
ABSTRACT

GIRISH CHANDRA, HARSHA. Remote Data Collection and Analysis using Mobile Agents
and Service-Oriented Architectures. (Under the direction of Dr. Frank Mueller).

The ubiquity of wireless systems have ushered us into a new era of mobile com-

puting. With the emergence of superior input/output, communication hardware and cheap

data services, mobile phones have become a bed for offering new and exotic services. Su-

perior GUI and remote connectivity make mobile phones and PDAs good candidates for

data collection, but lacking battery life and computational prowess, they are poor com-

putational devices. We introduce a novel architecture that builds on agents on mobile

phones as the front end and a service-oriented architecture composed of high performance

devices as the back end. Agent-based computing, which has proved to be advantageous

for desktops/servers, can also encompass handheld devices to provide us with new service

management capabilities.

In this thesis, we discuss a new service deployment strategy on mobile phones based

on mobile agents. Mobile agent is an agent that can migrate from one node to the other

node in the network while preserving its state. This solves the problem of introducing new

services manually and provides the advantage of on-the-fly code updates for existing services.

We also discuss the challenges of mobile agent development in Java, mainly introducing

code migration in Java (J2ME), which is the critical component of a mobile agent, and

interoperability among different J2ME profiles and with Java standard edition (J2SE). As

a computational backbone for the architecture, we utilize inexpensive but powerful nodes

based on the IBM Cell Broadband architecture namely through PlayStation (PS3) devices

running on Linux. Powered by a RISC- based main processing unit (PPU) and eight

synergistic processing units (SPU), a PS3 can analyze large data sets with great speed.

In this work, we also analyze the programming paradigm used in the PS3 machines. We

discuss the design and implementation of several high performance kernels in the PS3 and

measure the speedup obtained corresponding to an x86 machine. Lastly, we introduce high-

performance computing as a service by using platform-neutral protocols such as XML-RPC,

to integrate the heterogeneous platform of mobile agents and service-oriented architectures

(SOA).

Remote Data Collection and Analysis using Mobile Agents and Service-Oriented

Architectures

by

Harsha Girish Chandra

A thesis submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2008

APPROVED BY:

Dr. Helen Gu Dr. Nagiza Samatova

Dr. Frank Mueller
Chair of Advisory Committee

ii

DEDICATION

To my parents.

iii

BIOGRAPHY

Harsha Girish was born on 27 November 1982, in Bangalore, India. He received his Bachelor

of Engineering in Computer Science and Engineering from the M.S. Ramaiah Institute

of Technology, affliated to Visvesvaraya Technological University, India, in 2004. In fall

of 2006, he came to the North Carolina State University to pursue graduate studies in

computer science. With the defense of this thesis, he is receiving the Master of Science in

Computer Science degree from NCSU, in December 2008.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Frank Mueller for his guidance and patience in the duration

of this thesis. I would like to thank Dr. Nagiza Samatova and Dr. Helen Gu for being

on my committee. I would like to thank Dr. Yu (Cathy) Jiao and Dr. Ryan Kerekes for

mentoring me at ORNL and providing valuable suggestions in improving my work. I would

also like to Dr. Robert Patton and Dr. Thomas Potok for providing me an oppurtunity to

work at Oak Ridge National Laboratory. I would like to thank Patricia Daugherty, Paul

Singley and Jenny Mueller who made my stay at Lenoir City memorable. I would like to

thank Chandra Mohan and Chaya N. Kutty for providing me support during this thesis. I

would like to thank my colleagues in the Systems Lab and my room mates who were very

cooperative during this work. Lastly, I would like to thank my family for everything.

v

TABLE OF CONTENTS

LIST OF TABLES. vii

LIST OF FIGURES . viii

1 Introduction . 1

1.1 Agent-Oriented Programming . 2
1.2 Service-Oriented Architectures . 3
1.3 Mobile Agents . 7

1.3.1 Mobile Agents as a Fluid SOA . 8
1.4 Remote Data Collection and Analysis . 8

1.4.1 Related Approaches to Remote Data Collection and Analysis 9
1.5 Mobile Agents Criticism . 13
1.6 System Overview . 14
1.7 The Main Contributions . 15
1.8 Thesis Hypothesis . 15

2 Design and Implementation. 18

2.0.1 Description of the Network . 18
2.0.2 Agent Architecture Design of Ubimac 21
2.0.3 Security Considerations . 22
2.0.4 Itinerant Agent Structure . 24
2.0.5 Agent Host Structure . 24
2.0.6 Design of Agent Directory . 26
2.0.7 Different Types of Agents. 27

2.1 Protocols . 28
2.1.1 Mobile Agent Creation . 28
2.1.2 Mobile Agent Arrival . 30
2.1.3 Mobile Agent Communication . 30
2.1.4 Mobile Agent Departure . 31
2.1.5 Exception Handling . 31

2.2 J2ME Technology . 32
2.2.1 J2ME Configurations and Profiles 34
2.2.2 J2ME Development Environment . 36

2.3 Implementation of Mobile agents . 36
2.4 Interfacing with a Service-Oriented Architecture 38

2.4.1 Comparison of Messaging Technologies 39
2.4.2 Integration with SOA Using XML-RPC 41

vi

3 High Performance Kernels on the Cell Processor. 43

3.1 Cell Broadband Engine Architecture . 43
3.1.1 Scaling the Performance-Limiting Walls 44

3.2 Cell BE Architecture Elements . 45
3.2.1 Power Processing Element . 46
3.2.2 Synergistic Processing Elements . 46
3.2.3 Element Interconnect Bus . 47
3.2.4 DMA Transfers and Interprocessor Communication. 48
3.2.5 Run Time Environment . 49

3.3 Cell Application Affinity . 50
3.3.1 Cell Affinity Areas . 50
3.3.2 Cell Non-Applicable Areas . 50

3.4 Cell Programming Approach . 51
3.4.1 Bag-of-Tasks Paradigm . 53
3.4.2 Double Buffering Technique . 53

3.5 Text Mining Problem . 54
3.5.1 TF-IDF Algorithm . 56
3.5.2 Parallelization Technique . 57
3.5.3 Memory Handling . 59
3.5.4 Performance Gain. 59

3.6 Mersenne Twister . 61
3.6.1 Parallelizing the Original Algorithm 63
3.6.2 Parallelizing Using Dynamic Creation Library 66

3.7 Smith Waterman . 68
3.7.1 The Algorithm . 68
3.7.2 Approach . 69
3.7.3 Performance Gain . 69

4 Experimental Validation . 71

4.0.4 Experimental Results . 72

5 Related Work . 77

6 Conclusion and Future Work . 79

Bibliography . 81

vii

LIST OF TABLES

Table 1.1 Mobile agent solution for remote data collection . 10

Table 1.2 Mobile Agent Issues . 16

Table 1.3 Mobile Agent Issues... continued . 17

Table 2.1 Different devices in the system. 20

Table 2.2 Java Profiles. 35

Table 2.3 J2ME Development Environment . 37

Table 2.4 Comparison of various Messaging Technologies . 40

Table 3.1 Communication mechanisms . 47

Table 3.2 Cell Affinity [25] . 52

Table 4.1 Test devices . 73

viii

LIST OF FIGURES

Figure 1.1 Generic Agent Interpreter[1] . 3

Figure 1.2 Canonical view of an agent-based system [7] . 4

Figure 1.3 Basic service-oriented architecture . 6

Figure 1.4 Service Composition[6] . 7

Figure 1.5 Panoramic view of the system . 14

Figure 2.1 Transport Level Diagram. 19

Figure 2.2 Agent Architecture . 21

Figure 2.3 Itinerant Agent Structure . 25

Figure 2.4 Sequence Diagram of the operation . 29

Figure 2.5 Java Editions and their target markets . 33

Figure 2.6 Interfacing Mobile Agents with SOA . 41

Figure 3.1 Cell Architecture . 44

Figure 3.2 Bag of tasks paradigm . 53

Figure 3.3 Double Buffering [22]. 54

Figure 3.4 Text Mining . 55

Figure 3.5 TF-IDF algorithm. 58

Figure 3.6 Memory Handling Techniques . 60

Figure 3.7 TF-IDF Performance . 61

Figure 3.8 Mersenne Twister code (original) . 64

Figure 3.9 Mersenne Twister (divided into three loops) . 64

Figure 3.10 Mersenne Twister parallelization . 65

ix

Figure 3.11 Mersenne Twister Performance . 67

Figure 3.12 Smith Waterman Performance . 70

Figure 4.1 Experimental Setup . 75

Figure 4.2 Code Mobility overhead . 76

1

Chapter 1

Introduction

Over the past few years, we have witnessed a tremendous improvement in the hard-

ware and software abilities of mobile phones. This has encouraged the research community

and the industry to look at mobile phones as not just as call making devices, but also as

something more than that. The ability to provide user-specific services has been the eye

candy of the search engine companies for a long time. Companies like Google frequently

launch free applications with the aim to capture user inputs and leverage their business

model with the information obtained from these applications. So far, these applications

have only been introduced in desktops, but the day is not far when we will be able to see a

variety of applications on our mobile phones that capture our activities and try to give us

intelligent recommendations to buy items or to prioritize our tasks in an useful manner. We

are talking about intelligent bots that can be downloaded dynamically and which emulate

our cognitive abilities to help us take intelligent decisions. Apart from this angle, we can

also consider mobile phones to be an advanced variant of sensor nodes. They can be used

by personnel to collect location-specific, situation-specific information in the field, which

can later be analyzed using data mining algorithms to derive useful results. Starting with

a brief tour of the intelligent bot technology (agents), this chapter explores service-oriented

computing, mobile agent technology, tries to address some issues of mobile agents and finally

introduces the problem of remote data collection and analysis.

2

1.1 Agent-Oriented Programming

An agent is a computer program that acts autonomously on behalf of a person

or organization. Agents can be considered a distinct kind of software abstraction in the

same way as functions and objects are software abstractions. More specifically, an agent is

a high-level software abstraction that explains the software behavior in a specific context.

The weak notion of an agent is that it is reactive (responds to the environment), proactive

(ability to act in anticipation of future goals) and autonomous (not centrally controlled).

A strong notion of an agent is that it is any entity whose state is viewed of consisting of

mental components (e.g., beliefs, capabilities, decisions and commitments) [1] . The actions

of the agent are determined by its decisions. The decisions are constrained by beliefs that

refer to

• states of the world,

• mental states of other agents, and

• capabilities of this and other agents

The decisions are constrained by previous decisions. Capabilities define what an agent can do

at a particular time. Commitments define guarantees of an agent to another agent regarding

a proposition. A decision can be viewed as a commitment to yourself. The basic interpreter

inside an agent is as shown in Figure 1.1.

When adopting an agent view of the world, it becomes apparent that a single

agent cannot do everything. We have many agents with different beliefs and capabilities

that influence their decisions. The agents have to interact with each other to achieve their

individual objectives and coordinate with other agents. The view of an agent system can be

seen as in Figure 1.2. The agents communicate with each other using the Agent Commu-

nication Language (ACL). An agent communication language consists of primitives (called

performatives) that allow agents to communicate their beliefs, capabilities and commitments

to other agents. Apart from the performative, ACL also indicates the sender, receiver, con-

tent, encoding language, protocol and other parameters needed for communication between

two parties. There are a fixed number of performatives, such as inform, accept, refuse,

not-understood, call for proposal, propose, accept-proposal, query, request, confirm, failure

etc. There are currently two popular ACLs, the FIPA ACL and the KQML. Through ACL,

the agents try to achieve the following objectives [3]:

3

Initialize Mental
state and

capabilities.
Define rules for

making new
commitments

Update Mental
State

Execute
Commitments for
the current time

Representation of mental states and CapabilitiesData

Control

Incoming Message

Outgoing Message

Figure 1.1: Generic Agent Interpreter[1]

• query another agent about the value of some proposition,

• inform an agent of some proposition and receive an acknowledgment (of belief and

/or receipt),

• synchronize data with another agent about the value of some proposition, and

• ask an agent if it will undertake some action, and, if it is agreeable, to tell (command)

it to do that action. The final communication will be the result of executing the action

(if it succeeds or fails).

1.2 Service-Oriented Architectures

Service-oriented architectures make use of services as constructs to support the de-

velopment of rapid, low-cost and easy composition of distributed applications. Services are

autonomous, platform-independent computational entities that can be used in a platform-

independent way. Services can be described, published, discovered, and dynamically as-

sembled for developing massively distributed, interoperable and evolvable systems. Since

4

Environment Sphere of visibility
And influence

Agent

Organizational
Relationship

Interaction

Figure 1.2: Canonical view of an agent-based system [7]

services are expected to be reusable and interoperable in different environments, the follow-

ing characteristics are attributed to a SOA [2]:

• Technology neutral: Protocols, descriptions and discovery mechanisms should comply

with widely accepted standards.

• Loosely coupled: They must not require knowledge, internal structures or conventions

at the client or service side.

• Support location transparency: Services should have their definitions and location

information stored in a repository such as UDDI and be accessible by a variety of

clients that can locate and invoke services irrespective of their location.

Services come in two flavors: simple and composite. Composite services are composed

of smaller services. A complicated e-trading web service having many aspects such as

trading rules analysis, risk assessment, data mining, price forecasting, buying, selling may

be modeled as separate smaller services. Since service-oriented computing (SOC) and multi-

agent systems share some common goals, building blocks in services can also be agents. The

advantage of using agents for service composition is dynamic deployment of new services

(of course using mobile agent technology that will be discussed later)

5

The service-oriented approach is independent of specific programming languages or

operating systems. It allows organizations to expose their core competencies over the Inter-

net or a variety of networks including LAN, mobile ad-hoc networks, GPRS, and Bluetooth.

Web services are the most promising technology based on service-oriented computing. This

is because web services are composed of many services that are distributed over the network

and are available via standard interfaces and protocols. Four common protocols that are

used in web service-based SOC are

• Simple Object Access Protocol (SOAP): A platform-independent protocol for exchang-

ing XML-based messages normally using HTTP/HTTPS.

• Web Service Description Language (WSDL): An XML-based protocol that allows web

services to describe the capabilities, the interfaces, and addresses of end points.

• Universal Description, Discovery and Integration (UDDI): A platform-independent,

XML-based registry for businesses to register their services on the Internet.

• Business Process Execution Language (BPEL): A protocol used to orchestrate ser-

vices, i.e., discover and compose services.

In this thesis a SOA will be built to provide services that are not related to e-commerce.

However, the services that are described in this thesis can be easily extended to operate as

or with web services.

A simple service-oriented architecture is composed of producer (of services), con-

sumer (of services) and a directory (of services). Optionally, many service-oriented technolo-

gies also have a broker, which helps in building scalable and distributed directory services.

A simple service-oriented architecture is based on three interactions: publishing a service,

finding a service and binding to a service provider. Figure 1.3 illustrates a basic SOA

architecture.

The basic SOA architecture does not capture the various facets of this vast field.

A new extended SOA has been proposed by [8]. The components of this extended SOA are

divided into three planes.

• Service foundation: The bottom layer provides a service-oriented middleware back-

bone that realizes the runtime SOA infrastructure that connects heterogeneous com-

ponents and systems and provides access to services via channels like Internet, LAN,

6

Service Provider

Service Registry Service
Consumer

Publish Bind

Find

Figure 1.3: Basic service-oriented architecture

UMTS, GPRS, and Bluetooth etc. This layer describes basic interactions involving

description, publishing, finding and binding of services.

