
ABSTRACT

KHETAWAT, HARSH. Pragma-Based Compiler Extension for End-to-End Resiliency Against Soft
Faults. (Under the direction of Dr. Rainer Frank Mueller.)

Widely varying techniques have been investigated in order to protect applications from faults. A

number of resilience techniques exist such as checkpoint/restart, redundant computation, algorithm-

based fault tolerance, and so on. While one technique may impose the least overhead and best

protection, another kernel may call for a different resilience technique. In the future this might result

in programs which have a sequence of kernels each protected by a disparate resilience mechanism.

Combining such techniques are often non-trivial and might lead to applications and data-structures

that are vulnerable to soft faults going uncorrected and worse still, undetected, particularly for

variables live across multiple kernels.

This work aims to design, implement, and evaluate a pragma-based compiler extension to

combine various resiliency techniques in a manner that reduces the vulnerability across kernels. The

pragma-based directive allows application programmers to focus on algorithms and performance

while lifting the burden of combining resiliency techniques in an end-to-end manner and the

challenges with data protection that it may cause. By expending minimal programming effort, the

application programmer can specify a per-kernel pragma that not only protects the data structure

from corruption within the kernel but also across kernels, extending through the entire life-time of

the data structure.

In order to demonstrate the effectiveness of the compiler extension, we evaluate two applications,

sequentially composed matrix multiplication and TF-IDF, by injecting faults at different rates into

the data structure and measuring the resulting overhead. The experimental results show that our

technique successfully detects and corrects faults across computational kernels while resulting in

negligible overhead for fault-free executions.
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CHAPTER

1

INTRODUCTION

For large-scale parallel systems, faults have become the norm rather than the exception [SG06;

Gei16; Bau05]. Bit flips and hardware faults often result in application or operating system failures. In

order to make systems resilient against such failures, numerous hardware and software techniques

have been devised [Mit05; San08]. It is projected that the frequency of faults will only exacerbate

as we move towards future exascale systems. This might require a 20% increase in circuitry and

energy in order to couter failures [Sni13]. With HPC systems moving increasingly towards commodity

hardware, which are designed and built to be general-purpose, and not HPC-specific due to the

manufacturing costs, a significant portion of the resiliency responsibility would likely fall on the

software layer. Fig. 1.1 shows the number of soft errors encountered across DRAM modules from 3

different leading manufacturers as studied in Kim et al. [Kim14]. We can see that the number of soft

errors have significantly increased since 2011 and might even be higher as we go towards higher

density DRAM chips.

Prior research has emphasized the importance of resilience in future exascale HPC systems [Sni13;

Cap09; Cap14]. What makes HPC systems particularly interesting to study are the multiplicity of

challenges that they introduce. From size (millions of cores) to the tightly coupled programming

model, combined with the scientific nature of applications which are highly parallel, often long-

running jobs and have strict accuracy requirements makes HPC systems quite unique. With an
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increased number of components, the probability of failures also increases proportionally, and the

tightly coupled programming model could result in quick fault propagation in one node to the other

nodes in the system [Fia12a]. Furthermore, scientific applications require a high degree of accuracy

and are often very sensitive to faults. These problems make resiliency a major roadblock on the path

toward exascale HPC systems.

Memory hierarchies are becoming more complex with the introduction of persistent memory

technologies such as Phase Change Memory (PCM), Magnetoresistive Random Access Memory

(MRAM), and Memristors, and application programmers need to take into account the impact

of these technologies on the resilience of their applications. This too creates new opportunities

and challenges for developing resilience techniques that can enable next-generation scientific

applications to fully exploit the capabilities of this novel hardware while still maintaining correct

application execution.

Figure 1.1 Normalized number of errors vs. manufacture date
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1.1 Motivation: Combination of Software Resilience Techniques

Software resilience techniques are often used in practice in order to complement hardware protec-

tion against soft faults. To that end several software techniques such as checkpoint/restart (CR),

redundant execution, and algorithm-based fault tolerance (ABFT) have been developed. Each of

these techniques have their own limitations and benefits depending on the application. For example,

CR needs to store checkpoints (storage overhead), and recover from a previous point in time when

failures occur, which limits scalability [Ell12]. Similarly, redundant execution effectively doubles the

amount of required resources [Fia12a]. On the other hand, ABFT has the benefit of low overheads

but it needs to be customized for each numerical algorithm [HA84; Du12; Ell14a].

We can see that it is best to choose the resilience scheme on a per kernel basis rather than a

single one for the entire application. This introduces a unique set of challenges. For one, it makes

the job of the application programmer more difficult as the burden of combining these resilience

techniques falls onto the application programmer. Secondly, it also creates windows of vulnerability

between kernels protected by different resilience techniques.

We can consider two kernels, the first one with ABFT protection, and the succeeding one with

redundant execution in which the second kernel consumes the result computed by the first kernel.

Here, resilience is limited in scope to the boundaries of a kernel but does not extend across kernels

to the entire program. This makes the results computed by the first kernel vulnerable till the second

has consumed it. Furthermore, the composition of these two resilience techniques are non-trivial

and results in additional effort for the application programmer.
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1.2 Hypothesis

In order to tackle these challenges, we put forth the following hypothesis:

A pragma-based compiler extension for combining multiple resilience techniques can enable

application developers to choose the resiliency technique on a per-kernel basis while also protecting

the window of vulnerability between kernels for end-to-end resilience.

We propose to compose different low-cost techniques for data protection against soft faults

across different application phases. End-to-end resilience creates protection spaces of kernels with

different resilience techniques while eliminating the windows of vulnerability.

Resilience APIs, such as Containment Domains [Chu12], GVRGVR [Zhe14], and Charm++ [KK93],

try to reduce the clutter created by meshing numerical methods with other resilience concerns,

but cannot completely eliminate it. More general and transparent resilience methods, such as

BLCR [Due03], have a much higher overhead than application-specific ones, such as CR or ABFT,

whereas programs with application-specific resilience techniques are often hard to maintain.

A systematic resilience approach would be much more effective, especially for future systems,

allowing application developers to focus entirely on algorithms and performance but delegate

resilience requirements for seamless protection to the system (compiler/library/runtime). A pragma-

based scheme can therefore be used to provide end-to-end resilience using the benefits of aspect-

oriented programming (AOP) [Kic97]. It results in increased modularity by separating the algorithmic

and resilience concerns while supporting a variety of paradigms and methods.

