
ABSTRACT

KANDULA, SANDEEP REDDY. Phadoop: Power Balancing Cloud-Based Workloads. (Under
the direction of Frank Mueller.)

Over the past years, we have seen an increased adoption of cloud computing across en-

terprises and this trend is predicted to continue. This has lead to a greater concentration of

hardware in massive, power-hungry datacenters that form the backbone of a successful cloud ser-

vice. It is essential for these datacenters to be energy efficient not only to cut down on electricity

and hardware maintenance costs but also to be in compliance with environmental regulations.

Although there have been tools to control the frequency of a processor to balance the power

consumption and performance of a system, there is a dearth of tools to achieve the same by

limiting the power consumption directly. The introduction of Intel’s Running Average Power

Limit (RAPL) has created a new avenue where software agents can work in conjugation with the

underlying hardware to dynamically enforce power bounds. Hadoop is a popular map-reduce

system that is used by cloud vendors to provide large scale data-intensive and compute-intensive

platforms. The Hadoop framework is built around an acyclic data flow model, which makes it

unsuitable for iterative applications.

In this work, we investigate whether it is beneficial to use RAPL interfaces to conserve the

energy consumption of a CPU in a cloud-based workload without significant loss of performance.

We have enhanced the Hadoop framework to support iterative scientific applications. We have

designed and implemented Phadoop, an enhanced version of Hadoop YARN framework that

utilizes RAPL’s power capping feature to mitigate computational imbalances in an application

and to reduce CPU power consumption. This state-of-the-art framework makes use of a process

pool to schedule map/reduce tasks and caches the input data to reduce I/O overhead. Our

experimental evaluations show that RAPL interfaces can be used to cap the power consumption

of a cloud-based workload. Using a set of synthetic benchmarks, we show that Phadoop conserves

energy and performs better that Hadoop for iterative applications. To the best of our knowledge,

such a power capping framework for cloud-based workloads is unprecedented.

© Copyright 2014 by Sandeep Reddy Kandula

All Rights Reserved

Phadoop: Power Balancing Cloud-Based Workloads

by
Sandeep Reddy Kandula

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2014

APPROVED BY:

William Enck Steffen Heber

Frank Mueller
Chair of Advisory Committee

DEDICATION

To my wonderful family and friends.

ii

BIOGRAPHY

Sandeep Reddy Kandula was born and raised in Hyderabad, also known as the pearl city of

India. He completed his schooling in Hyderabad. He did his undergraduation in Computer

Science at BITS-Pilani (Birla Institute of Technology and Science), Rajasthan from 2005-09.

Thereafter, he worked at Oracle India Pvt Ltd for three years. To specialize in the field of

Computer Science, he joined Masters program at North Carolina State University, Raleigh in

August, 2012. During the course of his Masters, he did his internship in Global Support Group

at NetApp, Inc. He has been part of the Dr.Frank Mueller’s research group since spring 2013

and focuses on job power awareness.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Frank Mueller for his professional guidance and invaluable

advice throughout my Masters. His constant flow of ideas and out of box thinking inspired me

to deal with many challenging and interesting problems in my research. I would also like to

thank Dr. William Enck and Dr. Steffen Heber for agreeing to serve on my thesis committee.

Whatever I am today is only because of my loving parents, caring brother, supportive cousin

and my lovely fiancee. None of this would have been possible with out their constant support and

encouragement. I would like to thank all my friends who supported me at all times. Especially,

my flatmates Mahesh and Kasyap, the ever energetic Bharat Babu Eruvuru, the wanderer

Krishna, the sincere Harsha, the newly-wed nano-physicist Sarath, the pharmacist Shailendra,

the construction specialist Vidya Sagar, the realtor Pavani and the trader Naveen, who were

constantly on my side to give me the energy to pursue this not so long but arduous journey.

Last but not least, I would like to thank all my labmates who made my research experience a

fun filled journey.

iv

TABLE OF CONTENTS

LIST OF FIGURES . vi

Chapter 1 Introduction . 1
1.1 Contributions . 2
1.2 Organization . 3
1.3 Hypothesis . 4

Chapter 2 Background . 5
2.1 RAPL . 5
2.2 Map-Reduce programming model . 6
2.3 Hadoop YARN . 6

Chapter 3 Power Capping and Data Reuse Design 10

Chapter 4 Implementation . 13

Chapter 5 Applications . 15
5.1 Sparse matrix multiplication . 15
5.2 Blocked matrix multiplication . 17
5.3 K-means clustering . 17

Chapter 6 Results . 19
6.1 Sparse matrix multiplication (SpMM) . 20
6.2 K-means clustering . 22
6.3 Blocked matrix multiplication (BMM) . 24

Chapter 7 Related work . 28

Chapter 8 Conclusion and Future Work . 30

References . 31

v

LIST OF FIGURES

Figure 1.1 Approximate distribution of peak power usage by hardware subsystem in one
of Google’s datacenters. (reprinted from [10]) 3

Figure 2.1 Map-reduce programming model. 7
Figure 2.2 Classic Hadoop map-reduce framework. 7
Figure 2.3 Hadoop YARN (map-reduce V2) architecture. 9

Figure 3.1 A comparison between map/reduce task execution states in traditional Hadoop
and Phadoop. 12

Figure 4.1 An illustration of the RAPL run-time system in Phadoop with its entities
and their interaction. 14

Figure 5.1 A depiction of the operations performed by each process during i-th iteration
of the blocked matrix multiplication (A*B) 16

Figure 6.1 Sparse matrix multiplication . 23
Figure 6.2 K-means clustering . 25
Figure 6.3 Blocked matrix multiplication . 27

vi

Chapter 1

Introduction

Cloud computing [17] has gained wider traction over the past decade as it saves money and

time for customers and also offers flexibility, fault tolerance and security. Salesforce, Amazon,

Microsoft, Google and Rackspace are some of the big vendors in today’s cloud market that offer

software, a platform and infrastructure as a service [31]. Making use of such services removes

the burden of maintaining private systems from the users. It proves to be an economical option

as the service is shared by multiple users. Also, updates to the hardware are handled by the

vendor distributing the overall cost among all the users of the service instead of a single user

in case of an in-house system. It is also time-efficient as the vendors can easily adjust the scale

of a service on-the-fly in accordance with the requirements of the customer. In order to enable

the vendors to provide such services, all the hardware needs to be concentrated at centralized

locations called datacenters.

Datacenters are the backbone of a cloud service and efficient datacenter management is the

key to provide economical and time-efficient services to users. Although centralized hardware

locations enable speedy updates and recovery, they pose the challenge of power supply and

cooling requirements to the operators. Power supplied to a datacenter is used not only for the

direct operation of compute machines, but a considerable chunk of it is also for running the

cooling systems that keeps the thermal conditions at an acceptable operational level. Address-

ing thermal constraints is important because high temperatures are well known to introduce

silent data corruption, which can cause faults in program execution or produce incorrect output

without the user’s knowledge. Also, operation at higher temperatures shortens the life of hard-

ware components leading to frequent replacements or early retirement, which in turn upsurges

the maintenance budget.

Studies by various IT analysts indicate that the power consumption of datacenters across

the globe has been rising and this trend is likely to continue due to an increase in demand for

compute resources. DatacenterDynamics [9] says that during 2013, datacenters in Middle East

1

and Africa, Latin America and North America have witnessed a growth of 17.5%, 15.1% and

6.8%, respectively, in the amount of power consumed. European and other Asian datacenter

economies are said to have experienced similar growth patterns. This growth propounds the

challenge of concentrating more hardware without having to build a new datacenter, a multi-

million dollar expenditure. In addition, there has been a steady increase in electricity costs over

the years. This increment together with the elevated demand for compute resources has made

the electricity bill a significant expense for a datacenter. Due to the above reasons along with

heightened environmental scrutiny and regulatory pressure from the local governments, energy

efficiency has become one of the key challenges in the successful operation of a datacenter.

