
ABSTRACT

KHETAWAT, HARSH. Managing Extreme Heterogeneity in Next Generation HPC Systems.
(Under the direction of Rainer Mueller).

As traditional high performance computing architectures are unable to meet the energy

and performance requirements of increasingly intensive applications, HPC centers are

moving towards incorporating heterogeneous node architectures in next-generation HPC

systems. While GPUs have become quite popular over the last few years as accelerators,

other novel acceleration devices such as FPGAs and neural network processors are also

gaining attention. Furthermore, heterogeneity is being incorporated in not just compute

capabilities but also in the memory hierarchy with technologies such as HBM, NVRAM

and PCM (e.g., Intel Optane); in the storage stack with the introduction of burst buffers,

both node-local and distributed; and in the network interconnect with technologies such

as GPUDirect and NVLink. This creates the need for a careful study of the compute, storage

and network stack of HPC systems to extract the most performance from these increasingly

heterogeneous node architectures.

HPC applications are often composed as computational kernels, where each kernel

has different computational characteristics, memory access patterns, communication

patterns and accesses to storage devices for I/O. Suitability of different architectural features

are therefore highly dependent on the application mix at an HPC center. Furthermore,

application performance often depends on the application developer’s ability to utilize the

resources available to them.

To tackle this extreme heterogeneity that is emerging in HPC systems, we first create

a simulation framework that allows HPC centers and application developers to study the

optimal placement of storage resources in the context of an HPC interconnect topology.

We study the storage performance of different applications with node-local and multiple

distributed burst buffer placements in popular HPC network topologies. Next, we develop

a simulation framework to study the networking performance of applications in systems

that employ modern communication technologies like NVLink and GPUDirect. Our frame-

work is intended to be used by application developers and HPC centers to determine the

performance gains that can be achieved by leveraging these novel technologies. Finally, we

address the heterogeneity in compute resources. We develop a framework for sharing the

work of a single kernel amongst multiple accelerators as well as co-scheduling multiple

applications on the same HPC node. We use four applications to study work sharing on a



node with a CPU, a GPU and an FPGA. We also create workloads from these applications to

assess the co-scheduling performance under four scheduling algorithms.

This work shows that a holistic approach is required for the heterogeneity that is emerg-

ing in storage, interconnect and compute stacks in modern HPC systems across all com-

ponents of the system in order to optimally use the variety of resources available in next-

generation HPC.
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CHAPTER

1

INTRODUCTION

Computing has become a cornerstone of scientific discovery ever since the invention of

electronic computing. From the discovery of medicines to the processing and visualization

of astrophysical data and the simulation of atomic phenomena, computing resources have

become intertwined with the ability of researchers to conduct scientific discovery. This has

led scientific institutions to create ever more powerful computers with the sole purpose

of conducting research giving rise to what we today call high performance computing

(HPC). HPC systems traditionally consist of individual nodes that provide the computing

resources connected by a high-bandwidth, low latency network and a centralized and

high capacity storage system. While improvements in processor technology have served

HPC systems well for a long time, traditional HPC has been hitting a bottleneck in terms

of performance and energy consumption. Performance of HPC systems has traditionally

been measured in floating point operations per second (FLOPS). While Moore’s law has

enabled HPC centers to achieve increasingly higher FLOPS from one generation to the

next, researchers have realized that we are now close to the physical limits of processor

technology. Further gains in performance require the integration of various computing,

networking and I/O technologies that are best suited for the applications that are expected

to run on the system. This has led to fundamental changes in the architecture of HPC
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systems.

One fundamental advance was the introduction of Graphics Processing Units (GPUs)

as co-processors along with the CPU. While GPUs had been used extensively for graphics

tasks, its introduction to HPC systems was due its massive parallelism and the ability to

process massive amounts of floating point data, which is a great fit for HPC applications.

Since then GPUs have become increasingly popular with recent systems such as Sierra and

Summit as well as the upcoming Frontier system relying on GPUs for the majority of their

computation capabilities. Furthermore, traditional memory subsystems have consisted of

primarily Dynamic Random Memory Access (DRAM) along with multiple levels of caching.

This was found to be lacking in speed and capacity leading to the incorporation of tech-

nologies such as High Bandwidth Memory (HBM) and Non-Volatile RAM (NVRAM) into

the memory hierarchy. Similarly the storage system has been augmented with burst buffers

to absorb bursty I/O traffic and allowing applications to continue execution rather than

waiting on the I/O to be served by the centralized storage system. Furthermore, the network

interconnect has also seen enhancements to keep up with the evolution in compute and

memory technologies. Paradigms such as GPUDirect and interconnects such as NVLink

allow GPUs to utilize the network resources without the active involvement of the host

DRAM for communication. This trend has led to what is called "extreme heterogeneity" to

describe modern and next generation HPC systems. This trend is likely to continue with

the evolution of HPC workloads to include applications for genetics, machine learning

and artificial intelligence as well as current applications requiring higher fidelity results.

Compute resources, such as FPGAs, DSPs and neural network processors have found their

way into large production data centers and are now entering the realm of HPC systems.

Figure 1.1 shows examples of heterogeneity in different HPC subsystems.

Along with opportunities, this heterogeneity also creates significant challenges for both

HPC centers and application developers. The goal of HPC centers is to ensure maximal us-

age of computing resources while keeping the capital and operational expenditures in check.

The capital expenditure for HPC centers is primarily the cost of system procurement while

the operational expenditures includes the energy requirements and cost of maintenance.

Both the capital and operational expenditures are functions of the choices made during

system procurement. For example, using GPUs and FPGAs as accelerators can provide

comparable performance while keeping energy usage in check albeit at the cost of system

procurement. Similarly, centers have to choose between procuring fewer fat nodes (per-

formance dense nodes) or a larger number of thinner nodes (fewer computing resources),

which impacts the overall cost of the system. Even further, a larger number of thinner nodes

2
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Figure 1.1: Heterogeneity in HPC

ensures better system utilization compared to fewer fat nodes as applications need to be

enhanced to use all the compute resources available on a node. The challenges faced by

application developers is the effort required to enhance their applications to effectively uti-

lize the resources available on the system. With different application characteristics, not all

resources will lead to improved performance. The aim of this work to develop and evaluate

tools and frameworks to enable HPC centers and application developers to effectively use

the heterogeneous resources available on a modern HPC system.

Hypothesis: In order to effectively utilize heterogeneous resources in HPC, software

support is required to identify the best placement of such resources, to guide programmers

in application tuning with respect to heterogeneous capabilities, and to support elastic and

transparent scheduling of workloads across such resources within and across applications.

We develop tools and frameworks to evaluate our hypothesis. This work is divided into

three primary chapters. Chapter 2 evaluates the placement of burst buffers in the context of

the inter-node network interconnect in an HPC system. We evaluate the I/O performance

of five applications across different placement strategies and network topologies using

3



parallel discrete event simulation. Along with an evaluation of the performance of these

placement strategies across network topologies, we also discuss the expenditures involved

for the HPC center when making procuring decisions and provide a tool for centers to

support these evaluations for their own workloads.

In Chapter 3, we evaluate the messaging performance of applications utilizing hetero-

geneous compute resources. With the development of technologies such as GPUDirect

and NVLink, accelerators such as GPUs can act as first class devices with the ability to

directly communicate over the network. Furthermore, HPC centers are making trade-off

decisions around accelerator density. We develop and evaluate a parallel discrete event

simulator to predict the messaging performance of applications if they were to modify their

applications to support these modern communication technologies. We also evaluate the

communication performance of these technologies for various node configurations with

respect to the number of GPUs per node.

Finally, in Chapter 4, we provide methods to tackle the emerging heterogeneity in the

compute resources on HPC systems. We develop a framework to seamlessly share the

computation of a single kernel across multiple accelerators. We also develop a scheduler

and implement four scheduling algorithms to allow HPC centers to co-schedule multiple

applications on the same node with each application getting exclusive access to a subset

of accelerators. Our framework allows applications to be migrated between accelerators,

to be expanded to more or contracted to fewer devices. We evaluate our framework with

4 applications as well as workloads comprising of these applications to demonstrate that

both work sharing and co-scheduling can result in significant performance gains.
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CHAPTER

2

EVALUATING BURST BUFFER

PLACEMENT IN HPC SYSTEMS

2.1 Introduction

With the increasing scale of computation and data in High Performance Computing (HPC),

existing storage systems are becoming a bottleneck for large-scale scientific and data-

intensive applications [XCD+12]. The ratio of I/O bandwidth to bytes of memory capacity

on Titan (the 27 petaflops (PF) system at Oak Ridge Leadership Computing Facility, OLCF,

currently at No. 12 in the Top500 list with a 1 TB/s filesystem) is 0.0016 and the ratio on

Summit (the 200 PF system at OLCF, currently No. 1 in the Top500 list with a 2.5 TB/s

filesystem) is 0.0001. Data generation rates are increasing faster than traditional parallel file

system (PFS) ingestion capabilities. To alleviate this bottleneck, the traditional PFS is being

augmented with a tier of intermediate, high-bandwidth flash-based storage devices called

burst buffers (BBs). These BBs sit between compute nodes and the parallel file system (PFS),

and are designed to absorb the periodic I/O bursts of HPC applications.

BBs allow applications to checkpoint their state more quickly and frequently to persis-
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tent storage and data to be staged for input and output, enabling the application to resume

computation rather than wait for I/O. The functional advantages and disadvantages of these

architectures have been studied in previous work [HOAV16]. In large-scale HPC centers,

BBs are a multi-million dollar resource that impact the center’s productivity, the I/O perfor-

mance of the application workload and the scientific progress of the users. The efficacy of

BBs and their I/O performance depend on optimal provisioning and architectural details.

Extant BB provisioning solutions are based on either simple rules of thumb or sim-

plistic scenarios (single application I/O behavior in isolation), and are not representative

of the complexity involved in the design space. In this thesis, we argue that an optimal

provisioning of BBs for a large-scale HPC center should carefully consider and reconcile a

variety of factors. Figure 2.1 illustrates the dimensions system designers and practitioners

should reconcile during BB provisioning. For example, careful consideration must be given

to aspects such as the locality of BBs, the underlying network topology, the application

workload’s I/O characteristics, and the job scheduling mix of the respective facility. Failure

to do so will result in sub-optimal I/O solutions and slowdown of scientific workflows.

Geography of the BB 
(node-local, on I/O 
nodes, distributed)

Network topology (fat-
tree, dragonfly, torus)

Cost Model

Application I/O 
Access Patterns

Job Scheduling 
Mix

Optimal BB 
Provisioning

Figure 2.1: BB Provisioning Dimensions

To understand the design space further, let us consider the geographic locality of BBs

within the HPC system. Various hierarchies exist for the placement of BBs in HPC systems:

(a) BBs co-located with compute nodes, e.g., used in Summit, the next-generation OLCF

system [Lab21c]; (b) BB nodes located alongside I/O nodes, e.g., used in Cori, an HPC
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system at NERSC [Cen21]; (c) global BBs. In terms of network topology, modern HPC

systems use a range of network topologies, e.g., fat-tree [Lei85], dragonfly [KDSA08], torus,

etc. These network topologies have different blocking characteristics, diameters, bisection

bandwidths, and costs. The performance of BBs is most closely affected by the network

topology, and then the application workload’s I/O access patterns (N-N, N-1, etc.), the

scheduling mix of the jobs and the interplay of their traffic. All of the above factors play a

vital role in the eventual BB experience that user applications perceive.

In this work, we present a more rigorous approach to BB provisioning that carefully

reconciles the aforementioned vectors. We have created a provisioning framework using

Parallel Discrete Event Simulation (PDES), which provides a tool to HPC system designers al-

lowing them to rapidly model their workloads against different BB architectures, placement

strategies, and network configurations. System designers can then use the framework to

make provisioning decisions. Using our simulations and models, we can evaluate various ar-

chitectures to determine the ideal choices based on the application workload, performance

requirements, and cost constraints.

The primary contributions of this work are as follows:

• the development of a complete framework that system designers and practitioners

can use to input BB locality, network topology, I/O workload patterns, job scheduling mix

and cost to study "what-if" scenarios for BB provisioning.

• the development of a variety of network and BB models (e.g., node-local) for a large-

scale HPC system, and then simulating them via the CODES [MCRC17][CLL+11] suite (and

extending it) to assess their performance for varying workloads;

• the ability to replay workloads composed of multiple applications with customizable

node allocation policies to accurately model an HPC center;

• the development of a novel capability to strongly and weakly scale traces of the Darshan

I/O logs with the simulator to project future workloads for larger I/O sizes than any I/O

traces collected on today’s platform;

• the development of novel features within Darshan to replay I/O traces with semantics

for barrier-based blocking I/O collectives to improve replay accuracy.

Besides assessing system configurations for procurement (as in this thesis), the frame-

work can further facilitate the development of parallel file systems, data staging schemes,

traffic shaping algorithms and resiliency techniques by performing sensitivity studies to

parametric variations.
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2.2 Background

In this section we will discuss tiering in modern HPC storage systems and HPC network

topologies. We will also discuss the functional advantages and disadvantages that different

burst buffer placement techniques have and how they impact the network interconnect.

HPC Storage Tiers

Bursty I/O traffic from applications has been reported to create a bottleneck at the level

of shared disk-based parallel file systems [XCD+12]. In order to absorb these spikes in I/O

traffic, the addition of a fast tier of SSD-based storage, called BBs, has been both proposed

and implemented [LCC+12][BBR+16]. BBs are closer to the compute nodes than the PFS

and offer the applications significantly higher bandwidth, albeit at a much lower capacity.

Applications that read/write a large amount of data can now keep the compute nodes

busy by utilizing the high-bandwidth SSD-based storage for checkpointing, reading input

data, writing preliminary results, and their final output to persistent storage. BBs also allow

applications to perform significantly faster in-situ analysis and jobs in a workflow to have a

high-bandwidth, low-latency scratchpad.

Several leadership-scale computing systems have deployed BBs. Theta at the Argonne

National Laboratory, Summit at the Oak Ridge National Laboratory, and Sierra at the

Lawrence Livermore National Laboratory have node local BBs. On the other hand, Trinity

at the Los Alamos National Laboratory, Conrad at the Zuse Institute Berlin, and Cori at the

Lawrence Berkeley National Laboratory have distributed BBs.

Network Topologies

The performance of HPC applications is often limited by communication rather than

computation making the network interconnect a key determinant of system performance.

A host of network topologies exist, including tori, trees and meshes plus recent ones like

dragonfly, slimfly [BH14], and HyperX [ABD+09]. Each one of these topologies offer different

characteristics such as diameter, bisection bandwidth, direct/indirect network, and cost

(see Table 2.1).

The choice of network topology and allocation of jobs to nodes has a significant im-

pact on system performance. Furthermore, placement of BB nodes can impact network

contention in these interconnect topologies. Therefore, it becomes important to study the

impact of application communication, BB I/O traffic and shared parallel file system traffic
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Table 2.1: Network Topologies

Network Bisection Diameter Network Type Cost

3-level Fat-Tree Full 4 Indirect High
3D Torus Low High Direct Low
Dragonfly High 3 Direct Medium

Slimfly High 2 Direct Medium

on them.

Application Workloads

Leadership computing facilities run a variety of application workloads, from large jobs that

occupy a significant fraction of the system to several small to medium sized jobs each of

which occupy a smaller fraction of the system. Workloads can also vary by their duration of

execution from a few hours to a few days. These factors have an impact on the frequency

and size of I/O traffic that these applications have.

