challenges to developing mobile agesnbn mobile phones,

i.e., supporting multiple devices, developing a serializtion framework and writing Midlets.

Serialization Framework: As discussed above, one of the main hurdles to deploying
mobile agents on mobile phones is absence of a serializatidramework (both in CDC and
CLDC), which prompted the author to use third-party librari es, such as J2ME Polish to
support serializable code. With some additional e ort, even the ASM library can be used

for serialization.

Precompilation: Precompilation is an activity of customizing a piece of coddor a speci ¢
environment. As there are so many devices, each with its ownapability, the code has to be
tailored to suit the capabilities of each device. This is sinilar to adding an #ifdef statement
in C. Either Antenna or J2ME-Polish may be used for precompihtion.

Table 2.3: J2ME Development Environment

Tool

Description

Eclipse ME

Eclipse ME is an Eclipse plugin to help de-
velop J2ME MIDlets. It helps various ac-
tivities, such as compilation, running build
scripts, signing midlets and deployment of jar
les.

Netbeans Mo-
bility Pack

Netbeans has an IDE for CDC code develop-
ment. It is a CDC counterpart of Eclipse ME

Sun Wireless
Toolkit

A toolbox for developing Wireless applica-
tions that is mainly used as a cell phone em-
ulator

Apache Ant Ant scripts are counterparts of Make in Java.
ObjectWeb ASM is an all-purpose Java byte code manipu-
ASM lation and analysis framework. It can be used
to modify existing classes or dynamically gen-
erate classes, directly in binary form.
Antenna Antenna provides a set of Ant tasks suitable
for developing wireless Java applications tar-
geted at the Mobile Information Device Pro-
le (MIDP). Antenna is mainly used to pre-
compile Java code for speci c devices.
J2ME-Polish J2ME Polish provides a library for bridging

the gaps of CLDC, namely serialization, RMI,
XML-RPC and provides style sheets for better

GUL.

37

38

Preveri cation: Preveri cation is the process of checking the byte code if dluser classes
adhere to rules of device accesses in mobile agent paradigm.g., no direct access to I/O

functions. ASM library is a standard tool for preveri catio n of code.

Dynamic Class Loading: Dynamic class loading is a feature where in classes can be
loaded using byte code. This feature is absent in the CLDC vesion of J2ME. However,
CDC versions have support for dynamic class loading. In ordeto load classes dynamically,
custom class loader is required that reads serialized obje¢byte code) from the network

and loads a new class.

2.4 Interfacing with a Service-Oriented Architecture

As discussed in the previous sections, data computation catve a performance-
intensive task that may not be done using Java. C is better than Java in compute intensive
tasks. In addition, special architectures such as the Cell Bbadband Engine are well suited
for executing certain algorithms. A mechanism is required b call the services o ered by third
party software in a platform neutral manner. A service-oriented Architecture, which uses
platform and language neutral protocols for communication publishing and composition,
is an ideal choice to accomplish this work. This thesis conders integration of a Java-based
agent platform on a Windows machine on the x86 platform with C-based data analysis
programs on Linux running on Cell Broadband Engine platform.

Remote Procedure Call (RPC) is one of the ideal ways of invokig a service on a
remote machine. RPC is attractive as it allows the service iterface to be published for any
system to invoke it. RPC has been implemented by various techologies. Among those,
CORBA, DCOM, SOAP and XML-RPC have been deployed. CORBA and DCOM have
been around for more than ten years. They have been widely dégyed in distributed object
environments. However, with the emergence of web servicetsyo new protocols, XML-RPC
and SOAP, are being adopted by many companies as a promisingethnology. Here is a

brief description of the messaging technologies

CORBA:The Common Object Request Broker Architecture (CORBA) is a standard
de ned by the Object Management Group (OMG) that enables software components

written in multiple computer languages and running on multi ple computers to work

39

together. CORBA uses an interface de nition language (IDL) to specify the interfaces
that objects will present to the outside world. The CORBA speci cation dictates that
there shall be an Object Request Broker (ORB) that understards the IDL, through

which the application interacts with other objects.
DCOM: DCOM is similar to CORBA and is developed by Microsoft.

XML-RPC: XML-RPC is a speci cation for making RPC calls usin g HTTP as the
transport and XML as the encoding scheme. The greatest advalage of XML-RPC is
its simplicity. There is support for simple data types, but it does not allow the user
to de ne complex data types. In addition, XML-RPC does not have names for the

parameters.

SOAP: SOAP was built as an extension to XML-RPC. SOAP's greatst feature is its
ability to step past XML-RPC's limitations, build complex m essage and customize
every portion of the message, e.g., providing names for panaeters. This ability to
customize allows developers to describe exactly what they ant within their message.
The downside of this is that the more you customize a messagé¢he more work it will

take to make a foreign system do anything beyond simply parsig it.

2.4.1 Comparison of Messaging Technologies

A performance study of various messaging technologies wasode in [43]. Table
2.4 summarizes the results from that work. It can be seen thathe SOAP and XML-RPC
messages are just over 14 times as large as the binary CORBA ms&ages. In addition, as
you can see from the test where you sent 5,000 integers to therver, SOAP and XML-RPC
took 882 and 66 times longer than CORBA on the same machine, spectively. Although
CORBA has the best performance, there are many downsides td {44]:

CORBA is too complex : There is a steep learning curve in orderto program in
CORBA.

CORBA is too expensive: Even though there are many open sougcimplementations
of CORBA, in order to use the must-have features, the progranmer has to implement
his own versions of those functionalities, or buy a commerail version at a high price.

Table 2.4: Comparison of various Messaging Technologies

Raw Sockets CORBA XML- SOAP
RPC

Connect time (sec) | 0.0022 0.00073 0.0070 0.0006
Time to send string | 0.0014 0.0046 0.0827 0.2942
of 21,000 characters
(sec)
Time to receive | 0.0014 0.0022 0.0502 0.2793
string of 22,000
characters (sec)
Time to send 5,000| 6.74 1.52 100.33 1,324.29
integers (sec)
Client lines of code| 57 37 29 32
(bytes)
Server lines of code 25 18 17 10
(bytes)
Actual message sizg 2,279 2,090 4,026 4,705
sending 1,000 char-
acters (bytes)
Actual message sizg 85,863 27,181 324,989 380,288

sending 100 inte-
gers (bytes)

40

41

Figure 2.6: Interfacing Mobile Agents with SOA

IIOP (CORBA's transport protocol) does not work through re walls or proxy web
servers : CORBA's transport protocol the 1IOP is not allowed through many rewalls,

as it is not recognized as a protocol, or connections to the rpested port are denied.

Readability: Human readability is considered by many as imprtant for faster devel-

opment of code.

One of the main reasons of choosing an XML-HTTP-based RPC istiat most webservers
are open to HTTP requests. SOAP or XML-RPC requests and respnses can be tunneled
via HTTP. Suppose we decide to use an XML-based RPC, we have aoice of using SOAP,
which is a W3 standard. This thesis considers using XML-RPC a the messaging technology.

The main reasons for doing so are:

It is very simple to understand and implement;

Any application written in XML-RPC can be easily ported to SO AP.

2.4.2 Integration with SOA Using XML-RPC

Figure 2.6 shows the method of interfacing the mobile agent ichitecture with
the SOA. This can be achieved by having a proxy node that is par of both the mobile
agent architecture as well as part of service-oriented ardkecture. The proxy provides a
data collection service to the SOA, and it provides data anaysis service for the agent
architecture. A service agent running on the proxy acts as aninterface between the two

42

architectures. First, it can receive requests from other mbile agents that need to access
a SOA node, calls the SOA node using XML-RPC and forwards respnses back from the
SOA node to the mobile agents. Second, it can take requestsdm the SOA nodes in order
to invoke certain service, such as data collection, via a mei-agent.

There are many commercial XML-RPC implementations. In this thesis work,
Apache XML-RPC for Java and XML-RPC-C for C side implementat ion, was utilized.

43

Chapter 3

High Performance Kernels on the

Cell Processor

3.1 Cell Broadband Engine Architecture

The Cell Broadband Engine (CBE) architecture designed by a @rtnership of Sony,
Toshiba and IBM (STI) to be the heart of Sony's recently released PlayStation3 gaming
system among other consumer devices. The Cell architecturiakes a radical departure from
conventional multiprocessor or multi-core architectures Instead of using identical cooper-
ating commodity processors, it uses a conventional high-pérmance Power PC core, the
Power processing element (PPE), that controls eight simpleSIMD cores called synergistic
processing elements (SPEs), where each SPE contains a sygestic processing unit (SPU),
a local memory, and a memory ow controller.