Cloud service vendors are continuously on the lookout for reducing the energy consumption

of compute resources and for low-power equipment for their datacenters. Energy costs can be

reduced by installing energy efficient hardware, equipment with customizable power interfaces

or those which can work in conjunction with power management tools. In order to cater to

such demand, hardware vendors are investing in developing energy efficient components and

mechanisms, and software vendors are backing power efficient coding practices. One such effort

is the Running Average Power Limit (RAPL) developed by Intel [28]. RAPL is a hardware

implemented mechanism for measuring and capping the power consumed by CPU and DRAM

starting with the Intel Sandy-bridge processor family. As CPU and DRAM typically utilize a

significant portion of the power consumed by a compute node, these components are responsible

for a significant portion of the power consumption in a data center that typically scales to

thousands of such compute nodes. As shown in Figure 1.1, power consumption of CPUs and

DRAMs accounts for 33% and 30%, respectively, of the peak power usage by one of Google’s

datacenters. A decrement in the energy utilization of these components shall improve the overall

energy efficiency of the datacenter.

Our work analyzes the benefits of using RAPL interfaces for reducing the CPU power

consumption while executing a heterogeneous cloud-based workload within permissible time

limits. We have considered hadoop YARN [42] for our study as it is a widely used, state-of-the-

art framework for executing map-reduce jobs on large clusters.Its widespread adoption over the

past years is due to the simplicity of the map-reduce programming model that enables users to

implement distributed applications easily.

1.1 Contributions

We have modified the YARN framework to reduce the I/O overhead and the energy consump-

tion associated with running an application without affecting its functionality. From here on,

the modified Hadoop YARN framework will be referred to as Phadoop. The Phadoop frame-

work utilizes a process pool for executing the map and reduce tasks. This framework supports

2

caching of input data fetched from files during an initial task and reusing it all along subse-

quent tasks. This modification mainly benefits iterative map-reduce jobs, which typically spawn

new map/reduce tasks and redundantly read the same input data from the underlying filesys-

tem in subsequent iteration. The Phadoop framework also consists of a runtime system called

the RAPL service that is capable of capping the power consumption of nodes running map-

reduce tasks dynamically. This service determines the power limit for a node based on the data

gathered from map-reduce tasks. It utilizes the RAPL interfaces for setting the power caps

dynamically. In experiments, we observe up to 34% reduction in the energy consumption of

blocked matrix multiplication, sparse matrix multiplication and k-means clustering workloads

on Phadoop compared to the original Hadoop. And we observe a performance improvement

in the map-reduce tasks in Phadoop compared to Hadoop by more than 50% for the same

workloads.

1.2 Organization

The rest of the thesis is structured as follows: Chapter 2 provides an overview of the RAPL

interfaces, the map-reduce programming model and the Hadoop YARN architecture. Chapter 3

and Chapter 4 present the design and implementation details of the Phadoop framework, re-

spectively. Chapter 5 describes the applications used as workloads and Chapter 6 provides a

detailed evaluation of our framework. We review the related work in Chapter 7 and conclude

with Chapter 8.

Figure 1.1: Approximate distribution of peak power usage by hardware subsystem in one of
Google’s datacenters. (reprinted from [10])

3

1.3 Hypothesis

Caching of inputs in with orchestrated scheduling of tasks generalizes the map-reduce paradigm

and optimizes performance for iterative problems.

Power capping mitigates imbalances in a computationally skewed cloud-based workload and

reduces its power consumption without affecting its execution functionality

4

Chapter 2

Background

2.1 RAPL

Running Average Power Limit (RAPL) [28] is a novel interface provided by Intel, starting with

Sandy Bridge based Xeon processors, for measuring and capping the power consumption of CPU

and DRAM. We have used Intel’s RAPL for capping the power consumption of a processor

depending on the nature of a workload. RAPL is a hardware-implemented mechanism, and

it supports client and server platforms, of which the later is the one we have used for our

experiments. The reason for this decision is that most of the machines used in a datacenter

belong to the server segment. RAPL groups the components of a system into domains to

provide a common interface to manage their power consumption. For the client and the server

platforms, RAPL supports a total of four domains, i.e., Package (PKG), Power Plane 0 (PP0),

Power Plane 1 (PP1) and DRAM. The PKG domain includes all the components of a processor

die. PP1 and PP0 domains consist of processor cores and uncore components, respectively.

Lastly, as the domain name suggests, the DRAM domain consists of directly attached memory.

The client platform supports PKG, PP0 and PP1 domains whereas the server platform supports

PKG, PP0 and DRAM domains. To make use of these interfaces, msr and cpuid kernel modules

are required to be enabled. These kernel modules allow a user with appropriate permissions to

read and write the model specific registers (MSRs) corresponding to different power domains.

A series of non-architectural MSRs constitute the RAPL interfaces. MSR RAPL POWER -

UNIT is a 64-bit register that provides information about the power, energy and time measure-

ment units across all RAPL domains. We have used the default unit increments of 0.125 Watts

for power, 15.3 micro-Joules for energy and 976 micro seconds for time. The POWER LIMIT

register per domain allows a user to specify a time window and an average power cap. The

hardware ensures that the power bound is met by adjusting P-states [30] of a processor and

other undocumented mechanisms. A P-state is a voltage-frequency setting of a processor that

5

determines its power consumption and speed. ENERGY STATUS, a read-only register, reports

the energy usage of a domain. This register is updated approximately every millisecond. The

wrap around time for this register can be around 60 seconds or higher depending on the power

consumption. POWER INFO is another read-only register per domain that provides informa-

tion about the range of power values and thermal specifications pertaining to a domain. It also

reports the maximum possible time window that the RAPL interface can be programmed for.

RAPL also provides platform specific PERF STATUS registers that report the amount of time

a domain has spent below the OS-requested P-state.

2.2 Map-Reduce programming model

Map-reduce [20] is a high level programming model that requires a user to define a few functions

towards implementing a parallel application. The application is automatically parallelized and

executed on a large cluster by a map-reduce framework such as Hadoop [2]. In this programming

paradigm, a programmer needs to define a map function and a reduce function, which are

invoked during a map-reduce job execution. As indicated by Figure 2.1, a map-reduce job

consists of a map phase and a reduce phase. During the map phase, all of the mappers run in

parallel to process a corresponding chunk of input files. Each mapper produces intermediate key,

value pairs ¡k2i, v2i¿ by applying the user-defined map function on each of the input key, value

pairs ¡k1i, v1i¿. This intermediate data is partitioned into chunks that are assigned to a reduce

task based on a user-defined partitioning function. During the reduce phase, all reducers run in

parallel and apply the user defined reduce function on the corresponding chunk of intermediate

data, a key and its corresponding list of values to produce the final key value pairs ¡k3, v3¿ as

output.

Map-reduce follows the shared-nothing architecture paradigm, where parallel running tasks

are independent of each other. Hence, it is more suited for simple and embarrassingly parallel

algorithms. Though map-reduce can only be applied to a specific set of problems, this program-

ming model has come to prominence in the field of distributed computing due to its ease of use,

scalability and fault tolerance. Programmers without any prior experience with distributed sys-

tems can easily utilize large clusters through a map-reduce system. They do not have to worry

about the data distribution, task parallelization, communication among the parallel tasks, load

balancing or the reliability of the underlying system.