Applications also have different checkpointing requirements, input/output characteris-

tics, and I/O stages that affect the overall performance of the application workload. The

use of traces from leadership class machines allows us to replicate application behavior at

a high resolution.

2.3 Related Work

Prior work has focused on the exploration and implementation of BB architectures in

HPC systems. Kimpe et al. [KMM+12] describe the design of a container abstraction to

manage in-system storage devices and to transfer data in the storage hierarchy. Herbein et

al. [HAL+16] use I/O aware batch scheduling to reduce contention with novel scheduling

techniques. This reduces contention on the parallel file system, resulting in reduced job

variability. BurstMem [WOW+14] provides storage and communication strategies for BB

systems. It shows that if handled efficiently BBs can significantly speed up application

I/O performance. TRIO [WOP+15] is another framework that coordinates flushing from

BBs to the parallel file system in order to maximize storage bandwidth by reducing the

contention between storage servers. In contrast, we focus on the impact of BB placement

on application performance.

Bhimji et al. [BBR+16] explore the use of the Cori BB system at the National Energy
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Research Scientific Computing Center (NERSC) of the Lawrence Berkeley National Labora-

tory. They discuss the performance gains achieved using BBs compared to only a shared

Lustre parallel file system. Liu et al. [LCC+12] have used parallel discrete event simulation to

evaluate BBs in leadership-class storage systems. They analyze common burst patterns in

applications and use simulation to analyze the I/O performance of applications. While Liu

et al. delve into application performance in the presence of a BB system, our work focuses

on creating a reproducible framework for analyzing application and BB performance for

different BB placement strategies and network configurations.

More recently, Mubarak et al. [MCJ+17] have used simulations to show the effects of

interference of network and I/O traffic in dragonfly network topologies equipped with

BBs. They use different routing strategies with realistic workload sizes to demonstrate

that balancing I/O and network traffic requires a careful selection of routing policies, and

job and data placement. Harms et al. [HOAV16] describe the use cases of BBs and how

different BB architectures are more suited for certain functionality than others. Cao et

al. [CSB17] compare the performance of local and shared BB systems. Their results show

that shared BB organizations can result in higher I/O throughput than local BBs. Instead of

static checkpoint sizes, we use application traces collected from real executions to more

accurately simulate application I/O behavior.

2.4 Overview

As part of this work, we create a framework using CODES to rigorously examine placement

of storage resources in modern HPC systems. The network models allow HPC centers to

simulate current and proposed HPC topologies. The burst buffer models in our framework

also facilitate a what-if comparison of various burst buffer architectures against which

HPC centers can simulate their workloads. HPC centers can use Darshan traces collected

from previous application executions to project application I/O behavior with significant

resolution to future systems. Our framework can also be used to augment the Darshan

traces with MPI synchronization primitives, to increase the number of I/O phases, and to

scale the traces via extrapolation, both strongly and weakly. These capabilities allow for

projections to future workload sizes while preserving application behavior. Our framework

can aid burst buffer provisioning by allowing HPC centers to study various network and

storage architectures with multi-job workloads and node allocation policies specific to the

center.
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2.5 CODES Simulation Suite

Parallel Discrete Event Simulation

In Discrete Event Simulation (DES) [HOP+86], the system is modeled as a sequence of

discrete events. Each event changes the state of the system. Since these events occur at

particular instances in time and trigger state changes, the system state is assumed to be

constant between state changes. Parallel Discrete Event Simulation (PDES) [Fuj90] exploits

the parallelism to significantly speed-up simulation performance, while also allowing us to

scale the simulation to larger sizes. On the other hand, PDES is hard to implement because

some events might affect others, and therefore require sequencing constraints. Without

sequencing constraints, causality errors can occur.

Two mechanisms manage sequencing constraints — conservative, and optimistic. For

conservative PDES, causality errors are prevented from occurring by issuing an event only

when it is safe. Events are not processed until all events that might affect it have completed.

Alternatively, optimistic PDES allows causality errors to occur but has mechanisms to detect

such errors and roll back to a correct state.

Rensselaer’s Optimistic Simulation System (ROSS)

ROSS [CBP02] is a DES that uses Time Warp [Jef85] for synchronization. Each component

in the system is modeled as a logical process (LP), which communicates by exchanging

timestamped event messages. It has support for both sequential and parallel (conservative

and optimistic) simulations.

The Time Warp mechanism synchronizes computation by detecting events that oc-

curred out of timestamp order, rolling-back these events, and finally re-executing them. In

order to improve performance, ROSS uses a technique called Reverse Computation[CPF99][PC03].

In Reverse Computation, instead of saving and recovering state in case of causality errors,

roll-back is done by reverse executing code. This allows us to scale the simulation to highly

parallel machines and saves memory as states between events need not be preserved.

CODES

CODES builds on ROSS in order to enable highly parallel simulations of exascale network

and storage architectures in HPC environments. CODES abstracts the network models as

components to create packet-level simulations of the most popular HPC network topolo-

gies. It supports dragonfly, slimfly, torus and fat-tree topologies. It includes support for
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packetization of messages and provides an API to simulate both MPI and RPC style com-

munication. It also has support for storage models including a local storage and a CODES

store model, which can be used to simulate BBs.

Once the HPC system has been modeled using the storage and network components,

CODES can simulate a range of I/O and network workloads. CODES has support for syn-

thetic workloads, checkpoint workloads as well as replaying network traces such as SST

DUMPI and I/O traces from Darshan. For our experiments, we use Darshan traces from

real- world HPC applications to evaluate the performance of BBs. Finally CODES allows for

the collection of several metrics related to the simulation, which we use for our evaluation.

Figure 2.2: The CODES simulation suite
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Darshan

Darshan [CLR+09] is an I/O characterization tool developed by researchers at Argonne

National Laboratory that allows application developers and HPC system administrators to

capture an accurate picture of the I/O behavior of an application. It consists of two parts,

a runtime, which is a lightweight library used to instrument the application at execution

time, and the Darshan utility, which is a collection of tools used to analyze Darshan traces.

The Darshan runtime is lightweight enough to be used on several current generation

HPC systems in order to instrument I/O behavior and has been deployed at the Argonne

Leadership Computing Facility (ALCF), the National Energy Research Scientific Computing

Center (NERSC), and the Oak Ridge Leadership Computing Facility (OLCF), among others.

We use the traces collected by these systems to resemble the I/O behavior of scientific

applications in our simulation. We also use the Darshan utility to scale the Darshan traces

collected by these HPC centers for future, larger scale HPC systems.

2.6 Workload and Simulation Design

2.6.1 BB Placement

The placement of BBs in an HPC system has a significant impact not only on the I/O

performance of the application but also on the performance of the interconnect. In order

to evaluate the performance of the placement models, we simulate each model under

varied configurations. Their performance is then evaluated with different workloads and

network topologies (described later). Each model has its own functional advantages and

disadvantages, which we also discuss. Figure 2.3 shows the different BB architectures we

are evaluating in a fat-tree network configuration.

Node-Local BBs

A storage device is placed within the compute node allowing applications to have exclusive

access to the storage resource while enabling I/O performance to scale linearly with the

number of nodes in the system. Further, I/O operations do not result in network traffic as it

goes through the local bus. One drawback of using this model is that the BBs are tightly

coupled with the compute nodes, which creates a single failure domain. It also makes it

difficult to support applications that utilize shared files.

To simulate the node-local BB model, we integrate the CODES storage server into the
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(a) Node-Local (BB in leaf nodes)

(b) Grouped (BB in adjacent nodes)

(c) Global (BB is dense node subset)

Figure 2.3: BB architectures on a fat-tree network.
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client. Since reading/writing from/to the local buffer does not result in network traffic, one

can model the BB in this manner. The I/O is modeled to be synchronous, and application

execution resumes after I/O completes. Bandwidth, latency and seek times of storage

devices are configurable via the CODES configuration.

Grouped BBs

BB servers are placed in the group along with the compute nodes in order to exploit local

network links, which are typically non-blocking. This model allows applications to write to

shared files and supports easy stage-in and stage-out. It is also much more straightforward

to share data between nodes. Here, the bursty I/O traffic could negatively impact the

PFS as buffers share network connections. This configuration incurs an additional server,

networking, and cabling costs. We simulate this model by placing the CODES storage server

model in each group along with the client LPs (logical processes). The CODES storage server

is built using the local storage model that simulates a disk along with networking and has

support for threading, which simulates multiplexed transfers. Memory size, storage size,

threads, read/write bandwidth, latency, and seek times are configurable in the CODES

configuration file. Read/writes from compute nodes result in network traffic to I/O nodes.

Global BBs

BB servers are placed on nodes separate from both the compute nodes and the I/O nodes.

This allows the compute nodes to use shared files, and the BBs might still be usable even if

the parallel file system goes down. The bursty I/O here results in additional traffic on the

global network, which could cause degraded performance. It also increases the cost of the

system due to additional servers, network interface cards (NICs), and network switches

and cables. The simulation of global BBs is done using the same CODES storage server

placement as in the last model, except that the BB servers are placed in a separate group

with a configurable number of burst buffer nodes. The I/O in this model causes network

traffic to be generated from the compute nodes to the BBs. A significant difference from the

previous model is that flushing data from the BBs to the parallel file system would result in

network traffic from the BB nodes to the I/O nodes. Parameters such as memory, storage,

bandwidth, etc. are configurable in the CODES configuration file.
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Locality and Striping

For the node-local model, the MPI ranks on a node conduct I/O with their local BBs without

accessing the network. In the grouped model, ranks of the application perform I/O with the

BB device located in the same group as well as with the BB devices in the adjacent groups

based on the striping configuration. Similarly, for the global BB model, the application

performs I/O with a respective BB node from the set of global BBs as well as a certain

number of adjacent nodes as specified in the striping configuration. In our experiments,

the I/O in the node-local model is not striped across multiple BB devices, i.e., the only

cause of contention is the SSD device on the BB node. For grouped and global BB models,

we stripe the I/O across 4 BB nodes with a stripe width of 128KB. This configuration closely

mirrors that of common HPC storage hierarchies including Data Direct Network’s (DDN)

Infinite Memory Engine (IME).

2.6.2 Workloads

Gyrokinetic Toroidal Code, GTC [LHL+98], is a highly scalable scientific application that

simulates billions of plasma particles inside a reactor. S3D [LYC+18] is a direct numerical

simulation (DNS) code used in computational fluid dynamics, which solves the Navier-

Stokes equations. LAMMPS [PCT07] stands for Large-scale Atomic/Molecular Massively

Parallel Simulator and is used to model particles at the mesoscale or continuum levels.

HACC or Hardware/Hybrid Accelerated Cosmology Code [HPF+16] is used to conduct high

resolution simulations of cosmological structure for modern-day galactic surveys. IOR is

a benchmarking application developed by LLNL to test the performance of parallel file

systems. We use it to simulate adversarial traffic in the system allowing us to study the impact

of artificially high I/O and network traffic on applications. In order to evaluate the effects

of different workloads on the I/O performance of the system, we use HPC applications

widely used in leadership computing facilities. We use Darshan traces collected from runs

of the application to replay the expected I/O behavior on our simulated systems. These

representative applications perform blocking I/O. We also created tools to weakly scale the

Darshan logs to occupy a specific fraction of the system. We discuss the scaling approach

in a later section.

Table 2.2 lists the applications used in our workloads and their I/O properties, and

Table 2.3 lists the combinations of these applications we use as representative workloads

for our simulation experiments. Figure 2.4 shows the I/O patterns of our representative
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Figure 2.4: File write patterns for different applications from Darshan traces.
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Table 2.2: Application Traces

Application MPI Ranks Avg. I/O / Rank (MB)

GTC 7680 669.41
LAMMPS 21600 19.78

S3D 6000 154.49
HACC 8192 386.39

IOR 768 1024

applications as derived from the Darshan traces. GTC has a single I/O phase towards the

end of the execution of the application with all ranks (except rank 0) writing very similar

amounts of data to persistent storage. Each rank in LAMMPS opens several files for writing

small amounts of data into each file. S3D has 3 I/O phases for each rank. Except rank 0, each

of the ranks writes to an independent file in each of the 3 I/O phases. The write operations

are also staggered with increasing rank numbers. For HACC, all the ranks have 2 write I/O

phases to the same file. While each of the ranks open their respective files at the same time,

the operations exhibit a scattered pattern with each rank experiencing a delay before write

operations commence. This significantly reduces the overlap between writes from different

ranks. Finally, IOR as a benchmark has a single I/O phase with each rank writing 1 GB to

independent files from the very beginning of application execution. The nodes are modeled

to be Summit-style (200 petaflop CPU/GPU system at OLCF) fat nodes with 6 GPUs, i.e, we

allocate 6 MPI ranks to each compute node in our simulation. Our choice for application

combinations were restricted by the number of nodes in the system we are simulating and

memory limitations on our compute nodes.

Table 2.3: HPC workloads

Total MPI Compute %age of
Workload Ranks Nodes Total Nodes

GTC 7680 1280 23-27
GTC, IOR 8448 1408 25-30
GTC, S3D 13680 2280 40-47
GTC, S3D, HACC 21872 3646 64-75
HACC 8192 1366 25-29
HACC, IOR 8960 1494 27-32
LAMMPS 21600 3600 63-74
LAMMPS, IOR 22368 3728 65-77
S3D 6000 1000 17-21
S3D, IOR 6768 1128 20-23
S3D, LAMMPS 27600 4600 80-95
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Augmenting Darshan Traces

More powerful machines allow application developers to increase the size of their datasets,

create higher fidelity simulations, and perform analysis at finer granularity. To more effec-

tively represent application I/O behavior in next-generation machines, we develop tools

that allow us to scale Darshan application traces and add synchronization primitives to

them. First, our tool allows us to scale the number of ranks in an application trace. Follow-

ing the weak scaling paradigm, it uses the I/O behavior of the other ranks to scale-up the

number of ranks within a job. Second, we can also scale the size of the I/O per rank in the

job for strong scaling. Third, we added the ability to repeat the number of iterations that

the Darshan trace is replayed for with a certain interval. And finally, we have the ability to

collate several consecutive small writes in the trace into bigger ones. We can, therefore,

represent future application I/O sizes while being consistent with application I/O behavior.

We can also add global and sub-communicator barriers to the traces to more accurately

represent I/O behavior of the application.

Job Placement

Applications in leadership-class systems are rarely allocated to a completely contiguous

set of nodes. The HPC batch scheduling algorithm often results in fragmentation with

several small chunks of contiguous nodes that are available. This exacerbates inter-job

and intra-job interference (see Yang et al. [YJM+16]) for MPI communication. This can also

have severe effects on I/O performance with interference resulting in large performance

variations for non node-local BB configurations and the PFS. We use job allocation logs

from the Titan supercomputer at OLCF to guide the allocation of applications to nodes

in our workload. This allocation strategy lets us evaluate the impact of application I/O

patterns not only on interference in the network but also in terms of interference between

SSD devices of BBs.

