
ABSTRACT

MITTAL, SWASTIK. T-Pack, Timed Network Security In Real Time System. (Under the direction of
Dr. Frank Muller.)

Real-time systems are widely deployed as cyber-physical systems to control physical processes

with timing requirements in a networked environment, i.e., as distributed systems. Purpose of

realization as a distributed system ranges from providing fault tolerance, remote monitoring, co-

ordination with other distributed control processes to data processing of networked sensors and

actuators. Exposure to network communication between real-time control systems raises system

vulnerability to malware attacks over the network, e.g., man-in-the-middle attacks, data corruption,

denial of service and eavesdropping. Such attacks require code injection of malware into the system,

which results in alteration not only of system behavior via hijacked execution control but also incurs

timing dilation to plant the injected code or, in case of network attacks, to drop, add, reroute, or

modify packets before they reach their target.

This work proposes to use the time overhead added by such cyber attacks to detect malware

intrusion in cyber-physical real-time systems. A new method of timed packet protection, T-Pack,

analyzes end-to-end transmission times of packets and detects a compromised system or network

based on deviation of observed time from the expected time. Malware intrusion detection is demon-

strated by observing timing constraints with and without a compromised network. First, a custom

header is introduced to each packet to store timing information calculated to reflect end-to-end

transmission times. Second, real-time application scenarios are analyzed in terms of their suscep-

tibility to malware attacks. Results are evaluated on a distributed system of embedded platforms

running a Preempt RT Linux kernel to demonstrate the real-time capability of our work.

© Copyright 2020 by Mittal, Swastik

All Rights Reserved

T-Pack, Timed Network Security In Real Time System

by
Mittal, Swastik

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2020

APPROVED BY:

Dr. Muhammad Shahzad Dr. Ruozhou Yu

Dr. Frank Muller
Chair of Advisory Committee

DEDICATION

To my parents.

ii

BIOGRAPHY

The author was born in Dehradun, India. After completing his schooling in 2014 he started working

towards his B.Tech. degree in Computer Science and Engineering at Vellore Institute of Technology,

Chennai, India. He graduated with an undergraduate degree in 2018, after which he began pursuing

his graduate degree in Computer Science at North Carolina State University, Raleigh. Since August

2019 he has been working as a Graduate Research Assistant under the guidance of Dr. Frank Mueller.

iii

ACKNOWLEDGEMENTS

I would like to thank everyone who has helped me over these last 2 years. I would like to thank

my advisor Dr. Frank Mueller for giving me the opportunity to work under his guidance. His deep

insights, encouragement and advice have been invaluable towards the completion of this work. I

would also like to thank Dr. Muhammad Shahzad and Dr. Ruozhou Yu for taking interest in my work

and being part of my advisory committee. I would also like to thank the people in my research group

with whom I’ve had truly wonderful discussions.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 INTRODUCTION . 1
1.1 Motivation: Detecting Network Delay with Minimal Cost for Real-Time System Using

Monitoring Techniques . 2
1.2 Hypothesis . 2

Chapter 2 Background . 4
2.1 Computer Security . 4

2.1.1 System Security . 4
2.1.2 Network Security . 5

2.2 Attacks . 5
2.2.1 System Attack . 5
2.2.2 Network Attack . 5

2.3 Real-Time Systems . 7
2.3.1 Preempt RT Linux . 9

2.4 Timed Security in Real-Time Systems . 9

Chapter 3 Related Work . 10

Chapter 4 Design . 12
4.1 One Way Message Transfer . 13
4.2 Two-Way Message Transfer . 14
4.3 Attack Model . 15
4.4 Vulnerability Of T-Pack . 16
4.5 Time Information inside a Packet . 17
4.6 Challenges . 17

Chapter 5 Implementation . 19
5.1 Linux . 19
5.2 Netfilter . 19
5.3 Socket Buffers . 20
5.4 Implementation Framework . 20

Chapter 6 Experimental Framework . 24
6.1 Experiment 1: Client Server Model . 24
6.2 Experiment 2 : Paparazzi UAV Model . 24
6.3 Experiment 3 : Waters Workshop Challenge 2018, a Drone-like Multi-System 25

Chapter 7 Experimental Evaluation . 27
7.1 Experiment 1 . 27
7.2 Experiment 2 . 28
7.3 Experiment 3 . 31

Chapter 8 Conclusion . 34

v

BIBLIOGRAPHY . 35

vi

LIST OF TABLES

Table 4.1 ABBREVIATIONS . 12

vii

LIST OF FIGURES

Figure 2.1 Relay Attack[Kim13] . 6
Figure 2.2 Replay Attack . 6
Figure 2.3 Cyclic test for Linux OS . 8
Figure 2.4 Cyclic test for Preempt RT Linux . 8

Figure 4.1 a. One-Way (UDP) b. Two-Way (TCP) . 13
Figure 4.2 Message Transfer In Compromised Real-Time System 16

Figure 5.1 Netfilter Events Triggered by Custom Headers and Processed by Framework 2 19
Figure 5.2 (a)skb_put, (b)skb_push, (c)skb_pull, (d)skb_reserve 21
Figure 5.3 Memory Mapping of Socket Buffer for Packet Representation 21
Figure 5.4 Framework 2: Custom Header Insertion/Removal using Socket Buffers 22

Figure 6.1 Paparazzi Model: Message Scheduling Between Subsystems 25

Figure 7.1 Box plot for RTT in ms measured by 1. T-Pack, 2. Application with T-Pack
running, 3. Application without T-Pack running. The range of whisker is 3.5
times the inter-quartile range. 28

Figure 7.2 Box plot for RTT in ms measured by T-Pack under different attack conditions
for P(n,t,b,i) parameters: 1 (0,0,0,0) (No Attack / Attack 1), 2 (1,10,500,0.5) (At-
tack 2), 3 (1,10,500,0.5) (Attack 3), 4 (2,10,500,0.1) (Attack 4), 5 (2,30,500,0.05)
(Attack 5), 6 (2,10,500,0) (Attack 6), 7 (2,30,1000,0.001) (Attack 7). The range
of whiskers is 5 times the inter-quartile range. 30

Figure 7.3 Frequency Distribution Curve and Overlapping Region 30
Figure 7.4 Frequency Distribution Curve and Overlapping Region 30
Figure 7.5 Frequency Distribution Curve and Overlapping Region 31
Figure 7.6 Box plot for RTT in ms measured by T-Pack under different attack conditions

for P(n,t,b,i) parameters: 1 (0,0,0,0) (No Attack / Attack 1), 2 (1,10,500,0.5) (At-
tack 2), 3 (1,10,500,0.5) (Attack 3), 4 (2,10,500,0.1) (Attack 4), 5 (2,30,500,0.05)
(Attack 5), 6 (2,10,500,0) (Attack 6), 7 (2,30,1000,0.001) (Attack 7). The Range
of whiskers is 2.5 times the inter-quartile range. 32

Figure 7.7 Frequency Distribution Curve and Overlapping Region 33
Figure 7.8 Frequency Distribution Curve and Overlapping Region 33

viii

CHAPTER

1

INTRODUCTION

Computer security has become a critical requirement for any type of computer application in

modern world. Some of the main components of computer security are: (1) System level security,

securing end system’s code at different levels and layers from attacks leveraging memory (e.g., buffer

overflow attacks including stack smashing [One96], heap overflows [Con99]) or non-memory related

attacks (e.g., value range overflows [Hor02], shell shock [Mar15], port smashing); and (2) network

security, securing systems on the network from being attacked by some malicious users. For the

latter, a wide range of attacks are common including relay, replay, phishing, spoofing, man-in-

the-middle, denial of service, eavesdropping etc. [Fra11b; Fra11a; Cal09; SHA18]. One of the most

common attack forms is the delay attack. In this attack, the objective is to stall execution/packets

of a time-sensitive event (e.g., a code section within the system or some client/server request)

causing excessive delays and resulting in performance degradation [Lou19]. Real-time systems are

particularly susceptible to such attacks as deadlines are critical for correct system behavior, i.e.,

time dilation not only results in performance penalties or reduced network throughput but may

cause a control system to malfunction, which can result in damage to the controlled environment

or even loss of life. Past work shows how delay attacks have affected cyber-physical systems (CPS)

[Lou] and network control systems [Sar15] subject to real-time constraints.