2.3 Hadoop YARN

Hadoop [2] is a map-reduce system capable of running applications on large clusters built from

commodity hardware. Yahoo started to work on Hadoop, a sub-project of the widely used text

6

<k11,v11>

<k12,v12>

<k1n,v1n>

<k21,v21>

<k22,v22>

<k2n,v2n>

<k3,v3>

map

map

map
re
du
ce

reduce

Figure 2.1: Map-reduce programming model.

search library called Apache Lucene, in 2006. In 2008, Apache made Hadoop its top-level project,

which confirmed the framework’s success. This framework provides fault tolerance and data

motion across the cluster. As depicted in Figure 2.2, the Hadoop map-reduce framework consists

of four independent entities: a client to submit map-reduce jobs, a job tracker to manage cluster

resources and monitor job execution, a task tracker to manage the tasks that constitute a job and

the Hadoop Distributed File System (HDFS), which manages data distributed across a network

of machines. As this framework has a single entity to handle both resource management and job

monitoring, it faces scalability bottlenecks on large clusters. Hadoop YARN [42] (Yet Another

Resource negotiator) is an answer to the classic Hadoop map-reduce’s scalability problems.

client node

job tracker node

HDFS

Child task JVMs

2.Submit job

5.heart beat

7.launch

1.copy job

resources

6. retrieve job

resources

4.retrieve

input splits

tasktracker node

3. Initialize job

Figure 2.2: Classic Hadoop map-reduce framework.

7

The YARN framework mainly consists of three daemons: a resource manager to manage

the overall cluster resources, an application master to oversee the lifecycle of an application

running on the cluster and a node manager to manage the task lifecycle within a node. YARN

addresses the scalability issues of its predecessor by splitting up the responsibilities of the job

tracker among two entities, i.e., the resource manager and the per job application master.

Figure 2.3 depicts the architecture of the Apache YARN framework. An application master

(AM) is spawn for every job submitted by the client to the framework for execution. The AM is

responsible for negotiating resource allocation with the resource manager for job execution. Once

the AM allocates the resources, it forwards container launch requests to the corresponding node

manager, which is responsible for launching the containers locally for each of the map/reduce

tasks. These map-reduce tasks report their status back to the application master to allow it to

keep track of overall job progress.

In the Hadoop map-reduce framework, the map/reduce tasks are launched as separate JVMs

primarily for isolating bugs due to user-defined map and reduce functions from the regular

execution of the framework. As they are separate processes, output from the map tasks is

communicated to the reduce tasks through the underlying Hadoop Distributed File System

(HDFS). The map tasks write their output chunks to the HDFS after reading the corresponding

input splits. Before the output is written to the file system, it is written to a circular buffer till

the contents of the buffer reaches a threshold. Once a threshold is reached, a separate thread

spills the data to the disk. Just before writing to the disk, the data is partitioned to determine

the reduce task that will handle it. Every time there is a spill, data is written to a new file on

the disk. At the end of the map task, when the last map output is written to disk, data from

all files created by the spills is merged into a single sorted output file.

Following this, each of the reduce tasks reads the corresponding partition of the map output

file. As a reduce task is not necessarily running on the same node where the output file is stored,

this data is either read in from file and deposited to the memory of the map-reduce task’s JVM

or the local disk where the task is running. Similar to the map task, a reduce task utilizes a

buffer for reading input. When this buffer reaches a threshold while reading the map output

file, spills are written to local disk. Again, multiple files are created due to these spills, which

need to be merged at the end of the copy phase. The (key, value) pairs are read from these

merged files and the user-defined reduce function is invoked on each of them. The output thus

generated is written to the file system by the same function.

8

client node

resource manager node

HDFS

taskJVMs

traditional node manager node

2.Submit application

3.Start container

4.launch

8.launch

7.Start

container

6. allocate

 resources

1.copy job

resources

9. retrieve job

resources

5.retrieve

input splits

Figure 2.3: Hadoop YARN (map-reduce V2) architecture.

9

Chapter 3

Power Capping and Data Reuse

Design

As described in the previous chapters, power capping can be effectively used to lower the power

consumption of a framework executing compute intensive workloads. The Apache YARN (Map-

reduce V2) framework is primarily designed for handling data intensive applications. We have

modified YARN such that the I/O time for compute intensive jobs executed by the framework

is reduced. Also, we have added a run-time system to the framework that minimizes the energy

consumption without affecting the overall job execution functionality.

As can be observed from the description of the Hadoop YARN framework, an iterative

workload involving redundant input reads from the file system suffers from I/O overhead. For

instance, if we consider the map-reduce implementation of a parallel sparse matrix multiplica-

tion, each task in an iteration performs a redundant operation of reading the same block of

input matrix B. This data has to go through the data path indicated above, which includes

multiple disk accesses, both local and across the cluster. In order to mitigate this overhead, we

have redesigned the Hadoop YARN framework to enable each of the map and reduce tasks to

preserve data in-memory after reading it for the first time and to reuse the same across job

invocations.

Phadoop uses a process pool to execute the user-supplied map/reduce functions, which

enables it to reuse the processes for scheduling map and reduce tasks for subsequent iterations of

the job. This avoids a process re-spawn in each iteration and provides a means to reuse the input

chunks, read and deposited in-memory during the initial iteration, for task execution in further

iterations. Figure 3.1 provides a comparison between the lifecycle of a map-reduce task in both

traditional Hadoop and Phadoop frameworks. The state transitions of Figure 3.1(a), which are

indicative of the lifecycle of a map/reduce task in the original Hadoop framework, illustrate

that a process to run a map/reduce task is re-spawned in every iteration. In contrast, the state

10

transitions of Figure 3.1(b), which represent the lifecycle of a map/reduce task in Phadoop,

show that a task is not re-spawn in every iteration, but is reused across the iterations after

being spawned initially. Phadoop provides interfaces to enable the applications to utilize this

enhancement and to reduce the overall I/O overhead by caching inputs. Currently, map/reduce

tasks in Phadoop are restricted to read data from the cache after initialization. We have not

yet generalized the approach to read data either from HDFS or the cache depending on the

availability of input data in memory.

Phadoop also consists of a run-time system called the RAPL [28] service, which caps the

power consumption of the nodes running map/reduce tasks. This service gathers map/reduce

task performance data, determines power caps using this data and enforces power limits dy-

namically on the nodes executing the child tasks using RAPL interfaces. As indicated by Figure

2.3, an application master (AM) is primarily responsible for negotiating resource allocations

with the resource manager for job execution and monitoring the progress of map/reduce tasks

launched upon its request by the corresponding node managers. Since an AM collects infor-

mation about its child tasks, we have integrated the RAPL service into the AM rather than

running it as a separate daemon. Iterative map-reduce applications, which conventionally engage

in repetitive reads of the same input data across iterations, can benefit from the enhancements

in the Phadoop.

11

Read Input

Data from HDFS

Execute

map/reduce

function

Write output

 to HDFS

Process

termination

Task creation

Process spawn

Task

completion

Node Manager

 (NM)

fork

Arguments for

task execution

(a) Hadoop

Listen for

next task

Read Input

Data from cache

Execute

map/reduce

function

Write output

 to HDFS

Process

termination

Task creation

Process spawn

Task

completion

Node Manager

 (NM)

fork

Arguments for

 task execution

1 > 1

(b) Phadoop

Figure 3.1: A comparison between map/reduce task execution states in traditional Hadoop
and Phadoop.

12

Chapter 4

Implementation

To implement the task reuse feature, we have made enhancements to the node manager and

the map-reduce client-application modules of the Hadoop YARN framework. Figure 2.3 indi-

cates the section of the YARN framework affected by these enhancements. The node manager

controls the launch of containers to execute the tasks. And the map-reduce client-application is

responsible for executing child tasks with the arguments supplied by the node manager. During

the initial iteration, the container manager spawns the required number of child processes to

run the map/reduce tasks. Each of these processes listens on a port, which is computed from

the identification number of the respective tasks handled by them, over the loop-back interface

of the node. For instance, if a child process is spawn for executing the task with id 2, then this

process would listen on port 16002, where 16000 is the base port number for all the processes

spawned on a particular node. Once these processes are spawned, the node manager connects

to a child process through TCP sockets and sends parameters (host address and port number of

the application master and environment variables) required for task execution. On receiving the

parameters for task execution, the child process uses them to set/reset its execution environ-

ment, which includes the path to the staging area of the current job and job critical information

like the location of the security tokens. Once the child process finishes its execution, it reports

the status to the application master (similar to the original implementation) and waits for its

next assignment, listening over the port indicated during initiation. Each task, during the ini-

tial iteration, reads the input data chunks and deposits it in memory using the task context

object. Tasks in subsequent iterations handled by the corresponding processes reuse this data

and thereby significantly reduce I/O overhead.