2.6.3 System Configuration

In this section, we describe the systems we simulate using the CODES simulation suite. We

broadly categorize the systems based on their network topology. For each of the network

topologies, we create configurations for the different BB architectures subject to evaluation.
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Fat-Tree Network

We use the fat-tree model in CODES to configure a fully non-blocking fat-tree network

resembling Summit. Our configuration is a 3 level fat-tree with 270 edge switches (radix of

36) and up to 4860 terminal nodes. Like Summit, our configuration has a network bandwidth

of 25 GB/s per node. For the node-local BBs, each of the terminals has compute nodes with

a local SSD. The grouped configuration has one BB server per edge switch, and the global

BB configuration has 15 edge switches with only BB servers for a total of 270 BB servers. For

effective comparison we have both the configurations, grouped and global, with the same

number of BB nodes. Furthermore, all the 3 configurations have nearly identical aggregate

bandwidth (within 1% of each other.)

Dragonfly Network

We use the dragonfly model in CODES to simulate a Cray XC30 system along the lines

of the Edison supercomputer at NERSC. It uses an Aries-style interconnect for a total of

5,760 terminal nodes with a bandwidth of 8 GB/s per node. The local and global channels

are configured with a bandwidth of 5.25 GB/s and 1.5 GB/s, respectively. We use adaptive

routing which has been shown to perform better than minimal routing for adversarial traffic

patterns [KDSA08]. Here, the node-local BBs are also situated on each compute node. The

grouped configuration has a BB for every 2 blades in the network, where each blade consists

of 4 terminal nodes connected by an Aries SOC. The global BB configuration consists of

180 blades with BB servers.

A 2:1 Tapered Fat-Tree Network

We also use the fat-tree model in CODES to configure a 2:1 tapered fat-tree with twice the

number of links for terminal nodes as the links going to the upper-level switches. This

reduces the cost by reducing the number of switches and cables required for the same

number of terminal nodes. Tapering of a fat-tree might negatively impact performance

of the network as it is no longer non-blocking. To facilitate a comparison with a full non-

blocking fat-tree network, the 2:1 tapered fat-tree retains the other configuration parameters

from our fat-tree configuration.
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BB Nodes

Node-local BBs are simulated as a single SSD device per compute node with write and

read bandwidths of 1,400 MB/s and 2,300 MB/s, respectively, for both dragonfly and fat-

tree networks. The grouped and global BB nodes consist of 18 SSDs each for the fat-tree

configuration and 6 SSDs each for the dragonfly configuration. The aggregate write and

read bandwidth of BB nodes is 25,000 MB/s and 41,000 MB/s in the fat-tree configuration

and 8,400 MB/s and 13,700 MB/s in the dragonfly configuration, respectively, for both the

grouped and global BB models.

2.7 Evaluation

We evaluate the performance of different workloads subject to a range of factors. We run

100 simulation experiments on an HPC cluster using as input application traces collected

from runs on the Titan supercomputer at OLCF [Lab21d].

First, we look at how the performance of single job workloads are impacted by the choice

of BB architectures. We compare the architectures across the different network topologies

based on total time spent on I/O, network hops and BB performance. We then study the

impact of adversarial jobs on our representative workloads. This involves a workload co-

scheduled with an IOR job, which periodically writes 1 GB files to BBs, enabling us to gauge

performance in a worst-case scenario. Finally, we study the impact of co-scheduling a

combination of representative jobs on performance parameters.

2.7.1 Validation of Node-Local BB Model

To validate our node-local BB model, we run the IOR benchmark on Summit-style [Lab21c]

nodes in a fat-tree network with node-local BBs. We run the benchmark with 96 ranks

over 16 nodes, and compare the results with those obtained from simulation. Each rank

writes 1GB of data to independent files on their local BBs. We also set the parameters of

our simulated BBs to match the configuration of the actual devices. We set the read/write

bandwidth to 3,200 MB/s and 2,100 MB/s respectively with negligible seek overhead.

Table 2.4 shows the comparison between the simulated and actual run of the IOR

benchmark on 16 nodes. We can see that the write time and bandwidth obtained from the

simulation deviates from the actual results by less than 3%. This validates our model to

simulate node-local BBs with considerable accuracy.
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Table 2.4: Node-Local BB Validation

Parameter Actual Simulated

Size/Rank (GB) 1 1
Aggregate Size (GB) 96 96

Write Time (s) 3.01 2.92
Aggregate Bandwidth (MB/s) 32600.56 33616.48

2.7.2 Validation of Distributed BB Models

We validate our distributed BB models (which combines grouped and global from Fig. 2.3

for now) by running the IOR benchmark on the Konrad [Ber21] TDS (Test Development

System) for 6 - 192 ranks over 64 compute nodes. The Konrad TDS has an Aries Dragonfly

network topology and distributed BBs. We use their BB configuration within CODES for a

write bandwidth of 1,900 MB/s and 15µs of write overhead, based on a single node with

6 ranks writing to one SSD of the BB, in order to validate against the performance of the

actual machine. Figure 2.5 shows the comparison between the actual and simulated runs

of the IOR benchmark. The results from the simulation deviate from the actual runs by less

than 11%. This validates our CODES model to simulate global and grouped distributed BBs

accurately.

Cost Modeling

In a cost-benefit analysis, we consider DOE models of workloads for supercomputing cen-

ters. Capability computing centers cater to a workload that requires 20% or more of the

resources in a supercomputer to achieve the desired science. These centers tune scheduling

to prioritize large jobs to access the machine. These workloads often use file-per-process

outputs to mitigate performance degradation due to parallel file system locking at scale.

Capacity computing center resources are targeted toward smaller average job sizes domi-

nated by single-shared-file outputs. Smaller jobs are less impacted by file system overheads

and single-shared-files do not require post-processing like file-per-process.

We make the following assumptions for cost modeling that are based on Summit [Lab21c].

We assume that distributed BB file-per-process performance and single-shared file per-

formance are equivalent, and there is no locking overhead. We assume that there is no

opportunity to perform single-shared file operations on node-local systems. Using Sum-

mit’s storage performance numbers at 2.5 TB/s for PFS and 9.7 TB/s for the node-local BB,

a 35% memory checkpoint takes approximately 5 minutes to the parallel file system and
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Figure 2.5: Distributed BB Validation

2 minutes to the burst buffer based on related work [VdSB+18]. Over the course of a year,

such workloads in a capacity center result in 100% acceleration of the I/O portions of the

workload by 2.5X. In contrast, the capability center accelerates the I/O portions by 1.8X as

only 70% of the I/O workload can be accelerated (on the BB side).

Table 2.5 compares Capital Expenditure (CAPEX) and the Operational Expenditure

(OPEX) of the node local and distributed models using current hardware. The numbers

presented are a simplification of actual OPEX values and do not account for voltage scaling

during idle phases. These approximations also omit the OPEX maintenance costs that are

necessary for running such systems. The numbers demonstrate that the distributed model’s

CAPEX is 2.4X higher than the node-local model. The energy-based OPEX is also higher,

consuming over double the power due to CPU, network, and infrastructure overheads.

Compared to node local BBs, a capacity center using a distributed BB would more than

double the CAPEX and OPEX. A capability center (same CAPEX+OPEX) would only benefit

from 70% of the I/O being accelerated, still making distributed BBs less appealing.
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Table 2.5: Distributed vs. Node-Local Capital and Operational Expenditure Comparison

Node Local CAPEX Total Cost $4,608,000
4608 x8 NVMe Devices $1000

Distributed CAPEX Total Cost $11,415,600
4832 x4 NVMe Devices $800
302 AMD EPYC Servers $25,000

Node Local OPEX 5 Yr Cost $1,000,000
NVMe 4608 25W

Total 115KW

Distributed OPEX 5 Yr Cost $2,600,000
NVMe 4832 25W
Server 604 300W

Total 302KW

2.7.3 Effect of BB Placement on Performance

We simulated the 4 representative jobs (GTC, HACC, LAMMPS and S3D) running indepen-

dently on the system for each BB architecture and network topology. The node allocations

are not contiguous but guided by allocation logs from the Titan supercomputer, which are

typically not contiguous in node locations. This provides a realistic comparison when we

introduce adversarial jobs as well as co-schedule other applications as part of the workload.

Figure 2.6 shows the average number of hops incurred by I/O traffic for each of the given

applications across the different BB architectures. Since node-local traffic does not have

to traverse the network, the number of hops for node-local BB model is 0. For the fat-tree

network, all traffic to the global BBs is routed across the entire diameter of the network. For

the grouped BBs traffic is routed to a combination of the BB servers in the local group as

well as adjacent groups because of the striping policy.

Observation 1: For bursty traffic in a dragonfly network with global BBs we observe high

non-minimal routing, with I/O traffic incurring significantly higher hops.

For the dragonfly network we see significant differences between applications for the

global BB architectures. GTC exhibits highly bursty traffic, performing significant I/O in a

relatively short duration of time. This causes a higher fraction of the packets to be routed

non-minimally compared to HACC, which exhibits staggered rather than bursty behavior.

The grouped architecture, on the other hand, does not concentrate traffic in any one part of

the network and, therefore, does not suffer from excessive non-minimal routing. Dragonfly

networks attempt minimal routing first, followed by non-minimal routing. Therefore, high

non-minimal routing indicates congestion in the network.
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(a) Dragonfly (b) Fat-Tree

Figure 2.6: Avg. number of network hops incurred by application’s I/O traffic

Observation 2: Grouped BB in a dragonfly topology perform their I/O phases significantly

faster than the global configurations for bursty applications.

Figure 2.7 shows the I/O phase of each rank of the application on the y-axis (from highest

rank on the top to lowest rank on the bottom) over time (x-axis) for a single I/O phase. As

expected, the performance of the node-local BBs is independent of the choice of network

topology across all applications. Ranks in the grouped architecture spend consistently less

time in their I/O phase than with the global BB architecture for the three network topologies.

The difference is most pronounced for the dragonfly topology with bursty applications. This

is due to the lower global bandwidth on the dragonfly topology compared to the fat-tree

with full bisection bandwidth. In case of HACC, not all of the ranks attempt write operations

at the same time. This limits the network contention in the part of the network where the

storage resources are concentrated.

Observation 3: Global, grouped and node-local BB configurations have comparable perfor-

mance for fat-tree networks except for applications with staggered I/O like S3D.

In the case of fat-tree topology, all applications except S3D spend comparable amounts

of time in their I/O phases for the three BB architectures. For S3D, the grouped and global

configurations outperform the node-local BB configuration for both the full fat-tree and

the 2:1 tapered fat-tree networks. Since only a fixed number of ranks in S3D (400 in this

case) perform I/O at any given time, there is more available bandwidth in the case of global

and grouped BB configurations, while the application is bottle-necked by the single SSD
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(b) HACC, x-axis from 0 to 45 seconds
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(c) LAMMPS, x-axis from 0 to 3 seconds
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(d) S3D, x-axis from 11 to 26 seconds

Figure 2.7: I/O phases of each application across network topologies and BB architectures,
y-axis from highest (top) to lowest (bottom) rank
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in the node-local BBs. The tapering imposes a performance penalty on both grouped and

global BB configurations, but the network contention between the edge and aggregation

layers results in the global configuration paying a significantly higher penalty compared to

the grouped BB configuration.

Observation 4: Node-local BBs outperform the other configurations for bursty applications.

In case of applications with a scattered I/O phase like HACC, the node-local configuration

results in each rank spending more time on I/O.

We can also see from Figure 2.7 that node-local outperforms grouped and global BB

architectures for bursty applications like GTC and LAMMPS. This is because (a) the SSD is

local to the compute node and I/O does not incur slowdown due to network congestion,

and (b) there is much less contention for the SSD device compared to grouped and global

BBs. For HACC, results show that each rank in the node-local configuration spends signifi-

cantly more time on I/O operations compared to grouped or global BBs but the resulting

I/O phase lengths are almost identical irrespective of BB placement. This is because while

all ranks in the application open their respective output files at the same time, they com-

mence write operations only after a delay of anywhere between 1 to 40 seconds. Due to

this scattering of write operations by ranks, network and storage contention is reduced

drastically. Since the node-local BBs have lower bandwidth compared to BB servers in the

grouped or global architectures, each rank spends more time on I/O. In this case, HACC

has a schedule that perfectly matches bandwidth restrictions of the grouped and global

models, as a mismatch would have caused performance to be adversely affected, which is

not the case. We conjecture that an I/O runtime that manages scheduling of I/O operations

can potentially benefit grouped and global BB architectures.

Our framework can also model different storage devices like Phase Change Memory

(PCM) and 3D XPoint. To assess diverse BB devices, we experimented with a cost (overhead)

of 45µs per operation for BBs (graphs omitted due to space). In this case, node-local BBs

significantly outperform the other configurations for bursty applications and staggered

applications like S3D. Furthermore, global and grouped BBs in a fat-tree configuration

had similar performance across applications for storage devices with seek and operational

overhead.

2.7.4 Effect of Co-Scheduled Jobs on Performance

We also simulate the performance of the representative applications when scheduled along-

side other applications plus an adversarial one. Here, the simulated storage device has
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(a) GTC

(b) HACC

(c) LAMMPS

(d) S3D

Figure 2.8: I/O phases of each application with adversarial background workload across
network topologies and BB architectures.
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additional read and write overheads of 45µs per operation. This allows us to experiment

with emerging storage technologies that have different characteristics than current genera-

tion SSDs (without measurable write overheads). We use traces of IOR, an I/O benchmark

generating large volumes of data at specified intervals to simulate the adversarial traffic.

The node allocation strategy causes co-scheduled jobs to be assigned to certain nodes

adjacent to the nodes of the application we are studying. Since the co-scheduled jobs have

no effect on the performance of the node-local BBs, we show results only for global and

group-local BBs.

Figure 2.8 shows the effect of scheduling multiple jobs on application workloads. The

different configurations are specified by network type and BB architecture. DF, FT, and TFT

refer to the dragonfly, fat-tree, and tapered fat-tree networks, respectively. The figures show

the total duration of the I/O phase (in seconds) on the y axis for each application, rather

than on a per-rank basis.

Observation 5: Applications with I/O phases that do not overlap significantly have little to

no effect on the application’s I/O phase length even for bursty applications.

For GTC, the I/O phase of the application has little overlap with the traffic from co-

scheduled jobs. This minimizes interference between jobs. Even though some ranks com-

plete their I/O phases sooner and others later, the average time spent by each rank is not

significantly affected. Even though individual ranks spend more time in I/O for certain

ranks of the GTC application, the overall I/O phase remains similar.

Observation 6: The I/O phase lengths of non-bursty/scattered applications are not signifi-

cantly affected by co-scheduled jobs, though there is an increase in the average time spent in

I/O by each rank.

For HACC, the scattered I/O pattern results in ranks adjacent to the nodes running other

jobs spending more time on their respective I/O phases, especially for fat-tree and tapered

fat-tree topologies, which is not visible from the aggregate plots. The overall I/O phase of

the application remains unaffected due to the highly scattered nature of I/O operations

even as the average time spent in the I/O phase increases. Since the I/O behavior of HACC

is not bursty, it is almost unaffected by the I/O behavior of other applications running on

the system.

Observation 7: Bursty applications in fat-tree and tapered fat-tree networks are significantly

affected by co-scheduled adversarial jobs due to contention for both storage and network

resources.

LAMMPS, on the other hand, experiences significant interference from the adversarial

job. The I/O phase of ranks adjacent to nodes allocated to the adversarial job increases
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significantly, causing the application to experience slowdown. While the interference is

experienced across BB architectures and network topologies, the effect is most pronounced

for the fat-tree networks. In case of the tapered fat-tree network, the limited network

bandwidth from the edge to the aggregate layers results in similarly degraded performance

for both the global and the grouped BB configurations. The bursty nature of LAMMPS

coupled with its I/O phase coinciding with that of the IOR job results in contention for

both storage and network resources. Although experiencing significant slowdown due to

IOR, LAMMPS is not at all affected by the a co-scheduled S3D job as their I/O phases do

not coincide.