To an application programmer, the CBE processor looks like a9-way coherent
multiprocessor [22]. The PPE is more adept than the SPEs at cuotrol-intensive tasks and
quicker at task switching. The SPEs are more adept at computdntensive tasks and slower
than the PPE at task switching. However, either processor edment is capable of both types
of functions. The more signi cant di erence between the SPE and PPE lies in how they

access memory. The PPE accesses main memory (the virtual-ddess space) with load and

44

% $

Figure 3.1: Cell Architecture

store instructions that move data between main memory and a pivate register le, the

contents of which may be cached. The SPEs, in contrast, accesnain memory with direct
memory access (DMA) commands that move data and instructios between main memory
and a private local memory called a local store or local storge (LS). An overview of Cell
architecture is provided in Figure 3.1.

3.1.1 Scaling the Performance-Limiting Walls

Traditional processors have reached a point where greatenvestment is not yield-
ing optimal performance gains. The Cell Broadband Engine ogrcomes three important
limitations of contemporary microprocessor performance:power consumption, memory uti-
lization, and processor frequency[23].

Power Wall Increasingly, microprocessor performance is limited by adevable power
dissipation rather than by the number of available integrated-circuit resources. One way to
increase power e ciency is to di erentiate between:

processors optimized to run an operating system and contreintensive code, and

processors optimized to run compute-intensive applicatias

45

The Cell Broadband Engine does this by providing a general-prpose PPE to run the
operating system and other control-plane code, while eighspecialized SPEs serve computing
data-rich (data-plane) applications.

Memory Wall Currently, the program performance is dominated by the actvity of mov-
ing data between main memory (the virtual-address space thaincludes main memory) and
the processor. The Cell Broadband Engine's SPEs use two meahisms to deal with long

main memory latencies:

a 3-level memory structure (main memory, local stores in edt SPE, and large register
les in each SPE), and

asynchronous DMA transfers between main memory and local srres.

These features allow programmers to schedule simultaneoudata and code transfers to

cover long latencies e ectively. Because of this organizabn, the Cell Broadband Engine

can usefully support 128 simultaneous transfers between #height SPE local stores and main
memory. This surpasses the number of simultaneous transferon conventional processors
by a factor of almost twenty.

Frequency Wall Conventional processors require increasingly deeper ingtction pipelines
to achieve higher operating frequencies. Cell BE follows aidkrent strategy:

The PPE achieves e ciency primarily by executing two thread s simultaneously rather

than by optimizing single-thread performance.

An SPE achieves e ciency by using a large register le, which supports many simulta-
neous in-process instructions without the overhead of regter-renaming or out-of-order

processing.

3.2 Cell BE Architecture Elements

The Cell BE system contains various architectural elements We will discuss only

those blocks that are relevant to this thesis.

46

3.2.1 Power Processing Element

The PPE contains a 64-bit, dual-thread PowerPC architecture RISC core and
supports a PowerPC virtual-memory subsystem. It has 32KB level-1 (L1) instruction and
data caches and a 512KB level-2 (L2) uni ed (instruction and data) cache. It is intended
primarily for control processing, running operating systans, managing system resources,
and managing SPE threads. It can run existing PowerPC archiecture software and is
well-suited to execute system-control code. The instructbn set for the PPE is an extended
version of the PowerPC instruction set. It includes the vecor/SIMD multimedia extensions
and associated C/C++ intrinsic extensions.

The PPE hardware supports two simultaneous threads of exedion. All archi-
tected and special- purpose registers are duplicated, expethose that deal with system-level
resources, such as logical partitions, memory, and threadontrol . Most non-architected
resources, such as caches and queues, are shared by both Hug, except in cases where the
resource is small or o ers a critical performance improvemat to multithreaded applications.
Because of this duplication of state, the PPE can be viewed aa 2-way multiprocessor with
shared data ow. The two hardware threads appear to softwareas two independent logical

processors.

3.2.2 Synergistic Processing Elements

The eight identical SPEs are single-instruction, multiple-data (SIMD) processor el-
ements that are optimized for data-rich operations allocated to them by the PPE. Each SPE
contains a RISC core, 256KB software-controlled LS for instuctions and data, and a 128-
bit, 128-entry uni ed register le. The SPEs support a special SIMD instruction set|the
Synergistic Processor Unit Instruction Set Architecture| and a unique set of commands
for managing DMA transfers, interprocessor messaging andantrol. SPE DMA transfers
access main memory using PowerPC e ective addresses. The &R are not intended to
run an operating system. The SPU is an in order processor withwo instruction pipelines,
referred to as the even and odd pipelines. The oating and xel- point units are on the
even pipeline, and the rest of the functional units are on theodd pipeline. Each SPU can
issue and complete up to two instructions per cycle, one peripeline.

An SPE's SPU can fetch instructions only from its own LS, and lbad and store

a7

Table 3.1: Communication mechanisms
| | Mechanism Description |

1. | DMA transfers | Used to move data and instructions between
main memory and an LS. SPEs rely on asyn-
chronous DMA transfers to hide memory la-
tency and transfer overhead by moving infor-
mation in parallel with synergistic processor
unit (SPU) computation.

2. | Mailboxes Used for control communication between an
SPE and the PPE or other devices. Mailboxes
hold 32-bit messages. Each SPE has two mail
boxes for sending messages and one mailbgx
for receiving messages.

3. | Signal notica- | Used for control communication from the
tion PPE or other devices. Signal noti cation

(also called signaling) uses 32-bit registers
that can be con gured for one-sender-to-one-
receiver signalling or many-senders-to-onet
receiver signalling.

instructions executed by the SPU can only access the LS. SPUofiware uses LS addresses
(not main memory e ective addresses) to do this. Each SPE's nemory ow controller
(MFC) contains a DMA controller. DMA transfer requests contain both an LS address
and an e ective address, thereby facilitating transfers baween the domains. Data transfers
between an SPE's LS and main memory are performed by the assiated SPE, or by the
PPE or by another SPE, using the DMA controller in the MFC associated with the LS.

3.2.3 Element Interconnect Bus

All components of the Cell processor including the PPE, the $Es, the main
memory and I/O are interconnected with the Element Inter-connection Bus (EIB). The
EIB is built from unidirectional rings, two in each directio n and a token-based arbitration
mechanism is used to arbiter the messages. Each element ofehCell processor is hooked
to the bus with a bandwidth of 25.6 GB/s.

48

3.2.4 DMA Transfers and Interprocessor Communication.

Because SPEs lack shared memory, they must communicate exgitly with other
entities in the system using three primary communication mehanisms: DMA transfers,
mailbox messages, an signal-noti cation messages. All tlee communication mechanisms
are implemented and controlled by the SPE's memory ow controller (MFC). The three
communication mechanisms are listed in Table 3.1

One of the functions of an MFC is to act as a specialized co-pressor for its
associated SPU. The MFC has the ability to execute operatios from its command set,
and it executes them autonomously. When possible and beneial, the MFC will execute

commands out-of-order.

DMA Transfers DMA commands initiate transfer data between the LS and main mem-
ory. Main memory is addressed by an e ective address (EA) opeand in a DMA command.
The LS is addressed by the local store address (LSA) operandhia DMA command. The
size of a single DMA transfer is limited to 16 KB.

Each MFC can also autonomously manage a sequence of DMA trafess in response
to a DMA list command from its associated SPU (but not from the PPE or other SPES).
Each DMA command is tagged with a tag group ID that allows software to check or wait
on the completion of commands in a particular tag group. The MFCs support naturally
aligned DMA transfer sizes of 1, 2, 4, or 8 bytes and multiplesof 16 bytes with a maximum
transfer size of 16 KB per DMA transfer. DMA list commands caninitiate up to 2048 such
DMA transfers. Peak transfer performance is achieved if bdi the e ective addresses and
the LS addresses are 128-byte aligned and the size of the trafer is an even multiple of 128

bytes.