The implementation of the RAPL service involved modifications to the application master,

child modules and the Umbilical protocol. The Umbilical protocol is used for communication

between an application master and its children. Figure 4.1 illustrates the entities involved in the

RAPL service and their interactions. A child map/reduce task reports information (host name,

13

package it is running on and its execution time) to the application master. The RAPL decision

engine (RDE) on the application master uses this information combined with a power-saving

policy to determine the target execution times for each of the tasks. The RDE also chooses a

single task on each package as a Power Limit Enforcer (PLE), which is responsible for setting

a power cap for its package. The targets are propagated back to the corresponding child tasks

via the umbilical protocol at the start of next iteration. PLE uses the target execution time

along with the task’s previous execution time to determine a power cap, which is set on the

package using RAPL interfaces. Power caps are determined based on the data gathered during

inspection runs, which are performed for each package. The inspection runs for each application

are performed offline to collect information such as the execution time at different power limit

settings.

Figure 4.1: An illustration of the RAPL run-time system in Phadoop with its entities and their
interaction.

14

Chapter 5

Applications

While many benchmarks and applications are available for traditional map-reduce frameworks,

we decide to implement a set of iterative map-reduce applications using the Phadoop framework,

which cannot run in traditional map-reduce frameworks as they lack our Phadoop extensions.

These iterative workloads consist of a chain of map-reduce jobs. Hence, the reduce phase in each

iteration results in a global synchronization as it involves communication among the tasks via

HDFS. The following sections describe these applications and the evaluation chapter provides a

comparison of their performance and power consumption with the original Hadoop framework.

5.1 Sparse matrix multiplication

Sparse matrix multiplication is a building block for many graph algorithms like graph contrac-

tion [26], multiple source breadth-first search [13], recursive all-pair shortest-path [18], and cycle

detection [45]. Numerical methods, parsing context-free languages [32] and colored intersection

searching [29] are some of the general computing applications of sparse matrix multiplication.

Due to its wide range of applications, we have chosen sparse matrix multiplication as one of

our workloads.

Our iterative map-reduce implementation of sparse matrix multiplication (ParSpMM) is

an adaptation of a scalable, parallel sparse matrix multiplication algorithm (SpGEMM) by

Aydin Buluc et al. [14]. In SpGEMM, each of the parallel processes updates a specific block of

the resultant product matrix. In contrast, each of the parallel processes is responsible for all

multiplications pertaining to a single block of matrix B in ParSpMM.

The following notation is used to describe the implementation and experimental evaluation

of sparse matrix multiplication. A, B and C are sparse matrices with the property that A ∈ Sm*l

and B ∈ Sl*n and C = A*B, where S is a sparse matrix of the size indicated by the superscript.

Aij denotes a block of matrix A with the ith row and jth column. A(i;) and A(;j) denote all the

15

blocks of matrix A with its ith row and jth column, respectively. The blocking factor for the

input matrices is b. nnz(A) denotes the number of non-zero elements in matrix A. P denotes a

set of processes running on a processor grid and Pij denotes a process running on the processor

in the ith row and jth column of the processor grid. P(i;), P(;j) denote all the processes running

on processors in the ith row and the jth column of the processor grid, respectively.

The ParSpMM map-reduce application has two stages. The first stage consists of an iterative

computation of partial sums of the product matrix and second stage is an aggregation of these

partial sums to compute the final result matrix. Each iteration in the first stage is a map-reduce

job that multiplies a block row from matrix A with matrix B. The map function partitions the

blocks from input matrices such that a reduce task is assigned a single block from matrix B and

a corresponding block from matrix A as required for the computation of the partial product of

matrix blocks. As indicated in the Figure 5.1, blocks of matrix A colored red and all blocks

of matrix B are involved in a single iteration. During the ith iteration, A(i;) is partitioned by

the map task such that all the reduce tasks assigned to Bkj (where k = [0, l/b] and j = [0,

n/b]) receive the block Aik, i.e., block Aij is broadcast across P(j;). After receiving the assigned

blocks of matrices A and B, each reduce task performs the HyperSparseGEMM operation [12]

on them and writes the partial result to HDFS. This partial result from all iterations is reduced

to the final resultant matrix C during the second stage of ParSpMM.

In this algorithm, the entire matrix B is required to be read from HDFS in every iteration.

Phadoop eliminates the need for this redundant operation by utilizing a process pool for exe-

cuting the reduce tasks and reusing the data pertaining to matrix B instead of reading it from

HDFS during the initialization of the task.

Figure 5.1: A depiction of the operations performed by each process during i-th iteration of
the blocked matrix multiplication (A*B)

16

5.2 Blocked matrix multiplication

Similar to the sparse matrix multiplication, blocked matrix multiplication is used in a variety

of applications. It constitutes the core of many scientific computations and is used in computer

vision, computer graphics, and internet security applications [41, 44]. The iterative map-reduce

implementation of this algorithm is similar to that of ParSpMM described in the previous

section. As shown in Figure 5.1, during each iteration of the first stage of this algorithm, a

row of blocks from matrix A is multiplied with matrix B by the corresponding reduce tasks

to produce a partial result that is later aggregated during the second stage. The difference

between this application and ParSpMM is that each reduce task performs a regular matrix

multiplication on blocks from matrix A and B instead of the HyperSparseGEMM [12].

5.3 K-means clustering

K-means is a simple and well-known algorithm for cluster analysis in data mining. This algo-

rithm has been successfully employed in a variety of areas such as general statistics, market

segmentation, computer vision, geo-statistics, agriculture, biology and astronomy [5, 21]. The

parallel map-reduce implementation of this clustering algorithm has become popular in the sci-

entific community with its added ability to handle large data sets while requiring relatively short

execution times. Due to its iterative nature along with its popularity in a variety of domains,

we have chosen k-means clustering as a workload.

In this work, we have implemented a general k-means algorithm [6] with the map-reduce

programming model using the Phadoop framework. The k-means algorithm classifies all the

input vectors in an n-dimensional space into a user specified number of groups (referred to as

k). It starts with a set of randomly chosen k vectors as centroids and assigns each input vector

to its closest centroid. After all the input vectors are classified, new centroids are computed for

each group. The classification and re-computation of centroids is performed iteratively until the

process satisfies a converge criteria. Each iteration of the k-means clustering is implemented as

a map-reduce job. Each of the user-specified number of map tasks reads a chunk of the input

vectors along with the centroids either computed during the previous iteration or randomly

chosen from input vectors during the initial iteration. It then classifies the input vectors among

k groups and computes partial centroids for each group, which are passed on to a reduce task.

The reduce task receives the partial centroids from all the map tasks and computes the new

centroids, which are written to HDFS. These new centroids serve as an input for the next

iteration until the centroids converge.

In this algorithm, map tasks in each iteration read the same input chunk. In Phadoop, this

redundant operation of reading the loop invariant data in every iteration is eliminated by using

17

a process pool for executing the map tasks and caching the input data read during initialization

of these map tasks.

18

Chapter 6

Results

For the performance and power consumption analysis, we have installed the Phadoop and

Hadoop frameworks on a RAPL enabled Intel Xeon E5-2667 3.2 GHz server machine. This

CPU consists of two packages with 8 cores per package and 16 GB memory. Sparse matrix mul-

tiplication, blocked matrix multiplication and k-means are the iterative map-reduce workloads

run on this setup to monitor performance and energy consumption for different input loads.