Observation 8: The I/O performance of applications with custom patterns, like S3D, is de-

pendent on the node allocation policy employed by HPC centers.

S3D experiences significantly degraded performance due to an IOR job being scheduled

along side S3D, especially for the fat-tree networks. Just as for LAMMPS, network contention

in the tapered fat-tree network causes similarly degraded performance for both the global

and grouped BB configurations. We can also see from the figure that the tapered fat tree

configuration imposes the highest penalty compared to the dragonfly network, where the

performance degradation is the least. This indicates high network contention rather than

contention at the storage resources. Furthermore, a co-scheduled GTC job has little to no

effect on the I/O performance of S3D in dragonfly and fat-tree networks, but significantly

affects performance for both global and grouped BB configurations in the tapered fat-tree

network. Due to the nature of I/O in S3D, if the co-scheduled job is allocated nodes adjacent

to the higher S3D ranks, the long tails of those ranks would result in increased I/O phases

of the entire application.

Finally, we also perform experiments with SSD devices with 0 seek and operational

overhead. Our preliminary results show that HACC is not significantly affected by the storage

device model because of the scattered I/O pattern. Similarly, LAMMPS’s I/O phase length

decreases, reducing the overlap with the adversarial jobs, and is therefore not less affected

by the adversarial job as in Fig. 2.8, which includes 25µs and 20µs seek and operational

overheads.

2.8 Conclusion
We have developed a simulation framework for the provisioning of burst buffers in su-

percomputers to provide accurate, multi-tenant evaluations of realistic application and

storage workloads. This allows us to compare multiple network and BB configurations as
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a means to select a best configuration for procurement of an HPC system based on the

target workloads to run. Our experiments indicate difference depending on application

characteristics, such as I/O burstiness, BB placement, overlap of I/O phases, background

workloads, and network topology with an intricate interplay, all of which aid in ultimately

deciding on a network topology and BB placement.
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CHAPTER

3

PREDICTING THE IMPACT OF

GPUDIRECT ON MULTI-NODE

APPLICATION PERFORMANCE

3.1 Introduction

The use of general-purpose graphics processing units (GPGPUs) in modern high perfor-

mance computing (HPC) systems is becoming increasingly popular, with six of the ten

fastest machines on the Top500 list using GPUs to speed up computation in November

2020 [Top20]. The continued improvement in GPU communication technologies has made

GPUs first-class computation devices with the ability to directly exchange messages with

one another, both within and across compute nodes. Hardware for data movement to and

from GPUs such as NVLink and enhancements in system software such as GPUDirect has

reduced latencies, increased throughput, and eliminated redundant copies during data

movement between different system components.

While GPUs on HPC systems have dramatically increased a node’s computing capabil-
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ities, the interconnect bandwidth per flop/s has not increased at the same rate even on

high-end systems such as Summit and Sierra. The objective of this work is to explore the

impact of using a large HPC system with multi-GPU nodes and modern GPU communica-

tion paradigms such as NVLink and GPUDirect on the messaging performance of scientific

applications. Moving data directly between GPUs using technologies such as GPUDirect

requires modification to the application code. To assess the performance impact of making

such changes before the developer makes extensive modifications, we use parallel discrete

event simulations (PDES) to study such what-if scenarios.

Most current network simulators treat the compute node as a black box and only model

network communication to and from the node. In order to simulate direct communication

between GPUs, GPUs need to be treated as first class objects in the network simulation. We

use the TraceR-CODES [AJB+15] [CLL+11] simulation framework that replays MPI execution

traces using PDES to predict the communication performance of parallel codes. Explicitly

simulating communication between the GPU and the network requires modifications to

the traces used for simulation and also to the network simulation framework. We extend the

Score-P OTF2 library [EWG+11] to annotate MPI calls with locations of the MPI send/receive

buffers, which allows us to identify whether the buffers are in GPU memory or host memory.

This allows us to predict the performance of the code if the buffers were read from GPU

memory instead of host memory for instance.

We also extend TraceR-CODES to explicitly model GPUs, and communication between

GPUs or between the host and GPUs. We model both point-to-point and collective MPI

communication using events between CPUs and GPUs. We add functionality to replay any

MPI messages that send data from CPU buffers as though they were sending data from GPU

memory instead, using GPUDirect communication. With this added what-if functionality,

application developers can evaluate the performance of an application under various node,

system, and interconnect configurations. This enables them to direct their coding efforts in

deciding if they should enhance their applications with GPUDirect. Further, these novel

capabilities can help system designers in making decisions about system procurement.

They can use traces from applications that are important to the HPC center to simulate

their performance across a wide range of network topologies, node configurations and

system parameters before making procurement decisions.

We utilize these what-if capabilities to evaluate how application performance differs

when using different communication paradigms, and identify the main factors contributing

to GPUDirect benefits today. We also identify communication patterns largely unaffected by

GPUDirect today, which can help in procurement, application tuning, and future enhance-
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ments of GPUDirect. Several scientific applications are yet to take advantage of GPUDirect.

For those, our results provide guidance in determining the potential impact of GPUDirect

before investing time into code refactoring.

The primary contributions of this work are as follows:

• We extend the Score-P OTF2 library to add annotations to MPI calls in OTF2 traces

that identify the origin of source / destination buffers, thereby explicitly recognizing

GPUDirect communication in application traces.

• We extend the TraceR-CODES simulation framework to model GPUs explicitly as

first-class independent communicating devices along with modeling the associated

GPUDirect and NVLink communication for point-to-point messages and collectives.

• We add the ability to explore the impact of these modern communication paradigms

on applications that are yet to take advantage of them.

• Finally, we perform simulations using traces from proxy applications, and explore and

analyze the predicted performance across a variety of node, system, and application

configurations.

3.2 Background

We first provide a brief overview of modern GPU-based architectures, and the TraceR-

CODES simulation framework used for performance predictions in this work.

3.2.1 GPU-based Node Architectures

Over the last decade, GPGPUs have been used to drive scientific computations and have

led to tremendous improvements in performance and energy efficiency, particularly for

numerical kernels [OHL+08, KES+09]. The development of frameworks and languages, such

as NVIDIA’s Compute Unified Device Architecture (CUDA) [Nvi07] and the Open Compute

Language (OpenCL) [SGS10], have further contributed to establishing GPUs as first-class

computational devices in HPC systems. Recently installed supercomputers such as Sierra

and Summit rely predominantly on GPGPUs for their peak flop/s. The logical design of a

node on the Sierra system is shown in Figure 3.1, featuring four high-end GPUs connected

to two Power 9 CPUs via NVLink. The CPUs have access to a non-volatile memory (NVMe)

device serving as a burst buffer. Summit has six GPUs per node in a similar design.
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Figure 3.1: Organization of a compute node on the Sierra supercomputer at LLNL.

The trend of delegating more and more computation to GPUs has spurred the develop-

ment of modern interconnects such as NVLink [FD17] and communication methods such

as GPUDirect [SAL+11]. While previous generations of GPUs were connected over slower

Peripheral Component Interconnect Express (PCI-E) interfaces (green lines in the figure),

newer GPUs with NVLink (depicted using blue lines) significantly increase throughput

between GPUs, and GPUs and CPUs on a node. Prior to GPUDirect, data subject to commu-

nication between GPUs on the same node (over the node-local interconnection network) or

between GPUs on different nodes (via the network passing through the Network Interface

Card (NIC)) required multiple copies, i.e., from GPU HBM memory via NVLink and over

the memory bus (red) to the host DRAM on the sender, and from the host DRAM to the

GPU HBM on the receiver. We refer to this mode as HostCopy throughout the thesis. The

GPUDirect communication protocol avoids these extra copies by enabling data to be sent

directly to the NIC from the GPU device’s DRAM via NVLink and PCI-E. The GPUDirect

transfers are still initiated by the CPU but the memory copies between the CPU DRAM and

GPU HBM can be avoided.
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3.2.2 Parallel Discrete Event Simulation

Parallel Discrete Event Simulation (PDES) uses a sequence of events to model a system with

each event resulting in a change in the state of the system. Between these events which

trigger state changes, the system is assumed to be in a constant state. While PDES can be

used to model a wide variety of systems, it has been used extensively in existing literature

to model HPC networks.

In the context of this work we use PDES to model our HPC interconnect with packet

level precision. So each packet in our simulation is represented by an event which results

in a change in the state of the system. As already mentioned earlier PDES has been used

extensively in prior work to model HPC networks [LHSJ15, WCM+16, MCRC16, KZM+19].

3.2.3 The TraceR-CODES Simulation Framework

The TraceR-CODES (https://github.com/hpcgroup/TraceR) simulation framework (Fig-

ure 3.2) can be used to predict the performance of production applications by replaying

their MPI execution traces on a variety of network topologies and system configurations.

CODES performs packet-level simulations of communication in parallel workloads run-

ning in HPC environments. CODES provides models for several network topologies such as

fat-tree, dragonfly, torus etc. ROSS is the discrete-event simulation engine used by TraceR-

CODES. ROSS models each component in the system (MPI processes, switches, etc.) as a

Logical Process (LP) that communicates with other LPs using time-stamped messages. We

go into detail about some of the components of TraceR.

CPU LPs: Each CPU LP in TraceR acts as an MPI rank for an application. A list of times-

tamped MPI operations, usually read from a trace file, is associated with the CPU LP. These

LPs communicate with each other through the network model using events during simula-

tion. They also model compute loops by waiting for the appropriate time read from the

trace.

MPI Model: The MPI model in TraceR is responsible for modeling the MPI layer of an

application. It dictates the protocol to utilize for point-to-point MPI messages (explained

in a later section), the algorithms for collective communication, and the expected behavior

for synchronous and asynchronous sends and receives. While the CPU LPs talk to the MPI

model, the MPI model itself communicates with the underlying network model to affect

MPI communication.

OTF2 Traces: Simulations using TraceR-CODES require capturing MPI execution traces for
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Figure 3.2: The TraceR-CODES simulation framework

each parallel application. In order to collect these traces, we use the Score-P library that

generates traces in the OTF2 format [KRaM+12].

OTF2 Reader: The OTF2 Reader in TraceR takes the application trace file as input and

associates operations in the trace file to each of the MPI ranks (CPU LPs). For each MPI

operation it records the necessary information in order to replay the operation during

simulation. The type of MPI operation, the destination/source for MPI Send/Receive mes-

sages, the root for collective communication, the size of the payload, request numbers for

asynchronous communication, timestamps, etc. are read from the trace file into operation

records for each operation and rank.

3.3 Simulating Communication on GPU-based Parallel Sys-

tems

In the current implementation of TraceR, GPUs and their communication are not modeled

explicitly. For this study, to be able to model the impact of NVLink and GPUDirect tech-

nologies, we had to add the notion of independent GPU LPs to the simulation framework.

Since TraceR uses OTF2 traces to simulate applications, we also need to extend Score-P

and OTF2 traces to record additional information that can distinguish GPUDirect MPI calls

from regular HostCopy MPI calls. Below, we describe the changes to Score-P and the OTF2
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traces, the model of the GPU LP and the associated operations and communications.

3.3.1 Score-P and OTF2

We extend the Score-P MPI backend to query the CUDA runtime for the location of the

buffer pointer passed to the MPI call and then annotate the OTF2 trace file with information

about the location of this buffer. We annotate each MPI event with a flag denoting whether

the buffer was in CPU memory or GPU memory. On the simulator end, we enhance the

OTF2 reader in TraceR. During initialization of the simulation, the tasks for each server

LP are read from the trace file, flagging each operation as either a regular MPI call or a

GPUDirect call using the annotations.

Further, we enhance TraceR-CODES to provide the capability to replay regular MPI

HostCopy calls as GPUDirect calls, which enables us to simulate GPUDirect communication

using traces that were collected for a non-GPUDirect version of the code. This is useful when

applications have not implemented GPUDirect, i.e., their traces only contain regular MPI

message events but not GPUDirect events. This capability enables application developers

to conduct a what-if study assessing the potential benefit they could get by implementing

GPUDirect in their application. In order to compare the performance of GPUDirect with

HostCopy, we also model the time required to copy the buffer from the GPU to the CPU.

This involves modeling the cost of copying the data from GPU buffers in the GPU HBM to

the CPU DRAM via NVLink. This enables us to simulate HostCopy.

3.3.2 The GPU Logical Process

We augment the server LP, which represents an MPI process in our simulation, with an

additional GPU LP. There is a one-to-one mapping between a server LP and a GPU LP,

which gives each MPI process exclusive control over its GPU. This means that in the current

implementation, each MPI rank can only control one GPU. So, if there are n GPUs on a node,

we simulate n MPI processes on it. As the simulation proceeds, server LPs are assigned

events by the simulator from the execution traces during simulation initialization. The GPU

LPs wait to receive events from other LPs to execute their corresponding tasks.

During the simulation initialization process, TraceR reads the respective tasks that

need to be assigned to each process or server LP. The GPU LPs are not assigned tasks

during initialization but receive events from either their associated server LP or other GPU

LPs, both inter-node and intra-node. The time between these communication triggered
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events is used to model either an idle GPU or a GPU engaging in active computation. The

parameters added to TraceR-CODES to support GPU LPs and modeling of their associated

communication are shown in Table 3.1.

Table 3.1: New Parameters for TraceR-CODES supporting GPUs

Parameter Description

gpu_copy_enabled Enable HostCopy simulation
gpudirect_enabled Enable GPUDirect simulation of

regular MPI calls
gpu_copy_delay Latency for cudaMemcpy
gpu_copy_per_byte Copy cost per byte for cudaMemcpy
gpudirect_delay Cost of GPUDirect memory pinning

3.3.3 Simulating HostCopy

The simulation of HostCopy communication uses the packet-level modeling already im-

plemented in TraceR albeit with the added time to copy the message buffer from the host

DRAM to the GPU, or vice versa. An MPI operation is recorded as a HostCopy operation

when the OTF2 reader in TraceR determines that the location of the message buffer is the

CPU. We add parameters to denote the latency and per-byte cost of cudaMemcpy calls

(Table 3.1). In the simulation, this delay is added to the messaging time to facilitate com-

parison with GPUDirect performance. Apart from this delay, the simulation proceeds as if

simulating regular MPI communication.

3.3.4 Simulating GPUDirect

MPI implementations use two different protocols for send/receive operations based on the

size of the message: eager and rendezvous. The eager protocol allows a sender to send the

message to the receiver without having to receive an acknowledgment from the receiver. The

eager protocol is used for smaller message sizes (decided by the EAGER_LIMIT parameter

in MPI). The rendezvous protocol is used for larger message sizes and requires the sender

to receive a notification from the receiver that the corresponding receive has been posted

and a buffer is available for the incoming message.
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As we had obtained traces on Lassen under Open MPI, we also chose to model our

GPUDirect simulation based on the implementation of Open MPI. In conformance to the

Open MPI implementation [Ope21], we do not use the eager protocol for GPUDirect com-

munication. Based on the MPI configuration on Lassen at LLNL, we model all GPUDirect

communication to use the rendezvous protocol.

