
ABSTRACT

PAN, XING. Providing DRAM Predictability for Real-Time Systems and Beyond. (Under the direction
of Rainer Mueller.)

DRAM memory of modern multicores is partitioned into sets of nodes, each with its own memory

controller governing multiple banks. Accesses can be served in parallel to controllers and banks,

but sharing of either between threads results in contention that increases latency, as do accesses

to remote controllers due to the non-uniform memory access (NUMA) design. Above DRAM, a

last-level cache (LLC), typically at level 3 (L3), is shared by all cores while L1 and L2 caches tend to

be core private. This NUMA design inflicts significant variations in execution time for applications

due to variable latencies incurred by remote memory node accesses or contention in LLC and at

memory banks/controllers.

DRAM cells must be refreshed periodically to maintain data validity. During a refresh, a successive

memory space is blocked, and row buffer misses increase in the wake of refreshes. Such refresh delays

not only reduce memory throughput but result in looser bounds on tasks’ worst case execution

time (WCET) since memory latencies vary significantly if interrupted by refreshes. What is more,

with growing DRAM density and size, refresh latencies are rising fast as more memory needs to be

refreshed.

Due to the above problems, this work contributes an approach to reduce memory access di-

vergence and to eliminate refresh overhead. First, we propose two novel memory allocators called

CAMC and TintMalloc for real-time and parallel systems, respectively. Controller/Node-Aware Mem-

ory Coloring (CAMC) is an allocator inside the Linux kernel for the entire address space to reduce

access conflicts and latencies by isolating tasks from one another. CAMC improves timing pre-

dictability and performance over the Linux buddy allocator and prior coloring methods. It provides

core isolation with respect to banks and memory controllers for real-time systems. To complement

CAMC, we propose TintMalloc to color memory at the LLC, bank, and controller level to ensure

accesses are directed only to local memory while reducing contention at the LLC/bank levels in

software. After adding one line of code during initialization in each thread, existing applications

automatically obtain colored heap space through regular malloc calls.

Second, we contribute Colored Refresh to hide DRAM refresh overhead completely for real-

time cyclic executives by utilizing TintMalloc. Colored Refresh partitions DRAM memory at rank

granularity such that refreshes rotate round-robin from rank to rank. The real-time tasks are assigned

different ranks via colored memory allocation. By cooperatively scheduling real-time tasks and

refresh operations, memory requests no longer suffer from refresh interference. Next, we extend

Colored Refresh to the Colored Refresh Server (CRS), a scheduling paradigm with two servers, each

with a unique color. CRS partitions DRAM into two groups such that each rank subject to refresh



is assigned one of the two colors. Each real-time task is also assigned one of these color and thus

associated with a server. The servers are scheduled such that refreshes of one color occur in parallel

to the execution of real-time tasks of the other color. By executing tasks in phase with periodic

DRAM refreshes with opposing colors, memory requests no longer suffer from refresh interference.

CRS can remove all refresh overhead for severed real-time scheduling policies.

Experimental results with the Malardalen, SPEC, and Parsec benchmarks show that locality is

increased, contention is decreased, and DRAM refresh delay is removed under our approach. With

CAMC and TintMalloc, memory system performance increases for multicore NUMA platforms, and

overall SPMD execution becomes more balanced at barriers compared to default memory allocation

under Linux as well as prior coloring approaches. In addition, experimental results show that, in

contrast to standard auto-refresh, both Colored Refresh and CRS enhance the memory throughput

of real-time systems and make a task’s WCET more predictable as DRAM density increases.
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CHAPTER

1

INTRODUCTION

Dynamic random-access memory (DRAM) is a type of random access semiconductor memory that

stores each bit of data in a capacitor within an integrated circuit. Due to the simplistic structure

of DRAM cell, DRAM can reach very high densities, with a very low price per bit. Today, DRAM is

widely used in modern computer systems, including real-time systems and parallel systems. In this

section, it is shown that DRAM accesses for NUMA architectures and DRAM refresh operations

can result in variable and unnecessarily high memory latency. Next, we discuss the challenges for

real-time and parallel systems due to the unpredictable memory access latency. At last, we propose

our approach that provides DRAM predictability and increase memory performance for real-time

systems and beyond.

1.1 NUMA Memory Architectures

Modern NUMA multicore CPUs partition sets of cores into a “node” with a local memory controller,

where multiple nodes comprise a chip (socket). Memory accesses may be resolved locally (within the

node) or via the network-on-chip (NoC) interconnect (from a remote node and its memory). Each

core has a local and multiple remote memory nodes. The memory of a node consists of multi-level

resources called channel, rank, and bank. The controller further provides access to different banks

in parallel to increase memory throughput. Furthermore, in a NUMA architecture, L1 and L2 caches

are often core private while the L3 cache, the last level cache (LLC), is shared among cores.
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Fig. 1.1 depicts two sockets of such multicore chips. Even within each socket, core-local DRAM

accesses (via the local memory controller), e.g., from core 0 via controller 0, have lower latency than

remote accesses to other controllers on the socket, e.g., from core 0 to controller 1, as they traverse

over the fast on-chip interconnect (Hypertransport/Quickpath for AMD/Intel). References to other

sockets result in even longer latencies for both remote LLC (core 0 to the LLC of socket 1) and yet

longer latencies for remote controllers (core 0 to controllers 3 or 4) as they transverse the off-chip

interconnect (typically narrower, lower bandwidth Hypertransport/Quickpath lanes).

Memory references thus are non-uniform in access latency due to increasingly expensive access

penalties for data obtained from LLC and DRAM.

Figure 1.1 Architecture of memory and cache on AMD Opteron

1.1.1 On the Predictability Challenge for Real-time Systems

Real-Time systems are computing systems designed to adhere to not just the functional correctness

but also temporal correctness [Liu]. This means that Real-time programs must guarantee a response

within specified time constraints, referred to as a “deadline”. A real-time system is temporally correct

if all the timing requirements of real-time tasks can be met, i.e., no deadline is missed regardless of

system load. Systems used for mission critical applications tend to be real-time control systems,

such as automobiles, aerial vehicles, nuclear systems, etc. A delayed response in such systems could

impact the quality of service or even result in catastrophic consequences. For example in avionics,

flight control software must execute within a fixed time interval in order to accurately control the

aircraft. Automotive electronics are subject to tight timing constraints on engine management
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and transmission control systems derived from the mechanical systems that they control [DB11].

Depending upon the purpose of the systems and the implications of system correctness, real-time

systems can be divided into two categories. Soft real-time systems can tolerate some misses of their

temporal requirements, but a missed deadline can lead to a loss in quality of service. In contrast,

hard real-time systems must guarantee every temporal requirements of an application to prevent

catastrophic consequences. Such applications are considered safety critical. In order to guarantee

the time requirements, predictability of the system behavior is the most important concern in real-

time systems. Predictability is often achieved by bounding the worst-case execution time (WCET)

of real-time tasks to meet their deadlines, as Fig. 1.2 shows.

Figure 1.2 Worst-Case Execution Time for Real-Time Tasks

When tasks on different cores access NUMA memory concurrently, performance varies signifi-

cantly depending on which node data resides and how banks are shared, such variation has two

reasons. (1) The latency of accessing a remote memory node is significantly longer than accessing

that of a local memory node. Although operating systems generally allocate from the local memory

node by default, remote memory will be allocated when local memory space runs out. (2) Even with

a single memory node, conflicts between shared-bank accesses result in unpredictable memory

access latencies. As a result, system utilization may be low as the execution time of tasks has to be

conservatively (over- )estimated in real-time systems. With the fluctuating memory access latency,

the timing predictability of real-time systems is reduced, and the temporal requirements cannot

be guaranteed anymore. As a result, for real-time systems running on NUMA platforms, system

utilization may be low as the execution time of tasks has to be conservatively (over-)estimated.

1.1.2 On the Performance Challenge for Parallel Systems

Parallel computing is an area of compute-intense calculations where the execution of processes

is carried out concurrently [AG89]. A parallel computational task typically consists of alternating

parallel and serial sections. For a multi-core processor system, the parallel section is often expressed

a common subtask runs on different cores operating independently on disjoint subsets of the data.

By dividing large problems into smaller ones and combining results afterwards upon completion,

the execution time of an application can be reduced while the system performance is enhanced.
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For NUMA memory systems, different controllers and banks can be accessed in parallel, but

sharing of either, even locally, may result in resource contention. Furthermore, non-local accesses

can result in contention on the on-chip interconnect. Contention may also exist at the LLC level,

typically due to large working set sizes that result in more data blocks being mapped to the same

cache line than the LLC can hold given its associativity.

Application performance will degrade when data references result in frequent contention or

suffer remote access penalties. It is thus imperative to try to keep as many references as possible

local in order to improve memory performance while utilizing all cores of a processor. In addition,

multi-threaded programs often utilize fork-join parallelism with data- or task-parallel execution

in parallel sections using POSIX threads [But97] or OpenMP [Cha08]. At the end of such parallel

sections, implicit or explicit barriers synchronize all threads. If execution is highly variable across

threads in a parallel section, idle time is incurred for early arrivers at barriers in an unbalanced

manner (see Fig. 1.3). Memory contention and non-uniform access penalties contribute to the

aggregate cost of idle time, this resulting in underutilized processing resources.

Figure 1.3 Imbalance caused by Idle Time

1.2 DRAM Refresh

Memory refresh is a background activity required during the operation of volatile dynamic random-

access memory (DRAM), which is the most widely used memory in most computer systems and

embedded systems. A DRAM cell is composed of an access transistor and a capacitor. Data is stored

in a DRAM cell as a 1 or 0 (electrically charged/discharged). However, cells slowly leak their charge

as time passes. This leakage volatility requires cells to be refreshed, or their data is lost. Memory

refresh is the process of periodically reading information from an area of computer memory and
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immediately rewriting the read information to the same area without modification. When memory

is refreshed, the capacitor of DRAM cell is charged, and the data stored in DRAM is preserved.

To refresh memory, the DRAM controller periodically issues refresh commands, which are sent

to DRAM devices via the command bus. This mode is called auto-refresh and recharges all the

memory cells within the “retention time” (tRET), which is typically 64ms for commodity DRAMs

[JED10]. In this mode, a refresh command is issued per interval, tREFI , for a duration/completion by

tRFC. The DDR3 specification [JED10] generally requires a DRAM controller to send 8192 automatic

refresh commands to refresh the entire memory (one command per bin at a time). Here, the gap

between two refresh commands(tREFI) is 7.8us (tRET/8192). The refresh completion time (tRFC) is

the duration for each refresh command. Auto-refresh is triggered in the background by the DRAM

controller while the CPU executes instructions.

1.2.1 Challenge

While DRAM is being refreshed, a memory space (i.e., a DRAM rank) becomes unavailable to memory

requests so that any such memory reference blocks the CPU pipeline until the refresh completes.

For commodity DRAM, the DRAM controller either schedules an automatic refresh to all ranks

simultaneously (simultaneous refresh), or schedules automatic refresh commands to each rank

independently (independent refresh). Whether simultaneous or independent, each memory refresh

cycle affects a successive area of multiple cells in consecutive cycles as follows:

A DRAM refresh command closes a previously open row and opens up a new row subject to

refresh [2], even though data may be reused (referenced) before and after the refresh. Hence, the

delay suffered by the processor due to DRAM refresh includes two aspects: (1) the cost (blocking) of

the refresh operation itself, and (2) reloads of the row buffer for data displaced by refreshes. As a

result, the response time of a DRAM access depends on its point in time during execution relative

to DRAM refresh operations. In addition, as the density and size of DRAM grows, more ranks are

required per DRAM chip, which must be refreshed within the same DRAM retention time, i.e., more

rows need to be refreshed in one refresh cycle. This increases the length of refresh operations and

thus reduces memory throughput.

As discussed above, the refresh problem significantly impacts real-time systems because pre-

dictable memory access latencies are imperative to assess task schedulability [WM01]. Furthermore,

as DRAM density grows, more rows need to be refreshed within same refresh interval (tREFI), i.e.,

tRFC increases rapidly. Even with conservative estimates of growth in density for future DRAM

technology, tRFC exceeds 1us at 32 Gb DRAM density [Liu12a]. Today’s variable access latencies

due to refreshes are counter-productive to tight bounds on a task’s WCET, a problem that is only

increasing with higher DRAM density/sizes.
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1.3 Hypothesis

DRAM is widely used as main memory in digital electronics, such as modern computers and graphics

cards, where low-cost and high-capacity memory is required. Non-uniform Memory Access (NUMA)

architectures are common on server platforms with more than one system bus. They can harness

large numbers of processors in a single system. But DRAM systems with NUMA architectures suffer

from the following shortages:

(1) The latency of accessing a remote memory node is significantly longer than that of a local

memory node.

(2) Even with a single memory node, conflicts between shared-bank accesses result in unpre-

dictable memory access latencies.

(3) Contention may also exist at the last level cache (LLC), typically due to large working set sizes

that result in more data blocks being mapped to the same cache line than the LLC can hold given its

associativity.

(4) The response time of a DRAM access is impacted by refresh operations, which not only

decreases memory throughput, but also makes memory access latency unpredictable.

We attempt to propose an approach to address these shortages in this dissertation. The hypoth-

esis of this dissertation is as follows.

NUMA architecture with DRAM require a novel approach to avoid remote memory accesses, reduce

contention among bank/LLC level, and remove the interference due to refresh, in order to increase

the predictability of memory access latency and memory performance, which is critical for real-time

systems and also benefits multi-core parallel system.

1.4 Contribution

To address these problems, this work contributes a novel approach to reduce memory access

divergence and to hide DRAM refresh overhead. The first contribution is Controller-Aware Memory

Coloring (CAMC), which colors the entire memory space (heap, stack, code and data segments) to

avoid remote memory accesses, and to reduce memory bank contention. The second contribution

is TintMalloc, which not only considers memory locality, but also supports last level cache (LLC)

coloring. The third contribution is "Colored Refresh", which hides DRAM refresh overhead entirely

in real-time cyclic executives. The forth contribution is the "Colored Refresh Server" to remove task

preemptions due to refreshes and to hide DRAM refresh overhead entirely, which can be considered

with several real-time scheduling policies.

Controller-Aware Memory Coloring (CAMC): CAMC is a memory allocator that “colors” pages

of the memory space with locality affinity for controller- and bank-awareness suitable for mixed

criticality, weakly hard, and soft real-time systems on NUMA architectures. In contrast to prior work
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on non-NUMA, heap-constrained allocation [Yun14], CAMC colors the entire memory space of

heap, globals, stack, and instruction segments via Linux kernel modifications transparent to the

application. CAMC follows the philosophy of single-core equivalence [Man15]. It avoids (1) memory

accesses to remote nodes and (2) conflicts among banks in an effort to make task execution more

predictable via colored partitioning. Another novelty of CAMC is that it does not require any code

modifications for applications. Tasks are automatically assigned one (or more) colors for memory

regions disjoint from colors of other tasks in the system. Invocation of a command line utility prior

to real-time task creation suffices to activate coloring in the kernel. The utility internally issues

a single mmap() system call with custom parameters for color activation. We have modified the

operating system (OS) kernel so that each task has its own memory policy. Heap, stack, static, and

instruction (so-called text/code) segment allocations return pages adhering to this policy upon

task creation as well as for expansions of stack or heap segments during execution due to heap

allocations or deeply nested calls. In Chapter 2, we compare CAMC with standard buddy allocation

and previous coloring techniques. We assess the performance of CAMC for codes from the NAS and

Parsec benchmarks on a standard x86 platform, with and without real-time task sets. Results indicate

(1) a lower memory latency for local controllers than remote ones; (2) monotonically increasing

alternating stride patterns result in worse performance than prior access patterns used to trigger

“bad” behavior; (3) CAMC increases the predictability of memory latencies; (4) it avoids inter-task

conflicts; and (5) it is the only policy to provide single core equivalence when one core per memory

controller is used. Thus, this work goes another step beyond prior work in improving real-time

schedulability.

TintMalloc: TintMalloc is a heap allocator that “colors” memory pages with (1) locality affinity

for controller- , (2) bank- and (3) LLC-awareness suitable for high performance computing on NUMA

architectures. With TintMalloc, programmers can select one (or more) colors to choose memory

controller, bank and LLC regions disjoint from those of other tasks. Our coloring allocator establishes

memory and LLC isolation between tasks, so that each task only accesses its local memory controller,

private memory banks and LLC. Due to this isolation, remote access penalties are avoided (except

for shared data regions, which are typically smaller) and interference is reduced. The approach can

keep the runtime of tasks in parallel sections more balanced, which reduces idle time and increases

core utilization. TintMalloc only requires one line of code to be added to application initialization.

An extension of the system call “mmap” is designed to indicate a thread’s color. We have modified

the OS kernel so that each task has its own dynamic allocation policy, which triggers either the

legacy default allocation policy or TintMalloc’s policy for mmap() system calls. Heap allocations by

a task return pages adhering to the respective policy. This allows us to limit program modifications

to just a single-line of code to select colors during initialization. As extensive experiments shown in

Chapter 3, we observe that the latency of local memory controller accesses is much lower than that

of remote memory controller accesses, and TintMalloc can (1) avoid memory accesses to remote
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nodes, and (2) reduce conflicts among banks and thread interference in LLC. As a result, TintMalloc

reduces the runtime of parallel programs by decreasing the idle time of parallel tasks, which makes

them more balanced. Compared with CAMC, TintMalloc can also reduce LLC contention by cache

coloring.

Colored Refresh: Colored Refresh is an approach that hides DRAM refresh overhead entirely.

We exploit colored memory allocation (TintMalloc) to partition the entire memory space such that

each real-time task receives different ranks. By strategically co-scheduling refreshes and competing

memory accesses, memory reads/writes do not suffer from refresh interference. As a result, Colored

Refresh reduces memory access latency and increases memory throughput, which tends to make

real-time systems more predictable, particularly for large DRAM sizes. What is more, the overhead

of Colored Refresh is small and remains stable irrespective of DRAM density/size. In contrast, auto-

refreshed overhead keeps growing as DRAM density increases. In Chapter 4, (1) we analyze DRAM

refresh of modern memory systems in detail, especially highlighting the impact of refresh delay under

varying DRAM densities/sizes for real-time systems with stringent timing constraints. As observed,

it is hard to predict an application’s refresh overhead with auto-refresh. With growing DRAM density,

the losses in DRAM throughput and performance caused by refreshes quickly become unacceptable

for real-time systems. (2) A software solution, Colored Refresh, is contributed, which refreshes

DRAM based on memory space coloring. Refresh overhead is entirely hidden since a memory rank is

either being accessed or being refreshed, but not both. (3) We evaluate Colored Refresh performance

with Malardalen benchmarks to confirm that regular memory accesses never suffer from refresh

interference, i.e., the refreshes are completely hidden in a safe manner. Consequently, the refresh

delays are hidden, DRAM access latencies are reduced, and application execution time becomes

more predictable, even when DRAM density increases.

Colored Refresh Server: Colored Refresh Server (CRS) is an approach to remove task preemp-

tions due to refreshes, hide the DRAM refresh overhead entirely, and to make real-time systems

more predictable. Compared with Colored Refresh, CRS can be implemented for several real-time

scheduling policies. CRS exploits colored memory allocation to partition the entire memory space

into two colors corresponding to two server tasks (simply called servers from here on). Each real-

time task is assigned one color and associated with the corresponding server, where the two servers

have different static priorities. DRAM refresh operations are triggered by two tasks, each of which

issues refresh commands to the memory of its corresponding server for a subset of a colors (DRAM

ranks) using a burst refresh pattern. More significantly, by appropriately grouping real-time tasks

into different servers, refreshes and competing memory accesses can be strategically co-scheduled

so that memory reads/writes do not suffer from refresh interference. As a result, access latencies

are reduced and memory throughput increases, which tends to result in schedulability of more

real-time tasks. What is more, the overhead of CRS is small and remains constant irrespective of

DRAM density/size. In contrast, auto-refreshed overhead keeps growing as DRAM density increases.
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In Chapter 5, we develop the Colored Refresh Server (CRS), which refreshes DRAM based on memory

space coloring and schedules tasks according to the server policy. Refresh overhead is almost entirely

hidden since a memory space is either being accessed or refreshed, but never both at the same

time. Experiments with the Malardalen benchmarks confirm that both refresh delays are hidden

and application execution times become more predictable. Furthermore, compared to previous

work [BM10], CRS not only removes refresh overhead, but also feasibly schedules short tasks (with

periods less than the execution time of a burst refresh) by refactoring them as “copy tasks”.

1.5 Organization

This document is organized as follows. Chapter 2 presents Controller-Aware Memory Coloring

(CAMC), which “colors” pages of the memory space with locality affinity for controller- and bank-

awareness. Chapter 3 describes TintMalloc, which "colors" both memory and LLC. Chapter 4 de-

scribes Colored Refresh, which hides DRAM refresh overhead by memory coloring. Chapter 5

presents the Colored Refresh Server, which removes DRAM refresh overhead for several real-time

scheduling policies. Chapter 6 presents the conclusion and discusses future work.
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CHAPTER

2

CONTROLLER-AWARE MEMORY

COLORING FOR MULTICORE REAL-TIME

SYSTEMS

2.1 Introduction

Modern NUMA multicore CPUs partition sets of cores into a “node” with a local memory controller,

where multiple nodes comprise a chip (socket). Memory accesses may be resolved locally (within

the node) or via the network-on-chip (NoC) interconnect (from a remote node and its memory).

Each core has a local and multiple remote memory nodes. A so-called memory node consists of

multi-level resources called channel, rank, and bank. The banks are accessed in parallel to increase

memory throughput. When tasks on different cores access memory concurrently, performance

varies significantly depending on which node data resides and how banks are shared for two reasons.

(1) The latency of accessing a remote memory node is significantly longer than that of a local memory

node. Although operating systems generally allocate from the local memory node by default, remote

memory will be allocated when local memory space runs out. (2) Even with a single memory node,

conflicts between shared-bank accesses result in unpredictable memory access latencies. As a result,

system utilization may be low as the execution time of tasks has to be conservatively (over-)estimated

in real-time systems.
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The idea of making main memory accesses more predictable is subject of recent research. Pal-

loc [Yun14] exploits bank coloring on DRAM to allocate memory to specific DRAM banks. Kim

et al. [Kim14] propose an approach for bounding memory interference and use software DRAM

bank partitioning to reduce memory interference. Other approaches ensure that cores can exclu-

sively access their private DRAM banks by hardware design [Wu13; She09]. Unfortunately, none

of these approaches universally solve the problem of making memory accesses time predictable.

Some of them require hardware modifications while others do not consider NUMA as a source of

unpredictable behavior. Furthermore, programmers need carefully assign colors to each task and

manually set coloring policy for real-time task set.

In operating systems, standard buddy allocation provides a “node local” memory policy, which

requests allocations from the memory node local to the core the code executes on. Besides, The

libnuma library offers a simple API to NUMA policies under Linux with several policies: page inter-

leaving, preferred node allocation, local allocation, and allocation only on specific nodes. However,

neither buddy allocation with local node policy nor libnuma library is bank aware. Furthermore,

the libnuma library is restricted to heap memory placement at the controller level, and it requires

explicit source code modifications to make libnuma calls.

This work contributes Controller-Aware Memory Coloring (CAMC), a memory allocator that

automatically assigns appropriate memory colors to each task while combining controller- and

bank-aware coloring for real-time systems on NUMA architectures. An implementation of CAMC

on an AMD platform and its performance evaluation with real-time tasks provides novel insights

on opportunities and limitations of NUMA architectures for time-critical systems. Memory access

latencies are measured, the impact of NUMA on real-time execution is discussed, and the perfor-

mance of DRAM partitioning is explored. To the best of our knowledge, this is the first work to

comprehensively evaluate memory coloring performance for real-time NUMA systems.

Summary of Contributions: (1) CAMC colors the entire memory space transparent to the ap-

plication by considering memory node and bank locality together — in contrast to prior work for

non-NUMA allocations [Yun14], or “local node” policy in buddy allocation without bank awareness.

Tasks are automatically assigned to one (or more) colors for memory regions disjoint from colors

of other tasks in the system. CAMC follows the philosophy of single core equivalence [Man15]. It

avoids (i) memory accesses to remote nodes and (ii) conflicts among banks in an effort to make

task execution more predictable via colored partitioning. We modified the Linux kernel so that each

task has its own memory policy. Heap, stack, static, and instruction (text/code) segment allocations

return memory frames adhering to this policy upon task creation as well as for expansions of stack

or heap segments dynamically for heap allocations or deeply nested calls.

(2) We compare CAMC with Linux’ standard buddy allocator with “local node” policy and previous

coloring techniques. We assess the performance of CAMC for Parsec codes on a standard x86 plat-

form, with and without real-time task sets.
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(3) Experiments quantify the non uniform latency between nodes and indicate that (i) monotoni-

cally increasing alternating stride patterns result in worse performance than prior access patterns

believed to trigger the “worst” behavior; (ii) CAMC increases the predictability of memory latencies;

and (iii) CAMC avoids inter-task conflicts. By comparison, CAMC is the only policy to provide single

core equivalence when the number of concurrent real-time tasks is less than the number of memory

controllers. By coloring real-time tasks and non-realtime tasks disjointly (with mappings to different

memory controllers), real-time tasks increase their level of isolation from each other following the

single core equivalence paradigm, which is is essential for improving the schedulability of real-time

task sets and facilitate compositional analysis based on single-task analyses.

(4) An algorithm for the mapping of physical address bits is described for AMD processors. Its

principles can be applied universally to any documented mapping.

(5) Instead of manual configuration by programmer, CAMC automatically assigns memory colors to

tasks based on global utilization of memory colors. CAMC does not require any code modifications

for applications. Invocation of a command line utility prior to real-time task creation suffices to

activate coloring in the kernel. The utility issues a single mmap() system call with custom parameters

for coloring.