For all experiments with Phadoop, the RAPL-runtime uses a power-saving policy that aims

at utilizing the slack time of the slowest map/reduce task among all concurrent tasks in an

iteration. According to this policy, a task per package with the highest execution time among

all the package-local tasks is chosen as a representative task. The execution time of the slowest

among these representative tasks is chosen as the target time, which is propagated to all rep-

resentatives. As described in Chapter 4, the target time is used by the representative tasks in

subsequent iterations to enforce power caps on their respective packages.

Calibration

For each application, we have performed inspection runs during which we execute the workload

using the same input as an actual run at different power caps and record the power cap to

execution time mapping for each map/reduce task. This mapping is provided to the RAPL-

runtime system for its decision-making process.

Performance and Power consumption analysis

We have performed experiments using the applications described in Chapter 5 with two types

of inputs,

1. uniform chunks, and

19

2. non-uniform chunks,

processed in parallel by each map/reduce task of a job. Non-uniform chunks tend to result in

computational imbalance among concurrent tasks. We have experimented with the Phadoop

framework in two different modes,

1. the power-saving mode, and

2. the caching mode.

The Phadoop framework in power-saving mode has both the RAPL-runtime and the caching

features enabled. In contrast, in caching mode, RAPL is disabled for Phadoop. In the first set

of experiments, all workloads have uniform chunks of input data. This allows us to compare

individual map/reduce task execution times between the Phadoop and Hadoop frameworks.

Figures 6.1(a), 6.2(a) and 6.3(a) depict the data from these experiments. For these experiments,

the Phadoop framework operates in caching mode, which allows us to observe the benefits of

input caching in Phadoop. Colored bars in these graphs depict the task execution time averaged

over all the iterations in a single run, and the error bars on top of the colored bars indicate the

range of execution time values for the corresponding tasks. In the second set of experiments,

all the workloads have non-uniform chunks of input data that tend to create imbalance among

the map/reduce tasks executing in parallel on Phadoop and Hadoop. For these runs, Phadoop

operates either in the power-saving mode or the caching mode. The imbalances across concurrent

tasks trigger the RAPL-runtime environment. We have obtained the energy readings of a CPU

executing each of the above described workloads on Phadoop and Hadoop. Figures 6.1(b),

6.2(b) and 6.3(b) compare the power consumption of Phadoop operating in power-saving mode

and Hadoop executing the SpMM, BMM and k-means clustering workloads, respectively. The

energy readings reported in this work are calculated using the average power consumption of

an application obtained via RAPL power monitoring, and its corresponding total execution

time. For all experiments, the task execution times, total job execution times and the energy

consumption readings are averaged over 5 runs. We have also shown error bars with minimum

and maximum values in all comparison graphs. All applications are run with 8 concurrent

map/reduce tasks.

6.1 Sparse matrix multiplication (SpMM)

Figure 6.1 depicts the data gathered from experiments pertaining to the Sparse matrix multi-

plication workload. This application multiplies two input sparse matrices A and B, which are

initialized with seeded random numbers. B is a 2000× 2000 matrix and A is a n× 2000 matrix,

where n is varied from 1200 to 3200 in steps of 400 for each run. This gradual variation of n

20

leads to an increase in the number of iterations. Each block of A is of size 400× 500 and each

block of B is of size 500 × 1000. The matrices are generated such that the densities, i.e., the

number of non-zero elements, of its blocks are in accordance with a uniform or a quadratic

distribution. As explained in section 6.1, map tasks in a map-reduce job per iteration are re-

sponsible for assigning blocks from input matrices A and B to reduce tasks, which actually

perform the multiplication of these blocks in parallel. As a reduce task multiplies a block of

B with a corresponding block of A, its computational load is determined by the densities of

the blocks that it handles. Since the densities of blocks in one of the matrices are varied while

the density of the other matrix is uniform across all its blocks, an imbalance exists among the

reduce tasks of a job.

Figure 6.1(a) compares the task execution times of SpMM on Hadoop without caching and

Phadoop in caching mode. The graph shows the execution time on the y-axis corresponding to

each task index on the x-axis. For these experiments, the value of n is set to 2000 and nnz(Bij)

is a constant for all permissible values of i and j for matrix B with a block size of 500× 1000.

The bars in this graph show the task execution time averaged over all iterations in a single

run, and the error bars on top of the histograms indicate the range of execution time values for

the corresponding tasks. The results indicate that the tasks in Phadoop outperform Hadoop by

66% on average. This is due to the fact that reduce tasks of Phadoop cache data from matrix

B while the reduce tasks of Hadoop read this data from HDFS repeatedly in every iteration.

Across all iterations, a reduce task multiplies a single block Bij of matrix B with all the blocks

of matrix A from the block column A(;i). Although the densities of the blocks of matrix A are

the same, the distribution of non-zero elements in each of these blocks is different. Due to this

reason, the number of integer multiplication operations performed by a reduce task varies from

one iteration to the other. This contributes to the variation in the task execution times.

In Figure 6.1(b), the y-axis of the graph shows the average energy consumption and the

x-axis depicts the total number of rows of matrix A. For each of these experiments, nnz(Bij) =

x2 where x = 20+(i+2×j)×30. According to this equation, the density of blocks of matrix B is

quadratically varied. But all the blocks of matrix A are of uniform density, i.e., they contain an

equal number of non-zero elements. According to our iterative matrix multiplication algorithm

described in Section 6.1, an increase of 400 in the number of rows of matrix A with blocks of

size 400×500 augments the number of iterations by 1. The increase in the number of iterations

with an increase in the number of rows of matrix A explains the increase in the total execution

time of the workload across the runs on both Phadoop and Hadoop. We observe that the

energy consumption of Phadoop is lower than that of Hadoop for all inputs. The percentage

reduction in energy consumption by Phadoop is in the range of 17% to 25%. Figure 6.1(c)

depicts the reduction in average power by Phadoop compared to Hadoop, which is in the range

of 11% to 30%. As the densities of all blocks of matrix B are varied quadratically, each of the

21

concurrently executing reduce tasks holds a block of B with a different density. This results in

significant computational imbalances among these reduce tasks and triggers the RAPL-runtime

capabilities. The RAPL-runtime system applies the power-saving policy described above to

reduce the average power consumption of the workload. Figure 6.1(d) shows the percentage

decrease in total execution time of a job on the y-axis corresponding to the number of rows

of matrix A on the x-axis. If TPhadoop denotes the total job execution time of Phadoop and

THadoop denotes the total job execution time of Hadoop, then the percentage decrease in the

job execution time is given by:

(THadoop − TPhadoop)

THadoop
× 100%

A positive value indicates a decrease and a negative value indicates an increase in TPhadoop

compared to THadoop. A decrease in total execution time for some of the inputs is observed

because of caching in Phadoop. Each concurrent reduce task stores a block of matrix B in

memory during the initial iteration and reuses it in subsequent iterations. For some of the

inputs, the percentage is below 0% indicating a decrease in execution time due to the fact that

the overhead due to RAPL-runtime exceeds the benefit due to caching.

Figure 6.1(e) compares the total job execution times of the workload on Phadoop in power-

saving mode and Phadoop in caching mode. This shows that there is a performance overhead of

up to 30% associated with the RAPL-runtime in Phadoop. Although this overhead is diminish-

ingly small for few iterations, it becomes more significant as the number of iterations increases.

6.2 K-means clustering

Figure 6.2 depicts the data from the experiments pertaining to the k-means clustering workload.