Mailboxes Mailboxes support the sending and bu ering of 32-bit messags between an
SPE and other devices, such as the PPE and other SPEs. Each SPE&an access three
mailbox channels, each of which is connected to a mailbox regter in the SPU's MFC.
Two one-entry mailbox channels, the SPU Write Outbound Mailbox and the SPU Write
Outbound Interrupt Mailbox, are provided for sending messages from the SPE to the PPE
or to the other devices. One four-entry mailbox channel, theSPU Read Inbound Mailbox,
is provided for sending messages from the PPE or from other S5 or devices to the SPE.

Mailbox message values are intended to communicate messagap to 32 bits in

49

length, such as bu er completion ags or program status. In fact, they can be used for any
short data transfer purpose, such as sending of memory addsses, function parameters and
command parameters. Mailboxes are useful, for example, wihethe SPE places computa-
tional results in main storage via DMA. After requesting the DMA transfer, the SPE waits
for the DMA transfer to complete and then writes to an outbound mailbox to notify the
PPE that its computation is complete. If the SPE sends a mailbox message after waiting
for a DMA transfer to complete, this ensures only that the SPEs LS bu ers are available

for reuse.

Signals The PPE, other SPEs, and other devices use the signal noti cion registers to
send information, such as a bu er-completion synchronizaton ag, to an SPE. An SPE has
two 32-bit signal-noti cation registers, each of which hasa corresponding memory mapped
input output (MMIO) register that can be written with signal -noti cation data. The PPE
sends a signal-noti cation message to the SPE by writing to aMMIO register in the SPE's
MFC. An SPE can also send a signal to another SPE by writing to MMIO register of the
corresponing SPU.

Like mailboxes, signal-noti cation channels are useful wken the SPE places com-
putational results in main memory via DMA. After requesting the DMA transfer, the SPE
waits for the DMA transfer to complete and then sends a signalto notify the PPE that its

computation is complete.

3.2.5 Run Time Environment

The PPE runs PowerPC architecture applications and operathng systems, which
can include both PowerPC architecture instructions and vec¢or/SIMD multimedia extension
instructions. To use all of the CBE processor's features, tke PPE requires an operating
system that supports these features, such as multiprocessjy with the SPEs, access to the
PPE vector/SIMD multimedia extension operations, the CBE interrupt controller, and all
the other functions provided by the CBE processor. It is comnon to run a main program
on the PPE that allocates threads to the SPEs. In such an appltation, the main thread is
said to spawn one or more CBE tasks. A CBE task has one or more niathreads associated
with it, along with some number of SPE threads. An SPE thread is a thread that is spawned

to run on an available SPE.

50

The operating system de nes the mechanism and policy for sekting an available
SPE. It must prioritize among all the CBE applications in the system, and it must schedule
SPE execution independently from regular main threads. Theoperating system is also
responsible for runtime loading, passing parameters to SPEprograms, noti cation of SPE
events and errors, and debugger support.

3.3 Cell Application A nity

The Cell processor gives peak performance for some appli¢gans and gives sub-
optimal performance (but in most cases better than generapurpose processors(GPP)) for
some others. The Table 3.2 provides a list of applications aas where Cell architecture
potentially delivers high performance (left side) and anoher set where less performance is
likely.

3.3.1 Cell Anity Areas

The main strength of Cell architecture lies in the SPE. SPEs a&e inherently vector
processors, some of the most powerful SIMD engines in existee today. Great speeds can
be achieved for problems that do not have data dependenciesd need no synchronization.
Examples of such problems are linear system of equations, dee matrix multiplications,
bioinformatics etc. The SPE is very good at single-precisin oating point (204.8 G ops/s
@3.2 Ghz) whereas double-precision oating point operatios (14.6 G ops/s @3.2 Ghz) are

signi cantly slower compared to latter.

3.3.2 Cell Non-Applicable Areas

There are some problems where the Cell processor may give $egerformance. The

main characteristics of such programs are as follows:

Branchy Code: An SPE executes the instructions in-order, which means thatpipeline
stalls, caused by code dependencies or mispredicted brares$y are more expensive than on
a CPU with out-of-order execution [24]. To avoid this, the campiler is responsible for a
suitable instruction scheduling and to untangle code depedency chains. Most of the time,

51

the compiler resolves the dependencies automatically, busometimes the algorithms have to
be (manually) adapted to help the compiler nd independent instruction sequences. These

instruction sequences can then be interleaved to prevent slls e ciently.

Non-SIMD Instructions: As the SPE's instruction set is designed for SIMD processing
most of the instructions operate on multiple data elements & once (two to sixteen elements
depending on element size) [24]. As an instruction has a thnaghput of one per cycle
and a latency between 2-7 cycles, one has to ensure enough @mendent data to work on.
Otherwise, dependency chains, and therefore pipeline stal are unavoidable. Unfortunately,
the instruction set is sub-optimal for scalar code, so evenisiple operations such as increasing

an unaligned counter in memory require a costly read-modifywrite sequence.

Irregular Memory Access: As the local store does not work as a hardware managed
memory cache, all main memory accesses must be done expligiby DMA transfers. Even
though the memory bandwidth of 25.6 GBI/s is rather high, eachmemory access has a high
latency of several hundred SPE clock cycles [24]. In order thide the latency, the DMA
engine supports asynchronous transfers. Even though thisesting is ideal for streaming
operations in which huge blocks of data are being processe@guentially, it is challenging

for a data-intensive application with irregular memory access patterns.

3.4 Cell Programming Approach

The approach followed in implementation of most kernels inwlves three steps.

Write a scalar code so that it runs on the PPU.
Run a pro ler to check the times of execution of di erent functions.

Parallelize the code so that it runs on the SPU.

For the kernels implemented in this section, the author usesa concept of bag-of-tasks to
helps us divide a large task into smaller tasks. Apart from ths, the author uses double

bu ering to transfer data whenever it is possible.

Table 3.2: Cell A nity [25]

| Cell Ideal Software

| Cell Non-Ideal Software

Pair and Sequence Comparisons

Rich Media Mining
Bio Informatics
SP AM Filtering
Monitoring
Surveillence

Data Transformation

Transcoding (MPEG2 MPEG4)
Affine Transforms
Encryption=Decryption
Compression=Decompression

V ideo Compression=T ransformation
V isualization

Computation

Ray Tracing

Low Precision=Game P hysics
Matrix Multiply

SIMD

DSP Algorithms

FFT

Branchy Data
If-Then-Else

Non structured
Not SIMD friendly

Pointer Indirection
Multiple levels of indirection

Data load granularity< 16 bytes
DMA < 1l6bytes
SPE toLocal Store < 16bytes

Tightly coupled
N ot easily parallelizable
Require too much synchronization

52

53

BagOfTasks() f
BT = InitializeBag;
D = InitData();
While (!(Termination _condition)) f
T = GenNextTask(D)
add T to the bag of Tasks BT

g

while (BT _not _empty) f
T = RemoveTask(BT)
R = Compute(T)
WriteResult(outFile, R)

Figure 3.2: Bag of tasks paradigm

3.4.1 Bag-of-Tasks Paradigm

The bag-of-tasks paradigm applies to the situation when thesame function is to
be executed a large number of times for a range of di erent paameters or on di erent data.
Applying the function to a set of parameters constitutes a task, and the collection of all
tasks to be solved is called the bag of tasks since they do noteed to be solved in any
particular order. At each iteration, a worker grabs one taskfrom the bag and computes the
result.

The bag-of-tasks paradigm can be written in pseudocode as iRigure 3.2.

3.4.2 Double Bu ering Technique

SPE programs use DMA transfers to move data and instructionsbetween main
memory and the local store (LS) in the SPE. Consider an SPE prgram that requires large
amounts of data from main memory. The following is a simple skeme to achieve that data

transfer:

1. Start a DMA data transfer from main memory to buer B inthe L S.

2. Wait for the transfer to complete.

54

3. Use the data in bu er B.

4. Repeat.

This method wastes a considerable amount of time waiting foDMA transfers to complete.

We can speed up the process signi cantly by allocating two buwers, B, and B1 and over-

lapping computation on one bu er with data transfer in the ot her. This technique is called
double bu ering. Double bu ering is a form of multibu ering , which is the method of using
multiple bu ers in a circular queue to overlap processing ard data transfer. The purpose
of double bu ering is to maximize the time spent in the compute phase of a program and
minimize the time spent waiting for DMA transfers to complete. The double bu ering

scheme is illustrated in Figure 3.3.