2.2 Background

DRAM Organization: DRAM is organized as a group of memory controllers/nodes (Fig. 3.1), each

associated with a set of cores (e.g., four cores per controller). Each controller governs multilevel

resources, namely channel, rank, and bank. Each rank consists of multiple banks, where different

banks can be accessed in parallel. Multiple channels further provide interleaving of memory accesses

to improve average throughput. Each bank has a storage array of rows and columns plus a row buffer.

When the first memory request to a row element is issued, a row of the array with the respective data

is loaded into the row buffer before it is relayed to the processor/caches. Next, to serve this memory

request, the requested bytes of the data are returned using the column ID. Repeated/adjacent

references to this data in this row result in “memory bank hits” — until the data is evicted from the

row buffer by other references, after which a “memory bank miss” would be incurred again. The

access latency for a bank hit is much lower than for a bank miss. If multiple tasks access the same

bank, they contend for the row buffer. Data loaded by one task may be evicted by other tasks, i.e., the

memory access time and bank miss ratios increase as access latencies fluctuate on bank contention.

Memory Controller: The memory controller is a mediator between the last-level cache (LLC) of

a processor and the DRAM devices. It translates read/write memory requests into corresponding

DRAM commands and schedules the commands while satisfying the timing constraints of DRAM

banks and buses. When multiple memory controllers exist, references experience the shortest mem-

ory latency when the accessed memory is directly attached to the local controller (node). A memory
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Figure 2.1 16 Cores, 4 Memory Controllers/Nodes

access from one node to memory of another incurs additional cycles of load penalty compared

to local memory as it requires the traversal of the memory interconnect between cores. Overall,

it is beneficial to avoid remote memory accesses not only for performance but also predictability

(uniform latencies), and proper placement of data can increase the overall memory bandwidth

which decreases its latency.

2.3 Controller-Aware Memory Coloring (CAMC)

In a NUMA system, a running task is subject to varying memory controller (node) access latencies

and contention on memory banks. As described in Sec. 5.2, DRAM memory access latency is largely

affected by: (1) where data is located, i.e., local vs. remote memory node; (2) how memory banks

interleave; and (3) how much of the accesses contend.

In order to completely avoid remote memory node accesses and reduce bank contention, we

design Controller-Aware Memory Coloring (CAMC), which is realized inside the Linux kernel (V2.6).

It comprehensively considers memory node and bank locality to color the entire main memory

space (heap, stack, static, and instruction segments) without requiring hardware or application

software modifications. The entire memory space is partitioned into different sets, which we call

“colors”. Each memory bank receives a different color. CAMC forces an exact mapping for each active

virtual page to a physical frame of the CAMC-indicated color. Such a color indicates a unique bank
color (bc), which translates a physical address to memory module locations: node, channel, rank,

bank, columns, and rows. Based on this partition, CAMC optimizes the physical memory frame

selection process to provide a private memory space for each task on their local memory node in

order to make memory access latency stable and predictable.

In practice, it is hard to completely avoid remote accesses as tasks run concurrently and may

incur complex memory reference patterns, e.g., due to data sharing. But if one were to conservatively

assume remote references for all memory accesses, bounds on the WCET would be very loose, so

that system utilization would be low. In contrast, we assume that only shared reference latencies are
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bounded conservatively (to be remote) as CAMC guarantees locality and absence of controller/bank

conflicts.

2.3.1 Address Mapping for Page Coloring

CAMC translates the physical address to a DRAM address and maps it onto the physical structure of

main memory as described before (node, channel, rank, bank, columns, and rows). Some vendors

only release bit-level mapping information under non-disclosure agreements (e.g., Intel — even

though some prior work has published mappings for certain Intel processors) while others disclose

this information in their architecture manuals (e.g., AMD, ARM). This work is based on the AMD

Opteron hardware platform, but its principles apply universally to any documented mapping. On

the AMD platform, we query PCI registers (documented in the architecture manual) and determine

the bits that translate physical addresses to DRAM locations.

The memory controller/node of a frame is identified by the range of its physical address. Channel

and rank ID bits are indicated by the “DRAM Controller Select Low Register” and ‘DRAM CS Base

Address Registers”, respectively. After determining the frame’s memory controller, channel, and rank

information, we translate the physical address to the DRAM bank address by removing masked

bits and normalizing. Next, we identify the bank, row, and column bits based on the “DRAM Bank

Address Mapping Register”.

Upon boot-up, our coloring mechanism is triggered within the OS. It scans all frames and

calculates the color information for memory controller, channel, rank and bank per frame (and

corresponding frame). Consider an AMD Opteron 6128 with four memory controllers, two channels

per controller, two ranks per channel, and eight banks per rank (128 banks in total). After boot-up

and page color initialization, the system groups the entire memory space into 128 colors and records

which color a page belongs to in the page table.

2.3.2 CAMC User Interface

After boot-up, the system is ready for per-task CAMC allocation. Instead of manual configuration by

the programmer in prior works, the user only needs to trigger memory coloring in CAMC. Subse-

quently, the coloring policy is applied automatically, i.e., all tasks are assigned appropriate memory

colors without a programmer’s manual selection. To turn on/off memory coloring in CAMC, we

designed a coloring toggle capability, which is triggered via a single mmap() system call exploiting a

backwards-compatible mmap extension to turn on/off and configure kernel coloring of memory

pages per task. The parameters of this coloring toggle call indicate what kind of coloring action and

how many colors should be assigned to real-time tasks during initialization (and can be changed by

the programmer based on per-task memory requirement, default: 1 color/task).

Our enhanced mmap() retains the calling convention of standard mmap calls, which allocates
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pages by creating new mappings in the virtual address space of the calling task. The (third) “protec-

tion” parameter allows the distinction of standard mmap vs. coloring mmap calls with full backwards

compatibility for the former while triggering our kernel extensions for the latter. Specifically, a set

bit 30 of the mmap third parameter (unused in Linux) triggers coloring; otherwise, calls experience

standard (legacy) behavior. For colored mmap(), the first parameter indicates the color action (turn

it on/off) and the number of colors to assign per real-time task. On the AMD Opteron platform, the

color_num has a value range of 0-127. A sample call for coloring is as follows:

char * A = (char*) mmap(color_action+color_num,

length, prot | (1<<30), flag, fd, offset);

2.3.3 Memory Policy Configuration

After CAMC is activated, an enhanced mmap() call registers (adds) the current user_id to the color-

ing_user list in the kernel. As there may be many other tasks running in the system, one may quickly

run out of colored memory resource if the kernel assigns colored resources to every task. To avoid

coloring for non real-time tasks and OS background processes, we further check the execution path

of new tasks to determine whether this task should be colored. After CAMC activation, the user_id

and execution_path of tasks is checked as they are spawned. If the user_id has been registered and

the execution_path matches a user-specified configuration pattern, the OS kernel will configure the

memory policy for this task to adhere to the supplied coloring constraints. In addition, a coloring

flag, using_color, is set in the task_struct by kernel. Any subsequent memory allocation calls (includ-

ing heap, stack, static, and instruction segments) will return pages based on memory policy and

coloring requirements. Once a coloring memory policy has been established, this task is guaranteed

to receive isolated (colored) memory pages in terms of controller locality and bank arbitration. In

CAMC, no software/application source code or hardware architecture modifications are needed.

The coloring memory policy is configured as depicted in Fig. 2.2.

CAMC maintains a table to record the utilization of global memory colors and each task’s coloring

allocation. Once a new coloring task is created, CAMC automatically selects one color (default 1,

configurable to > 1) from memory regions disjoint from colors of other tasks in the system. If a task

needs more memory space, CAMC assigns a new color after this task’s pre-allocated colors have

been exhausted.

Following the copy-on-write (COW) paradigm of Linux, when a fork system call is issued, the

parent process’ pages are shared (with read-only permission) between the child and parent processes.

The memory space will not be copied for the child process until the child begins to execute. Whenever

the child process calls thedo_exec function, a separate copy of that particular page is made (actually,

on the first write to such a page). The child process will then use the newly copied page and no

longer shares the original one, which has now become exclusively owned by the parent. Under
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Figure 2.2 Program Flow to configure memory coloring

CAMC, the coloring memory policy is configured in the do_exec function so that the entire memory

space is colored.

2.3.4 Page Allocation Design

CAMC is implemented by augmenting the Linux buddy allocator. We only handle the o r d e r = 0 case

while higher orders are handled by the original buddy allocator, since user-level memory allocations

are eventually performed in the page fault handler at page granularity (4KB, i.e., o r d e r = 0). CAMC

thus handles the common kernel internal allocation requests (getting a page frame).

Furthermore, CAMC supports channel interleaving for multi-channel memory architectures.

With channel interleaving, one page is spread evenly across channels at cache line granularity to

increase the memory throughputs. The interleaving boundary is related with the size of cache line

and determined by memory physical address, (6th bit of physical address on our platform, where a

cache line is 64B). When channel interleaving is enabled, the color assigned to each memory bank

does not only represent its memory location, but also indicates channel interleaving information, i.e.,

one color contains multiple memory banks (but a subset of the total number of banks). By assigning

this color in CAMC, one task can access those banks at same time though multiple channels, while
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isolation and predictability are still guaranteed by memory coloring.

Algorithm 1 Select colored page: find page of given size,color

1: INPUT: order
2: OUTPUT: page
3: if order==0 and (current->using_color) then
4: for i = order ... MAX_ORDER do
5: Get a memory list ID, MEM_ID, that matches requirements
6: if Get Successful then
7: return page from color_list[MEM_ID]
8: else
9: if free_list[i] is empty then

10: continue //try next order
11: else
12: create_color_list (i, head page of the buddy set)
13: end if
14: end if
15: end for
16: return NULL /* no more pages of this color */
17: else
18: return page from normal_buddy_alloc
19: end if

Algorithm 2 Create color list: move page from buddy to colored free_lists

1: INPUT: order, page
2: for i = 0 ... 2o r d e r−1 do
3: append page to color_list[page_color]
4: end for

After configuring the memory policy, we need to determine which page to select at a page fault.

This process is shown in Algorithms 1+2. Our approach instructs the kernel to maintain a free list

and m color lists, where m denotes the total number of banks in DRAM system. At first, all color

lists are empty and all free pages are in the non-colored free list of the buddy allocator. Upon a page

fault, the returned page has to match memory coloring requirements if flag using_color is set.

Orders greater than zero default to the standard buddy allocator while order zero requests traverse

the corresponding colored free list to find an available page. E.g., when a task requests a color 0

page, the kernel traverses the color_list[0]. If free pages exist here, the kernel removes one such

page and hands it to the user. Otherwise, the kernel traverses the general buddy free list and returns

the first page with a matching color for this task. Any pages with non-matching colors encountered

during the traversal are added to the corresponding color lists by calling the create_color_list
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function. The call to create_color_list causes a buddy (of size = 212+o r d e r ) to be separated

into 2o r d e r single 4KB pages, which will be added to the respective color lists. When the task frees

a memory space, the kernel adds each page to free lists corresponding to their color. In addition,

the colors assigned to a task will be returned to the "coloring_pool" when this task calls do_exit
to terminate upon which memory coloring resources are recycled. Thus, memory space can be

configured for a specific memory controller and bank per task.

2.4 Evaluation Framework and Results

2.4.1 Hardware Platform

The experimental platform is a two-socket SMP with AMD Opteron 6128 (Magny Cours) processors

with eight cores per socket (16 cores altogether). The 6128 Opteron processor has private 128KB L1

(I+D) caches per core, a private unified 512KB L2 cache, and a 12MB L3 cache shared across eight

cores. There are two nodes per socket (4 nodes and eight memory controllers total), and nodes are

connected via HyperTransport. The core frequency is between 800MHz-2GHz with a governor that

selects 2GHz once a CPU-bound task starts running. There are two channels per memory controller,

two ranks per channel, and eight banks per rank, i.e., 128 banks altogether. All banks can be accessed

in parallel.

2.4.2 Memory Performance

We first investigate the memory performance impact of CAMC with a synthetic benchmark. The

synthetic benchmark represents a performance stress test close to the worst possible case. In the

experiment, a large memory space is allocated for varying numbers of threads (tasks) with CAMC.

Each thread then performs many writes in this space. We record the execution time of every 524,288

(512*1024) memory writes. Since the only work for each thread is to access main memory, the

execution time reflects the memory access latency, i.e., total execution time divided by the 524,288

accesses. We report the average memory access latency over multiple repeated experiments.

To assess the performance of memory controller coloring, we use large strides to defeat hardware

prefetching and allocate a large address space to inflict capacity misses in all caches. Accesses follow

a pattern where a thread writes to addresses with alternating (positive/negative) offsets increased by

a fixed step size of at least cache line size. Consider split (64KB+64KB) I+D L1 caches with 64-byte

caches lines. For an integer array, we select a step size of 64 bytes to touch each cache line exactly

once. If a thread initially accesses the 256th array element, its next accesses are to the 272th (+16),

240th (-16), 288th (+32), 224th (-32) element etc.
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2.4.2.1 Local vs. Remote Memory Controller Latency

We bound one thread to a specific CPU core (to defeat the Linux load balancer that may migrate tasks

to different cores) and performed allocations for different memory controllers. Table 2.1 indicates

the average memory access latency and standard deviation over a sequence of accesses per memory

controller, when the task is running on core 1 (to reduce interference since core 0 often serves

interrupts). As a result, memory controller 0 is accessed locally while other controllers are accessed

remotely. We observe 60% lower memory access latency and 33% reduced standard deviation for

local over remote references, simply due to resolving all references locally with our allocator.

Table 2.1 Access Latency for Core 0 to different Controllers

average standard deviation

controller 0 14.41 ns 0.56
controller 1 22.5 ns 0.65

controller 2 & 3 36.37 ns 0.84

Observation 1: Memory latency for local controllers is lower than for remote ones.

Table 2.1 also shows the variations in memory access latencies for a task (on core 1) accessing

different remote memory controllers. The latency is the lowest (14.4ns) when accessing local con-

troller 0. It increases to 22.5ns for controller 1 and is the highest (36ns) for controllers 2 and 3. This

reflects the required number of hops over the on-chip interconnect discussed earlier.

Observation 2: Memory latency increases across remote controllers with the number of hops

over the on-chip interconnect.

2.4.2.2 CAMC vs. Buddy Allocation with Local Node Policy

We compared the cost of CAMC and buddy allocation with “local node” policy. The synthetic bench-

mark executes 4 threads in parallel with 4 threads bound to cores 0-3, each allocating colored/buddy

memory and accessing it as before. Table 2.2 depicts the average latency per access of all 4 threads

and the standard deviation for a sequence of 100 experiments. The execution time (38ns) is shorter

under CAMC due to a reduction in worst-case latency compared to about 53ns (buddy) on aver-

age, a 28.3% reduction. More significantly, the standard deviation of access times under CAMC is

much lower than buddy allocation, which indicates that the memory access time becomes more

predictable with coloring. Buddy shares memory controller and banks among the threads while

CAMC accesses disjoint private banks per thread on the same controller.

Observation 3: Memory access time is reduced and becomes more predictable with CAMC

coloring.
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Table 2.2 Cost of CMAC Normalized to Buddy

access latency norm. allocation cost during:
latency std.dev. computation initialization

buddy 53.21 ns 9.33 1 1
CAMC 38.22 ns 1.42 1 1.17

2.4.3 CAMC Overhead

Table 2.2 depicts allocation overheads normalized to standard buddy allocation. CAMC imposes

no overhead over buddy allocation during regular program execution. But during initialization,

CMAC has a 17% overhead during allocations over standard buddy allocation, which is explained as

follows. The color lists are empty at program start, and any coloring request results in a traversal

of the free_list until a page of the requested color is found. Any pages encountered during the free

list traversal are further promoted to their respective index in the color lists. Currently, this initial

overhead can be avoided by pre-allocating colored pages during initialization (and optionally freeing

them). Alternatively, this overhead could be removed by reversing the design such that all pages

initially reside in color lists and are demoted into the free list on demand.

To avoid the initial overhead, one can preallocate (and then free) the maximum number of pages

per color that will ever be requested. Subsequent requests then become highly predictable. Typically,

a first coloring allocation suffices to amortize the overhead of initialization.

Observation 4: CAMC imposes no overhead over buddy allocation during periodic real-time task

execution. Its initialization overhead can be avoided by pre-allocating space for real-time system.

Figure 2.3 Mixed: 1 Parsec code + up to 3 memory attackers

20



2.4.4 System Performance

We next investigate performance and predictability for the PARSEC benchmark suite featuring

multithreaded programs [bienia08]. In the experiment, we create a multi-task workload where

several “memory attackers” run in the background to assess their interference on memory latency

for a foreground task similar to prior work [Kim14; Yun14]. We call these background tasks the

“memory attackers”, represented by instances of the stream benchmark. E.g., consider 4 tasks in

the experiment, one (foreground task) is a Parsec benchmark , and the others (background) are

memory attackers (see Fig. 2.3).

2.4.4.1 Performance

We compare the execution time of shared vs. private (isolated) bank allocation (different controllers

and different banks). Since CAMC coloring occurs automatically after activation, none of the bench-

marks (neither any foreground benchmark nor the memory attackers) need to be modified, and

each receives a disjoint colored space accessing only local node memory in private banks without

inter-thread sharing. We deploy 3 memory attackers (Stream benchmark) and measure the wall-

clock execution time of the foreground task to assess the impact of isolation via coloring. All tasks

(memory attackers and the Parsec benchmark) are bound to different CPU cores. We also report

results without background attackers for comparison.

We used 3 configurations: (1) In same_bank, the Parsec benchmark and all 3 memory attackers

are colored so that they access the same bank. This configuration represents the worst case for buddy

allocation even with “local node” policy. (2) In diff_bank, CAMC forces the foreground benchmark

to share one memory controller/node (their local node) with attackers. However, they each are

assigned a private bank/color. This is also called bank-level coloring. (3) In diff_controller, CAMC

ensures that foreground task and attackers allocate pages from their private bank and private local

controller for full task isolation.

Fig. 2.4 depicts the experimentally determined WCET for all Parsec benchmarks with background

attackers (bars 1-3) and without (bar 4). We observe that the WCET is reduced under controller-

aware coloring (private bank) in all experiments. Both diff_bank and diff_controller obtain better

performance than same_bank. For bank-level coloring (diff_bank), the ferret benchmark gets the

largest performance enhancement (28.9%) and the fluidanimate benchmark the smallest one (6.2%).

For controller-level coloring (diff_controller), the canneal benchmark gets the largest performance

enhancement (41.7%) and swaptions the smallest one (11.2%).

All 3 cases are relatively predictable in execution time (small variance), yet diff_controller has

the tightest range of execution times of these methods, i.e., it is more predictable and the only one

that provides single-core equivalence as it matches the last bar, single run (no attacker). Differences
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Figure 2.4 Parsec: diff. controller/diff. bank/shared bank/single

between the last two bars of 0.1% for most, 2.73% for X264, and 2.54% for ferret, are due to increased

LLC contention for 4 tasks, which would be removed by LCC coloring.

Observation 5: CAMC increases the predictability of memory latencies by avoiding remote

accesses and reducing inter-task conflicts. It is the only policy to provide single-core equivalence

when one core per memory controller is used.

Not only foreground tasks (from the Parsec suite), background memory attackers (the Stream

benchmark) also improve in performance under CAMC. The results indicate that diff_controller

gets a 40% and diff_bank a 14.8% performance enhancement over same_bank.

Since same_bank represents the worst case for standard buddy allocation, real-time tasks should

be scheduled considering the same_bank WCET for safety. Under CAMC, the WCET of real-time

tasks is much reduced compared to buddy.

2.4.4.2 Multiple Cores

We next executed a Parsec/X264 benchmark with multiple memory attackers (Stream benchmark)

in the background on multiple cores. In 4 experiments, we ran Parsec/X264 with 0/3/7/15 memory

attackers pinned to different cores. Fig. 2.5 depicts the runtime (left y-axis) of X264 (foreground) and

Stream (background) (right y-axis, avg. and min/max as error bars) over the 3 allocation policies

(x-axis).

We observe that the performance enhancement by CAMC becomes smaller as the number of

background tasks increases. For 16 tasks, node-level coloring finally degrades to bank-level coloring.
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Figure 2.5 Runtime of one X264
and 3/7/15 Stream Tasks

Figure 2.6 Palloc: Avg. Memory
Latency for Controller/Bank/no
Coloring

Figure 2.7 Alternating Strides
for Controller/Bank/no Color-
ing

Notice that the predictability of background tasks (stream) also degrades for 16 tasks (cores) with

CAMC matching that of the other allocators irrespective of the number of active task. This is due to

contention within the shared queue of a memory controller before requests enter bank-specific

queues. Even for 16 tasks, our approach still results in superior performance to normal buddy

allocation (same_bank) where both controller and bank queues are shared by all tasks. However,

compared to just one core, only the 4-core case under our policy provides single-core equivalence

as this is the only configuration to avoid memory controller queue sharing. Furthermore, the 3

background Stream benchmarks result in better performance under CAMC with increasing variance

under contention, which is uniformly higher for the other schemes and also our 16-core case.

Observation 6: CAMC results in superior performance for multi-core executions per controller,

where both controller and bank queues are shared across tasks, but can no longer provide single

core equivalence.

2.4.5 Real-Time Performance

We evaluated CAMC under rate-monotone scheduling for a task set composed of 2 periodic hard

real-time tasks, (1) synthetic (alternating strides) and (2) IS_SER (NAS PB), sharing core 0 (task

parameters depicted in Table 2.3) plus three non-real-time tasks (Stream) on cores 1,2,3 (omitted in

the table). These cores share the same memory controller. Real-time tasks periodically execute jobs

at a rate of 150 and 200ms under an execution time C of 90/60ms for a task utilization U of 0.6/0.3

for tasks 1 and 2, respectively.

Table 2.3 MC Tasks for Buddy Allocator
taski period Ci Ui

1: Synthetic 150 ms 90 ms 0.6
2: IS_SER 200 ms 60 ms 0.3

When tasks 1 and 2 execute together, CAMC isolates execution from background tasks (Stream)

in diff-controller mode so that no deadlines are missed. For the CAMC diff-controller mode,
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all non-real-time tasks are mapped to different memory controllers via coloring than real-time tasks.

Although non-real-time task suffer more remote memory accesses, CAMC guarantees strict memory

isolation for real-time tasks. Fig. 2.8 shows the corresponding Gantt chart from one execution of this

scenario: Tasks 1 and 2 are released (arrays up) at time 0, synthetic has a shorter period and executes

first followed by IS. Here, execution always results in a feasible schedule and all deadlines (arrows

down) are met, which is what one would expect using response-time analysis to verify schedulability.

Figure 2.8 Feasible Schedule: diff-controller

In contrast, the same-bank configuration does not provide isolation between Tasks 1+2 and

the background tasks (Stream), which causes deadlines to be missed. Fig. 2.9 depicts the same

task set, but the executions of both synthetic and IS are longer due to Stream’s interference. Task 1

executes first for 107ms, then task 2 (IS) runs but is preempted by the 2nd job of higher priority task

1 at 150, which was not enough time to finish, so the deadline of IS is missed at 200. The red box

indicates this deadline miss. At the 2nd release of IS at 200, task 1 is still running, and when IS starts

at 257, it only runs for 43ms before being preempted by the 3rd job of task 1 (running for just 90ms

here due to variations in interference), but then continues at time 390 for another 10ms, which is

again not enough to finish by its deadline of 400 (red box). The 3rd job of task 2 finally has enough

time (50+37=87ms) to just finish by 594 since it is only preempted by one job of task 1 (running for

107ms). Overall, the interference of background tasks was sufficient to cause deadline misses, which

one would not have expected based on calculated response times derived from isolated executions

of tasks 1+2, i.e., interference causes schedulability analysis to not be compositional anymore with

respect to single task executions. This also holds for buddy allocation (not depicted due to space

limitations) or any other policy that causes interference.

Figure 2.9 Deadline Misses (red) for same-bank

24



Observation 7: Schedulability analysis for real-time tasks remains compositional under CAMC,

yet for other policies with interference, compostionality cannot be guaranteed: Deadlines of hard

real-time tasks at higher priority can be missed if any other tasks run on other cores (even if just in

the background).

Tables 2.4+ 2.5 depict the observed execution times (avg. over 100 runs, min./max. and standard

deviation) for tasks 1 and 2, respectively, for the same 4 configurations as in previous experiments.

Notice that a single task run (without background tasks) results in the smallest standard deviation,

followed by diff-controller (adding minimal overhead due to LLC contention), and then others

with higher interference at the bank/NUMA node level. These execution times also reflect the

runtime behavior previously depicted in the Gantt chars. Table 2.6 quantifies the deadline miss

rates for same-bank and diff-bank while the other policies always meet deadlines.

Table 2.4 Task 1: Synthetic Exec. Time
SameBank DiffBank DiffContr. SingleRun

avg. 90.6 ms 78.5 ms 62.5 ms 60.7 ms
max 107.1 ms 89.3 ms 75.8 ms 61.2 ms
min 80.4 ms 68.3 ms 61.5 ms 60 ms

std.dev. 4.88 4.33 2.46 0.44

Table 2.5 Task 2: IS_SER Exec. Time
SameBank DiffBank DiffContr. SingleRun

avg. 74.6 ms 67 ms 56.7 ms 54.3 ms
max 87.8 ms 74.4 ms 59.8 ms 56 ms
min 64.3 ms 58.8 ms 55.4 ms 53.7 ms

std.dev. 5.28 4.2 0.83 0.41

Table 2.6 Deadline Miss Rates
SameBank DiffBank DiffContr. SingleRun

deadline misses 82% 23% 0 0

2.4.6 Latency Comparison with Prior Work

We compared the performance of our approach with Palloc [Yun14], a DRAM bank-aware memory

allocator that provides memory bank isolation on multicore platforms, but not memory controller

locality as it does not support NUMA platforms. We utilize Palloc’s latency benchmark [Yun14; Yun13],
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which iterates through a randomly shuffled linked list whose size is twice that of the last-level cache

(LLC) size.