This application requires a set of vectors and centroids as input. We have used seeded random

number generators to create the vectors. The initial centroids are randomly selected from these

vectors. We divide the n-dimensional vector space into subspaces and generate the input vectors

such that the number of vectors across these subspaces follows an exponential distribution. As

explained in Section 6.2, each map task of a map-reduce job per iteration processes a chunk of

the input vectors. A chunk here consists of all vectors in a particular subspace. As the number

of input vectors that each map task processes determines its computational load, varying the

vector distribution among the subspaces varies the load handled by each of the concurrent map

tasks. For our experiments, we have used 3-dimensional vectors as inputs distributed among

8 subspaces. The input vectors are clustered into 40 groups. Unlike the matrix multiplication

inputs where the number of iterations are varied across the runs, the k-means algorithm runs

22

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

1 2 3 4 5 6 7 8

T
a
s
k
 e

x
e
c
u
ti
o
n

 t
im

e
 (

n
a
n

o
s
e
c
o
n
d
s
)

Task Index

Phadoop
Hadoop

(a) Phadoop (caching) vs. Hadoop

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1
2
0
0

1
6
0
0

2
0
0
0

2
4
0
0

2
8
0
0

3
2
0
0

E
n
e
rg

y
 c

o
n

s
u
m

p
ti
o
n
 (

J
o
u
le

s
)

Number of Rows of Matrix A

Phadoop
Hadoop

(b) Phadoop (power-saving) vs. Hadoop

 0

 20

 40

 60

 80

 100

1
2

0
0

1
6

0
0

2
0

0
0

2
4

0
0

2
8

0
0

3
2

0
0

A
v
e
ra

g
e

 p
o
w

e
r

(W
a
tt
s
)

Number of Rows of Matrix A

Phadoop
Hadoop

(c) Phadoop (power-saving) vs. Hadoop

-30

-20

-10

 0

 10

 20

 30

1200 1600 2000 2400 2800 3200

%
 c

h
a
n
g

e
 i
n
 e

x
e

c
u
ti
o
n

 t
im

e

Number of Rows of Matrix A

decrease in execution time

increase in execution time

(d) Phadoop (power-saving) vs. Hadoop

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

 2e+11

 2.2e+11

 2.4e+11

 2.6e+11

1200
1600

2000
2400

2800
3200

T
o

ta
l
e

x
e

c
u
ti
o
n

 t
im

e
 (

n
a
n
o

s
e
c
o
n
d
s
)

Number of Rows of Matrix A

Phadoop (caching+RAPL)
Phadoop (caching)

(e) Phadoop (power-saving) vs. Phadoop (caching)

Figure 6.1: Sparse matrix multiplication

23

for a maximum of 20 iterations irrespective of the input size.

Figure 6.2(a) compares the task execution times of the k-means clustering workload of

Hadoop and Phadoop in caching mode. The graph shows the execution time on the y-axis

corresponding to each task index on the x-axis. For this run, input vectors are distributed

uniformly across all the 8 subspaces. Hence, all concurrent map tasks process an input chunk of

same size, i.e., 6144 input vectors. The average task execution time for Phadoop is shorter than

that of Hadoop. The results indicate that the tasks in Phadoop outperform Hadoop by 90%

on average. For the k-means workload, Phadoop utilizes a process pool for executing the map

tasks and caches the input vector data read during the initialization, which is reused during

subsequent iterations. This accounts for the shorter average task execution times and also a

longer task execution time for the first iteration.

Figure 6.2(b) shows the input sizes on the x-axis and their corresponding energy consump-

tion on the y-axis. For these experiments, the input vectors are distributed non-uniformly across

all the subspaces such that each map task receives n× 2i vectors, where i is the index of a map

task and n = 4 × 2j such that j is varied from 1 to 9 across all the runs. We observe that the

energy consumption of Phadoop is lower than that of Hadoop for all inputs by a percentage of

up to 17%. Figure 6.2(c) depicts the reduction in average power consumption of the workload

on Phadoop compared to Hadoop, which is in the range of 18% to 31%. An increase in input

size while keeping the number of iterations constant across all runs does not affect the total

job execution time. Similar to the above workload, Figure 6.2(d) depicts the percentage de-

crease in the total job execution time for k-means clustering on Phadoop compared to that of

Hadoop. We observe an overall decrease in the performance of Phadoop compared to Hadoop

as the overhead due to the RAPL-runtime exceeds the performance benefit of caching. Figure

6.2(e) compares the total job execution times for k-means on Phadoop in power-saving mode

and Phadoop in caching mode. It shows that there is a significant performance overhead of up

to 29% associated with the RAPL-runtime in all cases as the number of iterations is the same

irrespective of the size of the input processed per run.

6.3 Blocked matrix multiplication (BMM)

The blocked matrix multiplication requires two regular matrices, A and B, as inputs, which are

initialized as seeded random numbers. B is a 1000 × 500 matrix and A is a n × 1000 matrix,

where n is varied from 750 to 2000 in steps of 250 for each run. The block size for both matrices

A and B is 250 × 250. Figure 6.3 depicts the results of the experiments of blocked matrix

multiplication for Phadoop and Hadoop. Figure 6.3(a) depicts the caching benefits of Phadoop

for this workload. The results indicate that the tasks in Phadoop outperform Hadoop by 53%

on average. Similar to the inputs for Sparse matrix multiplication, matrix A consists of blocks

24

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

1 2 3 4 5 6 7 8

T
a
s
k
 e

x
e
c
u
ti
o
n

 t
im

e
 (

n
a
n

o
s
e
c
o
n
d
s
)

Task Index

Phadoop
Hadoop

(a) Phadoop (caching) vs. Hadoop

 10000

 15000

 20000

 25000

2040
4080

8160
16320

32640

65280

130560

261120

522240

A
v
e

ra
g
e
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
o
u
le

s
)

Number of input vectors

Phadoop
Hadoop

(b) Phadoop (power-saving) vs. Hadoop

 0

 20

 40

 60

 80

 100

2040
4080

8160
16320

32640

65280

130560

261120

522240

A
v
e

ra
g
e

 p
o
w

e
r

(W
a
tt

s
)

Number of input vectors

Phadoop
Hadoop

(c) Phadoop (power-saving) vs. Hadoop

-40

-35

-30

-25

-20

-15

-10

-5

 0

2040
4080

8160
16320

32640

65280

130560

261120

522240

%
 c

h
a
n
g

e
 i
n
 e

x
e

c
u
ti
o
n

 t
im

e

Number of input vectors

increase in execution time

(d) Phadoop (power-saving) vs. Hadoop

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 3e+11

 3.5e+11

 4e+11

 4.5e+11

 5e+11

2040
4080

8160
16320

32640

65280

130560

261120

522240

T
o

ta
l
e
x
e
c
u
ti
o

n
 t

im
e

 (
n
a

n
o
s
e

c
o
n
d
s
)

Number of input vectors

Phadoop (caching+RAPL)
Phadoop (caching)

(e) Phadoop (power-saving) vs. Phadoop (caching)

Figure 6.2: K-means clustering

25

with uniform density and matrix B has blocks with densities that vary quadratically. But the

input matrices used here are of smaller dimension and are dense compared to that of sparse

matrix multiplication. As the regular matrix multiplication algorithm used by the reduce tasks

in the BMM implementation does not perform a multiplication when either of the numbers is

0, the densities of the multiplied blocks determine the computational load of a reduce task.

From Figure 6.3(b), we observe that BMM results in a decrease of 25% to 42% in energy

consumption on Phadoop compared to Hadoop. Figure 6.3(c) depicts the reduction in average

power consumption by Phadoop compared to Hadoop which is in the range of 14% to 20%.

Figure 6.3(d) depicts the performance improvement of Phadoop over Hadoop for this workload.