Significant work has been invested in analyzing and mitigating the impact of these attacks [Lou19;

Lou; Sar15]. Real-time systems offer a unique opportunity for intrusion detection besides traditional,

general-purpose cyber-security techniques: Their inherent knowledge of execution times, required

for real-time scheduling, opens up the path for additional monitoring and protection. The same

techniques for establishing timing bounds on the execution of the real-time task may be applied to

bound execution of any code section within the application [Gor04; Wil08]. Past works have used

1

this model for security in real time systems from memory attacks [Zim10], securing clock synchro-

nizations from delay attacks caused by malware intrusion on the network [Nar18] and security in

smart grid systems [Ped16]. Timed analysis is not just restricted to security, it can also be used to

design attack models, e.g., in context of hardware security tokens such as Smartcards [Dhe98; Koc96;

Sch00], exported secret keys used for RSA decryption [Koc96] and remote timing attacks [Bru05]. The

novelty of our work is to utilize timed-based security to predict delay attacks on a network subject

to communication with real-time constraints.

1.1 Motivation: Detecting Network Delay with Minimal Cost for Real-

Time System Using Monitoring Techniques

Many real-time systems require communication between various subsystems over a network (mostly

a dedicated intranet, unlike network control systems). Communication messages between these

subsystems may be health checks, scheduler messages, raw sensor data, actuation commands,

transformed signals, etc. For example, consider a simple drone. The flight dynamics of this drone are

controlled using different subsystems, such as a braking system to regulate the speed of the drone,

a propulsion system to handle signals between controller and sensors of the drone, management

systems to schedule task between these subsystems and to also ensure that a task adheres to a

given deadlines. Automotive real-time control systems, such as in Tesla architecture, also consist

of a large number of independent subsystems communicating over various networks, multiple

controller area networks and also Ethernet [Tes]. These subsystems rely on network connections to

interact with other nodes to establish full-system operations. As discussed earlier, such a network is

vulnerable to attacks. In safety critical real-time systems, slower response or failure could result in

significant environmental damage or even in loss of life. System restarts often cannot be instant due

to an unstable physical system state. This research focuses on intrusion detection of such attacks

at packet level, i.e., before malware enters a given subsystem. The earlier intrusion is detected,

the easier it is to resort to a safe operational mode with reduced or even without communication

to another subsystem that has been compromised, e.g., using the Simplex design [Cre07; Bak09],

thereby avoiding damage to life and property. Notice that our work focuses on intrusion detection

and relies on established methods to transition to a safe state, i.e., Simplex and other methods to

transition to are beyond the scope of this research.

1.2 Hypothesis

To tackle the above challenges we put forward the following hypothesis:

Monitoring the round trip time of periodic communication at the packet level in a real-time

distributed system provides a means to detect network intrusions complementing conventional

security methods.

The contributions of our work as as follows:

2

• A novel method, T-Pack, is designed and implemented that adds custom headers to the packets

and enforces end-to-end deadlines on network traffic using timing information stored within

the headers.

• End-to-end packet deadlines are exploited to detect malware intrusion within the network.

• Experiments are conducted on real-time applications with attack scenarios to assess the

potential and limitations of T-Pack.

• Results indicate that T-Pack induces a modest amount of performance overhead to the real-

time system (≈ 0.12 milliseconds). For a real-time based UAV model (UAV Paparazzi [Hat14],

T-Pack was able to detect 100% of the delays caused by distributed denial of service attack

in the form of “ping-of-death” with 30 attacker processes each on two nodes sending ICMP

ping packets of size 1000 bytes at intervals of 0.001 seconds, and around 99% of the delays

with 500 byte ICMP packets to the observed server as a ping flood (0 seconds interval) with 10

attackers per node. Attacks with lower intensity, i.e., one attacker sending 10 parallel ICMP

ping packets of 500 bytes at 0.5 second intervals, go undetected by T-Pack.

• Similar results were observed for another real-time system in a drone-like multi-system. T-

pack detected the first attack all the time (100%) and the second attack 95% of the time. Similar

to UAV Paparazzi model, 99% of the attacks for the third attack scenario remained undetected

(but one may argue that system functionality also remained intact so that the threat level was

low).

The document is organized as follows. Chapter 3 discusses related work on cyber security in

general and timing-based cyber analysis techniques in particular to detect malware and contrasts

these with the T-Pack method of timed analysis for packet delivery. Chapter 4 provides an overview of

the system design elaborating on the methodology of T-Pack for various communication models and

attack scenarios. Chapter 5 indicates how the T-Pack design was implemented in the Linux kernel

with the Preempt-RT real time patch deployed on Raspberry Pis. Chapter 6 details the experimental

setup of the framework and Chapter 7 discusses experimental results and Chapter 8 summarizes

the contributions.

3

CHAPTER

2

BACKGROUND

2.1 Computer Security

Computer security is the process of detecting and preventing intrusion and malware execution

in computer systems and networks by maintaining policies to mitigate the effect of unauthorized

access. Early signs of importance of computer security were reflected during World Was II. Arthur

Scherbius’s enigma machine prevented enemies from implementing counter strategies as they

could not decode the intercepted messages sent between troops until it was deciphered by a team

of British mathematicians. Since the birth of Apple and advent of personal computers, computer

security took a giant leap. Many advancement were made in security policies. Today computer

security is one of the essential aspects of computer systems and networking.

2.1.1 System Security

System-level security refers to the architecture, policy and processes that ensure data and system

security on individual computer systems. It protects a standalone system from intrusions that can

compromise standard system functionality. A system is secure when its resources can be used as

intended under any circumstances. A violation of this could be due to system intrusion, e.g. by

gaining system control via memory-related attacks or non memory-related attacks, as detailed in

the next section.

4

2.1.2 Network Security

A compromised network could be fatal in today’s world given that many devices are connected

via the Internet. Hence, network security is essential to protect devices from malicious users who

might disrupt communication between end users. Such disruptions or attacks could be as basic as

increasing the traffic on the network with unwanted packets to reduce full capacity or interfering

between the communication of end users listening to the messages and utilizing it to gain trust and

access systems that are part of the network.

2.2 Attacks

2.2.1 System Attack

Processes or programs may be used by malicious users to gain unauthorized access to end systems

effecting the intended functionality of the system. These attacks could exploit the memory or other

processes in the system to attack. A common memory exploitation attack is the buffer overflow

attack. Attackers exploit buffer overflow issues in user programs by overwriting the memory of an

application. This changes the execution path of the program, triggering a response that damages

files or exposes private information. Some of the common buffer overflow attacks include stack

smashing, a vulnerability where the stack of a computer application or Operating System (OS) is

forced to overflow. This occurs when a buffer overflow overwrites data in the memory allocated

to drive execution , e.g. the return address of a function call. Another form of buffer overflow

attacks includes heap overflows. Dynamically allocated heap can be exploited to overwrite internal

structures such as linked list pointers and program data. Non-memory related attacks disrupt the

system performance without exploiting the memory of the applications. Some of these attacks

are shell shock and port smashing. Shell shock is a security bug in the Unix bash shell which gives

attacker the ability to cause bash to execute arbitrary commands and gain unauthorized access.

Port smashing is known to exploit Simultaneous Multi Threading (SMT), which enables running

two program simultaneously on single CPU core (hyper threading). The attacker thread is used to

monitor a worker thread indirectly to reveal details about the simultaneously running application.

For example, port smashing uses an attack thread to continuously utilize a common port with

instructions unless the CPU’s scheduler stops running and hands the port over to the other thread.

By measuring the time in between its own instructions running on that port, it can measure the

time that the other thread takes to process its own instructions.

2.2.2 Network Attack

As mentioned in the context of network security, shared resource applications are increasing by

requiring various homogeneous or heterogeneous systems to be connected over a network. These

networks could easily be exploited to affect the intended functionality. There are a vast variety of

network attacks including relay, replay, phishing, spoofing, man-in-the-middle, denial of service etc.

