
ABSTRACT

LAGADAPATI, MAHESH. Benchmark Generation and Simulation at Extreme Scale. (Under
the direction of Frank Mueller.)

The coming years are projected to usher in the era of exascale high performance computing

(HPC) systems. The architecture of a HPC system at this scale is determined by many factors:

performance, power consumption, fault tolerance, data transfer rate, etc. Characterizing and

tuning the performance of existing parallel applications for a given architectural choice is an

important facet in exploiting exascale capabilities and requires hardware/software co-design.

Simulations using models of future HPC systems and communication traces from applications

running on existing HPC systems can offer an insight into the performance of future architec-

tures.

This work targets technology developed for scalable application tracing of communication

events. It focuses on extreme-scale simulation of HPC applications and their communication

behavior via lightweight parallel discrete event simulation for performance estimation and evalu-

ation. Instead of simply replaying a trace within a simulator, this work promotes the generation

of a benchmark from traces. This benchmark is subsequently exposed to simulation using mod-

els to reflect the performance characteristics of future-generation HPC systems. This technique

provides a number of benefits, such as eliminating the data intensive trace replay and enabling

simulations at different scales. The presented work features novel software co-design aspects,

combining the ScalaTrace II tool to generate scalable trace files, the ScalaBenchGen II tool to

generate the benchmark, and the xSim tool to asses the benchmark characteristics within a

simulator.

© Copyright 2014 by Mahesh Lagadapati

All Rights Reserved

Benchmark Generation and Simulation at Extreme Scale

by
Mahesh Lagadapati

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2014

APPROVED BY:

Vincent W Freeh Matthias Stallmann

Frank Mueller
Chair of Advisory Committee

DEDICATION

To my wonderful family and friends.

ii

BIOGRAPHY

Mahesh Lagadapati was born and raised in Penuballi, a small town in Andhra Pradesh, India.

He completed his schooling in Penuballi. He did his undergraduation in Computer Science at

BITS-Pilani (Birla Institute of Technology and Science), Rajasthan from 2005-09. Thereafter,

he worked at Qualcomm India Pvt Ltd for nearly three years. To specialize in the field of

Computer Science, he joined Masters program at North Carolina State University, Raleigh in

August, 2012. During the course of his Masters, he did his internship in Android Platform

Group at Nvidia Corporation. He has been part of the Dr. Frank Mueller’s research group since

spring 2013 and focuses on scalable approaches for performance analysis.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Frank Mueller for his professional guidance and invaluable

advice throughout my Masters. His constant flow of ideas and out of box thinking inspired me

to deal with many challenging and interesting problems in my research. I would also like to

thank Dr. Vincent W Freeh and Dr. Matthias Stallmann for agreeing to serve on my thesis

committee. I would like to give special thanks to Dr. Christian Engelmann for his constant help

and guidance for my research.

Whatever I am today is only because of my loving parents and caring brother. None of this

would have been possible with out their constant support and encouragement. I would also like

to thank all my friends who supported me at all times. Last but not least, I would like to thank

all my labmates who made my research experience a fun filled journey.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter 1 Introduction . 1
1.1 Simulation Scalability . 2
1.2 Our Approach . 2
1.3 Hypothesis . 4
1.4 Contributions . 4
1.5 Organization . 4

Chapter 2 Background . 5
2.1 ScalaTrace . 5
2.2 xSim . 6

Chapter 3 Framework Overview . 8

Chapter 4 ScalaBenchGen II . 9
4.1 Elastic Data Element Representation . 9
4.2 Generating Benchmark Code for Loops . 10
4.3 Generating Benchmark Code for Computation 12

Chapter 5 Evaluation . 14
5.1 Evaluation Platform . 15
5.2 Simulated Platform . 15
5.3 Generated Benchmarks Accuracy and Conciseness 16
5.4 Simulation Performance and Accuracy . 18

Chapter 6 Related Work . 25

Chapter 7 Conclusion and Future Work . 27

References . 28

v

LIST OF TABLES

Table 5.1 IB vs. TCP-over-IB Effective Bandwidth on ARC 15
Table 5.2 ARC Network Parameters . 16
Table 5.3 Comparison of Number of Lines of Code . 16

vi

LIST OF FIGURES

Figure 3.1 Benchmark Generation and Simulation Process 8

Figure 4.1 Rank specific behavior in loops . 11
Figure 4.2 Benchmark code for the loop with rank specific behavior 12

Figure 5.1 Accuracy of ScalaBenchGen II Benchmarks 17
Figure 5.2 MPI Data Exchanged for Different Oversubscription Scenarios 19
Figure 5.3 MPI Messages Exchanged for Different Oversubscription Scenarios 20
Figure 5.4 Simulation Time for Different Oversubscription Scenarios 21
Figure 5.5 Accuracy of Simulation . 23

vii

Chapter 1

Introduction

The term High Performance Computing (HPC) refers to the aggregation of computing capabili-

ties of multiple computers to execute advanced tasks that require large amounts of computation

on significant amounts of data. This paradigm is widely used in scientific computing applica-

tions like weather/environmental forecasting, molecular dynamics, bioinformatics and complex

systems modeling. In a HPC system, each individual computing entity has its own processor(s)

as well as memory and is connected in a network with a topology such as a star, ring, tree or

torus. As these systems operate over vast amounts of data, high speed network interconnects,

such as Infiniband, 10-gigabit Ethernet and proprietary solutions, are used to transfer data.

On such systems, a HPC application implements a parallel algorithm such that multiple

machines orchestrate execution in parallel. Such execution is supported through many pro-

gramming paradigms, such as the Message Passing Interface (MPI) [9], OpenMP [27], and

CUDA [3], by executing an application as several smaller execution units, i.e., processes or

threads. MPI provides a language-independent application programming interface (API) that

allows communication among processes of an application by exchanging messages between pro-

cesses. It is widely used to program applications for HPC systems and has become the de facto

standard for communication in a distributed memory environment.

Performance and processors count of HPC systems have been increasing exponentially over

the past few years. The Top500 [4] project presents the list of the top 500 most powerful com-

puting systems in the world biannually. The Tianhe-2 system at the National Super Computer

Center in Guangzhou, China, tops the Top500 list released in November 2013 with a perfor-

mance of 33.86 petaflops/s (quadrillions of floating point operations per second) and has a total

of 3,120,000 computing cores (counting accelerated cores). Second in the current list and first

in the previous year is Titan, the Cray XK7 supercomputer at the Oak Ridge National Labo-

ratory. It achieves 17.59 petaflops/s with 560,640 cores incl. GPU (Graphics Processing Unit)

cores. It has been widely projected that extreme scale systems that have performance in the

1

order of exa flops will be built in this decade [21, 14, 22]. With computing power at exascale,

these systems are capable of executing large and complex scientific applications projected to

allow human brain modeling [11].