We implement an OpenMP pragma extension to support the separation of the algorithmic and

resilience aspects in the Cetus compiler [Dav09], develop a fault injection mechanism that can

generate faults at a given average rate, and finally evaluate applications for end-to-end protection

against the injected faults. Our results show that end-to-end protection has negligible overhead

for fault-free execution, and manages to detect and correct affected data structures even between

kernels.
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CHAPTER

2

BACKGROUND

2.1 Failures

Avizienis et al. [Avi04] define faults as the cause of errors, which, if not detected or corrected, may

lead to failures. A failure could manifest itself as an incorrect result (which may go undetected), a

crash, or an interruption in execution. With an increase in the rate of failures, forward execution of

the application is hindered, which impedes scientific progress in HPC systems. This has considerable

cost impacts both in terms of time and energy. Failures can be distinguished into hardware and

software failures

2.1.1 Hardware Failures

Hardware faults can be either persistent or transient. Persistent faults are those faults that are gener-

ally caused by aging hardware, or operation of the hardware beyond the manufacturers thresholds.

They are usually resolved by replacing the concerned hardware device. Failures caused by these

faults result in the application being interrupted and might result in the executing job being rendered

useless.

Transient faults, in contrast, often occur due to cosmic radiation. The interaction of high energy

neutrons with the silicon die on the device causes a cascade of charged particles. The pulse created
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by these particles might be powerful enough to flip bits in memory. The decrease in size of transistors

and the reduced charge they carry increases the probability of multiple bit flips [Ash10]. These faults

might not necessarily stop application progress but could very well result in invalid data and results.

Several data paths (caches, data bus, etc.) are protected by ECC, which can correct single bit flips

but not multiple bit flips. For perspective, Jaguar’s 360TB of DRAM experienced a double bit flip

every 24 hours [Gei16]. Jaguar uses chipkill which can correct some double bit flips.

Multiple bit flips might cause some faults to go undetected and result in Silent Data Corruption

(SDC). They manifest as incorrect interim or final results for the application. Studies have shown

that SDC rates are often orders of magnitude larger than those specified by the manufacturers [PS07;

Sch09; Sri15]. Another study by Schroeder et al. [Sch09] has concluded that over 8% of DIMMs are

affected by errors over the course of 2.5 years on large-scale platforms. Furthermore, Sridharan et

al. [Sri15] have analyzed the effectiveness of techniques such as ECC an chipkill. Another study by

Microsoft [Nig11] of over a million consumer PCs also shows that CPU faults are quite frequent. A

report from Argonne National Laboratory (ANL) [Sni13] stresses the need to do further research on

SDC rates and calls for refinements in hardware and software techniques to handle them.

2.1.2 Software Failures

Software failures are due to bugs in software (code), many of which only materialize when executing

at scale [Cot10]. Interactions between complex distributed components and race conditions between

parallel tasks are often cited as reasons for software failures. With applications being developed for

higher performance, new complexity is introduced, making the codes more error-prone [Ash10]. The

report from ANL [Sni13] has also predicted that an exascale platform could potentially experience a

failure every 30 minutes.

2.2 Resilience Methods

Due to the prevalance of faults in HPC systems, resilience has become a necessity for protecting

applications. These methods are used to compensate for state loss due to failures by performing a

forward or backard recovery. Backward recovery recreates an older state of the application by rolling

back using either system-level or application-level checkpoint/restart (CR) mechanisms [Moo10a].

Forward recovery, in contrast, repairs the affected data structures. This can be done by either

recovering the values from a replica (redundant computing) [Fia12a], or using Algorithm-Based

Fault Tolerance (ABFT) from checksums or other algorithm-specific properties [HA84; Du12; CW14;

Sha12; Ell14a].
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2.2.1 Algorithm-Based Fault Tolerance (ABFT)

ABFT methods utilize a deep understanding of the algorithm and use an inherent property specific

to the algorithm or data structure in order to recover from errors. ABFT for algorithms, such as matrix

multiplication [HA84; CD08], Cholesky decomposition [CW14], sparse linear solver [Sha12], and

matrix factorization [Du12], have been proposed. Studies have shown merits of these techniques

based on the data or algorithm, implying that future systems could use a mix of these techniques on

a per-phase basis throughout the execution of the application.
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2.2.2 Checkpoint/Restart (CR)

In checkpoint/restart (CR), applications are periodically checkpointed, i.e., the state of the appli-

cation is written to persistent storage. When a failure occurs the application is rolled-back to the

previous state for all the tasks and execution resumes from that point. Several improvements for CR

have been proposed in order to tackle the overhead. Techniques such as data aggregation [Isl12]

and data deduplication [Bis11] reduce the size of the checkpoint. In contrast, multi-level check-

pointing schemes [Moo10a; BG11] and in-memory checkpointing [Zhe12] improve the speed and

scalability of checkpoint/restart. Fig. 2.1 gives an overview of the Scalable Checkpoint/Recovery

(SCR) [Moo10a] library developed by Lawrence Livermore National Laboratory (LLNL). Amongst

other capabilities, it features multi-level checkpointing, has support for protecting checkpoints

from device failures, and also compression of checkpoints for efficiency.

Figure 2.1 Overview of the Scalable Checkpoint/Restart library
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2.2.3 Redundancy

Yet another commonly used resilience technique is redundant execution [Bri10; Fer11; EB11; Fia12a].

Here, multiple instances are utilized to perform the same task. The results are then compared to

ensure failure free execution. When double redundancy is used, the results are compared to make

sure they match, whereas triple redundancy (with voting) can be used to correct them. Marathe et

al. [Mar14] have demonstrated that redundancy can be a viable approach for HPC systems in the

cloud.

2.3 End-to-End Resilience

Scientific applications are often structured as a multi-phase pipeline with each phase representing

a kernel. The previously described methods are designed to work well with certain kernels but

have significant overhead for others. A one-size-fits-all approach might often lead to significant

overheads, which can potentially be avoided with a per phase resilience technique. The method

that works best can be chosen on a per-kernel basis keeping in mind factors such as data size and

computation time. As part of this work, we propose a compiler technique that enables end-to-end

resilience for such applications while allowing the programmer to choose a preferable resilience

method for each kernel. End-to-end data integrity has also been cited as goal in the exascale report

by ANL [Sni13].
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Figure 2.2 Example of a Task-based Schedule Represented as a Directed Acyclic Graph

2.4 Task-based Scheduling

Task-based scheduling for multi-cores has been extensively studied previously [Che07; AC06]. The

basic premise is to divide the application into a set of tasks that are executed by resources in a certain

order depending upon the dependency constraints. Fig. 2.2 shows an example of a schedule along

with the cost matrix. Metrics such as throughput [Mar03; Leo05], fairness [And04; Lee09], response

time [Che09; Che12], etc. have been studied with respect to task-based scheduling. These metrics

are primarily performance-driven.