Figure 3.3: Double Bu ering [22]

3.5 Text Mining Problem

Large text databases potentially contain a great wealth of knowledge. However,
text represents information in a complex, rich, and opaque nanner. Consequently, unlike
numerical and xed eld data, it cannot be analyzed by standard statistical data mining
methods. Text mining is a eld that is dedicated to analyzing large sets of documents and
extracts invaluable information from these sets. Normally a text mining problem could be
visualized as in the Figure 3.4 .

55

Figure 3.4: Text Mining

As it can be seen, text indexing is one of the rst steps in text mining. While
classifying text documents, the document classi er comes eross many text documents that
may partially match many other text documents. The idea of text indexing is to nd
similar documents in a database of documents. There are mangpplications of the text
indexing problem. For example, social networking sites arevery popular these days. By
creating a description of a persons pro le, his/her friends and their a liated communities
in a text document and by analyzing di erent text documents containing other pro les, a
software can nd people with similar interests. Touchgraph application for Facebook is an
amazing application that uses concepts of text indexing to tuster groups of friends based
on their common interests and is able to accurately predict he closest friends. Even while
doing this research work, | had to look through various resouces to gather information for
a literature survey. It would be great if there was a system that looked through all the
research papers and clustered similar research papers ragdk by relevance. This is exactly
what the text-indexing problem attempts to perform.

The next steps of text mining are dimensionality reduction (making a unstructured
text document into a structured table with xed number of col umns). The columns are
the tokens that occur commonly in many documents. After dimensionality reduction, the
documents are clustered using clustering algorithms like KMeans. After the documents are
clustered, they can be visualized using data visualizatiortools and nally presented to the
user via a user interface.

This thesis considers the problem of text gathering using mbile phones and anal-

ysis of the text on high performance machines and visualizabn of the results on a mobile

56

phone/PC.

3.5.1 TF-IDF Algorithm

The main function of a term weighting system is the enhancemet of retrieval
e ectiveness. E ective retrieval depends on two main factas: on one hand, items likely to
the user's need must be retrieved; on the other hand, items kely to extraneous must be
rejected. Two measures are normally used to access the aljliof a system to retrieve the
relevant and reject the non-relevant items of a collection,known as recall and precision [26].
In principle, a system is preferred that produces both high ecall by retrieving everything
that is relevant and also high precision by rejecting all items that are extraneous. Two
parameters that are used to determine the recall and precisin are as below:

Terms that are frequently mentioned in individual documents appear to be useful recall
devices. Term frequency (TF), the number of times a word occts in a document, is

used for its high recall property. Term frequency is de ned for a term, document pair.

ti : The termi
d;: The document j
jDj: The number of documents

njj: The count of tjin d;

Term frequency is de ned as:
tf icNj=N K e ()

Term frequency alone cannot insure acceptable retrieval pgormance. Speci cally,
when the high frequency terms are not concentrated in a few picular documents but
are instead prevalent in the whole collection, all documens tend to be retrieved. An
inverse document frequency (IDF) factor favors terms concaetrated in a few documents

of the collection.

Inverse document frequency is de ned as:
idf;: log (jDj / fdj:t; dj0) (2)

Then, TF-IDF is de ned as:
tdf : tfy *idf;: The TF-IDF term (3)

57

3.5.2 Parallelization Technique

The break-up of the di erent steps in the parallelization of the text-indexing algo-
rithm is as shown in the Figure 3.5. There are three main sectins of the code, the parser
(composed of stop-word algorithm and stem-word algorithm) TF-IDF algorithm, and the
similarity computation algorithm (composed of a dot-product function and insertion of re-
sults into a red-black tree). There are two sections of the cde that can be parallelized,
i.e., the stem-word algorithm in the parser and the dot-product calculation in the similarity
computation.

The word-stemming algorithm removes the commonly occuringpre xes and suf-
xes from the word and returns the stem word. The stem word is the token used for
computing the term frequency. The stem-word algorithm, though very compute intensive,
is an ideal candidate for parallelization, as each word is idependent of the other. The words
are read from a le, and a bag of tasks containing the words to e stemmed is created at the
PPU side. The tasks are divided among the SPUs, and the resudtcontaining the stemmed
words are added into hashmap with a key for each stemmed wordral its frequency in
the document as the value. Next, a corpus occurence table isreated from the table of
tokens. A corpus occurence table contains the number of doenents in which the word
occurs at least once. This task, though somewhat intensivegan be done with ease on the
PPU as the hash map is used as a data structure for storing thedrms and ensures search
in almost linear time. Inverse document frequency is compugd for each term in the corpus
occurence table by using equation (2). TF-IDF value is compted by taking the product of
the term frequency from the term frequency table and the invese document frequency for
the term obtained using equation (2). The TF-IDF value for each token in a le is stored
in a hashmap called TF-IDF vector.

A similarity computation algorithm takes the TF-IDF vector s for two documents
and computes an index with values in the range [0,1]. The inde gives the extent of sim-
ilarity between the two documents (i.e., 0 showing no similaity and 1 showing equality).
The similarity index is useful in clustering similar documents. The core component of the
similarity computation algorithm is the dot-product funct ion that looks for common tokens
in the two les and takes a product of their TF-IDF values. The similarity computation
algorithm is not only compute intensive, but also not a great candidate for parallelization,
as it involves the operations of searching inside a hash mapyhich cannot be broken down

Word-Stem

Term

TFIDF

D1

D2

D3

D4

D5

N N Y Ny Iy Yy Iy

SPU1 SPU2 SPU3 SPU4 SPU5 SPU6B
e e N B A
Token1 1 Token1 1 Token1
Token2 2 Token4 4 Token3
Token3 3 Token5 5 Token4
Token4 4 Token7 7 Token5
Token5 5 Token9 9 Token6
File 1 File 2 File 3
Token1 1
Token2 2
Token7 7
Token9 9
Token1 TFIDF1 Token1 TFIDF1 Token1 TFIDF1
Token2 TFIDF2 Token4 TFIDF4 Token3 TFIDF3
Token3 TFIDF3 Token5 TFIDF5 Token4 TFIDF4
Token4 TFIDF4 Token7 TFIDF7 Token5 TFIDF5
Token5 TFIDF5 Token9 TFIDF9 Token6 TFIDF6
File 1 File 2 File 3
SPU1 SPU2 SPU3 SPU4 SPU5 SPUB

7 eg am o

Figure 3.5: TF-IDF algorithm

58

59

to smaller chunks (a hash map has no particular ordering of kgs). An array can be used
to represent the TF-IDF vectors, but that will increase the search time to O(n?). The
implementation of the similarity computation uses hash mapfor TF-IDF vectors, based on

the assumption that hash function is good so that it results n linear search performance.

3.5.3 Memory Handling

Double bu ering is one of the useful technigques for performace optimization in
parallel computing. However, in order to double bu er the information, a large amount
of memory is needed. SPU can only use the memory from the Loc&tore (which is 256
KB). In order to e ectively use the memory, one needs to know the amount of memory
available in the data segment, which can be obtained by subficting the end address of data
segment from the end address of the text segment. Once we knothis value, we have to
economically use the memory. The usage of malloc is discougad in the SPU, as it involves
interaction with the PPU runtime library. Hence, memory has to be managed by the means
of declaring a huge array and writing memory management rouines to allocate/deallocate
from the array. The two approaches for handling memory are sbwn in the Figure 3.6. The
basic approach su ers from bu er over ows during double bu ering. In order to solve this
problem, a better approach is used. The rst bu er is allocated from the front of the array
and the second bu er is allocated from the back of the array.

3.5.4 Performance Gain.

The performance of TF-IDF can be studied for two modules, theparser (word-
stem algorithm) and similarity computation. The parser using six SPUs gives a superlinear
speedup for TF-IDF in comparison to the PPU. The parser has a peedup of 3.5x compared

to x86 (Pentium 4, 3Ghz). The main reasons for the performane gain in Parser are:

String comparisons are inherently vectorizable in Cell pr@essor. As the cell processor

has a large number of registers, multiple string operationsan be done in parallel.

The parser algorithm takes a string as an input, identi es if it has a pre x or a su x
and removes it if there is one. This operation does not invole dependency with other

data and, hence, there are very few stalling cycles.