We extend TraceR to add various GPU LP-related events to enable simulating GPUDirect

communication. When TraceR encounters an MPI operation in the OTF2 trace with the

location of the buffer specified to be in GPU memory, or when we wish to redirect regular

MPI calls as GPUDirect, TraceR uses the GPUDirect model for MPI messaging. These events

support coordination between the GPU LPs and their associated CPU LPs:

1. GPU_SEND: This event is used by the sender server LP to inform its associated GPU

LP that it should initiate a GPUDirect send.

2. GPU_RECV: The GPU_RECV event is used by the sender GPU LP to inform the receiver

GPU LP of an incoming GPUDirect message. This event also carries the MPI payload.

3. GPU_SEND_DONE: This event is used by the sender GPU LP to inform the sender

CPU LP that GPUDirect communication has been completed.

4. GPU_RECV_DONE: The receiver GPU LP uses this event to inform the receiver server

LP that a GPUDirect message has been received.

A timeline of the simulation of the GPUDirect rendezvous protocol as implemented

in TraceR-CODES is shown in Figure 3.3. The sender server LP sends a Request to Send

(RTS) to the receiver server LP. The receiver waits until a corresponding receive has been

posted, after which it informs the sender that it is cleared to send the message using a Clear

to Send (CTS) message. The sender server LP then informs its associated GPU LP to initiate

a GPUDirect send to the receiving GPU LP. Once the message has been transmitted to the

receiver GPU LP, the sender and receiver GPU LPs inform their respective server LPs that

the transmission has been completed using GPU_RECV_DONE and GPU_SEND_DONE

events, respectively.

In addition to simulating point-to-point GPUDirect communication, we also implement

the modeling of GPUDirect for some of the most popular MPI collectives encountered in

HPC applications, namely MPI_Broadcast, MPI_Reduce, MPI_Allreduce, MPI_Allgather

and MPI_Alltoall. The implementation of these collectives has been facilitated by using

control messages between the CPU and GPU as well as GPUDirect communication between
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Figure 3.3: Timeline of GPUDirect messaging in TraceR-CODES.

the GPUs. We use tree-based collective implementations for modeling our GPUDirect

collective communication. Our algorithms are based on the implementation of collectives

in TraceR for standard MPI collectives. We do not model NCCL since the cost of collectives

is dominated by off-node communication.

We add a parameter to represent the cost of pinning the GPU memory address with the

GPU DMA engine in preparation of sending the message (gpudirect_delay in Table 3.1).

GPU memory is pinned in BAR using the CUDA kernel driver [Inc21]. This introduces an

overhead especially for small messages. To simulate NVLink communication, we use the

intra-node bandwidth and node copy queues (NCQ) parameters in TraceR-CODES. The

intra-node bandwidth parameter specifies the bandwidth of the intra-node bus to be used

in the simulation, in this case NVLink. The NCQ parameter specifies the number of queues

to be used for the intra-node communication.

3.3.5 Validation

We validate our simulation models by timing an MPI_Send/Recv between a pair of nodes

on Lassen for both the HostCopy and GPUDirect scenarios for a range of message sizes.

We time the MPI calls for 100 iterations and validate against the average time of the latter

90 iterations (ignoring the first 10 due to caching effects). We then simulate the traces of
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Figure 3.4: Plots showing the validation of HostCopy and GPUDirect simulations using
TraceR-CODES.

the Send/Recv pairs for each message size with both our GPUDirect and HostCopy models.

Figure 3.4 depicts the results of the validation experiments. Both plots use log scales on

their y-axes denoting elapsed time and plot the size of an MPI message on the x-axis. We

can see from the validation results that the time for Send/Recv pairs increases linearly with

the size of the message. For both GPUDirect and HostCopy, we observe that our models are

quite accurate with the average error for GPUDirect is less than 16% for messages that are

of size 32KB or greater and for HostCopy is less than 13%. While we see a larger error for

GPUDirect for small messages, they do not have a significant impact on our simulations

since SW4lite and Minisweep exclusively use large messages (680KB to 11.5MB for SW4lite

42



and 4MB to 8MB for Minisweep). Messages of size less than 32KB account for only about

4% and 0.6% of the messaging payload for AmgX and Lulesh, respectively.

3.4 Experimental Design

Let us describe the system and network used in the simulation studies, and the four appli-

cations used for generating traces.

3.4.1 Simulated GPU-based System

We set up a GPU cluster with 810 nodes and 45 leaf-level switches connected by a 3-level

tapered fat-tree network [LKB+16]. This is similar to the Lassen supercomputer at LLNL,

with a 1.5:1 tapering on the fat-tree. In a tapered fat-tree network, the bandwidth at higher

levels of the tree is reduced while retaining the injection bandwidth at the node. For the

30-port radix switches, this means that 18 ports are used to connect nodes to a leaf-level

switch and 12 ports in each leaf switch connect to higher-level switches. A dual plane

EDR network is simulated, where each node has an aggregate bandwidth of 25 GB/s with

adaptive routing. The packet size for the simulations is 4K. These parameters are selected

to closely mirror the network parameters used in Lassen (and Sierra).

While we collect traces on the Lassen supercomputer as well as model the simulated

system based on the Lassen system, we run our simulations on the Quartz system at

LLNL [Lab21a]. Quartz is 3000 node machine with Intel Xeon CPUs and a Cornelis Omni-

Path network.

Node Configurations: We keep the number of nodes in the system constant but vary the

number of GPUs on each node – 1, 2, 4 and 6 GPUs/node. Each MPI processes gets exclusive

use of its GPU. Therefore, we simulate 1, 2, 4 and 6 processes/node configurations for the

different numbers of GPUs/node. This allows us to compare the performance on different

GPU-based systems such as Sierra (4 GPUs/node), Summit (6 GPUs/node) and Piz Daint (1

GPU/node). We set the intra bandwidth parameter to the bandwidth of NVLink in Lassen

and Sierra, which is 75 GB/s. We also set the GPUDirect delay, CUDA host copy delay and

CUDA copy per byte parameters based on experiments on the Lassen supercomputer. For

application runs that are not divisible by the GPUs/node, all but 1 node utilizes all of its

GPUs; the last node uses only the remaining ranks. For instance, 32 ranks on 6 GPUs/node

will have 5 nodes using all 6 GPUs and the last node using 2 GPUs.
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Simulation Considerations: We base our simulations on the following design decisions:

1. Communication protocol: While HostCopy simulations use both the eager and ren-

dezvous protocols based on message size, GPUDirect simulations use only the ren-

dezvous protocol. This reflects the Open MPI implementation, which does not use

the eager protocol under GPUDirect [Ope21]. Our experiments focus on bulk MPI

messaging since the vast majority of HPC applications use this paradigm for commu-

nication.

2. Exclusive GPU use: Each MPI process in our simulation has exclusive access to a GPU.

While multiple processes can share a GPU, in practice, most HPC applications exclu-

sively allocate a GPU to a process. To better utilize the GPU, applications can reduce

the number of processes to match the number of GPUs, which tends to outperform

scenarios where multiple processes have to contend for the same GPU. Each MPI

process is allocated one core on the CPU associated with one GPU for exclusive use

during trace collection and simulations in our work.

3. Process-to-node mapping: We use a linear mapping to allocate processes to nodes,

where processes are assigned to nodes in MPI rank order. While certain codes may

benefit from an application-specific mapping (discussed in the next section), we use

a generalized mapping without requiring application-specific insight with respect to

communication.

3.4.2 Applications

We collect traces from four proxy applications for the simulation experiments. All applica-

tions are run in weak scaling mode, and we only instrument the main computation loop

in each application to generate traces. For each application, we collect traces on Lassen

using 4 MPI processes on each node in order to provide each rank with an exclusive GPU.

We describe the proxy applications and their input parameters below.

AmgX AmgX [NAC+15] is NVIDIA’s version of a Distributed Algebraic Multigrid Solver Library.

It is a GPU-accelerated solver for sparse linear systems. For our trace collection, we use

the 7-point Poisson example application in AmgX. We collect traces for 32, 64, 128 and

256 processes while weakly scaling the application to maintain the same problem size

per process. We use Vampir [KBD+08] to visualize the communication pattern from the

traces we collect using Score-P (omitted due to space limitations). We see that each process
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Figure 3.5: Time spent in computation versus communication (MPI routines) over different
number of processes.

in AmgX communicates with a maximum of 4 other processes and all communicating

processes exchange the same number of messages.

LULESH LULESH [KMKS13] is a shock hydrodynamics proxy application developed at

LLNL under DoE’s exascale co-design efforts. The number of MPI processes that LULESH

can run on is constrained by n 3, where n ∈N . Given this constraint we collect traces for 27,
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64, 125 and 216 processes with weak scaling. We collect traces for a structured mesh size of

1443 running for 100 iterations. We then repeat these 100 iterations 10 times to simulate

an execution of 1000 iterations. The communication pattern for Lulesh shows that while

there is symmetry in the communication pattern, each rank communicates with a different

number of ranks between 4 and 26. The number of messages exchanged between the ranks

is also different for different rank pairs.

Minisweep Minisweep [BDE+12] is a deterministic S n radiation transport miniapp de-

veloped at Oak Ridge National Laboratory. Similar to AmgX, we perform weak scaling of

Minisweep on Lassen and collect traces for execution sizes of 32, 64, 128 and 256 processes

over 10 iterations. The communication pattern for Minisweep shows a symmetric commu-

nication pattern with each rank communicating with a maximum of 4 other ranks in the

application. The number of messages also remains the same for all communicating pairs

of ranks. Minisweep is a miniapp used to study the communication characteristics of a Sn

radiation transport application and is therefore dominated by communication.

SW4lite SW4lite is a proxy application for SW4 [PS17], a code for solving seismic wave

equations in Cartesian coordinates. We capture traces for SW4lite for 100 iterations and

weakly scale the application for 32, 64, 128 and 256 processes. The communication pattern

for SW4lite shows a symmetrical pattern with each rank communicating with 2-4 other

ranks. The number of messages exchanged between each pair of communicating ranks is

also the same.

3.4.3 Communication Behavior of Different Applications

We use Vampir to analyze the collected application traces to ascertain the amount of time

each application spends in computation vs. the time it spends in MPI routines. This analysis

provides a preliminary estimate of how much of the application runtime can be affected

by either GPUDirect, or the different node configurations. We aggregate the time spent in

all MPI communication functions to get the total MPI time of the application. Figure 3.5

shows the results from this analysis.

AmgX (Figure 3.5(a)) spends a relatively small amount of time in MPI routines ranging

from 5.3% for 32 ranks to 7.2% for 256 ranks. This implies that even large improvements in

MPI time will not significantly improve the overall performance of the application.

For Minisweep (Figure 3.5(c)), we observe that overall execution time is dominated by

the MPI routines. MPI time ranges from 76.0% for 128 ranks to 81.7% for 64 ranks. Minisweep

can greatly benefit from improvements in communication time as even small improvements
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in the messaging performance can significantly improve the overall performance of the

application.

For applications such as LULESH (Figure 3.5(b)) and SW4lite (Figure 3.5(d)) we observe

that a moderate amount of time is spent in MPI routines. LULESH spends between 28.1%

(for 64 ranks) to 31.9% (for 125 ranks) of its execution time inside MPI routines. Similarly,

SW4lite spends between 34.3% (for 64 ranks) and 42.5% (for 256 ranks) in MPI routines. The

benefit accorded to the overall execution by reducing messaging time for these applications

will largely depend on the quantum of improvement in messaging time. Slight variations in

communication/computation ratio can be caused either by variations in the state of the

system when the traces were collected or due to the communication characteristics of the

application for different rank sizes.

This static analysis can be used to determine if it is worthwhile to invest in improving

the MPI performance of the application either using GPUDirect or by changing the number

of ranks on each node.

3.5 Results

This section presents the results obtained from simulating executions via the traces for

the node configurations described previously. For each application, we also simulate the

effect of implementing GPUDirect. We assess the performance of GPUDirect and HostCopy

by comparing the time each application spends in MPI routines (for GPUDirect) and

MPI routines + CUDA memcpy calls (for HostCopy) for both the weak scaling and the

strong scaling scenarios. Finally, we discuss the impact of the node configuration on each

application by varying the number of ranks (GPUs) per node.

3.5.1 Weak Scaling Scenario

Figure 3.6 depicts the speedup in communication time achieved by GPUDirect over Host-

Copy for the four applications while weakly scaling.

Observation 1: Some applications benefit more than others from GPUDirect communication.

Lulesh has only up to a 3% improvement in communication performance while SW4lite

shows up to a 75% improvement in communication performance with GPUDirect.

There is a substantial improvement in communication time for SW4lite (Figure 3.6(d))

when using GPUDirect in lieu of HostCopy, with a 15.8%-74.4% speedup of the former over

the latter. For AmgX (Figure 3.6(a)), we observe that GPUDirect is faster by 16.2%-17.6%
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Figure 3.6: Predictions of speedup achieved in communication time when using GPUDi-
rect over HostCopy for different applications (in weak scaling mode).
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compared to the Host Copy. For Minisweep (Figure 3.6(c)), this difference ranges from 0.1%

for 128 ranks to 7.9% for 64 ranks, and for LULESH (Figure 3.6(b)) the difference is small

(less than 3%).

Observation 2: The impact of reduced communication on overall application runtime under

GPUDirect varies significantly depending on communication to computation ratio. Assessing

both this ratio as well as the improvement due to GPUDirect helps in determining viable

candidates for a GPUDirect implementation. Our experiments show that AmgX with only

5% communication is not a viable candidate while SW4lite with 40% communication is

ideal.

SW4lite spends up to about 42% of its execution time in MPI calls with up to a 74%

improvement in communication performance when GPUDirect is used. Such applications

can be expected to exhibit significantly improved execution times with GPUDirect. Min-

isweep (Figure 3.5(c)) spends up to about 81% of its execution time in communication.

For such applications, the modest improvement under GPUDirect (up to 7.9%) can have

a significant impact on the overall execution time of the application. In contrast, AmgX

spends only about 5.3%-7.2% of its time in communication (Figure 3.5(a)). Even though this

results in up to a 18% improvement in GPUDirect performance over HostCopy, the small

time AmgX spends in communication limits the overall benefit in execution time under

GPUDirect. Finally, LULESH spends a non-trivial amount of time in MPI (up to 32%), but

small improvements in communication performance makes it unsuitable for retrofitting

with GPUDirect.

Observation 3: The improvement in GPUDirect performance for an application depends on

the characteristics of the MPI messages. The size of the MPI messages as well as collective vs.

point-to-point communication characteristics have an impact on GPUDirect performance.

The benefit of using GPUDirect over HostCopy is most evident when MPI message

sizes are large. In particular, Minisweep utilizes predominantly large MPI messages of

either 4MB or 8MB. Similarly, SW4lite uses message sizes of about 64KB (50% of MPI

messages) or about 12MB (the remaining 50% of messages). AmgX has a large distribution

of message sizes: About 8% of messages are greater than 500KB, 17% have sizes of 100KB-

500KB, and 71% range from 1KB-100KB. Experiments further indicate that AmgX benefits

from GPUDirect collectives, dominated by MPI_Allreduce. For smaller message sizes, the

performance improvement is modest. The size of MPI messages ranges between 24B to

6960B for LULESH accounting for more than 44% of the MPI messages, and an equal

number of MPI messages are smaller than 512KB. Only about 11% of the MPI messages

are around 1MB. This results in only a negligible improvement in GPUDirect performance.
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Figure 3.7: Predictions of speedup achieved in communication time when using GPUDi-
rect over HostCopy for different applications (in strong scaling mode).
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While other factors also play a role, results show that message size has a significant impact

on the application’s ability to benefit from GPUDirect.