• Service composition: The middle plane defines roles and functionality for aggregation

of multiple services into a single composite service. The steps of a service composition

are as shown in Figure 1.4. The idea is that, based on a particular problem, services

are chosen from a repository and among these services, some are provisioned to be

used based on the domain knowledge/trust model. Finally, the services are invoked

in a certain order as defined by the problem.

• Service management: The top plane defines mechanisms to monitor the health of

systems that implement the services.

Apart from these, there are service characteristics that cut across all three planes. These

include semantics, non-functional service properties and quality of service (QoS). Quality of

service encompasses important functional and non-functional service quality attributes, such

as performance metrics (response time, for instance), security attributes, (transactional)

integrity, reliability, scalability, and availability [8].

As we can see, the service-oriented architecture is very vast and encompasses

various standards and protocols. For more information the reader is referred to [8]

7

Service Registry Domain Knowledge/
Trust Model

Workflow-Selection Match-Making Provisioning Invocation

Success

Repository/
Planner

Figure 1.4: Service Composition[6]

1.3 Mobile Agents

A mobile agent is an agent that can migrate from one machine to another, interact

with other agents in that environment, and take new decisions based on that interaction.

A mobile agent has the following characteristics and brings the following advantages to the

table:

• It can roam the network, connect to different devices, discover new services in those

devices and, hence, help in better service provisioning.

• It can interact with other agents in the system and arrive at new decisions faster than

static agents that rely on message passing over the network, inducing delay.

• It can roam the network without a specific itinerary based on the intelligence obtained

in the current environment and, hence, assimilate data in a manner that was not pos-

sible in previous distributed computing paradigms. Mobile agent can choose different

migration strategies depending on its task and current network conditions.

• It can operate in periods of intermittent connectivity with other peers and, hence, is

suitable for remote data collection.

8

• It can improve the throughput of the entire system by attaching itself to nodes with

unused CPU cycles and executing in that environment.

• It can save power and bandwidth on embedded devices by processing data locally and

transmitting only relevant data to the originator of the service. In addition, mobile

agents are not always resident in a system, which may potentially help in power

conservation.

• It enables flexible service deployment on heterogeneous devices and on-the-fly code

updates for the running services.

• It enables load balancing and fault tolerance for the service by replicating itself in

new environments.

• It can monitor the health of the system and self heal the affected system based on

intelligence acquired from the environment.

1.3.1 Mobile Agents as a Fluid SOA

The primary goal of a service-oriented architecture is to create a number of loosely

coupled, reusable services. These services could then be dynamically assembled and re-

assembled into any number of different applications based upon ever changing business

requirements. Mobile agents provide a superior solution to building a SOA compared to

the currently used distributed component object models that are based upon application

servers. By deploying mobile agents from one node to another, we are introducing services

close to the data, which improves execution time. Also, it increases the number of services

available for provisioning.

1.4 Remote Data Collection and Analysis

Distributed data collection has been the subject of much research, mainly in sensor

networks, search engines and web crawlers, data mining and distributed databases. Each

of the areas has explored distributed data collection in considerable depth. The algorithms

used in these approaches are traditional distributed algorithms. The traditional distributed

algorithms are rigid in nature in the sense that they have been established to solve a

9

particular problem. In addition, the traditional distributed algorithms solve a problem in

the same manner every time, leaving less room for intelligent decisions. Apart from this,

note that most distributed algorithms involve many interactions with the initiator, which

makes them useless when the network is disconnected.

Consider a specific scenario of distributed data collection in a military opera-

tion. Soldiers are equipped with devices that have various I/O capabilities like audio

input/output, text input/output, video, image and other sensory input/outputs. These

devices may also be equipped with advanced communication hardware like Wireless LAN

(WLAN), General Packet Radio Service (GPRS), Bluetooth and Global Positioning System

(GPS). These devices are needed to collect various kinds of data during runtime. Five major

problems must be dealt with when using these devices:

• These devices have low battery and low CPU power.

• They are mobile and, hence, can lose connectivity with the base station.

• They need to collect diverse data; not all of it can be foreseen before hand.

• They can be damaged by physical impact and may also have unreliable firmware.

• They use various communication methods, have different GUI and, hence, we need

interoperability.

Apart from this, there is one significant advantage of these devices. They are in the field

for a long time and collect a lot of data. For this reason, the devices are valuable assets to

the users as the devices themselves may provide intelligent suggestions to the user.

There could be many distributed computing paradigms that solve some of the

above problems individually, but no paradigm solves all of the above problems. There

has been no paradigm to solve the problem with intermittent connectivity and damageable

hardware. A mobile agent solves the above problems in a very intuitive manner. We next

discuss how it addresses each of the issues.

1.4.1 Related Approaches to Remote Data Collection and Analysis

The related work in remote data collection and analysis is in many areas that

are all connected in the broad paradigm of distributed computing. This thesis considers

10

Table 1.1: Mobile agent solution for remote data collection

Issue Mobile agent solution

1. The devices have low battery
and low CPU power.

Mobile agents are not resident on the device
all the time. They can be sent to a device at a
particular time. Maintaining wireless connec-
tivity can also consume battery power. Mo-
bile agents can operate without network con-
nectivity for long periods.

2. The devices are mobile and,
hence, can lose connectivity
with the base station.

Mobile agents can operate during network dis-
connection. They can resume connection with
a network at a later time and communicate
with the base station.

3. The devices need to collect di-
verse data, all of it cannot be
foreseen before hand

Codes and queries can be dynamically up-
loaded to the devices at run time. This gives
a flexibility to mobile agents that can not be
thought of in other paradigms.

4. The device can suffer physical
damage and lose data.

Since mobile agents are capable of transport-
ing the code with the state and data, it can be
transported to another system (both proac-
tive and reactive strategies can be applied).

5. The devices use many different
transports and GUI.

Since the agent code is generic, it can adapt
to different environments and gain informa-
tion about the environment and take decisions
based on it.

a type of mobile agent called the itinerant agents. Itinerant mobile agents are programs,

dispatched from a source computer, that roam among a predefined set of networked nodes

until they accomplish their task. The approach taken in this thesis is to use Itinerant agents

for remote data collection and service-oriented architecture for data analysis.

There are works similar to this in the areas of mobile agents, distributed objects,

process migration, grid computing and service-oriented computing. Let us consider each of

them in brief, and contrast them to this thesis work.

Mobile Agents: The concept of itinerant agents was introduced in 1995 by IBM

[12]. They considered an architecture whose prominent component is the Agent Meeting

Point (AMP). The AMP is the agent execution environment that contained various compo-

nents, such as resource manager, shallow router, linguistic directory, authorization service

etc. Upon an agent’s arrival to the AMP, the agent’s credentials and availability of the

resources requested by the agent are checked. The AMP also has a shallow router that

11

routes the mobile agent to other nodes. This work illustrates how to build a mobile agent

architecture. However, this work does not include connectivity via wireless and does not

consider connectivity with handheld devices. This thesis uses the concept of an itinerary

from this paper and expands on it to include handheld devices and wireless connectivity.

The work using D’Agents [11] also considers distributed information retrieval. This work

is attractive as it considers many interesting facets in mobile agent computing. First, it

discusses the improvement in retrieval time of documents compared to RPC, another tech-

nology that competes with mobile agents. Second, the paper discusses how to plan an

itinerary to traverse different nodes based on the probability of finding a document in a sys-

tem. This probability is obtained by measuring some statistics of most common searches.

Again, the work using D’Agents did not cover mobile phones and PDAs. There have been

many other applications using mobile agents, such as those in distributed forensics, network

management, mobile databases etc., but they all involve personal computers and servers.

JADE [13] is a Java agent deployment environment that is another popular mobile

agent framework. JADE has been extended to support mobile phones with the addition

of the LEAP[14] framework. JADE-LEAP (JADE powered by LEAP) has been used in

some applications, but none of them have been deployed widely. The implementation in

this thesis is built upon the ORMAC (Oak Ridge Mobile Agent community) that has been

used in a variety of agent-based applications for the past ten years [18, 19, 20]. Moreover,

JADE does not directly offer support for itinerant agents, which further complicates the

software effort.

Distributed Objects (CORBA and DCOM): There are various distributed object-

oriented client server platforms that have been commercially deployed and can also be used

for distributed data collection. The main issue with using this technique is that it is built

upon a client server type request-response model, which means the connection has to be

maintained at all times during computation. This is not so suitable for remote data collec-

tion operation where intermittent non-connectivity is common. Apart from this, CORBA

and DCOM do not offer code mobility, which means services cannot be dynamically de-

ployed on those devices.

Process Migration: Process migration [15] is the act of transferring a process

12

between two machines during its execution. It enables dynamic load distribution, fault

resilience, eased system administration, and data access locality. It resembles mobile agents

in its goals; However, process migration is more of a system-level abstraction while mobile

agents that are more of an application-level abstraction. In process migration, the processes

can migrate between similar devices. Migration is platform dependent. In a heterogeneous

network of devices, process migration is not very useful, as the executable file formats of

the devices may be incompatible.

Grid Computing: Grid computing [16] involves coordination, storage and network-

ing of resources across dynamic and geographically dispersed organizations in a transparent

way for users. What distinguishes grid computing from typical cluster computing systems

is that grids tend to be more loosely coupled, heterogeneous, and geographically dispersed.

In addition, while a computing grid may be dedicated to a specialized application, it is often

constructed with the aid of general-purpose grid software libraries and middleware. Grid

computing enables the creation of Virtual Organizations (VO) for sharing resources that are

scattered across multiple geographically distributed organizations. Scheduling the accesses

to resources is one of the main research areas in grid computing. A grid-based architecture

is not a suitable paradigm for computation on mobile phones, as mobile phones do not have

many I/O resources that can be used remotely and cannot take up computation for other

nodes as they do not have computational power.

Service-Oriented Architectures: SOAs provide a new programming paradigm

that enables publishing, discovery, and utilization of services offered by heterogeneous de-

vices in a platform-neutral manner. The strength of SOA lies in the fact that a number

of smaller services can be orchestrated to provide exotic services. SOA can be applied to

perform distributed data collection and analysis on mobile phones. SOA uses standards

like WSDL and SOAP for service description and communication, which are available on

mobile phones. While gaining the advantage of using multiple mobile phones to orchestrate

complex services, it must be realized that the services that are deployed on the mobile

phones will be static, changes to the service will require stopping it and reinstalling a newer

version. This may cause problems with compatibility as some services are old and some

new. We need to make the interfaces backward compatible, which is not an elegant solution.

13

A new approach Mobile Agent + SOA:

Four main reasons to consider an architecture that integrates mobile agents with

service-oriented architecture are:

• Mobile phones are good data collectors but poor compute devices. In addition, their

battery power is precious. Hence, compute-intensive tasks must not be executed on

the mobile device.

• Deployment of new services can be performed seamlessly using mobile agents.

• Even if the agent on the mobile phone could cooperate with other agents in the agent

network, the performance of Java is significantly slower compared to its C counterpart

in a high-performance application.

• By utilizing SOA to execute our compute intensive task, a whole new library of services

can be used along with agents to solve specific problems.

1.5 Mobile Agents Criticism

Mobile agents have been criticized as a failure in the recent years. There have

been many papers that discuss this [9, 10]. The main reasons cited for failure are related

to security and trust. There are some papers that defend the mobile agents, such as [4, 5,

21]. Table 1.3 is a summary of various allegations against mobile agent from [9] and how

this thesis takes a stand on them.

14

Figure 1.5: Panoramic view of the system

1.6 System Overview

The high-level architecture of the system consists of two parts, the mobile agent

system architecture and the service-oriented architecture. The mobile agent system is com-

posed of a network of nodes on which the mobile agent can de deployed. These nodes can

be mobile phones/PDAs, personal computers or servers. The mobile agent can roam freely

on any of these nodes and communicate with other mobile agents and agents in the local

system. In this mobile agent design, we consider the itinerant agents (mobile agents with

an itinerary), that follow an itinerary in order to traverse the nodes in the network but can

decide to take certain run-time decisions based on the environment.

The second part of the architecture is the service-oriented architecture. The

service-oriented architecture is a new form of software design that utilizes services from

many vendors and forms a mesh of interoperable services. Service-oriented architectures

are very popular among web services owing to myriad ways of combining them to pro-

vide attractive services. However, the domain of SOA is not limited to web services alone,

there can be applications that can use SOA to combine services from various platforms and

languages. This thesis considers SOA to combine the service offered by the mobile agent

platform i.e., data collection with the services offered by a high-performance device (e.g., a

15

PS3), in a platform and language neutral manner. Moreover, we also demonstrate how ser-

vices can be described, advertised and composed. Even though the mobile agent platform

can be made platform-independent, it is difficult to make it language-independent. Not all

languages are suitable for all services. Having a SOA-based architecture provides us both

with platform and language neutrality. Fig 1.5shows the high-level view of the system. The

system consists of many devices that can be interconnecting with each other by different

transport mechanisms.

1.7 The Main Contributions

This thesis has two main contributions

• Design and implementation of a intelligent communication middleware (mobile agent)

that saves bandwidth, power, CPU on the mobile device, while efficiently collecting

the relevant data from remote devices. The thesis discusses the protocol of operation

of an itinerant agent framework, and the challenges of implementing it in J2ME.

The author also describes the method of integrating the mobile agent with a service-

oriented architecture using platform neutral protocols such as XML-RPC

• Implementation of high-performance kernels on Cell broadband engine, for efficient

analysis of data. The thesis measures the performance speedup obtained for solving

certain non-regular scientific kernels and attempts to provide reasons for the speedup.

1.8 Thesis Hypothesis

It is our hypothesis that, the approach of combining mobile agents with a service-

oriented architecture is useful for remote data collection and analysis, where the devices

have low bandwidth, low computational power, intermittent non-connectivity and dynamic

service requirements.

16

Table 1.2: Mobile Agent Issues

Issue Argument

1 Mobile agents do not per-
form well.

This is not necessarily true. The work using
D’Agents [11] has shown that mobile agents per-
form better than RPC in a general scenario and in
particular, data retrieval applications.

2 Mobile agents are difficult
to design: Most distributed
systems have a complex-
ity that can be addressed
using normal distributed
computing paradigms.

Mobile agents provide an intuitive solution for
some distributed applications that operate in in-
termittent connectivity or need computation to be
done closer to data. Mobile agents are ideal for
such applications. Mobile agents that are intelli-
gent may be difficult to design, but they are scal-
able.

3 Mobile agents are difficult
to develop: It is hard
to foresee the heteroge-
neous environments that
the agent operates in.

This is an issue with agent-based computing, not
mobile agents in specific. All agents involve se-
mantics by which they take intelligent decisions.
Formulating the semantics is not an easy task.
However, once developed the system is highly scal-
able.

4 Mobile agents are difficult
to authenticate and con-
trol: The Identity of an
agent is difficult to estab-
lish as the agent moves
from one system to another

It is true that mobile agents are difficult to au-
thenticate in a completely new environment. Trust
management is a very complicated problem that
researchers are still working on. However, in
trusted environments, mobile agents can easily
be authenticated using third party authentication
systems, such as Kerberos.
Access control over remote devices can be en-
forced by not allowing the mobile agent direct ac-
cess to resources of the system, but via another
agent/context. Also, agent attributes can be in-
ferred from the agent directory before providing
resource access.