1.1 Simulation Scalability

This decade is projected to usher in the period of exascale computing with the advent of

high-performance computing (HPC) systems of up to one billion tasks and possibly as many

cores. To assess the requirements for future hardware platforms and to investigate the appli-

cation/algorithm performance at extreme scale, hardware simulation plays an important role.

Significant challenges exist even at the single node level, the network interconnect and at the sys-

tem level when trying to orchestrate the execution of such extensive numbers of cores. Hardware

simulators are vital in assessing the potential of different approaches under these challenges.

Yet, these simulators need to be subjected to realistic application workloads that originate in

the HPC realm.

The Extreme-scale Simulator (xSim) [5, 2, 6, 12], a performance investigation toolkit at

extreme scale, can execute an application in a simulated HPC environment and thus facili-

tates HPC hardware/software co-design. To simulate an application, xSim needs to perform

all the computation and communication involved in it. This, coupled with overhead to simu-

late network and processor models, makes simulation slow and necessitates that a significant

amount of resources be allocated for simulation. The compounding effect of resources used by

the application and the simulation, such as the additional network traffic to coordinate the

simulation and memory accesses to facilitate the virtualization needed for the simulated envi-

ronment, typically results in an overhead of several orders of magnitude. This overhead could be

significantly reduced if computational overhead were only simulated as the time spent on com-

putational resources, and not as the computation performed. This approach, however, would

require the availability of skeleton benchmarks for communication at extreme scale derived

from HPC application programs, which currently do not exist. This work tries to fill this gap

by generating such communication benchmarks from scalable traces suitable for rapid replay

within event-based simulators.

1.2 Our Approach

ScalaTrace [16, 19, 25] is a state-of-the-art tracing framework that produces near constant size

communication traces for parallel applications based on the Message Passing Interface (MPI)

irrespective of number of nodes. ScalaBenchGen [23] demonstrated that accurate and readable

benchmarks can be generated from the traces of ScalaTrace. The generated benchmark is a

2

normal parallel C program that issues MPI calls corresponding to every event in the trace.

Experimental results have shown that the generated benchmark closely resembles that of the

actual application, both in terms of execution time and communication messages exchanged.

ScalaBenchGen [23] is based on the initial version of ScalaTrace [16, 19] that generates scalable

traces for applications with SPMD (Single Program Multiple Data) behavior. The new version

of ScalaTrace [25] (from here on referred as ScalaTrace II) redesigned the trace format such that

scalable traces can be generated even for applications that exhibit irregular SPMD behavior,

which is essential for most large-scale HPC applications. To produce benchmarks from this trace

format, we contribute novel algorithms for benchmark generation from elastic traces within

ScalaBenchGen II.

To improve the simulation process, we co-design the benchmarks produced by ScalaBench-

Gen II to mesh with discrete event simulation tools, such as xSim. Simulating a benchmark

program instead of the actual application improves the simulator performance in many ways.

First, the payload exchange of an MPI event across native ranks can be avoided. In the bench-

mark program, a payload of an event is transmitted only to match with the communication

behavior of the actual application, but is not utilized elsewhere in the program. xSim supports

an application model mode in which the payload of an event is not transmitted. Instead, only

metadata is exchanged. Still, this accurately captures the performance of events by updating

the timing information within the simulated network model. Benchmarks can be simulated in

this mode and, hence, huge data transfers can be avoided without loss of accuracy.

Second, computation can be completely virtualized in the simulator. The computation be-

tween two MPI events in the application is reproduced in the benchmark through a sleep() call

with a duration equal to the time elapsed between them. xSim simulates a sleep() by simply

advancing the simulated processor clock. Therefore, computation can be simulated with almost

zero overhead, which otherwise adds significant overhead. xSim thus avoids excessive data ex-

changes and tedious computation. This enables xSim to gaze benchmarks for simulation and

requires fewer resources, thus facilitating simulation at extreme scale.

Third, utilizing a skeleton benchmark instead of the original application obfuscates the

application’s implementation details to a degree that permits analyzing the performance char-

acteristics of proprietary applications on future-generation HPC systems without revealing the

implementation details.

Finally, the computational part can be enhanced to adapt to future architectures. Scal-

aBenchGen [23] showed that benchmarks generated on one platform can be adapted to another

platform by adjusting the recorded overheads resembling the computational part.

3

1.3 Hypothesis

To determine the requirements of architectures for next generation HPC systems, performance

analysis of existing parallel applications for different architectural choices is crucial and is

generally realized through hardware simulators. But a substantial amount of resources are

required to simulate an actual HPC application at extreme scale. We attempt to address this

challenge in this research. Hence, the hypothesis of this thesis is:

Accurate and concise benchmark skeletons can be generated from traces of parallel appli-

cations. By using benchmark skeletons instead of native applications for simulation, resources

required to simulate a HPC system are significantly reduced, which improves the scalability of a

simulator.

1.4 Contributions

The following are the main contributions of this work:

• We have designed and implemented ScalaBenchGen II, a tool to generate concise and accurate

benchmark programs from the traces of ScalaTrace II by utilizing innovative algorithms to

expand elastic traces.

• The ScalaBenchGen II and xSim capabilities have been combined in a software co-design

approach to pave the way for HPC systems simulation at extreme scale.

1.5 Organization

The rest of the thesis is organized as follows. Chapter 2 introduces ScalaTrace and xSim on

top of which this work is realized. Chapter 3 outlines the high level design of our framework.

Chapter 4 describes about the ScalaBenchGen II tool. In Chapter 5, we present the evaluation

of our approach using a subset of the NAS parallel benchmarks [1]. In Chapter 6, we discuss

related work. In Chapter 7, we summarize our work and present possible directions in which

this work can be extended.

4

Chapter 2

Background

2.1 ScalaTrace

ScalaTrace [16, 19] produces scalable and often even constant size communication traces from

MPI programs. These traces preserve both structural information and temporal ordering of

events, and can be replayed to reproduce the original application behavior. It uses the MPI

profiling layer (PMPI) to trace MPI functions and to record their parameters (such as source,

destination, etc.) without actually recording the message content. It performs compression in

two stages: intra node and inter node. Intra node compression is performed locally on each node

on-the-fly. Loops in the program are identified and represented in the trace using extended

regular section descriptors (RSD) [10]. Power-RSDs (PRSD) [15] are used to describe RSDs

nested in a loop. Inter node compression is performed during MPI Finalize() to produce a

global trace file by combining the local trace records of each node. Another important feature

of ScalaTrace is the preservation of the computation time of an application. It records the time

elapsed between two communication events. Instead of exact values, statistical histogram bins

are used to store delta times such that differences in execution time of an event across a loop

or nodes is captured in the trace.