(a) Basic Memory Handling

/N '

/] |

/] |

/ [

(b) New technique

Figure 3.6: Memory Handling Techniques

60

Time (s)

14

12 +

10 +

Parser Performance

|

6 SPU

X86(p4,
3.0GHz)

PPU

I I I I
T T T T
o N S (o] foe]

I Time

0.897

3.092

12.12

—e— Speed-up

3.44

1351

16

+ 14
T 12

Speed-up

Similarity computation Performance

4

35 1

3+

25 +

Time(s)

15 +

1+

05 +

0

2 1

’

6 SPU

x86

PPU

I Time

0.982

0.814

3.72

—e— Speed-up

0.82

3.788

T 35

T 25

+ 15

T 05

Speed-up

Figure 3.7: TF-IDF Performance

61

The similarity computation does not give a good speedup on bin PPU and x86, because

of the following reasons:

Similarity computation involves branchy code: The tokens in one hash map are com-

pared against another hash map. If they are found to be same, product of TF-IDFs

of the corresponding elements in the hash map is computed. Tépatterns of compar-

ison cannot be predicted early. The SPE is an in-order execitn processor, hence,

any misprediction is more expensive than out-of-order exagion processors.

3.6 Mersenne Twister

Mersenne Twister (MT) is a pseudorandom number generator agjorithm developed

by Makoto Matsumoto and Takuji Nishimura [28]. It has many im portant properties:

Long period: The latest version of Mersenne Twister (MT1993) has a period of

219937

1. A period is de ned as the maximum length of a sequence beferit begins

to repeat itself.

62

Good distribution properties: 623 dimensional equidistrbution, which is the best
among all known random number generators. For the de nition of k-distribution, see
[27].

E cient use of memory: MT19937 uses only a space of 624 words.

High performance: There are no complicated math operationgnvolved; all operations

involve unary operators, which are extremely fast.

Mersenne Twister generates a sequence of word vectors, whiare considered to be uniform
pseudorandom integers between 0 and"2 1. Dividing by 2% 1, the algorithm generates
a word vector as a real number in [Q1]. The algorithm is based on the following linear

recurrence:
— upper . — A .
Xken 1= Xkem (XPPE jxpomer) A, (k = 0;1;:)

where,

n: the number of random numbers generated in an iteration,

m: a constant with valuel m n,

w: the size of word in bits,

r. the degree of recurrenced r w 1. (The denition of r is hidden in
K,

Xk, K = 0;1::::: a sequence of bit vectors with xed width w (which is 32 in our

k implementation),

X PP jx(over : a combination of r signi cant bits of xx andw r least signi cant
bits of xx+1, and

A:aw w matrix is of the form

0 1
0 1 0O O
0 0 1 0
0 0 1
Ay 1 aw 2 ao

such that the calculation x A can be done using only bit operations:

63
8 9
< shift right (x) if Xg=0 "
X A= .
shift right(x) a if xo=1">

In order to improve the distribution properties, each genemted word is multiplied
by a specialw w invertible transformation matrix: x! z:x T. A tempering special
matrix T is chosen so that the x T multiplication, similarly to x A can be e ciently

implemented with bitwise operations:

z = X

z = (z u)

z = (z s) & b
z = (z t) & c
z = (z)

whereu, s, t, | are integer numbers andb and c are suitable bit masks of word

sizew.

This is the summary of the Mersenne Twister algorithm. Two implementations of
the Mersenne twister were considered. In the next two subseions, we describe those two
approaches.

3.6.1 Parallelizing the Original Algorithm

The section of code that generates vectors in Mersenne Twist code for MT19937
can be represented in terms of C-psuedo code as in Figure 3.8

This can be further represented as three separate sectionsrfsake of paralleization

as shown in Figure 3.9, with each section parallelized sepately.

It can be seen above that the rst loop operates independentl, the second loop
depends on values from the rst loop, and third loop depends a values from the second
loop. Based on this observation, we can assign sections ofdp one, two and three to

separate processors in order to parallelize this program. Ris is shown in Figure 3.10.

#define N 624
#define M 397

for(K = 0; K < N-M; K++)
state[K] = f(state[K], state[K+1], state[K+M])
g

for (K < N-1; K++)f
state[K] = f(state[K], state[K+1], state[K+M-N])
g

state[N-1] = state[N-1], state[0], state[M-1]

Figure 3.8: Mersenne Twister code (original)

#define N 624
#define M 397

for(K = 0; K < N-M; K++
state[K] = f(state[K], state[K+1], state[K+M])
g

for (K < N-M; K++)f
state[K] = f(state[K], state[K+1], state[K+M-N])
g

for (K < 2M-N; K++¥
state[K] = f(state[K], state[K+1], state[K+M-N])
g

state[N-1] = state[N-1], state[0], state[M-1]

Figure 3.9: Mersenne Twister (divided into three loops)

Loopl (N-M) | Loop2 (N-M) | Loop3 (2M-N)
0 227 454
SPUO | 36f : : :
35 262 489
36 263 490
SPU1| 36f : : :
71 298 525
72 299 526
SPU2 | 36f : : ;
107 334 561
108 335 562
SPU3| 36f : : :
143 370 597
144 371 598
SPU4 | 36f ; : 24
179 406 623
180 407
SPU5 | 47f : :
226 453

Figure 3.10: Mersenne Twister parallelization

65

66

Performance: The advantage of the above approach is very low usage of memprlIf we
use six SPUs, then each SPU needs to use almost 108 words in erdo generate 624 vectors.
Figure 3.11 shows the performance of mersenne twister algtihm. The disadvantage of the
above approach is low computation vs. communication ratio.Hence, the speedup obtained
by this process compared to PPU is not very attractive (approkimately a factor of two).
The algorithm performs considerably slower than x86. This @n be attributed to superscalar
architecture of Pentium 4, which allows it to exploit instru ction-level parallelism, and it does

not su er from DMA transfer overhead as in the SPU.

3.6.2 Parallelizing Using Dynamic Creation Library

In order to use Mersenne twister in massively parallel machies, the above ap-
proach is not such a good one since the cost of computation vscommunication becomes
very high. In order to apply Mersenne twister to massively paallel machines, the best
approach would be to run separate Mersenne twister kernelsroeach of the processors. The
problem with this approach is that we may get similar results even if we use random seeds
to generate the numbers on di erent kernels. In order to dealwith this problem, a spe-
cial o ine library called dynamic creation for Mersenne twi ster (dcmt) was introduced by
Makoto Matsumoto and Takuji Nishimura [29]. Using this libr ary, it is possible to generate
di erent constants, i.e., A;u, s, t, | , b and c, for di erent Mersenne twisters.

The dynamic creation is a one-time activity that can be done oine. The constants
generated for di erent Mersenne twisters can be stored in mmory. During the generation
of random numbers, each Mersenne twister can be initializedvith a di erent state using
those constants.

In our approach we use the bag-of-tasks paradigm to solve th&lersenne twister
problem. Each task contains information to generate a xed rumber of random numbers.
Suppose we need to generate 16 million numbers. We can thenvyea bag containing 4096
tasks, each generating 3908 random numbers. The 4096 taskarcbe distributed among 6
SPU threads.

Performance Gain: The speedup obtained by the dynamic creation version of Memnne
twister is as shown in the Figure 3.11. The advantage of this pproach is high computation
to communication ratio, because of which the speedup is high The speedup is better

67

Mersenne Twister (Original) Mersenne Twister Performance (DCMT)

35 18 6 12

+ 1.6 e
3T 5+ - 10
+ 14

25+ | s 1

Time(s)
Time(s)
w
o
Speed-up

0.5 T

o 0 6 SPU X86 ;p4,
6 SPU x86 (p4, 3Ghz) PPU 3Ghz)

[=Time () 188 0.4 318 == Time(s) 0516 1.19 5.35
| ——Speed-up 1 0.212 1.69 —+—Speed-up 1 23 10.36

PPU

Figure 3.11: Mersenne Twister Performance

than theoritical value (i.e., six, or number of SPUs). The main reasons for the speedup of

Mersenne twister are:

No branch instructions: Both the pipelines in the SPU can useé to the maximum

potential

Good computation to communication ratio: Even though EIB has a bandwith of
25.6 Ghps, data movement from main memory to SPE takes seveldundred clock
cycles. In Mersenne twister code, each task in a SPU compute2908 random num-

bers.Therefore, the number of times data has to be fetched isonsiderably lower.