The percentage decrease in execution time, calculated as shown in Section 6.1, on the y-axis

corresponding to different number of rows of input matrix A on the x-axis is shown in this

figure. We observe that the BMM workload has a maximum of 16% performance improvement,

which is the highest among all three workloads. Similar to the above two workloads, Figure

6.3(e) shows that there is a significant performance overhead of up to 27% associated with the

RAPL-runtime for larger numbers of iterations. The high variation in power consumption of

Phadoop for a few runs in case of k-means clustering is due to the power-saving policy used by

the RAPL-runtime. The RAPL-runtime system uses a power-saving policy that always tries to

conserve energy of a CPU by slowing down the faster running tasks to utilize the slack time

introduced by the slowest task running concurrently. If this slowest task was accidentally slowed

down due to reasons other than its computational load, the RAPL-runtime may force a greedy

slow down of other tasks, which can be counter productive. In a worst case scenario, this can

propagate along subsequent iterations and can lead to the lowest possible power cap being set

on all packages, which will ultimately slow down the entire job.

26

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

1 2 3 4 5 6 7 8

T
a
s
k
 e

x
e
c
u
ti
o
n

 t
im

e
 (

n
a
n

o
s
e
c
o
n
d
s
)

Task Index

Phadoop
Hadoop

(a) Phadoop (caching) vs. Hadoop

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

7
5
0

1
0
0
0

1
2
5
0

1
5
0
0

1
7
5
0

2
0
0
0

E
n
e
rg

y
 c

o
n

s
u
m

p
ti
o
n
 (

J
o
u
le

s
)

Number of Rows of Matrix A

Phadoop
Hadoop

(b) Phadoop (power-saving) vs. Hadoop

 0

 20

 40

 60

 80

 100

7
5

0

1
0

0
0

1
2

5
0

1
5

0
0

1
7

5
0

2
0

0
0

A
v
e
ra

g
e
 P

o
w

e
r

(W
a
tt
s
)

Number of Rows of Matrix A

Phadoop
Hadoop

(c) Phadoop (power-saving) vs. Hadoop

 0

 10

 20

 30

 40

 50

 60

 70

750 1000 1250 1500 1750 2000

%
 c

h
a
n
g

e
 i
n
 e

x
e

c
u
ti
o
n

 t
im

e

Number of Rows of Matrix A

decrease in execution time

(d) Phadoop (power-saving) vs. Hadoop

 6e+10

 8e+10

 1e+11

 1.2e+11

 1.4e+11

 1.6e+11

 1.8e+11

 2e+11

 2.2e+11

750
1000

1250
1500

1750
2000

T
o

ta
l
e

x
e

c
u
ti
o
n

 t
im

e
 (

n
a
n
o

s
e
c
o
n
d
s
)

Number of Rows of Matrix A

Phadoop (caching+RAPL)
Phadoop (caching)

(e) Phadoop (power-saving) vs. Phadoop (caching)

Figure 6.3: Blocked matrix multiplication

27

Chapter 7

Related work

The simplicity of the map-reduce programming model has caused frameworks such as Hadoop

[2], Cassandra [1], Hbase [3], Hive [4], Pig [7] and Spark [8] to be increasingly adopted by cloud

vendors to process extremely large amounts of data quickly. On the flip side, the ease of this

programming model restricts its application domain. To overcome its shortcomings, there have

been many extensions to the Hadoop framework, and new frameworks have been created by both

academia and industry [43, 33, 27, 25, 46, 11, 24, 16]. Among these, our work is closely related

to CGL-MapReduce [24], Hadoop Spark [46], Twister [25] and HaLoop [11], which support the

concept of reusing a working set of data across multiple iterations.

Ekanayake et al. [24, 25] have developed frameworks that support iterative applications.

Both their frameworks use map-reduce workers to execute the map/reduce tasks and streaming

for all communications. Unlike the distributed file system (HDFS) used by Phadoop, these

streaming-based content dissemination networks used for communication between map and

reduce tasks are sensitive to failures. HaLoop [11] also supports iterative applications by caching

loop invariant data on local disks of slave nodes and schedules the map/reduce tasks that handle

the same data across iterations on the same slave nodes. In contrast, our Phadoop framework,

which targets compute intensive jobs, uses a process pool and caches the data in-memory to

lower data access latency. Spark [46] supports iterative jobs and interactive analytics where

map-reduce is deficient. It is based on two main abstractions: resilient distributed datasets

(RDD) and parallel operations. RDD is a collection of read-only objects used by Spark to

cache data across map-reduce-like task executions. These RDDs can be reconstructed using the

lineage data store by the framework in case of a node failure. But it uses a single task to collect

results from concurrent reduce task execution, which hampers the scalability of the algorithms.

Several systems and techniques have been developed to conserve energy without significantly

increasing execution time. Rountree et al. [35] and Sarood et al. [36, 39, 37] have used DVFS

and temperature-aware load balancing to develop systems that can trade execution time for

28

lower energy consumption. Although these systems can achieve energy savings, DVFS does

not guarantee strict bounds on the power consumption of a processor. Dongarra et al. [23],

Demmel et al. [22], and Guilherme et al. [15] have used RAPL power monitoring to gather

energy readings. Our work utilizes RAPL interfaces to measure the power consumption and

enforces power bounds on CPU cores. David et al. [19] use RAPL to measure and limit the

power consumption of main memory. Rountree et al. [34] have presented the opportunities of

using RAPL to control power consumption of a processor as an alternate to DVFS. They also

demonstrate that the manufacturing variations in processors convert to variation in performance

under a power bound. Sarood et al. [38] focus primarily on HPC applications while our work

focuses on cloud-based workloads. Subramanium et al. [40] use RAPL interfaces to ensure

that energy can be controlled in a proportional manner for an enterprise-class server workload,

from the SPECpower benchmark. They characterize the power profile of this benchmark within

different subsystems using on-chip RAPL power meters. For different load levels, they analyze

the power consumption and performance of the benchmark under enforced power bounds using

RAPL.

29

Chapter 8

Conclusion and Future Work

To the best of our knowledge, this work provides the first experimental study to optimize the

energy consumption of a cloud-based workload using the RAPL power capping interfaces. This

work presents the design, implementation and evaluation of Phadoop, an enhanced version of

the Hadoop YARN framework. The Phadoop framework improves the performance of iterative

applications using a process pool for scheduling the map-reduce tasks and caching the loop-

invariant data in memory. This state-of-the-art framework uses RAPL interfaces to enforce

power bounds. We have evaluated our Phadoop framework by comparing its performance and

energy consumption with that of a traditional Hadoop framework using sparse matrix multipli-

cation, k-means clustering and blocked matrix multiplication workloads. Experimental results

indicate a reduction in energy consumption of Phadoop up to 34% compared to Hadoop. The

results also indicate that the map/reduce tasks in Phadoop outperform Hadoop for iterative

applications.

In future work, we plan to focus on the following topics:

1. Extend the Phadoop framework to generalize the process pool such that it supports

reading data either from HDFS or the cache depending on its availability in memory.

2. Enhance the Phadoop framework to support the usage of a process pool for scheduling

map/reduce tasks in a multi-node environment.

3. Enhance the RAPL-runtime system with learning algorithms that will eliminate the need

for inspection runs and improve its power cap prediction accuracy.

4. Devise fault-tolerance mechanisms for the Phadoop framework in the presence of input

caching.

30

REFERENCES

[1] Cassandra. http://cassandra.apache.org/.

[2] Hadoop. http://hadoop.apache.org/.

[3] Hbase. http://hbase.apache.org/.

[4] Hive. http://hive.apache.org/.

[5] K-means clustering. http://en.wikipedia.org/wiki/K-means clustering.

[6] Mahout k-means. https://mahout.apache.org/users/clustering/k-means-clustering.html.

[7] Pig. http://pig.apache.org/.

[8] Spark. http://spark.incubator.apache.org/.

[9] Dcd industry census 2013: Data center power, January 2014.

[10] Luiz Andr Barroso and Urs Hlzle. The Datacenter as a Computer. Morgan and Claypool,

2009. An Introduction to the Design of Warehouse-Scale Machines.

[11] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. Haloop: Efficient

iterative data processing on large clusters. Proc. VLDB Endow., 3(1-2):285–296, September

2010.