In a parallel program, an event can be executed in only some ranks or its parameters may

vary with the rank. This information is captured in the trace by associating a ranklist, a list of

ranks expressed in a recursive manner, to the event. A ranklist is encoded as:

dimension, start, (iters, stride)+

where dimension is the dimension of the list, start is the starting node rank, and a sequence of

(iters, stride) pairs represent the iteration count and stride, one each per dimension.

The original ScalaTrace tool compresses event sequences only if their call stack signatures,

5

MPI parameters and loop structures match. The new version of ScalaTrace [25] (ScalaTrace

II) is designed to generate scalable traces for applications that have inconsistent task level and

loop level behavior. Event parameters, including loop information, are represented through a

novel format, the elastic data element representation.

2.2 xSim

The Extreme-scale Simulator (xSim) [5, 2, 6, 12] is a performance investigation toolkit that per-

mits running native HPC applications or proxy/mini applications in a controlled environment

with millions of concurrent execution threads, called simulated MPI processes, while observing

application performance in a simulated extreme-scale system to facilitate hardware/software

co-design. The processor and network model of a simulated HPC system is configured in xSim

to extract the performance data of an application. xSim uses light weight parallel discrete event

simulation (PDES) [7] and employs novel techniques to support high oversubscription, i.e., sub-

scribing multiple simulated MPI processes to a physical MPI process. Thus, xSim can execute a

parallel application in the simulated environment of an extreme scale system on a much smaller

HPC system.

Like any other MPI applications’ performance investigation toolkit, xSim is implemented as

an interposition library between the MPI program and the MPI layer using the MPI profiling

layer (PMPI). All PDES related mechanisms are implemented in the PMPI layer. It has essential

support for simulated MPI point-to-point communication and full support for simulated MPI

data types, groups, communicators, and collective communication. In total, xSim supports 88

simulated MPI functions for each supported programming language, C and Fortran. An MPI

application is run in the simulator using the following steps:

• Add #include xsim-c.h to the C source code, or #include xsim-f.h to the Fortran source

code.

• Recompile the application and link it with the xSim library, i.e., -lxsim, and the respective

xSim programming language interface library, i.e, -lxsim-c for C or -lxsim-f for Fortran.

• Run the application with: mpirun -np <physical process count> <application> -xsim-np

<simulated process count> [other xSim arguments] [application arguments].

The PDES-driven simulation accounts for the execution time elapsed in computation for

each simulated MPI process using a processor model. It is based on the actual execution time

on the real hardware platform scaled to the simulated processor speed. It does support hetero-

geneous processor cores with different speeds. Calls by the application to sleep() and usleep()

correspondingly advance the simulated process time. Calls to gettimeofday() perform a native

execution time measurement and apply the processor model to return the absolute execution

time since process start.

6

The simulation also accounts for the wait time incurred by communication for each simulated

MPI process using a network model. Network latency and bandwidth values are configured for a

network model and are used to estimate the total time taken for communication. xSim supports

different network topologies, such as star, tree, ring, mesh, torus and twisted torus. Hierarchical

combinations are simulated by specifying the topology for each level. It also offers the support

to configure rendezvous thresholds and to simulate sender/receiver process contention. For

scalability reasons, the network model does not provide full contention modeling for shared

network interfaces or routers at this point.

xSim presents a special mode, application model mode, to support the simulation of appli-

cation models such that the scalability of simulation is improved. Application models, or the

generated benchmarks in this work, exhibit the same timing and communication behavior as

that of the original application. But simulation of these models requires only a small amount of

resources, such as processor capacity and network bandwidth. The time taken for computation

is simulated by simply advancing the simulated process clock according to the time the appli-

cation would have spent between MPI calls on actual execution using the simulated sleep() and

usleep() calls. Simulated MPI calls are executed without actually sending MPI message pay-

loads, as the MPI message envelope containing the metadata is enough to accurately simulate

communication behavior.

xSim has been run up to 134,217,728 (227) simulated MPI processes, each with its own

process context, using just a 960-core Linux-based cluster. The toolkit is relatively easy to

use and the scalability/accuracy trade-off offered by xSim provides a unique opportunity for

extreme-scale studies.

7

Chapter 3

Framework Overview

Figure 3.1 outlines the process of generating a benchmark skeleton, and simulating it using

xSim. First, the application is linked with the ScalaTrace library and executed to produce a

trace file. The trace file is fed into the benchmark generator, which outputs a corresponding

benchmark program. The benchmark generator can be run on a standalone machine. The

generated benchmark is a normal C program that can be executed like any other parallel

MPI program, reproducing the timing and communication behavior of the original application.

Application Trace File Benchmark
ScalaBenchGen II

ScalaTrace II

(library)

Benchmark

(xSim header)

xSim

(library)

Figure 3.1: Benchmark Generation and Simulation Process

As the generated benchmark is a normal C program, it can also be executed in the simulated

environment of xSim like any other MPI application. xSim’s header file is included, the bench-

mark is recompiled and linked against the simulator libraries. To perform studies using xSim,

the simulated processor and network need to be configured. To accelerate these studies, xSim’s

application model mode is utilized to remove unnecessary simulation overhead by transferring

the MPI message envelope only, without the payload.

8

Chapter 4

ScalaBenchGen II

ScalaBenchGen [23] generates communication benchmarks from the traces of ScalaTrace [16, 19].

Each event in the trace maintains MPI call parameters along with the time elapsed from the

previous event. The benchmark program is a C program that issues MPI calls for each event

in the trace. Computation between two events is abstracted by sleeping for a duration equal

to the elapsed delta time since the previous event. This makes the wall clock time of both

application and generated benchmark program closely resemble each other. Wrapper functions

are designed for MPI events to hide the details of parsing the parameters and to invoke the

actual MPI function with appropriate values. Retrieving communicators and generating request

handles are also implemented in the wrapper functions. Thus, the generated benchmarks are

both accurate and readable. A detailed description of the benchmark generator is presented

in [23].

In ScalaTrace II, the trace format is completely redesigned to be able to capture more

complex application patters. Hence, ScalaBenchGen also requires a redesign including novel al-

gorithms for expanding elastic representations to generate benchmark programs from the traces

of ScalaTrace II. In this work, we describe ScalaBenchGen II, a tool to generate benchmarks

from the traces of ScalaTrace II. The following sections contribute novel algorithms required

for benchmark generation specifically for elastic traces.