The disadvantage of this approach is that the PPU may not haveenough memory to generate
a large number of tasks, as each task requires memory for thgeci c constants, and needs
memory for the outputs. This is not a problem with the previous approach, as each SPU
was operating on a shared section of memory. We may need to rade the number of random
number generations performed at one time to t all tasks in memory, otherwise we would
exceed the LS capacity requiring additional space in virtud memory, which would cause

performance deterioration, since only the LS is directly acessible from the SPUs

68

3.7 Smith Waterman

Searching for similarities in protein and DNA databases hasecome a routine pro-
cedure in molecular biology. The Smith-Waterman algorithm has been available for more
than 25 years. It is based on a dynamic programming approachhat explores all the possi-
ble alignments between two sequences. As a result it returnthe optimal local alignment.
Unfortunately, the computational cost is very high requiring a number of operations propor-
tional to the product of the length of two sequences. Furthemore, the exponential growth of
protein and DNA databases makes the Smith-Waterman algorihm unrealistic for searching
similarities in large sets of sequences on a scalar processdhis trend results in demands
for longer run time and/or more expensive hardware to managethe problem. Special-
purpose hardware implementations, as for instance superetnputers or eld-programmable
gate arrays (FPGAS), are certainly interesting options, but they tend to be very expensive
and not suitable for many users. For these reasons, heurigtiapproaches, such as those
implemented in FASTA[30] and BLAST[31], tend to be preferred, allowing faster execution
times at the cost of reduced sensitivity. The main motivation of the work in this section is
to exploit the power of the Cell processor, which is an inexpesive but powerful alternative

to a supercomputer to e eciently obtain an accurate local ailgnment score.

3.7.1 The Algorithm

To compute an optimal local alignment score, the dynamic prgramming algorithm
by Smith and Waterman [32] as enhanced by Gotoh [33] was usedA substitution matrix
describes the rate at which one character in a sequence chaegyto other character states
over time. The Smith Waterman algorithm is similar to a strin g local sequence alignment,
except that values in the score matrix are determined by the sbstitution matrix, and for
every gap in matching sequences, additional penalties areniposed. Given a query sequence
A of length m, a database sequenc® of length n, a substitution score matrix W, a gap
open penalty g and a gap extension penaltyr, the optimal local alignment scoret can be

computed by the following recursion relations[34]:
g = max f e; 1 hi 3 q g r
fi;j = max f fi 1;1'; hi;j 1 q g r
hij = max f hi g5 1+ Z[A[]; B[]I; e;; fij; Og

69

t = max fhjg

Here, e;; and fi; represent the maximum local alignment score involving the rst
i symbols of A and rst j symbols of B, ending with a gap in sequence B or A, respectivel
The overall maximum local alignment score involving the rst i symbols of A and rst
j symbols of B is represented by h;; . The recursions should be calculated withi going
from 1 to m andj going from1 to n, staring with &; = f;; = hj; =0forall i =0orj =0.
The order of computation of the values in the alignment matrix is strict because the value
of any cell cannot be computed before the value of all cells tdhe left and above it has
been computed. A straightforward implementation of the algorithm has a running time
proportional to m n.

3.7.2 Approach

The approach followed for the Smith-Waterman algorithm is by using the bag-of-
tasks paradigm. Suppose we need to compare a sequentewith a database of sequences,
the task is composed of a pair of sequences and another sequenceB from the database.
The bag of tasks contains these tasks. which are fed to the si$PUs. The results are
obtained back via a mailbox, and the score matrix is obtainedby getting the results from
all the tasks.

3.7.3 Performance Gain

The Smith Waterman algorithm shows an enormous performanceamprovement
on Cell processor as shown in Figure 3.12. When compared to ¢hPPU, the SPU-centric
code gives speedups above 30x and in some cases above 75x. Wbempared to x86, the

speedups exceeded 12x for large sequences. The reasons lier¢peedup are:

Smith Waterman is an inherently vectorizable algorithm. This means that even if
vector instrinsics were not used to code the algorithm, the ompiler would try to

segregate independent instructions to be executed simulaneously for di erent values.

On observing the instructions and cycles taken to compare tw DNA sequences, it
was seen that PPU takes 244 instructions and 3200 cycles whesms SPU takes 152
instructions and 121 cycles. This explains a speedup factoof 3200/121=26 for any

70

Smith Waterman performance

80

70

60

50

40

Speed-up

30

20

10

0
65 510 762
06 SPUvs. PPU 30 75 53
06 SPU vs. x86 5.18 9.91 12.78

Sequence Length

Figure 3.12: Smith Waterman Performance

two DNA sequence comparisons. In addition, PPU may su er fran cache misses when
fetching longer sequences. The SPU does not su er from cachmisses as it uses local
store for its information. This explains why the speedup is letter for sequences of

higher length.

71

Chapter 4

Experimental Validation

This chapter describes an application that was used to validte the data collection
and analysis procedure using itinerant agents. The appliction that was tested is as shown
in the Figure 4.1. It consists of three main participants: data collector, data sink and data
deduplicator. The data collector and data sink are part of the mobile agent framework,
whereas, the data deduplicator is part of service-orientedarchitecture. The description of

each of the participants is as follows:

Data collector: The data collector agent is deployed from a neta-agent residing on a
PC. An itinerary is set up for the data collector based on the aailable hosts. The data
collector is created on the meta-agent, but it does not run there. Instead, it moves
to the rst location in the itinerary and starts execution th ere. On completion of the
execution, it creates a clone of itself and moves to the next mde in the itinerary. For
security reasons, the data collected on the data collectorsi not transmitted to other

nodes in the itinerary.

Data sink: The data sink agent collects the data from all the rodes by sending a le-
retrieval message and receives a response containing theed. The data sink node also
interfaces with the SOA nodes via XML-RPC. This is done by crating a XML-RPC

message containing the les to be analyzed and sending the meage to a SOA node.

Data deduplicator: The data deduplicator nodes runs an XML-RPC server that col-
lects the les sent by the data sink node and runs the TF-IDF algorithm on the les to

72

detect similar documents. Almost similar documents can be Eminated from further

processing.

The devices that were used for testing and their con gurations are as in Table 4.1.

The assumption made in this setup are
mobile nodes are connected in wireless ad-hoc mode;
nodes are not behind a NAT;

nodes have a le system.

Nodes can disconnect temporarily and rejoin the network. Wken a node cannot be con-
nected, it is skipped and next node in the itinerary is tried. The creator of the agent handles
exception cases on a periodic basis. In this case, it sends equest to all the nodes for infor-
mation. When it does not get a response, it assumes that the mie did not receive an agent,
and it sends an agent. If it is not able to send an agent to the nde, then after a threshold

number of retries, it gives up. The disconnected node may lar rejoin the network and

attempt to contact the originator for receiving an agent.

4.0.4 Experimental Results

The aim of the experiment is to measure

the overhead of code mobility,
the overhead of dynamic class loader,

the overhead of using a GUI, and

performance during load (i.e., performance slow down on runing multiple agents)

This experiment setup involved two nodes, the desktop and a I? Ipag. An agent was
created at the desktop and sent to the mobile device. The timebetween sending the agent
and receiving an acknowledgment from the mobile device was easured. The same agent
was sent 10 and 100 times to the same mobile device, and the a®dnobility time was

calculated. The measured time as shown in Figure 4.2 has theecomponents, i.e., time to

Table 4.1: Test devices

Device

Con guration

Role

HP Ipaq Rx4240

Processor : Samsung SC324472
400 MHz , 64MB SDRAM
Java Version J2ME CDC 1.0
Connectivity : 802.11b/g

Data collector

Windows Mobile
6
Simulator

Processor : Intel Core Duo
T2060 (2 MB Cache/

1.6 GHz/533 MHz FSB), 1 GB
SDRAM

Java Version :J2ME CDC 1.0
Connectivity : 802.11g/LAN

Data collector

Dell Inspiron 6400

Processor : Intel Core Duo
T2060 (2 MB Cache/

1.6 GHz/533 MHz FSB),

1 GB SDRAM

Java Version : J2SE 1.5
Connectivity : 802.11g/LAN
XML-RPC Client : Apache ws-
xmirpc

Meta-agent/Data-
sink/Locator dae-
mon

Playstation 3

Processor : Cell Broadband
Engine, 128 MB SDRAM
Connectivity : 802.11g/LAN
XML-RPC Server: XML-
RPC_C

Data deduplicator

73

74

send an agent from desktop to mobile phone, loading the classmto an agent host at the
mobile device, and sending a response to the desktop.

