
ABSTRACT

RAMAPRASAD, HARINI Analytically Bounding Data Cache Behavior for Real-Time Sys-
tems. (Under the direction of Associate Professor Frank Mueller).

This dissertation presents data cache analysis techniques that make it feasible to

predict data cache behavior and to bound the worst-case execution time for a large class of

real-time programs.

Data Caches are an increasingly important architectural feature in most modern

computer systems. They help bridge the gap between processor speeds and memory access

times. One inherent difficulty of using data caches in a real-time system is the unpredictabil-

ity of memory accesses, which makes it difficult to calculate worst-case execution times of

real-time tasks.

This dissertation presents an analytical framework that characterizes data cache

behavior in the context of independent, periodic tasks with deadlines less than or equal to

their periods, executing on a single, in-order processor. The framework presented has three

major components.

1) The first component analytically derives data cache reference patterns for

all scalar and non-scalar references in a task. Using these, it produces a safe and tight upper

bound on the worst-case execution time of the task without considering interference from

other tasks.

2) The second component calculates the worst-case execution time and response

time of a task in the context of a multi-task, prioritized, preemptive environment. This

component calculates Data-Cache Related Preemption Delay for tasks assuming that

all tasks in the system are completely preemptive.

3) In the third component, tasks are allowed to have critical sections in which

they access shared resources. In this context, two analysis techniques are presented. In the

first one, a task executing in a critical section is not allowed to be preempted by any other

task. In the second one, the framework incorporates Resource Sharing Policies to arbitrate

accesses to shared resources, thereby improving responsiveness of high-priority tasks that

do not use a particular resource.

In all the components presented in this dissertation, a direct-mapped data cache

is assumed. Experimental results demonstrate the value of all the analysis techniques de-

scribed above in the context of data cache usage in a hard real-time system.
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Chapter 1

Introduction

In this chapter, the basic motivation for the work presented in this dissertation is

provided, followed by a brief outline of its primary contributions.

1.1 Motivation

In recent times, embedded systems have become ubiquitous. They have numerous

applications ranging from cell-phones and hand-held devices to aircraft control systems

and space explorers. Several embedded systems have hard real-time requirements, which,

in addition to logical constraints, introduce temporal constraints on the tasks (programs)

executing on such systems . These temporal constraints are in the form of a deadline by

which a task must complete its execution.

The process of determining whether a given set of tasks can be scheduled on a real-

time system such that no task violates its temporal constraints is known as schedulability

analysis. This analysis requires a-priori knowledge of the execution time of every task in

the system.

The execution time of a task is not a constant and its calculation is not straight-

forward due to several reasons. First of all, programs do not follow the same execution

path every time they are executed due to differences in input data. Furthermore, the ex-

ecution time of a given execution path varies between executions due to effects of several

architectural features of the system and due to the presence of other tasks in the system.

In order to guarantee adherence to the temporal constraints imposed on a real-

time task, a safe upper bound on its execution time must be determined. Such an upper
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bound is termed Worst-Case Execution Time (WCET) of the task. While calculating the

WCET of a task, the effects of all architectural features and of other tasks in the system

must be taken into account. In a situation where the effects are ambiguous, the worst-case

behavior must be assumed in order to maintain safety of the system.

Caches are an invaluable architectural feature in today’s higher-end processors.

The savings they provide in terms of memory latency are immense. Hence, they have become

indispensable. Nonetheless, caching has one inherent complexity, namely, the latency of a

memory access becomes unpredictable.

An instruction cache may be analyzed to determine the latency of accessing an

instruction depending on whether it is found in the instruction cache or not. However, data

caches are much more difficult to analyze since a single memory access instruction (reference)

could access different memory locations at different points in time. The simplest example

of such a case is an access to an array element within a loop. In every iteration of the loop,

a different element in the array and, hence, a different memory location, could be accessed.

Thus, data cache analysis for the purpose of static timing analysis, while challenging, is an

important problem.

While calculating the execution time of a single task is a necessary step in static

analysis, it is far from being sufficient in the presence of multiple tasks executing in a

prioritized manner. In this context, data caches introduce further complexity to static

analysis.

Hypothesis: Data cache behavior of a large class of programs executing in a

multi-tasking, prioritized environment can be predicted using advanced static analysis tech-

niques.

1.2 Contributions of this Dissertation

This dissertation proposes analysis techniques to characterize data cache behavior

in the context of hard real-time systems. The contributions of this dissertation may be

categorized as follows.

1. Single task analysis: Here, an analysis technique that derives a safe and tight upper

bound on the worst-case execution time of a single task using data cache reference

patterns for all scalar and array memory references in the task is presented.
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2. Preemptive tasks: Here, analysis techniques are presented to calculate safe and tight

upper bounds on the response times of multiple tasks executing in a prioritized, fully-

preemptive manner.

3. Tasks with critical sections: Here, analysis techniques that produce safe and tight

upper bounds on the response times of tasks that may contain critical sections are

presented.

The rest of this dissertation is organized as follows. Chapter 2 provides required

background information and Chapter 3 presents the task model used in this dissertation.

Chapter 4 presents techniques to analyze a single task. Chapter 5 introduces a multi-task

execution environment. Chapters 6, 7 and 8 present analysis techniques for multiple tasks

executing in a prioritized manner for fully-preemptive tasks, tasks with a non-preemptive

region and tasks that execute in accordance with resource-sharing protocols, respectively.