5

Figure 2.1 Relay Attack[Kim13]

Figure 2.2 Replay Attack

image credit: Mount Knowledge, Strong Authentication For 2012, Richard (January 14, 2012)

6

Relay and replay attacks are common in real-time system. Both can be classified as subcategories of

man-in-the-middle attacks. In a relay attack, as seen in Figure 2.1, RA1 approaches the car with a

key that simulates the same behaviour as the car key. It pings the car locking system impersonating

the key, and the system responds by sending a signal, which the key is meant to pick up to respond

back to. RA1 forwards the signal to another attacker, RA2, near the actual key, which in turn relays it

to the actual key receiving the correct reply and unlocking the car. Replay attacks also are a form of

man-in-the-middle attacks, where the hijacker (or man in the middle) on the network intercepts

the signal from a sender or client with the client certificate and impersonates itself as the same

sender to send this signal to the receiver, which in turn believes that the signal arrived from a

credible source. Man-in-the-middle attacks in general could do much more than just relay or replay,

intercepted signals could be decrypted and modified affecting the intended functionality of the

probable distributed system. Denial of service is a very common form of attack, where network

capability and capacity could be compromised to deny services to other systems in the network. In

this research, ping-of-death is used, a form of denial of service attack that just floods the servers in

client-server models with high frequency ping traffic causing server network buffer overflow, which

increases the receiving and transmission time and thus affects the network performance. Denial of

service attacks are common as they are not as hard to execute requiring the attacker to just be a

part of the network. DOS attacks effected scheduled flights ar the Warsaw airport in 2015 leading to

cancellations and delays as air traffic control could not retrieve flight plans from the servers.

2.3 Real-Time Systems

Systems with a predictable execution times adhering to deadlines of tasks are called real-time

systems. In such a real-time system deadline miss could lead to fatal loss of life or environmental

damage. For example, autonomous vehicles, power grid control systems etc. A failure to apply

breaks within a given time could lead to accidents in autonomous driving. These systems are build

considering predictability and performance. Predictability, unlike in commodity computing cannot

be compromised for performance. Fig 2.3 and Fig 2.4 show cyclic execution results for four CPU

cores of a Linux System (Ubuntu 16.04) vs a Preempt-RT Linux running on a Raspberry Pi. Cyclic

execution measures the amount of time that passes between, when a timer expires and when the

thread, which set the timer, actually runs. It is accomplished by taking a time snapshot just prior to

waiting for a specific time interval (t1), then taking another time snapshot after the timer finishes (t2),

then comparing the theoretical wake up time with the actual wake up time (t2 -(t1 + sleep_time)).

This value is the latency for that timer wake up. Results show a smaller average latency for Linux

compared to Preempt-RT. However, there are also a few outliers with non-deterministic high latency

values for some of the thread task (From Fig. 2.3), which are not observed for Preempt-RT (Fig. 2.4).

Maximum recorded latency for Linux was 1828us compared to 102us of Preempt-RT Linux. This

experimental result demonstrates the requirement of predictability, even if it leads to decrease in

average performance.

7

Figure 2.3 Cyclic test for Linux OS

Figure 2.4 Cyclic test for Preempt RT Linux

8

2.3.1 Preempt RT Linux

A popular open source UNIX-like operating system, Linux, a widely used operating system in

personal computers. Popularity of Linux and its free license led to its use in many embedded

systems, i.e, devices like routers, automation controls, smartwatches etc.

Linux systems are not fully preemptible - a task may issue a kernel request via syscalls dur-

ing which they cannot be preempted by other tasks. The Linux Preempt-RT patch provides full

preemptible functionality to Linux to reduce the length of delays that can be encountered during

syscalls, thereby providing real-time capabilities. The patch achieves this by: 1) Making in-kernel

locking-primitives (using spinlocks) preemptible though re implementation with rtmutexes; 2)

Critical sections protected by the spinlock_t and rwlock_t now become preemptible. The creation of

non-preemptible sections (in kernel) is still possible with raw_spinlock_t (same APIs as spinlock_t);

3) Converting interrupt handlers into preemptible kernel threads: The RT-Preempt patch treats soft

interrupt handlers in a kernel thread context, which is represented by a task_struct like a common

user space process. However, it is also possible to register an IRQ in kernel context; 4) Converting

the old Linux timer API into separate infrastructures for high resolution kernel timers plus one for

timeouts, leading to user-space POSIX timers with high resolution.

Well documented, flexible and easy to use network API’s of Linux with real-time capabilities of

Linux Preempt RT make it the most suitable operating system for implementation and testing of

T-Pack.

2.4 Timed Security in Real-Time Systems

Our day to day modern life is surrounded by devices with real-time system, e.g. Cyber Physical System

(CPS) devices (E.g. smart grid, autonomous automobile systems, medical monitoring, industrial

control systems, robotics systems, and automatic pilot avionics) - and the Internet of Thing (IoT)

devices (E.g. thermostat, home-security systems and smartphones etc). Attacks discussed above

pose a severe risk to such devices. Execution of malware within these systems may result in time

lag of control actions. These devices are also inherently networked posing a high security risk if the

network is compromised- DoS attacks discussed above could hinder the flow of incoming packets

leading to missed deadlines because of network delays.

Such devices utilized to control systems with soft or even hard real-time constraints. The ex-

ecution path of such control code on embedded devices thus follows a stringent and predictable

behavior, which can be characterized by timing analysis. Once upper bounds on timings along exe-

cution paths are established, this information not only aids in the verification of timing constraints,

but it can also be exploited to detect deviations from the certified timing behavior. Timing-based

malware detection or Timed Security thus provides a means for non-stop system integrity. What is

more, it can be used to trigger transitions into a safe operating mode at an early intrusion detection

point to prevent anomalous behavior from escalating.

9

CHAPTER

3

RELATED WORK

Deterministic execution time is a necessity in real-time systems, be it a real-time task executing

within the system or for packet transmission over a network. Analysis of timing bounds for execution

of a task or section of code as well as packet delivery time are required for validating deadlines,

but they can also disclose vital information about the system. Once timing bounds on real-time

tasks have been established, such knowledge can be exploited for cyber attacks. Timing constraints

reveal the extent to which some external medium may influence system behavior and, what’s more,

indicate to what extent time divergence from expected behavior can be tolerated without violating

deadlines. Hence, cyber attacks can be constructed to intentionally violate deadlines or to intrude

the system without deadline violation and without being detected. Prior work exploited timing

bounds derived from timing analysis of code to detect malware intrusion. In particular, Zimmer

et al. [Zim10] developed techniques to provide micro-timings for multiple granularity levels of

application code. They implemented a timed analysis method, T-Rex, which incorporates application

level checks to detect buffer overflow attacks by monitoring the elapsed time of return from a

function call. They further developed T-Prot, which utilizes synchronous system calls at security

checkpoints and validates WCET bounds of longer code sections, and T-Axt, which checks timing

bounds asynchronously within the real-time scheduler. Their work demonstrated an advantage

of these timed analysis of code execution in constraining the window of vulnerability of code

injections, which usually take tens of millions of cycles, down to tens, hundreds, or thousands of

cycles, depending on the respective protection technique. In contrast, our work focuses on network

protection.

Cyber-physical control systems are generally subject to real-time constraints. These systems are

vulnerable to malware intrusion over the network. Prior work [Che11; Kos10; Che18] demonstrated

10

the viability of attacks on the network of a real-time systems and uncovered potential damages.

Our work proposes to mitigate damages by detecting intrusion prior to such attacks using timed

analysis of packets on the network. Timing packets is not a new concept, one application of it is

embedded within the widely used TCP protocol, namely to predict the loss of packets on the network

if a timeout (threshold time) has been exceeded for re-transmission in an effort to adhere to reliable

data transfer. Earlier TCP methods, e.g., TCP-Reno and TCP-Tahoe, maintained a weighted moving

average of estimated round trip times (RTT) as a threshold, which is calculated by measuring the

RTT of a packet (data packet send and acknowledgment received).

In our work, this technique is utilized for establishing end-to-end packet delivery times for

intrusion detection in real-time system. Our technique can be deployed on a commodity network,

however, with limitations due to highly dynamic and unpredictable data rates on the network would

present a challenge in establishing timing bounds on the worst-case packet latency and worst-case

execution time of kernel code within the network stack. The threshold bound in question is the

worst-case RTT instead of common estimated RTT that serve as indicators for re-transmission

within the TCP proposal. In a real-time system with a given set of messages between subsystems,

the size of each message and the time of when data is transmitted are known a priori. This makes it

feasible to exploit more rigid timing bounds in dedicated control networks, i.e., without commodity

background traffic, to establish bounds on the worst-case time of packets and, hence, further utilize

this information for malware intrusion detection.