We run one instance of the latency benchmark on core 0 (the “foreground” load) and co-run up

to 3 latency benchmark instances in the background (cores 1-3). The actual number of background

tasks varies (0-3), just as in prior work [Yun14]. We run experiments for the 3 memory settings of

same_bank, diff_bank, and diff_controller for allocations of pages from different memory banks of

disjoint memory nodes, where the latter utilizes a different controller per task (banks 0, 32, 64, 96

on the Opteron platform).

Fig. 2.6 shows the execution time (y-axis) of the latency benchmark over all memory accesses of

the foreground task (on core 0) for varying numbers of tasks (x-axis), i.e., the aggregate number of

background tasks plus one foreground task. The (very small) error bars show the range of execution

times of background latency tasks. We observe that the execution time more than doubles for

same_bank from 0 to 3 background tasks. This is due to significant bank-level conflicts as all tasks

compete for accesses on the same memory bank. The execution time for diff_bank slightly increases

by ≈4% from 0 to 3 background tasks. References from each task are isolated from one another as

each task accesses a disjoint memory bank, i.e., no inter-task bank conflicts occur. The runtime

for diff_controller is almost constant (slightly smaller than diff_bank) from 2-3 background tasks.

diff_controller not only reduces bank conflicts but also avoids conflicts in the shared controller

queue. Also, error bars are the smallest for diff_controller, i.e., CAMC provides higher predictability.

We next compare CAMC with Palloc [Yun14] utilizing our synthetic benchmark (striding back

and forth with increasing offsets) under the same setup as for the Palloc latency benchmark. Fig. 2.7

uses the same x/y-axes as before. We observe that the execution time is still constant under diff_con-

troller but increases steadily for same_bank and at a slope roughly twice as steep as diff_bank. This

shows that the synthetic benchmark triggers a memory reference pattern that is worse than that of

the latency benchmark. More significantly, it underlines the importance of controller-aware (and

not just bank-aware) coloring. Bank sharing is still subject to conflicts between references that enter

the shared controller queue before they are relayed to their bank queues. Only controller-aware

coloring provides uniform access latencies in this observed worst case.

In comparison to the Palloc [Yun14] results, CAMC obtains similar performance for bank color-

ing (diff_bank), albeit on a different platform (AMD) than their work (Intel). CAMC goes beyond

the capabilities of Palloc by further improving performance (diff controller) and making coloring

applicable to NUMA multicores, where address bit selection for coloring is derived in a portable

manner from PCI registers.

Observation 8: For single controller (UMA) platforms, CAMC is comparable to Palloc in perfor-

mance. For multi-controller (NUMA), CAMC outperforms Palloc as the latter lacks NUMA awareness,

i.e.. only CAMC provides single-core equivalence.
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2.5 Related Work

The performance of multithreaded programs on NUMA multicores system has been studied exten-

sively [Bla10; MV10; Mar10; Lac12; MG13; Yun15; PY16]. Scheduling or page placement has been

proposed to solve the data sharing problem in NUMA system [Li93; MG12; Oga09; War15; Hua15].

However, compared with CAMC, these approaches introduce overhead and cannot eliminate the

data sharing problem completely.

The basic idea of using DRAM organization information in allocating memory at the OS level

is explored in recent work [Pan16; Kim14; Yun14; Liu12b; Awa10; Chi15]. Awasthi et al. [Awa10]

examine the benefits of data placement across multiple memory controllers in NUMA systems. They

introduce an adaptive first-touch page placement policy and dynamic page-migration mechanisms

to reduce DRAM access delays in multiple memory controllers system but do not consider bank

effects, nor do they provide task isolation. Pan et al. [Pan16] contribute an allocator that colors heap

memory at LLC, bank, and controller level to ensure locality per level and requires modifications to

applications. In contrast, CAMC colors the whole memory space (heap, stack, static, and instruction

segments) without requiring application changes. Liu et al. [Liu12b]modify the OS memory man-

agement subsystem to adopt a page-coloring based bank-level partition mechanism (BPM), which

allocates specific DRAM banks to specific cores (threads). Palloc [Yun14] is a DRAM bank-aware

memory allocator that provides performance isolation on multicore platforms by reducing conflicts

between interleaved banks. Our work differs from Palloc and BPM in that we not only focus on

bank isolation but also consider memory controller locality, i.e., we avoid timing unpredictability

originating from remote memory node accesses. Our approach extends to multi-memory-controller

platforms commonly found in NUMA systems. It colors all memory segments, not just the heap, and

requires no code changes in applications. Suzuki et al. [Suz13] combine cache and bank coloring

to obtain tight timing predictions. Mancuso et al. [Man15] promote single core equivalence and

combine several techniques to address contention at different levels of the memory, such as memory

bandwidth (MemGuard), cache and memory bank. Yet, sharing within the memory controller results

in varying of execution time depending on the number of cores. In contrast to these, our approach

addresses both memory banks and memory controllers and ensures single core equivalence up to

as many cores as there are memory controllers.

2.6 Conclusion

This work contributes the design and implementation of CAMC, a controller-aware memory coloring

allocator for real-time systems. CAMC comprehensively considers memory node and bank locality

to color the entire memory space and eliminates accesses to remote memory nodes while reducing

bank conflicts. CAMC provides more predictable performance than the standard buddy allocator

and outperforms previous work for the studied NUMA x86 platform. Experimental results indicate
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that CAMC reduces memory latency, avoids inter-task conflicts, and improves timing predictability

of real-time tasks even when attackers are present. Overall, this work is the first to assess the real-time

predictability of DRAM partitioning on NUMA architectures.
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CHAPTER

3

TINTMALLOC: REDUCING MEMORY

ACCESS DIVERGENCE VIA

CONTROLLER-AWARE COLORING

3.1 Introduction

Contemporary multicores provide a NUMA memory architecture, where L1 and L2 caches are often

core private while the L3 cache, the last level cache (LLC), is shared among cores. Sets of cores

further comprise a memory “node”, where each node features a local memory (DRAM) controller.

The controller further provides access to a different banks. A memory reference then is non-uniform

in access latency due to increasingly expensive access penalties for data obtained from L1, L2, LLC,

and DRAM.

Fig. 3.1 depicts two sockets of such multicore chips. Even within each socket, core-local DRAM

accesses (via the local memory controller), e.g., from core 0 via controller 0, have lower latency

than other controllers on the socket, e.g., from core 0 to controller 1 as they traverse over the fast

on-chip interconnect (Hypertransport/Quickpath for AMD/Intel). References to other sockets result

in even longer latencies for both remote LLC (core 0 to the LLC of socket 1) and yet longer for

remote controllers (core 0 to controllers 3 or 4) as they transverse the off-chip interconnect (typically

narrower, lower bandwidth Hypertransport/Quickpath lanes).
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Figure 3.1 Architecture of memory and cache on AMD Opteron

In general different controllers and banks can be accessed in parallel, but sharing of either, even

locally, may result in resource contention. Furthermore, non-local access can result in contention on

the on-chip interconnect. Contention may also exist of the LLC level, typically due to large working

set sizes that result in more data blocks being mapped to the same cache line than the LLC can hold

given its associativity.

Application performance will degrade when data references result in frequent contention or

suffer remote access penalties. It is thus imperative to try to keep as many references as possible

local in order to improve memory performance while utilizing all cores of a processor.

Furthermore, multi-threaded programs often utilize fork-join parallelism with data- or task-

parallel execution in parallel sections using POSIX threads or OpenMP. At the end of such parallel

sections, implicit barriers synchronize all threads. If execution is highly variable across threads

in a parallel section, idle time is incurred for early arrivers at barriers in an unbalanced manner.

Memory contention and non-uniform access penalties contribute to the aggregate cost of idle time,

i.e., unutilized processing resources.

In this work, we propose TintMalloc, a heap allocator that “colors” memory pages with (1)

locality affinity for controller- , (2) bank- and (3) LLC-awareness suitable for high performance

computing on NUMA architectures. With TintMalloc, programmers can select one (or more) colors

to choose memory controller, bank and LLC regions disjoint from those of other tasks. Our coloring

allocator establishes memory and LLC isolation between tasks, so that each task only accesses

its local memory controller, private memory banks and LLC. Due to this isolation, remote access

penalties are avoided (except for shared data regions which is typically smaller) and interference

is reduced. The approach can keep the runtime of tasks in parallel section more balanced, which

reduces idle time and increases core utilization.
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For example, a task running on core 1 is assigned LLC color 0 and memory bank 0 from its local

node (controller) 0. Another task on core 4 is assigned LLC color 1 and memory bank 1 from its

local node 1. As a result, every task accesses a local memory controller instead of requiring remote

node accesses. A task also has its private memory bank space and private LLC lines. Interference

between tasks will be removed. This effectively shortens the execution time and makes execution

more balanced for these sample tasks.

TintMalloc only requires one line of code to be added to application initialization. An initial

system call indicates a thread’s color, which is stored with the task control block inside the operating

system (OS). We have modified the OS kernel so that each task has its own dynamic allocation policy,

which triggers either the legacy default allocation policy or TintMalloc’s policy for mmap() system

calls. Heap allocations by a task return pages adhering to the respective policy. This allows us to

limit program modifications to just a single-line of code to select colors during initialization.

We performed extensive experiments to assess the performance of TintMalloc for a set of bench-

marks from the SPEC2006 and Parsec on a standard AMD Opteron hardware platform. Experimental

results with TintMalloc and other heap allocators show the following: (1) The latency of local memory

controller accesses is much lower than that of remote memory controller accesses. (2) TintMalloc

avoids memory accesses to remote nodes, reduces conflicts among banks and thread interference

in LLC. (3) It reduces the runtime of parallel programs. (4) TintMalloc decreases the idle time of

parallel tasks and makes them more balanced.

Several approaches have been proposed to address contention between shared resources, e.g.,

scheduling algorithms based on data reference characteristics [Kim10b; Kim10a; Mur11], cache

locality [MG11; CJ06; Per11; Suh04], and page coloring for DRAM partitioning [Yun14; Awa10; Liu12b].

Compared to them, our approach not only partitions memory banks and the LLC but also consider

the locality of memory controllers. To our knowledge, it is the first paper to (a) color memory

controllers and (b) combine memory controller, bank and LLC coloring together. Overall, TintMalloc

effectively lowers contention for shared resources and reduces imbalance at boundaries of parallel

sections in programs resulting in improved overall performance and core utilization, much in

contrast to other allocators.

3.2 NUMA Memory Architecture

This section provides a brief primer of NUMA DRAM memories for just the aspects relevant this

work.
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3.2.1 Caches

Most modern CPU architectures have multiple levels of caches organized hierarchically within a

single chip. For example, there are two sockets in our AMD Opteron 6128 system and the cache

hierarchy in each socket is shown in Fig. 3.2. Each core has its private, local L1 and L2 caches and all

cores share the LLC. A miss in L1 initiates an access to L2, and a miss in L2 initiates an access to L3.

A miss in LLC initiates an access to memory.

The more cache hits, the faster the system performs. However, cache misses increase when

multiple tasks access caches simultaneously since one task’s reference may replace data in LLC of

another task’s prior references.

Figure 3.2 Cache Organization (AMD Opteron)

3.2.2 DRAM Memory

Sets of cores comprise a memory node in NUMA systems. Each such node has one local memory

controller as depicted in Fig. 3.1. For example, the AMD Opteron system used in our experiments

has four memory controllers over two sockets with four cores per controller. The DRAM memory

behind a controller is organized into channels, ranks, and banks depicted in Fig. 3.3. On a same

controller, accesses to different banks and channels may proceed in parallel, which provides the

capability of interleaving memory accesses, thereby improving memory bandwidth/throughput.

A DRAM bank array is organized into rows and columns of individual data cells. Upon access to

data, the corresponding row is selected and pulled from the array into the row buffer (incurring a

row access strobe penalty). Once in the row buffer adjacent data may be accessed with just a column

access strobe penalty, which is smaller than the row activation cost. This, spatial locality in the buffer
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Figure 3.3 DRAM memory controller

can be exploited (while temporal locality is typically taken core of by the upper-level caches). When

a row buffer is replaced, an additional precharge penalty is incurred to update the row in the array

with any modified data from the row buffer due to memory writes. DRAM cells are also periodically

refreshed by the controller so that they do not lose their data, which also flushes the row buffer.

Figure 3.4 Logical Structure of DRAM Controller

When multiple tasks access (write to or read from) the same bank in multi-threaded programs,

they contend for the row buffer. Data loaded by one task may be evicted by other tasks, i.e., the

latency of memory accesses will increase if multiple threads access the same bank concurrently.

Thus, the runtime of two tasks may differ even if their workloads are partitioned equally. In addition,

any barrier in a parallel section may cause tasks to wait for the last arriving one, thereby incurring

idle time, which becomes more common in NUMA systems due to memory access divergence.

The memory controller governs the activities across banks/channels of local memory arrays. An

initial controller queue de-multiplexes requests to the respective parallel sub-components and then

33



issues DRAM commands for row/column accesses. Its operations are subject to timing constraints

of banks and buses, which are typically configured at boot time and limited by manufacturing

parameters (see Fig. 3.4). Multi-threaded programs can profit from avoiding resource contention by

utilizing memory of the local controller, yet of different banks per thread. Access to the same bank

increase latency due to contention, access to remote controllers increase costs due to propagation

latencies over the on-chip (or cross-socket) interconnects and potential contention on interconnects

and remote controllers/banks. Hence, data placement play a decisive role in ensuring that threads

issue local accesses with lower contention and latency penalties instead of remote accesses of higher

contention and latencies.

Yet, shared data memory accesses of parallel programs can generally not be resolved with remote

accesses for at least some of the threads and the associated contention and latencies. Fortunately,

shared memory regions tend to be small in many data- and task-parallel programs. The focus of this

work is on the larger portion of data, which is not shared among threads. The objective of the work

is to avoid remote accesses by ensuring that memory allocated by a thread is assigned to the local

controller in a disjoint bank from other threads and also disjoint LLC cache lines from other threads.

3.3 TintMalloc Design

TintMalloc is a novel memory allocation policy of the OS kernel. It has been implemented as part

of the Linux kernel by modifying the mmap() system call code and task control block (TCB) data.

TintMalloc colors the physical memory space by selecting memory frames for page allocation

requests that comprehensively considers memory controller, bank and LLC locality. No hardware

modifications are required, and the general techniques apply to any other architecture with virtual

memory support and any other OS with a system call for memory allocation. TintMalloc responds

to dynamical allocation requests of threads/tasks by selecting a physical memory frame local to

the requesting core. Our assumption is that task-to-core allocations remain static, e.g., by explicitly

pinning threads to cores once they have been created. The selection of the frame also ensures

that the corresponding memory bank and LLC line are only used by the current thread to avoid

conflicts/contention.

3.3.1 Frame Color Selection

Memory requests under the TintMalloc policy cause a lookup of the color(s) assigned to the current

thread for this policy. A physical memory frame of 4KB size is subsequently chosen in accordance to

the translation of addresses by the memory controller into node, channel, rank, bank, columns and

rows, in this order.
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The bank color, b c , of a physical page is determined as

b c = ((no d e ∗N N ∗N C + c ha nne l ) ∗N R + r a nk ) ∗N B + b a nk (1)

where node (controller), channel, rank, and bank are specific to the physical frame; NN is number

of nodes (controllers) available within a system; NC is number of channels within a controller; NR is

number of ranks within a channel; and NB is number of banks within a rank.

This bit-level information is not released by some vendors (e.g., Intel, not even under non-

disclosure agreements, even though prior work has reverse engineering/obtained data for specific

Intel processors) citing that mappings could change and optimizations should not rely on such data.

Other manufacturers, e.g., AMD and ARM, disclose this information in their architecture manuals,

together with PCI-specific information in platform and BIOS configuration parameters. TintMalloc

is highly portable, i.e., and can be easily be adapted to other platforms so long as hardware bit-level

physical addressing information is available.

TintMalloc utilizes information on bit-level physical memory mapping. Its design is portable to

any platform with known mappings. Our implementation is specific to the AMD Opteron platform,

specifically the Opteron 6128 with bit mapping indicated in Fig. 3.5, where we combine fixed

mappings with PCI register information obtained at runtime to determine address translation

bits for node/controller (DRAM base/limit and limit system address registers indicate bits 16-20),

channel (controller select low register), rank and bank (CS base address registers indicating bit 7

for the rank and bits 15, 16, and 18 for the bank) as well as row/column (bank address mapping

register) — see AMD’s architectural manuals — to select frame colors. The LLC color (set index) is

given by bits 12-16.

Figure 3.5 Cache Color Address Mapping bits (AMD Opteron)

TintMalloc is activated in the late phase of booting Linux at which time the bit-level information

above is derived from PCI registers. For our Opteron 6128 platform, four memory controllers detected

with two channels each, two ranks per channel and eight banks per rank. This amounts to 27 = 128

banks altogether across all controllers on our platform suitable for coloring. The LLC also has 25 = 32

colors (over 5 bits).
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3.3.2 Coloring Policy Activation

TintMalloc groups frames of pages with valid page table mappings into separate lists for each of

these colors to later serve allocation requests after the boot-up phase via the mmap() system call.

We modified mmap() so that a zero-sized request is interpreted as the specification of color(s) by

the calling thread for subsequent non-zero sized allocations. More specifically, a set bit 30 of the

protection argument indicates that the first argument should be interpreted as the color and a

mode, where the most significant bits specify the mode to indicate if the color should be set or

cleared for memory (controller/bank) or LLC (see Fig. 3.6). A set color is recorded in the TCB of the

corresponding calling thread/process (handled uniformly as a task in Linux). A thread may even

call mmap() multiple times to establish a set of “owned” colors.

Figure 3.6 mmap() color parameter bits identifiers

For example, the following mmap() call adds the LLC color “c” to the LLC colors of the current

thread:

int length = 0;

char * A = (char*) mmap(c | SET_LLC_COLOR, length, prot | COLOR_ALLOC, flag, fd, offset);

An analogous call with SET_MEM_COLOR would establish controller/bank colors so that any

subsequent heap allocation (malloc/calloc call) results in colored page assignments.

TintMalloc divides the entire memory space and LLC into multiple partitions. Each task is

guaranteed to only access its local memory node by receiving private (colored) memory and LLC

spaces. This ensures controller locality, bank arbitration and cache isolation per task. Once a task

activates coloring via mmap(), the OS kernel configures the task’s memory policy to adhere to

these color constraints. A single mmap() call during application initialization suffices to force any

subsequent memory requests of this task to allocate only pages (frames) within the specified color

set. If there is no memory left of a given color, mmap() will return an error code indicting that no

more pages of this color are available.
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Inside the OS kernel, zero-sized mmap() calls result in memory controller/bank and LLC colors

to be saved in the task_struct, i.e., the TCB of Linux. In addition, two coloring flags using_bank
and using_llc, are set in task_struct by kernel. Any subsequent dynamic allocation calls, e.g.

malloc(), set aside pages within the coloring constraints by looking up the color set of a task in

the TCB. Thus, malloc() calls remain unchanged, i.e., unlike prior work, they do not require source

code changes to provide an additional color parameter. Again, just 1-2 lines of code suffice to

subsequently color a task’s entire heap space for controller-/bank- and LLC-aware locality/isolation

so as to reduce memory access conflicts and reference latencies.

3.3.3 Heap Policies: Linux Buddy Allocations vs. TintMalloc

Linux currently uses a so-called “buddy allocator” by default, where memory is partitioned into

“buddies” of exponentially increasing sizes (by powers of two, where the exponent is referred to as

“order”). An allocation request is resolved by returning the matching order (212+o r d e r bytes) or next

larger memory region of the respective order-indexed buddy, where any remaining space is added

to lower order free lists.

TintMalloc is currently restricted to serve only order-zero requests, i.e., 212+0 = 4KB, which

suffices to handle all ordinary user heap requests in our test programs. Common applications

allocate only small heap spaces (< 4KB) at a time, and none that we encountered use so-called huge

pages (2MB ) allocated from specially mounted memory devices.

TintMalloc maintains a free list and 128*32 color lists simultaneously inside the Linux kernel.

Those color lists are defined as a matrix of color_list[MEM_ID][cache_ID]. At boot-up, these

color lists are empty and all free pages are in the non-colored free list of the buddy allocator. A page

fault by a program causes the kernel to invoke the alloc_pages routines to find a free page. In

the function alloc_pages, we disable the “pcp list” and use the function _rmqueue_smallest to

serve page allocation requests. The colored page selection process is shown in Algorithm 3 and

Algorithm 4.

In the algorithm, the kernel reads current task’s coloring flag, using_bank and using_llc.

using_bank or using_llc means the kernel should return a free page according to the memory

or LLC coloring constraints. If both are set, the returned page has to match both the memory and

the LLC requirements. Orders greater than zero default to the standard buddy allocator while order

zero requests traverse the corresponding colored free list to find an available page. E.g., when a task

requests a page for MEM_ID 0 and cache_ID 0, the kernel traverses the color_list[0][0]. If

this color list is not empty, the kernel removes one such page and returns it to the user. Otherwise,

the kernel traverses the standard free_list to find an available free page of such a color and calls

the function create_color_list (see Algorithm 4). The call to create_color_list causes

a buddy (of size = 212+o r d e r ) to be separated into 2o r d e r single 4KB pages, which will be added to
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Algorithm 3 Colored Page Selection /* find page of certain size and color */
1: INPUT: order
2: OUTPUT: page
3: if order==0 and (current->using_bank or current->using_llc) then
4: for i = order ... MAX_ORDER do
5: if current->using_bank & current->using_llc then
6: Get a memory list ID (MEM_ID) and last level cache list ID (LLC_ID) that match requirements
7: set found_flag
8: else if current->using_bank then
9: Get a memory list ID (MEM_ID) that matches requirements

10: set found_flag
11: else if current->using_llc then
12: Get a cache list ID (LLC_ID) that matches requirements
13: set found_flag
14: end if
15: if found_flag then
16: return page from color_list[MEM_ID][LLC_ID]
17: else
18: if free_list[i] is empty then
19: continue //try next order
20: else
21: /* move page from buddy free_list to colored free_lists for next order */
22: create_color_list (i,head page of the buddy set)
23: end if
24: end if
25: end for
26: return NULL /* no more page of this color */
27: else
28: return page from normal_buddy_alloc
29: end if

the respective color lists. If available, the kernel will return a free page from the matching color_-

list. Conversely, calls to free heap space by the application cause the kernel to add pages to the

corresponding colored free lists.

In this manner, memory space can be configured for a specific controller, bank and LLC per

application thread/process. Given our design, the overhead of colored allocations is higher for the

first heap requests as the kernel traverses the general buddy free list. This higher cost typically

impacts only the initialization phase of an application. Once the colored free list has been popu-

lated with pages, the overhead becomes constant for a stable working set size, even for dynamic

allocations/deallocation assuming the are balanced in size (instead of always growing the utilized

heap space).

38



Algorithm 4 create_color_list /*move page from buddy free_list to colored free_lists*/
1: INPUT: order, page
2: for i = 0 ... 2o r d e r−1 do
3: page_bank = page[i].bank_color
4: page_llc = page[i].llc_color
5: append page to color_list[page_bank][page_llc]
6: end for

3.4 Experimental Platform

We perform experiments on a dual socket machine with two AMD Opteron 6128 processors. Each

socket has 8 cores per for a total of 16 cores. Each core has private L1 caches for instructions and data

(128KB each), a private unified L2 cache (512KB) and an L3 cache (12MB) shared among all 16 cores

of both sockets. All caches have a line size of 128 bytes. Each socket has two memory controllers

(so-called memory nodes) for a total of 8 controllers at machine level. Cores are connected via

HyperTransport with a 1.8GHz link speed. Cores within a memory node are 1 hop apart, cores

across nodes in the same socket are 2 hops apart, and cores of different sockets are 3 hops apart.

The processing frequency of cores can be varied from 800MHz to 2GHz, but the CPU governor

policy immediately elevates the frequency to 2GHz when a CPU-bound application is initiated. As

mentioned before, there are 128 banks (colors) over 4 memory controllers and 32 LLC colors at the

disposal of TintMalloc.

3.5 Experimental Result

We performed a set of experiments with synthetic benchmarks and standard benchmarks from the

SPEC and Parsec suites to compare TintMalloc to the default buddy allocator of Linux and prior

coloring approaches. All experiments were repeated ten times, and their averages are reported in

the following.

3.5.1 Synthetic Benchmark Results

We designed a synthetic benchmark that allocates a large memory space. This space is subsequently

accessed in a pattern with alternating strides such that each cache line is only accessed once. This

ensures that references punch through the private L1/L2 and even the shared L3 caches and have

to be resolved in DRAM. The access pattern starts with a write in the middle of our allocation, M,

followed by a write to M+1C (where C=128 bytes is the cache line size), M-1C, M+2C, M-2C, etc.

This access pattern defeats hardware pre-fetching and results in page faults for a large address space.

The pattern is exercised for different numbers of threads, each of which obtains different heap space
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Figure 3.7 Access to remote
controller (node)

Figure 3.8 Access conflict in same
bank Figure 3.9 Access contention in

the LLC

via buddy allocation and TintMalloc (with disjoint colors across threads for the latter).

In essence, this benchmark assesses the write latency of DRAM as it inflicts first cold and later

capacity misses in L1/L2 caches for LLC coloring, or all caches for controller+bank coloring. Fig. 3.7

illustrates how one task may access a remote memory node and suffer the remote latency penalty

under the buddy allocator. In addition, multiple tasks may share the same memory bank under

buddy allocation. When two tasks access this bank at same time (Fig. 3.8), the second one will

populate the row buffer and evict data from first one. This will inflate the memory access time of

first task. The same problem also occurs in LLC accesses (Fig. 3.9). Here, the task’s L3 cache miss

rate will increase since other tasks evict its data from LLC.