17

Table 1.3: Mobile Agent Issues... continued

Issue Argument

5 Mobile agents can be
“brainwashed”: A mali-
cious host can modify the
state of the agent.

This attack is extremely difficult to prevent. But it
can be handled in an application-specific manner:

• Cooperative agents: The Agent hosts are
trustable and, hence, the mobile agents can
roam the network freely in this network.

• Service agent: The hosts are registered with
the service provider, but the host can have
software that is not trustable. We take ad-
vantage of using mobile agents for service de-
ployment, but we do not allow the agents to
roam freely. Instead, we deploy them only
from the originator. Hence, any change to
the state of the mobile agent state is local.

6 Mobile agents cannot pro-
tect secrets.

The mobile agent must not carry data of one de-
vice to another. Only state changes should be car-
ried when a mobile agent moves from one device
to another. The ideal way of solving this problem
is to clone the mobile agent without the data of
the current device and send it to the next device.
The data residing on the current device is collected
later using a request-response mechanism. If the
mobile agent wants to communicate useful results
to another node, it should do so using agent com-
munication messages.

7 Mobile agents lack a shared
language/ontology.

This is a very ambitious goal to achieve. However,
a shared ontology can be formed among cooper-
ating organizations. Mobile agents could be used
in dynamic service provisioning in those organiza-
tions

8 Mobile agents lack a ubiq-
uitous infrastructure.

Mobile agents that have been implemented in some
languages such as Java, can migrate and execute
in other nodes. However, Java inherently does
not support code migration. This thesis addresses
some of the issues of code migration in Java.

9 Mobile agents are suspi-
ciously similar to worms:
mobile agents can repli-
cate themselves in remote
hosts similar to the way the
worms replicate themselves

As the agents execute under an agent context, it is
not possible for them to harm the machine directly.
Moreover, based on agreements while deploying
mobile agents, the service deployer can limit the
number of agents of a particular kind.

18

Chapter 2

Design and Implementation

This chapter describes an abstract framework for itinerant mobile agents that can

be used to implement secure, remote applications in large intranets and public networks such

as the Internet. Itinerant mobile agents are programs dispatched from a source computer

that roam among a set of networked nodes until they accomplish their task. An additional

feature of itinerant agents is their ability to migrate from node to node, perhaps seeking

one that can help with the user’s task or perhaps collecting information from all of them.

A major focus of this work is the design of a middleware to enable the agents to discover

other nodes, move from one node to another and communicate with other agents in the

system.

We start by describing the network in which the mobile agent runs, i.e., description

of various nodes in the system, followed by design of the mobile agent architecture, followed

by the protocol of operation for the Itinerant mobile agents.

2.0.1 Description of the Network

The low-level picture of the system is as shown in Figure 2.1. mobile agents are

essentially a peer-to-peer network. The above picture gives us a low-level decomposition of

the system. There are different kinds of nodes in the system, i.e., proxy/edge router, core

router, agent directory, SOA node, PDA, cell phone and laptop. A brief description of each

node and its modes of connectivity is given in Table 2.1. Notice that the devices behind the

19

Agent Network (Ad-hoc)
Internet Links

SOA backbone (Ad-hoc/
LAN)

Bluetooth

Agent Directory
/Service Directory

Proxy/Edge Router

PDA

Laptop

Cellphone

Core Router

Proxy/Edge Router

Proxy/Edge Router
PDAPDA

Cellphone Laptop

SOA node

SOA node

Figure 2.1: Transport Level Diagram

proxy are invisible to the outside world, but they can see the nodes that have a public IP

address. In order to connect to these devices, messages must be sent to the proxy, which

will forward the messages to the devices. There are special sockets called JXTA (Juxtapose)

sockets in Java for peer-to-peer systems. While using JXTA sockets, the nodes that do not

have a public IP address rely on super peers to forward the messages to them. We are,

however, not going to consider using JXTA sockets in our thesis.

Apart from this, we may also have DHCP issues. Every time a node behind the

DHCP reconnects to the network, it may have a different IP address that it must notify

the agent directory and the proxy. The agents must be addressed by an agent-id. All

communications must be done using this identifier because the agent may not have the

same IP address and may not be associated with same proxy all the time. When an agent

enters a system, the agent directory and the proxy associated with that node need to be

notified to update their tables.

The handheld devices can connect to the network in various ways: Bluetooth,

20

Table 2.1: Different devices in the system

Device Purpose Mode of Connectivity

Agent Directory It contains the descriptions of
all the different agents in the
system. This device must have
a public IP address.

accessible via the In-
ternet

Service Directory It contains the descriptions of
various services in a SOA

accessible via the In-
ternet

Proxy/Edge Router This device has a public IP
address. It can also act as
a NAT/DHCP server. A
proxy has a shallow router
that maintains a mapping be-
tween agent-id and agent ad-
dress.

accessible via the In-
ternet

Core Router This router is capable of con-
necting different nodes in the
Internet.

accessible via the In-
ternet

SOA node This node hosts services that
can be used by other nodes.

LAN/WLAN/Ad-hoc

Personal computer
/Laptop

This device hosts the J2SE
agent execution environment

LAN/WLAN/Ad-hoc

PDA This device hosts J2ME (CDC
profile) agent execution envi-
ronment.

LAN/WLAN/Ad-
hoc/Bluetooth

Cellphone This device hosts the J2ME
(CLDC profile) agent execu-
tion environment.

LAN/WLAN/Ad-
hoc/Bluetooth/GPRS

GPRS, WLAN (Access point and Ad hoc), UpNp, to name a few. Apart from this, there

are a number of transport protocols that can be used for connection, namely stream (TCP),

datagram (UDP), HTTP (Even though HTTP is not a transport protocol, the devices han-

dle HTTP request/responses in a different manner than stream/datagram sockets. Many

operators prefer to block datagram connections to the mobile phones), SMTP (same expla-

nation as HTTP). Bluetooth, by itself, cannot be used to connect to the network. However,

it can connect via another device in the network. Therefore, the handheld devices can be

connected in a variety of ways, so it is necessary for the Agent Host on the device to indicate

how it would like to get connected when it starts up.

In this thesis, we explore the connectivity of mobile devices to the network via

WLAN, GPRS and Bluetooth.

21

2.0.2 Agent Architecture Design of Ubimac

Agent UI

Message Authentication Layer

Transport Providers

Agent Host

Roles
Role Specific

Context

RMI
Datagram J2SE Datagram

J2ME
TCPHTTP

Application Specific
UI � � � � � � � � � 	
 � � � �
 � � � � � �� � � � � � � � � �
 � � � � �� � � � � � � � � � � �
 � � � � �

Figure 2.2: Agent Architecture

The agent architecture designed as a part of this thesis is called Ubimac (Ubiqui-

tous Mobile Agent Community) .The design of Ubimac is as illustrated in the Figure 2.2.

There are three layers: transport layer, core components, and application-specific UI. The

application-specific UI is not a part of Ubimac, the user is free to register his own UI and

have agent-specific functionality here. The users can also register their own transport layer.

Right now, Ubimac supports two transports, the DatagramTransport J2SE and Datagram-

Transport J2ME, but the user can add other transports such as RMI and TCP if these

transports supports the target devices.

Design Motivations: The design of Ubimac considered the following important

factors:

• Modularity: Modularity addresses the separation of concerns and supports quick up-

dates and additions to address new requirements. Each of the core components are

22

essentially independent and can execute in their own contexts. They have access to

the transport layer and the GUI. Each of the modules can have their own GUI and

transport-providers.

• Extensibility: The transport layer is unified across all platforms. Each type of transport

is called a transport provider. The user of Ubimac can register his choice of transport

provider. In the same lines, the Agent UI can be implemented separately for different

devices.

• Open/closed principle: The open/closed principle is a popular concept in software

engineering. This means that certain components (for e.g., UI and Transport) must

be open while keeping the interfaces to the core components closed because accidental

changes to core components can result in unpredictable results.

• Enable greater code reuse via conditional compilation: To facilitate greater code reuse

across platforms, Ubimac considers having one code for all platforms and conditionally

add/remove certain blocks (which use a platform-specific API) from the code by using

preprocessor directives.

2.0.3 Security Considerations

The security goals of the agent system can be as follows:

• Protect the system: agent must not be able execute code that is harmful to the

machine ;

• Protect other agents: execution of one agent must not disturb other agents ;

• Protect a group of machines: The agent must not consume infinite resources ;

• Protect the agent: A malicious node should not be able to modify the state of the

agent. This is impossible to achieve on a malicious node, but once the agent returns

to a trusted node, the state must be reverted to a harmless state.

The system is protected in three ways.

• Controlled access to I/O: All direct access to I/O classes must be disallowed. The

agent must be able to get an I/O class only via a factory. The compiled user code must

23

run through a preverifier designed specifically for Ubimac. This preverifier checks if

the class uses some I/O classes directly. The preverifier can be written using the ASM

library[17], which allows you to look through the bytecode for instances of specific

classes. On finding an I/O class in the field section or inside a method, precompilation

is deemed to have failed.

• Controlled execution of instructions: The agents run in their own context and, hence,

cannot influence the execution of other agents. Access to resources is controlled via

the context. Whenever the agent is created/moved, its agent host must communicate

with the remote agent host and request a specific set of roles (such as file accessor,

socket writer, data generator etc). Based on the agreed set of roles, the remote agent

host creates a context specific to the agent. This context allows accesses to particular

resource types based on the roles the agent is playing.

• Role-based access management: Some components of the system (such as the locator

daemon and agent host) are trustworthy whereas the agents that come from the

network may not be trustable. Trustworthy resources get full access to the system

whereas agents must execute within their own context and any exceptions caught

while running the agent should not affect the execution of other agents.

Message-authentication layer: As in Figure 2.2, the message-authentication layer applies

to all components of the system, i.e., agent host, agents, locator daemon (program at the

agent directory) and locator client. When two nodes talk for the first time, a authentication

session is established between them. The responsibility of doing this authentication lies with

the agent hosts. This establishes a private key with which the messages are encrypted at the

sender side and decrypted at the receiver side. The method of doing this authentication is by

using a trusted third party authentication system, such as Kerberos. This security feature

has been widely explored in research communities, and has been successfully deployed in

many systems, hence, it is less exposed in this thesis.

Using the above strategies, this thesis addresses the first three goals. The last goal

is left for future work.

24

2.0.4 Itinerant Agent Structure

The structure of an agent is as shown in the Figure 2.3. Every agent has a header

that consists of a unique agent-ID that is obtained when the agent first registers with the

agent directory. The agent-ID is not related to the host address. It is a unique identifier

comprised of class name and a random number generated by the agent directory. The proxy

address is the public IP address of the proxy to which the agent is connected. If the agent

moves to a different location, then the proxy address will also need to be updated. The

proxy address is needed for the sake of bi-directional connectivity. As most nodes either

are behind NAT or receive a dynamic DHCP address, they are not visible to the outside

world. However, they can access nodes with public IP via the proxy and can also receive

messages from the outside world via the proxy that maintains a table of agent-ID to local

-IP address mapping.

The agent has an itinerary, which consists of a list of nodes that needs to be

accessed. If a node is reachable, then the node is marked as covered, and the code (with

the modified itinerary) is sent to next node. If the node is not reachable, then the node is

marked as uncovered, and the next node in the itinerary is checked for connectivity. The

itinerary can be modified dynamically if new nodes are discovered and are reachable via

the current node. This typically happens if the node receives connections via other means

of communication, such as the Bluetooth.

The agent can have some roles, such as file accessor, file writer, UI accessor etc.,

based on which it can be decided if the agent can run on that device. If it can run, then a

specific agent context is created at the agent host permitting those accesses. The agent can

have certain attributes through which it can be queried in the agent directory. It can relate

to agent functionality, capabilities and beliefs. Also, collection of these attributes can be

used to infer new decisions.

The agent has a main execute() function that is invoked on its arrival at an agent

host after its credentials are checked. Apart from these, there are functions in the agent

that aid the communication. The agent can carry other application-specific functions.

2.0.5 Agent Host Structure

The agent host is comprised of following components

25

Figure 2.3: Itinerant Agent Structure

• Agent Context Manager: When an agent arrives at an agent host, the roles assigned to

the agent are checked to decide if this device can satisfy them. If so, then a specific

agent context is created that allows resource access required by that role. Agents

must not be allowed direct access to any resource; the agent will send a message to

the context that accesses the resource on the behalf of the agent. The agent context

can check any suspicious activity of the agent. This may slow down the processing,

but is very important from the point of view of security.

• Resource Manager: There can be many agents running in the system at the same

time, and they may request the same resource. The resource manager can arbitrate

the requests to the resource. Deadlocks can be avoided by mandating the agents to

request all resources it needs before starting and relinquishing the same on exit.

• Mobility Manager: As the devices are mobile, the devices can be associated with

different networks. The way the device is associated with a new network is out of

the scope of this thesis. This can be done either manually or automatically. The

agent host must track this change and respond. The agent host must notify the agent

directory of the current proxy it is associated with (if it is associated with a proxy) of

the new IP address. This is necessary as any node that wants to communicate with

agent host/agents on this device will need to contact it via the new address.

• Authentication Manager: When two nodes talk for the first time, an authentication

session needs to be established between them. As discussed in the previous section, the

authentication session is established via a trusted third party authentication system,

26

such as Kerberos.

There can be other subsystems, such as the ontology directory. However, this thesis assumes

that all agents can understand a common language. Hence, this entity is not used. However,

in larger systems that need interoperability, we need an ontology directory to determine

which messages received from different agent systems can be mapped to some other well-

known messages (if possible), or to at least partially understand the message and derive

some facts that can later be used to infer some decisions.

2.0.6 Design of Agent Directory

The agent directory must be available on the Internet so that any node can access

it. The agent directory consists of agent descriptions and host descriptions. Sometimes, a

host can be contacted via more than one transport method, say via GPRS and WLAN. The

host description provides all the addresses associated with the node and transport-specific

attributes. The agent description gives the agent name, host address, and agent attributes.

The entries for host and agent are:

Directory Entry for Host A:

Host-Name: A

Host-Locator :

Transport-Type: HTTP

Proxy-Address:http://sys01.csc.ncsu.edu:8080

Local-Address:http://192.168.0.11:8080

Transport-Specific-Property :none

Transport-Type: Datagram

Proxy-Address:datagram://sys08.csc.ncsu.edu:8005

Local-Address:http://192.168.2.11:8005

Transport-Specific-Property :none

Host-Attributes:

Device-Type:PDA

Java-Profile:CDC

Has-File-Support:Yes

Has-Camera:No

27

Has-Bluetooth:Yes

Using the host information from the agent directory, other nodes can make an

informed decision whether the agent needs to move to that device. If a particular service

needs to access the file but the device has a Java installation that does not support file

access, then there is no point in sending the agent to that device.

Directory Entry for Agent X:

Agent-ID:edu.ncsu.ubimac.agent.DataCollector@768768

Host-Name: A

Agent-Attributes:

Type: Data-Collector

Roles: FileAccessor, FileWriter, UIAccessor

The program running on the agent directory is called a locator daemon that listens

on a dedicated port number. Every host that wants to communicate with the locator daemon

starts a locator client that is common to all agents running in the system.

2.0.7 Different Types of Agents.

• Meta-agent: A meta-agent is an agent that creates other agents. The agent does not

run on the device itself but is sent to other devices. The meta-agent is also a part

of the service-oriented architecture. It offers certain services (in this case the data

collection service) to the world. In providing this service, it utilizes the capability of

other agents in the network.