The closest work to our T-Pack method measures RTT by timing signal features at the sender

and receiver to secure clock synchronization and to subsequently detect intrusion attacks on the

network [Nar18]. Their detection of intrusion resides on observing a delay attack using timed

sender/receiver analysis under certain conditions: If the RTT of the signal between two nodes

exceeds a threshold, then the signal is predicted to be delayed by some interception in the middle.

We use a similar attack model and analysis method to predict performance and accuracy of T-

Pack, but instead of server/receiver analysis, we embed timing information within packets, which

is subject to assumptions detailed in our attack model. T-Pack also helps in detecting network

intrusion more accurately compared to [Nar18] as it eliminates delay due to internal errors within

the system (upper layers of the network stack) by measuring time information at lower layers of

the network stack. This has also been demonstrated through experiment 1 in Chapter. 7 of the this

thesis.

11

CHAPTER

4

DESIGN

Table 4.1 ABBREVIATIONS

S Sender Node
R Receiver Node
tS Time at which packet is sent from S
tR Time at which packet is received at R

AC K Acknowledgment packet from R to S in 2-way message
tAR Time at which ACK is sent from R
tAS Time at which ACK is received at S

RT T Round trip time (TCP)
E T T End-to-end time (UDP)
∆tr s Constant clock difference between S and R
To b s Observed end-to-end time
Te x p Expected end-to-end time

Td Mean random delay on the uncompromised network
∆Td Deviation of delay from mean
Tc Added delay due to compromised network
∆Tc Deviation of added delay from the mean added delay

TW C E T Expected worst-case end-to-end time of packet

T-Pack is a novel methodology to verify end-to-end timing of each packet on the network of a

real-time system during message transfer between subsystems. Figure 4.1 depicts a high-level timing

12

model for message transfer between two subsystems for unidirectional UDP (left) and bidirectional

TCP transfers (right) using the notation established by Table 4.1. A message from sender S to receiver

R is analyzed at packet level, considering packet P being sent at time tS from S to R , where it is

received at time tR . The observed end-to-end time, To b s , is compared with the expected time, Te x p ,

to detect malware intrusion in the network. The work assumes loosely synchronized clocks with a

constant time difference,∆tr s , between any two subsystems, which may be dynamically updated

due to clock drift.

Figure 4.1 a. One-Way (UDP) b. Two-Way (TCP)

4.1 One Way Message Transfer

Real-time systems with a reliable data transfer protocol exposed to the application level rely on

known network bandwidth and latency bounds. The UDP transport protocol is a suitable protocol

assuming point-to-point full-duplex switch connectivity between network endpoints. Under UDP, a

message is transferred from S to R (Fig. 4.1a) without any acknowledgment from R. In this scenario

the observed end-to-end time is the time it takes for the packet to reach R having been sent by S.

E T T = tr − ts +∆tr s = Te x p (4.1)

ETT is the ideal end-to-end time. Considering internal delays, we get

Te x p = E T T +Td +∆Td . (4.2)

Note: We consider end-to-end time, which in measurements includes queuing and transmission

delay within the subsystem as well, this delay is denoted by Td + ∆Td , which will be included in

tr − ts as shown in Table 4.1.

13

4.2 Two-Way Message Transfer

TCP is a two-way message transfer transport protocol based on a handshaking protocol that ac-

knowledges packets sent from the sender, S , to achieve reliable communication over the network

(Figure 4.1b). In this scenario, a transfer is said to be complete once the acknowledgment (ACK

packet) is received at S , again under point-to-point full-duplex switch connectivity. Here, we assume

a constant clock difference between sender and receiver for the duration of packet communication.

Clock drift requires this difference to be updated from time to time, which is typical for distributed

systems and beyond the scope of the paper [Mil91].

tr = ts −∆tr s +E T T (4.3)

tAS = tAR +∆tr s +E T T (4.4)

Adding Eq 4.3, Eq 4.4 and simplifying yields

RT T = (tAS − tAR) + (tr − ts) (4.5)

RTT is the ideal end-to-end time. Considering with internal delays, we get

Te x p =RT T +Td +∆Td . (4.6)

When packets are small, which is often the case in real-time systems as singular or small sets of

sensor values are transmitted, TCP combines multiple small sized packets into one to reduce the

headers overhead on the network [Nag]. TCP also implements delayed acknowledgments on the

receiver side to send a cumulative acknowledgment for multiple packets, thereby reducing network

congestion. These implementation details of TCP create non-deterministic execution behavior,

which can be fatal for real-time systems. On the sender side, combining multiple packets delays

sending earlier sensory data until a cumulative packet reaches the critical threshold of flushing it to

the network. On the receiver side, a delay in sending ACK messages can be incurred as the receiver

accumulates packets for some time up to a threshold before cumulatively acknowledging packet

receipts. This would adversely affect real-time systems because of the non-deterministic behavior

of packet delivery combined with delayed reception of time-critical sensor data, which may cause

sensor updates to arrive past an actuation deadline. Work in [Buf] shows how packet buffering

and delayed ACKs could affect the performance of client-server applications, which matches the

communication pattern of distributed real-time systems. Given the small size of the packets, addi-

tional data due to headers hardly affect average network performance as opposed to buffering and

the resulting delayed ACKs. Cumulative packets from sender and delayed acknowledgement from

receiver would further violate our model of packet-level timing analysis from Fig. 4.1. To counter

this problem, we require socket options of “TCP NODELAY” to be used, which ensures that packets

14

are immediately forwarded to next software layer without buffering, irrespective of their message

payload size, and ultimately put on the wire. We also require “TCP QUICKACK” socket option at

the receiver side to avoid delayed, cumulative acknowledgments under TCP for multiple packets in

favor of singular packet acknowledgments.

To further demonstrate our claim of “TCP NODELAY” and “TCP QUICKACK” having only minor

effects on network performance, we measured the network utilization on one of subsystem by

executing an experimental model (Paparazzi UAV) as described in Chapter 6. We monitor the

average bandwidth utilization along with the number of packets flowing in and out of the interface

for a period of time with and without TCP modifications discussed above. For a period of 60 seconds

in the middle of execution of the Paparazzi UAV model, the average rate of data observed at the

receiving (rx) and the transmitting (tx) end are 353.50 Kbps and 779.67 Kbps, respectively, without

TCP modifications (i.e. with “TCP NODELAY” and “TCP QUICKACK”). This decreases to 347.98

Kbps, 753.80 Kbps, respectively, with TCP modifications. Considering the theoretical bandwidth

of 100 Mbps of the Raspberry Pi, this represents an overhead of 0.354% (rx), resp. 0.780% (tx), in

utilization without TCP modifications and 0.348% (rx), resp. 0.754% (tx), with them. Hence, using

“TCP NODELAY” and “TCP QUICKACK” results in a minute increase in the network utilization, which

is insignificant relative to total available bandwidth. As the experiment features a time-triggered

real-time system, it features a consistent flow of packets on the network. This implies that duration

and time of measurements in the above experiment do not significantly affect the result. During the

above time duration, in and out flows were 473 packet/sec (rx), resp. 713 packets/sec (tx), with TCP

modifications and 486 packets/sec (rx), resp. 742 packets/se (tx), without it. The average number of

packets increase with “TCP NODELAY” and “TCP QUICKACK”, but by a very small margin.

4.3 Attack Model

Real-time systems require deterministic timing. Each request made by the subsystem over the

network should be completed within a given deadline; otherwise, the system is considered incorrect

with potentially severe consequences as discussed. Attacks on the network of a real-time systems

may not necessarily be tampering with the data of a packets, they could also be causing a delay to

inflict deadline misses, thereby disrupting not only packet flow but also the primary functionality of

the system. Our T-Pack model vision is to detect such attacks on the network and to convey to any

real-time subsystem that adverse actions may be required to prevent any damage.

We implement checksum techniques within T-Pack to detect corruption of timestamp informa-

tion that would affect correctness of timings under T-Pack.

As discussed, a prior clock synchronization protocol [Nar18] studied delay attacks in experiments.