3.5.2 Strong Scaling Scenario

We conducted experiments using strong scaling traces collected for each application and

rank size. Figure 3.7 depicts the results when strong scaling the applications from 32-256

ranks (27-216 ranks for LULESH). The figure shows the speedup in communication time

achieved with GPUDirect (instead of the HostCopy) for each configuration. Results indicate

improvements of GPUDirect similar to that in the weak scaling experiments across all

applications. For AmgX (Figure 3.7 (a)), GPUDirect results in improvements of 18%-29%

over HostCopy, and for SW4lite (Figure 3.7 (d)) improvements range from 18%-77%.

Marginal improvements are observed under GPUDirect for Minisweep (Figure 3.7 (c))

with only a 11% improvement over HostCopy in the best case, just as in weak scaling

experiments. Similarly, experiments with LULESH (Figure 3.7 (b)) show that GPUDirect is

only about 2%-6% faster than HostCopy during strong scaling.

3.5.3 Effect of Node Configuration

We investigated the effect of node configurations on the communication performance of

applications. HPC centers procure machines with varying performance characteristics, the

Sierra and Lassen supercomputers at LLNL have four GPUs per node while Summit at ORNL

has 6 GPUs per node. In contrast, Piz Daint at CSCS has one GPU per node. Increasing the

number of GPUs per node increases the peak performance of the machine while keeping the

number of nodes constant, thus reducing the network and server costs. GPUs on different

nodes communicate over the inter-node network, which is Infiniband for Lassen, Sierra

and Summit. GPUs on the same node communicate over the intra-node networks, e.g.,

NVLink.

While Figures 3.6 and 3.7 show speedup numbers for communication, we also need to

look at absolute time to understand the impact of the number of GPUs (figures omitted

due to space constraints). The overall execution time can be split into computation and

communication time. Because we are weakly scaling, the computation time remains about

the same across different rank sizes. Increasing the number of GPUs (ranks) on a single

node reduces the number of nodes required for an execution with the same number of

ranks. Adding more GPUs opens up more opportunities for intra-node communication

51



(over NVLink) since there are more ranks on the same node. In our simulations, we allocate

each rank to its own GPU.

Observation 4: Adding more GPUs (and subsequently more ranks) decreases performance of

applications. Furthermore, larger application runs are impacted more than smaller ones.

The communication performance of Lulesh is not impacted by adding more GPUs to the node

while Minisweep experiences a communication degradation of up to 242% for 6 GPUs/node.

The experiments show that while the high-speed intra-node network is used, the overall

communication runtime of an application increases when more ranks are added to the

same node. SW4lite and Minisweep see the largest performance penalty when more ranks

are allocated to the same node. For SW4lite, the total communication time increases by

23.9%-39.8% for 32 ranks and up to 118%-227% for the 256 ranks when increasing the

number of ranks from one per node to 6 per node whereas the overall execution time

increases by 9.1% for 32 ranks to 50.4% for 256 ranks. This is because SW4lite spends only

about 40% of its time on communication. Similarly, Minisweep suffers a performance

penalty of 47.6%-52.6% for 32 ranks and up to 222%-242% for 256 ranks when going from

one rank per node to six ranks per node. This also has a severe effect on the overall execution

time since Minisweep spends a vast majority of its execution time on communication. The

execution time increases by 36.9% for 32 ranks and up to 169.7% for 256 ranks. In case

of AmgX the communication performance decrease is smaller, ranging from 2.4%-3.3%

for 32 ranks and from 6.2%-7.4% for 256 ranks when comparing one rank per node to six

ranks per node. Finally, the communication performance for LULESH remains roughly

the same regardless of the number of ranks allocated to each node. For 27, 64 and 125

ranks, the communication performance remains the same, and for 216 ranks, an increase in

communication time of only about a 1% is observed when modulating the number of ranks

per node from one to six. The standard deviation in the communication time for different

ranks is also quite low: 0.34-0.42 for AmgX, 0.09-0.11 for Lulesh, 0.01-0.02 for Minisweep,

and 0.07-0.12 for SW4lite. The low standard deviation indicates that we do not introduce

jitter when simulating collective communication. Furthermore, it also indicates that our

collected traces do not experience high jitter; otherwise, the standard deviation would be

significantly higher.

The higher communication cost observed while increasing the number of ranks on

each node is due to rising contention for the shared NIC on the node. As the number of

ranks per node increases, more ranks are engaging in MPI communication with ranks

outside the node. This causes contention on the NIC shared within a node. While there is
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Figure 3.8: Minisweep communication/computation times for different node configura-
tions while scaling the network bandwidth with number of GPUs/node.

sufficient bandwidth available on the intra-node interconnect, the increased requirement

for inter-node communication causes a bottleneck at the node boundary.

Under strong scaling, the communication performance of applications degrades as

more GPUs are added to the node, just as it did for weak scaling before. For AmgX, commu-

nication time increases modestly by 3.2% for 32 ranks and up to 10% for 64 ranks. As before,

the increase in communication time for Lulesh is negligible at less than 1% across all con-

figurations. In contrast, SW4lite and Minisweep have significantly reduced communication

performance as more GPUs are added to the node with an increase in communication time

of 39.5%-181% for SW4lite and and from 55.7%-225.8% for Minisweep.

Observation 5: Adding more compute resources to a node requires careful consideration of

the trade-offs, the expected application workload and optimized rank-to-node allocation

schemes. Adding more GPUs to the node requires improvement in network interconnect

technology if communication performance is to be maintained.

HPC centers can increase the peak compute performance of the system by adding more

GPUs to each node while keeping the server and networking costs in check. Consequently,

operational expenditure can also be curtailed. This strategy is becoming common in HPC

centers, i.e., they increase the number of GPUs on each node to four (Sierra at LLNL) or
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even six GPUs per node (Summit at ORNL). But interconnects have not kept pace with

the increase in compute performance of modern CPUs and GPUs creating bottlenecks at

the shared NIC. HPC centers should conduct studies of the trade-offs between cost and

performance. We conducted simulation experiments with Minisweep by increasing the

network bandwidth linearly with the number of GPUs on the node (shown in Figure 3.8).

Our results show that the decrease in communication performance is avoided with inter-

connects having larger bandwidths. Here the intra-node NVLink interconnect starts to

become the bottleneck. To this end, HPC centers need to evaluate the applications that

dominate utilization on their system. Some applications (e.g., AmgX and LULESH) either

show little or no performance penalty when more compute resources are added to the node.

Others, however, like SW4lite and Minisweep, show significantly decreased performance.

Furthermore, we observe across applications that choosing 1-2 GPUs per node has no

significant effect on performance, but a further increase to four or six GPUs per node can

severely degrade performance.

Finally, an application-conscious optimization of the allocation of ranks to nodes can

increase the use of the intra-node interconnect if local communication dominates, which

reduces the pressure on the shared NIC. Such an optimization requires prior analysis of

the MPI messaging characteristics for each application. The proportion of intra-node com-

munication can be increased by allocating more communicating ranks to the same node,

particularly for small groups of frequently communicating ranks with less communication

between such groups.

3.6 Related Work

Prior work has assessed the performance of different GPU interconnect topologies. Li et

al. [LSC+19] evaluate the performance of interconnect topologies such as NVLink, PCIe, NV-

SLI, NVSwitch and GPUDirect on 6 high-end servers and HPC platforms. They observe that

intra-node multi-GPU communication is dependent on the choice of GPU combinations.

Potluri et. al [PHV+13] study the performance of GPUDirect on PCIe-connected GPUs in a

multi-node HPC environment. The authors show that using GPUDirect increases inter-GPU

bandwidth significantly while decreasing communication latency.

Jiao et al. [JLBF10] characterize GPU applications based on performance and energy ef-

ficiency. They study applications with varying compute and memory intensity to conclude

that performance and efficiency of GPUs in an HPC context depends on the computational
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patterns employed by the application. Pennycook et al. [PHJM11] utilize the NAS LU bench-

mark to compare existing HPC clusters and future large-scale systems. The authors use

the LU performance model to extrapolate the performance of the benchmark to future

large-scale distributed GPU clusters.

Choi et al. [CRKB20] model the end-to-end performance of GPU HPC applications

using PDES while Arafa et al. [ABE+21] focus on the prediction of computational perfor-

mance of GPU applications. Finally, Chapuis et al. [CES16] use PDES to predict the GPU

performance by using a model that is a combination of cycle-accurate GPU models and

more coarse-grained analytical models. Their work focuses on the compute performance

of individual GPUs and not on modern GPU communication paradigms or the resulting

MPI performance. To the best of our knowledge, ours is the first work that contributes a

PDES framework to comprehensively study the impact of multi-node GPU applications on

HPC messaging performance with modern GPU communication paradigms.

3.7 Conclusion

This work enhances the TraceR simulation framework with novel capabilities to treat GPUs

as a first-class computation device, enabling us for the first time to model multi-GPU nodes

without actually having to port application code to GPUDirect. It complements TraceR

with support for GPU-aware MPI communication, both for point-to-point messages and

collectives in order to accurately simulate HPC systems with multi-GPU nodes. It also

extends the trace collection utility, Score-P, with a feature to annotate MPI operations so as

to indicate the use of GPUDirect without a need to refactor application code for GPUDirect.

The framework gains the ability to support what-if analysis of modern communication

paradigms such as GPUDirect. The performance of GPUDirect, in a what-if scenario, is then

compared against the traditional method of copying data through host memory. These novel

capabilities also allow us to study the impact of the number of GPUs per node on application

and network performance. Using this framework, the communication performance of four

important HPC applications is evaluated. Results indicate that applications experience

asymmetric benefits from using GPUDirect, i.e., some will benefit significantly while others

do not. Given our what-if analysis, this allows applications programmers to selectively

decide which applications to refactor for GPUDirect. Furthermore, this work points out

that HPC centers are facing an important tradeoff between maximized performance vs.

minimized capital and operational expenditure, i.e., a choice between adding more GPUs
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to fewer nodes vs. deploying more nodes with fewer GPUs — a decision that also depends

on the application mix, as our results show. Finally, the simulator can be combined with

a performance model like a roofline or analytical model to further improve prediction

performance.
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CHAPTER

4

HETEROGENEOUS WORK SHARING AND

CO-SCHEDULING ON CPUS, GPUS AND

FPGAS

4.1 Introduction

Over the last decade significant changes have impacted HPC hardware. The introduction

of accelerators, such as GPUs, FPGAs and DSPs, have added considerable computational

capabilities to HPC systems, albeit at the cost of programming complexity. Furthermore,

recent HPC systems such as Summit [Lab21c] and Sierra [Lab21b] as well as next genera-

tion systems such as Frontier [ORN] and Perlmutter [NER] are adopting fatter nodes with

multiple CPUs and GPUs in favor of many more thinner nodes to achieve the desired peak

performance. This trend is expected to accelerate further [VBG+19]with more and diverse

accelerators becoming a mainstay in HPC systems. While current applications need to be

updated to efficiently leverage this diverse set of computational hardware, there is a need

to effectively manage the available hardware to achieve ideal utilization.

57



Current production applications are designed to target specific hardware. Applications

target GPUs using frameworks such as CUDA [Nvi07] or ROCm, CPUs with OpenMP, and

FPGAs with OpenCL (HLS) or VHDL. OpenCL provides a common interface for developing

applications for a diverse set of computational hardware but applications running on a

specific device leave other computational hardware on the node remaining idle. While there

has been some prior work on sharing work amongst heterogeneous computing devices,

such studies either require significant changes to the application or do not support a wide

variety of devices.

Furthermore, scheduling multiple applications on a single node has raised significant

interest in the HPC community. Co-scheduling applications allows HPC systems to use the

available HPC resources more effectively. Current approaches either target specific devices

for co-scheduling while reducing interference (e.g., by mitigating shared resources when

multiple applications use the same CPU) or avoiding interference by having co-scheduled

applications utilize disjoint accelerating devices (e.g., one using GPU and another using

FPGAs) on a heterogeneous HPC node.

Our work aims to leverage both work sharing and co-scheduling in a common framework

to more holistically use the heterogeneous nature of current and future HPC systems. We

split each OpenCL computational kernel into a “bag of tasks” with each task (or slice)

scheduled on different devices. This enables our work-sharing framework to achieve higher

performance than running on any single device. Furthermore, we use this framework to

seamlessly migrate, expand, or contract our application between devices. This capability

creates a co-scheduling framework to enable multiple applications to run on a single node.

The key contributions of this work are as follows:

1. We create a work-sharing framework that allows OpenCL kernels to be scheduled

on multiple devices without requiring the application developer to make significant

changes in the application.

2. We provide the capability to seamlessly migrate kernels from one accelerator to an-

other, expand kernels to use more accelerators, or contract to use fewer accelerators.

3. We augment the work-sharing framework with co-scheduling capabilities by provid-

ing a framework with pluggable scheduling algorithms and the ability to optimize for

job throughput, job priority, or a hybrid of multiple objectives.

4. Finally, we evaluate our work-sharing and co-scheduling framework under different

scheduling algorithms. We show that applications benefit from a different combina-
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tion of accelerators when using work sharing as opposed to running on any single

device. We further show that workload characteristics such as inter-arrival times and

the application mix can impact the suitability of different co-scheduling algorithms.

We evaluate our work sharing and co-scheduling framework using a single node on a

mid-sized HPC cluster comprising of a CPU, a GPU and an FPGA. We use four applications

to evaluate our work-sharing framework with different combinations of devices. We also

create four workloads comprised of different sizes of the applications and evaluate our co-

scheduling approach under different scheduling algorithms. We will make our framework

and its code base available as open source to the community opening up novel research

and community contributions based on our work.

We evaluate applications and workloads optimizing for job throughput while prioritizing

jobs by arrival time but scheduling algorithms can be developed prioritizing other factors.

Furthermore, we evaluate our framework with a single node, with the potential to expand to

co-scheduling for multi-node applications using MPI in the future. Finally, our framework

is best suited for applications where data output by a kernel is not used by subsequent calls

to the kernel. This, too, can be tackled in future work by orchestrating data movement for

the output of each slice upon slice completion.

4.2 Background

This section provides a brief overview of accelerators used in modern HPC systems —

GPUs and FPGAs. It also provides a fundamental background on OpenCL and High Level

Synthesis (HLS).