• Data collector: This agent identifies the context-specific information and stores it in

the file system if file writing is allowed, or it carries the information to another node

if file writing is not allowed. Once the data collection operation is completed, the

data collector agent moves to the next node in the itinerary. If the next node does

not respond, it marks the node as non-responsive and moves to another node in the

itinerary. Later, if the data is requested by another agent, it either accepts or rejects

to send the collected data to the device (based on its credentials).

• Static agent: The static agent in the system is another agent in the system that existed

in the device as a part of another multi-agent system. The mobile agent can interact

28

with the static agent to get some information. The complication in this activity is

that the language spoken by the agents may be different, which necessitates putting

an ontology directory in the agent host. This can be done, but it is out of the scope

of this thesis.

• Proxy agent: The proxy agent is a static agent installed on a proxy device. The

proxy agent enables a bidirectional communication with the agents behind a NAT

and other devices in the Internet. A proxy agent has a mapping of host names of all

agents in its network and their local IP addresses. When it gets a message from the

outside network for a device in the local network, it forwards the message to it. It also

forwards all the messages sent by a device in the local network to the outside world.

• Relay agent: A relay agent is an agent that forwards messages for another device on

its behalf. This agent is helps to connect to devices via Bluetooth.

• Service agent: A service agent connects the mobile agent to the SOA. It receives the

information from the mobile agent, creates a XML-RPC request and invokes a data

analysis service on a SOA node.

2.1 Protocols

The Figure 2.4 shows the sequence diagram of the normal operation of data col-

lection and analysis.

2.1.1 Mobile Agent Creation

On the creation of a mobile agent, the following steps are undertaken:

• Create an agent context based on the roles requested and allocated for the agent ;

• Set the agent state to AGENT CREATED ;

• Register the agent with the agent directory ;

• Register the agent with the proxy ;

• Check the itinerary and see if the node has to execute here. If yes, start execution.

29

Figure 2.4: Sequence Diagram of the operation

30

2.1.2 Mobile Agent Arrival

While moving the agent, check if the next node in the itinerary is reachable. If not,

mark the node as “unreachable” and try the next node until at least one node is reachable.

If no future nodes in the itinerary are reachable, then the mobile agent must take no action.

It should store the data and expect it to get connected another node in the near future.

The mobility manager in the agent host will notify all the agents in the system when the

node gets associated with a new network. If this happens, the mobile agent should try to

connect to other nodes in the itinerary. From time to time, the originator of the agent tries

to handle exceptions and this scenario in section 2.1.5.

If a mobile agent finds that another node is reachable and has the same proxy as

itself, then it does not need to do authentication. It marks the next node in the itinerary as

covered, creates a clone of itself and jumps to the next node. On moving to the next node,

it need not carry the data with it, but it needs to carry the itinerary with it.

If there is already an agent of the same kind running there, the agent terminates

without doing anything. If there is no agent of the same kind running there, then the

same steps as mobile agent creation are followed. If the agent is migrating to an un-trusted

domain, it should request the agent host to start an authentication session with the remote

node. If the authentication session succeeds, then the agent moves to the new node. If

the authentication fails, then the node is marked as uncovered, and the agent migrates to

the next node in the itinerary. If no node can be authenticated from this node, the the

mobile agent takes no action. From time to time, the originator of the agent tries to handle

exceptions and this scenario will be covered in section 2.1.5.

2.1.3 Mobile Agent Communication

As Shoham [1] put it, a computation in an agent-based system consists of these

agents informing, requesting, offering, accepting, rejecting, competing, and assisting one

another. A mobile agent system differs from conventional agent-based system where there

is extensive cooperation among agents. The problems mobile agent computing addresses are

mostly those that involve disconnected operation and asynchronous responses to requests.

Therefore, this thesis mainly restricts agent communication to:

• Inform: Inform the other agents (mainly the originator) of some events like “comple-

31

tion of activity”, “unable to authenticate”, “aborted unconditionally”, “register” and

“unregister” (to proxy agent and locator daemon).

• Request: An agent can request another agent to perform some activity for it, e.g.,

return the collected data to a destination or relay a message on its behalf etc.

• Accept: Response to the requests can be an accept or a reject. In case of an accept,

the response contains some data specific to the request.

• Reject: In case of a reject, the reason for reject will be specified.

2.1.4 Mobile Agent Departure

Usually, after the data collection, the mobile agent is still resident in the system.

In order to move to another node, it creates a clone. The mobile agent departs from a

system when it receives a inform message containing “completion of activity” from the

originator of the mobile agent. On departure, the agent context that is used to run the

agent is destroyed, and the agent sends an inform message containing “deregister” to the

proxy agent and the locator daemon.

2.1.5 Exception Handling

The following exceptions may occur in the system:

• The mobile agent reaches a point where it is unable to reach any node in the system.

The mobile agent cannot do much at this stage, so it just collects the data and

stays resident. After a certain time, the originator sends out a request to all the

nodes in the network. If the originator gets a reject message containing “agent not

present”, then the originator sends a new mobile agent to that node. This agent will

try to cover the other uncovered agents in the itinerary. If the originator gets an

“accept” for the request data message, then it stores the data received in the accept

message. When the unreachable node reaches a new network, it sends an inform

message to the originator containing “relocated” with the new proxy address and

local IP address. The originator (meta-agent) sends a request data message to the

previously unreachable node.

32

• The mobile agent reaches a point where no new nodes can be authenticated by this

node. Even in this case, the mobile agent will stay resident and wait for the request

data message from the originator.

• The mobile agent may not complete its activity and abort unconditionally. In this

case, the agents itinerary is still marked as uncovered. At a later time, other agents

will attempt to connect to it. Each time the host is unreachable, a note will be made

recording the number of retries. If the number of retries is above a threshold, the

other agents will stop trying to connect to it, and the data collected by that node is

lost.

2.2 J2ME Technology

Mobile phone applications can be written using two development platforms [35]:

• Native code: Native code development is usually done in C or C++. Native code

is useful when one needs the absolute maximum performance from a system or one

needs low-level access to the hardware. Native code is processor dependent. Hence,

deployment of the code has to be processor and compiler dependent. Usually, the

native code developers manage their own memory, provide their own libraries, and

have application-specific security mechanisms.

• Managed code: Managed code development is usually performed using the J2ME or

the .NET compact frameworks. These platforms run the code in a managed run-time

environments that manage memory usage, security, and use a rich set of libraries and

components that are available for all processor platforms. Managed code development

right now dominates the mobile phone applications as the focus of most mobile ap-

plications is not to be compute intensive but rather to be interoperable with a wide

range of devices.

There are two important managed code solutions (J2ME and .NET Compact Framework).

There have been many studies comparing the J2ME with the .NET framework, such as

[36][37]. Both the platforms offer some similar benefits, e.g., support for rich user interfaces,

byte code support, garbage collection etc. But both have some fine differences: .NET

33

provides users with a working environment that mirrors what users are used to seeing

on PCs. Due to the fact that the majority of companies’ applications are in a Microsoft

environment, back end interoperability is easier. Both J2ME and .NET have a great IDE

and support emulators to ease development and installation of the code. The main difference

between J2ME and .NET however, is that J2ME supports a wider range of devices whereas

.NET is supported by Pocket PCs under a Windows OS. In order to be interoperable with

a maximum number of devices, this thesis chooses Java as the core technology.

Figure 2.5: Java Editions and their target markets

The networking features and the platform independence have made Java a popular

technology for Internet applications. Since the diversity of devices is increasing, Java’s

platform independence becomes a key feature. Many handhelds, set-top boxes, smart cards,

and other embedded devices provide a JVM. Furthermore, the number of Java-capable

platforms is increasing, while the number of features in the Java programming language

and class library are also increasing. Because of this, Sun has defined many different flavors

of the Java environment, as shown in Figure 2.5. The Java 2 Standard Edition (J2SE)

is the default language profile for workstations and small servers. The Java 2 Enterprise

Edition offers addition features on top of the standard edition. It is meant for large scale

34

servers, such as web servers. The J2ME is meant for restricted devices, such as handhelds

and digital television. The Java Card is the smallest Java edition available. It is meant

to be used with smart cards with very limited memory and processing power. In order to

cope with the variability of the hardware resources found in the mobile computers with

limited capability (e.g., memory size, CPU power, system design, availability of keypad

etc.), the J2ME consists of 3 layers (virtual machine, configuration and profile) that can be

customized to the specific hardware needs of the used mobile platform.

2.2.1 J2ME Configurations and Profiles

A configuration consists of a virtual machine that implements some portion of the

Java language, virtual machine specifications, and a minimal supporting set of class libraries

and APIs. These libraries are built for all devices of a particular segment. Profiles are built

on top of configurations to support device-specific features, such as networking and UIs.

Each valid combination of configuration and profile targets a specific type of device.

• Connected Limited Device Configuration (CLDC): addresses devices with a significant

resource limitations, such as cell phones and pagers.

• Connected Device Configuration (CDC): addresses devices with a higher set of physical

resources, like PDAs or set top boxes.

The list of devices that support J2ME and their Java configuration and supported profiles

can be obtained from [39].The main profiles that are used in J2ME are listed in the Table

2.2.

CDC is backward compatible with Java 1.2. It has support for more classes and

operations than CLDC. CLDC has the following limitations, that are not present in the

CDC environment:

• No floating point support,

• No serialization and reflection: This means that we cannot transmit objects over the

network.

• Dynamic Class Loader: This is one of the major drawbacks of CLDC platform. As

the support for a dynamic class loader has been removed from the virtual machine,

35

Table 2.2: Java Profiles

Profile Description

MIDP This profile is used with CLDC. The MIDP
specification addresses issues, such as user in-
terface, persistence storage, networking, and
application life cycle on CLDC devices. The
programs written in MIDP are called Midlets.

Foundation Profile (JSR-219) This profile is used with CDC. It provides ap-
plication supported classes like network and
I/O support without a GUI API

Personal Basis Profile (JSR-
217)

This profile is used with CDC. It pro-
vides a standards-based GUI framework with
lightweight components.

Personal Profile (JSR-216) This profile is used with CDC. It provides an
AWT-based GUI toolkit. It support the de-
velopment of applets.

File Connection (JSR 75) This is an optional package used with CLDC
configuration. It gives access to the local file
systems on devices like PDAs. It allows read
and/or write access to the file system of the
PDA.

The Remote Method Invoca-
tion (RMI) Optional Package
(JSR-66)

It provides a subset of the J2SE RMI API for
networked devices based on Java technology.

The Java Database Connectiv-
ity (JDBC) Optional Package
(JSR-169)

It provides a subset of the JDBC 3.0 API that
can be used by Java application software to
access tabular data sources, such as spread
sheets and SQL databases

36

there is no support to dynamically deploy code. There have been various approaches,

such as [40, 42, 41], that aim at re-engineering the kernel to support a dynamic class

loader. This limitation, coupled with the absence of serialization framework, creates

a major hurdle to code mobility in mobile devices.

• Threading features. CLDC provides threads, but it does not allow the creation of

a daemon thread (a thread that is automatically terminated when all non-daemon

threads in the VM terminate) or thread groups.

• Java Native Interface. CLDC does not provide the J2SE JNI feature, which allows

native code to be called from Java classes.

2.2.2 J2ME Development Environment

The mobile agent code was tested on three JVMs NSICom CreME JVM (CDC),

Esmertec Jbed (CLDC 1.1) and Symbian CLDC (CLDC 1.1). There are various tools that

are available for J2ME development. Table 2.3 summarizes the various development tools

that are used for the development of J2ME code.

2.3 Implementation of Mobile agents

There are some unique challenges to developing mobile agents on mobile phones,

i.e., supporting multiple devices, developing a serialization framework and writing Midlets.

Serialization Framework: As discussed above, one of the main hurdles to deploying

mobile agents on mobile phones is absence of a serialization framework (both in CDC and

CLDC), which prompted the author to use third-party libraries, such as J2ME Polish to

support serializable code. With some additional effort, even the ASM library can be used

for serialization.

Precompilation: Precompilation is an activity of customizing a piece of code for a specific

environment. As there are so many devices, each with its own capability, the code has to be

tailored to suit the capabilities of each device. This is similar to adding an #ifdef statement

in C. Either Antenna or J2ME-Polish may be used for precompilation.

37

Table 2.3: J2ME Development Environment

Tool Description

Eclipse ME Eclipse ME is an Eclipse plugin to help de-
velop J2ME MIDlets. It helps various ac-
tivities, such as compilation, running build
scripts, signing midlets and deployment of jar
files.

Netbeans Mo-
bility Pack

Netbeans has an IDE for CDC code develop-
ment. It is a CDC counterpart of Eclipse ME

Sun Wireless
Toolkit

A toolbox for developing Wireless applica-
tions that is mainly used as a cell phone em-
ulator

Apache Ant Ant scripts are counterparts of Make in Java.

ObjectWeb
ASM

ASM is an all-purpose Java byte code manipu-
lation and analysis framework. It can be used
to modify existing classes or dynamically gen-
erate classes, directly in binary form.

Antenna Antenna provides a set of Ant tasks suitable
for developing wireless Java applications tar-
geted at the Mobile Information Device Pro-
file (MIDP). Antenna is mainly used to pre-
compile Java code for specific devices.

J2ME-Polish J2ME Polish provides a library for bridging
the gaps of CLDC, namely serialization, RMI,
XML-RPC and provides style sheets for better
GUI.

38

Preverification: Preverification is the process of checking the byte code if all user classes

adhere to rules of device accesses in mobile agent paradigm, e.g., no direct access to I/O

functions. ASM library is a standard tool for preverification of code.

Dynamic Class Loading: Dynamic class loading is a feature where in classes can be

loaded using byte code. This feature is absent in the CLDC version of J2ME. However,

CDC versions have support for dynamic class loading. In order to load classes dynamically,

custom class loader is required that reads serialized object (byte code) from the network

and loads a new class.

2.4 Interfacing with a Service-Oriented Architecture

As discussed in the previous sections, data computation can be a performance-

intensive task that may not be done using Java. C is better than Java in compute intensive

tasks. In addition, special architectures such as the Cell Broadband Engine are well suited

for executing certain algorithms. A mechanism is required to call the services offered by third

party software in a platform neutral manner. A service-oriented Architecture, which uses

platform and language neutral protocols for communication, publishing and composition,

is an ideal choice to accomplish this work. This thesis considers integration of a Java-based

agent platform on a Windows machine on the x86 platform with C-based data analysis

programs on Linux running on Cell Broadband Engine platform.

Remote Procedure Call (RPC) is one of the ideal ways of invoking a service on a

remote machine. RPC is attractive as it allows the service interface to be published for any

system to invoke it. RPC has been implemented by various technologies. Among those,

CORBA, DCOM, SOAP and XML-RPC have been deployed. CORBA and DCOM have

been around for more than ten years. They have been widely deployed in distributed object

environments. However, with the emergence of web services, two new protocols, XML-RPC

and SOAP, are being adopted by many companies as a promising technology. Here is a

brief description of the messaging technologies

• CORBA:The Common Object Request Broker Architecture (CORBA) is a standard

defined by the Object Management Group (OMG) that enables software components

written in multiple computer languages and running on multiple computers to work

39

together. CORBA uses an interface definition language (IDL) to specify the interfaces

that objects will present to the outside world. The CORBA specification dictates that

there shall be an Object Request Broker (ORB) that understands the IDL, through

which the application interacts with other objects.