Such a paradigm is often represented as a Directed Acyclic Graph (DAG) comprising of tasks

and their dependencies. During execution, this DAG can be traversed in either a breadth-first or

depth-first manner or both. Each of these has a specific impact on the parallelism, cache locality,

and the vulnerability of the data structures. As part of this work we integrate end-to-end resilience

with both OpenMP-based parallel execution and a task-based runtime and finally contrast them.
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Figure 2.3 The Cetus Driver

2.5 Source-to-source Compilation

A source-to-source compiler transforms the source code of a given input program into a modified

source code. We have designed a compiler directive as an extension to the OpenMP framework that

allow the application programmer to specify the resilience characteristics of each kernel. We then

use source-to-source compilation to transform the source code into an application with end-to-end

resilience capabilities.

After investigating alternatives like GCC and Insieme, we decided to implement the directive

as a transform pass on Cetus. Developed by researchers at Purdue University, Cetus [Dav09] is a

compiler infrastructure for the source-to-source transformation of programs, particularly ANSI C

in our case. The Cetus project is 80,000 lines of Java code. Fig. 2.3 shows the basic execution of the

Cetus compiler. Cetus uses Antlr in order to parse C programs into Intermediate Representation

(IR). The runPasses() function then serially runs the passes on the IR in order to generate the output

source code. Each pass iterates over the IR and is capable of modifying it by adding, removing, or

editing the input source. New code is added as Cetus IR objects, which is equivalent to building an

IR tree from its leaves. Similarly, complex IR can be generated by extending these trees. Cetus allows

iterating through the IR in both, a depth-first and a breadth-first manner. In our implementation,

we use depth-first iteration in order to traverse the input IR.
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CHAPTER

3

RELATED WORK

A number of hardware and software techniques have been proposed in order to tackle the problem

of SDCs in HPC systems. Mitra et al. [Mit07] have proposed a hardware technique, Built-in soft error

resilience (BISER), which is an architecture-aware circuit design technique that can correct soft

errors in computational circuits. It reduces the chip-level soft error rate by an order of magnitude

with minor overheads. Similarly, Kelin et al. [Kel10] have proposed a chip layout design principle,

Layout Design through Error-Aware Transistor Positioning (LEAP), which goes beyond traditional

layout techniques and makes the digital circuits significantly more resilient against soft faults. Other

solutions, such as Cross-layer Exploration for Architecting Resilience (CLEAR) [Che16], have also

been proposed. CLEAR combines resilience across various layers of the system, such as circuit, logic,

architecture, and software, etc., in order to achieve the desired resilience targets.

Cao et al. [Cao15] have proposed a software technique to make dynamic task-based runtimes

resilient to soft errors. On detection of an error, it recovers the application by re-executing the

minimum required sub-DAG. It also keeps checkpoints of data between tasks in order to minimize

the re-execution in case of failure, and also leverages insights about the algorithm in order to recover

the data without re-execution. Furthermore, Elliot et al. [Ell14b] argue that numerical methods can

benefit from a numerical unreliability fault model. This would allow the application to use cheap

sanity checks in order to bound errors in computational results.

12



Fiala et al. [Fia12b] have proposed a transparent MPI redundancy scheme that would allow

faults to be detected and corrected transparently. It detects faults by comparing the MPI messages

between a pair of replicas. If the replicas have differing messages, corrective action can be taken. They

also show that a single error has the potential to cause a cascading pattern of corruption that can

spread to other processes. FlipSphere [Fia16] is another software-based DRAM error detection and

correction library that uses hardware accelerators to increase application resilience. It implements

on-demand verification of page integrity, and recovery based on an error correcting code in case of

faults.

Another software-based technique proposed by Chung et al. [Chu12] uses containment domains

as a programming construct to express the resilience needs of parts of the application, along with

error detection, state preservation, and recovery mechanisms. It allows the programmer to exploit

the hierarchical nature of the application by hierarchical state preservation, restoration, and recovery.

Other resilience methods, such as checkpoint/restart [Moo10b; Fer12; Sat12; Joh90], and redundant

computing [Bri10; EB11; D1̈2], can also be used to protect against SDCs.
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CHAPTER

4

DESIGN

HPC applications often consist of phases of computation. Each phase takes certain inputs, consumes

them, and generates the output from that phase. These outputs are themselves intermediate results

that are consumed as input by the next phase of the application. Using our pragma approach we

aim to exploit the live range of these variables in and across each of the phases. On the last use of

these variables we can perform a check for correctness that enable us to guarantee the integrity of

this variable from when it was defined up to its last use.

Figure 4.1 Protection of variables with conventional resilience vs end-to-end resilience
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Fig. 4.1 shows a sequentially composed matrix multiplication application. Huang et al. [HA84]

protect each of the matrices by adding another row and column to the matrix that is used to store the

calculated row sums and column sums, respectively. In this case protection is provided for the result

matrix in each matrix multiplication kernel. With end-to-end resilience we can provide protection

to the matrices throughout their live-ranges. While single kernel approaches are constrained to

the kernel boundaries, the end-to-end approach does not have this limitation and can span across

kernel boundaries.

4.1 The Protect Pragma

In order for the application developer to specify the resilience characteristics of each kernel in

a simplified manner we propose the following pragma scheme. The source-to-source compiler

can use pragma directives to expand the code to provide end-to-end resilience. The expanded

source code performs checks on the data structures and takes corrective action if necessary. In

order to facilitate adoption and code maintainance, and for possible future synergy between thread

parallelism and resilience, we incorporate the protect pragma directive into the OpenMP library.

4.1.1 Anatomy of a Protect Pragma

The following is an example of a typical protect pragma:
#p r a g ma o mp p r o t e c t [M ] [C he c k ( f1, ..., fn )]

[R e c o v e r (g1, ..., gm )] [C o n t i n ue ]

[M] is an optional argument that represents the resilience method to use. "Redundancy" is

used in case one or more shadows are being used as part of the runtime. A shadow refers to a

redundant MPI rank. "CR" is used to indicate that a checkpoint needs to be created at that point.

With the "Check" clause one needs to specify a comma separated list of the checker functions that

is called for checking each data structure that requires protection. Similarly, the "Recover" function

is a comma separated list of functions to recover the data structures in case the check fails. The

Continue keyword is used to indicate to the compiler that the data structure is live beyond the

current region. This informs the compiler that the data structure requires end-to-end protection.