Figure 3.10 micro_result

Fig. 3.10 depicts the execution time of the synthetic benchmark on the y-axis for different

coloring policies on x-axis. The shortest execution time is obtained with MEM/LLC, which indicates

that both memory and LLC coloring are activated under TintMalloc. With MEM/LLC coloring, each
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task obtains isolated resources as LLC and main memory are colored in concert. This reduces LLC

access interference and bank level conflicts. In addition, the remote memory controller access

penalty is never paid as accesses remain local. We observe that single memory coloring (MEM),

single LLC coloring and MEM/LLC coloring all reduce the execution time. For MEM/LLC coloring,

the execution time can be reduced by up to 17%.

3.5.2 Standard Benchmark Results

Next, we investigate TintMalloc’s effectiveness for parallel programs using OpenMP of the PARSEC

and SPEC benchmark suites.Bodytrack, freqmine andblackscholes in the Parsec benchmark

suite and lbm, art and equake in the SPEC suite are the only OpenMP versions in those suites. We

modified the OpenMP version of those benchmarks to include colored allocation in its initialization

code (1 mmap() call per color) and timers at barriers to measure idle time.

The OpenMP programs contain data-intensive parallel tasks with implicit barriers at the end

of each parallel section. Due to runtime differences, threads executing faster have to wait for the

slower ones at a barrier. We measured the benchmark’s runtime, total idle time, runtime per thread,

and idle time per thread. The idle time indicates a thread’s wait time at barriers (see Algorithm
5).

Algorithm 5 Measure idle time

1: nthreads = omp_get_num_threads()

2: tid = omp_get_thread_num()

3: Get the time "start"

4: pragma omp parallel /*begin pragma parallel section*/
5: pragma omp for nowait

6: For Loop /*computational section*/
7: get the time "end[tid]"
8: end of pragma parallel section /*implicit barrier*/
9: Find maximum end time "max" from end[0] to end[nthreads]

10: Calculate idle time for each thread, idle[tid]=max-end[tid]

To show the impact of memory controllers, we vary the numbers of threads, their memory nodes,

and the level of parallelism. There are a total of five configurations: 16_threads_4_nodes, 8_-
threads_4_nodes, 8_threads_2_nodes, 4_threads_4_nodesand4_threads_1_nodes. For

16_threads_4_nodes, we utilize all 16 cores and 4 memory controllers. 16 threads are pinned to

different cores and share 4 controllers (nodes). For 8_threads_4_nodes, 8 threads are pinned to 8

different cores and each pair of them accesses a common controller (their local memory controller)
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disjoint from other pairs. For example, 8 threads are pinned to cores 0,1,4,5,8,9,12,13. In this case,

tasks pinned to core 0 and core 1 access local controller 0. For 8_threads_2_nodes, 8 threads

are pinned to 8 cores from 2 nodes, e.g., cores 0-7. For 4_threads_4_nodes, we select one core

from each node and pin 4 threads to them, such as cores 0,4,8 and 12. For 4_threads_1_nodes, 4

threads are pinned to 4 cores on the same node, e.g., cores 0-3.

For each configuration, we compared multiple coloring methods to standard buddy allocation

and prior work. Our coloring methods are referred to as:

- LLC coloring: each thread has its private LLC colors but they share memory banks (uncolored).

- Memory coloring (MEM): each thread has its private memory bank colors but they share the

LLC (uncolored).

- MEM+LLC coloring: each thread has its private LLC colors and private memory banks colors.

There is no sharing.

- MEM+LLC(part): each thread has its private memory bank colors, but a group of threads shares

private LLC colors.

- LLC+MEM(part): each thread has its private LLC colors, but a group of threads shares private

memory colors.

We compare TintMalloc to the standard buddy allocator of Linux (no coloring) and bank-level

partitioning (BPM) [Liu12b]. BPM partitions memory banks and the LLC but it does not consider

the memory controller in dynamic allocations.

MEM+LLC(part) and LLC+MEM(part) are different than MEM+LLC coloring. For example, there

are a total of 32 LLC colors. For MEM+LLC(part) coloring with 16 threads, we create 4 thread groups.

Each group has its private 8 LLC colors. Those 8 LLC colors are shared by the 4 threads in this group.

For 8 threads in a parallel section, there are 2 threads per group sharing 8 LLC colors. In contrast, for

MEM+LLC coloring, if 16 threads are in a parallel section, each thread has two private LLC colors. For

8 threads, each thread has four private LLC colors.

We compared MEM+LLC coloring, standard buddy allocation, previous work (BPM) and the best

result from MEM, LLC, MEM+LLC(part) and LLC+MEM(part). The results are shown in Figures

3.11, 3.12 , 3.13 and 3.14.

Fig. 3.11 shows normalized benchmark runtimes for these approaches relative to the standard

buddy allocator. We observe that MEM+LLC coloring results in shorter runtimes than buddy and

previous work (BPM) for all six benchmarks. For example, for 16 threads and 4 memory nodes,

our approach reduces the average runtime by up to 29.84% over standard buddy allocation (for

SPEC/lbm). We observe that some benchmarks’ performance enhancements exceed than of our

synthetic benchmark. This is caused by additional spatial locality resulting in cache hits for these

codes. The synthetic benchmark, in contrast, cannot benefit from spatial locality at all since only

one access occurs per cache line. The error bar shows the maximum and minimum runtime of each

benchmark over 10 repeated experiments. We also observe that our approach reduces the deviation
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Figure 3.11 Benchmark running time

of runtime, i.e., it reduces the variance of execution time, which helps increase computational

balance in parallel sections at barriers. In addition, the previous work (BPM) always results in longer

runtimes than our coloring approach and the standard buddy allocator. This is because BPM only

partitions memory banks and LLC but does not indicate a memory controller. In this case, tasks

may access remote memory nodes and have to pay the remote access penalty. Of the different

coloring configurations, 16_threads_4_nodes experiences the largest performance boost over

the 6 benchmarks. This is because more tasks increase the probability to access a remote memory,

which results in more memory bank and LLC contention. Fig. 3.12 also indicates that a benchmark’s

idle time can be reduced by our coloring approach. For 16_threads_4_nodes, our MEM+LLC

coloring results in up to 74.3% lower idle time compared to standard buddy allocation due to

more balanced computation (less runtime variation). In fact, we observe a correlation between idle

reduction and benchmark runtimes across experiments.

Figures 3.13 and 3.14 indicate the runtime and idle time, respectively, spent by each thread in

parallel sections. We observe that difference in runtime between the fastest and slowest thread

under standard buddy allocation is larger than under our TintMalloc. For example, for SPEC/lbm

benchmark in the 16_threads_4_nodes configuration, the difference in maximum thread run-

ning time and minimum thread running time for buddy allocator is 4.38 times larger than that of

the MEM+LLC coloring approach. In addition, the maximum thread runtime under MEM+LLC

coloring is 30.77% smaller than for standard buddy. The maximum thread idle time of the lbm

benchmark is also reduced by 75% under MEM+LLC coloring compared to buddy allocation. The

results show that TintMalloc effectively results in more balanced parallel program execution and

enhance performance at the same time.
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Figure 3.12 Benchmark idle time

Considering the four metrics comprehensively, we observe that the benchmark SPEC/lbm

exhibits the largest performance enhancement under TintMalloc compared to buddy allocation.

In addition, the Parsec/freqmine, Parsec/bodytrack and SPEC/art benchmarks are also sped up

significantly. For those results, the averages and difference between maximum and minimum of

each metric (benchmark runtime, total idle time, thread’s runtime and idle time) are reduced by

TintMalloc. This is because (1) these benchmarks allocate a large memory space on the heap, (2)

they are memory intensive, i.e., their data space is accessed (data is reused) multiple times, and (3)

the memory access patterns (and the data partition across threads) matches the per-thread first

touch access allocation policy of the OS during initialization. In such cases, TintMalloc gets the

most benefits in performance and load balance.

Furthermore, these benchmarks consist of alternating parallel and serial sections. The idle time

reduction only affects performance enhancements for parallel sections while benchmark runtime

reductions represent performance enhancements of the entire benchmark. Results indicate that

the idle time reduction over all threads is larger than the runtime reduction due to more balanced

barriers for most benchmarks under TintMalloc. For SPEC/equake, the benchmark’s runtime and

total idle time are also reduced by TintMalloc. However, the improvement in idle time is less than

that of overall benchmark runtime. This is because the benchmark runtime is most affected by the

proportionate reduction in runtime of the slowest thread, and the fastest thread’s idle time will

be reduced the most. After normalization, the ratio of runtime reduction may be larger than the

benchmark’s total idle time reduction (given that the idle time reduction of other threads is smaller

than that of the fastest one).

In addition, we obverse that Parsec/blackscholes has the least performance improvement of the

six benchmarks. Of all TintMalloc coloring solutions, MEM+LLC(part) is the best one and it reduces

the runtime by 3.6% compared to buddy allocation for 16 threads on 4 nodes. This happens because
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Figure 3.13 Threads running time

blackscholes reads a large mount of input data and is less memory intensive. Furthermore, the

large fraction of the master thread’s runtime prevents further performance enhancements since the

master thread suffers from more restrictive memory allocation due to coloring. The larger the serial

portion on the master thread is, the smaller will be the benchmark’s performance enhancement.

The result also indicates that the MEM+LLC coloring approach is not always the best: For the

Parsec/freqmine benchmark in the 16_threads_4_nodes configuration, LLC+MEM(part) color-

ing outperforms MEM+LLC coloring in this case. This is because MEM+LLC coloring partitions

the entire memory and LLC space, which restricts the overall memory space. This restriction in-

creases the number of LLC cache conflict misses. Hence, the LLC+MEM(part) coloring method is

an interesting trade-off for memory coloring without restrictions. Sometimes, “partly coloring”, like

LLC+MEM(part) or MEM+LLC(part), may result in better performance than “fully coloring”, such

as MEM+LLC.

3.6 Related Work

Blagodurov et al. [Bla10] and McCurdy et al. [MV10] describe performance problems that NUMA can

present for multithreaded applications and investigate their causes. Marathe et al. [Mar10] propose

a profiler to optimize data placement of multithreaded programs via hardware-generated memory

traces. Lachaize et al. [Lac12] use profiling to help programmers understand why and which memory

objects are accessed remotely and allow them to choose efficient application-level optimizations

for NUMA systems. Majo et al. [MG13] study which factors limit the performance of multithreaded
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Figure 3.14 Threads idle time

programs on modern NUMA multicores and describe source-level techniques to address these

problems. Yun et al. [Yun15] propose a new parallelism-aware memory interference delay analysis

for parallel requests. TintMalloc address these problems by reducing memory access divergence on

NUMA systems.

Several scheduling algorithms [Kim10b; Kim10a; Mur11] have been proposed to reduce memory

contention. ATLAS [Kim10a] proposes a thread scheduling algorithm that optimizes the service

order of threads periodically based on the amount of service they have attained from the memory

controllers so far to improve system throughput. Kim et al. [Kim10a] dynamically divide threads

with similar memory access behavior into two separate clusters (memory-non-intensive or memory-

intensive) and employ different memory request scheduling policies in each cluster. Muralidhara

et al. propose channel partitioning, which maps the data of applications that are likely to severely

interfere with each other to different memory channels [Mur11]. In [Sud10], the frequently accessed

data from different rows are dynamically migrated into the row buffer in memory, which can increase

the memory row buffer usage and system performance. In contrast to TintMalloc, memory access

contention cannot be removed entirely for all cases with their scheduling algorithms.

Several groups proposed scheduling or page placement to solve the data sharing problem. Li et

al. [Li93] present a loop scheduling algorithm to exploit data locality and dynamically balance the

load. Majo et al. [MG12] use program-level transformations to eliminate remote memory accesses.

Ogasawara et al. [Oga09] propose an online method for identifying the preferred NUMA memory

nodes of objects during garbage collection. Broquedis et al. [Bro10] propose a hierarchical approach

named FORESTGOMP for the execution of OpenMP threads on multicore platforms. To maintain a

good balance of threads, FORESTGOMP dynamically generates structured trees out of OpenMP pro-
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grams and collects relationship information about threads and data. However, all these approaches

introduce overhead and cannot completely eliminate data sharing.

Techniques to increase cache data locality that reduce shared memory contention are pro-

posed in [MG11; CJ06; Per11; Suh04]. Majo et al. [MG11] describes two scheduling algorithms,

maximum-local optimizes for maximum data locality and N-MASS reduces data locality to avoid

the performance degradation caused by cache contention. Cho et al. [CJ06], Perarnau et al. [Per11]

and Suh et al. [Suh04] employ software page coloring to partition shared caches for concurrently

running threads, which eliminates the contention between threads and hence reduces conflicts

at the cache level. DRAM partitioning is another scheme to reduce shared memory contention for

parallel execution on multicore platform. The basic idea of using DRAM organization information in

allocating memory at the OS level is explored in recent work [Yun14; Awa10]. Awasthi et al. [Awa10]

examine the benefits of data placement across multiple memory controllers in NUMA systems. They

introduce an adaptive first-touch page placement policy and dynamic page-migration mechanisms

to reduce DRAM access delays in multiple memory controllers system but do not consider bank

effects, nor do they reduce cache conflicts. Mi et al. [Mi10] develop a hardware/software co-design

for bank coloring using address bit selection (XOR) but do not exploit virtual to physical address

mapping purely in software as TintMalloc does. Palloc [Yun14] is a DRAM bank-aware memory

allocator that provides performance isolation on multicore platforms by reducing conflicts between

interleaved banks. Liu et al. [Liu12b] modify the OS memory management subsystem to adopt

a page-coloring based LLC and bank level partition mechanism (BPM), which allocates specific

LLC and DRAM banks to specific cores (threads). In contrast, our TintMalloc approach not only

partitions memory banks and the LLC but also consider the locality of memory controllers, which is

unprecedented in this combination.

3.7 Conclusion

This work contributes TintMalloc, a controller-aware memory and LLC coloring allocator for parallel

systems. TintMalloc comprehensively considers memory node, bank and LLC locality to color the

main memory and cache space without requiring hardware modifications. Only one additional

line of an mmap() call in the initialization code suffices to trigger our controller-aware coloring

heap allocation. This work describes the design and implementation of TintMalloc as an extension

to the Linux kernel. Coloring address bits from PCI registers are utilized to determine locality and

placement of a frame corresponding to a physical address, which makes the approach portable

across x86 architectures with documented bit mappings (currently all AMD processors). With our

approach, accesses to a remote memory node can be avoided for all tasks while bank and LLC access

conflicts are reduced.

We assess TintMalloc in a number of experiments on a multicore platform with microbench-
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marks as well as SPEC and Parsec OpenMP codes. Experimental results indicate that TintMalloc

makes parallel tasks more balanced and enhances parallel system performance by reducing overall

runtime and idle time at barriers.
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CHAPTER

4

HIDING DRAM REFRESH OVERHEAD IN

REAL-TIME CYCLIC EXECUTIVES

4.1 Introduction

DRAM is the de-facto standard technology for main memory of contemporary computers. Data is

stored in DRAM cells that slowly leak their charge, i.e., they need to be refreshed to avoid loss of

data. The DRAM controller periodically issues refresh commands, which are sent to DRAM devices

via the command bus. This mode is called auto-refresh and recharges all memory cells within the

“retention time”, typically 64ms for commodity DRAMs [JED10]. In this mode, a refresh command

is issued per interval, t R E F I , for a duration/completion by t R F C . During a refresh, a memory

space (i.e., DRAM rank) becomes unavailable to memory requests (read or write) so that any such

memory reference blocks until the refresh completes. Furthermore, a refresh closes all bank row

buffers of this rank, even though spatial and temporal locality make future row buffer hits likely.

As a result, memory accesses suffer from unpredictable bank row buffer misses around refreshes.

These factors contribute not only to an increase in memory latency but also to significant latency

fluctuations. In addition, as the density and size of DRAM grow, more DRAM cells are required per

DRAM chip, which must be refreshed within the same DRAM retention time, i.e., more rows need to

be refreshed in one refresh cycle. This increases the length of a refresh operation and thus reduces

memory throughput [Liu12a; Muk13; Nai13; Stu10].
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Although the DRAM refresh impact can be reduced by proposed hardware solutions [Zhe08;

Cha14; KP00; Rei], such solutions take a long time before they become widely adopted. Hence, other

work seeks to assess the viability of software solutions. RAIDR [Liu12a] lowers refresh overhead by

exploiting inter-cell variation in retention time. RAPID [Ven06] sorts pages by retention time and allo-

cates long retention pages first. Smart Refresh [GL07] reduces unnecessary refreshes by maintaining

a refresh-needed counter. Fine Granularity Refresh (FGR), proposed by JEDEC’s DDR4 specification,

reduces refresh delays by trading off refresh latency against frequency [Sta12a]. These approaches

either heavily rely on specific data access patterns of workloads, or they have high implementation

overhead. None eliminate refresh overhead entirely. The refresh problem is even more significant

for real-time systems because predictable memory access latencies are imperative to assess task

schedulability [WM01]. Today’s variable access latencies due to refreshes are counter-productive to

tight bounds on a task’s WCET, a problem that is only increasing with higher DRAM density/sizes.

Due to the asynchronous nature of refreshes relative to task schedules and preemptions, none of

the current analysis techniques tightly bound the effect of DRAM refreshes on WCET. Atanassov and

Puschner [AP01] discuss the impact of DRAM refresh on the execution time of real-time tasks and

calculate the maximum possible increase of execution time due to refreshes. However, this bound is

too pessimistic (loose): If the WCET were augmented by the maximum possible refresh delay, many

schedules would become theoretically infeasible, even though executions may make deadlines in

practice. Also, as refresh overhead increases approximately linearly with growing DRAM density, it

quickly becomes untenable to augment the WCET by ever increasing refresh delays for future high

density DRAM. Bhat et al. make refreshes predictable and reduce the number of preemption due

to refreshes by triggering them in software instead of hardware auto-refresh [BM10]. While they

consider the cost of refresh operations, it cannot eliminated them.

This work contributes “Colored Refresh” to hide DRAM refresh overhead entirely. Colored Refresh

makes real-time systems more predictable, particularly for large DRAM sizes. It exploits colored

memory allocation to partition the entire memory space such that each real-time task receives

different ranks. More significantly, refreshes and competing memory accesses can be strategically

co-scheduled so that memory reads/writes do not suffer from refresh interference. As a result, access

latencies are reduced and memory throughput increases, which tends to result in schedulability of

more real-time tasks. What is more, the overhead of Colored Refresh is small and remains stable

irrespective of DRAM density/size. In contrast, auto-refreshed overhead keeps growing as DRAM

density increases.

Contributions: (1) DRAM refresh of modern memory systems is analyzed in detail. The impact of

refresh delay under varying DRAM densities/sizes is highlighted for real-time systems with stringent

timing constraints. We observe that it is hard to predict an application’s refresh overhead with

auto-refresh. Furthermore, the losses in DRAM throughput and performance caused by refreshes

quickly become unacceptable for real-time systems with high DRAM density.
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(2) Colored Refresh is contributed, which refreshes DRAM based on memory space coloring. Refresh

overhead is entirely hidden since a memory rank is either being accessed or being refreshed, but

not both. Thus, regular memory accesses never suffer from refresh interference, i.e., the refreshes

are completely hidden in a safe manner.

(3) Experiments with Malardalen benchmarks confirm that both refresh delays are hidden and DRAM

access latencies are reduced. Consequently, application execution time becomes more predictable

and stable, even when DRAM density increases.

(4) An experimental comparison with DDR4’s FGR shows that Colored Refresh exhibits better

performance and higher task predictability.

(5) Our mechanism is completely implemented in software, it does not require any hardware change.

4.2 Background

4.2.1 DRAM Architecture

DRAM requests from the CPU are relayed by the memory controller, which acts as a mediator

between the last-level cache (LLC) and DRAM devices. As a DRAM controller receives memory trans-

actions from its memory controller, it translates read/write memory requests into corresponding

DRAM commands and schedules them while satisfying the timing constraints of DRAM banks and

buses.

A DRAM bank array is organized into rows and columns of individual data cells (see Fig. 5.2).

When a memory access request is resolved, the corresponding row that contains the data is selected

and pulled from the bank array into the row buffer incurring a Row Precharge (close the old row in

buffer) delay, t R P , and a Row Access Strobe (activate the new row) delay, t R AS . This is called a row

buffer miss. Once loaded into the row buffer and opened, accesses of adjacent data in a row (spatial

locality) incur just a Column Access Strobe penalty, t C AS (row buffer hit) of much lower cost than

t R P + t R AS .

4.2.2 DRAM Refresh

DRAM cells need to be recharged periodically to counter electric leakage and maintain data validity.

The reference refresh interval of commodity DRAMs is 64ms under 85◦C (185◦F), the so-called

retention time (tRET) of leaky cells, sometimes also called refresh window (tREFW) [JED10; Sta12a;

Kim11; Mor05]. To prevent data loss, all rows in a DRAM chip need to be refreshed within tRET (or

tREFW). In order to reduce the refresh overhead, memory in each DRAM chip is divided into ranks,

which are refreshed in parallel [Bha16]. The DRAM controller can either schedule an automatic

refresh to all ranks simultaneously (simultaneous refresh), or schedule automatic refresh commands

to each rank independently (independent refresh). Whether simultaneous or independent, each

memory refresh cycle affects a successive area of multiple cells in consecutive cycles. This area is
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Figure 4.1 DRAM Bank Architecture

called a “refresh bin” and contains multiple rows. The DDR3 specification [JED10] generally requires

a DRAM controller to send 8192 automatic refresh commands to refresh the entire memory (one

command per bin at a time). Here, the gap between two refresh commands, the so-called refresh

interval (tREFI), is 7.8us (tREFW/8192). The so-called refresh completion time (tRFC) is the refresh

duration per bin. Auto-refresh is triggered in the background by the DRAM controller while the CPU

executes instructions.

Depending on the memory technology generation, the refresh granularity may vary. Nonetheless,

memory ranks are unavailable during a refresh cycle (tRFC), i.e., memory accesses (read and write

operations) to this region will stall the CPU during a refresh cycle. The resulting refresh overhead

is tRFC/tREFI. As DRAM chip densities and sizes grow, each refresh bin contains more rows and

the overall size becomes larger. But the more rows in a refresh bin, the longer the refresh delay and

rank blocking times become. Refresh latency (tRFC) is delimited by power constraints. Table 5.1

shows that the size of a refresh bin expands linearly with memory density, i.e., t R F C increases

rapidly as DRAM density grows and exceeds 1us at 32 Gb DRAM, even with conservative estimates

of growth in density for future DRAM technology [Liu12a]. Ranks can be refreshed in parallel under

auto-refresh, but this increases the amount of unavailable memory increases during a refresh. A

fully parallel refresh blocks the entire memory space for tRFC. Such blocking not only decreases

system performance, but may inflict deadline misses unless it is considered in a blocking term for

schedulability analysis.

As a side effect of DRAM refresh, a row buffer is first closed, i.e., its data is written back to the data

array and any memory access is preempted. After the refresh completes, the original data is loaded

back into the row buffer, and the deferred memory access can continue. In another words, the row

which contains data needs to be closed and re-opened due to interference between refresh and an

in-flight memory access. To close and re-open rows incurs an additional overhead of t R P + t R AS
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Table 4.1 t R F C per DRAM densities (data from [JED10; Sta12a; Liu12a])
Chip Density total rows number of rows per bin tRFC

1Gb 128K 16 110n s
2Gb 256K 32 160n s
4Gb 512K 64 260n s
8Gb 1M 128 350n s

16Gb 2M 256 550n s
32Gb 4M 512 ≥ 1u s
64Gb 8M 1K ≥ 2u s

since the refresh purges all buffers and often results in additional row buffer misses, i.e., decreased

memory throughput. Liu et al. [Liu12a] observe that the loss in DRAM throughput due to refreshes

becomes untenable for large memories, reaching nearly 50% for 64 Gb DRAM.

By considering both the cost of a refresh operation itself and the extra row close/re-open delay,

DRAM refresh not only decreases memory performance, but also causes the response time of

memory accesses to fluctuate. The asynchrony of refreshes combined with task preemption makes

it hard to accurately predict and bound DRAM refresh delay.

4.2.3 Refresh Mode and Scheduling Strategy

For commodity DDRx (e.g., DDR3 and DDR4), refresh operations are issued at rank granularity. A

single refresh command for a given rank precharges all banks under this rank, which is called “All-

Bank” refresh [Bha16]. In contrast, recent LPDDRx DRAM [Sta12b] supports an enhanced “Per-Bank”

mode to refresh cells at bank level while other banks in the same rank may be serviced. “Per-Bank”

consumes more refresh time overall than “All-Bank” but achieves higher bank parallelism [Bha15].

For each rank, a refresh counter maintains the address of the row to be refreshed and applies charges

to the chip’s row address lines. A timer then increments the refresh counter to step through the rows.

Depending on when a refresh command to a bin (successive rows) is sent, two scheduling strategies

exist, namely distributed and burst refresh.

Distributed Refresh: A single refresh operation is performed periodically (see upper Fig. 5.3).

Once all rows are refreshed, the refresh cycle is repeated by starting from the first row. With dis-

tributed refresh, the DRAM response time for regular memory accesses varies over a wide time range

due to the spread of refreshes, and due to closing the row buffer time and again.