• DCOM: DCOM is similar to CORBA and is developed by Microsoft.

• XML-RPC: XML-RPC is a specification for making RPC calls using HTTP as the

transport and XML as the encoding scheme. The greatest advantage of XML-RPC is

its simplicity. There is support for simple data types, but it does not allow the user

to define complex data types. In addition, XML-RPC does not have names for the

parameters.

• SOAP: SOAP was built as an extension to XML-RPC. SOAP’s greatest feature is its

ability to step past XML-RPC’s limitations, build complex message and customize

every portion of the message, e.g., providing names for parameters. This ability to

customize allows developers to describe exactly what they want within their message.

The downside of this is that the more you customize a message, the more work it will

take to make a foreign system do anything beyond simply parsing it.

2.4.1 Comparison of Messaging Technologies

A performance study of various messaging technologies was done in [43]. Table

2.4 summarizes the results from that work. It can be seen that the SOAP and XML-RPC

messages are just over 14 times as large as the binary CORBA messages. In addition, as

you can see from the test where you sent 5,000 integers to the server, SOAP and XML-RPC

took 882 and 66 times longer than CORBA on the same machine, respectively. Although

CORBA has the best performance, there are many downsides to it [44]:

• CORBA is too complex : There is a steep learning curve in order to program in

CORBA.

• CORBA is too expensive: Even though there are many open source implementations

of CORBA, in order to use the must-have features, the programmer has to implement

his own versions of those functionalities, or buy a commercial version at a high price.

40

Table 2.4: Comparison of various Messaging Technologies

Raw Sockets CORBA XML-
RPC

SOAP

Connect time (sec) 0.0022 0.00073 0.0070 0.0006

Time to send string
of 21,000 characters
(sec)

0.0014 0.0046 0.0827 0.2942

Time to receive
string of 22,000
characters (sec)

0.0014 0.0022 0.0502 0.2793

Time to send 5,000
integers (sec)

6.74 1.52 100.33 1,324.29

Client lines of code
(bytes)

57 37 29 32

Server lines of code
(bytes)

25 18 17 10

Actual message size
sending 1,000 char-
acters (bytes)

2,279 2,090 4,026 4,705

Actual message size
sending 100 inte-
gers (bytes)

85,863 27,181 324,989 380,288

41

Figure 2.6: Interfacing Mobile Agents with SOA

• IIOP (CORBA’s transport protocol) does not work through firewalls or proxy web

servers : CORBA’s transport protocol the IIOP is not allowed through many firewalls,

as it is not recognized as a protocol, or connections to the requested port are denied.

• Readability: Human readability is considered by many as important for faster devel-

opment of code.

One of the main reasons of choosing an XML-HTTP-based RPC is that most webservers

are open to HTTP requests. SOAP or XML-RPC requests and responses can be tunneled

via HTTP. Suppose we decide to use an XML-based RPC, we have a choice of using SOAP,

which is a W3 standard. This thesis considers using XML-RPC as the messaging technology.

The main reasons for doing so are:

• It is very simple to understand and implement;

• Any application written in XML-RPC can be easily ported to SOAP.

2.4.2 Integration with SOA Using XML-RPC

Figure 2.6 shows the method of interfacing the mobile agent architecture with

the SOA. This can be achieved by having a proxy node that is part of both the mobile

agent architecture as well as part of service-oriented architecture. The proxy provides a

data collection service to the SOA, and it provides data analysis service for the agent

architecture. A service agent running on the proxy acts as an interface between the two

42

architectures. First, it can receive requests from other mobile agents that need to access

a SOA node, calls the SOA node using XML-RPC and forwards responses back from the

SOA node to the mobile agents. Second, it can take requests from the SOA nodes in order

to invoke certain service, such as data collection, via a meta-agent.

There are many commercial XML-RPC implementations. In this thesis work,

Apache XML-RPC for Java and XML-RPC-C for C side implementation, was utilized.

43

Chapter 3

High Performance Kernels on the

Cell Processor

3.1 Cell Broadband Engine Architecture

The Cell Broadband Engine (CBE) architecture designed by a partnership of Sony,

Toshiba and IBM (STI) to be the heart of Sony’s recently released PlayStation3 gaming

system among other consumer devices. The Cell architecture takes a radical departure from

conventional multiprocessor or multi-core architectures. Instead of using identical cooper-

ating commodity processors, it uses a conventional high-performance Power PC core, the

Power processing element (PPE), that controls eight simple SIMD cores called synergistic

processing elements (SPEs), where each SPE contains a synergistic processing unit (SPU),

a local memory, and a memory flow controller.

To an application programmer, the CBE processor looks like a 9-way coherent

multiprocessor [22]. The PPE is more adept than the SPEs at control-intensive tasks and

quicker at task switching. The SPEs are more adept at compute-intensive tasks and slower

than the PPE at task switching. However, either processor element is capable of both types

of functions. The more significant difference between the SPE and PPE lies in how they

access memory. The PPE accesses main memory (the virtual-address space) with load and

44

Element Interconnect Bus

DMA Cont

LS (256KB)
SPE4

PPE
Dual Threaded, VMX

L1
(32KB)

L2
(512KB)

Memory Interface
Controller (MIC)

IO Interface Controller

IO

Dual XDR
Memory

DMA Cont

LS (256KB)
SPE0

DMA Cont

LS (256KB)
SPE5

DMA Cont

LS (256KB)
SPE6

DMA Cont

LS (256KB)
SPE7

DMA Cont

LS (256KB)
SPE1

DMA Cont

LS (256KB)
SPE2

DMA Cont

LS (256KB)
SPE3

Figure 3.1: Cell Architecture

store instructions that move data between main memory and a private register file, the

contents of which may be cached. The SPEs, in contrast, access main memory with direct

memory access (DMA) commands that move data and instructions between main memory

and a private local memory called a local store or local storage (LS). An overview of Cell

architecture is provided in Figure 3.1.

3.1.1 Scaling the Performance-Limiting Walls

Traditional processors have reached a point where greater investment is not yield-

ing optimal performance gains. The Cell Broadband Engine overcomes three important

limitations of contemporary microprocessor performance: power consumption, memory uti-

lization, and processor frequency[23].

Power Wall Increasingly, microprocessor performance is limited by achievable power

dissipation rather than by the number of available integrated-circuit resources. One way to

increase power efficiency is to differentiate between:

• processors optimized to run an operating system and control-intensive code, and

• processors optimized to run compute-intensive applications

45

The Cell Broadband Engine does this by providing a general-purpose PPE to run the

operating system and other control-plane code, while eight specialized SPEs serve computing

data-rich (data-plane) applications.

Memory Wall Currently, the program performance is dominated by the activity of mov-

ing data between main memory (the virtual-address space that includes main memory) and

the processor. The Cell Broadband Engine’s SPEs use two mechanisms to deal with long

main memory latencies:

• a 3-level memory structure (main memory, local stores in each SPE, and large register

files in each SPE), and

• asynchronous DMA transfers between main memory and local stores.

These features allow programmers to schedule simultaneous data and code transfers to

cover long latencies effectively. Because of this organization, the Cell Broadband Engine

can usefully support 128 simultaneous transfers between the eight SPE local stores and main

memory. This surpasses the number of simultaneous transfers on conventional processors

by a factor of almost twenty.

Frequency Wall Conventional processors require increasingly deeper instruction pipelines

to achieve higher operating frequencies. Cell BE follows a different strategy:

• The PPE achieves efficiency primarily by executing two threads simultaneously rather

than by optimizing single-thread performance.

• An SPE achieves efficiency by using a large register file, which supports many simulta-

neous in-process instructions without the overhead of register-renaming or out-of-order

processing.

3.2 Cell BE Architecture Elements

The Cell BE system contains various architectural elements. We will discuss only

those blocks that are relevant to this thesis.

46

3.2.1 Power Processing Element

The PPE contains a 64-bit, dual-thread PowerPC architecture RISC core and

supports a PowerPC virtual-memory subsystem. It has 32KB level-1 (L1) instruction and

data caches and a 512KB level-2 (L2) unified (instruction and data) cache. It is intended

primarily for control processing, running operating systems, managing system resources,

and managing SPE threads. It can run existing PowerPC architecture software and is

well-suited to execute system-control code. The instruction set for the PPE is an extended

version of the PowerPC instruction set. It includes the vector/SIMD multimedia extensions

and associated C/C++ intrinsic extensions.

The PPE hardware supports two simultaneous threads of execution. All archi-

tected and special- purpose registers are duplicated, except those that deal with system-level

resources, such as logical partitions, memory, and thread-control . Most non-architected

resources, such as caches and queues, are shared by both threads, except in cases where the

resource is small or offers a critical performance improvement to multithreaded applications.

Because of this duplication of state, the PPE can be viewed as a 2-way multiprocessor with

shared data flow. The two hardware threads appear to software as two independent logical

processors.

3.2.2 Synergistic Processing Elements

The eight identical SPEs are single-instruction, multiple-data (SIMD) processor el-

ements that are optimized for data-rich operations allocated to them by the PPE. Each SPE

contains a RISC core, 256KB software-controlled LS for instructions and data, and a 128-

bit, 128-entry unified register file. The SPEs support a special SIMD instruction set—the

Synergistic Processor Unit Instruction Set Architecture—and a unique set of commands

for managing DMA transfers, interprocessor messaging and control. SPE DMA transfers

access main memory using PowerPC effective addresses. The SPEs are not intended to

run an operating system. The SPU is an in order processor with two instruction pipelines,

referred to as the even and odd pipelines. The floating and fixed- point units are on the

even pipeline, and the rest of the functional units are on the odd pipeline. Each SPU can

issue and complete up to two instructions per cycle, one per pipeline.

An SPE’s SPU can fetch instructions only from its own LS, and load and store

47

Table 3.1: Communication mechanisms

Mechanism Description

1. DMA transfers Used to move data and instructions between
main memory and an LS. SPEs rely on asyn-
chronous DMA transfers to hide memory la-
tency and transfer overhead by moving infor-
mation in parallel with synergistic processor
unit (SPU) computation.

2. Mailboxes Used for control communication between an
SPE and the PPE or other devices. Mailboxes
hold 32-bit messages. Each SPE has two mail-
boxes for sending messages and one mailbox
for receiving messages.

3. Signal notifica-
tion

Used for control communication from the
PPE or other devices. Signal notification
(also called signaling) uses 32-bit registers
that can be configured for one-sender-to-one-
receiver signalling or many-senders-to-one-
receiver signalling.

instructions executed by the SPU can only access the LS. SPU software uses LS addresses

(not main memory effective addresses) to do this. Each SPE’s memory flow controller

(MFC) contains a DMA controller. DMA transfer requests contain both an LS address

and an effective address, thereby facilitating transfers between the domains. Data transfers

between an SPE’s LS and main memory are performed by the associated SPE, or by the

PPE or by another SPE, using the DMA controller in the MFC associated with the LS.

3.2.3 Element Interconnect Bus

All components of the Cell processor including the PPE, the SPEs, the main

memory and I/O are interconnected with the Element Inter-connection Bus (EIB). The

EIB is built from unidirectional rings, two in each direction and a token-based arbitration

mechanism is used to arbiter the messages. Each element of the Cell processor is hooked

to the bus with a bandwidth of 25.6 GB/s.

48

3.2.4 DMA Transfers and Interprocessor Communication.

Because SPEs lack shared memory, they must communicate explicitly with other

entities in the system using three primary communication mechanisms: DMA transfers,

mailbox messages, an signal-notification messages. All three communication mechanisms

are implemented and controlled by the SPE’s memory flow controller (MFC). The three

communication mechanisms are listed in Table 3.1

One of the functions of an MFC is to act as a specialized co-processor for its

associated SPU. The MFC has the ability to execute operations from its command set,

and it executes them autonomously. When possible and beneficial, the MFC will execute

commands out-of-order.

DMA Transfers DMA commands initiate transfer data between the LS and main mem-

ory. Main memory is addressed by an effective address (EA) operand in a DMA command.

The LS is addressed by the local store address (LSA) operand in a DMA command. The

size of a single DMA transfer is limited to 16 KB.

Each MFC can also autonomously manage a sequence of DMA transfers in response

to a DMA list command from its associated SPU (but not from the PPE or other SPEs).

Each DMA command is tagged with a tag group ID that allows software to check or wait

on the completion of commands in a particular tag group. The MFCs support naturally

aligned DMA transfer sizes of 1, 2, 4, or 8 bytes and multiples of 16 bytes with a maximum

transfer size of 16 KB per DMA transfer. DMA list commands can initiate up to 2048 such

DMA transfers. Peak transfer performance is achieved if both the effective addresses and

the LS addresses are 128-byte aligned and the size of the transfer is an even multiple of 128

bytes.

Mailboxes Mailboxes support the sending and buffering of 32-bit messages between an

SPE and other devices, such as the PPE and other SPEs. Each SPE can access three

mailbox channels, each of which is connected to a mailbox register in the SPU’s MFC.

Two one-entry mailbox channels, the SPU Write Outbound Mailbox and the SPU Write

Outbound Interrupt Mailbox, are provided for sending messages from the SPE to the PPE

or to the other devices. One four-entry mailbox channel, the SPU Read Inbound Mailbox,

is provided for sending messages from the PPE or from other SPEs or devices to the SPE.

Mailbox message values are intended to communicate messages up to 32 bits in

49

length, such as buffer completion flags or program status. In fact, they can be used for any

short data transfer purpose, such as sending of memory addresses, function parameters and

command parameters. Mailboxes are useful, for example, when the SPE places computa-

tional results in main storage via DMA. After requesting the DMA transfer, the SPE waits

for the DMA transfer to complete and then writes to an outbound mailbox to notify the

PPE that its computation is complete. If the SPE sends a mailbox message after waiting

for a DMA transfer to complete, this ensures only that the SPE’s LS buffers are available

for reuse.

Signals The PPE, other SPEs, and other devices use the signal notification registers to

send information, such as a buffer-completion synchronization flag, to an SPE. An SPE has

two 32-bit signal-notification registers, each of which has a corresponding memory mapped

input output (MMIO) register that can be written with signal-notification data. The PPE

sends a signal-notification message to the SPE by writing to a MMIO register in the SPE’s

MFC. An SPE can also send a signal to another SPE by writing to MMIO register of the

corresponing SPU.

Like mailboxes, signal-notification channels are useful when the SPE places com-

putational results in main memory via DMA. After requesting the DMA transfer, the SPE

waits for the DMA transfer to complete and then sends a signal to notify the PPE that its

computation is complete.

3.2.5 Run Time Environment

The PPE runs PowerPC architecture applications and operating systems, which

can include both PowerPC architecture instructions and vector/SIMD multimedia extension

instructions. To use all of the CBE processor’s features, the PPE requires an operating

system that supports these features, such as multiprocessing with the SPEs, access to the

PPE vector/SIMD multimedia extension operations, the CBE interrupt controller, and all

the other functions provided by the CBE processor. It is common to run a main program

on the PPE that allocates threads to the SPEs. In such an application, the main thread is

said to spawn one or more CBE tasks. A CBE task has one or more main threads associated

with it, along with some number of SPE threads. An SPE thread is a thread that is spawned

to run on an available SPE.

50

The operating system defines the mechanism and policy for selecting an available

SPE. It must prioritize among all the CBE applications in the system, and it must schedule

SPE execution independently from regular main threads. The operating system is also

responsible for runtime loading, passing parameters to SPE programs, notification of SPE

events and errors, and debugger support.