4.1 Elastic Data Element Representation

ScalaTrace II introduced a new format, the elastic data element representation, to capture

all data elements such as source, destination and count. An elastic data element is a list of

< valuevector, ranklist > pairs, where the former denotes a list of values for each iteration

corresponding to the ranklist. This allows an event in the trace to assume different values of a

parameter when values vary with the current rank or iteration of the enclosed loop. For instance,

9

consider the scenario when an MPI Send communicates 5 and 10 elements in two successive

iterations of a loop for ranklist R1, but sends 15 and 20 elements for ranklist R2. Then, the

count parameter of the event is represented as:

5, 10 : R1; 15, 20 : R2

The benchmark generator passes elastic data elements of a parameter as a character string to

the MPI event wrapper function. Inside the wrapper function, this string is parsed for the first

time and an integer value vector is constructed. To avoid parsing the string every time, a value

vector and the last accessed index are maintained in the benchmark code. Thus, ScalaBenchGen

II can generate scalable benchmarks without much overhead by using the elastic data element

representation.

4.2 Generating Benchmark Code for Loops

ScalaTrace identifies the loops in a program and represents them using the PRSD format [15].

Whenever a loop is encountered in the trace, ScalaBenchGen generates a for loop and places

all members of the loop in it. ScalaTrace compresses repetitive events into a loop only when all

events match across iterations. Loops across ranks are merged if and only if all its loop mem-

bers are identical. ScalaTrace II redesigns the compression algorithms, such that a sequence of

events is compressed as a loop even if the loop members differ across ranks or iterations. Loop

information is also encoded using the elastic data element representation to achieve good com-

pression. Hence, to generate benchmark code for loops, new techniques need to be introduced

in the benchmark generator.

Inter-node compression in ScalaTrace II is loop structure agnostic in nature. The loop head

maintains the information about a loop, i.e., the number of members (events) and iterations, as

elastic data elements. While merging two loop heads, loop information is compressed as elastic

data elements such that the difference in loop structure across tasks is captured through the

elastic data element representation. But this compression mechanism provides the following

unusual properties to loop members, which makes the code generation process difficult:

• The number of events in a loop can be different per rank and iteration of an outer loop.

• An event can be part of a loop in one rank but may not be part of the loop in another rank.

Figure 4.1 illustrates the aforementioned task-specific behavior in loops. Rank 0 has a loop

of 10 iterations with three events: E1, E2, and E3. But Rank 1 has only two events, E1 and

E2, in the loop with a trip count of 20. ScalaTrace II merges these two loops by annotating

10

Rank 0:

1: for(i=0;i<10;i++){

2: E1;

3: E2;

4: E3;

5: }

Rank 1:

1: for(i=0;i<20;i++){

2: E1;

3: E2;

4: }

5: E3;

Figure 4.1: Rank specific behavior in loops

loop structure information with the loop head event, i.e., E1. The trace for Figure 4.1 is

E1(3,10)[0],(2,20)[1] E2 E3

where the subscript of E1 indicates that rank 0 has a loop with 3 events and 10 iterations,

whereas the loop in rank 1 has 2 events and 20 iterations.

ScalaBenchGen II uses the elastic data element representation to reflect any task specific

behavior in loops. Whenever a loop is encountered in the trace, a for loop is placed in the

benchmark code. Like other MPI data parameters, elastic data element strings are constructed

for both iteration and member counts of a loop. They are parsed before executing the loop

to determine the current iteration and member counts of the loop. The loop tail, i.e., the last

event in the trace that can be part of the loop across all ranks, will also be identified. All the

events from loop head to loop tail are placed in the generated for loop. This may result in a

placement of events in the loop such that certain events are executed in the loop only for a

subset of ranks. For the example in Figure 4.1, events E1, E2, and E3 are placed in a loop, but

E3 is not part of the loop for rank 1 and, hence, should only execute once. Thus, to guarantee

the correctness of a program, a conditional check is placed before every loop member:

is loop member(rank, event ranklist, nesting depth)

This predicate ensures that events are executed in their correct order and for the correct number

of times. The predicate evaluates to true only if the following two conditions are satisfied. First,

the current rank should be a member of the ranklist. Second, for a given iteration, the number

of events executed so far should be less than the total member count of the loop, except for the

last iteration. For instance, Figure 4.2 shows the simplified benchmark code for the example in

Figure 4.1. Here, for rank 1, events E1 and E2 will be executed in all iterations of the loop but

E3 will be executed only in the last iteration. However, for rank 0, all events are executed in

each iteration of the loop.

11

iter_cnt = get_param(‘‘10,0;20,1’’);

mem_cnt = get_param(‘‘3,0;2,1’’);

for(iter=0; iter<iter_cnt; iter++){

if(is_loop_member(...))

E1;

if(is_loop_member(...))

E2;

if(is_loop_member(...))

E3;

}

Figure 4.2: Benchmark code for the loop with rank specific behavior

4.3 Generating Benchmark Code for Computation

Each event in the trace records the time taken for computation, i.e., the time elapsed in ex-

ecution since the last event. The benchmark generator simulates this computation time by

introducing a sleep() call before the event for the recorded time. An event can have multiple

time records as its previous event can be different based on the rank and iteration of the loop.

The initial version of ScalaBenchGen [23] places conditional checks such that the correct value

is chosen for computation based on the entry path. This approach does not hold for the traces

of ScalaTrace II. As described in sections 4.1 and 4.2, ScalaTrace II aggressively compresses

events even though their parameters and loop membership vary with the rank and iteration.

This could lead to many entry paths for an event. For example, in the program shown in Fig-

ure 4.1, event E1 has an entry from E3 for rank 0, but it also has an another entry from E2 for

rank 1. Compressing nested loops might increase entry paths even more. Placing conditional

checks for every entry path increases the size of the generated benchmark program and reduces

its readability.

ScalaBenchGen II avoids multiple conditional checks by maintaining the timing records of

an event in the benchmark code itself. Each timing record of an event in the trace includes

the previous event’s stack signature along with the computation time. Instead of maintain-

ing incomprehensible stack signatures, the benchmark generator annotates every event with

a sequence number and uses it as a reference in the timing record. The number of the most

recently executed event is maintained as a state in the benchmark code. A wrapper function,

do compute(), is placed before every event to parse the list of timing records and to simulate

the required amount of computation based on the event that was executed previously. As the

parsing logic is completely embedded in the wrapper function, the generated benchmarks can

still be concise and readable, even if there are multiple entry paths. For the program given in

Figure 4.1, the benchmark code for the computation at event E1 is:

12

times={{t(E2),E2},{t(E3),E3},{t(P),P}};

do_compute(times,...);

where the first field in the times array contains the computation time, and the second field

indicates the corresponding previous event number. Here, P represents the event before the

loop.