We aim to detect such attacks using our T-Pack model. We consider a compromised real-time system,

where one of the subsystems or the switch behaves as the malicious node delaying any packet that

is forwarded through it to other subsystems (Fig. 4.2). For our two-way message transfer, we have:

15

Figure 4.2 Message Transfer In Compromised Real-Time System

Using Te x p From Eq 4.6

To b s = Te x p +Tc +∆Tc . (4.7)

Let us stress again that T-Pack’s objective is not to prevent intrusion but rather to detect intrusion

when some subsystem inflicts incorrect timing on network behavior. T-Pack’s objective in this case

is to prevent other subsystems from becoming compromised as well — by detecting intrusion and

then transitioning into a safe mode on the uncompromised systems, e.g., via Simplex [Cre07; Bak09]

or other mode transitions depending on the application scenario, which is beyond the scope of the

paper.

4.4 Vulnerability Of T-Pack

We can assume that an attacker may not cause packets to be modified without detection since all

packets are encrypted, i.e., the attacker would not be able to update packet integrity (e.g., checksum)

within the encrypted message without the knowledge of the private key, which is known to the

uncompromised subsystems, i.e., the receiver. Similarly, any timestamp values added to a packet by

our T-Pack protocol cannot be corrupted without receiver detection.

We determine the WCET bound for a packet to be complete if its end-to-end transfer based on

our model is as follows. In case of a two-way transfer, this includes Te x p with an inherent random

delay of Td +∆Td (Eq. 4.6). Hence, the WCET is bounded by

TW C E T =RT T +Td + |∆Td |, (4.8)

where |∆Td | signifies the maximum positive deviation for the WCET. So, for a compromised network,

we obtain To b s from Eq 4.7.

16

For some values of Tc +∆Tc , where the attacker delays the packet transfer by a small value, we

may find that To b s ≤ TW C E T , i.e., short delays may remain undetected, i.e., our model is proba-

bilistic and may result in missed intrusion detection (false negatives), where our model does not

identify an attacker in the network. This illustrates two points: (1) Our model complements existing

cyber security measures and (2) the objective of T-Pack is to make the attack window that remains

undetected as small (short) as possible.

4.5 Time Information inside a Packet

The objective of T-Pack is to verify that end-to-end times of a packet are within given WCET bounds.

To this end, timing information is embedded within each packet. A custom header of our T-Pack

network layer is added to a packet to indicate the time at which the packet was sent so that the

receiver node is aware of the time of packet transmission on to the network by the sender. A custom

header is utilized to provide the flexibility of resizing the packet such that the new header can be

accommodated. It is assumed that this custom header is universally added for all traffic, just as

given by the network or transport header, such that all nodes are aware of this header.

The objective of T-Pack is to extract information of the time the packet spends on the network

excluding time due to processing within the kernel of any subsystem. By setting the timestamp

value in the lower level of the network stack, the time for processing the packet within the kernel

from the lower layer to the application layer and vice versa is excluded, which provides a better

bound on the elapsed network delay.

Consequently, it was decided to place the custom header at the end of the packet after the data

payload. Each hop on the network processes encapsulation and decapsulation of the frame header

to reference the network header and extract the information to determine the next hop for routing.

Hence, a custom header on top of network header would require header-aware switches and routers

on the network with one more encapsulation and decapsulation per each packet, thereby slowing

down network performance, which violates the end-to-end principle [Sal84]. Also, by appending the

header at the end of the packet and not before the transport header, we eliminated the overhead of

encapsulating and decapsulating the network header, which includes an additional memory write

operation with the associated performance overhead.

4.6 Challenges

Handling time from different Subsystems: In two-way message transfers, it is possible that a re-

ceiver receives packets from two subsystems at the same time. To maintain the end-to-end time

for both packets received before an acknowledgment is transmitted, a lookup table is maintained

for each subsystem. In a real-time system, the number of subsystems involved in communication

and the communication pattern with its timing is known a priori. Inclusion of TCP_NODELAY and

TCP_QUICKACK ensures that only one outstanding packet from the same subsystem exists before

17

an ACK is sent for the respective packet at any time. Hence, the lookup table stores the one way

end-to-end time of the packet from each subsystem, which is added to timestamp in custom header

of the ACK packet. Due to the static size of the lookup table, the execution time of looking up the

value is constant, which makes bounds under T-Pack highly predictable. The burden for additional

predictability lies with the application programmer: By designing subsystem communication such

that no two subsystems issue a message to the same receiver at the same time, queuing delays in

switches can be eliminated under the assumption of full-duplex point-to-point connectivity.

18

CHAPTER

5

IMPLEMENTATION

5.1 Linux

T-Pack is implemented in a PREEMPT-RT Linux kernel that provides real-time capabilities to the

operating system as we saw in Chapter 2. Linux provides the flexibility of utilizing Linux network

APIs such as socket buffers and Netfilter to implement T-Pack.

5.2 Netfilter

Netfilter is a framework provided by the Linux kernel to implement customized handlers on events

in the network layer (for pre-routing, post-routing, etc.). T-Pack utilizes this framework to implement

callback functions to insert and remove the custom header from a packet (Fig. 5.1).

Figure 5.1 Netfilter Events Triggered by Custom Headers and Processed by Framework 2

19

5.3 Socket Buffers

Socket buffers are data structures provided by Linux as a common reference to packets in all layers

of the network stack within the kernel. Socket buffer helper functions provide the ability to perform

memory remapping of the outgoing or incoming packet within layers of the network stack. Some of

the functions are shown in Fig. 5.2. Fig. 5.3 shows that the socket buffer maintains four memory

pointers: head, data, tail and end. Space between the head and the end is allocated for the packet by

the socket buffer initially when a socket file descriptor relays the socket information to the kernel

which in turn initializes the socket buffer data structure representing the created packet. This works

the same way for an incoming packet at the physical layer. Data and tail pointers in the socket

buffer are used to expand above and below toward head and the end, respectively. Initial memory is

allocated alongside the headroom space between data and head pointers by shifting data and tail

toward the end after reserving headroom space using skb_reserve. Any header added to the packet

is realize by increasing the data memory pointer toward the head using the skb_pull function and

then copying the header starting from data pointer toward the tail using copy functions. skb_put is

used to append the data by shifting the tail toward the end pointer returning the original position of

the tail and then copying the data from the returned pointer to the tail. skb_push is used to push the

data pointer toward the tail to pop headers from the packet as it passes through the network layers

after receiving at the physical layer. Even though initially allocated memory for the packet is enough

to accommodate standard intended encapsulation/decapsulation of the headers, memory can be

expanded by functions like pskb_expand to reallocate existing linear memory and the additional

added memory to the packet at a different memory location in RAM (as the packet has to be linearly

allocated to avoid complications and performance degradation).

The T-Pack prototype utilizes these helper functions in the socket buffer API to manipulate

packet memory in order to create additional space for the custom header (Fig. 5.4).

5.4 Implementation Framework

The overall framework (Figures 5.1 and 5.4) consists of the following components:

1. At the sender, the Netfilter post routing hook is utilized to call a handler with the socket buffer

referencing the detected packet passed as an argument.

2. The s k b _p u t (s i z e o f (c u s t o m_he a d e r)) function is used to create additional space at the

end of the packet to attach the custom header. The header is appended to reduce the overhead

of encapsulating and decapsulating the network header.

3. me m c p y (p t r, c u s t o m_he a d e r) initializes the allocated space from previous step, encap-

sulating the custom header to the packet by copying it to that space. The custom header is a C

structure with variables ktime_t timestamp, long sendtime and long checksum. The timestamp

20

Figure 5.2 (a)skb_put, (b)skb_push, (c)skb_pull, (d)skb_reserve

image credits: SlideShare, Sourav Punoriyar (March 31, 2016)

Figure 5.3 Memory Mapping of Socket Buffer for Packet Representation

image credits: kernel.org

21

Figure 5.4 Framework 2: Custom Header Insertion/Removal using Socket Buffers

variable is used to store the current time, i.e., the time at which this header was created in the

network layer.

• Upon UDP reception, the difference of the current time and the time denoted by the

attached timestamp represents the end-to-end processing time of lower layer UDP

activities, subject to validation against an expected upper bound for the exchange. If

validation fails, an intrusion is signaled.

• Upon TCP reception, the difference of the current time and the time denoted by the

attached timestamp is stored in a lookup table. The objective here is to capture the

send cost of only the lower layers of the network stack, which provides tighter bound

on worst-case packet handling. When a TCP receiver acknowledges, the timestamp is

again populated with the current time and the sendtime from the corresponding entry in

the lookup table. A TCP sender, when receiving the acknowledgment, will subsequently

calculate the difference of current time and the timestamp (of the acknowledgment),

which represents the end-to-end processing time of lower layer TCP activities, subject

to validation against an expected upper bound for the exchange. If validation fails, an

intrusion is signaled.