[12] A Buluc and J.R. Gilbert. On the representation and multiplication of hypersparse ma-

trices. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International

Symposium on, pages 1–11, April 2008.

[13] Aydin Buluç and John R Gilbert. The combinatorial blas: Design, implementation, and

applications. Int. J. High Perform. Comput. Appl., 25(4):496–509, November 2011.

[14] Aydin Buluç and John R. Gilbert. Parallel sparse matrix-matrix multiplication and index-

ing: Implementation and experiments. CoRR, abs/1109.3739, 2011.

31

[15] Guilherme Cal, Alfredo Gardel, Ignacio Bravo, Pedro Revenga, Josl Lzaro, and F. Javier

Toledo-moreo. Power measurement methods for energy efficient applications, 2013.

[16] Cheng T. Chu, Sang K. Kim, Yi A. Lin, Yuanyuan Yu, Gary R. Bradski, Andrew Y.

Ng, and Kunle Olukotun. Map-reduce for machine learning on multicore. In Bernhard

Schölkopf, John C. Platt, and Thomas Hoffman, editors, NIPS, pages 281–288. MIT Press,

2006.

[17] Louis Columbus. Gartner predicts infrastructure services will accelerate cloud computing

growth. Technical report, Forbes, February 2013.

[18] Paolo D’Alberto and Alexandru Nicolau. R-kleene: A high-performance divide-and-conquer

algorithm for the all-pair shortest path for densely connected networks.

[19] H. David, E. Gorbatov, Ulf R. Hanebutte, R. Khanna, and C. Le. Rapl: Memory power es-

timation and capping. In Low-Power Electronics and Design (ISLPED), 2010 ACM/IEEE

International Symposium on, pages 189–194, Aug 2010.

[20] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clus-

ters. Commun. ACM, 51(1):107–113, January 2008.

[21] Briti Deb and Satish Narayana Srirama. Article: Parallel k-means clustering for gene

expression data on snow. International Journal of Computer Applications, 71(24):26–30,

June 2013. Published by Foundation of Computer Science, New York, USA.

[22] James Demmel, Andrew Gearhart, James Demmel, and Andrew Gearhart. Instrumenting

linear algebra energy consumption via on-chip energy counters.

[23] Jack Dongarra, Hatem Ltaief, Piotr Luszczek, and Vincent M. Weaver. Energy footprint

of advanced dense numerical linear algebra using tile algorithms on multicore architecture.

[24] J. Ekanayake, S. Pallickara, and G. Fox. Mapreduce for data intensive scientific analyses.

In eScience, 2008. eScience ’08. IEEE Fourth International Conference on, pages 277–284,

Dec 2008.

32

[25] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy Qiu,

and Geoffrey Fox. Twister: A runtime for iterative mapreduce. In Proceedings of the 19th

ACM International Symposium on High Performance Distributed Computing, HPDC ’10,

pages 810–818, New York, NY, USA, 2010. ACM.

[26] John R. Gilbert, Viral B. Shah, and Steve Reinhardt. A Unified Framework for Numerical

and Combinatorial Computing. Computing in Science & Engineering, 10(2):20–25, 2008.

[27] Rong Gu, Xiaoliang Yang, Jinshuang Yan, Yuanhao Sun, Bing Wang, Chunfeng Yuan, and

Yihua Huang. Shadoop: Improving mapreduce performance by optimizing job execution

mechanism in hadoop clusters. J. Parallel Distrib. Comput., 74(3):2166–2179, March 2014.

[28] Intel. Intel 64 and ia-32 architectures software developer’s manual, volumes 3a and 3b,

2012.

[29] Haim Kaplan, Micha Sharir, and Elad Verbin. Colored intersection searching via sparse

rectangular matrix multiplication. In Proceedings of the Twenty-second Annual Symposium

on Computational Geometry, SCG ’06, pages 52–60, New York, NY, USA, 2006. ACM.

[30] Taylor Kidd. Power management states: P-states, c-states, and package c-states, April

2014.

[31] Joe Panettieri. Top 100 cloud services providers list 2013: Ranked 10 to 1. Technical

report, Talkin’ Cloud, July 2013.

[32] Gerald Penn. Efficient transitive closure of sparse matrices over closed semirings. Theor.

Comput. Sci., 354(1):72–81, March 2006.

[33] Md Wasi-ur Rahman, Xiaoyi Lu, Nusrat Sharmin Islam, and Dhabaleswar K. (DK) Panda.

Homr: A hybrid approach to exploit maximum overlapping in mapreduce over high per-

formance interconnects. In Proceedings of the 28th ACM International Conference on

Supercomputing, ICS ’14, pages 33–42, New York, NY, USA, 2014. ACM.

33

[34] B. Rountree, D.H. Ahn, B.R. De Supinski, D.K. Lowenthal, and M. Schulz. Beyond dvfs:

A first look at performance under a hardware-enforced power bound. In Parallel and

Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE 26th

International, pages 947–953, May 2012.

[35] B. Rountree, D.K. Lowenthal, S. Funk, Vincent W. Freeh, B.R. De Supinski, and M. Schulz.

Bounding energy consumption in large-scale mpi programs. In Supercomputing, 2007. SC

’07. Proceedings of the 2007 ACM/IEEE Conference on, pages 1–9, Nov 2007.

[36] O. Sarood and L.V. Kale. A ’cool’ load balancer for parallel applications. In High Perfor-

mance Computing, Networking, Storage and Analysis (SC), 2011 International Conference

for, pages 1–11, Nov 2011.

[37] O. Sarood and L.V. Kale. Efficient ’cool down’ of parallel applications. In Parallel Pro-

cessing Workshops (ICPPW), 2012 41st International Conference on, pages 222–231, Sept

2012.

[38] O. Sarood, A Langer, L. Kale, B. Rountree, and B. de Supinski. Optimizing power alloca-

tion to cpu and memory subsystems in overprovisioned hpc systems. In Cluster Computing

(CLUSTER), 2013 IEEE International Conference on, pages 1–8, Sept 2013.

[39] Osman Sarood, Phil Miller, Ehsan Totoni, and Laxmikant V. Kal. ’cool’ load balancing

for high performance computing data centers.

[40] Balaji Subramaniam and Wu chun Feng. Towards energy-proportional computing for

enterprise-class server workloads, 2013.

[41] P.M. Vaidya. Speeding-up linear programming using fast matrix multiplication. In Foun-

dations of Computer Science, 1989., 30th Annual Symposium on, pages 332–337, Oct 1989.

[42] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev

Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas

34

Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Benjamin Reed, and Eric Balde-

schwieler. Apache hadoop yarn: Yet another resource negotiator. In Proceedings of the

4th Annual Symposium on Cloud Computing, SOCC ’13, pages 5:1–5:16, New York, NY,

USA, 2013. ACM.

[43] Yandong Wang, Xinyu Que, Weikuan Yu, Dror Goldenberg, and Dhiraj Sehgal. Hadoop

acceleration through network levitated merge. In Proceedings of 2011 International Con-

ference for High Performance Computing, Networking, Storage and Analysis, SC ’11, pages

57:1–57:10, New York, NY, USA, 2011. ACM.

[44] R. Clint Whaley and Jack Dongarra. Automatically tuned linear algebra software. In

SuperComputing 1998: High Performance Networking and Computing, 1998. CD-ROM

Proceedings. Winner, best paper in the systems category.

URL: http://www.cs.utsa.edu/~whaley/papers/atlas_sc98.ps.

[45] Raphael Yuster, Uri Zwick, and Raphael Yuster Uri Zwick. Detecting short directed cycles

using rectangular matrix multiplication and dynamic programming.

[46] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.

Spark: Cluster computing with working sets. In Proceedings of the 2Nd USENIX Confer-

ence on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA,

2010. USENIX Association.

35