Burst refresh: A series of refresh cycles are performed, one after another (t R E F I = 0), until

all rows have been refreshed (see lower Fig. 5.3). After that, the memory is available for memory

accesses until the next refresh. A burst refresh results in long periods during which the memory

is unavailable, which also affects task execution and results in longer memory latencies, yet such

bursts occur less frequently.
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Figure 4.2 DRAM Refresh Strategy

4.3 Design

The core problem with the standard hardware-controlled auto-refresh is the interference between

periodic refresh commands generated by the DRAM controller and memory access requests gen-

erated by the processor. The latter ones are blocked once one of the former are issued until the

refresh completes. Since refreshes are asynchronous, memory latency becomes highly variable and

unpredictable. The central idea of our approach is to remove DRAM refresh interference by memory

partitioning (coloring). Under our approach, DRAM is partitioned, and each application is assigned

a colored partition. A real-time schedule can be adapted such that memory accesses will not be

subject to interference by DRAM refreshes due to refresh-triggered task switching as described next.

Assumptions: Let a given real-time task set be schedulable under auto-refresh, i.e., the worst-

case blocking of refresh is taken into account during schedulability analysis. To this end, each

worst-case execution time, ei , is padded, by t BST = m × t R F C , where m = dei /t R E F I e. For a

cyclic executive [BS88; Loc92], ei can be calculated iteratively by determining the fixed point for

ei (n ) = ei (n −1) + t R F C ∗ dei (n −1)/t R E F I e.
We assume that tasks are independent and tasks can be sliced. Our work accounts for any slicing or

copying overhead in a term added to ei . In addition, for an application with input, we assume its

maximum (worst-case) memory requirement can be triggered by a known input (in our experiments

assumed to be the largest input). Furthermore, we also assume the timers in both task scheduling

and DRAM refresh to be synchronized by the on-chip hardware clock, which is reported to be the

case in practive [BM10].

4.3.1 Memory Space Partitioning

A memory node consists of one memory controller and multi-level resources, namely channel,

rank, and bank. Banks are accessed in parallel to increase memory throughput. Pan et al. [Pan16]

designed TintMalloc, an allocator that “colors” memory pages with controller and bank affinity

suitable for NUMA architectures. With TintMalloc, programmers can select one (or more) colors to

choose a memory controller and bank regions disjoint from those of other tasks. DRAM is further

partitioned into channels and ranks above banks. The memory space of an application can be

chosen such that it conforms to a specific color. For example, a real-time task can be assigned a
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private memory space based on rank granularity. When this task runs, it can only access the memory

rank allocated to it. No other memory rank will ever be touched by it. With proper application design,

this overhead of colored allocations impacts only the initialization phase and remains constant for

a stable working set size. Real-time tasks, after their initialization, experience highly predictable

latencies for subsequent memory requests.

4.3.2 Colored Refresh Design

Given that the memory space of a DRAM chip can be partitioned into multiple “colors” based on the

DRAM architecture, such as node, channel, rank, and bank, we designed a novel “Colored Refresh”

policy, which systematically schedules DRAM refreshes based on DRAM rank coloring, i.e., at the

refresh granularity level. This section introduces the design of Colored Refresh. By cooperatively

scheduling task execution and DRAM refresh, Colored Refresh can hide the refresh overhead for real-

time tasks and guarantee system schedulability. Most DRAM controllers allow the refresh interval to

be configured [BM10] and can control which rank should be sent a refresh command. With Colored

Refresh, the memory space of a DRAM chip is refreshed by iterating over the ranks such that all

tasks are colored by different DRAM ranks through TintMalloc.

Let us denote the set of periodic real-time tasks as T = T1...Tn , where each task, Ti , is char-

acterized by (φi , pi , ei , Di ), or (pi , ei , Di ) if φi = 0, or (pi , ei ) if pi = Di for a phase φi , a period pi ,

(worst-case) execution time ei , relative deadline Di per job, and a hyperperiod H of T [Liu00]. Also,

let

R be the DRAM retention time,

L be the least common multiple of H and R , and

K be the number of DRAM ranks, and let ki denote rank i .

With Colored Refresh, the entire DRAM space is equally partitioned into “colors”, such that each

color contains one or more DRAM ranks. The DRAM retention time, R , is also equally divided among

the number of frames following a one-to-one correspondence with colors, where

ci denotes color i of C total colors.

We construct a cyclic executive schedule for T , where

f is the frame size and fi denotes the i t h frame,

F is the number of frames in one R cycle, i.e., F = R/ f . Thus, F is equal to the total number of

colors, i.e., F =C .

After a refresh duration of tRFC, ranks contained in ci are refreshed within fi . By selecting an

appropriate frame size ( f ), Colored Refresh can strategically co-schedule tasks and DRAM refresh

to hide refresh overhead and guarantee schedulability. The basic idea is to alternate between a bust

refresh for one set of ranks and another set of ranks, where ranks of each set are refreshed in parallel.

We select an appropriate f based on the following 5 rules:
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(1) f ≤mi n1≤i≤n (pi /2) such that burst refreshes can alternate once all tasks are assigned disjoint

memory colors under Colored Refresh.

(2) bR/ f c −R/ f = 0, i.e., f should divide R .

(3) 2 f − g c d (pi , f )≤Di for all i.

(4) b(R/K )/ f c − (R −K )/ f = 0, i.e., f is an integer multiple of R/K .

(5) Frames must be sufficiently long so that every job can execute non-preemptively within them,

i.e., f ≥ma x1≤i≤n (ei ).

According to the 5 rules (2 of them derived from [BS88; Loc92]), we select an appropriate frame

size ( f ) for a real-time task set. F frames are scheduled iteratively every R cycles, and all colors

are refreshed within each R interval. Jobs are scheduled and placed in frames via the network flow

algorithm [Liu]. Colored Refresh scans all frames within L and enumerates on a per-task basis

the “available colors”, which are the frames of a certain color not occupied by this task. Colored

Refresh selects one of the available colors at a time to allocate memory from ranks conformant to

the coloring policy. As a result, any real-time task only accesses refresh-free memory ranks within

its execution. Thus, memory accesses are cooperatively scheduled with refresh operations, while

the refresh overhead remains hidden from task execution.

4.3.3 Modifications to the Task Set

Some conditions may require a task set T to be modified:

• Condition (5) may not be satisfied by tasks Ti with long executions, where ei > f . A well-known

technique to address this is to split such tasks into job slices [BS88; Loc92], e.g., k = 1..m with ei k = f

for k < m and ei m = ei − (m − 1)× f , and then distribute them over the set of frames using the

network flow algorithm [Liu]— in our case in conjunction with Colored Refresh to select colors for

each frame.

Theorem 1: A task set schedulable as a cyclic executive can always be scheduled with a frame

size in (0, Dmi n/2], e.g., any positive number less than Dmi n/2 is an appropriate frame size for cyclic

executive scheduling, where Dmi n =mi n (D1, D2...Dn ) is the minimum deadline among all tasks.

Proof: The selection of the frame size in a cyclic executive is determined by rules (3) and (5) [BS88;

Loc92].

If f ≤Dmi n/2, then

2 f − g c d (pi , f )≤Dmi n − g c d (pi , f )<Dmi n ≤Di ,

i.e., for any frame size less than Dmi n/2, rule (3) holds.

Furthermore, rule (5) can be met by task splitting [BS88; Loc92]. Hence, any frame size within

(0, Dmi n/2] is appropriate for a task set under cyclic executive scheduling.

• Conditions (1)-(4) may not be simultaneously satisfied by a task set that requires a small f , e.g.,

an f derived from rule (3) that is less than the minimum frame size in rule (4). A novel technique to
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address this problem is to fuse multiple frames repeatedly into a “virtual frame”, f ′, until this virtual

frame fulfills the requirement of minimum frame size according to rule (4), i.e., until f ′ ≥R/K . By

fusing frames (see Algorithm 1), a task set with a small f is transformed into one with a virtual frame

f ′ that is still scheduled by rules (1)+(3) with memory colors derived from Colored Refresh based

on the virtual frame size to satisfy rules (2)+(4).

As required by rule (2)+(4), f ′ = i ∗ f = R
K ∗ j and m ∗ f ′ = R , where i, j, m are integers and

m ∗ j = K . Since R
K represents the memory coloring granularity, we require f to divide R/K , i.e., i

j

is an integer. According to Theorem 1, we can select an appropriate f from (0, Dmi n/2] to satisfy

the above constrains. Finally, Colored Refresh guarantees schedulability (schedule tasks by frames

whose size is f as a cyclic executive) and colors memory space (partition and assign memory to

tasks at f ′/R granularity) via frame fusing.

Algorithm 6 Task Fusion

1: for f in (0, Dmi n/2] do
2: f ′ = f , i = 1
3: while f ′ ≤R do
4: f ′+= f , i ++
5: if ( f ′ mod R

K ) == 0 then
6: j = f ′/( R

K )
7: if (i mod j ) == 0 then
8: return f and f ′

9: else
10: continue
11: end if
12: end if
13: end while
14: end for

• A task may occupy all frames and its available color set is empty, e.g., tasks with short periods

pi < 2 f or periods that do not divide the minimum frame size f =R/K . We utilize a novel technique

to address this case. Colored Refresh creates two instances of a task, the original one and a so-called

“copy tasks”. The two instances have identical control flow, but their data is referencing memory

allocated from different colors. When a job of this task is released, Colored Refresh selects the

instance to execute with a color that is currently not being refreshed. The job instance can be

statically determined for cyclic executives over L , which enumerates all job instances. When the

next job is a different instance from current one, the global variables of the current are copied to the

next job’s memory space if jobs of this task are data dependent. An arbitrary number of “copy tasks”

can be created in order to satisfy different numbers of colors. The number of colors is determined
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by the amount of DRAM ranks in the system, and Colored Refresh usually selects an even number

of colors. But odd numbers of colors are also supported by Colored Refresh. When the number of

colors is odd, more than two instances are created by task copying. For example, three instances are

needed (the original one and two “copy tasks”) when there are 3 colors in system. Multiple “copy

tasks” can be assigned the same memory color to save memory space.

• A huge task is a task that allocates memory larger than the available refresh-free memory

within DRAM, which is constrained by the number of memory ranks currently not under refresh

while the task executes. For a system with K ranks, a huge task would have to exceed K −1 ranks in

size, which means that a single task essentially monopolizes almost all memory for a large K , or

that memory is relatively limited to begin with, say K =2, and more than half the memory is used by

a single task (for K =2). If we account for such rare cases of skewed memory distribution, the refresh

overhead of a huge task cannot be completely eliminated but it can be constrained to a single burst

of t BST . Only one such huge task may exist (due to memory capacity limits) per task set, i.e., this is

a singular overhead term for this task’s ei . We do not consider huge tasks in the following as they are

rare corner cases, which can be handled by assessing for their refresh overhead in the traditional

manner as blocking.

4.3.4 Schedulability of Colored Refresh

Theorem 2: Any task set (without a huge task) that is schedulable as a cyclic executive under auto-

refresh by considering refresh delays in its execution time as a blocking term is also schedulable

under Colored Refresh.

Proof: If a task set is schedulable as a cyclic executive, there exists an appropriate frame size

to schedule it. This appropriate frame size should satisfy rules (3) and (5), see [BS88; Loc92]. With

Colored Refresh, the frame size f is further constrained by (1), (2), and (4). What needs to be shown

is that these rules do not further constrain the choice of f .

Let f̂ be an appropriate frame size for the cyclic executive of the uncolored task set that guaran-

tees schedulability without coloring by satisfying rules (3) and (5). We then need to find a new frame

size, f , that satisfies rules (3) and (5) as well as the new rules (1), (2) and (4). We need to show that a

task set is schedulable with f if it is schedulable with f̂ .

Case 1: There exists an f that satisfies rules (1)-(5), i.e. f = f̂ . Then this f is a solution.

Case 2: None of the f̂ candidates that satisfy rules (3) and (5) also satisfy rules (1)+(2)+(4). Let

fmi n = R/K , which is the minimum frame size established by rules (2) and (4), i.e., both of these

rules hold.

Let a task have a period pi < 2∗ (R/K ), which violates rule (1), and denote this task as Tc with a phase

φc=0. For any such Tc , by creating “copy tasks”, multiply their period by x and create x instances

(the original one and x −1 “copy tasks”). T
′

c with its enlarged period has an identical deadline and
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execution time but a phase ofφc +pc ∗ i , where i ∈ [0, x −1]. Furthermore, let Colored Refresh assign

memory colors for these (x ) tasks, and select an appropriate x by copying tasks until (1) holds.

Here, rule (1) is satisfied by creating “copy tasks”, while rule (5) is satisfied by “task splitting” (as

discussed before). As a result, whats need to be shown is that f exists and satisfies rules (2)+(3)+(4).

Case 2a: If f̂ ≥ fmi n , we can always find an appropriate f which is in [ fmi n , f̂ ] to schedule tasks,

i.e., since the frame size is equal or smaller than f̂ , there are at least as many frames between the

release of a task and its deadline for f as there were for f̂ , so (2), (3) and (4) hold for all tasks i.

Case 2bi: if f̂ < fmi n ∧ fmi n ≤ Dmi n , where Dmi n = mi n (D1, D2...Dn ), we can always find an

appropriate f which is in [ fmi n , Dmi n ] to schedule tasks by creating “copy tasks”. The period of the

resulting set of “copy tasks” can be increased to be divisible by f , i.e., f = (g c d (pi , f )). As a result,

there exists an f in [ fmi n , Dmi n ] to satisfy rules (2)+(3)+(4), and by choosing such an f , all rules are

satisfied.

Case 2bii: if f̂ < fmi n ∧ fmi n >Dmi n , we can find an f such that d fmi n/ f e − fmi n/ f = 0, i.e., fmi n

is integer divisible by f . Furthermore, f is chosen such that it also satisfies rule (3), i.e., f ≤ Di .

Then f is used for scheduling frames. We further construct a “virtual frame”, f ′, by fusing frames of

size f so that f ′ is a multiple of fmi n and such that rules (2)+(4) hold for f ′, where f ′ is used for

coloring. Furthermore, each f is associated with a memory color according to which virtual frame

f ′ it belongs to. Hence, rules (2)+(3)+(4) hold by utilizing f ′ and f together.

Thus, for a task set in Case 2 with Colored Refresh, an f exists that satisfies all 5 rules and provides

a solution to guarantee schedulability. Hence, the rules under Colored Refresh do not constrain the

choice of f .

4.3.5 Example

Example 1: Consider three real-time tasks, A=(16,4), B=(32,12), C=(64,16). Let R=64 ms, K =8, which

means there are 8 ranks that should be refreshed every 64ms. For this task set, H=64ms, which is

harmonic with R . Hence, L=64ms.

By (1), f ≤ 8.

By (2), f can be 2, 4, 8, 16 or 32.

(3) and (4) hold for f =8.

By (5), B and C are split into multiple job slices since their execution time is longer than f =8.

In this case, f is chosen to be 8, and tasks are arranged by the network flow algorithm [Liu] into

frames of the cyclic executive’s table according their periods and deadlines, and memory is colored

according to Colored Refresh. Fig. 4.3 depicts a feasible cyclic schedule for the above example, where

c (above) indicates the rank that is being refreshed.

The above schedule has a memory coloring solution for each task through Colored Refresh (see

Table 4.2).

In this example, the entire DRAM space is refreshed by iterating over all 8 ranks, and the refresh
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t 0       8      16      24     32       40     48      56     64

A B

schedule 

repeatsC

c   1         2        3        4       5       6        7        8

A A AB B BC C

Figure 4.3 Harmonic Schedule for H , R
Table 4.2 Memory Assignment per Task

T Occupied frames available memory ranks (ki )

A f1, f3, f5, f7 c2,c4,c6,c8

B f1, f2, f5, f6 c3,c4,c7,c8

C f3, f4, f7 c1,c2,c5,c6,c8

duration of each rank is 8ms (R/K ). Within one rank’s refresh duration, all the refresh operations are

scheduled as “burst refresh” (see Section 5.2.4). Since f =8 and R=64 ms, we get F =8. This means all

tasks are placed in 8 frames, and the entire memory space is grouped into 8 colors, where each color

contains one rank. One rank is under refresh during its corresponding frame while all other ranks

are refresh-free during this frame. From the allocation rule for fi and Fig. 4.3, we can identify the

available colors per task (see Table 4.2), which are not being refreshed when the task runs. Colored

Refresh assigns memory from these “available colors” though TintMalloc. Furthermore, memory

requirements of all tasks should be satisfied after coloring. In this example, assuming a requirement

of 1 rank per task, a feasible color assignment is ((A, k2), (B , k3), (C , k5)).

Example 2: In practice, the DRAM retention time (R ) is not always harmonic with the hyperpe-

riod of periodic real-time tasks (H ). If H and R are non-harmonic, the phase of task execution time

and refresh operation are different. As a result, one task may occupy all frames in a refresh period L .

Consider a task set A=(20,8), B=(40,16). We still assume R=64 ms and K =8. In this case, H=40 ms

and L=320 ms. (1)-(5) hold for f =8. Fig 4.4 shows a feasible cyclic schedule. Due to non-harmonic

phasing, all frames are occupied by both A and B (Tab. 4.3), , i.e., no frames remain available.

0             32            64             96           128           160           192           224          256       288 320

A AB

schedule 

repeats

B A AB B A AB B A AB B A AB B A AB B A AB B A AB B

R

H

L

Figure 4.4 Non-harmonic Schedule

We can still remove refresh overhead via “copy tasks” for both A and B. A copy of, e.g., A′, executes

the same code (as A), but memory is allocated from different colors. When a job of this task is released,

an instance is chosen for execution that differs from the color under refresh. E.g., let c1 and c2 be

two instances of A. c1 is refreshed during f1 while c2 is refreshed during f2. If a job of A is scheduled
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Table 4.3 Memory Assignment per Task
T Occupied frames available memory ranks (ki )

A f1, f2, f3, f4, f5, f6, f7, f8 none
B f1, f2, f3, f4, f5, f6, f7, f8 none

in f1, the instance colored to c2 is executed and vice versa. For other frames ( f3- f8), either instance

may execute. Hence, all DRAM refresh overhead is hidden from task execution and thus need not be

considered for schedulability analysis.

4.3.6 Utilization

With Colored Refresh, system utilization is enhanced compared to auto-refresh. With auto-refresh,

the blocking time of refresh operations has to be considered when deriving the worst case execution

time (WCET). Assuming a task set can be scheduled under auto-refresh, for any time span t ,

t ≥
∑n

i=1d
t

pi
e ∗ ei + bt ,

where bt represents the blocking term due to DRAM refresh within t calculated as

bt =
t

t R E F I ∗ t R F C .

As a result, the upper bound on system utilization under auto-refresh is

U = t−bt
t = t− t

t R E F I ∗t R F C
t = 1− t R F C

t R E F I .

With Colored Refresh, the blocking term can be removed since the DRAM refresh overhead is hidden

for real-time tasks. The highest utilization under Colored Refresh is 1.

4.3.7 Discussion

The two examples in Sec. 4.3.5 featured a periodic real-time task set on a single processor. Nonethe-

less, Colored Refresh can be implemented on multicore platforms where multiple task partitions are

running simultaneously. Colored Refresh simply schedules the execution of multiple task partitions

at a time when their allocated colors are not being refreshed. Furthermore, sporadic tasks and

non-real-time tasks can also be placed into frames and scheduled with Colored Refresh. Actually,

within each frame, both distributed refresh and burst refresh could be implemented. Colored Refresh

implements burst refresh at the start of each frame. After the burst refresh finishes, the time left

in this frame becomes refresh-free for memory accesses, which provides more flexibility for other

tasks to be scheduled [BM10].

The refresh task under Colored Refresh is still modeled as the highest priority task, but it can be

co-scheduled with another real-time task of a different color on the same processor. This allows us

to model resource constraints such that a real-time task of the same color as an active refresh task

cannot preempt the refresh task due to their priority assignments. Furthermore, we consider the

following cases:

1) A long task is a task with (i) a period equal to or larger than DRAM retention time and (ii) slack

between its period and execution time that is less than the minimum frame size.
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pi − ei <
R
K , and pi ≥R

The DRAM refresh overhead of a long task cannot be removed completely through Colored Refresh,

neither by splitting into multiple job slices nor by task copying. As a result, the utilization of a long

task under Colored Refresh is

U ≤ 1− t R F C
t R E F I ∗

r a nk R e q
K ,

where r a nk R e q = dme m Al l o c Si z e
r a nkSi z e e.

“rankReq” represents the lower bound of memory ranks that should be assigned to a long task, which

is determined by how much memory it allocates and the size of one rank.

The system utilization of a long task is still enhanced by Colored Refresh compared to auto-refresh,

although refresh overhead is only partly removed for a long task. Furthermore, since we use a burst

refresh in each frame, the remaining refresh overhead is predictable as a single task is colored to

specific ranks.

2) A Short task is a task whose period is shorter than twice the minimum possible frame size

(R/K ). From (1), the period of a short task is

P e r i o d < (R/K ) ∗2.

For example, a task is defined as a short task if its period is less than 4 ms when the DRAM retention

time is 64 ms and there are 32 ranks. A short task will occupy up to all frames of a color (up to its

rank/color size), but once it exceeds this limit, it is split. A copy task may be required to hide all refresh

overhead for the short task if its jobs are independent. For a short task whose jobs are dependent,

Colored Refresh can also enhance utilization and make its refresh overhead more predictable by

coloring it to a set of specific ranks.

4.3.8 Overhead of Colored Refresh

In order to hide DRAM refresh overhead, Colored Refresh suffers extra task coping and splitting costs.

While not free, split overhead is predictable since split points are known statically. Furthermore, the

cost of task copying is extremely small, as quantified by g l o b a l M e m
b a nd w i d t h . Here, g l o b a l M e m denotes

the cumulative size of global variables that need to be copied from a current to the next job’s memory

space, and b a nd w i d t h represents the memory bandwidth. We can determine if a task benefits

from task copying by comparing the copy cost to the overhead it would suffer under refresh-incurred

blocking instead:
g l o b a l M e m
b a nd w i d t h ≤

t R F C
t R F I ∗e , where e is the task’s execution time and t R F C

t R F I ∗e represents the overhead due

to refresh (upper bound) that would have to be considered in a blocking term during schedulability

analysis.

Example: The cost of one refresh operation is t R F C=350ns, and the length of a refresh interval

is t R F I=7.8us for 8Gb DRAM density, which is common in commercial off-the-shelf embedded

systems and smartphones [JED10; Sta12a]. If the execution time of a given task is 1ms and memory
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bandwidth is 10GB/s, g l o b a l M e m=0.5M is the break-even point, i.e., the cost of task copying is

lower for smaller copy sizes than suffering from refresh blocking. Notice that 0.5MB is larger than

one I-frame of a typical MPEG stream, of which only one frame is needed roughly per 10ms at 30-60

frames/sec. Or consider two 250×250 double-precision matrices (which is less than 0.5MB) that are

multiplied, with an execution time that far exceeds 1ms, i.e., no copy task would be required. After

all, the execution time exceeds 1ms so that this task’s period also has to be larger than the refresh

duration. Thus, we conjecture that 0.5MB is quite sufficient to forward outputs of one job to the

next for a real-time task with 1ms execution time and a short period in the same range.

4.4 Implementation

4.4.1 System Architecture

Our experimental framework consists of three components. (1) SimpleScalar 3.0 [Bur96] simulates

application execution and generates memory traces for last-level cache (LLC) misses, which includes

request intervals, physical address, command type, command size, etc. Each LLC miss results in a

memory request (memory transaction) from processor to DRAM (see Fig. 5.6). Red/solid blocks and

lines represent the LLC misses during application execution.

(2) Our coloring tool colors memory transactions based on a transaction’s physical address and

the coloring policy.

Coloring Tool

DRAM Simulator 
(RTMemController)

MemTrace File

………..
Last Level Cache MissesLast Level Cache Misses

Figure 4.5 System Architecture

(3) Memory traces are relayed to RTMemController [Li14b], a back-end architecture for real-

time memory controllers. It schedules each memory transaction and determines its execution

time, which is fed back to SimpleScalar to determine the overall execution time. Instead of using
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same memory latency for every tasks (the default), we enhanced SimpleScalar to use the average of

RTMemController’s memory latency for memory transactions per task, which includes the refresh

overhead.

We extended RTMemController to support Colored Refresh and DDR4 refreshes. The perfor-

mance of DRAM is analyzed by the enhanced RTMemController, which schedules the DRAM refresh

commands at rank granularity. Refresh is considered when the memory controller serves a memory

transaction whose rank ID is derived from the physical address. If this rank is under refresh per

schedule, a refresh command is issued in addition to the transaction. This incurs Refresh, Activate

and Precharge commands plus purging of the bank’s row buffer for a row buffer miss. Our enhanced

RTMemController refreshes all ranks in round-robin order and completes all refreshes within DRAM

retention time.

4.4.2 Coloring Tool

To hide the refresh overhead for real-time systems, our approach requires that each task be assigned

a memory segment via colored memory allocation. We ported TintMalloc [Pan16] to SimpleScalar so

that it can select the color of physical addresses in memory. A memory coloring policy is configured

for each application assigning it as many colors as needed to meet the application’s memory re-

quirement. TintMalloc’s port reads an application’s memory trace and scans the physical addresses

accessed. To color a memory space, the Rank_ID of each physical address is calculated and then

checked if it maps to the colors assigned to this application. In our case, the rank ID is determined

by bits 15-17 of the physical address. If the Rank_ID does not match, these bits are set to the task’s

respective color. Otherwise, the physical address remains unchanged. To avoid duplicate physical

addresses, TintMalloc’s port not only changes the rank ID of the physical address, but also assigns

it to a free page of the corresponding color. We further retain page locality (and thus also cache

locality) of physical addresses, i.e., if two physical addresses originally reside in the same page, they

still share a page after coloring. Once colored, all physical addresses in a trace belong to a particular

memory segment (color), and the application only accesses this specific area as per coloring policy.