4.2.1 GPUs in HPC

General Purpose Graphics Processing Units (GPGPUs) have become increasingly popu-

lar and have been driving scientific computation with significant improvements in per-

formance and power efficiency [OHL+08, KES+09]. The development of frameworks and

languages such as NVIDIA’s Compute Unified Device Architecture (CUDA [Nvi07]), the

Open Compute Language (OpenCL) [SGS10] and, more recently, Intel’s OneAPI [Int] have

contributed toward making GPUs first class computation devices in modern HPC systems

with recently commissioned systems such as Summit [Lab21c] and Sierra [Lab21b] relying

primarily on GPUs for their peak floating point operations per second (Flop/s).
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4.2.2 FPGAs in HPC

Field Programmable Gate Array (FPGA) devices as HPC accelerators have gained traction

in recent times [DRP11, VB13]. FPGAs consist of configurable logic blocks (CLBs), digital

signal processing (DSP) blocks, I/O blocks, a block RAM, a digital clock manager (DCM)

module and a programmable interconnect to connect these blocks. Figure 4.1 shows the

block diagram of an FPGA and its components. The CLBs consist of look up tables (LUTs),

which are used to program the application logic into the FPGA hardware. FPGAs are often

connected to the system as PCIe devices and while current generation FPGAs might lag

behind other accelerators, they have been shown to be more energy efficient for certain ap-

plications [BTL10, NMS+21]. Furthermore, high level synthesis (HLS) has made the process

of programming for FPGAs much more accessible leading to an increase in popularity.
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Figure 4.1: Block diagram of an FPGA with its components

4.2.3 OpenCL

Unlike CUDA, which is an NVIDIA proprietary framework for NVIDIA’s GPUs, OpenCL

provides an open standard for programming parallel applications for a wide range of

accelerators, such as multi-core CPUs, GPUs, FPGAs, DSPs, Tensor cores, etc. It provides a

standard interface for task-based and single instruction multiple data (SIMD) parallelism
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that the application developer can leverage based on the target architecture and application.

Like CUDA, the application is divided into the host code and the device (or kernel) code.

The host code is responsible for initializing the target device(s), allocating memory on the

device, coordinating the movement of data between the host DRAM and the device memory,

and enqueuing the kernel on the device. The kernel code describes the computation that is

to take place on the accelerator.

Figure 4.2 shows the flow of an OpenCL application. The host code is compiled using a

C/C++ compiler and linked to the OpenCL library to generate the host binary. The kernel

code (shown in the figure as device.cl) can either be pre-compiled for a specific accelerator,

or the host code can compile the device code at run-time for any target accelerator (with

some exceptions to be discussed later). The host binary is then executed on the CPU, it

initializes the target accelerator, co-ordinates data movement, compiles the device code

and finally enqueue the kernel on the device before it is run on the FPGA.

Acclerator

CPU

OpenCL 
Library

host_binary
C/C++ 

Compiler

device.clhost.c

Host

Kernel

Figure 4.2: OpenCL application flow
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4.2.4 High Level Synthesis

Traditionally FPGAs have been dependent on Register Transfer Level (RTL) code to describe

the logic that needs to be programmed into the accelerator. High level synthesis (HLS)

allows application developers to write the accelerator logic in a high-level language such

as OpenCL and compile that to its equivalent RTL code that can be programmed into

the FPGA. This allows for abstraction of the core application logic from the underlying

hardware description. HLS tools not only enable compilation of high-level code to RTL but

also provide tools to ensure correctness.

Figure 4.3 shows the development workflow for FPGAs when using HLS. While a full

compile for the FPGA can take several hours, application developers can ensure correctness

using emulation and make changes to the code if necessary. Furthermore, profiling tools

can be used to ensure the energy and performance requirements are met without having to

embark on a full scale compilation. Finally, once correctness is ensured and performance

and energy constraints have been met, the application developers can run the application

on the physical hardware.

4.3 Design and Implementation

4.3.1 Kernel Slicing

This section describes the design and implementation of our work-sharing and co-scheduling

framework. It begins by describing our technique of slicing of OpenCL kernels that enables

work-sharing and supports co-scheduling within our framework.

OpenCL kernels can either be programmed as a single task or an NDRange kernel. In

a single-task kernel, SIMD parallelism is not leveraged and there is only one thread of

execution. This is not suitable for accelerators such as GPUs or even multi-core CPUs, bit

it lends well to FPGAs, which utilize pipelined parallelism. An NDRange kernel describes

the computation as work items and utilizes SIMD parallelism. In this work, we exclusively

study NDRange kernels, which can be programmed to be suitable for all three types of

accelerators, CPUs, GPUs and FPGAs.

In an NDRange kernel, the computation is divided into work items, where each work

item has its own logical thread of execution. The work items are grouped into a local work

group with the ability for threads to synchronize only within the local work group. The

overall computation is referred to by the global work group. Along with the local and global
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work groups, we add the notion of a slice, which is a multiple of the local work group size.

Figure 4.4 shows an NDRange kernel for a two-dimensional (2D) computation with a single

work item shown in green. Since synchronization is possible only within a local work group,

each slice can be computed independently.

Global-Y

Global-X

Local-Y

Local-X

Slice-Y

Slice-X

Figure 4.4: A 2-D NDRange kernel

We leverage this slicing mechanism to transform a single kernel into a series of kernels

(equal to the number of slices) with each slice being computed one after the other. Figure 4.5

shows the overhead of slicing with GEMM with different number of slices. For a small input

size (4096x4096), we observe that a large number of slices (256) degrades performance by

about 5.6% but for larger input sizes the performance is indistinguishable from a simple

single kernel execution.

Note: For the slicing mechanism to produce correct output, we changed the kernel

to take an extra parameter that specifies the current slice. This enables to kernel to write
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Figure 4.5: Overhead of slicing with GEMM

the result of the computation to the correct location in the output buffer(s). This can be

avoided by using the clEnqueueNDRangeKernel function (used to enqueue a kernel on an

accelerator), which accepts a parameter that can be used to specify an offset for the global

work id. However, one of the versions of OpenCL on our system has not implemented this

functionality, which forced us to resemble it by code refactoring [Khr].

4.3.2 Work Sharing

With the ability to organize a single OpenCL kernel into several slices that can be scheduled

as independent kernel executions, we create a fine-grained work sharing framework. Figure

4.6 shows the combined design for our work sharing and co-scheduling framework. Memory

for the input data structures as well as the output data structures are allocated on each of the

accelerators participating in the work sharing for the job. Input data structures are copied

to each of the accelerators (if necessary), then independent threads for each accelerator

atomically picks slices from the bag to execute as a kernel. Once all the slices have completed,

output buffers are copied from the accelerators. Finally, each of the accelerators’ clean-up

routine is executed to release the memory and device(s).
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Figure 4.6: Co-Scheduler and Work Sharing Framework Design

This fine-grained scheduling approach ensures that the job is held up for a shorter time

waiting for a single accelerator to complete execution for the last remaining slice. As seen

in Figure 4.5, such fine-grained execution does not add significant overhead as only a small

overhead is imposed by work sharing. Multiple copies of each data structure need to be

allocated for each of the accelerators and threads, and each accelerator needs to be spawned.

Furthermore, the data structures need to be copied to and from the device memory for each

accelerator that participates in the work sharing adding additional overhead, just as for

GPUs. Finally, for a slow device executing a particular kernel, the last slice allocated to this

device might only complete execution significantly later than when the other accelerators

have completed execution. This can be mitigated by increasing the number of slices (and

reducing their respective size) for the kernel, which may, conversely, hamper performance

on the faster devices.

To maximize performance, the above mentioned trade-off needs to be carefully assessed

for each application. In this work, we show a common OpenCL kernel being executed on

CPUs, GPUs and FPGAs. In general, the work scheduling framework can be used to combine

multiple programming paradigms such as CUDA for GPUs or OpenMP for CPUs. Further,

our system comprises of a CPU, a GPU and an FPGA, but the work sharing framework can

be used for multi-GPU systems (e.g., Petascale systems such as Summit and Sierra) or even

systems where GPUs with differing capabilities are present on the same node or within a

cluster.
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4.3.3 Co-Scheduling

The details of our co-scheduling framework are given in Figure 4.6, which shows the design

of our framework with the scheduler and its interactions. Each job links to the scheduler

library during compilation, and each instance of the scheduler library uses a shared block

of memory to store all scheduling information. Scheduling decisions are taken whenever a

new job arrives, a job switches devices, or a job completes execution. All accesses to the

scheduler’s critical data structure is protected using a semaphore to ensure that multiple

instances of the scheduler read coherent data. While a single job can be assigned multiple

accelerators, an accelerator can only be assigned to a single job.

The interactions between a job and the scheduler are as follows:

1. Before initialization of the application, the application requests an available platform

using getPlatformId. It sends the scheduler profiled information about the appli-

cation’s relative performance on different combinations of devices. The scheduler

either returns an available platform to the application (CPU, GPU, FPGA, CPU/GPU,

etc.) or waits for a platform to become available.

2. Once the getPlatformId function returns indicating the assigned platform, the job

starts execution as described in the previous subsection. After completing each slice,

it polls the scheduler to check if a different platform has been assigned using pollPlat-

formUpdate.

3. If there is no change in the platform, the job continues with the next slice, otherwise

the job waits for all of the currently executing slices to complete. Once all current

slices are complete, the application executes a clean-up of the held devices before

finally informing the scheduler using postDeviceRelease. The application can then

initialize the newly assigned devices and continue execution from the next available

slice.

4. Once all the slices are done, the job informs the scheduler using postJobComplete

that it may terminate.

Switching accelerator platforms incurs a significant overhead on the application since

partial output buffers need to be copied out from the current devices, the current devices

need to be released, the newly assigned devices need to be initialized and input data needs

to be copied to them. It is possible to mitigate some of this overhead. For example, if the

scheduler assigns the GPU+FPGA to an application currently using the GPU, we do not
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need to release the GPU. But we run into an issue with the FPGA: If the FPGA library is

loaded within an application, any use of the OpenCL library in that application would cause

any other application using the FPGA to freeze due to an internal runtime lock beyond our

control. Hence, we load the FPGA library conditionally if and only if the platform returned

by the scheduler includes the FPGA using dlsym.

While this solves our initial issue, it creates another one. An application using the GPU

cannot switch to the FPGA since loading the FPGA library using dlsym will not properly

link it to the OpenCL library, which was loaded when execution started on the GPU. Fixing

this issue requires us to unload OpenCL and reload both OpenCL and the FPGA library

for the application to be able to use the FPGA. Therefore, we have to release all devices

and reinitialize them whenever a change in platform occurs. Notice that a fix for this issue

with the FPGA library could significantly decrease platform switching overhead, but this is

beyond the scope of this work due to partially proprietary software stacks that we do not

have sources of.

We implement and evaluate four scheduling algorithms for co-scheduling:

Baseline

This scheduling algorithm runs applications only on their most preferred device. While

applications can be co-scheduled on the system, they will wait for their primary device to

become available before being scheduled and dispatched. Priorities are assigned to the

jobs based on their arrival times. A lower priority job can be scheduled before a higher

priority job only if both are scheduled on different devices.

Greedy +Up Migration

This algorithm can start application execution on any device that is available. Once a more

preferable device becomes available, jobs are switched to run on that new device. Priorities

are still assigned based on arrival time, but in this algorithm lower priority jobs cannot run

before a higher priority job since any job can run on any device. Furthermore, preference

for switching to a newly released device is given to the higher priority jobs.

Elastic

This algorithm leverages our work sharing framework in conjunction with co-scheduling.

Priorities to jobs are still assigned by arrival time, but this algorithm can schedule higher
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priority jobs on multiple devices using work sharing. Like the previous algorithm, jobs can

start on any device. As other devices become available, jobs expand to share work amongst

multiple devices.

Elastic — Device Limiting

Finally, we implement Elastic-DL by modifying the Elastic algorithm. Elastic-DL is similar

to Elastic with one key difference. Here, we limit the maximum number of devices that a

single job can be allocated to. In our experiments, we set the limit to two devices since we

have a total of three accelerators on our test system.

4.4 Experimental Framework

This section describes the system, applications and workloads used to evaluate the work

sharing and co-scheduling framework.

4.4.1 Applications

We use four applications for the evaluation of our work sharing framework, which together

comprise workloads to evaluate the co-scheduling algorithms.

Mandelbrot

Calculation of the Mandelbrot set is an important application particularly in the field

of encryption and security. Several methods have been proposed to speed up parallel

computation of them using HPC [DSG14, GB20]. We extend the implementation of the

Mandelbrot set provided with the Intel FPGA library to support work sharing. We use the

application to generate a certain number of frames of the set with a certain number of

colors and vary the size of each frame.

GEMM

General Matrix Multiplication (GEMM) is a critical kernel for HPC systems with a wide

variety of applications requiring GEMM for computation. From AI workloads to physics

simulations, all rely on GEMM. For GEMM, we modify the implementation provided with

the OpenCL library to support our framework and evaluate its performance for a range of

different square matrix sizes.
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SpMV

Sparse Matrix-Vector Multiplication (SpMV) is another linear algebra kernel extensively

used in scientific and engineering applications and processing of large data sets. It multiplies

a sparse matrix with a dense vector to produce a vector. We implement an SpMV application

using the compressed sparse row (CSR) format as a sparse matrix representation. We use

a constant number of non-zero elements distributed evenly across the rows for different

matrix sizes during evaluations.

XSBench

XSBench is mini-app representing the computation for a Monte Carlo neutron transport

algorithm [TSIS14]. We modify an OpenCL implementation of the application provided

by Argonne National Laboratory (ANL) to support work sharing and co-scheduling. Our

evaluation uses the event-based simulation with 340k gridpoints and a nuclide grid search.

We vary the number of look-ups to generate different application sizes.

4.4.2 Workloads

We have designed and implemented a workload generator to create randomized workloads

using the above applications with different input sizes. Besides varying inputs, it takes the

maximum inter-arrival time between jobs as a parameter. We created a total of 15 jobs

shown in Table 4.1.

Table 4.1: Applications and Input Sizes

Application S M L XL

Mandelbrot 2048 4096 8192 16384
(Frame Size NxN)

GEMM 4096 8192 16384 22400
(Matrix Size NxN)

SpMV 28 29 30 31
(Matrix Size 2N x2N )

XSBench 16M 32M 64M -
(Lookups)
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Based on these jobs, we create three randomly generated workloads consisting of all

four applications with one instance of each job by varying the maximum inter-arrival time

(IAT) parameter. We also create another workload with just two of the four applications,

namely GEMM and Mandelbrot. The details of each of the workloads are shown in Table 4.2.

Table 4.2: Workload Details

Workload Applications Jobs Avg. IAT

Workload 1 Mandelbrot 15 2.3s
GEMM
SpMV
XSBench

Workload 2 Mandelbrot 15 10.5s
GEMM
SpMV
XSBench

Workload 3 Mandelbrot 15 23.9s
GEMM
SpMV
XSBench

Workload 4 Mandelbrot 12 2.2s
GEMM

These applications and their parameterization provide a diverse mix of different work-

load characteristics. Each of these workloads are evaluated for the co-scheduling algorithms

described in the previous section.

4.4.3 System Details

We run both our work sharing and co-scheduling experiments on a single node on a mid-tier

HPC cluster. The system consists of an Intel multi-core CPU, an NVIDIA GPU and an Intel

Altera FPGA.

The CPU is a 16 core Intel Xeon running at 2.10GHz capable of up to 32 threads (with

Hyper-Threading). The GPU on the system is an NVIDIA RTX 2060 with 6GB of device

memory and the FPGA is an Altera Arria 10 with 8GB of device memory. The system has

64GB of DRAM.
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On the software side, the system is running CentOS with the 4.10.13 version of a back-

patched Linux kernel. Each of the three devices utilizes a different versions of OpenCL: The

CPU uses OpenCL 2.1 provided by Intel, the GPU exploits OpenCL 1.2 provided by NVIDIA,

and the FPGA relies on OpenCL 1.0 also provided by Intel.

4.5 Results

This section present the results of our work sharing and co-scheduling framework for the

applications and their workloads discussed in the previous section. First, we assess results

for work sharing, followed by a discussion on how we use those results to achieve efficient

co-scheduling of these applications.