• On adding and removing of the custom header, the checksum value is verified to detect

header corruption if any. This detects any corruption in the timestamp information,

which helps avoiding T-Pack failures due to incorrect timestamps.

4. Checksum values for IP and Transport header are recalculated using c s um_t c p ud p _ma g i c (),

c s um_p a r t i a l () and i p _s e nd _c he c k (), respectively, before the modified packet is trans-

mitted to the receiver.

At the receiver, the Netfilter pre-routing hook is utilized to call a handler with the socket buffer

referencing the packet. The same functions as above are used to decapsulate the custom header

and to reset the total length and the tail reference pointer of the packet to create the default packet

without the custom header. We use TCP flag values to detect an acknowledgment and, once received,

offset values are handled accordingly as discussed before.

22

The same network stack is traversed for each corresponding acknowledgment transmitted from

the receiver with offset values set to data packet end-to-end time as indicated before.

Below are the pseudo codes of adding and removing the custom header from sender to receiver

only.

Algorithm 1 Add Custom Header

1: procedure APPEND HEADER

2: header← kmalloc(sizeof(custom header))
3: header−→ time = current time
4: ptr← skb_put(sizeof(header))
5: memcpy(ptr,header)
6: Reset network and transport header length, Recalculate IP checksum

Algorithm 2 Remove Custom Header

1: procedure REMOVE HEADER

2: ptr← skb−→ tail− sizeof(custom header)
3: header← kmalloc(sizeof(custom header))
4: header← ptr
5: offset= current time−header−→ time
6: memcpy(ptr,header)
7: Reset network and transport header length, Recalculate IP checksum

23

CHAPTER

6

EXPERIMENTAL FRAMEWORK

6.1 Experiment 1: Client Server Model

A client server model is implemented, where the client sends periodic messages to the server to

resemble the network activity of a time triggered real-time system. UDP messages are used with an

explicit reply packet from the server instead of an implicit acknowledgment (which is only part of

TCP). Server and client paradigms are common in distributed systems, where the master provides a

service to one or more clients.

In this setup, the client sends periodic messages to the server every 10ms. The messages are

small enough to fit within a single packet. The server receives the message and immediately replies

back with a similar type of message. This ping-pong message transfer is utilized to measure round

trip time (RTT) at the client.

We measure the end-to-end RTT (from sender back to the sender) of the request at the application

layer and the network layer to assess the benefits of locating our T-PACK functionality at network

layer. We also measure the RTT at the application layer with and without the T-Pack implementation

to analyze performance overhead of T-PACK itself.

6.2 Experiment 2 : Paparazzi UAV Model

The Paparazzi UAV [Zim12; Bri06]models a real-time system based on a traditional shared memory

real-time control systems. A peer-to-peer network of 3 subsystems, including an auto pilot (AP), a fly

by wire (FBW) control and a ground station (GS), connects the subsystems. As shown in Fig 6.1, we

prototyped a model constrained to only Paparazzi’s periodic messages scheduled between the above

24

three subsystems. Each subsystem is connected via the TCP protocol with a persistent connection.

As seen in Fig 6.1, the subsystems communicate with each other periodically transferring necessary

information for flying by wire autonomously. T-Pack is integrated into the Paparazzi prototype as

outlined in Chapter 5. The RTT is measured between autopilot and ground station to monitor the

T-Pack functionality. A delay attack in form of Distributed Denial of Service (ICMP packet flooding /

ping-of-death) [Cro03] is induced at the ground station using other nodes in the network as attackers

to analyze the accuracy of T-Pack during the attack. We implemented this Paparazzi model on a

network of Raspberry Pi systems with a Preempt RT patched Linux kernel to provide real-time

capabilities.

Figure 6.1 Paparazzi Model: Message Scheduling Between Subsystems

6.3 Experiment 3 : Waters Workshop Challenge 2018, a Drone-like Multi-

System

This experiment also models a real-time system described in the Waters workshop challenge from

2018, a drone-like multi-system. A peer-to-peer network of seven subsystems is implemented

consisting of a Mission management system (MMS), Electrical Propulsion System (EPS), Hydraulic

Braking System(HBS), Sensors (communicating also with other sensors in the Waters model), Ground

Station and Maintenance System, all connected via a hub and spoke topology within the same subnet.

Similar to the Paparazzi experiment, we model functions and communication patterns in each

subsystem as described in the challenge description, including periodic calls to the functions. Each

subsystem is connected via the TCP protocol with a persistent connection. Each subsystem suggests

changes to the dynamics of the drone and sends such a message to another relevant subsystem.

These events occur in parallel and create a real-time scenario with random congestion on the

network. T-Pack is implemented as discussed in Chapter 5. The RTT is measured between EPS and

MMS to monitor T-Pack functionality. A delay attack between the two subsystems is induced to

analyze the accuracy of T-Pack during the attack. As the paparazzi model this experiment is carried

out by deploying the drone model on a network of Raspberry Pis, each with a Preempt RT patched

25

Linux kernel to provide real time capabilities.

26

CHAPTER

7

EXPERIMENTAL EVALUATION

7.1 Experiment 1

The results from the first experiment, the server client model prototyping a time-triggered real-time

system, are depicted in Fig. 7.1. RTT is plotted (y-axis) for the message request and its reply from

client to the server (x-axis). RTTs are shown as box plots indicating maximum, top quartile, median,

bottom quartile and minimum times as well as outliers (dots). Min-max values or variability outside

the upper and lower quartiles are denoted by whiskers. The outliers in this graph are only 0.5% of

the total data values. We report all values from the experiments, even the first iteration of execution,

which may be subject to additional cache misses resulting in an outlier.

We observe that time measured by T-Pack (variant 1) for the reduced network stack is much lower

than the one measured by the application, both with and without T-Pack for the latter variants 2 and

3. This is because T-Pack measures the time the client request protocol spends between network

layers of the two systems instead of including the upper application layers. This removes the time

the request spends in the upper layers of the kernel, both at server and client. This experiment

reveals a significantly tighter time bound for activities at and below the network layer between the

server and the client: The results are dominated by the time spend for the request on the network,

which allows detection of malware intrusion at the network layer to provide more accurate results

than at upper layers. This shows the importance of measuring the time between the lower layers of

the network stack, which can be achieved only within the kernel and by extending packet headers

to include time stamps that are added within the kernel.

The results also reveal the overhead of implementing T-Pack to analyze its effect on the per-

formance of a real-time system. To this end, the RTT of the client request is measured within the

27

Figure 7.1 Box plot for RTT in ms measured by 1. T-Pack, 2. Application with T-Pack running, 3. Application
without T-Pack running. The range of whisker is 3.5 times the inter-quartile range.

application of the client and server running (a) with the T-Pack module and (b) without it. Fig. 7.1

indicates that T-Pack incurs a modest cost in terms of performance on the application as the overall

mean RTT of the client request-reply increases by a marginal amount of approximately 0.12 msecs.

7.2 Experiment 2

The experiment with the Paparazzi model assess how the T-Pack module aids in detecting intrusions

due to attacks on the UAV system. We pick two subsystems as indicated in the experimental setup,

the auto pilot (AP) and the ground station (GS). The auto pilot acts as the sender relaying neces-

sary flight details to the ground station. We execute the Paparazzi prototype on top of our T-Pack

implementation in the Linux kernel. We capture the RTT of TCP messages sent from AP to GS by

measuring the time a message spent from AP to GS plus the time it took to receive an ACK from GS

for the sent message. We introduce two additional attackers on the network executing a distributed

denial-of-service attack via ping flooding. Each attacker utilizes a multi-threaded program to send

large ICMP ping packets in quick intervals to the GS server. This causes a buffer overflow at the

receiving interface, which is handled but causes performance degradation as a side effect. The attack

intensity is investigated in a sensitivity study, indicated in Fig. 7.2 as a P (n , t , b , i) tuple (parameter

P), varying the number of attackers, n , the number of threads running within an attacker, t , the size

of the ping packets, b , that transmitted to the server in bytes and the time interval, i , between each

packet in seconds.