3.3 Cell Application Affinity

The Cell processor gives peak performance for some applications and gives sub-

optimal performance (but in most cases better than general-purpose processors(GPP)) for

some others. The Table 3.2 provides a list of applications areas where Cell architecture

potentially delivers high performance (left side) and another set where less performance is

likely.

3.3.1 Cell Affinity Areas

The main strength of Cell architecture lies in the SPE. SPEs are inherently vector

processors, some of the most powerful SIMD engines in existence today. Great speeds can

be achieved for problems that do not have data dependencies and need no synchronization.

Examples of such problems are linear system of equations, dense matrix multiplications,

bioinformatics etc. The SPE is very good at single-precision floating point (204.8 Gflops/s

@3.2 Ghz) whereas double-precision floating point operations (14.6 Gflops/s @3.2 Ghz) are

significantly slower compared to latter.

3.3.2 Cell Non-Applicable Areas

There are some problems where the Cell processor may give less performance. The

main characteristics of such programs are as follows:

Branchy Code: An SPE executes the instructions in-order, which means that pipeline

stalls, caused by code dependencies or mispredicted branches, are more expensive than on

a CPU with out-of-order execution [24]. To avoid this, the compiler is responsible for a

suitable instruction scheduling and to untangle code dependency chains. Most of the time,

51

the compiler resolves the dependencies automatically, but sometimes the algorithms have to

be (manually) adapted to help the compiler find independent instruction sequences. These

instruction sequences can then be interleaved to prevent stalls efficiently.

Non-SIMD Instructions: As the SPE’s instruction set is designed for SIMD processing,

most of the instructions operate on multiple data elements at once (two to sixteen elements

depending on element size) [24]. As an instruction has a throughput of one per cycle

and a latency between 2-7 cycles, one has to ensure enough independent data to work on.

Otherwise, dependency chains, and therefore pipeline stalls, are unavoidable. Unfortunately,

the instruction set is sub-optimal for scalar code, so even simple operations such as increasing

an unaligned counter in memory require a costly read-modify-write sequence.

Irregular Memory Access: As the local store does not work as a hardware managed

memory cache, all main memory accesses must be done explicitly by DMA transfers. Even

though the memory bandwidth of 25.6 GB/s is rather high, each memory access has a high

latency of several hundred SPE clock cycles [24]. In order to hide the latency, the DMA

engine supports asynchronous transfers. Even though this setting is ideal for streaming

operations in which huge blocks of data are being processed sequentially, it is challenging

for a data-intensive application with irregular memory access patterns.

3.4 Cell Programming Approach

The approach followed in implementation of most kernels involves three steps.

• Write a scalar code so that it runs on the PPU.

• Run a profiler to check the times of execution of different functions.

• Parallelize the code so that it runs on the SPU.

For the kernels implemented in this section, the author uses a concept of bag-of-tasks to

helps us divide a large task into smaller tasks. Apart from this, the author uses double

buffering to transfer data whenever it is possible.

52

Table 3.2: Cell Affinity [25]

Cell Ideal Software Cell Non-Ideal Software

Pair and Sequence Comparisons

Rich Media Mining
Bio Informatics
SPAM Filtering
Monitoring
Surveillence

Data Transformation

Transcoding (MPEG2 − MPEG4)
Affine Transforms
Encryption/Decryption
Compression/Decompression
V ideo Compression/Transformation
V isualization

Computation

Ray Tracing
Low Precision/Game Physics
Matrix Multiply
SIMD
DSP Algorithms
FFT

Branchy Data
If-Then-Else

Non structured
Not SIMD friendly

Pointer Indirection
Multiple levels of indirection

Data load granularity < 16 bytes
DMA < 16bytes
SPE to Local − Store < 16bytes

Tightly coupled
Not easily parallelizable
Require too much synchronization

53

BagOfTasks() {
BT = InitializeBag;

D = InitData();

While (!(Termination condition)) {
T = GenNextTask(D)

add T to the bag of Tasks BT

}
...

while (BT not empty) {
T = RemoveTask(BT)

R = Compute(T)

WriteResult(outFile, R)

}
}

Figure 3.2: Bag of tasks paradigm

3.4.1 Bag-of-Tasks Paradigm

The bag-of-tasks paradigm applies to the situation when the same function is to

be executed a large number of times for a range of different parameters or on different data.

Applying the function to a set of parameters constitutes a task, and the collection of all

tasks to be solved is called the bag of tasks since they do not need to be solved in any

particular order. At each iteration, a worker grabs one task from the bag and computes the

result.

The bag-of-tasks paradigm can be written in pseudocode as in Figure 3.2.

3.4.2 Double Buffering Technique

SPE programs use DMA transfers to move data and instructions between main

memory and the local store (LS) in the SPE. Consider an SPE program that requires large

amounts of data from main memory. The following is a simple scheme to achieve that data

transfer:

1. Start a DMA data transfer from main memory to buffer B in the LS.

2. Wait for the transfer to complete.

54

3. Use the data in buffer B.

4. Repeat.

This method wastes a considerable amount of time waiting for DMA transfers to complete.

We can speed up the process significantly by allocating two buffers, Bo and B1 and over-

lapping computation on one buffer with data transfer in the other. This technique is called

double buffering. Double buffering is a form of multibuffering, which is the method of using

multiple buffers in a circular queue to overlap processing and data transfer. The purpose

of double buffering is to maximize the time spent in the compute phase of a program and

minimize the time spent waiting for DMA transfers to complete. The double buffering

scheme is illustrated in Figure 3.3.

Figure 3.3: Double Buffering [22]

3.5 Text Mining Problem

Large text databases potentially contain a great wealth of knowledge. However,

text represents information in a complex, rich, and opaque manner. Consequently, unlike

numerical and fixed field data, it cannot be analyzed by standard statistical data mining

methods. Text mining is a field that is dedicated to analyzing large sets of documents and

extracts invaluable information from these sets. Normally a text mining problem could be

visualized as in the Figure 3.4 .

55

Figure 3.4: Text Mining

As it can be seen, text indexing is one of the first steps in text mining. While

classifying text documents, the document classifier comes across many text documents that

may partially match many other text documents. The idea of text indexing is to find

similar documents in a database of documents. There are many applications of the text

indexing problem. For example, social networking sites are very popular these days. By

creating a description of a persons profile, his/her friends, and their affiliated communities

in a text document and by analyzing different text documents containing other profiles, a

software can find people with similar interests. Touchgraph application for Facebook is an

amazing application that uses concepts of text indexing to cluster groups of friends based

on their common interests and is able to accurately predict the closest friends. Even while

doing this research work, I had to look through various resources to gather information for

a literature survey. It would be great if there was a system that looked through all the

research papers and clustered similar research papers ranked by relevance. This is exactly

what the text-indexing problem attempts to perform.

The next steps of text mining are dimensionality reduction (making a unstructured

text document into a structured table with fixed number of columns). The columns are

the tokens that occur commonly in many documents. After dimensionality reduction, the

documents are clustered using clustering algorithms like K-Means. After the documents are

clustered, they can be visualized using data visualization tools and finally presented to the

user via a user interface.

This thesis considers the problem of text gathering using mobile phones and anal-

ysis of the text on high performance machines and visualization of the results on a mobile

56

phone/PC.

3.5.1 TF-IDF Algorithm

The main function of a term weighting system is the enhancement of retrieval

effectiveness. Effective retrieval depends on two main factors: on one hand, items likely to

the user’s need must be retrieved; on the other hand, items likely to extraneous must be

rejected. Two measures are normally used to access the ability of a system to retrieve the

relevant and reject the non-relevant items of a collection, known as recall and precision [26].

In principle, a system is preferred that produces both high recall by retrieving everything

that is relevant and also high precision by rejecting all items that are extraneous. Two

parameters that are used to determine the recall and precision are as below:

• Terms that are frequently mentioned in individual documents appear to be useful recall

devices. Term frequency (TF), the number of times a word occurs in a document, is

used for its high recall property. Term frequency is defined for a term, document pair.

ti : The term i

dj: The document j

|D|: The number of documents

nij: The count of tiin dj

Term frequency is defined as:

tfij: nij /Σnkj(1)

• Term frequency alone cannot insure acceptable retrieval performance. Specifically,

when the high frequency terms are not concentrated in a few particular documents but

are instead prevalent in the whole collection, all documents tend to be retrieved. An

inverse document frequency (IDF) factor favors terms concentrated in a few documents

of the collection.

Inverse document frequency is defined as:

idfi: log (|D| / {dj:ti ǫ dj}) (2)

Then, TF-IDF is defined as:

tfidf : tfij * idfi: The TF-IDF term (3)

57

3.5.2 Parallelization Technique

The break-up of the different steps in the parallelization of the text-indexing algo-

rithm is as shown in the Figure 3.5. There are three main sections of the code, the parser

(composed of stop-word algorithm and stem-word algorithm), TF-IDF algorithm, and the

similarity computation algorithm (composed of a dot-product function and insertion of re-

sults into a red-black tree). There are two sections of the code that can be parallelized,

i.e., the stem-word algorithm in the parser and the dot-product calculation in the similarity

computation.

The word-stemming algorithm removes the commonly occuring prefixes and suf-

fixes from the word and returns the stem word. The stem word is the token used for

computing the term frequency. The stem-word algorithm, though very compute intensive,

is an ideal candidate for parallelization, as each word is independent of the other. The words

are read from a file, and a bag of tasks containing the words to be stemmed is created at the

PPU side. The tasks are divided among the SPUs, and the results containing the stemmed

words are added into hashmap with a key for each stemmed word and its frequency in

the document as the value. Next, a corpus occurence table is created from the table of

tokens. A corpus occurence table contains the number of documents in which the word

occurs at least once. This task, though somewhat intensive, can be done with ease on the

PPU as the hash map is used as a data structure for storing the terms and ensures search

in almost linear time. Inverse document frequency is computed for each term in the corpus

occurence table by using equation (2). TF-IDF value is computed by taking the product of

the term frequency from the term frequency table and the inverse document frequency for

the term obtained using equation (2). The TF-IDF value for each token in a file is stored

in a hashmap called TF-IDF vector.

A similarity computation algorithm takes the TF-IDF vectors for two documents

and computes an index with values in the range [0,1]. The index gives the extent of sim-

ilarity between the two documents (i.e., 0 showing no similarity and 1 showing equality).

The similarity index is useful in clustering similar documents. The core component of the

similarity computation algorithm is the dot-product function that looks for common tokens

in the two files and takes a product of their TF-IDF values. The similarity computation

algorithm is not only compute intensive, but also not a great candidate for parallelization,

as it involves the operations of searching inside a hash map, which cannot be broken down

58

Figure 3.5: TF-IDF algorithm

59

to smaller chunks (a hash map has no particular ordering of keys). An array can be used

to represent the TF-IDF vectors, but that will increase the search time to O(n2). The

implementation of the similarity computation uses hash map for TF-IDF vectors, based on

the assumption that hash function is good so that it results in linear search performance.

3.5.3 Memory Handling

Double buffering is one of the useful techniques for performance optimization in

parallel computing. However, in order to double buffer the information, a large amount

of memory is needed. SPU can only use the memory from the Local Store (which is 256

KB). In order to effectively use the memory, one needs to know the amount of memory

available in the data segment, which can be obtained by subtracting the end address of data

segment from the end address of the text segment. Once we know this value, we have to

economically use the memory. The usage of malloc is discouraged in the SPU, as it involves

interaction with the PPU runtime library. Hence, memory has to be managed by the means

of declaring a huge array and writing memory management routines to allocate/deallocate

from the array. The two approaches for handling memory are shown in the Figure 3.6. The

basic approach suffers from buffer overflows during double buffering. In order to solve this

problem, a better approach is used. The first buffer is allocated from the front of the array

and the second buffer is allocated from the back of the array.

3.5.4 Performance Gain.

The performance of TF-IDF can be studied for two modules, the parser (word-

stem algorithm) and similarity computation. The parser using six SPUs gives a superlinear

speedup for TF-IDF in comparison to the PPU. The parser has a speedup of 3.5x compared

to x86 (Pentium 4, 3Ghz). The main reasons for the performance gain in Parser are:

• String comparisons are inherently vectorizable in Cell processor. As the cell processor

has a large number of registers, multiple string operations can be done in parallel.

• The parser algorithm takes a string as an input, identifies if it has a prefix or a suffix

and removes it if there is one. This operation does not involve dependency with other

data and, hence, there are very few stalling cycles.

60

(a) Basic Memory Handling

Allocation Start
Pointer

Allocation End
Pointer

Free pointer

Allocation End
Pointer Free pointerAllocation Start

Pointer

Allocation End
Pointer

Allocation Start
Pointer Free pointer

Process Buffer 0

Load Buffer 0

Load Buffer 1

Allocation End
PointerAllocation Start

Pointer
Free pointer

Load Buffer 0 Process Buffer 1

(b) New technique

Figure 3.6: Memory Handling Techniques

61

Parser Performance

0

2

4

6

8

10

12

14

T
im

e
(s

)

0

2

4

6

8

10

12

14

16

S
p

ee
d

-u
p

Time 0.897 3.092 12.12

Speed-up 1 3.44 13.51

6 SPU
x86(p4,
3.0GHz)

PPU

Similarity computation Performance

0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e(
s)

0

0.5

1

1.5

2

2.5

3

3.5

4

S
p

ee
d

-u
p

Time 0.982 0.814 3.72

Speed-up 1 0.82 3.788

6 SPU x86 PPU

Figure 3.7: TF-IDF Performance

The similarity computation does not give a good speedup on both PPU and x86, because

of the following reasons:

• Similarity computation involves branchy code: The tokens in one hash map are com-

pared against another hash map. If they are found to be same, a product of TF-IDFs

of the corresponding elements in the hash map is computed. The patterns of compar-

ison cannot be predicted early. The SPE is an in-order execution processor, hence,

any misprediction is more expensive than out-of-order execution processors.

3.6 Mersenne Twister

Mersenne Twister (MT) is a pseudorandom number generator algorithm developed

by Makoto Matsumoto and Takuji Nishimura [28]. It has many important properties:

• Long period: The latest version of Mersenne Twister (MT19937) has a period of

219937 − 1. A period is defined as the maximum length of a sequence before it begins

to repeat itself.

62

• Good distribution properties: 623 dimensional equidistribution, which is the best

among all known random number generators. For the definition of k-distribution, see

[27].

• Efficient use of memory: MT19937 uses only a space of 624 words.

• High performance: There are no complicated math operations involved; all operations

involve unary operators, which are extremely fast.

Mersenne Twister generates a sequence of word vectors, which are considered to be uniform

pseudorandom integers between 0 and 2w − 1. Dividing by 2w − 1, the algorithm generates

a word vector as a real number in [0, 1]. The algorithm is based on the following linear

recurrence:

xk+n := xk+m ⊕ (xupper
k |xlower

k+1) •A, (k = 0,1, ...)

where,

n: the number of random numbers generated in an iteration,

m: a constant with value 1 ≤ m ≤ n,

w: the size of word in bits,

r: the degree of recurrence 0 ≤ r ≤ w − 1. (The definition of r is hidden in

x
upper
k),

xk, k = 0,1.... : a sequence of bit vectors with fixed width w (which is 32 in our

k implementation),

x
upper
k |xlower

k+1 : a combination of r significant bits of xk and w − r least significant

bits of xk+1, and

A: a w × w matrix is of the form





















0 1 0 0

0 0 1 0

0 0 ... 1

aw−1 aw−2 a0





















such that the calculation x • A can be done using only bit operations:

63

x • A=







shift − right(x) if x0 = 0

shift − right(x) ⊕ a if x0 = 1







In order to improve the distribution properties, each generated word is multiplied

by a special w × w invertible transformation matrix: x → z : x •T. A tempering special

matrix T is chosen so that the x • T multiplication, similarly to x • A can be efficiently

implemented with bitwise operations:

z = x

z ⊕ = (z ≫ u)

z ⊕ = (z ≪ s) & b

z ⊕ = (z ≪ t) & c

z ⊕ = (z ≫ l)

where u, s, t, l are integer numbers and b and c are suitable bit masks of word

size w.