4.4.3 Discussion

While we evaluate our approach by simulator, it shall be noted that it can be ported onto a real

architecture with engineering effort [BM10]. DRAM refreshes are synchronous with processor clock

(if the clock is fixed) and can, in fact, optionally be disabled for a subset of ranks [Tov17]. Furthermore,

per-rank refresh activation phasing can be reverse engineered by monitoring access latencies during

the initialization of our approach.
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Table 4.4 Task Set

Program Period Exec. Time

lms 20ms 4ms
compress 32ms 6ms

cnt 32ms 8ms
st 40ms 8ms

matmult 80ms 10ms

Table 4.5 Memory Assignment per Task

Program Occupied frames available colors (ci )

lms f1− f8 coloring by task copying
compress f1, f3, f4, f5, f7, f8 c2,c6

cnt f3, f4, f7, f8 c1,c2,c5,c6

st f2, f4, f6, f8 c1,c3,c5,c7

matmult f2, f3, f4, f6, f7, f8 c1,c5

4.5 Evaluation Framework and Results

4.5.1 Experimental Setup

We assessed the Malardalen WCET benchmark programs [Gus10] on the SimpleScalar 3.0 processor

simulator with split data and instruction caches of 16KB size each, a unified L2 cache of 128KB size,

and a cache line size of 64B. The memory system is a JEDEC-compliant DDR3 SDRAM (DDR3-1600G)

with varied memory density (1Gb, 2Gb, 4Gb, 8Gb, 16Gb, 32Gb and 64Gb). The DRAM retention time

(R ) is 64 ms. Furthermore, there are 8 ranks (K =8) and one memory controller on a DRAM chip.

Refresh commands are issued by memory controllers at rank granularity.

Table 4.6 Colors per Task

T program color
A lms c7

Â lms copying c8

B compress c2

C cnt c1

D st c3

E matmult c5
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4.5.2 Real-time Tasks

Multiple Malardalen applications are scheduled as real-time tasks under Colored Refresh, each

with the largest input to trigger maximum (worst case) memory requirements (see assumptions in

Sec. 5.3).

Table 4.4 shows each Malardalen task’s execution time and period (deadline). Here, the execution

time is measured under an ideal method that performs no refreshes. Although this ideal method is

infeasible in a reality, we model it in simulation as it provides a lower bound.

For the real-time tasks of Table 4.4, the hyperperiod H is 160ms, and L is 320ms (given H and

R=64ms). By rules (1)-(5) in Colored Refresh, f =8ms is chosen for our system (K =8), and a feasible

cyclic schedule is shown in Fig. 4.6, where c indicates the color that is being refreshed (repeats at

R=64ms). Table 4.5 shows the available memory colors per task. Colored Refresh assigns one of

its available colors to compress, cnt, st and matmult. But for lms, “copy tasks” are created since it

occupies all frames. Table 4.6 indicates one feasible selection of colors after creating copy task Â,

with a corresponding schedule shown in Fig. 4.6 for the intervals 176 . . . 184 and 240 . . . 248. Notice

that at t=180 and t=240, Â executes instead of A since c = 7 is being refreshed.

t   0             16            32            48         

c 1        2        3       4         5        6       7        

A C EB A A

t   128        144          160          176        

c 1        2        3       4         5        6       7        

D B
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C

C D

E

E

B

A B ĂD BE
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t   256        272          288          304        

c 1        2        3       4         5        6       7        
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            64            80            96            112          128       

7        8        1        2         3       4        5        6  7        8  
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6          192           208         224          240          256                

7        8        1        2         3       4        5        6  7        8  
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4          320
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Figure 4.6 A Schedule with Copy Tasks

We compared the system utilization under Auto-Refresh, Colored Refresh, and Non-Refresh

configurations. Fig. 4.7 shows the utilization (y-axis starting at 0.96) for different DRAM densities

(x-axis) of this real-time task set under different refresh methods. A lower utilization indicates better

performance since the real-time system has more slack to guarantee schedulability.

Fig. 4.7 shows that this real-time task set is always schedulable under our approach with any

DRAM density. Under Auto-Refresh, the task set is schedulable for small DRAM densities (<16Gb)
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but becomes infeasible for higher densities (≥16Gb) so that deadlines are missed as additional

refresh overhead pushes utilization to above 100%. Furthermore, since the maximum possible frame

size for a standard cyclic executive could be 12ms (larger than all tasks’ execution times), matmult

requires task splitting just for our approach. Assuming a copy+split overhead (see Section 4.3.8) for

lms+matmult, respectively, Colored Refresh suffers 0.05% overhead relative to Non-Refresh, which

originates from one additional context switch plus cold cache misses for lms (2.789usecs) and two

times two copy overheads (16KB/10GBps=1.6usecs) each for matmult. This overhead is extremely

small and remains constant as DRAM density grows.
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Figure 4.7 System Utilization per Refresh Method

Observation 1: Compared to Auto-Refresh, Colored Refresh reduces task execution time and en-

hances system utilization by eliminating refresh overhead completely, which increases predictability

while preserving real-time schedulability.

As DRAM density grows, the performance of Auto-Refresh decreases (resulting in a larger utiliza-

tion for the same task set) since higher DRAM density implies more refresh overhead, i.e., additional

rows are refreshed per interval. In contrast, Colored Refresh remains stable with increasing DRAM

density. For example, with 1Gb DRAM density, Auto-Refresh results in 0.47% larger utilization than

Colored Refresh. However, when DRAM density grows to 32Gb and then 64Gb, the task set’s uti-

lization under Auto-Refresh is 7.57% and 15.35% higher, respectively, than Colored Refresh. This is

because tasks only access colored memory not subject to DRAM refresh delays under our approach.

Observation 2: Colored Refresh obtains stable and predictable performance irrespective of

DRAM size while Auto-Refresh’s overhead increases significantly with DRAM size.
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4.5.3 DRAM Performance

Each task only accesses the coloring memory space assigned to it in our approach, while the memory

controller sends refresh command as described in Section 4.3.2. Let us discuss the impact on DRAM

performance under Colored Refresh.

Fig. 4.8 shows the normalized average memory access latency (y-axis) of Auto-Refresh over our

approach for different tasks (x-axis). Since our approach removes the entire DRAM refresh overhead,

the memory latency of our approach equals to non-refresh at each DRAM density. Furthermore, the

memory latency of our approach remains stable/same with growing DRAM density.

Red/solid lines inside the boxes mark the median while the green/dotted lines denote averages

across the 5 tasks, “whiskers” above/below the box indicate the maximum/minimum. Fig. 4.8 shows

that the memory latency is increased for all benchmarks by auto-refresh compared to our approach.

Our Colored Refresh obtains a small latency reduction at low DRAM density (6.5% on avg. at 1Gb

density) that increases rapidly with density (e.g., 82.2% at 64Gb density). Memory access latency

is reduced because memory requests of a real-time task cannot interfere with any DRAM refresh

under our approach. When this memory space needs to be refreshed, the task accessing it will

be suspended by switching to another task, which is not “colored” to this memory group. Our

approach ensures that the memory colors accessed by real-time tasks cannot suffer from refresh

overhead unless they are long tasks, i.e., Colored Refresh obtains the same memory performance as

Non-Refresh.

Observation 3: Colored Refresh reduce memory access latency compared to Auto-Refresh, and

this benefit increases with growing DRAM size and density.

Auto-refresh not only increases memory latency, it also causes memory performance to highly

fluctuate across applications. Fig. 4.8 also shows that different tasks suffer different memory access

latencies under Auto-refresh dependent on their memory access patterns. E.g., for a density of 16Gb,

the latencies of “compress” and “matmult” with auto-refresh are increased by 14.3% and 140.3%

compared with our approach (equals to Non-refresh), respectively. With growing density, the refresh

delay increases not only due the overhead to issue more refresh commands, but also because the

probability of interference with refreshes increases. Table 4.7 illustrates this by showing the number

of memory references suffering from interference by all tasks per DRAM density.

Table 4.7 # Memory Accesses with Refresh Interference

Density 1Gb 2Gb 4Gb 8Gb 16Gb 32Gb 64Gb

Number 1243 1586 2128 2351 2524 2565 2644
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Figure 4.8 Normalized Memory Latency of Auto-Refresh relative to Colored Refresh

Observation 4: Auto-refresh results in high variability of memory latencies depending on access

patterns and DRAM density while Colored Refresh eliminates this variability.

4.5.4 Fine Granularity Refresh

JEDEC’s DDR4 DRAM specification [Sta12a] introduces a Fine Granularity Refresh (FGR) to counter

increases in DRAM refresh overhead by creating a range of refresh options that provide a trade-off

between refresh latency and frequency.

We compared Colored Refresh with three FGR refresh options, namely 1x, 2, and 4x refresh modes.

1x refresh is a direct extension of DDR2 and DDR3 refreshes. A certain amount of refresh commands

are issued, and each command takes tRFC time. The refresh interval (tREFI) of 1x refreshing is

7.8 us [Sta12a]. 2x and 4x refreshing require refresh commands to be sent twice and four times as

frequently, respectively. The interval (tREFI) is correspondingly reduced to 3.9 us (1.95 us) for 2x (4x)

modes. More refresh commands mean fewer DRAM rows are refreshed per command, and, as a

result, the refresh latencies tRFC for 2x and 4x modes are shorter. However, when moving from 1x to

2x and then 4x, while tREFI scales linearly, tRFC does not but instead decreases at a rate of less than

50% [Muk13].

Fig. 5.11 compares memory access latency (y-axis) for different DRAM densities (x-axis) under

FGR 1x, 2x, 4x to Colored Refresh. We observe that although 4x outperforms 1x and 2x, Colored

Refresh uniformly obtains the best performance and lowest memory access latency due to elimi-

nation of refresh blocking. Furthermore, the performance of FGR decreases with growing DRAM

density. For example, at 1 Gb density, FGR 4x, 2x and 1x have 7.7%, 6.9%, and 8% higher memory
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Figure 4.9 Colored Refresh vs. Fine Granularity Refresh (FGR)

access latency, respectively, relative to CRS. This loss increases to 463%, 347%, and 286% at 64Gb.

In contrast, Colored Refresh hides all refresh costs and memory access latencies remain the same

irrespective of DRAM densities, i.e., our approach obtain a same performance as Non-refresh.

Observation 5: Colored Refresh exhibits better performance and higher task predictability than

DDR4’s FGR.

4.6 Related Work

We do not reiterate related work discussed in Sect. 4.1 due to space limitations here. Several DRAM re-

fresh mechanisms are analyzed, and refresh penalties are quantified in recent work [Bha16; Emm08;

Liu13; KL09; Nai13; Ham98]. Mukundan et al. [Muk13] discuss the refresh overhead for DDR4 DRAM

with high densities.

Bhat et al. [BM10] try to make DRAM refresh predictable for real-time embedded system. Instead

of hardware auto-refresh, a software-initiated burst refresh is issued at the beginning of every

DRAM retention time period. After this refresh burst completes, there is no refresh interference for

regular memory accesses during the remainder of DRAM retention time. But the memory remains

unavailable during the DRAM retention period, and any stall time due to references to memory under

refresh increases rapidly when DRAM density/size grows. Although memory latency is predictable,

memory throughput is still lower due to a refresh delay compared to our Colored Refresh. Selective

DRAM Refresh [Liu11] uses a reference bit per row to record and determine if this row needs to

be refreshed, which reduces die space relative to Smart Refresh [GL07]. But the performance of

Selective DRAM Refresh still heavily depends on the data access pattern. Our Colored Refresh is

agnostic of data access patterns, and it does not need extra die space while its time overhead is

small.
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Stuecheli et al. [Stu10] describe Elastic Refresh, which uses predictive mechanisms to decrease

the probability of a memory access interfering with a refresh. Elastic Refresh queues refresh com-

mands and schedules them when a DRAM rank is idle. This way, some interferences between

memory accesses and refreshes can be avoided. However, as tRFC increases with growing DRAM

density, the probability of avoiding interferences decreases. In contrast, our Colored Refresh can

hide all refresh delays for regular memory accesses, and its performance is not affected by increasing

DRAM density.

4.7 Conclusion

We analyzed the impact of DRAM refresh delay on the predictability and performance for real-time

systems. We proposed Colored Refresh, a novel refresh method to eliminate DRAM refresh overheads

at the software level for cyclic executive scheduling of real-time systems. With Colored Refresh, a

memory rank is either accessed by a processor or refreshed by the DRAM controller at any time, but

not both. Experimental results confirmed that our approach eliminates refresh overhead completely

for real-time task execution, thus enhancing their predictability and memory throughput. Compared

to previous work, Colored Refresh can be safely implemented without much overhead (less than

1% for task copying and splitting) irrespective of increasing DRAM density/sizes, yet with better

memory performance than DDR4 Fine Granularity Refresh.
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CHAPTER

5

THE COLORED REFRESH SERVER FOR

DRAM

5.1 Introduction

Dynamic Random Access Memory (DRAM) has been the memory of choice in most computer

systems and embedded systems for many years. DRAMs owe their success to their low cost combined

with large capacity, albeit at the expense of volatility. A DRAM cell is composed of an access transistor

and a capacitor, where data is stored in the capacitor as 1 or 0 (electrically charged/discharged).

However, capacitors slowly leak their charge over time. This leakage volatility requires cells to be

refreshed, otherwise their data would be lost.

As specified by the DRAM standards [JED10; Sta12a], each DRAM cell must be refreshed periodi-

cally within a given refresh interval. The refresh commands are issued by the DRAM controller via

the command bus. This mode, called auto-refresh, recharges all memory cells within the “retention

time”, which is typically 64ms for commodity DRAMs under 85◦C [JED10; Sta12a]. While DRAM is

being refreshed, a memory space (i.e., a DRAM rank) becomes unavailable to memory requests

so that any such memory reference blocks the CPU pipeline until the refresh completes. Further-

more, a DRAM refresh command closes a previously open row and opens up a new row subject to

refresh [BM10], even though data may be reused (referenced) before and after the refresh. Hence,

the delay suffered by the processor due to DRAM refresh includes two aspects: (1) the cost (blocking)
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of the refresh operation itself, and (2) reloads of the row buffer for data displaced by refreshes. As a

result, the response time of a DRAM access depends on its point in time during execution relative to

DRAM refresh operations.

Prior work indicated that system performance is significantly degraded by refresh overhead [Liu12a;

Muk13; Nai13; Stu10], a problem that is becoming more prevalent as DRAM are increasing in density.

With growing density, more DRAM cells are required per chip, which must be refreshed within the

same retention time, i.e., more rows need to be refreshed within the same refresh interval. This

increases the cost of a refresh operation and thus reduces memory throughput. Even with conser-

vative estimates of DRAM growth in density for future DRAM technology, the cost of one refresh

operation, t R F C , exceeds 1 micro-second at 32 Gb DRAM size, and the loss in DRAM throughput

caused by refreshes reaches nearly 50% at 64 Gb [Liu12a]. Some work focuses on reducing DRAM

refresh latencies from both hardware and software angles. Although the DRAM refresh impact can be

reduced by some proposed hardware solutions [Zhe08; Cha14; KP00; Rei], such solutions take a long

time before they become widely adopted. Hence, other work seeks to assess the viability of software

solutions by lowering refresh overhead via exploiting inter-cell variation in retention time [Liu12a;

Ven06], reducing unnecessary refreshes [GL07; Liu11], and decreasing the probability of a memory

access interfering with a refresh [Bha15; Stu10]. Fine Granularity Refresh (FGR), proposed by JeDEC’s

DDR4 specification, reduces refresh delays by trading off refresh latency against frequency [Sta12a].

Such software approaches either heavily rely on specific data access patterns of workloads or have

high implementation overhead. More significantly, none of them can eliminate refresh overhead

entirely.

For real-time systems, the refresh problem is even more significant. Bounding the worst-case

execution time (WCET) of a task’s code is key to assuring correctness under schedulability analysis,

and only static timing analysis methods can provide safe bounds on the WCET [WM01]. Due to

the asynchronous nature of refreshes relative to task schedules and preemptions, none of the

current analysis techniques tightly bound the effect of DRAM refreshes on WCET. Atanassov and

Puschner [AP01] discuss the impact of DRAM refresh on the execution time of real-time tasks and

calculate the maximum possible increase of execution time due to refreshes. However, this bound is

too pessimistic (loose): If the WCET were augmented by the maximum possible refresh delay, many

schedules would become theoretically infeasible, even though executions may make deadlines in

practice. Furthermore, as the refresh overhead increases approximately linearly with growing DRAM

density, it quickly becomes untenable to augment the WCET by ever increasing refresh delays for

future high density DRAM. Although Bhat et al. make refreshes predictable and reduce preemption

from refreshes by triggering them in software instead of hardware auto-refresh [BM10], the cost of

refresh operations is only considered, but cannot be eliminated. Also, a task cannot be scheduled

under Bhat if its period is less than the execution time of a burst refresh.

This work contributes the “Colored Refresh Server” (CRS) to remove task preemptions due to
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refreshes and to hide DRAM refresh overhead entirely. As a result, CRS makes real-time systems more

predictable, particularly for high DRAM density. CRS exploits colored memory allocation to partition

the entire memory space into two colors corresponding to two server tasks (simply called servers

from here on). Each real-time task is assigned one color and associated with the corresponding

server, where the two servers have different static priorities. DRAM refresh operations are triggered

by two tasks, each of which issues refresh commands to the memory of its corresponding server for

a subset of a colors (DRAM ranks) using a burst refresh pattern. More significantly, by appropriately

grouping real-time tasks into different servers, refreshes and competing memory accesses can be

strategically co-scheduled so that memory reads/writes do not suffer from refresh interference. As

a result, access latencies are reduced and memory throughput increases, which tends to result in

schedulability of more real-time tasks. What is more, the overhead of CRS is small and remains

constant irrespective of DRAM density/size. In contrast, auto-refreshed overhead keeps growing as

DRAM density increases.

Contributions:

(1) DRAM refresh of modern memory systems is analyzed in detail. The impact of refresh delay under

varying DRAM densities/sizes is highlighted for real-time systems with stringent timing constraints.

We observe that refresh overhead for an application is not easy to predict under standard auto-

refresh. Furthermore, the losses in DRAM throughput and performance caused by refreshes quickly

become unacceptable for real-time systems with high DRAM density.

(2) The Colored Refresh Server (CRS) is developed, which refreshes DRAM based on memory space

coloring and schedules tasks according to the server policy. Refresh overhead is almost entirely

hidden since a memory space is either being accessed or refreshed, but never both at the same time.

Thus, regular memory accesses no longer suffer from refresh interference, i.e., the blocking effect of

refreshes remains hidden in a safe manner.

(3) Experiments with the Malardalen benchmarks confirm that both refresh delays are hidden

and DRAM access latencies are reduced. Consequently, application execution times become more

predictable and stable, even when DRAM density increases. An experimental comparison with

DDR4’s FGR shows that CRS exhibits better performance and higher task predictability.

(4) CRS is realized in software and can easily be implemented on commercial off-the-shelf (COTS)

systems.

(5) Compared to previous work[BM10], CRS not only eliminates refresh overhead, but also feasibly

schedules short tasks (period less than execution time of burst refresh) by refactoring them as “copy

tasks”.

(6) Our approach can be implemented with any real-time scheduling policy supported inside the

CRS servers.
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5.2 Background and Motivation

5.2.1 DRAM Architecture

Today’s computers predominantly utilize dynamic random access memory (DRAM), where each

bit of data is stored in a separate capacitor within DRAM memory. To serve memory requests

from the CPU, the memory controller acts as a mediator between the last-level cache (LLC) and

DRAM devices (see Fig. 5.1). Once memory transactions are received by a DRAM controller from its

memory controller, these read/write requests are translated into corresponding DRAM commands

and scheduled while satisfying the timing constraints of DRAM banks and buses. A DRAM controller

is also called a node that governs DRAM memory organized into channels, ranks and banks (see

Fig. 5.1).

Figure 5.1 DRAM System Architecture

A DRAM bank array is organized into rows and columns of individual data cells (see Fig. 5.2). To

resolve a memory access request, the row containing the requested data needs to first be copied from

the bank array into the row buffer. As a side effect, the old row in the buffer is closed (“precharge”)

incurring a Row Precharge delay, t R P , and the new row is opened (“activate”) incurring a Row

Access Strobe delay, t R AS . This is called a row buffer miss. Once loaded into the row buffer and

opened, accesses of adjacent data in a row due to spatial locality incur just a Column Access Strobe

penalty, t C AS (row buffer hit), which is much faster than t R P + t R AS .

5.2.2 Memory Space Partitioning

In the following, we assume a DRAM hierarchy with node, channel, rank, and bank abstraction. To

partition this memory space, we utilize TintMalloc [Pan16], a heap allocator that “colors” memory

pages with controller (node) and bank affinity.

TintMalloc allows programmers to select one (or more) colors to choose a memory controller and

75



Figure 5.2 DRAM Bank Architecture

bank regions disjoint from those of other tasks. DRAM is further partitioned into channels and ranks

above banks. The memory space of an application can be chosen such that it conforms to a specific

color. E.g., a real-time task can be assigned a private memory space based on rank granularity. When

this task runs, it can only access the memory rank it is allocated to. No other memory rank will ever

be touched by it. By design, there is a penalty for the first heap allocation request with a color under

TintMalloc. This penalty only impacts the initialization phase. After a “first touch” page initialization,

the latency of any subsequent accesses to colored memory is always lower than that of uncolored

memory subject to buddy allocation (Linux default). In addition, once our colored free list has been

populated with pages, the initialization overhead becomes constant for a stable working set size,

even for dynamic allocations/deallocation assuming they are balanced in size. Real-time tasks, after

their initialization, experience highly predictable latencies for subsequent memory requests. Hence,

a first coloring allocation suffices to amortize the overhead of initialization.

5.2.3 DRAM Refresh

Refresh commands are periodically issued by the DRAM controller to recharge all DRAM cells,

which ensures data validity in the presence of electric leakage. A refresh command forces a read

to each memory cell followed by a write-back without modification, which recharges the cell to

its original level. The reference refresh interval of commodity DRAMs is 64ms under 85◦C (185◦F)

or 32ms above 85◦C, the so-called retention time, t R E T , of leaky cells, sometimes also called

refresh window, t R E F W [JED10; Sta12a; Kim11; Mor05]. All rows in a DRAM chip need to be

refreshed within t R E T , otherwise data will be lost. In order to reduce refresh overhead, refresh

commands are processed at rank granularity for commodity DRAM [Bha16]. The DRAM controller

can either schedule an automatic refresh for all ranks simultaneously (simultaneous refresh), or

schedule automatic refresh commands for each rank independently (independent refresh). Whether
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simultaneous or independent, a successive area of multiple cells in consecutive cycles is affected

by a memory refresh cycle. This area is called a “refresh bin” and contains multiple rows. The

DDR3 specification [JED10] generally requires that 8192 automatic refresh commands are sent by

the DRAM controller to refresh the entire memory (one command per bin at a time). Here, the

refresh interval, t R E F I , denotes the gap between two refresh commands, e.g., t R E F I = 7.8u s , i.e.,

t R E F W /8192. The so-called refresh completion time, t R F C , is the refresh duration per bin. Auto-

refresh is triggered in the background by the DRAM controller while the CPU executes instructions.

Depending on the memory technology generation, the refresh granularity may vary. Nonetheless,

memory ranks are unavailable during a refresh cycle, t R F C , i.e., memory accesses (read and write

operations) to this region will stall the CPU during a refresh cycle. The cost of a refresh operation is

calculated as t R F C /t R E F I . As density of DRAM chips grows, the size of each refresh bin becomes

larger, i.e., it contains more rows. But the more rows in a refresh bin, the longer the refresh delay

and memory block times become. The cost of a refresh operation, t R F C , is delimited by power

constraints. Table 5.1 shows that the size of a refresh bin expands linearly with memory density so

that t R F C increases rapidly as DRAM density grows and exceeds 1us at 32 Gb DRAM, even with

conservative estimates of growth in density for future DRAM technology [Liu12a]. DRAM ranks can

be refreshed in parallel under auto-refresh. However, the amount of unavailable memory increases

when refreshing ranks in parallel. A fully parallel refresh blocks the entire memory space for t R F C .

This blocking time not only decreases system performance, but can also result in deadline misses

unless it is considered in a blocking term by all tasks.

Table 5.1 t R F C for different DRAM densities (data from [JED10; Sta12a; Liu12a])
Chip Density total rows number of rows per bin tRFC

1Gb 128K 16 110n s
2Gb 256K 32 160n s
4Gb 512K 64 260n s
8Gb 1M 128 350n s

16Gb 2M 256 550n s
32Gb 4M 512 ≥ 1u s
64Gb 8M 1K ≥ 2u s

Furthermore, a side effect of DRAM refresh is that a row buffer is first closed, i.e., its data is

written back to the data array and any memory access is preempted. After the refresh completes, the

original data is loaded back into row buffer again, and the deferred memory access can continue. In

another words, the row which contains data needs to be closed and re-opened due to interference

between refresh and an in-flight memory access. As a result, an additional overhead of t R P + t R AS

is incurred to close and re-open rows since the refresh purges all buffers. This tends to result in

additional row buffer misses and thus decreased memory throughput. Liu et al. [Liu12a] observe
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that the loss in DRAM throughput caused by refreshes quickly becomes untenable, reaching nearly

50% for 64 Gb DRAM.

By considering both the cost of a refresh operation itself and the extra row close/re-open delay,

DRAM refresh not only decreases memory performance, but also causes the response time of

memory accesses to fluctuate. Due to the asynchronous nature of refreshes combined with task

preemption, it is hard to accurately predict and bound DRAM refresh delay.

5.2.4 Refresh Mode and Scheduling Strategy

For commodity DDRx (e.g., DDR3 and DDR4), refresh operations are issued at rank granularity. A

single refresh command for a given rank precharges all banks within this rank, which is called “All-

Bank” refresh [Bha16]. In contrast, recent LPDDRx DRAM [Sta12c] supports an enhanced “Per-Bank”

mode to refresh cells at bank level while other banks in the same rank may be serviced. “Per-Bank”

consumes more refresh time overall than “All-Bank” but achieves higher bank parallelism [Bha15].