The pragma directive is used to expand the source code it annonates into a while loop that

enables consistency checks and recovery operations. The flow of control in the program is allowed

to exit the while loop only when internal data consistency has been assured. In case recovery is not

possible, the program exits.

Some data structures in the program might depend on other data structures. They can be

recovered by recomputation, which is only feasible if none of the constituent data structures had
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been corrupted, or recomputations would produce incorrect results. Analysis of the definition and

use of these structures allows us to effectively chain these directives to other directives. Such a

chaining, once pragma-expanded, results in nested while loops to establish end-to-end protection.

4.2 Task-based Resilience

Similar to resilience in OpenMP-based parallel kernels, we also present a task-based resilience

scheme. As tasking libraries are becoming more popular in the HPC community, there is a growing

need for efficient ways to provide resilience to task-based applications. For such applications one

can check the correctness of each fine-grained task. In case we detect an error in the result of this

task, data correction is attempted. In case correction is not possible data is recomputed, but only

for the required subset of tasks to fix this data. This provides fine-grained and efficient resilience. It

also allows application developers to specify resilience techiniques on a per-task basis.
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4.3 Source-to-Source Compilation using Cetus

We designed and implemented support for out pragma expansion in Cetus [Dav09]. We added to

Cetus the ProtectPragmaParser class, a transform pass that implements our pragma. Each pragma

directive in the input program is represented as an object of the ProtectPragmaParser class.

The ProtectPragmaParser class is used to transform the generated parse tree to an equivalent

parse tree structure that contains our protection boundaries, checker functionality, and recovery

mechanisms. We traverse the input parse tree in a depth-first manner looking for the protect

pragma directives. On finding the pragma, we parse the directive to populate the checker and

recovery functions associated with this particular pragma. We also generate the necessary protection

boundary, checking, and recovery code required in the current context and track the variables

defined at these protection boundaries.

(a) Code for sequentially composed matrix multiplica-
tion along with the pragma

(b) Logical structure of pragma instances created from
the input program

Figure 4.2 Input code and the generated logical structure

As part of the ProtectPragmaParser object creation, we check if the current directive is chained to

a previously encountered directive via the Continue keyword. If chained, we can recompute these

variables in case their recovery methods fail, and the ProtectPragmaParser object of the current

context is added to the list of chained pragmas of the directive it is chained to. Otherwise, it is added

as an independent (root) pragma. When chaining is found in the input IR, we extend the protection

boundaries of the current pragma around that of the following pragma. When the input source code

has been completely parsed, a logical structure of these chained (or unchained) directives is created

in memory. An example of this logical chained structure is shown in Fig. 4.2b for code in Fig. 4.2a.
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The logical structure has one root pragma object and two chained pragma objects as is evident from

the input source code. Finally, the generated lines of code are added to the IR, and the final source

code is produced as output. Fig. 4.3 shows an example of how new IR is created in Cetus.

Figure 4.3 Creation of new IR elements in Cetus

The Cetus compiler infrastructure, along with our ProtectPragmaParser functionality, allows us

to transform our input source code in this manner to support end-to-end resilience. While these

transformations could be performed manually by the programmer for simple examples, it quickly

becomes tedious and error-prone for more complicated program structures or even chained regions.

Our Cetus implementation transforms the input source in a single pass through the IR tree, emitting

code recursively even for complicated, inter-leaving dependencies between resilient variables. This

supports the development of powerful software that has end-to-end resilience while off-loading the

repetitive and generally non-trivial task of code expansion to the compiler.
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4.4 Fault Injection

We simulate the effects of faults on our test applications by implementing a fault injection framework.

The fault injection framework is capable of injecting faults at random intervals while maintaining

an average Mean Time Between Faults (MTBF). The average MTBF can be specified in seconds.

We implement the fault injector as a function that is executed periodically at a random interval (0,

2 * MTBF), where MTBF is the mean time between faults specified before the start of the execution. In

order to execute this function at these intervals, we implement a signal handler, called injectHandler,

which is called in the given interval. In turn, the injectHandler also schedules another signal in that

interval after it injected the fault.

Every time the injectHandler is called, it randomly picks a data structure to inject a fault into. For

matrix multiplication the probability of a fault occuring in any of the data structures is the same as

they are the same size. Similarly, for TF-IDF we inject faults uniformly over the data structures and

present the normalized number of faults based on their respective data structure sizes. Furthermore,

after selecting the data structure, the byte subject to injection is also selected randomly.

The random nature of the injector in terms of frequency, choice of data structure, and the point

of injection allows our end-to-end resilience technique to encounter a variety of possible real-world

faults. This also allows us to study injections that happen to data live in the kernel, live data across

kernels, and stale data.
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CHAPTER

5

IMPLEMENTATION

In this section, we describe the implementation of the transform pass that expands the pragma-

annotated code to support end-to-end resilience. The pragma expansion is done in a transform

pass in the Cetus compiler, ProtectPragmaParser, which takes as input the IR of the program and

converts into an equivalent IR with the protection mechanisms. Cetus can then ouput the program

that is represented by the transformed IR. We will also describe the implementation of the fault

injector we use in order to introduce faults in the data structures at a given rate.

5.1 ProtectPragmaParser Class

The ProtectPragmaParser class is a transform pass that implements our pragma. Each pragma

directive in the input program is represented as an object of the ProtectPragmaParser class. The

compiler parses the input IR looking for the protect pragma and creates a logical structure of

these chained pragmas in memory. The chained pragmas are expanded at protection boundaries to

trigger the checking and recovery that realizes end-to-end protection of the data structures.

Once the entire input source code has been traversed and the logical structure of pragmas is

created, a recursive function that emits transformed code is invoked on the root objects. This, in turn,

invokes the function on each of its chained pragmas. It is at this stage that checking and recovery
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code for non-last-use variables is removed so as to reduce the checking overhead. The emitCode
uses the chaining information to correctly emit the nested while loop structure in the expanded

code. As part of the code emitting process, if a particular directive had the CR or Redundancy clause,

then the compiler emits the appropriate function calls to wake_shadow and sleep_shadow in case

of the Redundancy clause, and create_ckpt in case of the CR clause.

We now present the properties of the ProtectPragmaParser class and the algorithms that are

responsible for parsing and transforming the input source code to an equivalent code that realizes

end-to-end resilience.