13

Chapter 5

Evaluation

The developed framework is evaluated on ARC (A Root Cluster) at North Carolina State Uni-

versity using a subset of the NAS parallel benchmarks [1] (version 3.3.1). These benchmarks are

chosen as they perform both point-to-point and collective communication, which are prevalent

in HPC applications. All experiments are conducted with 256, 512 and 1024 MPI ranks, except

for SP and BT. As the number of MPI ranks needs to be a perfect square for these bench-

marks, those two are executed with 64, 256 and 1024 MPI ranks. All benchmarks are executed

with class D input problem sizes to produce sufficient computation and communication at this

scale. Execution time metrics are reported as averages over three runs with a relative standard

deviation of no more than 4.88% across all benchmarks. For the wall clock time taken for sim-

ulation, we observed relative standard deviations as high as 64% for outliers as simulation time

can be more erratic for extremely short runs (less than 20 seconds), which is not significant

due to system overheads that can easily skew results for these short runs. The average relative

standard deviation across all benchmarks is only 8.36%, which is more meaningful and, most

significantly, applies to longer runs. We also observed stability issues for simulation at 1024 MPI

ranks with an oversubscription factor of 1 for certain benchmarks (MG, SP and BT), which

result in lost heartbeats within Open MPI’s runtime layer (ORTE). We reported the results of

a single run in this case (just for simulation under xSim). The current framework needs to be

stabilized to address these problems.

Initially, trace files are collected using ScalaTrace II by executing the selected NAS parallel

benchmarks on ARC. From these traces, corresponding benchmark skeletons are generated using

ScalaBenchGen II. The generated programs are executed on ARC and on xSim in a simulated

platform that matches the configuration of ARC. The simulation experiments using xSim are

performed on ARC as well. This methodology offers a good perspective on the performance and

accuracy of the generated benchmark skeletons on the evaluation platform and on the simulated

platform. It also offers insight into the capabilities of xSim using generated benchmark skeletons.

14

5.1 Evaluation Platform

ARC consists of 108 compute nodes, each with 2 AMD Opteron 6128 (Magny Core) processors.

Each processor has 8 compute cores, i.e., each node has 16 cores and 32 GB DRAM. The nodes

are connected via InfiniBand with a fat tree network topology as follows: The 108 compute

nodes are connected through 6 layer 1 (L1) switches and 3 layer 2 (L2) switches. Each L1

switch has 36 ports, where the lower 18 ports are connected to the compute nodes and the

upper 18 ports are connected to L2 switches (6 per switch). For MPI communication, the

raw InfiniBand (IB) or TCP over IB may be used. Table 5.1 shows a significant difference in

effective bandwidth between both. The NAS parallel benchmarks and the generated skeleton

benchmarks are executed over IB with Open MPI 1.5.4.

The simulator is configured to match the IB configuration. However, due to the requirement

for multithreading in xSim, xSim itself is executed using the 8-times slower IB-over-TCP with

Open MPI 1.5.4 and MPI multithreading support (since native IB does not support MPI mul-

tithreading). As xSim supports oversubscription, its performance is evaluated by increasing the

oversubscription from a 1:1 ratio of physical-to-simulated MPI processes to a 1:16 ratio, i.e.,

reducing the number of physical processes by half in each step.

Table 5.1: IB vs. TCP-over-IB Effective Bandwidth on ARC

Type Within Switch (MB/sec) Across Switches (MB/sec)

InfiniBand 2547 2546
TCP over InfiniBand 308 303

5.2 Simulated Platform

xSim is configured to simulate ARC’s performance characteristics. As xSim’s application model

mode is used, the processor model is not needed. The generated benchmark skeletons simply call

usleep() to advance the simulated MPI process clock for the execution time of computational

phases. The network model uses a combination of hierarchical networks to simulate the on-node

communication between cores at the lowest level, the off-node communication within the same

switch at the middle level, and the off-node communication across different switches at the

highest level. At each level of the hierarchy, a star network model is employed that matches the

latency and bandwidth performance of ARC. The simulation parameters are shown in Table 5.2.

As noted earlier, communication contention is only simulated for each individual simulated

15

Table 5.2: ARC Network Parameters

Level Latency Bandwidth Rendezvous Threshold

On-node 12 µs 1834 MB/sec 4 kB
Off-node (same switch) 13 µs 2547 MB/sec 64 kB
Off-node (different switch) 14 µs 2546 MB/sec 64 kB

MPI process, i.e., a simulated MPI process cannot send and/or receive multiple MPI messages

without incurring the required cost to send and/or receive them. However, xSim neither sim-

ulates network contention at the node interface nor at router level at this point. Furthermore,

xSim’s collective MPI calls are implemented in a linear fashion at the moment. There is no

simulation support for tree-based collectives.

5.3 Generated Benchmarks Accuracy and Conciseness

Figure 5.1 compares the wall clock execution times (on a logarithmic scale on the y-axis)

of the benchmark programs (x-axis) generated by ScalaBenchGen II with the corresponding

original applications. Both are executed on the same evaluation platform, ARC. From the

graphs in Figure 5.1, we observe that the execution times of the generated benchmark and the

corresponding application are close to each other. Quantitatively, the mean percentage error

across the benchmarks is 5.5%, indicating a high accuracy. The maximum percentage error

observed is 13.29%. We have calculated the percentage error using the formula:

|(Tbm − Tapp)|/Tapp × 100

where Tbm and Tapp represent the execution time of benchmark program and the corresponding

application, respectively.

Table 5.3: Comparison of Number of Lines of Code

Program Application Benchmark Reduction (%) Scalability

BT 9383 1076 88.53 constant
SP 5067 1022 79.83 constant
CG 1918 954 50.26 constant
LU 6024 1298 78.45 constant
MG 2678 2496· · · 2888 -7.84· · · 6.8 sub-linear

16

 1

 10

 100

 1000

 10000

D-64 D-256 D-1024

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
)

Number of Processes

Native Application
Generated Benchmark

(a) BT

 1

 10

 100

 1000

 10000

D-64 D-256 D-1024

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
)

Number of Processes

Native Application
Generated Benchmark

(b) SP

 1

 10

 100

D-256 D-512 D-1024

E
x
e
c
u
ti
o

n
 T

im
e
(s

e
c
)

Number of Processes

Native Application
Generated Benchmark

(c) MG

 1

 10

 100

 1000

D-256 D-512 D-1024

E
x
e
c
u
ti
o

n
 T

im
e
(s

e
c
)

Number of Processes

Native Application
Generated Benchmark

(d) CG

 1

 10

 100

 1000

 10000

D-256 D-512 D-1024

E
x
e

c
u
ti
o

n
 T

im
e
(s

e
c
)

Number of Processes

Native Application
Generated Benchmark

(e) LU

Figure 5.1: Accuracy of ScalaBenchGen II Benchmarks

17

Table 5.3 demonstrates the conciseness of the benchmarks produced by ScalaBenchGen II.