For each rank, a refresh counter maintains the address of the row to be refreshed and applies charges

to the chip’s row address lines. A timer then increments the refresh counter to step through the rows.

Depending on when a refresh command is sent to a bin (successive rows), two scheduling strategies

exist, namely distributed and burst refresh (see Fig. 5.3).

Distributed Refresh: A single refresh operation is performed periodically. Once all rows are

refreshed, the refresh cycle is repeated by starting from the first row. As Fig. 5.3 shows, distributed

refresh only schedules one automatic refresh every t R E F I . All refreshes are sent by the DRAM

controller and performed in hardware. Distributed refresh is currently the most common method.

However, the response time of regular memory accesses varies over a wide time range due to the

spread of refreshes, and due to the overhead incurred by closing the row buffer.

Burst refresh: A series of refresh cycles are performed back-to-back (t R E F I = 0) until all rows

have been refreshed. After that, the memory is available for accesses until the next refresh, which

is issued after t R E T , the DRAM retention time. As shown in Fig. 5.3, sequential refreshes are

performed successively at the beginning of each t R E T period. Although burst refresh can reduce

extra row buffer misses, the cost of refresh operations still decreases DRAM system performance.

More importantly, a burst refresh results in long periods during which the memory is unavailable,

which also affects task execution and results in longer memory latencies, yet such bursts occur less

frequently. For real-time system, a long memory blocking time may result in deadline misses, in

particular if the period of a real-time task is short.
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Figure 5.3 DRAM Refresh Strategy

5.3 Design

The core problem with the standard hardware-controlled auto-refresh is the interference between

periodic refresh commands generated by the DRAM controller and memory access requests gener-

ated by the processor. The latter ones are blocked once one of the former is issued until the refresh

completes. As a result, memory latency increases and becomes highly unpredictable since refreshes

are asynchronous. The central idea of our approach is to remove DRAM refresh interference by mem-

ory partitioning (coloring). Given a real-time task set, we design a hierarchical resource model [FM02;

LB03; SL03] to schedule it with two servers. To this end, we partition the DRAM into two colors, and

each server is assigned a colored memory partition. By cooperatively grouping applications into

two resource (servers) and appropriately configuring those servers (period and budget), we ensure

that memory accesses can no longer be subject to interference by DRAM refreshes. Our approach

can be adapted to any real-time scheduling policy supported inside the CRS servers. In this section,

we describe the resource model, bound the timing requirements of each server, and analyze system

schedulability.

5.3.1 Assumptions

We assume that a given real-time task set is schedulable with auto-refresh under a given scheduling

policy (e.g., EDF or fixed priority), i.e., that the worst-case blocking time of refresh is taken into

account. As specified by the DRAM standards [JED10; Sta12a], the entire DRAM has to be refreshed

within its retention time, t R E T , in a manner where all K ranks are refreshed either serially or in

parallel. We also assume hardware support for timer interrupts and memory controller interrupts

(MC interrupts).

5.3.2 Task Model

Let us denote the set of periodic real-time tasks asT = {T1...Tn}, where each task, Ti , is characterized

by (φi , pi , ei , Di ), or (pi , ei , Di ) ifφi = 0, or (pi , ei ) if pi =Di for a phaseφi , a period pi , (worst-case)

execution time ei , relative deadline Di per job, and a hyperperiod H of T . Furthermore, let

t R E T be the DRAM retention time,
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L be the least common multiple of H and t R E T , and

K be the number of DRAM ranks, and let ki denote rank i .

5.3.3 DRAM Refresh Server Model

The Colored Refresh Server (CRS) partitions the entire DRAM space into two “colors”, such that each

color contains one or more DRAM rank, e.g., c1(k0, k1...ki ), and c2(ki+1, ki+2...kK −1).

We build a hierarchical resource model (task server) [SL03], S (W , A, c , ps , es ), with CPU time as

the resource, where

W is the workload model (applications),

A is the scheduling algorithm, e.g., EDF or RM

c denotes the memory color(s) assigned to this server, i.e., a set of memory ranks available for

allocation,

ps is the server period, and

es is the server execution time (budget).

The refresh server can execute when

(i) its budget is not zero;

(ii) its available task queue is not empty; and

(iii) its memory color is not locked by a “refresh task” (introduced below). Otherwise, it remains

suspended.

5.3.4 Refresh Lock and Unlock Tasks

We employ “software burst parallel refresh” [BM10] to refresh multiple DRAM ranks in parallel via

the burst pattern (i.e., another refresh command is issued for the next row immediately after the

previous one finishes). In our approach, there are two “refresh lock tasks” (Tr l 1 and Tr l 2) and two

“refresh unlock tasks” (Tr u1 and Tr u2), where S1 = { and S2. Tr l 1 and Tr u1 refresh color c1 allocated to

server S1 while Tr l 2 and Tr u2 refresh color c2 allocated by server S2. The top-level task set T> of our

hierarchical model thus consists of the two server tasks S1 and S2 plus another two tasks per color,

with the highest priority, for refresh lock/unlock, Tr l 1 and Tr u1 as well as Tr u2 and Tr u2, i.e.,

T> = {S1,S2, Tr l 1, Tr u1, Tr l 2, Tr u2}.
As Fig. 5.4 shows, when a refresh lock task is released, the CPU sends a command to the DRAM

controller to initiate parallel refreshes in a burst. Furthermore, a “virtual lock” is obtained for the

colors subject to refresh. Due to their higher priority, refresh lock/unlock tasks preempt any server

(if one was running) until they complete. Subsequently, the refresh lock task terminates so that a

server task (of opposite color) can be resumed. In parallel, the “DRAM refresh work” is performed,

i.e., burst refreshes are triggered by the controller. We use er 1 and er 2 to represent the during time of

DRAM refresh work for each color. Notice that a CPU server resumes execution only if its budget is
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Figure 5.4 Refresh Task with CPU Work plus DRAM Controller Work

not exhausted, its allocated color is not locked, and some task in its server queue is ready to execute.

Once all burst refreshes have completed, an interrupt is triggered, which causes the CPU to call

refresh unlock task that unlocks the newly refreshed colors so that they become available again.

Notice that this interrupt can be raised in two ways: (1) If the DRAM controller supports interrupt

completion notification in hardware, it can be raised by the DRAM controller. (2) In the absence of

DRAM controller support, the length of a burst refresh δ can be measured and the interrupt can

be triggered by imposing a phase of δ on the unlock task relative to the phase of the lock task of

the same color. The overhead of this interrupt handled is folded into the refresh unlock task for

schedulability analysis in the following. In practice, the cost of a refresh lock/unlock task is extremely

small since it only programs the DRAM controller or handles the interrupt.

The periods of the both refresh lock and unlock task are t R E T . The refresh lock tasks are released

at k ∗ t R E T , while the refresh unlock tasks are released at k ∗ t R E T +δ. The phasesφ of Tr l 1 and

Tr l 2 are t R E T
2 and 0, respectively, i.e., memory ranks allocated to S2 are refreshed first followed by

those of S1. Let us summarize:

T> = {S1,S2, Tr l 1, Tr u1, Tr l 2, Tr u2}, where

S1 = (0, p1, e1, p1),S2 = (0, p1, e2, p1),

Tr l 1 = (t R E T /2, t R E T , er l ,δ), Tr l 2 = (0, t R E T , er l ,δ),

Tr u1 = (t R E T /2+δ, t R E T , er u ,δ), Tr u2 = (δ, t R E T , er u ,δ).

The execution times er l and er u of the lock and unlock tasks are upper bounds on the respective

interrupts plus programming the memory controllers for refresh and obtaining the lock for the

former and just unlocking the the latter task, respectively. (They are also upper bounded by δ.) The

execution times e1 and e2 depend on the task sets of the servers covered later, while their deadlines

are equal to their periods (p1 and p2). The task set T> can be scheduled statically as long as the lock

and unlock tasks have a higher priority than the server tasks.

A refresh unlock refresh task is triggered by interrupt with a period of t R E T . Since we refresh
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multiple ranks in parallel, the cost of refreshing one entire rank is the same as the cost of refreshing

multiple ones. Furthermore, the cost of the DRAM burst refresh, δ, is small (e.g., less than 0.2m s for

a 2Gb DRAM chip with 8 ranks), and derived from the DRAM density according Table 5.1.

5.3.5 CRS Implementation

Consumption and Replenishment: The execution budget is consumed at the rate of one time unit

per unit of execution. The execution budget is set to es at time instants k ∗ps , where k ≥ 0. Any

unused execution budget cannot be carried over to the next period.

Scheduling: As we described in Sec. 5.3.4, the two refresh servers, S1 and S2, are treated as

periodic tasks with their periods and execution times. We assign static priorities to servers and

refresh tasks (lock and unlock). Instead of rate-monotone priority assignment (shorter period, higher

priority), static scheduling requires assignment of a strict fixed priority to each subject task (servers

and refresh tasks). The four refresh tasks receive the highest priority in the system. S1 has the next

highest priority and S2 has a lower one than S1. However, a server may only execute while its colors

are unlocked. Tasks can be scheduled with any real-time scheduling policy supported inside the

CRS servers, such as EDF, RM, or cyclic executive. During system initialization, we utilize the default

hardware auto-refresh and switch to CRS once servers and refresh tasks have been released.

Example: Let there be four real-time tasks with periods and execution times of T1(16, 4), T2(16, 2),

T3(32,8), T4(64,8). DRAM is partitioned into 2 colors, c1 and c2, which in total contains 8 memory

ranks (k0 – k7).

The four real-time tasks are grouped into two Colored Refresh Servers:

S1((T1, T2), R M , c1(k0, k1, k2, k3), 16m s , 6m s ) and

S2((T3, T4), R M , c2(k4, k5, k6, k7), 16m s , 6m s ).

In addition, refresh lock tasks Tr l 1 and Tr l 2 have a period of t R E T (64ms) and trigger refresh for c1

and c2, respectively, i.e., Tr l 2 triggers refresh for (k4, k5, k6, k7) withφ=0 while Tr l 1 triggers refresh

(k0, k1, k2, k3) with φ=32ms. Once refresh finishes, the refresh unlock tasks Tr u1 and Tr u2 update

corresponding memory color to be available again.

Fig. 5.5 depicts execution of this task set with our CRS. We observe that regular memory accesses

from a processor of one color are overlaid with DRAM refresh commands of the opposite color,

just by scheduling servers and refresh tasks according to their policies. We further observe that S2

executes at time 32ms, even though S1 has a higher priority than S2. This is because color c1 is locked

by refresh task Tr l 1. S1 can preempt S2 once c1 is unlocked by Tr u1, i.e., after DRAM refresh finishes.

5.3.6 Copy Task

To schedule short tasks, we next propose the concept of a “copy task”. A short task is defined as one

whose period is less than the burst refresh cost. Such tasks are not schedulable in [BM10].

82



Figure 5.5 Server scheduling example

Our novel approach creates two instances of a task, the original one and a so-called “copy tasks”.

The two instances have identical control flow, but their data is referencing memory allocated from

different colors so that the two instances belong to different servers. When a job of this task is

released, our approach selects the instance to execute based on which server is running. Once one

instance starts, its data is forwarded (copied) from another color if the last previous instance to

run had been allocated to a different color than the current one. Notice that differences in colors of

consecutive instances can be determined statically over the entire hyperperiod, i.e., it is possible to

perform this check statically so that the copy subroutine is triggered for exactly for those instances

prefixed by a different color instance. The trade-off between CRS’s refresh hiding and the forwarding

cost, calculated as d a t a s i z e ∗ b a nd w i d t h , is evaluated Section 5.5.

5.3.7 Schedulability Analysis within a Server

In this section, we analyze the schedulability of tasks within a server by modeling the “Periodic

Capacity Bound” and the “Utilization Bound”. For each server, S (W , A, c , ps , es ), we can bound the

periodic capacity for its period and budget that guarantees the schedulability of workload W and

scheduling algorithm A. Similarly, when characterizing its period, budget and scheduling algorithm,

we determine a utilization bound for its workload W that guarantees the schedulability of this server.

Let us derive the periodic capacity bounds and the utilization bounds for the EDF algorithm and

the RM algorithm, respectively.

EDF: For our CRS, DRAM refresh operations are performed by the refresh tasks (lock and unlock),

which are outside of the servers. As a result, there is no refresh overhead within each server.

The resource demand bound function [SL03] under EDF is:
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d b f (t ) =
∑

Ti∈W b
t

pi
c ∗ ei

(i) Periodic Capacity Bound (PCB): For a sever with period ps and budget es , its lowest supply bound

function during t time units l s b f (t ) is [SL03]:

l s b f (t ) = es
ps
∗ (t −2 ∗ (ps − es ))

In order to guarantee schedulability of tasks within a server, ∀ 0< t ≤H : d b f (t )≤ l s b f (t ) , where

H is the hyperperiod of tasks within this server.

d b f (t )≤ l s b f (t ) = es
ps
∗ (t −2 ∗ (ps − es )).

We have P C B = es
ps

, where

es ≥
p
(t−2ps )2+8ps ∗d b f (t )−(t−2ps )

4 .

(ii) Utilization Bound (UB): For a task set W , its utilization bound UW can be calculated as p ′ ∗UW ≤
l s b f (p ′) [SL03], where p ′ is the smallest period in task set W .

UW ≤
l s b f (p ′)

p ′ = es
ps
∗ (p

′−2(ps−es )
p ′ ) = es

ps
∗ (1− 2(ps−es )

p ′ ).

RM: The response time of a task is

r (k )i = ei +
∑

Tk∈H P (W ,Tk )
d r
(k−1)

i
pk
e ∗ ek , as talked before, there is no refresh overhead within each server.

(i) Periodic Capacity Bound (PCB): The linear service time bound function l t b f (t ) represents the

upper bound of service time to supply t time units of a resource [SL03]:

l t b f (t ) = ps
es
∗ t +2(ps − es ).

To guarantee schedulability of tasks within a server, e.g., for Ti , the service time to supply r (k )i

should be less than its period, pi , i.e.,

l t b f (r (k )i ) =
ps
es
∗ r (k )i +2 ∗ (ps − es )≤ pi .

As a result, the periodic capacity bound (P C B ) is

P C B = es
ps

, where

es ≥
Ç

(pi−2ps )2+8∗ps ∗r
(k )

i −(pi−2ps )
4 .

(ii) Utilization Bound (UB): For a task set W , its utilization bound, UW , can be calculated as UW =
es
ps
∗ (l n2− ps−es

p ′ ), where p ′ is the shortest period in task set.

5.3.8 Schedulability Analysis

In this section, we combine the analysis of the periodic capacity bound and the utilization bound"

in Sec. 5.3.7 to bound the response time, quantify the cost of CRS, and analyze the schedulability of

entire system, including the servers and refresh lock/unlock tasks, i.e., Tr l 1 (0, t R E T , er l , t R E T ),

Tr l 2 (t R E T /2, t R E T , er l , t R E T ), Tr u1 (δ, t R E T , er u , t R E T ), Tr u2 (t R E T /2 + δ, t R E T , er u ,

t R E T ), S1 (p1, e1), and S2 (p2, e2), where we assume the two refresh lock tasks have same execution

time (er l ), and the two refresh unlock tasks have same execution time (er u ). Compared with auto-

refresh, we build a hierarchical resource model (configure the period, budget, and workload for

both servers), which not only guarantees schedulability, but also has a lower cost than the overhead
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of auto-refresh. As a result, our Colored Refresh Server has a better performance than auto-refresh

by removing DRAM refresh overhead.

As described in Sec. 5.3.4, the refresh tasks Tr l 1, Tr l 2, Tr u1, and Tr u2 have the highest priority, S1

has the next highest priority followed by S2 with the lowest priority. To guarantee the schedulability

of a real-time system with static priority scheduling, we require:

(1) each task satisfies the TDA (time demand analysis) requirement, and

(2) the total utilization does not exceed 1, i.e.,
e1
p1
+ e2

p2
+2 ∗ er l

t R E T +2 ∗ er u
t R E T ≤ 1.

For hierarchical resource models [SL03], S1 and S2 are treated as periodic tasks.

With auto-refresh, the maximum response time of S1 is

r (k )s 1 = es 1+ b , where b = b r (k−1)
s 1

t R E F I c ∗ (t R F C + t R P + t R AS ) represents the refresh overhead.

The maximum response time of S2 is:

r (k )s 2 = es 2+d
r (k−1)

s 2
ps 1
e∗es 1+b , where b = b r (k−1)

s 2
t R E F I c∗(t R F C +t R P +t R AS ) represents the refresh overhead.

With our CRS, S1 and S2 are co-scheduled with the refresh lock and unlock tasks. The maximum

response time of S1 is

r (m )s 1 = es 1+2 ∗ d r (m−1)
s 1

t R E T e ∗ (er l + er u ) +ε1,

where ε1 is the refresh overhead that can not be hidden by our CRS, which is

ε1 =
∑

n ,k γ for n ∈ [0, L/p2] and k ∈ [0, L/t R E T ]; also

γ= er 1 if

(1) (m +1) ∗p1 > pr l 1 ∗k >m ∗p1 and pr l 1 ∗k −p1 ∗m ≤ r m
s 1

(2) (n +1) ∗p2 > pr l 1 ∗k > n ∗p2 and pr l 1 ∗k −p2 ∗n ≥ r n
s 2;

otherwise, γ= 0.

The maximum response time of S2 is:

r (n )s 2 = es 2+ d
r (n−1)

s 2
ps 1
e ∗ es 1+2 ∗ d r (k−1)

s 2
t R E T e ∗ (er l + er u ) +ε2,

where ε2 is the refresh overhead that can not be hidden by our CRS, which is

ε2 =
∑

m ,k γ for m ∈ [0, L/p1] and k ∈ [0, L/t R E T ]; also

γ= er 2 if

(1) (m +1) ∗p1 > pr l 2 ∗k >m ∗p1 and pr l 2 ∗k −p1 ∗m ≥ r m
s 1

(2) (n +1) ∗p2 > pr l 2 ∗k > n ∗p2 and pr l 2 ∗k −p2 ∗n ≤ r n
s 2;

otherwise, γ= 0.

As defined in Sec. 5.3.4, er 1 and er 2 represent the execution time of burst refresh for correspond-

ing color, respectively. r m
s 1 and r n

s 2 can be calculated by response time analysis under fixed-priority

assignment. As we showed above, periods of both Tr l 1 and Tr l 2 are the DRAM retention time, i.e.,

pr l 1 = pr l 2 = t R E T .

This shows that overhead is only incurred when a refresh task is released but its corresponding

server (accessing the opposite color) is not ready to execute. In this case, the overhead of refresh
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operations cannot be hidden. But this overhead is a small proportion of the entire DRAM refresh

cost. Besides, it is predictable and quantifiable. The refresh overhead, ε1 and ε2, under CRS can be

optimized as discussed next.

Let us assume a task set is partitioned into two groups, each associated with its own server.

The servers with periods p1 and p2 each have a periodic capacity and utilization bound that can

be calculated (shown in Sec. 5.3.7). For server S1 and S2, let P C B1 and P C B2 denote their periodic

capacity bounds, while U B1 and U B2 denote their utilization bounds.

The following algorithms find the lowest refresh overhead for each server. Algorithm 7 searches

the entire range of available budgets while and uses Algorithm 8 to quantify the refresh overhead.

This search is performed off-line, i.e., it does not incur overhead during real-time task execution.

Algorithm 7 Optimize Refresh Overhead

1: Input: Two given workloads (W1 and W2) which related with two servers (S1 and S2)
2: for p1 in (0, Hyper-period of W1] do
3: for p2 in (0, Hyper-period of W2] do
4: for e1 in [P C B1 ∗p1, p1] do
5: for e2 in [P C B2 ∗p2, p2] do
6: Calculate U B1 based on (p1,e1), U B2 based on (p2,e2), see Sec. 5.3.7
7: if

∑

Ti ∈W1
U t i l i z a t i o n (Ti )≤U B1 and

∑

Tj ∈W2
U t i l i z a t i o n (Tj )≤U B2 then

8: for m in [0, L/p1] do
9: ε1 = Refresh_Overhead_Calculate(1, m, (p1, e1), (p2, e2))

10: Calculate r m
s 1

11: if r m
s 1 >= p1 then

12: break
13: end if
14: To t a l C o s t1+=ε1

15: end for
16: for n in [0, L/p2] do
17: ε2 = Refresh_Overhead_Calculate(2, n, (p1, e1), (p2, e2))
18: Calculate r n

s 2

19: if r n
s 2 >= p2 then

20: break
21: end if
22: To t a l C o s t2+=ε2

23: end for
24: if To t a l C o s t1+To t a l C o s t2 <mi n_o v e r he a d then
25: b ud g e t1 = e1

26: b ud g e t2 = e2

27: mi n_o v e r he a d = To t a l C o s t1+To t a l C o s t2

28: end if
29: end if
30: end for
31: end for
32: end for
33: end for
34: return b ud g e t1 and b ud g e t2
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Algorithm 8 Refresh_Overhead_Calculate

1: Input:index, i, (p1, e1), (p2, e2)
2: for k in [0, L/t R E T ] do
3: if index==1 then
4: for n in [0, L/p2] do
5: if (i +1) ∗p1 > t R E T ∗k > i ∗p1 and (n +1) ∗p2 > t R E T ∗k > n ∗p2 then
6: calculate r i

s 1 and r n
s 2

7: if t R E T ∗k −p1 ∗ i ≤ r i
s 1 and t R E T ∗k −p2 ∗n ≥ r n

s 2 then
8: return er 1

9: else
10: return 0
11: end if
12: end if
13: end for
14: end if
15: if index==2 then
16: for m in [0, L/p1] do
17: if (m +1) ∗p1 > t R E T ∗k >m ∗p1 and (i +1) ∗p2 > t R E T ∗k > i ∗p2 then
18: calculate r m

s 1 and r i
s 2

19: if t R E T ∗k −p1 ∗m ≤ r m
s 1 and t R E T ∗k −p2 ∗ i ≥ r i

s 2 then
20: return er 2

21: else
22: return 0
23: end if
24: end if
25: end for
26: end if
27: end for

With Algorithm 7 and 8, our CRS reduces the refresh overhead by selecting appropriate periods

and budgets for each server. Compared to the response time under auto-refresh, CRS can obtain a

lower response time due to reduced refresh overhead, and requirement (1) is satisfied. We further

assume that the execution times of refresh lock/unlock tasks (Tr l 1, Tr l 2, Tr u1 and Tr u2) are identical

(and known to be very small in practice). Since refresh tasks issue refresh commands in burst mode,

CRS does not result in additional row buffer misses, i.e., er 1 and er 2 do not need to consider extra

t R P or t R AS overheads, which makes them smaller than their corresponding overheads under

auto-refresh [BM10], i.e., requirement (2) is satisfied. Finally, our CRS not only bounds the response

time of each server, but also guarantees system schedulability.

For a “short task”, there is extra overhead under CRS due to the task copy cost (see Sec. 5.3.6).

The cost (d a t a s i z e ∗b a nd w i d t h) can be modeled into response time of one sever if it has a copy

task. However, as the discussion in Section 5.5 will show, the cost of task copying is much less than

the delay incurred on real-time tasks by a refresh, i.e., a “short task” can be scheduled under our

CRS.
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5.4 Implementation

5.4.1 System Architecture

CRS has been implemented in a simulation environment of three components, a CPU simulator, a

scheduler combined with a coloring tool, and a DRAM simulator. SimpleScalar 3.0 [Bur96] simulates

the execution of an application and generates its memory traces. Memory traces are recorded to

capture last-level cache (LLC) misses, i.e., from the L2 cache in our case. This information includes

request intervals, physical address, command type, command size, etc. Each LLC miss results in

a memory request (memory transaction) from processor to DRAM (see Fig. 5.6). The red/solid

blocks and lines represent the LLC misses during application execution. The memory transactions

of different applications are combined by a hierarchical scheduler according to scheduling policies

(e.g., the priority of refresh tasks and servers at the upper level and task priorities within servers at

the lower level). Furthermore, each memory transaction’s physical address is colored based on the

coloring policy.

Figure 5.6 System Architecture

After scheduling and coloring, the memory traces are exposed to the DRAM simulator, RTMem-

Controller [Li14b], to analyze the DRAM performance. All memory transactions of the trace are

scheduled by RTMemController, and their execution times are calculated. Instead of using fixed

memory latencies for every task, which is the default, we enhanced SimpleScalar to consider the

average execution time of each task’s memory transactions analyzed by RTMemController over all

LLC misses, which includes the DRAM refresh overhead. At last, the result of RTMemController (exe-

cution time of each memory transaction) is fed back to SimpleScalar to determine the application’s

overall execution time. This models the execution time of each real-time application, including its

DRAM performance per memory access.

The RTMemController is a back-end architecture for real-time memory controllers, and was

originally designed for DDR3 SDRAMs using dynamic command scheduling. We extended RTMem-

Controller to support burst refresh and DDR4 Fine Granularity Refresh (FGR). The performance of
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DRAM is analyzed by the enhanced RTMemController, which schedules the DRAM refresh com-

mands at rank granularity.

The simulation environment also supports generation of an interrupt triggered by the DRAM

controller when the bursts of a refresh task complete. Should a DRAM controller not support such

an interrupt signal upon refresh completion, one can utilize a second timer. The refresh tasks are

already triggered by a first periodic timer. Once all DRAM refreshes have been issued by a refresh

task, a relative timer with offset t R F C (refresh blocking time) is installed to trigger the handler that

unlocks the colors subject to refresh.