This is the summary of the Mersenne Twister algorithm. Two implementations of

the Mersenne twister were considered. In the next two subsections, we describe those two

approaches.

3.6.1 Parallelizing the Original Algorithm

The section of code that generates vectors in Mersenne Twister code for MT19937

can be represented in terms of C-psuedo code as in Figure 3.8

This can be further represented as three separate sections for sake of paralleization

as shown in Figure 3.9, with each section parallelized separately.

It can be seen above that the first loop operates independently, the second loop

depends on values from the first loop, and third loop depends on values from the second

loop. Based on this observation, we can assign sections of loop one, two and three to

separate processors in order to parallelize this program. This is shown in Figure 3.10.

64

#define N 624

#define M 397

for(K = 0; K < N-M; K++){
state[K] = f(state[K], state[K+1], state[K+M])

}

for (;K < N-1; K++){
state[K] = f(state[K], state[K+1], state[K+M-N])

}

state[N-1] = state[N-1], state[0], state[M-1]

Figure 3.8: Mersenne Twister code (original)

#define N 624

#define M 397

for(K = 0; K < N-M; K++){
state[K] = f(state[K], state[K+1], state[K+M])

}

for (;K < N-M; K++){
state[K] = f(state[K], state[K+1], state[K+M-N])

}

for (;K < 2M-N; K++){
state[K] = f(state[K], state[K+1], state[K+M-N])

}

state[N-1] = state[N-1], state[0], state[M-1]

Figure 3.9: Mersenne Twister (divided into three loops)

65

Loop1 (N-M) Loop2 (N-M) Loop3 (2M-N)

SPU0 36{

0
...

35

227
...

262

454
...

489

SPU1 36{

36
...

71

263
...

298

490
...

525

SPU2 36{

72
...

107

299
...

334

526
...

561

SPU3 36{

108
...

143

335
...

370

562
...

597

SPU4 36{

144
...

179

371
...

406

24{

598
...

623

SPU5 47{

180
...

226

407
...

453

Figure 3.10: Mersenne Twister parallelization

66

Performance: The advantage of the above approach is very low usage of memory. If we

use six SPUs, then each SPU needs to use almost 108 words in order to generate 624 vectors.

Figure 3.11 shows the performance of mersenne twister algorithm. The disadvantage of the

above approach is low computation vs. communication ratio. Hence, the speedup obtained

by this process compared to PPU is not very attractive (approximately a factor of two).

The algorithm performs considerably slower than x86. This can be attributed to superscalar

architecture of Pentium 4, which allows it to exploit instruction-level parallelism, and it does

not suffer from DMA transfer overhead as in the SPU.

3.6.2 Parallelizing Using Dynamic Creation Library

In order to use Mersenne twister in massively parallel machines, the above ap-

proach is not such a good one since the cost of computation vs. communication becomes

very high. In order to apply Mersenne twister to massively parallel machines, the best

approach would be to run separate Mersenne twister kernels on each of the processors. The

problem with this approach is that we may get similar results even if we use random seeds

to generate the numbers on different kernels. In order to deal with this problem, a spe-

cial offline library called dynamic creation for Mersenne twister (dcmt) was introduced by

Makoto Matsumoto and Takuji Nishimura [29]. Using this library, it is possible to generate

different constants, i.e., A,u, s, t, l, b and c, for different Mersenne twisters.

The dynamic creation is a one-time activity that can be done offline. The constants

generated for different Mersenne twisters can be stored in memory. During the generation

of random numbers, each Mersenne twister can be initialized with a different state using

those constants.

In our approach we use the bag-of-tasks paradigm to solve the Mersenne twister

problem. Each task contains information to generate a fixed number of random numbers.

Suppose we need to generate 16 million numbers. We can then have a bag containing 4096

tasks, each generating 3908 random numbers. The 4096 tasks can be distributed among 6

SPU threads.

Performance Gain: The speedup obtained by the dynamic creation version of Mersenne

twister is as shown in the Figure 3.11. The advantage of this approach is high computation

to communication ratio, because of which the speedup is high. The speedup is better

67

Mersenne Twister (Original)

0

0.5

1

1.5

2

2.5

3

3.5
T

im
e(

s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S
p

ee
d

-u
p

Time (s) 1.88 0.4 3.18

Speed-up 1 0.212 1.69

6 SPU x86 (p4, 3Ghz) PPU

Mersenne Twister Performance (DCMT)

0

1

2

3

4

5

6

T
im

e(
s)

0

2

4

6

8

10

12

S
p

ee
d

-u
p

Time(s) 0.516 1.19 5.35

Speed-up 1 2.3 10.36

6 SPU
x86 (p4,
3Ghz)

PPU

Figure 3.11: Mersenne Twister Performance

than theoritical value (i.e., six, or number of SPUs). The main reasons for the speedup of

Mersenne twister are:

• No branch instructions: Both the pipelines in the SPU can used to the maximum

potential

• Good computation to communication ratio: Even though EIB has a bandwith of

25.6 Gbps, data movement from main memory to SPE takes several hundred clock

cycles. In Mersenne twister code, each task in a SPU computes 3908 random num-

bers.Therefore, the number of times data has to be fetched is considerably lower.

The disadvantage of this approach is that the PPU may not have enough memory to generate

a large number of tasks, as each task requires memory for the specific constants, and needs

memory for the outputs. This is not a problem with the previous approach, as each SPU

was operating on a shared section of memory. We may need to reduce the number of random

number generations performed at one time to fit all tasks in memory, otherwise we would

exceed the LS capacity requiring additional space in virtual memory, which would cause

performance deterioration, since only the LS is directly accessible from the SPUs

68

3.7 Smith Waterman

Searching for similarities in protein and DNA databases has become a routine pro-

cedure in molecular biology. The Smith-Waterman algorithm has been available for more

than 25 years. It is based on a dynamic programming approach that explores all the possi-

ble alignments between two sequences. As a result it returns the optimal local alignment.

Unfortunately, the computational cost is very high requiring a number of operations propor-

tional to the product of the length of two sequences. Furthermore, the exponential growth of

protein and DNA databases makes the Smith-Waterman algorithm unrealistic for searching

similarities in large sets of sequences on a scalar processor. This trend results in demands

for longer run time and/or more expensive hardware to manage the problem. Special-

purpose hardware implementations, as for instance super-computers or field-programmable

gate arrays (FPGAs), are certainly interesting options, but they tend to be very expensive

and not suitable for many users. For these reasons, heuristic approaches, such as those

implemented in FASTA[30] and BLAST[31], tend to be preferred, allowing faster execution

times at the cost of reduced sensitivity. The main motivation of the work in this section is

to exploit the power of the Cell processor, which is an inexpensive but powerful alternative

to a supercomputer to effeciently obtain an accurate local alignment score.

3.7.1 The Algorithm

To compute an optimal local alignment score, the dynamic programming algorithm

by Smith and Waterman [32] as enhanced by Gotoh [33] was used. A substitution matrix

describes the rate at which one character in a sequence changes to other character states

over time. The Smith Waterman algorithm is similar to a string local sequence alignment,

except that values in the score matrix are determined by the substitution matrix, and for

every gap in matching sequences, additional penalties are imposed. Given a query sequence

A of length m, a database sequence B of length n, a substitution score matrix W , a gap

open penalty q and a gap extension penalty r, the optimal local alignment score t can be

computed by the following recursion relations[34]:

ei,j = max { ei,j−1, hi−1,j − q } − r

fi,j = max { fi−1,j, hi,j−1 − q } − r

hi,j = max { hi−1,j−1 + Z[A[i], B[j]] , ei,j, fi,j, 0}

69

t = max { hi,j }

Here, ei,j and fi,j represent the maximum local alignment score involving the first

i symbols of A and first j symbols of B, ending with a gap in sequence B or A, respectively.

The overall maximum local alignment score involving the first i symbols of A and first

j symbols of B is represented by hi,j . The recursions should be calculated with i going

from 1 to m and j going from 1 to n, staring with ei,j = fi,j = hi,j = 0 for all i = 0 or j = 0.

The order of computation of the values in the alignment matrix is strict because the value

of any cell cannot be computed before the value of all cells to the left and above it has

been computed. A straightforward implementation of the algorithm has a running time

proportional to m ∗ n.

3.7.2 Approach

The approach followed for the Smith-Waterman algorithm is by using the bag-of-

tasks paradigm. Suppose we need to compare a sequence A with a database of sequences,

the task is composed of a pair of sequences A and another sequence B from the database.

The bag of tasks contains these tasks. which are fed to the six SPUs. The results are

obtained back via a mailbox, and the score matrix is obtained by getting the results from

all the tasks.

3.7.3 Performance Gain

The Smith Waterman algorithm shows an enormous performance improvement

on Cell processor as shown in Figure 3.12. When compared to the PPU, the SPU-centric

code gives speedups above 30x and in some cases above 75x. When compared to x86, the

speedups exceeded 12x for large sequences. The reasons for the speedup are:

• Smith Waterman is an inherently vectorizable algorithm. This means that even if

vector instrinsics were not used to code the algorithm, the compiler would try to

segregate independent instructions to be executed simulataneously for different values.

• On observing the instructions and cycles taken to compare two DNA sequences, it

was seen that PPU takes 244 instructions and 3200 cycles whereas SPU takes 152

instructions and 121 cycles. This explains a speedup factor of 3200/121=26 for any

70

Smith Waterman performance

0

10

20

30

40

50

60

70

80

Sequence Length

S
p

ee
d

-u
p

6 SPU vs. PPU 30 75 53

6 SPU vs. x86 5.18 9.91 12.78

65 510 762

Figure 3.12: Smith Waterman Performance

two DNA sequence comparisons. In addition, PPU may suffer from cache misses when

fetching longer sequences. The SPU does not suffer from cache misses as it uses local

store for its information. This explains why the speedup is better for sequences of

higher length.

71

Chapter 4

Experimental Validation

This chapter describes an application that was used to validate the data collection

and analysis procedure using itinerant agents. The application that was tested is as shown

in the Figure 4.1. It consists of three main participants: data collector, data sink and data

deduplicator. The data collector and data sink are part of the mobile agent framework,

whereas, the data deduplicator is part of service-oriented architecture. The description of

each of the participants is as follows:

• Data collector: The data collector agent is deployed from a meta-agent residing on a

PC. An itinerary is set up for the data collector based on the available hosts. The data

collector is created on the meta-agent, but it does not run there. Instead, it moves

to the first location in the itinerary and starts execution there. On completion of the

execution, it creates a clone of itself and moves to the next node in the itinerary. For

security reasons, the data collected on the data collector is not transmitted to other

nodes in the itinerary.

• Data sink: The data sink agent collects the data from all the nodes by sending a file-

retrieval message and receives a response containing the files. The data sink node also

interfaces with the SOA nodes via XML-RPC. This is done by creating a XML-RPC

message containing the files to be analyzed and sending the message to a SOA node.

• Data deduplicator: The data deduplicator nodes runs an XML-RPC server that col-

lects the files sent by the data sink node and runs the TF-IDF algorithm on the files to

72

detect similar documents. Almost similar documents can be eliminated from further

processing.

The devices that were used for testing and their configurations are as in Table 4.1.

The assumption made in this setup are

• mobile nodes are connected in wireless ad-hoc mode;

• nodes are not behind a NAT;

• nodes have a file system.

Nodes can disconnect temporarily and rejoin the network. When a node cannot be con-

nected, it is skipped and next node in the itinerary is tried. The creator of the agent handles

exception cases on a periodic basis. In this case, it sends a request to all the nodes for infor-

mation. When it does not get a response, it assumes that the node did not receive an agent,

and it sends an agent. If it is not able to send an agent to the node, then after a threshold

number of retries, it gives up. The disconnected node may later rejoin the network and

attempt to contact the originator for receiving an agent.

4.0.4 Experimental Results

The aim of the experiment is to measure

• the overhead of code mobility,

• the overhead of dynamic class loader,

• the overhead of using a GUI, and

• performance during load (i.e., performance slow down on running multiple agents)

This experiment setup involved two nodes, the desktop and a HP Ipaq. An agent was

created at the desktop and sent to the mobile device. The time between sending the agent

and receiving an acknowledgment from the mobile device was measured. The same agent

was sent 10 and 100 times to the same mobile device, and the code mobility time was

calculated. The measured time as shown in Figure 4.2 has three components, i.e., time to

73

Table 4.1: Test devices

Device Configuration Role

1. HP Ipaq Rx4240 Processor: Samsung SC32442
400 MHz , 64MB SDRAM
Java Version: J2ME CDC 1.0
Connectivity: 802.11b/g

Data collector

2. Windows Mobile
6
Simulator

Processor: Intel Core Duo
T2060 (2 MB Cache/
1.6 GHz/533 MHz FSB), 1 GB
SDRAM
Java Version:J2ME CDC 1.0
Connectivity: 802.11g/LAN

Data collector

3. Dell Inspiron 6400 Processor: Intel Core Duo
T2060 (2 MB Cache/
1.6 GHz/533 MHz FSB),
1 GB SDRAM
Java Version: J2SE 1.5
Connectivity: 802.11g/LAN
XML-RPC Client: Apache ws-
xmlrpc

Meta-agent/Data-
sink/Locator dae-
mon

4. Playstation 3 Processor: Cell Broadband
Engine, 128 MB SDRAM
Connectivity: 802.11g/LAN
XML-RPC Server: XML-
RPC C

Data deduplicator

74

send an agent from desktop to mobile phone, loading the class into an agent host at the

mobile device, and sending a response to the desktop.

It can be seen, dynamic class loading has a considerable overhead when the agent

is sent for the first time. The next time the agent is sent, it is not dynamically loaded, but

fetched from the library. If class file is assumed to be present, then it is only needed to send

the updated state of the class, from which the class data can be populated. Under load,

there is a small overhead (less than 1%) to load the agent into the Agent Host. Surprisingly,

using a GUI to display the agent status does not significantly affect the time to load the

agent. This is because the agent has no interaction with the GUI, but the GUI gets the

data from the agent using get() functions.

75

Windows Mobile 6
simulator

Data collector

XML-RPC request

XML-RPC response

1

2 3

4

5

6

Code

Code Code

File request & response

File request & response

7

Meta-agent
& Data sink
& Locator
daemon

HP-Ipaq
Data collector

Figure 4.1: Experimental Setup

76

Code mobility times

0

200

400

600

800

1000

1200

1400

1600

1 Agent 10 Agents 100 Agents

A
ve

ra
g

e
T

im
e With Dynamic Class

Loading

Without Dynamic class
Loading

With GUI

Figure 4.2: Code Mobility overhead

77

Chapter 5

Related Work

Mobile agents have been studied for many years, and have been applied in many

areas, such as distributed data mining [11, 51], network management [52], and intelligent

networks [45]. During the past few years, a number of mobile agent systems have been

developed, such as Aglets by IBM [46], Voyager by ObjectSpace [48], Grasshopper by IKV

[49], and Concordia by Mitsubishi [50]. D’Agents [11] and Agent-TCL [53] are some of

the mobile agent systems developed for university-based research. A survey of mobile

agents, conducted by Pham and Karmouch [54] classifies mobile agents based of various

characteristics.