It can be seen, dynamic class loading has a considerable otead when the agent
is sent for the rst time. The next time the agent is sent, it is not dynamically loaded, but
fetched from the library. If class le is assumed to be presen) then it is only needed to send
the updated state of the class, from which the class data can & populated. Under load,
there is a small overhead (less than 1%) to load the agent intthe Agent Host. Surprisingly,
using a GUI to display the agent status does not signi cantly a ect the time to load the
agent. This is because the agent has no interaction with the @I, but the GUI gets the

data from the agent using get() functions.

Figure 4.1: Experimental Setup

75

Average Time

Code mobility times

1600
1400
1200 -
1000 - —— With Dynamic Class
Loading
—=—Without Dynamic class
800 Loading
—— With GUI
600
400 -
200
0

1 Agent

10 Agents 100 Agents

Figure 4.2: Code Mobility overhead

76

e

Chapter 5

Related Work

Mobile agents have been studied for many years, and have beapplied in many
areas, such as distributed data mining [11, 51], network maagement [52], and intelligent
networks [45]. During the past few years, a number of mobile gent systems have been
developed, such as Aglets by IBM [46], Voyager by ObjectSpac[48], Grasshopper by IKV
[49], and Concordia by Mitsubishi [50]. D'Agents [11] and Agnt-TCL [53] are some of
the mobile agent systems developed for university-based search. A survey of mobile
agents, conducted by Pham and Karmouch [54] classi es mobdl agents based of various
characteristics.

In section 1.4.1, apart from discussing the various approdees for remote data
collection and analysis, this thesis proposed a new approhcfor it. Among the other mo-
bile agents developed in J2ME, except for JADE-LEAP [14], nosystem has been widely
deployed. Though some of the projects use JADE-LEAP as theirmobile agent platform,
no large-scale application uses JADE-LEAP. ORMAC developd by Oak Ridge National
Laboratory, from which this implementation borrows major f eatures, has found large-scale
deployments that are reliable, such as [18, 19, 20]. Sectioh.5 addresses some of security
concerns regarding the usage of mobile agents. Table 1.3 isammary of various allegations
against mobile agents from [9] and how this thesis takes a stal on them. A survey con-
ducted by [21] discusses the various solutions that attempto provide security to a mobile
agent system.

Among the programming languages available for code developent on mobile de-

78

vices, C, .NET and J2ME are most commonly used. Section 2.2 &mpts to justify the usage
of J2ME as a programming language. In section 2.3, this thesidiscusses the challenges in
developing mobile agents on mobile phones i.e., serializan framework, pre-compilation for
di erent devices, pre-veri cation and dynamic class loading, and then discusses the various
proposed solutions for those problems.

XML-based messaging as a platform-neutral technique for ammunication among
agents has been considered in papers such as [55]. In this #i® we do not use XML
messages for communication among agents, as it results in atlof overhead in message
parsing. Li Chunlin and Li Layuan[47] propose to integrate srvice-oriented architectures
and mobile agents using XML messages. Although this work baa some similarity with their
approach, it o ers a simpler solution by using XML-RPC as a messaging technology (that
does away with XML schemas, which are harder to design). Moraver, application designed
using XML-RPC can be extended easily to SOAP, which is a W3 stadard for XML-
based messaging. Section 2.4.1 discusses the merits and dgits of di erent messaging
technologies, and it attempts to justify the choice of usingXML-RPC.

Accelerator architectures are a relatively new paradigm inhigh performance com-
puting that were designed to overcome the limitations of cowentional multi-core processors.
[56] has provided a survey of various accelerator architeares that are currently available.
[63] is a good guide for scienti c computing on the PlayStaton 3. Potential of the Cell pro-
cessor for scienti c computing has been explored in many wds including [57, 58, 59, 60,
61, 62]. However, there is no known implementation of the karels that were implemented
in this thesis. Hence, this thesis attempts to broaden the bae of available kernels on Cell

processor.

79

Chapter 6

Conclusion and Future Work

This thesis describes a novel approach of remote data collgéon and analysis using
mobile agents and a service-oriented architecture. This thsis hypothesis that the approach
of combining mobile agents with a service-oriented architeture is useful for remote data
collection and analysis, where the devices have low bandwild, low computational power,
intermittent non-connectivity and dynamic service requirements. In this work, the thesis
hypothesis has been shown to be true.

This thesis has designed protocols for an itinerant agent fimework that describes
the control and data ow in mobile agents. The framework addresses the issues of inter-
mittent connectivity and dynamic service deployment. As a part of the implementation,
a ubiquitous mobile agent platform that runs on heterogeneas devices was implemented.
An agent created on any device can migrate to other nodes andart executing there. This
thesis looks at the problems involved in developing a mobileagent platform on J2ME and
solves it in a novel manner. The itinerant agent protocol andthe Ubimac mobile agent
platform have been tested on a various devices, namely the HRPaq, the Windows Mobile
6 simulator, and laptops running J2SE. All of them have perfamed reasonably well, though
there is a room for improvement.

This thesis also looked at providing high-performance compting as a service for
the mobile agent platform. As we know, mobile nodes have lintied CPU power, hence, they
cannot be used for compute-intensive tasks. By providing hlgh-performance computing as

a service to mobile nodes, data can be easily analyzed by tumfing the computation to

80

high-performance devices via the service-oriented archacture. In order to interface the
mobile agent architecture and service-oriented architeaire, a platform-neutral protocol,

XML-RPC was used. As applications designed using XML-RPC ca be easily extended to
use SOAP, the thesis opens up the scope of using various webrgees for data analysis.
This porting e ort is considered for future work.

Lastly, thesis accessed at the potential for using the Cell Boadband Engine on non-
regular scienti ¢ kernels and was able to achieve signi cah speedups compared to a scalar
processor, the Power Processing Element. Even though the gbrithms implemented for the
Cell BE architecture performed well against PPU, they did not have a superlinear speedup
compared to x86. As a part of future work, the author intends to rewrite the algorithms
for vectorizing the SPU algorithms, with an aim of gaining superlinear performance under
x86.

81

Bibliography

[1] Yoav Shoham: Agent Oriented Programming , Stanford Uniwersity, 1992

[2] Mike P. Papazoglou: Service -Oriented Computing: Congats, Characteristics and
Directions, Web Information Systems Engineering (WISE), 203

[3] Jeremy Pitt, Abe Mamdani: Communication Protocols in Multi-agent Systems: A
Development Method and Reference Architecture, Lecture Ntes In Computer Science;
Vol. 1916, 2000

[4] Danny B. Lange, Mitsuru Oshima: Seven good reasons for niile agents, Communi-
cations of the ACM, Volume 42 , Issue 3 (March 1999), Pages: 8889

[5] D. Milojicic: Trend Wars - Mobile Agent Applications, IE EE Concurrency, July-Sep
1999

[6] Sebastian Stein, Terry R. Payne, Nicholas R. Jennings: A E ective Strategy for
the Flexible Provisioning of Service Work ows, Service-Oilented Computing: Agents,
Semantics, and Engineering (SOCASE), 2007

[7]1 N.R. Jennings: On agent-based software engineering, Arcial Intelligence, 2000

[8] Michael P. Papazoglou, Paolo Traverso, Schahram Dustda Frank Leymann : Service-
Oriented Computing Research Roadmap, Dagstuhl Seminar Proeedings 05462, 2006

[9] Giovanni Vigna: Mobile agents: Ten Reasons For Failure Mobile Data Management,
2004

[10] K. Rothermel, F. Hohl, N. Radouniklis: Mobile Agent Systems:What is Missing?,
Institute for Parallel and Distributed High-Performance Systems, 2000

82

[11] Robert Gray, Katsuhiro Moizumi, David Kotz, George Cybenko, Daniela Rus: Mobile
agents in Distributed Information Retrieval, Intelligent Information Agents, 1999

[12] David Chess, Benjamin Grosof, Colin Harrison, Devid Lgine, Colin Parris: Itinerant
Agents for Mobile Computing, IBM Research report, 1995

[13] Fabio Bellifemine: Developing Multi-Agent Systems with JADE, Wiley, John & Sons
Inc., March 2007, ISBN-13: 9780470057476

[14] A. Moreno, Aida Valls and Alexandre Viejo: Using JADE-LEAP to implement agents
in mobile devices, Universitat Rovira i Virgili, 2001

[15] Dejan S. Milojicic, Fred Douglis, Yves Paindaveinem Rchard Wheeler, Songnian Zhou:
Process migration, ACM Computing Surveys Volume 32(3): 241299 (2000)