4.5.1 Work Sharing

Figure 4.7 depicts on the y-axis the performance in time (normalized to the GPU baseline,

lower is better) of each application for different input sizes on the x-axis with work being

shared amongst different combinations of devices indicated by different bars in the legend.

For XSBench and SpMV, we omit certain FPGA combinations from the results. This is due

to the poor performance of the FPGA for these applications. Due to the same reason, we

also omit certain CPU combinations for GEMM.

These results comprise the time spent in computation including copying to and from

the device but neither include the input initialization nor the OpenCL initialization times.

Mandelbrot

For Mandelbrot (Figure 4.7(a)), each of the devices have somewhat comparable perfor-

mance. This results in efficient work sharing between any combination of devices. While

the CPU is the best performing of the three devices, sharing work between any combination

of devices yields better performance. For instance, combining GPU and FPGA (slower indi-

vidual devices) yields a speed-up of 1.308x over running only on the CPU (fastest individual

devices). Similarly, running on all three devices simultaneously results in a speed-up of

2.26x over running on the CPU alone.
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(a) Mandelbrot (b) GEMM

(c) SpMV (d) XSBench

Figure 4.7: Normalized performance over various input sizes for various devices of each
application.
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Figure 4.8: Timeline for the jobs on each accelerator for workload 1 for each of the schedul-
ing algorithms
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Figure 4.9: Timeline for the jobs on each accelerator for workload 2 for each of the schedul-
ing algorithms
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Figure 4.10: Timeline for the jobs on each accelerator for workload 3 for each of the
scheduling algorithms
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Figure 4.11: Timeline for the jobs on each accelerator in the two-application workload for
each of the scheduling algorithms
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(a) Workload 1 (b) Workload 2

(c) Workload 3

Figure 4.12: Turn around time for the jobs in the workloads for each scheduling algorithm.
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Figure 4.13: Overall workload time for the workloads with each of the scheduling algo-
rithms

GEMM

In the case of GEMM (Figure 4.7(b)), only the GPU and FPGA show comparable performance.

The CPU (omitted from figure) performs quite poorly for this particular kernel. The GPU

performs on average 2.522x better than the FPGA for GEMM, but sharing work between the

GPU and FPGA results in a speed-up of 1.386x over running exclusively on the GPU. Adding

the CPU into the mix results in performance either being worse that running on the GPU

alone (for 4096x4096), or worse than running on the GPU and FPGA (for 8192x8192), or only

marginal improvements (for 16384x16384 and 22400x22400) with a speed-up of less than

1.01x over GPU and FPGA. This is because the added overhead of scheduling slices on the

CPU is not amortized by adding the compute capability of the CPU. Another reason for this

is the long tail created by the last slice allocated to the CPU. While the GPU and FPGA have

completed their last slices, the CPU is still working on completing the last slice causing the

long tail. The comparatively better performance of the FPGA can be attributed to the fact

that the application uses the DSPs on-board the FPGA to improve GEMM performance.
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SpMV

The work sharing results for SpMV are shown in Figure 4.7(c). Due to the low memory

bandwidth on the FPGA, the performance of SpMV is more than an order of magnitude

worse on the FPGA compared to the CPU and GPU and has therefore been omitted. The

CPU performs best for this particular application with an average speed-up of 1.358x over

the GPU. This is because SpMV has an irregular memory access pattern that benefits the

CPU more than the GPU as the former favors regular memory access patterns. For SpMV,

as seen before for other applications, sharing work between CPU and GPU results in better

performance than using any single device with an average speed-up of 1.236x over the best

performing device (CPU).

XSBench

Like SpMV, XSBench (shown in Figure 4.7(d)) also experiences poor performance on the

FPGA, but unlike SpMV, the GPU performs better for this application with an average speed-

up of 2.519x over the CPU. Sharing work between the CPU and GPU results in the most

significant performance improvement with a speed-up of 1.3x over the GPU. Adding the

FPGA along with the CPU and GPU results in either a slight increase in performance (16M)

or a slight decrease in performance (32M). This makes FPGA an unsuitable candidate for

work sharing for XSBench.

Discussion: Improvement in device technologies such as higher memory bandwidths

on the FPGA, unified memory between accelerators, and adding more compute units to

devices, can affect the relative performance of each of the accelerators for the applications

studied. The work sharing framework would be able to leverage these enhancements to

further improve overall application performance. Furthermore, the framework can be used

on systems that utilize heterogeneous accelerators such as multiple but different GPUs.

With the current framework, the output is copied out of the device when all slices are

complete. A more fine-grained approach, where the output of each slice would be copied

to the other devices while the kernel is still executing, could improve performance even

more, particularly for applications that rely on multiple kernel executions such as stencil.

4.5.2 Co-Scheduling

Next, we will present results for co-scheduling the workloads discussed in the previous

section. Figures 4.8, 4.9 and 4.10 shows the timeline for each job and the devices they are
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allocated for each of the randomly generated workloads and the scheduling algorithms.

Figure 4.11 shows the timeline for the dual application / 12 job workload, where colors

indicate the application while shades indicate input sizes of a given application per job.

Figure 4.12 depicts the turn-around-time for each job per workload and scheduling algo-

rithm. Finally, Figure 4.13 shows the time taken for the overall workload with each of the

scheduling algorithms. While the previous section presented results for the computation

time, the scheduling results are for overall job time (in seconds).

Workload 1

Figure 4.8 and Figure 4.12(a) depict results for Workload 1. For this workload with low

inter-arrival times (2.2s on average), we see that Greedy+Up (G+Up) outperforms all other

scheduling algorithms with a speed-up of 1.225x over the baseline. While both Elastic and

Elastic-DL outperform the baseline (with a speed-up of 1.091x and 1.051x, respectively),

they still show inferior performance when compared to G+Up. In terms of turn-around-

time, we see that Elastic and Elastic-DL favor the longest and most elastic jobs to the

detriment of most other jobs. We see idle time on certain devices, such as the GPU in Figure

4.8(b) in the time range of 100-150 seconds. This occurs because the scheduler has allocated

the GPU to XSBench after it begins execution on the FPGA. Even though the scheduler

assigns the GPU shortly after to XSBench, the job cannot switch to the newly assigned

device until it either completes initialization or the current slice.

We show the timeline with initialization times for Figure 4.8(b). The dashes in the figure

show when application initialization is complete, after which application starts its kernel

execution. If application initialization has begun with a certain device allocation, it will

hold the device until initialization has completed, even if another device has been assigned

to the application. This is particularly visible for XSBench (large input), which starts on

the FPGA as the GPU is still busy with GEMM (large), but after initialization and a single

kernel run on the FPGA, XSBench is move to the now available GPU. An earlier switch to

the GPU was not possible since any single kernel cannot be preempted but rather needs to

first complete. And the FPGA had already been committed to the first XSBench kernel in

this case. Notice that the delay in migration is dominated by initialization cost, which is

high for XSBench (large), the single FPGA kernel run contributes only insignificantly to the

migration delay. For other figures, dashed lines are omitted to improve legibility, but their

timeline still includes application initialization time, including migration delays, albeit

none of them as significant as in Figure 4.8(b).
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Workload 2

Figure 4.9 and Figure 4.12(b) depict results for Workload 2 with an average inter-arrival

time of 10.5s. We see that both G+Up and Elastic perform comparably with a speed-up

of 1.085x and 1.08x, respectively, over the baseline. Elastic-DL experiences almost similar

performance to baseline with a speed-up of 1.023x due to the overhead of switching between

devices. We see a similar pattern with the turn-around-time as Workload 1, where Elastic and

Elastic-DL give preference to the longest and most elastic jobs while showing an increase

in the turn-around-time for most other jobs. The idle times on the GPU and FPGA at the

beginning of the workload is due to there not being a job in the scheduler queue. Finally,

we still see the impact of idle devices due to applications waiting for initialization and slice

completion before switching devices.

Workload 3

Figure 4.10 and Figure 4.12(c) depict results for Workload 3, which has an inter-arrival

time of 23.9s. We observe that both Elastic and Elastic-DL convincingly outperform G+Up

migration. Elastic and Elastic-DL have speed-ups of 1.198x and 1.167x, respectively, while

G+Up has a smaller speed-up of just 1.066x over the baseline. Because of the comparatively

longer inter-arrival times, G+Up migration experiences significant idle times on the FPGA.

Elastic and Elastic-DL, in contrast, leverage work-sharing resulting in higher utilization

of the available accelerators on the system. We see improvement in turn-around-time for

more jobs compared to Workloads 1 and 2 but it is still the longer and more elastic jobs that

experience a marked decrease in turn-around-times. Furthermore, jobs that do suffer from

a negative impact on their turn-around-times do so to a much lesser extent as compared to

the previous workloads.

Workload 4

Finally, we run a workload consisting of two applications, GEMM and Mandelbrot, and

a total of 12 jobs for each of our scheduling algorithms. Figure 4.11 shows the results for

Workload 4 (average inter-arrival time of 2.25). We observe that Elastic-DL performs the

best with a speed-up of 1.249x over the baseline while Elastic shows a speed-up of 1.142x

over the baseline. G+Up, in contrast, shows a slight slowdown of 0.986x due to the overhead

of device switching. This workload shows that applications with fine-grained slices as well

as small application initialization times causes minimal idle times on devices, and therefore
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achieve superior performance with work-sharing even for low inter-arrival times.

Discussion: As for the work-sharing framework, the co-scheduling framework opens

several areas for discussion:

1. While our scheduling algorithms prioritize arrival time of the jobs when allocating

accelerators to jobs, other scheduling algorithms can be developed that schedule

jobs based on relative performances of applications on different accelerators. For

instance, a job that arrives later can be scheduled earlier if the available accelerator is

better suited for it.

2. Better integration between the work-sharing and co-scheduling framework can fur-

ther enhance performance. If the scheduler determines that the overhead of switching

devices is more than running the job on the current device, it can let the application

continue with the existing configuration. Furthermore, the scheduler can be made

aware of the initialization time of the job. This would resolve a significant amount of

the idle time that we see on devices in Figures 4.8, 4.9 and 4.10.

3. Third, instead of offline profiling, the scheduler can estimate relative performance

of jobs on different accelerators in order to make scheduling decisions. This would

eliminate the need to collect profiling data for each application as well as enable

applications to run on arbitrary systems.

4. Finally, a two-phase scheduler (inter-node and intra-node) can be developed that

uses MPI to enable multi-node co-scheduling of applications.

4.6 Related Work

Prior work has explored methods to efficiently use heterogeneous devices on HPC systems.

Scogland et al. [SFRdS14] use OpenMP-like directives to schedule computational load

across CPUs and GPUs. Aji et al. [APBF16] schedule task-parallel workloads on devices by

mapping OpenCL queues to devices at run-time to achieve ideal performance. Spafford

et al. [SMV10], Guzman et al. [GNT+19] and Pandit et al. [PG14] provide frameworks to

orchestrate data and task decomposition for multi-device cooperative execution. Our work-

sharing framework goes further by allowing dynamic migrations of kernels on devices and

the ability to expand or contract based on the devices available on the system.

Several techniques have been explored in prior work to make maximum use of available

resources by reducing idle time. Weidendorfer et al. [WB16] characterize applications for
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their suitability for co-scheduling. Frachtenberg et al. [FFPF03] use jobs as fillers to reduce

fragmentation and achieve reduced idle time. Zacarias et al. [ZPN+21] create a resource man-

ager that uses machine learning to predict the cost of co-scheduling and a scheduler that

reduces performance degradation. Further, Xiong et al. [XAHC18] propose Tangram, which

oversubscribes nodes resulting in CPU sharing. They use prior knowledge to determine if

co-scheduling will result in overall performance improvement. Dauwe et al. [DJF+16] create

a model to predict an application’s execution time and energy usage when co-scheduled

with other applications. They demonstrate that their model can significantly improve the

scheduling performance.

In contrast to these works, to the best of our knowledge, ours is the first that holistically

combines work sharing and elasticity of kernels with the ability to expand and contract as

well as migrate kernels on devices combined with co-scheduling and enabled by pluggable

scheduling algorithms to coordinate the execution of multiple kernels on the same node.

4.7 Conclusion

This work contributes novel methods to more effectively use the computational resources

available in a modern or future HPC node. We create a framework for sharing work expressed

as a single kernel across several different accelerators. We create capabilities to migrate a

kernel from one device to another, expand the kernel to occupy more devices (potentially

speeding up the application), or contract the kernel to occupy fewer devices (potentially

slowing it down), all of which is done dynamically. Our framework further leverages these

capabilities to enable sharing of a single node amongst multiple, concurrently running

applications. We implement four scheduling algorithms to evaluate the efficacy of our

co-scheduling framework.

Our framework is evaluated with four applications over newly contributed workloads

comprising those applications with different input sizes. Our work-sharing results show

that we can achieve a speedup of up to 2.26x when work is shared amongst all the available

accelerators compared to our baseline. Furthermore, our co-scheduling experiments show

that we can achieve a speedup of up to 1.25x with an Elastic-DL algorithm as opposed to the

naive baseline co-scheduling approach. Finally we propose methods to further extend our

framework to support multi-node applications, more accelerators and other scheduling

algorithms.

84



CHAPTER

5

CONCLUSION

HPC systems are moving towards an increasingly heterogeneous architecture, which creates

novel challenges for HPC centers and application developers in terms of how to best utilize

the various computing, storage and networking resources available on a system. Tackling

these challenges requires a combined effort for the emerging heterogeneity on each of the

HPC subsystems. Furthermore, HPC centers need to incorporate specific heterogeneous

resources balanced across the jobs that are expected to run on their systems while consid-

ering capital and operational expenditure constraints and device-specific performance

characteristics.

In this work, we first assess the impact of heterogeneous storage resources on the

I/O performance of various applications on different storage placements and network

interconnects. We utilize PDES to demonstrate that the I/O performance of applications

depends upon the placement of burst buffer resources in the network as well as the chosen

network interconnect. Furthermore, we also investigate the impact of different burst buffer

models and network interconnects on the capital and operational expenditures of the HPC

centers.

Next, we study the impact of heterogeneity on the network performance of HPC ap-

plications. We use PDES to model GPUs as first-class compute devices with the ability to
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communicate directly with other GPUs, both within and across nodes, using GPUDirect

and NVLink. Our simulation experiments show that the communication performance of

applications under GPUDirect highly depends on the messaging characteristics of the

applications. We also show that the density of accelerators on a node significantly impacts

both the inter-node and intra-node communication performance of applications.

Finally, we explore the emerging compute heterogeneity in modern and next generation

HPC systems. We create a work sharing and co-scheduling framework that allows appli-

cations to cooperatively execute a single compute kernel on multiple accelerators. Our

framework allows a kernel to elastically schedule slices on multiple devices with the ability

to migrate computation from one accelerator to another, expand to more accelerators, or

contract to fewer accelerators. Our framework leverages this ability to schedule multiple

applications simultaneously. We evaluate our framework for four applications and work-

loads. Our results show that effective work sharing is dependent on the applications and the

available accelerators while co-scheduling performance is dependent on the scheduling

algorithm and the job mix of the workload.

In summary, we have shown that our hypothesis holds since the effective utilization

of heterogeneous resources requires software support to identify ideal placements, ap-

plication tuning with respect to heterogeneous resources as well as workload scheduling

decisions that leverages elastic and transparent scheduling of resources within and across

applications.
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