5.1.1 Member Variables

5.1.1.1 rootPeerPragmas

This is a static member of the ProtectPragmaParser class. It is a list of all the independent pragmas

that are not chained to a previous pragma. The emitCode function is explicitly called for each

of the objects contained in this list. From Fig. 5.1, the first pragma would be added to the list of

rootPeerPragmas as it is not chained to a previous pragma.

5.1.1.2 chainedPragmas

This member contains a list of all the pragmas that are chained to the current one. Each root pragma

contains the chainedPragmas object. The emitCode function is called recursively for these pragmas

from the call to the emitCode function from the root pragma. In Fig. 5.1 the second pragma would

be added to the chainedPragmas list of the first pragma, and the third pragma would be added to

the chainedPragmas list of the second.

5.1.1.3 annotObj

This is a Traversable object that contains a reference to the IR object that the current pragma

annotates. We store the annotated object as part of the pragma in order to determine the variables

that are used and defined as part of the current pragma. For each of the pragmas from Fig. 5.1, the

annotObj will be the function call to the kernel annotated by the pragma.

5.1.1.4 checkers

The checkers object contains a map of variables to its respective checker functions. The annotated

statement and the pragma directive are parsed to determine the checker functions that would be
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required in order to check the respective data structure for integrity. The Check functions in each

pragma from Fig. 5.1 will be added to the the checkers map of the respective pragmas.

5.1.1.5 recoverers

The recoverers object is a map of variables to a list of its respective recovery functions. Similar

to the checkers, the annotated statement and the pragma directive are parsed to determine the

list of recovery functions to be used to recover the data structure in case the integrity check fails.

The Recover functions in the pragmas from Fig. 5.1 are added to the recoverers maps of their

respective pragma objects.

5.1.1.6 redundFlag and CRFlag

redundFlag and CRFlag are boolean variables we use to track whether the current pragma has

the optional redundacy or CRFlag clause. The emitCode function checks these boolean variables

to determine if we need to create IR objects for redundacy and checkpoint/recovery.

5.1.1.7 protectLoop

protectLoop is an IR object of type WhileLoop that represents the entire protection boundary of

this pragma directive. The boolean check array, the kernel function call, the checking and recovery

calls for each data structure, and the final check to ensure the integrity of all data structures are

added to this while loop block.

Figure 5.1 An example multi-kernel program with pragmas for end-to-end resilience
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5.1.2 Member Functions

5.1.2.1 start

This static method is the entry point into our pass. It iterates over the IR and scans for our pragma.

When the transform pass encounters a protect pragma, it creates a ProtectPragmaParser object for

the directive. The constructor is responsible for parsing the text of the annotation in order to derive

information about the "Check" and "Recover" functions, including other flags. It then populates

the map of data structures to their respective checker and correction functions. Depending on the

definition and use of these data structures, this method checks if this annotation can be chained

to a previously encountered directive. Once the input source code has been completely traversed,

we have a logical structure of these chained (or unchained) directives in memory. This is shown in

Algorithm 1, where lines 7-8 scan and parse the input pragma directive, line 10 calls the constructor

in order to create the ProtectPragmaParser object, and lines 12-19 check if the current pragma needs

to be chained to a previous pragma directive.
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Algorithm 1: Start of the compiler pass

1 Function start

2 r o o t P e e r P r a g ma s ← new ProtectPragmaParser list

3 i t e r ← get IR iterator

4 while iter has elements do

5 o b j ← IR object currently at iter

6 if obj is of type Annotation then

7 t o k e n Ar r a y ← split pragma string

8 Parse tokenArray to determine characteristics of pragma

9 if pragma is of type protect then

10 Create ProtectPragmaParser object by parsing checkers, recoverers, and

clauses

11 Check if there is an existing context from a previous pragma

12 if previous context exists then

13 Check if chaining is required

14 end

15 if chained then

16 Add this ProtectPragmaParser object to chainedPragmas list of the other

ProtectPragmaParser object

17 end

18 else

19 Add this ProtectPragmaParser object to the static rootPeerPragmas list

20 end

21 end

22 end

23 Add completed boolean array and initialize to false

24 foreach ProtectPragmaParser object in rootPeerPragmas do

25 Call emitCode on each object

26 end
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5.1.2.2 findChaining

This static method takes two ProtectPragmaParser objects as parameters and determines if they can

be chained to each other. If chaining is possible, then the pragma is added in the chainedPragmas

list of the other pragma, otherwise it is added in the static rootPeerPragmas list. To check chaining,

this function determines if the variables that are used in this pragma’s annotated statement have

been defined as part of any other pragma’s statement from the current context.

5.1.2.3 chain

This method, pseudocode shown in Algorithm 2 chains the current pragma object to the speci-

fied pragma object. This is done in case the findChaining function determines that the specified

pragma can be chained to the current one. It expands code for the initialization, looping, checking,

and recovery code generated for the current pragma within the protection loop of the specified

pragma object. It also emits the necessary function calls for redundancy and checkpoint/recovery

mechanisms in case those clauses are specified in the pragma.
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Algorithm 2: Chaining for end-to-end protection

1 Function chain

2 Create a new protection block

3 Add the check array declaration to the block

4 Add the protect loop to be chained to the block

5 if CRFlag is true then

6 Add a function call to create_ckpt to the block

7 end

8 if redundancy flag is true then

9 Add the function calls to wake_shadow and sleep_shadow to the block

10 end

11 Add check to confirm correct execution of this block

12 Create a while loop object with this protection block and all check conditions are satisfied

5.1.2.4 validateLastUse

This recursive method is used to ensure that checking and recovery operations for a certain variable

is done only on its last use. It recursively removes map entries for variables from its chained pragmas

that the current pragma has in its checker map.

5.1.2.5 getLastDef

This recursive function returns the ProtectPragmaParser object that annotates the definition for a

variable defined by the current pragma. This ensures that recovery for a variable defined by this

pragma is chained to a previous pragma that also defines the same variable. In case such a pragma

cannot be found, recovery cannot be done, and we add code in the IR to clean up and exit.
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5.1.2.6 emitCode

Once the input source code has been completely parsed, this structure of chained directives is used

to emit code through a recursive function. The function uses the chaining information to emit

the nested while loop structure as part of the code expansion. Furthermore, the chain function is

called, which emits the appropriate function calls to wake shadow and sleep shadow in case of

the Redundacy clause, and create ckpt in case of the CR clause.