The generated programs are smaller than the corresponding applications, less than half the

size in most of the cases, even though these were benchmark programs to begin with. (More

significant reductions in size would be obtained when automatically generating benchmarks from

full-sized HPC applications.) The scalability column in Table 5.3 indicates how the number of

lines of code changes with number of MPI ranks. The numbers of lines of code remain constant

for all the benchmarks, irrespective of the number of MPI ranks, except for MG. MG performs

a complex 7-point stencil communication that results in imperfect trace compression. However,

the increase is only sub-linear with number of MPI ranks. Here, we reported the change in

number of lines for 256 to 1024 ranks. Most significantly, BT and CG show a constant size

irrespective of the number of ranks, which could only be obtained by benchmark generation

with ScalaBenchGen II from the elastic trace format (cf. prior sub-linear results for these

benchmarks in [16]).

5.4 Simulation Performance and Accuracy

We evaluated the effectiveness of our approach using two metrics: the amount of MPI data

communicated during simulation and the time taken to complete the simulation. Figure 5.2

presents the amount of MPI data communicated (on a log scale on the y-axis) under the simu-

lation for the different generated skeleton benchmarks (x-axis). Note that the generated skeleton

benchmarks communicate the same amount of MPI data as the corresponding NAS benchmarks

when not using xSim for simulation. We observe that MPI data transmitted during simulation

is 2-4 orders of magnitude smaller than the amount of data communicated in the actual appli-

cation. This is due to the fact that the MPI payload is not transmitted during simulation. In all

benchmarks, a total of only a few giga bytes are communicated during simulation, even though

the MPI data exchanged in native application execution is in the order of tera bytes. Also, the

amount of transmitted MPI data decreases with increasing oversubscription, because xSim does

not need to send MPI messages with corresponding metadata for simulated MPI processes that

reside within the same physical MPI process (using user-space threading). Figure 5.3 shows the

effect of decreasing MPI message counts (on a log scale) over increasing oversubscription. We

observe a reduction of MPI messages in the order of millions as we increase the oversubscription

factor.

Figure 5.4 presents the total wall clock time elapsed to perform the simulation (on a log

scale) with different oversubscription factors. We observe that the time taken for simulating a

benchmark skeleton is less than the actual application execution time in most of the scenarios.

This is due to the fact that complex computations are not performed and that the actual MPI

payload of the application is not included in message exchanges during simulation. Also, we

18

(a) legend

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

D-64 D-256 D-1024

M
P

I
D

a
ta

 E
x
c
h
a
n

g
e
d
 (

b
y
te

s
)

Number of Processes

(b) BT

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

D-64 D-256 D-1024

M
P

I
D

a
ta

 E
x
c
h

a
n
g
e
d

 (
b
y
te

s
)

Number of Processes

(c) SP

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

D-256 D-512 D-1024

M
P

I
D

a
ta

 E
x
c
h

a
n
g
e
d

 (
b
y
te

s
)

Number of Processes

(d) MG

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

D-256 D-512 D-1024

M
P

I
D

a
ta

 E
x
c
h
a
n
g

e
d
 (

b
y
te

s
)

Number of Processes

(e) CG

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

D-256 D-512 D-1024

M
P

I
D

a
ta

 E
x
c
h
a
n
g

e
d
 (

b
y
te

s
)

Number of Processes

(f) LU

Figure 5.2: MPI Data Exchanged for Different Oversubscription Scenarios

19

(a) legend

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

D-64 D-256 D-1024

M
P

I
M

e
s
s
a
g
e
s
 E

x
c
h
a
n
g
e

d

Number of Processes

(b) BT

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

D-64 D-256 D-1024

M
P

I
M

e
s
s
a

g
e
s
 E

x
c
h
a
n

g
e
d

Number of Processes

(c) SP

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

D-256 D-512 D-1024

M
P

I
M

e
s
s
a

g
e
s
 E

x
c
h
a
n

g
e
d

Number of Processes

(d) MG

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

D-256 D-512 D-1024

M
P

I
M

e
s
s
a
g
e
s
 E

x
c
h

a
n
g
e
d

Number of Processes

(e) CG

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

D-256 D-512 D-1024

M
P

I
M

e
s
s
a
g
e
s
 E

x
c
h

a
n
g
e
d

Number of Processes

(f) LU

Figure 5.3: MPI Messages Exchanged for Different Oversubscription Scenarios

20

(a) legend

 0.1

 1

 10

 100

 1000

 10000

D-64 D-256 D-1024

S
im

u
la

ti
o
n

 T
im

e
(s

e
c
)

Number of Processes

(b) BT

 1

 10

 100

 1000

 10000

D-64 D-256 D-1024

S
im

u
la

ti
o
n
 T

im
e
(s

e
c
)

Number of Processes

(c) SP

 1

 10

 100

D-256 D-512 D-1024

S
im

u
la

ti
o
n
 T

im
e
(s

e
c
)

Number of Processes

(d) MG

 1

 10

 100

 1000

D-256 D-512 D-1024

S
im

u
la

ti
o
n
 T

im
e
(s

e
c
)

Number of Processes

(e) CG

 1

 10

 100

 1000

 10000

D-256 D-512 D-1024

S
im

u
la

ti
o
n
 T

im
e
(s

e
c
)

Number of Processes

(f) LU

Figure 5.4: Simulation Time for Different Oversubscription Scenarios

21

observe an initial decrease of simulation time with increasing oversubscription and an eventual

increase again in most of the scenarios. We have shown in Figures 5.2 and 5.3 that an increase

of oversubscription will lower the number of MPI messages and the amount of MPI data that

is communicated. However, more simulated MPI processes reside on the same physical MPI

process with higher oversubscription, resulting in additional overheads for context switching

between them. Each individual simulated MPI message that is received by a simulated MPI

process requires the simulator to switch to the context of the receiving simulated MPI process.

While the context switch itself consists of a jump in the user-space stack and a copy-out/in of

the data segments, it is not necessarily by itself a huge performance issue. The context switch,

however, may trigger cache pollution. In addition, the network model is applied for each simu-

lated MPI message whether it is sent to a locally residing simulated MPI process or to a remote

one, incurring a small computational overhead. Programs with high message volumes, such as

LU with over 100 million messages, create a noticeable overhead by forcing context switches

and network model computations. Figure 5.4 further shows an outlier. The simulation of MG

at 1024 MPI ranks takes longer than the application independent of oversubscription, while it

is shorter for 256 and 512 MPI ranks. It appears that its 7-point stencil communication pattern

is causing performance degradation in xSim’s MPI message processing that is compounded at

larger scales.