Fig. 7.2 depicts RTT as box plots again (y-axis) over different intensities of DDOS attack. The

outliers in this graph are only 0.5% of the total data values (all data reported, including 1st iterations

with additional cache misses). We observe that, as we keep increasing the attack intensity by modify-

28

ing the attack parameters P, the RTT increases slightly. The attack scenario features a single attacker

in the compromised network sending 500 byte ICMP ping packets from 10 parallel processes within

intervals of 0.5 seconds. This affects the RTT by≈ 0.01 msecs on average (Data set 1 vs. 2 on the x-axis

of Fig. 7.2). Two attackers continuously sending packets (0 seconds interval) with otherwise the

same parameters result in increased the RTT by ≈ 0.95 msecs on average (Data sets 1 vs. 6). Finally,

two attackers with 30 processes each and 1KB packets within 1ms intervals increases the RTT by

≈ 3.5 msecs on average (Data sets 1 vs. 7). In this last scenario, all the measured RTT of data set 7

exceed those of data set 1 without any attack, i.e., without network intrusion. In other words, T-Pack

can safely detect an intrusion whose “attack vector” (i.e., code footprint of the injection) affects the

real-time system with similar time delay, since WCET bound of RTT without intrusion is lower than

the minimum RTT on a compromised network. Recall that to take over an entire kernel, millions of

instructions are typically required. We can limit an attack to 15k instructions here assuming, e.g., a

CPU clock of 1GHz.

We also observe a sudden increase in the RTT in Fig. 7.2 when the intensity of an attack increases.

Distributed denial of service prevents effective resource utilization by consuming most of the

resources (network and receiver buffer in this case) by the attacker [Mir04]. A low intensity of such

an attack does not affect the performance of a low traffic network, which is typical for a number

of distributed real-time systems. However, intensifying the attack can cause sudden spikes that

instantly degrade the network latency leading to packets arriving after a deadline if at all. T-Pack

detects these cases, which allows a system to switch into offline mode while continuing to operate.

Transitioning back online requires the attack source to be removed in a DDOS, whether it be in a real-

time environment or commodity computing environment, i.e., counter measurements addressing

the root cause remain unchanged and are beyond the scope of this paper.

Let us further analyze the results of frequency distributions shown in Figures 7.5, 7.4 and 7.3,

which depict the number times (y-axis) a certain RTT (x-axis) was measured in our experiments.

Figure 7.3 indicates the distribution for times without intrusion, P(0,0,0,0) — referred as Attack 1,

and a compromised network affected by DDOS attack of intensity, P(2,30,1000,0.001) — Attack 7

(red). Results indicate that the intersection between the distributions is empty, i.e., both cases can

be discretely distinguished for each of the experiments so that an attack with similar time delay

effects as Attack 7 will always be detected by T-Pack. This is consistent with Fig. 7.2 that indicated

the ability to flag instructions via T-Pack for similar delay attacks.

Fig. 7.4 depicts the distribution for times without intrusion, and a compromised network affected

by DDOS attack of intensity, P(2,10,500,0) — Attack 6 (red). We observe a slight overlap between

the blue (no attack) and red (with attack) curves ranging from 1-1.25 msecs. 1% of the samples fall

into the 1-1.25 msecs range, i.e., 99% of the attacks would be detected by T-Pack for a compromised

network with time delay similar to that caused in Attack 6.

Fig. 7.5 depicts distribution for times without intrusion, and a compromised network affected

by DOS attack of intensity P(1,10,500,0.5) — Attack 2 (red). Fig. 7.5 indicates a significant overlap

between the blue (no attack) and red (attack) curves ranging from ≈ 0.45-1 msecs. More than 99%

29

Figure 7.2 Box plot for RTT in ms measured by T-Pack under different attack conditions for P(n,t,b,i)
parameters: 1 (0,0,0,0) (No Attack / Attack 1), 2 (1,10,500,0.5) (Attack 2), 3 (1,10,500,0.5) (Attack 3), 4
(2,10,500,0.1) (Attack 4), 5 (2,30,500,0.05) (Attack 5), 6 (2,10,500,0) (Attack 6), 7 (2,30,1000,0.001) (Attack
7). The range of whiskers is 5 times the inter-quartile range.

Figure 7.3 Frequency Distribution Curve and Overlapping Region

Figure 7.4 Frequency Distribution Curve and Overlapping Region

30

of the samples fall into this range. This illustrates the limitations of T-Pack. Any attack with similar

delays will affect the system without being detected by T-Pack. This experiment also illustrates why

T-Pack can only complement other system security methods, it cannot replace them as it is not a

panacea for intrusions.

Figure 7.5 Frequency Distribution Curve and Overlapping Region

In summary, we observe that T-Pack is able to detect 100% of the attacks caused by a delay similar

to Attack 7. Slightly milder attack intensities have 99% of chance to be detected (Attack 6) while

low-intensity attacks (Attack 2) remain undetected 99% of the time, but will not affect real-time

packets either as sufficient bandwidth remains on the network.

7.3 Experiment 3

The experiment with a drone-like multi-system assesses how the T-Pack module aids in detecting

intrusions due to delay attacks on the drone network. We pick two subsystems as indicated in Chap-

ter 6 Experimental Framework, the Electrical Propulsion System (EPS) and the Mission Management

System (MMS), where EPS acts as sender and MMS as receiver. We run the drone communication

model as described by the Waters challenge over our T-Pack model. We observe the RTT of TCP by

measuring the time a message spent from EPS to MMS plus the time it took to receive ACK from

MMS for the sent message. We introduce similar attack models as in experiment 2 for the Paparazzi

system to assess performance and vulnerability of T-Pack on a drone-like multi-system model.

Fig 7.6 depicts RTT as box plots again (y-axis) over different intensities of DDOS attacks. The

outliers in this graph are 0.5% of the total data (no data omitted, 1st iterations subject to additional

cache misses). Similar to experiment 2, as the intensity of the DDOS attack parameters is increased, a

slight increase in RTT is seen until a sudden and significant increase under more intense attacks. We

again observe that the DDOS attack causes a large increase in average RTT of packets. Eventually, all

measured values of RTT are greater than those without attack. This solidifies our previous findings

31

that 100% of attacks are detected with via T-Pack for delays similar to that of Attack 7.

This experiment required two switches due to the number of port available per switch as more

subsystems are connected in this drone model. The attackers were on a different switch than the

MMS server, which caused the attack intensity to be slightly lower than that in the Paparazzi model.

This explains the small decrease in RTT values in Fig. 7.6 during attacks relative to a system without

attack or the Attack 1 scenario of Fig 7.2. RTT values without attack and for Attack 1 are slightly

higher for the drone model compared to Paparazzi because of higher base traffic on the network

given by the larger number of drone subsystems.

Figure 7.6 Box plot for RTT in ms measured by T-Pack under different attack conditions for P(n,t,b,i)
parameters: 1 (0,0,0,0) (No Attack / Attack 1), 2 (1,10,500,0.5) (Attack 2), 3 (1,10,500,0.5) (Attack 3), 4
(2,10,500,0.1) (Attack 4), 5 (2,30,500,0.05) (Attack 5), 6 (2,10,500,0) (Attack 6), 7 (2,30,1000,0.001) (Attack
7). The Range of whiskers is 2.5 times the inter-quartile range.

We further analyze the results of frequency distributions depicted in Figures 7.8 and 7.7, which

show the number of times (y-axis) a certain RTT (x-axis) was measured in our experiment. We can

observe a similarity in the patterns to those in Figures 7.4 and 7.5, respectively.

Fig 7.7 reveals an overlapping region for the frequency distribution of RTT without attack (blue)

and with attack (intensity P(2,10,500,0) — Attack 6), just as in Fig 7.4. 95% of the attacks lies outside

this region detected by T-Pack leaving only 5% of the malicious packets undetected.

Fig 7.8 features an attack intensity of P(1,10,500,0.5) — Attack 2 — and a 99% overlap of the

frequency distribution. This illustrates the vulnerability of T-Pack (also observed with Paparazzi

model in experiment 2, see Fig 7.5). Here, an attack chaining of 66 instances with 15k instructions

each would be required to take over the system without being detected. While this illustrates the

limitations of T-Pack, it also shows that an attacker would need to carefully inject packets to remain

unnoticed. A more complex, chained attack would need to be orchestrated by attackers skipping

32

Figure 7.7 Frequency Distribution Curve and Overlapping Region

over intervals when the application actually uses the network. Again T-Pack can only complement

other system security methods, it cannot replace them as it is not a panacea for intrusions.