[16] I. Foster, C. Kesselman: The Grid: Blueprint for a New Camputing Infrastructure,
Morgan Kaufmann, 1999

[17] E. Bruneton, R. Lenglet, T.Coupaye: ASM: a code manipuation tool to implement
adaptable systems, Adaptable and extensible component syams, 2002

[18] Kenneth W. Tobin, Bhudenra L. Bhaduri, Eddie A. Bright, Anil Cheriyadat, Thomas
P. Karnowski, Paul J. Palathingal, Thomas E. Potok, Je ery R . Price: Large-Scale

Geospatial Indexing for Image-Based Retrieval and Analyss, Springer, 2005

[19] Thomas E. Potok, Mark Elmore, Joel Reed, and Frederick T Sheldon:
VIPAR:Advanced Information Agents Discovering Knowledge in an Open and Chang-
ing Environment, Oak Ridge National Lab, 2000

[20] Paul Palathingal and Sandeep Chandra: Agent Approach dr Service Discovery and
Utilization, International Conference on System Sciences2004

[21] Yu Jiao, Ali R. Hurson, Thomas E. Potok, Mobile Agent-Based Information Systems
and Security, Oak Ridge National Laboratory, 2006

[22] IBM DeveloperWorks: Cell Programming Handbook SDK 3.Q IBM, 2008

[23] IBM DeveloperWorks:Cell programming Tutorial SDK 3.0, IBM, 2008

83

[24] Carsten Benthin, Ingo Wald, Michael Scherbaum, and, H&o Friedrich:Ray Tracing on
the Cell Processor, IEEE Symposium on Interactive Ray Trachg, 2006

[25] T. Chen, R. Raghavan, J.N. Dale, E Iwata: Cell BroadbandEngine Architecture and its
rstimplementation|A performance view, IBM Journal of Res earch and Development,
2007

[26] Gerard Salton and Chris Buckley: Term Weighting Approaches in Automatic Text
Retrieval, Department of Computer Science, Cornell Univesity, 1997

[27] D.E. Knuth : Seminumerical Algorithms (2nd Ed), Volume 2 of The Art of Computer
Programming, Addison Wesley

[28] M. Matsumoto and T. Nishimura : Mersenne Twister. A 623-dimensionally equidis-
tributed uniform pseudorandom number generator, ACM Trans. on Modeling and Com-
puter Simulation Vol. 8, No. 1, January pp.3-30 (1998)

[29] Makoto Matsumoto and Takuji Nishimura: Dynamic Creati on of Pseudorandom Num-
ber Generators, Monte Carlo and Quasi-Monte Carlo Methods 998, Springer, 2000

[30] William R. Pearson and David J. Lipman: Improved Tools for Biological Sequence
Comparison, Proceedings of the National Academy of Scienseof the United States of
America, Vol. 85, No. 8 (Apr. 15, 1988)

[31] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. L ipman : Basic local align-
ment search tool, Journal of Molecular Biology, 1990

[32] T.F. Smith and M.S Waterman : ldenti cation of common Mo lecular sequences, Jour-
nal of Molecular Biology, 1981

[33] O. Gotoh : Animproved algorithm for matching biological sequences, Journal of Molec-
ular Biology, 1982

[34] T. Rognes, E. Seeberg: Six-fold speedup of Smith-Wateran sequence database

searches using parallel processing on common microprocess, Biolnformatics, 2000

[35] I. Salmre :Writing Mobile Code: Essential Software Endgneering for Building Mobile
Applications, 2005

84

[36] Jason Domer, Murthi Nanja, Suresh Srinivas and BhakthakKeshavachar: Comparative
performance analysis of mobile runtimes on Intel XScale technology: Interpreters,
Virtual Machines And Emulators, 2004

[37] Andreas Janecek, Helmut Hlavacs: Programming Interaiive Real-Time Games over
WLAN for Pocket PCs with J2ME and .NET CF, NetGames, 2005

[38] S. Helal.: Pervasive Java, Pervasive Computing, IEEEVolume 1, Issue 1, Jan-Mar
2002

[39] The Java ME Device Table: Sun Microsystems,
http://developers.sun.com/mobility/device/device

[40] Laurentiu Lucian Petrea and Dan Grigoras: Dynamic Clas Provisioning on Mobile

Devices, International Symposium on Parallel and Distributed Computing, 2006

[41] Laurentiu Lucian Petrea, Dan Grigoras: Towards Introducing Code Mobility on J2ME,

International Symposium on Parallel and Distributed Computing, 2005

[42] G.S. Kim, H. Cho, Y.I. Eom: Dynamic Cell Phone Ul Generation for Mobile agents,
Springer, 2007

[43] Mike Olson and Uche Ogbuiji: The Python Web services deveper: Messaging technolo-
gies compared, http://www.ibm.com/developerworks/webservices/library/ws-pyth9,
2008

[44] Irmen de Jong and Michi Henning: Web ServicessSOAP and ORBA,
www.omg.org/news/whitepapers/CORBA _vs_SOAP1.pdf , 2002

[45] Tony White, Bernard Pagurek, Andrej Bieszczad, GeorgeSugar, Xuong Tran: Intelli-
gent Network Modeling Using Mobile Agents , IEEE Communication Surveys, 1998

[46] D.B. Lange, O Mitsuru: Programming and Deploying Java Mobile Agents Aglets,
Addison-Wesley Longman Publishing Co., 1998

[47] Li Chunlin, Li Layuan: An agent-oriented and service-aiented environment for de-
ploying dynamic distributed systems, Elsevier, 2002

[48] G. Glass: ObjectSpace Voyager Core package technicalarview, Mobility: processes,
computers, and agents, Addison-Wesley Publishing Co., 19

85

[49] M. Breugst, S. Choy, T. Magedanz: GrasshopperA univera agent platform based on
OMG MASIF and FIPA standards, Addison-Wesley Publishing Co., 2000

[50] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, B. Peet. Concordia: An
Infrastructure for Collaborating Mobile Agents, Internat ional Workshop on Mobile
Agents, 1997

[51] Jonathan Dale: A Mobile Agent Architecture for Distrib uted Information Management,
PhD Thesis, University of Southhampton, 1997

[52] Andrej Bieszczad, Bernard Pagurek, Tony White: Mobile Agents for Network Man-
agement , Carleton University, 1998

[53] Robert S. Gray: Agent-Tcl: A exible and secure mobile-agent system, PhD thesis,
Dartmouth College, 1997

[54] V.A. Pham and A. Karmouch: Mobile Software Agents: An Overview, IEEE Commu-
nications Magazine, 1998

[55] Giacomo Cabri, Letizia Leonardi, Franco Zambonelli :XML Dataspaces for Mobile
Agent Coordination, ACM Symposium of Applied Computing, 2000

[56] Jim Bovay, Brent Henderson, Hsin-Ying Lin, Kevin Wadleigh, High Performance Com-
puting Division, Hewlett-Packard Company, 2007

[57] Samuel Williams,John Shalf,Leonid Oliker, Shoaib Kanil,Parry Husbands,Katherine
Yelick: The Potential of the Cell Processor for Scienti c Computing, Computing Fron-
tiers, 2006

[58] David A.Bader, Virat Agarwal, Kamesh Madduri: On the Design and Analysis of
Irregular Algorithms on the Cell Processor:A Case Study of list Ranking, Parallel and
Distributed Processing Symposium, 2007

[59] Tarik Saidani, Stephane Piskorski, Lionel Lacassagne Parallelization Schemes for
Memory Optimization on the Cell Processor: A Case Study of Image Processing Al-

gorithm, Workshop on memory performance: Dealing with Applications, systems and
architecture, 2007

86

[60] Vipin Sachdeva, Michael Kistler, Evan Speight, Tzy-Hwa Kathy Tzeng: Exploring the
Viability of the Cell Broadband Engine for Bioinformatics A pplications, International
Workshop on Hihg Performance Computing, 2007

[61] Alex Chunghen Chow, Gordon C. Fossum, Daniel A. Brokenisire: A Programming
Example: Large FFT on the Cell Broadband Engine, IBM Developer Works, 2006

[62] Alfredo Buttari, Piotr Luszczek, Jakub Kurzak, Jack Dongarra, George Bosilca: A
Rough Guide to Scientic Computing On the PlayStation3, Uni versity of Tennessee
Knoxville, 2007