Figure 5.5 presents the comparison of the simulated benchmark skeleton execution time with

the corresponding application execution time. The mean percentage error across the simulated

benchmark skeletons is 22.41%. We have calculated the error using the formula:

|(Tapp − Tsim)|/Tapp × 100

where Tapp and Tsim represent the execution time of application and the corresponding simulated

benchmark skeleton, respectively. Both times are decreasing with an increase in the number of

MPI ranks. Hence, even though the simulated benchmark skeleton’s time is not highly accu-

rate, it follows the same scaling pattern as the original application. This demonstrates that

the presented approach permits assessing the performance characteristics of applications using

generated benchmark skeletons in a simulated HPC system.

The simulation accuracy is affected by a number of factors. xSim does not model network

interface and router contention, which are likely the biggest influence. Furthermore, MPI col-

lectives are simulated in a linear fashion, which may not reflect the algorithms used internally

by the MPI implementation at scale. Also, xSim executes the simulated benchmark skeleton in

these experiments in an entirely clean environment, without simulated operating system (OS)

noise and without any simulated local contention within the MPI layer for matching messages

during receives. This results in lower execution times for the simulated benchmark skeletons,

22

 1

 10

 100

 1000

 10000

D-64 D-256 D-1024

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
)

Number of Processes

Native Application
Simulated Benchmark

(a) BT

 1

 10

 100

 1000

 10000

D-64 D-256 D-1024

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
)

Number of Processes

Native Application
Simulated Benchmark

(b) SP

 1

 10

 100

D-256 D-512 D-1024

E
x
e
c
u
ti
o

n
 T

im
e
(s

e
c
)

Number of Processes

Native Application
Simulated Benchmark

(c) MG

 1

 10

 100

 1000

D-256 D-512 D-1024

E
x
e
c
u
ti
o

n
 T

im
e
(s

e
c
)

Number of Processes

Native Application
Simulated Benchmark

(d) CG

 1

 10

 100

 1000

 10000

D-256 D-512 D-1024

E
x
e

c
u
ti
o

n
 T

im
e
(s

e
c
)

Number of Processes

Native Application
Simulated Benchmark

(e) LU

Figure 5.5: Accuracy of Simulation

23

especially when they communicate a large amount of data for which the network contention is

not modeled. For instance, we observed maximum error of 54% for CG for 1024 MPI ranks in

our experiments, where nearly 5.5 TB of data are transferred.

24

Chapter 6

Related Work

In the context of the presented work, related work focuses on MPI performance tools that extract

and analyze MPI traces and simulation tools that execute applications or corresponding traces

in a simulated HPC system.

Our benchmark generator framework, ScalaBenchGen II, utilizes traces produced by Sca-

laTrace II that are constant in size irrespective of number of MPI ranks. In contrast to our

approach, the size of the traces produced by traditional tracing tools, such as PARAVER [18]

and Vampir [13], increases linearly with number of MPI ranks.

Xu et al. [28, 29] proposed a framework to construct performance skeletons to evaluate the

performance of corresponding application on a future HPC system. But MPI events that are not

part of a globally dominant communication pattern are not included in performance skeletons.

Hence, communication behavior of these skeletons may differ from the original application,

unlike benchmarks produced by ScalaBenchGen II.

Wu et al. [26] used traces of ScalaTrace to generate benchmarks in Conceptual [17], a domain

specific language designed to express communication patterns. A program in Conceptual can be

converted into an MPI program in C. But the Conceptual language does not support all features

of MPI like communicators and certain collective operations. Thus, a generated benchmark

program might not reflect the true behavior of the original application. Since our benchmark

framework issues MPI calls in C, it produces lossless and accurate benchmarks.

The Structural Simulation Toolkit (SST) [20] offers simulation of novel compute-node archi-

tectures of future-generation HPC systems. It scales to a few hundred nodes with different levels

of accuracy, utilizing external modeling and simulation tools. It can generate traces for larger-

scale system simulations. SST/macro is a complementary simulation toolkit that can process

output from the MPI tracing library DUMPI (http://sst.sandia.gov/about_dumpi.html)

for performance evaluation. SST and SST/macro enable a synergy between small-scale cycle-

accurate and large-scale communication-accurate simulations by generating traces at smaller

25

scale and extrapolating performance at extreme scale. The solution presented in this work of-

fers a more practical, versatile and efficient approach as skeleton benchmarks are generated and

executed in a simulation environment. The data-intensive trace replay is not necessary and,

in contrast to running real applications, there is no need for computation or communication

workload within the simulation. Furthermore, application code itself is obfuscated, permitting

analysis of the performance characteristics for proprietary applications.

Other trace-driven PDES solutions exist for performance estimation of HPC applications

on future-generation HPC systems. For example, DIMEMAS [8] is a simulation tool that pro-

cesses traces acquired from HPC applications and generates output for performance tools,

such as PARAVER [18] and Vampir [13]. Performance estimations of architectural changes can

be simulated and visualized. While the presented solution does not feature trace output and

visualization, it does offer simulation-based performance estimation without the overhead of

trace-driven simulation.

26

Chapter 7

Conclusion and Future Work

This work has demonstrated the capability to utilize benchmarks generated from ScalaBench-

Gen II to drive HPC architectural simulations. The ScalaTrace II framework is used to produce

near lossless scalable and elastic communication traces. The resulting traces are transformed

by ScalaBenchGen II into a benchmark code, which is of constant size for most benchmarks

irrespective of the number of nodes and sub-linear for one benchmark, benefiting from novel

benchmark generation algorithms from elastic traces. This code is subsequently fed into xSim to

run the benchmark within a simulated environment. Simulating generated benchmarks instead

of the original application enables xSim to avoid the payload exchange of an MPI event and

virtualizes computation completely. Experimental results showed that with benchmark skele-

tons, the total amount of MPI data communicated in simulation is reduced by several orders of

magnitude, and the time taken for simulation is close to the application’s native execution time

even with higher oversubscription. Therefore, our approach reduces the resources utilized by

a simulator, such as processor capacity and network bandwidth. This makes simulation more

scalable, which confirms the hypothesis.

This work can be extended to handle more benchmarks during the generation process, and

novel simulation techniques can be incorporated to handle extreme scale sized workloads. More

specifically, ScalaExtrap [24] presents novel algorithms to extrapolate a trace of a large number

of processes from traces of an application that are collected over small numbers of processes.