The use of a recursive function to emit code allows us to generate a complex structure of nested

while loops while only iterating for a single pass through the input source code. Algorithm 3 shows the

pseudocode for the emitCode function. Here, lines 5-20 add the checking and recovery functionality

to the output IR and create the protection boundaries for the current pragma, lines 21-26 are

responsible for adding the function calls for checkpoint/recovery and redundancy in case those

clauses are specified, and lines 31-33 call the emitCode function on the chained pragma directives

rescursively.
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Algorithm 3: Output code with end-to-end protection

1 Function emitCode

2 Call validateLastUse to remove checking for variables that are live after the current use

3 Create boolean check array of size equal to number of checker functions in pragma

4 Create protection block for the current pragma

5 foreach variable in checkers map do

6 Create a function call to the checker function

7 Create assignment statement to save the return value to the check array

8 Add statement to the protection block

9 foreach recover function for current variable do

10 Create a function call to the recovery function

11 Create IR object to check return value of recovery function

12 end

13 Create IR object for recovery block

14 Add recovery function calls to the recovery block

15 Add code to assign false to the completed array element in case recovery has happened

16 Add code to clean-up and exit if recovery is not possible

17 Create IR object to add check condition at the end of the protection block

18 end

19 Add IR to check if all checking functions return true

20 Add IR to assign true to completed array element if all checking functions return true

21 if CRFlag is true then

22 Add a function call to create_ckpt to the block

23 end

24 if redundancy flag is true then

25 Add the function calls to wake_shadown and sleep_shadow to the block

26 end

27 if chaining is required then

28 Call the chain function to chain protection boundaries

29 end

30 Assign while loop with the protection block to protectLoop

31 foreach ProtectPragmaParser object in the chainedPragmas list do

32 Call emitCode on the ProtectPragmaParser recursively

33 end
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5.2 Fault Injection

We implement a fault injector in order to verify the end-to-end resilience capabilities of applications

enhanced with our pragma directives. We implement a signal handler to handle SIGALRM signals

using the POSIX compliant sigaction system call. The sigaction function is called in the ini-

tialization phase of the application. We then call the alarm function and randomly choose a time

within the interval of [0, 2 * MTBF] as the time after which the first SIGALRM signal is issued.

The signal handler is responsible for randomly selecting a data structure. After a data structure is

selected, the signal handler calls the inject function. It is an application specific function to inject

faults into the selected data structure. The signal handler also schedules another SIGALRM signal to

be issued at a random time within the interval of [0, 2 * MTBF]. This causes regular SIGALRM signals

to be issued until the end of the application execution. Algorithm 4 shows the steps of signal handling.

In this algorithm, line 1 selects the random data structure to inject the fault into, line 2 keeps a count

of the number of faults injected into each data structure, line 3 calls an application-specific function

to inject the fault, and lines 5-6 select and schedule the next fault injection.

Algorithm 4: Fault Injection

1 Function injectionHandler

2 d s ← random data structure

3 i n j C o un t [d s ]← i n j C o un t [d s ] +1

4 Inject fault in ds

5 ne x t Si g na l ← random value within [0, 2 * MTBF]

6 Schedule another signal in nextSignal seconds
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CHAPTER

6

EXPERIMENTAL EVALUATION

We evaluate the end-to-end resilience using matrix multiplication, and TF-IDF. The matrix multipli-

cation application consists of two successive matrix multiplication kernels as previously shown.

We also evaluate task-based matrix multiplication, where we refactor the kernels for fine-grained

tasking. We evaluate the effectiveness of end-to-end resilience on TF-IDF using the pragma based

approach to combine redundancy and checkpoint/recovery. Finally, we present the performance

under different fault injection scenarios, fault-free overhead, and compare the performance between

conventional and end-to-end resilience.

6.1 Experimental Setup

We conducted our experiments on the ARC cluster. The cluster has 108 nodes, each with two AMD

Opteron 6128 processors (16 cores total) and 32GB of RAM running CentOS 7.3 and Linux 4.10. The

cores are running at 2.0GHz, and have 512KB of L2 cache and 128KB of L1 data/instruction cache per

core. For the pragma-based sequentially composed matrix multiplication, we use OpenMP in order

to parallelize the matrix multiplication kernels, and ABFT on a per-kernel basis as the resilience

technique. The task-based matrix multiplication is parallelized using POSIX threads with ABFT

for resilience on a per-block basis. The TF- IDF application with its two kernels, TF and IDF, uses
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OpenMPI to parallelize across nodes with both checkpoint/recovery for one kernel and redundancy

for the other kernel for resilience.

6.2 Matrix Multiplication

We evaluate two variants of the matrix multiplication application, pragma-based and task-based.

For each of the variants we choose 5 input sizes varying from 512x512 to 2560x2560. The OpenMP

parallelized pragma version uses 16 OpenMP threads that perform matrix multiplication in a blocked

manner with a block size of 32x32, whereas the task-based version schedules smaller tasks using a

dependency graph.
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Figure 6.1 Checksum row/column in ABFT protected matrix

6.2.1 Resilience Technique

Both variants of matrix multiplication uses ABFT to provide resilience to their kernels. Fig. 6.1 shows

the extra row and column added to a 16x16 matrix for the pragma-based variant in order to store

the checksum for checking and recovery. Each element in the checksum row/column contains the

sum over all the elements in that row/column. When a fault occurs in the matrix, the sum of the row

and the column of that element does not match with the stored sum. This allows the check method

to detect the location of the fault in the matrix. Furthermore, faults can be corrected using the
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difference in the calculated sum and the stored sums as long as only one element per row/column

pair is compromised. Otherwise, an entire result matrix needs to be recalculated from its inputs.

              

              

              

              

              

              

              

              

                                                                                                                              

              

              

              

              

              

              

              

              

                                                                                                                              

       CHECKPOINT ELEMENTS

Figure 6.2 Checksum row/column in ABFT protected matrix

For task-based matrix multiplication, we store checksums for each block. This allows for fine-

grained checking and recovery. The tasks are responsible for calculating a certain block. Single bit

flips can be corrected within a row/column pair of a block. Upon multiple flips per row/column, a

block is re-calculated, not the entire matrix. Fig. 6.2 shows an example of a 16x16 matrix with 8x8

blocks.

6.2.2 Pragma Expansion

To provide end-to-end resilience to the pragma-based variant of the sequentially composed matrix

multiplication, we utilize our source-to-source compilation pass on Cetus. For the code shown in

Fig. 4.2a, the transformed code is shown in Fig. 6.3.