Color locks are implemented as attributes for scheduling at the top level, i.e., a flag per color

suffices. This flags is set for colors of a refresh task before this refresh task is dispatched, and the

flag is cleared inside the handler invoked upon refresh completion. We refereed to a “virtual” lock

earlier since the mechanism resembles a lock in terms of resource allocation for schedulability

analysis. However, it cannot be implemented via a lock since a server task, if it obtained a lock, could

not release it when interrupted by a refresh task. Instead, the refresh task would have to steal this

lock, which is typically not supported by any API. Since we are implementing low-level scheduling

directly, our flag solution is not only much easier to realize, it also has lower overhead as no atomic

instructions or additional queues are required.

5.4.2 Coloring Tool

To hide the refresh overhead for real-time systems, our approach requires that each task be assigned

a memory color via colored memory allocation. We ported TintMalloc [Pan16] to SimpleScalar so

that it can select the color of physical addresses in memory. In the experiments, the entire DRAM

is split into two colors corresponding to the two servers, and each application is assigned to one

of them. We can adjust the number of ranks associated with one color, e.g., in order to meet an

application’s memory requirement. TintMalloc’s port reads an application’s memory trace and scans

the physical addresses accessed. To color a memory space, the Rank_ID of each physical address

is calculated, and it is checked if it belongs to the colors assigned to this application. In our case,

the rank ID is determined by bits 15-17 of the physical address. If the Rank_ID does not match,

these bits are set to the task’s respective color. Otherwise, the physical address remains unchanged.

Example: Consider a total of 8 ranks, let ranks 0-3 belong to color_1 while ranks 4-7 are in color_2.

When an application is assigned to color_1, TintMalloc ensures that all its pages are in the 0-3 rank

range by resetting bits 15-17 of the physical address (in the page range). To avoid duplicated physical

addresses, TintMalloc’s port not only changes the rank ID of the physical address, but also assigns

this address to a new free page of the corresponding color. We further retain page locality of physical

addresses, i.e., if two physical addresses originally reside in the same page, they still share the same

page after coloring. Once applications are colored this way, all physical addresses of a trace belong
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to a particular memory segment (color), and a task only accesses this specific area as per coloring

policy.

5.4.3 Discussion

This paper shows that the refresh overhead of a periodic real-time task set on a single processor can

be hidden by our CRS. CRS could be generalized to multicore platforms under partitioned parallel

scheduling of tasks with respect to cores. CRS could simply schedule the subset of tasks associated

with the partition of a given core using CRS’ hierarchical server model on a per-core basis, where

servers receive different memory colors to guarantee when their allocated colors are not being

refreshed while a server executes.

We evaluate our approach in a hardware simulator. But unicore software refresh control has been

demonstrated on different hardware platforms [BM10], and CRS could be implemented with similar

software refresh controls on such platforms (with some engineering overhead). DRAM refreshes are

synchronous with the processor clock (if the clock is fixed) and can, in fact, optionally be disabled

for a subset of ranks on contemporary single- and multi-core systems [Tov17]. Furthermore, the

phase when a per-rank hardware refresh start could be reverse engineered by monitoring access

latencies during the initialization of a CRS-controlled system on these platforms.

5.5 Evaluation Framework and Results

The experimental evaluation assesses the performance of CRS relative to standard DRAM auto-

refresh in four experiments. The first investigates the memory performance enhancements of CRS.

The second illustrates how CRS eliminates the refresh delay from execution times and guarantees the

schedulability of real-time system. The third and fourth compare CRS with DDR4 Fine Granularity

Refresh (FGR) and previous work, respectively.

5.5.1 Experimental Setup

We assess the Malardalen WCET benchmark programs [Gus10] atop SimpleScalar 3.0 [Bur96] com-

bined with RTMemController [Li14a]. The processor is configured with split data and instruction

caches of 16KB size each, a unified L2 cache of 128KB size, and a cache line size of 64B. The memory

system is a JEDEC-compliant DDR3 SDRAM (DDR3-1600G) with adjustable memory density (1Gb,

2Gb, 4Gb, 8Gb, 16Gb, 32Gb and 64Gb). The DRAM retention time, t R E T , is 64 ms. Furthermore,

there are 8 ranks, i.e., K = 8, and one memory controller per DRAM chip. Refresh commands are

issued by memory controllers at rank granularity.

Multiple Malardalen applications are scheduled as real-time tasks under both CRS (hierarchical

scheduling of refresh tasks plus servers and then real-time tasks within servers) and auto-refresh
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Table 5.2 Real-Time Task Set

Application Period Execution Time

cnt 20ms 3ms
compress 10ms 1.2ms

lms 10ms 1.6ms
matmult 40ms 10ms

st 8ms 2ms

(single-level priority scheduling). Each Malardalen task’s execution time and period (deadline) are

shown in Table 5.2. Here, the base for execution time is an ideal one without refreshes. This ideal

method is infeasible in a practice, but it provides a lower bound and allows us to assess how close a

scheme is to this bound. The real-time task set shown in Table 5.2 can be scheduled under either a

dynamic priority policy (e.g., EDF) or a static priority policy (e.g., RM and DM). We assess EDF due

to space limitations, but CRS also works and obtain better performance than auto-refresh under

static priority scheduling. In this section, our CRS is evaluated by scheduling the above task set with

our CRS and standard EDF policy (no constraint).

The hyper-period of the task set in Table 5.2 is 40ms, and the task set is schedulable under EDF

without considering refresh overhead (“refresh-free”). CRS segregates each Malardalen application

into one of the two servers. As Sec.5.3.8 shown, Algorithms 7 and 8 assist in finding a partition with

minimal refresh overhead. There may be multiple best configurations under CRS, but we only assess

experiments with one of them due to symmetry.

We employ two servers (S1 and S2) and refresh tasks (Tr l 1, Tr l 2, Tr u1 and Tr u2). Applications “cnt”,

“lms” and “st” are assigned to S1 with 4ms periods and a 2.4ms budget, while application “compress”

and “matmult” belong to S2 with 4ms periods and a 1.6ms budget. The entire memory space is

equally partitioned into 2 colors (c1 and c2), i.e., the 8 DRAM ranks comprise 2 groups with 4 ranks

each. TintMalloc [Pan16] ensures that tasks of one server only access memory of one color, i.e., tasks

in S1 only allocate memory from the 4 ranks belonging to c1 while tasks in S2 only allocate from

c2. Furthermore, memory within c1 and c2 is triggered by Tr l 1 and Tr l 2 to be refresh by the burst

pattern. The memory space is locked, and the server allocated to this space/color is prevented to

execute during refresh until it is unlocked by Tr u1 and Tr u2 when all refresh operations finish. The

periods of all refresh tasks (Tr l 1, Tr l 2, Tr u1 and Tr u2) are equal to the DRAM retention time t R E T

(64ms), and their phases are 32ms and 0 for Tr l 1 and Tr l 2, respectively.

5.5.2 Memory Performance

Fig. 5.7 shows the normalized memory access latency (y-axis) of auto-refresh compared to CRS for

all benchmarks at different DRAM densities (x-axis). The red/upper line inside the boxes indicates

the median while the green/lower line represents the average across the 5 tasks. The “whiskers”

above/below the box indicate the maximum and minimum.
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Figure 5.7 Normalized Memory Latency of Auto-Refresh relative to CRS

We observe that CRS obtains better memory performance than auto-refresh, i.e., CRS reduces

the memory latency due to refresh stalls for all DRAM densities. While auto-refresh suffers a small

latency penalty at low DRAM density (8.34% on avg. at 1Gb density), this increases rapidly with

density up to an unacceptable level (e.g., the average memory latency of auto-refresh increases

by 455% relative to CRS at 64Gb). CRS avoids any latency penalty because memory requests of a

real-time task do not (and cannot) interfere with any DRAM refresh since memory assigned to a

server is not refreshed while the server executes. When this memory subspace needs to be refreshed,

the respective server is suspended so that the other server may execute, which accesses memory of

opposite color (not subject to refresh). In short, CRS co-schedules servers and refresh tasks such that

any memory subspace can either be accessed by a processor or refreshed by the DRAM controller, but

not by both at the same time. Hence, real-time tasks do not suffer from refresh overhead/blocking.

Observation 1: CRS avoids the memory latency penalty of auto-refresh, which increases with

memory density under auto-refresh.

Auto-refresh not only increases memory access latency, it also causes memory performance

to highly fluctuate across applications. Fig. 5.7 shows that different tasks suffer different latency

penalties dependent on their memory access patterns. E.g., for a density of 16Gb, “compress” suffers

a 9.7% increased latency while “cnt” suffers more than 154% increased latency. With growing density,

the refresh delay increases not only due to longer execution time of refresh commands, but also

because the probability of interference with refreshes increases. Fig. 5.8 illustrates this by plotting

the number of memory references suffering from interference (y-axis) by task over the same x-axis

as before. Memory requests of a task suffer from more refresh interference with growing density

since longer refresh durations imply a higher probability of blocking specific memory accesses.

Observation 2: Auto-refresh results in high variability of memory access latency depending on

memory access patterns and DRAM density while CRS eliminates this variability.
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Figure 5.8 Number of Memory Accesses with Refresh Interference

5.5.3 System Schedulability

Let us compare the execution time of each task under auto-refresh and CRS. Fig. 5.9 depicts the

execution time of auto-refresh normalized to CRS (y-axis) over the same x-axis as before. We observe

that execution times of tasks under auto-refresh exceed those under CRS since the latter avoids

refresh blocking. Execution times increase rapidly with DRAM density under auto-refresh. E.g.,

refreshes increase execution times by 3.16% for 8 Gb and by 22% at 64Gb for auto-refresh. Further-

more, the execution time of each application under CRS is the same irrespective of DRAM density,

i.e., it remains constant. Since there is no refresh blocking anymore, changing density has no effect

on performance.

Fig. 5.10 depicts the overall system utilization (y-axis starting at 0.93) over DRAM densities

(x-axis) of this real-time task set under different refresh methods. A lower utilization indicates better

performance since the real-time system has more slack to guarantee schedulability. Auto-refresh

experiences from higher utilization than CRS due to the longer execution times of tasks, which

increases with density to the point where it exceeds 1 such that deadlines are missed at 64 Gb.

In contrast, the utilization of CRS is lower and remains constant irrespective of densities. In

fact, it is within 0.01% of the lower bound (non-refresh), i.e., scheduling overheads (e.g., due to

preemption) are extremely low. Overall, CRS is superior because it co-schedules memory accesses

and refreshes such that refresh interference is avoided.

Observation 3: Compared to auto-refresh, CRS reduces the execution time of tasks and enhances

system utilization by eliminating refresh overheads completely, which increases predictability while

preserving real-time schedulability. Furthermore, the performance of CRS remains stable and
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Figure 5.9 Execution Time of Auto-Refresh relative to CRS

predictable irrespective of DRAM density while auto-refresh experiences from increased overheads

as density grows.

5.5.4 Fine Granularity Refresh

JEDECs DDR4 DRAM specification [Sta12a] introduces a Fine Granularity Refresh (FGR) that at-

tempts to tackle increases in DRAM refresh overhead by creating a range of refresh options to provide

a trade-off between refresh latency and frequency. We compared CRS with three FGR refresh options,

namely the 1x, 2x, and 4x refresh modes. 1x is a direct extension of DDR2 and DDR3 refreshes. A

certain amount of refresh commands are issued, and each command takes t R F C time. The refresh

interval, t R E F I , of 1x is 7.8us [Sta12a]. 2x and 4x require refresh commands to be sent twice and

four times as frequently, respectively. The interval, t R E F I is correspondingly reduced to 3.9us and

1.95us for 2x and 4x, respectively. More refresh commands mean fewer DRAM rows are refreshed per

command, and, as a result, the refresh latencies, t R F C , for 2x and 4x are shorter. However, when

moving from 1x to 2x and then 4x, while t R E F I scales linearly, t R F C does not. Instead, t R F C

decreases at a rate of less than 50% [Muk13].

Fig. 5.11 depicts memory access latency (y-axis) normalized to CRS over DRAM densities (x-axis)

for FGR 1x, 2x, and 4x. We observe that although 4x outperforms 1x and 2x, our approach uniformly

provides the best performance and lowest memory access latency due to elimination of refresh

blocking. After all, CRS hides the entire refresh operation while FGR reduces the refresh blocking

time. Furthermore, the performance of FGR decreases with growing DRAM density. E.g., at 64 Gb
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density, memory requests suffer an additional 17.6%, 20.7%, and 30.8% delay under FGR 4x, 2x and

1x, respectively relative to CRS. This cost increases to 343.7%, 376.4%, and 454.8% at 64Gb. CRS, in

contrast, hides refresh costs so that memory access latencies remain the same irrespective of DRAM

densities.

1 2 4 8 16 32 64
DRAM density (Gb)

1

2

3

4

5

No
rm

al
ize

d 
M

em
or

y 
La

te
nc

y

FGR_1x
FGR_2x

FGR_4x
Colored Refresh Server

Figure 5.11 Memory Latency under FGR Schemes Normalized to CRS

Observation 4: CRS exhibits better performance and higher task predictability than DDR4’s FGR.
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5.5.5 Comparison with Prior Work

Bhat et al. [BM10] utilized burst patterns to reduce refresh delay and increase timing predictability.

We compare the performance of CRS with the “burst-refresh” policy of [BM10]. Fig. 5.12 depicts

the memory access latency (y-axis) normalized to CRS under for different DRAM densities (x-axis)

for three refresh schemes. We observe that burst-refresh has a better performance than standard

auto-refresh since it reduces blocking by preempting lower priority tasks while refreshing. But it

cannot reduce the cost of refresh operations, which by far exceeds the interference delay. As a result,

the performance of burst-refresh still suffers as it decreases rapidly with growing DRAM density.

In contrast, CRS not only incurs a constant preemption cost to issue the DRAM burst, but then

resumes tasks while some ranks are refreshed while the other ranks are accessed by the tasks, which

effectively hides the cost of refresh. Hence, our approach outperforms burst-refresh. As mentioned

before, memory access latencies remain constant under CRS irrespective of density.
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Figure 5.12 Memory Latency per Refresh Scheme Normalized to CRS

In addition, a task cannot be scheduled under Bhat’s approach [BM10] if its period is less than

the execution time of a burst refresh. However, such a task can be scheduled under CRS by “task

copying” (see Sec. 5.3.6). The cost of task copying is extremely small, as quantified by g l o b a l M e m
b a nd w i d t h .

Here, g l o b a l M e m denotes the cumulative size of global variables that need to be copied from a

current to the next job’s memory space, while b a nd w i d t h represents the memory bandwidth. We

can determine if a short task benefits from task copying by comparing the copy cost to the overhead

it would suffer under refresh-incurred blocking instead:
g l o b a l M e m
b a nd w i d t h ≤

t R F C
t R F I ∗e , where e is the task’s execution time and t R F C

t R F I ∗e represents the overhead due
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to refresh (upper bound) that would have to be considered in a blocking term during schedulability

analysis.

Example: The cost of one refresh operation is t R F C = 350n s , and the length of a refresh interval

is t R F I = 7.8u s for 8Gb DRAM density, which is common in commercial off-the-shelf embedded

systems and smartphones [JED10; Sta12a]. If the execution time of a given task is 1ms and memory

bandwidth is 10GB/s, g l o b a l M e m = 0.5M is the break-even point, i.e., the cost of task copying is

lower for smaller copy sizes than suffering from refresh blocking. Notice that 0.5MB is larger than

one I-frame of a typical MPEG stream, of which only one frame is needed roughly per 10ms at 30-60

frames/sec. Or consider two 250x250 double-precision matrices (which is less than 0.5MB) that

are multiplied, with an execution time that far exceeds 1ms, i.e., no copy task would be required

since the execution time exceeds 1ms so that this task’s period also has to be larger than the refresh

duration. Thus, we conjecture that for a real-time task with 1ms execution time and a short period

in the same range, 0.5MB is quite sufficient to forward outputs of one job to the next.

Observation 5: CRS obtains better performance and higher task predictability than burst refresh

of the closest prior work, and CRS can schedule short tasks which prior work cannot [BM10].

5.6 Related Work

Contemporary DRAM specifications indicate increasing refresh latencies [JED10; Sta12a], which

prompted researcher to search for solutions. Recent works [Bha16; Emm08; Liu13; KL09; Nai13;

Ham98] analyze DRAM refresh mechanism and quantify its penalty. The refresh overhead for

DDR3+4 DRAM with high densities is discussed by Mukundan et al. [Muk13]. While some focus

on hardware to reduce the impact of DRAM refreshes [Zhe08; Cha14; KP00; Rei], others assess the

viability of software solutions since hardware solutions take a long time before they become widely

adopted.

Liu et al. [Liu12a] propose Retention-Aware Intelligent DRAM Refresh (RAIDR), which reduces

refresh overhead by using knowledge of cell retention times. By exploiting the variation of DRAM

cell retention time, RAIDR groups DRAM cells into several bins based on the measured minimum

retention time cross all cells in a corresponding bin. Refresh overhead is reduced by RAIDR since

rows are refreshed at different rates based on which bin they belong to. However, the retention time of

a DRAM cell is sensitive to temperature, voltage, internal DRAM noise, manufacturer variability, and

data access patterns. It may be risky to schedule refreshes at intervals beyond DRAM specifications

as the retention time of cells is at least variable, if not unstable. Retention-Aware Placement in DRAM

(RAPID) [Ven06] is a similar approach, where pages are sorted by their retention time and then

allocated in this order to select pages with longer retention time first. Compared to CRS, RAPID not

only suffers from similar risks as RAIDR, but also heavily relies on high memory locality to obtain

better performance.
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Smart Refresh [GL07] identifies and skips unnecessary refreshes by maintaining a refresh-needed

counter. With this counter, a row that has been read or written since a refresh need not be refreshed

again. Thus, memory performance is enhanced since the total number of refreshes is reduced.

However, the performance of Smart Refresh heavily relies on knowledge about the data access

pattern and has a high die space cost to maintain the refresh-needed counters. Liu et al. proposed

Flikker [Liu11], a selective DRAM refresh that uses a reference bit per row to record and determine if

this row needs to be refreshed. Rows that are labeled “non-critical” will not be refreshed in order to

reduce unnecessary refreshes. But the performance of Selective DRAM Refresh still heavily depends

on the data access pattern. Our CRS is agnostic of data access patterns, and it does not require

extra die space while its time overhead is very small. Bhati et al. [Bha15] propose an new DRAM

refresh architecture, which combines refresh reduction techniques with the default auto-refresh.

Unnecessary refreshes can be skipped, while ensuring that required refreshes are serviced. However,

this approach does not eliminate refresh overhead completely, and it suffers from increased refresh

latency for larger DRAM density/sizes.

Elastic Refresh [Stu10] uses predictive mechanisms to decrease the probability of a memory

access interfering with a refresh. Refresh commands are queued and scheduled when a DRAM

rank is idle. This way, some interferences between memory accesses and refreshes can be avoided.

However, as t R F C increases with growing DRAM density, the probability of avoiding interferences

decreases. In contrast, our CRS hides all refresh delays for regular memory accesses, and its perfor-

mance is not affected by increasing DRAM density. Bhat et al. [BM10]make DRAM refresh more

predictable. Instead of hardware auto-refresh, a software-initiated burst refresh is issued at the

beginning of every DRAM retention period. After this refresh burst completes, there is no refresh

interference for regular memory accesses during the remainder of DRAM retention time. But the

memory remains unavailable during the refresh, and any stalls due to memory references at this time

increase execution time, an overhead that rises rapidly with growing DRAM density/size. Although

memory latency is predictable, memory throughput is still lower than CRS due to refresh blocking.

Furthermore, a task cannot be scheduled if its period is less than the duration of the burst refresh.

5.7 Conclusion

We identify the problem of DRAM refresh interference with memory references and its adverse

effect on predictability and performance for real-time systems. A novel scheduling server, CRS, is

developed that eliminates DRAM refresh overheads via a software solution for refresh scheduling in

real-time systems. By distributing tasks into servers under CRS and recharging DRAM cells via refresh

tasks, memory accesses and DRAM refreshes are co-scheduled through colored memory allocation.

Thus, a memory space can either be accessed by a processor or be subject to refresh at any given

time, but not both. Thus, the WCET of real-time tasks is reduced and becomes more predictable

under CRS compared to standard auto-refresh, since the refresh activity is hidden during task
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execution. Experimental results confirm that our approach eliminates refresh overhead completely

and enhances memory throughput. Compared to previous work, CRS can be implemented with low

overhead, and this overhead remains constant irrespective of DRAM density. Our evaluation shows

that CRS outperforms DDR4 Fine Granularity Refresh and other prior work. CRS could be integrated

with any real-time scheduling policy supported inside the CRS servers with few (if any) modifications.

It can be implemented on commercial off-the-shelf (COTS) systems, even in the absence of hardware

support for interrupts upon refresh completion. Overall, CRS increases the predictability of memory

latency in real-time systems by eliminating blocking due to DRAM refreshes, even for future DRAM

sizes with higher density.
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CHAPTER

6

CONCLUSION AND FURTHER WORK

In this chapter, we present the conclusions drawn from our work and the scope of future work.

6.1 Conclusion

This work contributes four approaches (CAMC, TintMalloc, Colored Refresh, and Colored Refresh

Server) to avoid remote memory accesses, reduce memory bank/LLC contention, and remove DRAM

refresh overhead. CAMC is designed as a controller-aware memory coloring allocator for multicore

mixed criticality, weakly hard, and soft real-time systems. It comprehensively considers memory

node and bank locality to color the entire memory space. Coloring at the kernel level is activated

via a command line utility prior to task creation. Subsequently, applications are receiving colored

pages for private heap, stack, static, and instruction segments automatically without any source

code modifications. To complement CAMC, LLC coloring is considered in the second approach:

TintMalloc is a controller-aware memory and LLC coloring allocator for multicore NUMA systems.

TintMalloc comprehensively considers memory node, bank and LLC locality to color main memory

and cache space without requiring hardware modifications.

Furthermore, the impact of DRAM refresh delay on the predictability and performance is dis-

cussed for real-time systems. We develop Colored Refresh, a novel refresh scheme to hide DRAM

refresh overhead for real-time cyclic executives. The primary idea of Colored Refresh is to coordinate

memory accesses and refreshes via memory coloring. With Colored Refresh, a memory rank is either
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accessed by a processor or refreshed by the DRAM controller at any time. Thus, the WCET of real-

time tasks is reduced and becomes more predictable under colored refresh compared to standard

auto-refresh. To extend Colored Refresh, we develop Colored Refresh Server for all real-time scheme

policies. By distributing tasks into servers under CRS and recharging DRAM cells via refresh tasks,

memory accesses and DRAM refreshes are coscheduled through colored memory allocation. Thus,

a memory space can either be accessed by a processor or be subject to refresh at any given time,

but not both. Thus, the refresh activity is hidden during task execution, and the predictability of

memory latency in real-time systems is increased even for future DRAM sizes with higher density.

We assess these approaches in a number of experiments with microbenchmarks as well as

standard benchmarks (such as SPEC, Parsec, and Malardalen). Experimental results indicate the fol-

lowing: (1) Accesses to a remote memory node can be avoided for all tasks while bank and LLC access

conflicts are reduced. (2) Parallel tasks become more balanced and system performance is enhanced

by reducing overall runtime and idle time at barriers. (3) Refresh overhead is completely eliminated

for task execution, thus enhancing the memory throughput. Overall, these approaches provide more

predictability and better performance than the standard buddy allocator and outperform previous

work for NUMA x86 platforms.

6.2 Further Work

This work can be extended in three aspects: (1) Coordination between our current coloring allocator

and Intel Cache Allocation Technology (CAT) [Cor15], (2) optimization for interleaved memory, and

(3) generalization of the Colored Refresh Server to multi-core platforms.

Synchronization of coloring and CAT: To help prevent last level cache (LLC) contention

from occurring, Intel has developed CAT to enable more control over the LLC cache and how cores

use it. Using CAT, one can reserve portions of the cache for individual cores so that only these

cores can allocate into them. As a result, other applications may not evict cache lines from these

reserved portions of the cache. In future, this technology work could be explored in detail and

combined with our coloring allocator. The cache is divided into ways (vertical partition) and these

ways can be divided or shared among cores with CAT. In contrast, our coloring allocator partitions

LLC horizontally. By synchronizing both, the cache can be divided at a finer granularity, and we can

explore its advantage for multicore systems.

Interleaved memory optimization: In computing, interleaved memory is a design made

to compensate for the relatively slow speed of dynamic random-access memory (DRAM) or core

memory, by spreading memory addresses evenly across memory banks. That way, contiguous mem-

ory reads and writes are using each memory bank in turn, resulting in higher memory throughput

due to reduced waiting for memory banks to become ready for desired operations. However, on

modern NUMA architectures, interleaved memory causes more remote memory accesses if banks
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are on the remote memory nodes. Furthermore, even on the local memory node, memory bank con-

tention is also increased in multicore systems due to spreading data crossed banks. Future work can

solve these problems via novel coloring techniques for multicore systems on NUMA architectures.

Multi-core Colored Refresh Server: Multi-core processors are widely used across many

application domains, including general-purpose, embedded, network, digital signal processing

(DSP), and graphics (GPU). Microprocessors currently used in almost all personal computers are

multi-core. On multi-core systems, all cores share the main memory and suffer DRAM refresh

interference. Our current approaches, both Colored Refresh and Colored Refresh Server, are imple-

mented on a single core processor. Future work can extend the Colored Refresh Server to multi-core

platforms, and consider more constraints within the hierarchical resource model, such as memory

bandwidth and last level cache. Furthermore, both Colored Refresh and Colored Refresh Server are

implemented in a simulator. Some previous works [Tov17; BM10] control the DRAM refresh on an

real system. In future work, the our refresh schemes could be implemented on actual hardware

platforms as well. The scheduling policies of Colored Refresh and Colored Refresh Server can be

realized by modifying the scheduler inside of the operating system’s kernel (for hard real-time

systems) or that of user-level scheduling libraries (for soft or non real-time systems).
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