Thus, application traces for next generation extreme scale systems can be derived from existing

small HPC systems. Benchmark skeletons can be produced from these traces and analyzed in

the simulated environment. But ScalaExtrap is based on the initial version of ScalaTrace and,

hence, needs to be redesigned to support new version, ScalaTrace II, an area of future work.

Currently, xSim does not simulate network contention at the network interface and router.

A probabilistic approach can be designed to simulate network contention by changing network

bandwidth following a normal distribution.

27

REFERENCES

[1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A.

Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakr-

ishnan, and S. K. Weeratunga. The NAS Parallel Benchmarks. The International Journal

of Supercomputer Applications, 5(3):63–73, Fall 1991.

[2] Swen Böhm and Christian Engelmann. xSim: The extreme-scale simulator. In Proceedings

of the International Conference on High Performance Computing and Simulation (HPCS)

2011, pages 280–286, Istanbul, Turkey, July 4-8, 2011. IEEE Computer Society, Los Alami-

tos, CA, USA. Acceptance rate 28.1% (48/171).

[3] CUDA. http://www.nvidia.com/object/cuda_home.html.

[4] Jack J Dongarra, Hans W Meuer, Erich Strohmaier, et al. Top500 supercomputer sites.

Supercomputer, 13:89–111, 1997.

[5] Christian Engelmann. Scaling to a million cores and beyond: Using light-weight simulation

to understand the challenges ahead on the road to exascale. Future Generation Computer

Systems (FGCS), 30(0):59–65, January 2014.

[6] Christian Engelmann and Frank Lauer. Facilitating co-design for extreme-scale systems

through lightweight simulation. In Proceedings of the 12th IEEE International Conference

on Cluster Computing (Cluster) 2010: 1st Workshop on Application/Architecture Co-design

for Extreme-scale Computing (AACEC), pages 1–8, Hersonissos, Crete, Greece, Septem-

ber 20-24, 2010. IEEE Computer Society, Los Alamitos, CA, USA.

[7] Richard M Fujimoto. Parallel discrete event simulation. Communications of the ACM,

33(10):30–53, 1990.

[8] Sergi Girona, Jesús Labarta, and Rosa M. Badia. “Validation of dimemas communication

model for MPI collective operations”. In Lecture Notes in Computer Science: Proceedings of

28

the 7th European PVM/MPI Users‘ Group Meeting (EuroPVM/MPI) 2000, volume 1908,

pages 39–46, Balatonfüred, Hungary, September 10-13 2000.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implemen-

tation of the MPI message passing interface standard. Parallel Computing, 22(6):789–828,

September 1996.

[10] Paul Havlak and Ken Kennedy. An implementation of interprocedural bounded regular

section analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350–360,

July 1991.

[11] Human Brain Project - High Performance Computing Platform. https://www.

humanbrainproject.eu/high-performance-computing-platform.

[12] Ian S. Jones and Christian Engelmann. Simulation of large-scale HPC architectures. In

Proceedings of the 40th International Conference on Parallel Processing (ICPP) 2011: 2nd

International Workshop on Parallel Software Tools and Tool Infrastructures (PSTI), pages

447–456, Taipei, Taiwan, September 13-19, 2011. IEEE Computer Society, Los Alamitos,

CA, USA.

[13] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger

Mickler, Matthias S. Müller, and Wolfgang E. Nagel. The vampir performance analysis tool-

set. In Michael Resch, Rainer Keller, Valentin Himmler, Bettina Krammer, and Alexander

Schulz, editors, Tools for High Performance Computing, pages 139–155. Springer Berlin

Heidelberg, 2008.

[14] Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William

Dally, Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, Sherman

Karp, Stephen Keckler, Dean Klein, Robert Lucas, Mark Richards, Al Scarpelli, Steven

Scott, Allan Snavely, Thomas Sterling, R. Stanley Williams, and Katherine Yelick. Ex-

aScale computing study: Technology challenges in achieving exascale systems. Techni-

29

cal report, Defense Advanced Research Project Agency (DARPA) Information Processing

Techniques Office (IPTO), 2008.

[15] J. Marathe and F. Mueller. Detecting memory performance bottlenecks via binary rewrit-

ing. In Workshop on Binary Translation, September 2002.

[16] M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski. Scalatrace: Scalable compression

and replay of communication traces in high performance computing. Journal of Parallel

Distributed Computing, 69(8):969–710, August 2009.

[17] Scott Pakin. The design and implementation of a domain-specific language for network

performance testing. IEEE Transactions on Parallel and Distributed Systems, 18(10):1436–

1449, October 2007.

[18] V. Pillet, J. Labarta, T. Cortes, and S. Girona. PARAVER: A Tool to Visualize and An-

alyze Parallel Code. In Proceedings of WoTUG-18: Transputer and occam Developments,

pages 17–31, mar 1995.

[19] P. Ratn, F. Mueller, Bronis R. de Supinski, and M. Schulz. Preserving time in large-scale

communication traces. In International Conference on Supercomputing, pages 46–55, June

2008.

[20] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston,

R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, and B. Jacob. The structural simulation

toolkit. SIGMETRICS Perform. Eval. Rev., 38(4):37–42, March 2011.

[21] Vivek Sarkar, William Harrod, and Allan E Snavely. Software challenges in extreme scale

systems. In Journal of Physics: Conference Series, volume 180, page 012045. IOP Pub-

lishing, 2009.

[22] Strategic Research Agenda of the European Technology Platform for High Perfor-

mance Computing. http://www.etp4hpc.eu/wp-content/uploads/2013/06/ETP4HPC_

book_singlePage.pdf.

30

[23] X. Wu, V. Deshpande, and F. Mueller. Scalabenchgen: Auto-generation of communication

benchmark traces. In International Parallel and Distributed Processing Symposium, April

2012.

[24] X. Wu and F. Mueller. Scalaextrap: Trace-based communication extrapolation for spmd

programs. In ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, pages 113–122, February 2011.

[25] X. Wu and F. Mueller. Elastic and scalable tracing and accurate replay of non-deterministic

events. In International Conference on Supercomputing, pages 59–68, June 2013.

[26] Xing Wu, Frank Mueller, and Scott Pakin. Automatic generation of executable communi-

cation specifications from parallel applications. In ICS, pages 12–21, 2011.

[27] www.openmp.org. Official OpenMP Specification, May 2005.

[28] Qiang Xu, Ravi Prithivathi, Jaspal Subhlok, and Rong Zheng. Logicalization of mpi com-

munication traces. Technical Report UH-CS-08-07, Dept. of Computer Science, University

of Houston, 2008.

[29] Qiang Xu and Jaspal Subhlok. Construction and evaluation of coordinated performance

skeletons. In International Conference on High Performance Computing, pages 73–86,

2008.

31