32



1 load_A ();
2 load_B ();
3 bool completed [3]={ false}, first=true;
4 while (! completed [2]){
5 while(! completed [1]){
6 while (! completed [0]){
7 bool check [2]; //2 check flags
8 do{
9 C = MMULT1(A,B); // OpenMP threads

10 if (!( check [0] = Checker(A)))
11 if (! Recover(A)){ // Correct(A)/Load(A)
12 throw unrecoverable;
13 }
14 if (!( check [1] = Checker(B)))
15 if (! Recover(B)){ // Correct(B)/Load(B)
16 throw unrecoverable;
17 }
18 }while(!check [0] || !check [1]);
19 if (check [0] && check [1])
20 completed [0]= true;
21 }
22 if (first) {
23 load_D ();
24 first = false; // load D exactly once
25 }
26 bool check [2]; // 2 check flags
27 do{
28 E = MMULT2(C,D); // OpenMP threads
29 if (!( check [0] = Checker(C)))
30 if (! Recover(C)){ // Correct(C)
31 completed [0]= false;
32 break;
33 }
34 if (!( check [1] = Checker(D)))
35 if (! Recover(D)){ // Correct(D)/Load(D)
36 throw unrecoverable;
37 }
38 }while(!check [0] || !check [1]);
39 if (check [0] && check [1])
40 completed [1]= true;
41 }
42 bool check [1]; // 1 check flag
43 do{
44 store_E ();
45 if (!( check [0] = Check(E)))
46 if (!( Recover(E))){ // Correct(E)
47 completed [1]= false;
48 break;
49 }
50 }while(!check [0]);
51 if (check [0])
52 completed [2] = true;
53 }

Figure 6.3 Code generated from pragmas for sequentially composed matrix multiplication
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6.2.3 Fault Injection

For both the variants of the matrix multiplication application, we use the previously described fault

injector in order to study the performance of the application under faults. We inject faults by first

randomly selecting a matrix. Since all the matrices are of the same size, the probability of selecting

any one of them is the same. Then we select a random element from that matrix for injection. In

order to finally inject a fault, we XOR the selected element with a random value of a single bit that is

set. The fault injector is executed at random time intervals while maintaining a given mean time.

This allows more than one fault to be injected in a single execution of the application.

6.2.4 Performance Evaluation

We evaluate the performance of our end-to-end resilient matrix multiplication over a 100 executions

of the application. We select five matrix sizes, 512x512, 1024x1024, 1536x1536, 2048x2048 and

2560x2560, and three time intervals, 25, 35 and 45 seconds, for the mean time between failures

(MTBF). While such high fault rates may be unlikely, they help us to assess the robustness of our

technique.
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Figure 6.4 Overhead of fault-free execution of pragma-based and task-based matrix multiplication for
end-to-end resilience vs. conventional resilience over 100 runs
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First, we evaluate the performance overhead of end-to-end pragma-based and task-based matrix

multiplication for fault-free execution and compare it with conventional resilience. The results

are presented in Fig. 6.4. We can see that for fault-free execution, the overhead of end-to-end

resilience over conventional resilience is negligible. In other words, we incur the same cost for

end-to-end resilience with protection across kernels as conventional resilience, which just protects

single kernels.
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Figure 6.5 Fault injection in pragma-based matrix multiplication over 100 runs

Next, we evaluate the effect of fault injections into the matrices during execution using the fault

injection mechanism that we have previously described. We inject faults at rates between 25 - 45

seconds for the pragma-based matrix multiplication with matrix sizes of 2560x2560. The results are

shown in Fig. 6.5. The top-most bars represent injections into data structures that do not result in

an error. This may be due to injections that happen before the data structure is loaded/initialized

or injections that happened after the data was last used. The shaded regions for matrices C and E

are faults that can be corrected using conventional resilience. These denote faults due to injections

inside the kernel. The bars in purple represents faults that can only be corrected by end-to-end

resilience as these faults are injected across kernels. Therefore, end-to-end resilience covers faults

that occur both in the kernel and across kernels.

Similarly, we study the effect of injecting faults into the matrices for task-based matrix multi-

plication. Since the execution time of the task-based variant is lower, fewer number of faults are
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Figure 6.6 Fault injection in task-based matrix multiplication over 100 runs
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Figure 6.7 Completion time of pragma-based and task-based matrix multiplication with fault injections
over 100 runs

injected at the same MTBF rate. Fig. 6.6 depicts the results of fault injection at rates between 25 - 45

seconds for matrices with size 2560x2560.

Finally, we compare the completion time of pragma-based and task-based matrix multiplication

under different fault injection rates between 25 - 45 seconds in Fig. 6.7. We can see that the perfor-
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mance overhead for both the task-based and pragma-based variants is comparable. The task-based

variant is faster in terms of absolute execution time because of more efficient cache reuse and lower

overhead for the fine-grained corrections.
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6.3 TF-IDF

We next assess the resilience capabilities of an MPI-based application, TF-IDF. TF-IDF is used to

distinguish important terms from a large collection of text documents. It consists of two kernels, TF,

which calculates the frequency of each term on a per-document basis, and DF, which calculates the

total number of occurrences of each term. The final result is calculated as t f i d f = T F × l o g N
D F

for each term. We run the application on input sizes of 125MB, 250MB, 375MB and 500MB with 4

MPI ranks.

Figure 6.8 Code for TF-IDF along with the resilience pragma

Fig. 6.8 shows the steps of TF-IDF computation. Each rank first loads a subset of files. It then

calculates the term frequencies from each of the documents and stores it in the tfs data structure.

Then the document frequencies are calculated with tfs as input and dfs as output. Finally, the

tfidf function calculates the respective values for each term.

6.3.1 Resilience Technique

For the TF-IDF application, we study the combination of redundant computation and checkpoint/re-

covery (CR). Each data structure has a checksum computed over its entire content. Redundancy

is used to compare the values of these resulting checksums to confirm integrity. Similarly, CR is

used to checkpoint the tfs data structure to persistent memory, and if we detect that a fault has

occurred, we can restore the prior state from the stored checkpoint. In case of redundant execution,

if we detect a fault, we reload the data structure from persistent memory. For our experiments,

we do not execute a redundant process for the filenames data structure but instead compare the
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calculated and the stored checksums when we check the filenames data structure. This becomes

feasible because of our fault injection method for TF-IDF, which is explained in a later section.

6.3.2 Pragma Expansion

Similar to pragma-based matrix multiplication, we enhance the TF-IDF application with pragmas

in order to provide end-to-end resilience. For the code shown in Fig. 6.8, the Cetus transform pass

generates the transformed code shown in Fig. 6.9.