Figure 7.8 Frequency Distribution Curve and Overlapping Region

In summary, we observe consistency of the T-Pack model on different real-time systems and

under different attack intensities for DDOS ping-of-death scenarios that affect network delays.

33

CHAPTER

8

CONCLUSION

This work contributes the design and implementation of a novel network timed security method,

T-Pack, to detect malware intrusion in real-time system by timing end-to-end response times of

packet delivery. Experimental results indicated that T-Pack successfully detected malware intrusion

with almost 100% accuracy for attacks caused by distributed denial of service with 30 attackers

each in two nodes sending 1KB ping packets intervals of 0.001 seconds. Results also confirmed that

T-Pack can be implemented with only a small overhead to the overall network performance of the

system relative to the range of delays for the attacks it protects against. Hence, the implementation

and results demonstrated in this work support the hypothesis, monitoring the round trip time of

periodic communication at the packet level in a real-time distributed system provides a means to

detect network intrusions complementing conventional security methods.

34

BIBLIOGRAPHY

[Bak09] Bak, S. et al. “The System-Level Simplex Architecture for Improved Real-Time Embedded
System Safety”. IEEE Real-Time Embedded Technology and Applications Symposium.
2009, pp. 99–107.

[Bri06] Brisset, P. et al. “The paparazzi solution”. 2006.

[Bru05] Brumley, D. & Boneh, D. “Remote timing attacks are practical”. Computer Networks 48.5
(2005), pp. 701–716.

[Buf] Buff, R. & Goldberg, A. Web Servers Should Turn Off Nagle to Avoid Unnecessary 200 ms
Delays. Tech. rep.

[Cal09] Callegati, F. et al. “Man-in-the-Middle Attack to the HTTPS Protocol”. IEEE Security &
Privacy 7.1 (2009), pp. 78–81.

[Che11] Checkoway, S. et al. “Comprehensive experimental analyses of automotive attack sur-
faces.” USENIX Security Symposium. Vol. 4. San Francisco. 2011, pp. 447–462.

[Che18] Chen, C.-Y. et al. “Securing real-time internet-of-things”. Sensors 18.12 (2018), p. 4356.

[Con99] Conover, M. w00w00 on heap overflows. 1999.

[Cre07] Crenshaw, T. et al. “The Simplex Reference Model: Limiting Fault-Propagation Due to Un-
reliable Components in Cyber-Physical System Architectures”. IEEE Real-Time Systems
Symposium. 2007, pp. 400–412.

[Cro03] Crosby, S. A. & Wallach, D. S. “Denial of Service via Algorithmic Complexity Attacks.”
USENIX Security Symposium. 2003, pp. 29–44.

[Dhe98] Dhem, J.-F. et al. “A practical implementation of the timing attack”. International Con-
ference on Smart Card Research and Advanced Applications. Springer. 1998, pp. 167–
182.

[Fra11a] Francillon, A. et al. “Relay attacks on passive keyless entry and start systems in modern
cars”. Proceedings of the Network and Distributed System Security Symposium (NDSS).
Eidgenössische Technische Hochschule Zürich, Department of Computer Science. 2011.

[Fra11b] Francis, L. et al. “Practical Relay Attack on Contactless Transactions by Using NFC Mobile
Phones.” IACR Cryptology ePrint Archive 2011 (2011), p. 618.

[Gor04] Gorrieri, R. et al. “Automated analysis of timed security: a case study on web privacy”.
International Journal of Information Security 2.3-4 (2004), pp. 168–186.

[Hat14] Hattenberger, G. et al. “Using the paparazzi UAV system for scientific research”. 2014.

[Hor02] Horovitz, O. “Big loop integer protection”. Phrack Inc., Dec (2002).

[Tes] https://en.wikipedia.org/wiki/Tesla_Autopilot.

35

[Kim13] Kim, G. ho et al. “Vehicle Relay Attack Avoidance Methods Using RF Signal Strength”.
Communications and Network 5 (2013), pp. 573–577.

[Koc96] Kocher, P. C. “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems”. Annual International Cryptology Conference. Springer. 1996, pp. 104–113.

[Kos10] Koscher, K. et al. “Experimental security analysis of a modern automobile”. 2010 IEEE
Symposium on Security and Privacy. IEEE. 2010, pp. 447–462.

[Lou] Lou, X. et al. “Assessing and Mitigating Impact of Time Delay Attack against Cyber-
Physical Systems” ().

[Lou19] Lou, X. et al. “Assessing and mitigating impact of time delay attack: a case study for power
grid frequency control”. Proceedings of the 10th ACM/IEEE International Conference on
Cyber-Physical Systems. ACM. 2019, pp. 207–216.

[Mar15] Mary, C. “Shellshock attack on linux systems–bash”. International Research Journal of
Engineering and Technology 2.8 (2015), pp. 1322–1325.

[Mil91] Mills, D. L. “Internet time synchronization: the network time protocol”. Communications,
IEEE Transactions on 39.10 (1991), pp. 1482–1493.

[Mir04] Mirkovic, J. & Reiher, P. “A taxonomy of DDoS attack and DDoS defense mechanisms”.
ACM SIGCOMM Computer Communication Review 34.2 (2004), pp. 39–53.

[Nag] Nagle, J. Congestion Control in IP/TCP Internetworks. https://tools.ietf.org/
html/rfc896.

[Nar18] Narula, L. & Humphreys, T. E. “Requirements for secure clock synchronization”. IEEE
Journal of Selected Topics in Signal Processing 12.4 (2018), pp. 749–762.

[One96] One, A. “Smashing the stack for fun and profit”. Phrack magazine 7.49 (1996), pp. 14–16.

[Ped16] Pedroza, G. et al. “Timed-model-based Method for Security Analysis and Testing of Smart
Grid Systems”. 2016 IEEE 19th International Symposium on Real-Time Distributed Com-
puting (ISORC). IEEE. 2016, pp. 35–42.

[Sal84] Saltzer, J. H. et al. “End-to-end arguments in system design”. Technology 100 (1984),
p. 0661.

[Sar15] Sargolzaei, A. et al. “A novel technique for detection of time delay switch attack on load
frequency control”. Intelligent Control and Automation 6.04 (2015), p. 205.

[Sch00] Schindler, W. “A timing attack against RSA with the chinese remainder theorem”. Inter-
national Workshop on Cryptographic Hardware and Embedded Systems. Springer. 2000,
pp. 109–124.

[SHA18] SHAAR, F. & EFE, A. “DDoS attacks and impacts on various cloud computing components”.
Int. Journal of Information Security Science 7 (2018), pp. 26–48.

36

https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896

[Wil08] Wilhelm, R. et al. “The Worst-Case Execution Time Problem — Overview of Methods
and Survey of Tools”. ACM Transactions on Embedded Computing Systems 7.3 (2008),
pp. 1–53.

[Zim10] Zimmer, C. et al. “Time-Based Intrusion Dectection in Cyber-Physical Systems”. Interna-
tional Conference on Cyber-Physical Systems. 2010, pp. 109–118.

[Zim12] Zimmer, C. & Mueller, F. “Fault resilient real-time design for noc architectures”. 2012
IEEE/ACM Third International Conference on Cyber-Physical Systems. IEEE. 2012, pp. 75–
84.

37

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Motivation: Detecting Network Delay with Minimal Cost for Real-Time System Using Monitoring Techniques
	Hypothesis

	Background
	Computer Security
	System Security
	Network Security

	Attacks
	System Attack
	Network Attack

	Real-Time Systems
	Preempt RT Linux

	Timed Security in Real-Time Systems

	Related Work
	Design
	One Way Message Transfer
	Two-Way Message Transfer
	Attack Model
	Vulnerability Of T-Pack
	Time Information inside a Packet
	Challenges

	Implementation
	Linux
	Netfilter
	Socket Buffers
	Implementation Framework

	Experimental Framework
	Experiment 1: Client Server Model
	Experiment 2 : Paparazzi UAV Model
	Experiment 3 : Waters Workshop Challenge 2018, a Drone-like Multi-System

	Experimental Evaluation
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusion
	Bibliography