In section 1.4.1, apart from discussing the various approaches for remote data

collection and analysis, this thesis proposed a new approach for it. Among the other mo-

bile agents developed in J2ME, except for JADE-LEAP [14], no system has been widely

deployed. Though some of the projects use JADE-LEAP as their mobile agent platform,

no large-scale application uses JADE-LEAP. ORMAC developed by Oak Ridge National

Laboratory, from which this implementation borrows major features, has found large-scale

deployments that are reliable, such as [18, 19, 20]. Section 1.5 addresses some of security

concerns regarding the usage of mobile agents. Table 1.3 is a summary of various allegations

against mobile agents from [9] and how this thesis takes a stand on them. A survey con-

ducted by [21] discusses the various solutions that attempt to provide security to a mobile

agent system.

Among the programming languages available for code development on mobile de-

78

vices, C, .NET and J2ME are most commonly used. Section 2.2 attempts to justify the usage

of J2ME as a programming language. In section 2.3, this thesis discusses the challenges in

developing mobile agents on mobile phones i.e., serialization framework, pre-compilation for

different devices, pre-verification and dynamic class loading, and then discusses the various

proposed solutions for those problems.

XML-based messaging as a platform-neutral technique for communication among

agents has been considered in papers such as [55]. In this thesis, we do not use XML

messages for communication among agents, as it results in a lot of overhead in message

parsing. Li Chunlin and Li Layuan[47] propose to integrate service-oriented architectures

and mobile agents using XML messages. Although this work bears some similarity with their

approach, it offers a simpler solution by using XML-RPC as a messaging technology (that

does away with XML schemas, which are harder to design). Moreover, application designed

using XML-RPC can be extended easily to SOAP, which is a W3 standard for XML-

based messaging. Section 2.4.1 discusses the merits and demerits of different messaging

technologies, and it attempts to justify the choice of using XML-RPC.

Accelerator architectures are a relatively new paradigm in high performance com-

puting that were designed to overcome the limitations of conventional multi-core processors.

[56] has provided a survey of various accelerator architectures that are currently available.

[63] is a good guide for scientific computing on the PlayStation 3. Potential of the Cell pro-

cessor for scientific computing has been explored in many works including [57, 58, 59, 60,

61, 62]. However, there is no known implementation of the kernels that were implemented

in this thesis. Hence, this thesis attempts to broaden the base of available kernels on Cell

processor.

79

Chapter 6

Conclusion and Future Work

This thesis describes a novel approach of remote data collection and analysis using

mobile agents and a service-oriented architecture. This thesis hypothesis that the approach

of combining mobile agents with a service-oriented architecture is useful for remote data

collection and analysis, where the devices have low bandwidth, low computational power,

intermittent non-connectivity and dynamic service requirements. In this work, the thesis

hypothesis has been shown to be true.

This thesis has designed protocols for an itinerant agent framework that describes

the control and data flow in mobile agents. The framework addresses the issues of inter-

mittent connectivity and dynamic service deployment. As a part of the implementation,

a ubiquitous mobile agent platform that runs on heterogeneous devices was implemented.

An agent created on any device can migrate to other nodes and start executing there. This

thesis looks at the problems involved in developing a mobile agent platform on J2ME and

solves it in a novel manner. The itinerant agent protocol and the Ubimac mobile agent

platform have been tested on a various devices, namely the HP IPaq, the Windows Mobile

6 simulator, and laptops running J2SE. All of them have performed reasonably well, though

there is a room for improvement.

This thesis also looked at providing high-performance computing as a service for

the mobile agent platform. As we know, mobile nodes have limited CPU power, hence, they

cannot be used for compute-intensive tasks. By providing high-performance computing as

a service to mobile nodes, data can be easily analyzed by tunneling the computation to

80

high-performance devices via the service-oriented architecture. In order to interface the

mobile agent architecture and service-oriented architecture, a platform-neutral protocol,

XML-RPC was used. As applications designed using XML-RPC can be easily extended to

use SOAP, the thesis opens up the scope of using various web services for data analysis.

This porting effort is considered for future work.

Lastly, thesis accessed at the potential for using the Cell Broadband Engine on non-

regular scientific kernels and was able to achieve significant speedups compared to a scalar

processor, the Power Processing Element. Even though the algorithms implemented for the

Cell BE architecture performed well against PPU, they did not have a superlinear speedup

compared to x86. As a part of future work, the author intends to rewrite the algorithms

for vectorizing the SPU algorithms, with an aim of gaining superlinear performance under

x86.

81

Bibliography

[1] Yoav Shoham: Agent Oriented Programming , Stanford University, 1992

[2] Mike P. Papazoglou: Service -Oriented Computing: Concepts, Characteristics and

Directions, Web Information Systems Engineering (WISE), 2003

[3] Jeremy Pitt, Abe Mamdani: Communication Protocols in Multi-agent Systems: A

Development Method and Reference Architecture, Lecture Notes In Computer Science;

Vol. 1916, 2000

[4] Danny B. Lange, Mitsuru Oshima: Seven good reasons for mobile agents, Communi-

cations of the ACM, Volume 42 , Issue 3 (March 1999), Pages: 88 - 89

[5] D. Milojicic: Trend Wars - Mobile Agent Applications, IEEE Concurrency, July-Sep

1999

[6] Sebastian Stein, Terry R. Payne, Nicholas R. Jennings: An Effective Strategy for

the Flexible Provisioning of Service Workflows, Service-Oriented Computing: Agents,

Semantics, and Engineering (SOCASE), 2007

[7] N.R. Jennings: On agent-based software engineering, Artificial Intelligence, 2000

[8] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, Frank Leymann : Service-

Oriented Computing Research Roadmap, Dagstuhl Seminar Proceedings 05462, 2006

[9] Giovanni Vigna: Mobile agents: Ten Reasons For Failure, Mobile Data Management,

2004

[10] K. Rothermel, F. Hohl, N. Radouniklis: Mobile Agent Systems:What is Missing?,

Institute for Parallel and Distributed High-Performance Systems, 2000

82

[11] Robert Gray, Katsuhiro Moizumi, David Kotz, George Cybenko, Daniela Rus: Mobile

agents in Distributed Information Retrieval, Intelligent Information Agents, 1999

[12] David Chess, Benjamin Grosof, Colin Harrison, Devid Levine, Colin Parris: Itinerant

Agents for Mobile Computing, IBM Research report, 1995

[13] Fabio Bellifemine: Developing Multi-Agent Systems with JADE, Wiley, John & Sons

Inc., March 2007, ISBN-13: 9780470057476

[14] A. Moreno, Aida Valls and Alexandre Viejo: Using JADE-LEAP to implement agents

in mobile devices, Universitat Rovira i Virgili, 2001

[15] Dejan S. Milojicic, Fred Douglis, Yves Paindaveinem Richard Wheeler, Songnian Zhou:

Process migration, ACM Computing Surveys Volume 32(3): 241-299 (2000)

[16] I. Foster, C. Kesselman: The Grid: Blueprint for a New Computing Infrastructure,

Morgan Kaufmann, 1999

[17] E. Bruneton, R. Lenglet, T.Coupaye: ASM: a code manipulation tool to implement

adaptable systems, Adaptable and extensible component systems, 2002

[18] Kenneth W. Tobin, Bhudenra L. Bhaduri, Eddie A. Bright, Anil Cheriyadat, Thomas

P. Karnowski, Paul J. Palathingal, Thomas E. Potok, Jeffery R. Price: Large-Scale

Geospatial Indexing for Image-Based Retrieval and Analysis, Springer, 2005

[19] Thomas E. Potok, Mark Elmore, Joel Reed, and Frederick T. Sheldon:

VIPAR:Advanced Information Agents Discovering Knowledge in an Open and Chang-

ing Environment, Oak Ridge National Lab, 2000

[20] Paul Palathingal and Sandeep Chandra: Agent Approach for Service Discovery and

Utilization, International Conference on System Sciences, 2004

[21] Yu Jiao, Ali R. Hurson, Thomas E. Potok, Mobile Agent-Based Information Systems

and Security, Oak Ridge National Laboratory, 2006

[22] IBM DeveloperWorks: Cell Programming Handbook SDK 3.0, IBM, 2008

[23] IBM DeveloperWorks:Cell programming Tutorial SDK 3.0, IBM, 2008

83

[24] Carsten Benthin, Ingo Wald, Michael Scherbaum, and, Heiko Friedrich:Ray Tracing on

the Cell Processor, IEEE Symposium on Interactive Ray Tracing, 2006

[25] T. Chen, R. Raghavan, J.N. Dale, E Iwata: Cell Broadband Engine Architecture and its

first implementation—A performance view, IBM Journal of Research and Development,

2007

[26] Gerard Salton and Chris Buckley: Term Weighting Approaches in Automatic Text

Retrieval, Department of Computer Science, Cornell University, 1997

[27] D.E. Knuth : Seminumerical Algorithms (2nd Ed), Volume 2 of The Art of Computer

Programming, Addison Wesley

[28] M. Matsumoto and T. Nishimura : Mersenne Twister: A 623-dimensionally equidis-

tributed uniform pseudorandom number generator, ACM Trans. on Modeling and Com-

puter Simulation Vol. 8, No. 1, January pp.3-30 (1998)

[29] Makoto Matsumoto and Takuji Nishimura: Dynamic Creation of Pseudorandom Num-

ber Generators, Monte Carlo and Quasi-Monte Carlo Methods 1998, Springer, 2000

[30] William R. Pearson and David J. Lipman: Improved Tools for Biological Sequence

Comparison, Proceedings of the National Academy of Sciences of the United States of

America, Vol. 85, No. 8 (Apr. 15, 1988)

[31] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman : Basic local align-

ment search tool, Journal of Molecular Biology, 1990

[32] T.F. Smith and M.S Waterman : Identification of common Molecular sequences, Jour-

nal of Molecular Biology, 1981

[33] O. Gotoh : An improved algorithm for matching biological sequences, Journal of Molec-

ular Biology, 1982

[34] T. Rognes, E. Seeberg: Six-fold speedup of Smith-Waterman sequence database

searches using parallel processing on common microprocessors, BioInformatics, 2000

[35] I. Salmre :Writing Mobile Code: Essential Software Engineering for Building Mobile

Applications, 2005

84

[36] Jason Domer, Murthi Nanja, Suresh Srinivas and Bhaktha Keshavachar: Comparative

performance analysis of mobile runtimes on Intel XScale R© technology: Interpreters,

Virtual Machines And Emulators, 2004

[37] Andreas Janecek, Helmut Hlavacs: Programming Interactive Real-Time Games over

WLAN for Pocket PCs with J2ME and .NET CF, NetGames, 2005

[38] S. Helal.: Pervasive Java, Pervasive Computing, IEEE, Volume 1, Issue 1, Jan-Mar

2002

[39] The Java ME Device Table: Sun Microsystems,

http://developers.sun.com/mobility/device/device

[40] Laurentiu Lucian Petrea and Dan Grigoras: Dynamic Class Provisioning on Mobile

Devices, International Symposium on Parallel and Distributed Computing, 2006

[41] Laurentiu Lucian Petrea, Dan Grigoras: Towards Introducing Code Mobility on J2ME,

International Symposium on Parallel and Distributed Computing, 2005

[42] G.S. Kim, H. Cho, Y.I. Eom: Dynamic Cell Phone UI Generation for Mobile agents,

Springer, 2007

[43] Mike Olson and Uche Ogbuji: The Python Web services developer: Messaging technolo-

gies compared, http://www.ibm.com/developerworks/webservices/library/ws-pyth9,

2008

[44] Irmen de Jong and Michi Henning: Web Services/SOAP and CORBA,

www.omg.org/news/whitepapers/CORBA vs SOAP1.pdf , 2002

[45] Tony White, Bernard Pagurek, Andrej Bieszczad, George Sugar, Xuong Tran: Intelli-

gent Network Modeling Using Mobile Agents , IEEE Communication Surveys, 1998

[46] D.B. Lange, O Mitsuru: Programming and Deploying Java Mobile Agents Aglets,

Addison-Wesley Longman Publishing Co., 1998

[47] Li Chunlin, Li Layuan: An agent-oriented and service-oriented environment for de-

ploying dynamic distributed systems, Elsevier, 2002

[48] G. Glass: ObjectSpace Voyager Core package technical overview, Mobility: processes,

computers, and agents, Addison-Wesley Publishing Co., 1999

85

[49] M. Breugst, S. Choy, T. Magedanz: GrasshopperA universal agent platform based on

OMG MASIF and FIPA standards, Addison-Wesley Publishing Co., 2000

[50] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, B. Peet: Concordia: An

Infrastructure for Collaborating Mobile Agents, International Workshop on Mobile

Agents, 1997

[51] Jonathan Dale: A Mobile Agent Architecture for Distributed Information Management,

PhD Thesis, University of Southhampton, 1997

[52] Andrej Bieszczad, Bernard Pagurek, Tony White: Mobile Agents for Network Man-

agement , Carleton University, 1998

[53] Robert S. Gray: Agent-Tcl: A flexible and secure mobile-agent system, PhD thesis,

Dartmouth College, 1997

[54] V.A. Pham and A. Karmouch: Mobile Software Agents: An Overview, IEEE Commu-

nications Magazine, 1998

[55] Giacomo Cabri, Letizia Leonardi, Franco Zambonelli :XML Dataspaces for Mobile

Agent Coordination, ACM Symposium of Applied Computing, 2000

[56] Jim Bovay, Brent Henderson, Hsin-Ying Lin, Kevin Wadleigh, High Performance Com-

puting Division, Hewlett-Packard Company, 2007

[57] Samuel Williams,John Shalf,Leonid Oliker, Shoaib Kamil,Parry Husbands,Katherine

Yelick: The Potential of the Cell Processor for Scientific Computing, Computing Fron-

tiers, 2006

[58] David A.Bader, Virat Agarwal, Kamesh Madduri: On the Design and Analysis of

Irregular Algorithms on the Cell Processor:A Case Study of List Ranking, Parallel and

Distributed Processing Symposium, 2007

[59] Tarik Saidani, Stephane Piskorski, Lionel Lacassagne: Parallelization Schemes for

Memory Optimization on the Cell Processor: A Case Study of Image Processing Al-

gorithm, Workshop on memory performance: Dealing with Applications, systems and

architecture, 2007

86

[60] Vipin Sachdeva, Michael Kistler, Evan Speight, Tzy-Hwa Kathy Tzeng: Exploring the

Viability of the Cell Broadband Engine for Bioinformatics Applications, International

Workshop on Hihg Performance Computing, 2007

[61] Alex Chunghen Chow, Gordon C. Fossum, Daniel A. Brokenshire: A Programming

Example: Large FFT on the Cell Broadband Engine, IBM Developer Works, 2006

[62] Alfredo Buttari, Piotr Luszczek, Jakub Kurzak, Jack Dongarra, George Bosilca: A

Rough Guide to Scientific Computing On the PlayStation3, University of Tennessee

Knoxville, 2007