1 load_filenames(filenames );
2 bool completed [3]={ false };
3 while (! completed [2]){
4 while(! completed [1]){
5 while (! completed [0]){
6 wake_up_shadow (); // primary wakes up shadow
7 bool check [1]; // 1 check flag
8 do{
9 tfs = TF(filenames );

10 if (!( check [0] = check_filenames(filenames )))
11 if (! load_filenames(filenames ))
12 goto cleanup;
13 }while(!check [0]);
14 sleep_shadow ();// primary puts shadow to sleep
15 if (check [0])
16 completed [0]= true;
17 }
18 Create_ckpt(tfs); // checkpoint "tfs"
19 df = DF(tfs); // contains MPI calls
20 if (1)
21 completed [1]= true;
22 }
23 bool check [2]; // 2 check flags
24 do{
25 tfidf(tfs ,df);
26 if (!( check [0] = check_tfs(tfs )))
27 if (!( recover_tfs(tfs ))){
28 completed [0]= false;// recompute region 0
29 break;
30 }
31 if (!( check [1] = check_df(dfs)))
32 if (!( recover_df(dfs ))){
33 completed [1]= false;// recompute region 1
34 break;
35 }
36 }while(!check [0] && !check [1]);
37 if (check [0] && check [1])
38 completed [2] = true;
39 }

Figure 6.9 Code generated from pragmas for TF-IDF
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6.3.3 Fault Injection

To inject faults into data structures in TF-IDF, we use a method similar to that of sequentially

composed matrix multiplication. Even though the data structures are of vastly different sizes, we

inject faults uniformly over the data structures so that we can assess the end-to-end resilience

capabilities of the application. The normalized number of injections in each data structure based

on their respective sizes for different values of MTBF is shown in Fig. 6.10. The injection handler

selects a data structure randomly for injection. To finally inject a fault, the calculated checksum

of the data structure is modified, which has the same effect as a bit flip in the corresponding data

structure from the end-to-end resilience perspective. For the purposes of evaluation we inject faults

into one of the MPI ranks.
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Figure 6.10 Normalized injection counts for each data structure over 100 runs
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6.3.4 Performance Evaluation

We use 750 text books with a combined size of 500MB for the TF-IDF application with 4 MPI ranks.

We evaluate the end-to-end resilience capabilities of the application with input sizes of 125MB,

250MB, 375MB and 500MB. Then we inject failures at mean rates of 25, 35 and 45 seconds to assess

the performance under a fault injection scenario.
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Figure 6.11 Overhead of fault-free execution of TF-IDF for end-to-end resilience vs conventional resilience
over 100 runs

Fig. 6.11 shows the performance overhead of end-to-end resilience over conventional resilience

for fault-free execution. Similar to matrix multiplication, the fault-free execution overhead for TF-

IDF is also negligible. Therefore, there is no added cost for end-to-end resilience over conventional

resilience that protects single kernels.

Finally, we evaluate the fault injection scenario with TF-IDF. We inject faults at rates of 25 - 45

seconds over 100 runs of the application. The results are presented in Fig. 6.12. The topmost bars

represent injections that either affect data that has not been initialized yet or data that is no longer

live. The shaded bars represent the faults that could have been corrected by conventional resilience

as they occurred inside the kernel. The purple bars represent faults that are detected and corrected
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Figure 6.12 Fault injection in TF-IDF application over 100 runs

only by our end-to-end resilience technique as they span across kernels. End-to-end resilience

can therefore detect and recover faults that would not have been detected at all by conventional

resilience.
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CHAPTER

7

LIMITATIONS AND FUTURE WORK

While our pragma scheme can extend protection boundaries across kernels to facilitate end-to-end

resilience, there are certain limitations that an application programmer would need to be aware of.

In this section, we discuss the limitations of the pragma-based approach for end-to-end resilience

and also future work that can extend the utility of our technique.

One of the primary requirements for the pragma-based technique is that the computations

be idempotent within the encapsulated regions i.e., if a kernel/region is called twice in a row, the

results would not be different from it being called once during normal execution. If a computation

were not idempotent, the burden to save and restore the global variables falls onto the programmer.

Similarly, the application programmer needs to ensure I/O idem-potency of the application.

Secondly, the check and recover methods need to be selected on a per-kernel basis. While certain

data structures can be made fault tolerant using ABFT, not all data structures have the properties

necessary for ABFT. For other numeric solvers, we can use convergence tests as the method to check

for faults. If, however, forward recovery is not possible, the application programmer would need

to incorporate a recovery method that can restore the data from a checkpoint. We can default to a

checksum over the entire data in case other checking methods are not available.

Finally, our technique protects certain data structures from soft faults, but cannot recover from

faults in other parts of application memory, such as within code or control variables, which, when
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affected, could cause the application to crash or behave in an unpredictable manner. Protection

of these aspects of memory are orthogonal to our work. Since a large fraction of HPC application

memory is usually occupied by data structures, we can protect against a similarly large fraction of

soft errors by protecting these data structures.

There are certain improvements to our technique that can further reduce the application pro-

grammer’s burden for protection against soft faults. We can complement the compiler pass with

live-variable analysis and capture/restore global or non-idempotent variables at region boundaries.

We can also provide synergy between thread parallelism and resilience through the OpenMP library.

This allows us to check and restore parts of a data structure on a per-thread basis rather than over

the entire data structure.
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CHAPTER

8

CONCLUSION

As HPC systems are becoming more complex and large, the number of faults these systems expe-

rience is projected to increase. Errors caused by bit flips in computational systems can severely

restrict the progress of scientific applications. This makes resilience against such faults an impor-

tant premise to ensure application progress for exascale systems. Applications often have different

computational kernels that would benefit from their own specific protection schemes.

In this work, we design, implement and evaluate a resilience scheme to provide end-to-end pro-

tection for HPC applications against soft faults. Our pragma-based approach allows the application

programmer to specify resilience methods on a per-kernel basis, while our compiler implementation

provides end-to-end resilience for the entire application across kernels. We implement our pragma

as a transformation pass using the source-to-source compilation capabilities of the Cetus compiler.

Finally, we evaluate the effectiveness of our end-to-end approach on two applications, sequen-

tially composed matrix multiplication and TF-IDF. We inject faults at different rates into the applica-

tion’s data structures. We observe that our end-to-end resilience scheme recovers from these faults.

We also show that end-to-end resilience can recover from more faults than conventional per-kernel

resilience schemes, with negligible overhead of end-to-end resilience for fault-free executions.
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