Chapter 9 discussed related work and Chapter 10 summarizes the contributions of this

dissertation and discusses possibilities for future work.
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Chapter 2

Background Information

This chapter provides background information required for the topic of this disser-

tation. Section 2.1 describes the basics of real-time systems and Section 2.2 introduces the

concept of timing analysis in real-time systems. Section 2.3 describes memory hierarchies

in most modern computer systems, with particular focus on cache memories.

2.1 Real Time Systems

A real-time computer system is one in which, in addition to logical constraints,

tasks have temporal constraints to meet. In other words, for every task executing in a

real-time environment, there is a specific deadline — a time before which the task must

complete its execution [1].

2.1.1 Hard and Soft Real-Time Systems

There are two types of real-time systems, namely hard and soft real-time systems.

In hard real-time systems, the temporal constraints that are placed on tasks are rigid

[2]. If a task does not adhere to these and exceeds its deadline, the consequences are

usually severe. Examples of a hard real-time system include aircraft control systems, space

explorers, emergency life-support systems, etc. In such systems, completion of an operation

after its deadline is considered useless and may lead to failure of the system.

On the other hand, in soft real-time systems, the temporal constraints are more

relaxed. In such a system, the usefulness of results obtained from a task does not drop to zero

immediately after the deadline, but declines at a slower rate. Hence, as long as a reasonable
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quality of service is maintained, a task may miss a few deadlines. An example of a soft

real-time system is a multimedia streaming application. Figure 2.1 depicts the usefulness

of results with respect to the deadline of a task in hard and soft real-time systems.

Time 

Hard Real−Time

Soft Real−Time

100%

U
se

fu
ln

es
s

Deadline

Figure 2.1: Hard versus Soft Real-Time Systems

2.1.2 Real-Time Tasks

There are two types of real-time tasks, namely, periodic tasks and aperiodic (spo-

radic) tasks. In the case of a periodic task, an instance, termed as a job, of the task is

released at fixed intervals of time. The release point of a task represents the time at which

it is ready for execution. On the other hand, an aperiodic task is one which has a minimum

inter-arrival time between its instances, but not a fixed one. In this dissertation, the focus

is on periodic, hard real-time systems.

Every periodic task possesses the following characteristics.

1. Phase: This represents the time between the start of the system and the release of

the first instance of a task.

2. Period: This represents the inter-arrival time between two consecutive instances of a

task.

3. Worst-Case Execution Time: This represents a guaranteed upper bound on the exe-

cution time of a task.
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4. Relative Deadline: This represents the time by which every instance of a task must

complete its execution, relative to its own time of release.

2.1.3 Schedulability Analysis

Schedulability analysis of a real-time system refers to the process of checking the

feasibility of execution of a given set of tasks such that no task instance misses its deadline.

In order to perform this analysis, the four basic characteristics of every task must be known

a-priori [3].

2.2 Timing Analysis

Timing analysis refers to the process of determining the execution time of a given

program. In the context of real-time systems, timing analysis is used to calculate the worst-

case execution time of a task, a characteristic that must be known a-priori for conducting

schedulability tests on a set of real-time tasks. There are two fundamental approaches to

timing analysis, namely, dynamic timing analysis and static timing analysis.

2.2.1 Dynamic Timing Analysis

Dynamic timing analysis methods, also known as measurement-based timing meth-

ods, estimate the execution time of a given task either by actually executing the task or by

simulating the execution of the task repeatedly using different sets of input data.

It has been demonstrated in earlier studies that dynamic analysis by actual execu-

tion of a task does not guarantee worst-case estimates [4]. Furthermore, exhaustive testing

of the input space is impractical. In the context of a real-time system, specially in the case

of a hard real-time system, temporal guarantees are vital to the safety of the system, hence

making dynamic timing analysis unsuitable in general.

2.2.2 Static Timing Analysis

Static timing analysis is the process of determining the worst-case execution time

of a task without actually executing or simulating the execution of the task. Analytical

models of all the components of a system (both hardware/architectural components and

software components) are constructed. All execution paths in the task being analyzed are
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traversed and, using the models, the effects of all possible inputs on the control flow of a

program are determined.

The result of such an analysis is a possibly conservative, yet safe upper bound

on the execution time of the task. Due to this feature, static timing analysis is a method

for determining the worst-case execution time of tasks in the context of a hard real-time

system that raises the confidence in the temporal correctness of a system. In the rest of

this dissertation, the focus is on static timing analysis.

2.2.3 Unpredictability in Static Timing Analysis

Static timing analysis typically consists of three different phases.

1. Low-level analysis: In this phase, execution times are calculated for all atomic in-

structions in the instruction set for the architecture under consideration.

2. Flow analysis: In this phase, the control-flow graph of the task being analyzed is

traversed to construct paths of execution.

3. WCET calculation: In this phase, analytical models of the components of the system

are used in conjunction with information gleaned from the low-level and flow analyses

to determine the worst-case execution time of a task.

While the first two phases are fairly straightforward, the structure and control

flow of a program may cause significant hurdles in the last phase of static timing analysis.

Factors such as data-dependent control flow, indirect memory accesses via pointers, dynamic

memory accesses, etc. may cause unpredictability in the process.

Furthermore, the correctness of static timing analysis relies on the correctness

and precision of the analytical models of architectural components of the system. Several

modern architectural features such as caches, pipelines, branch predictors, etc. are hard

to model. One feature that is particularly hard to model is the data cache. While data

caches are very useful to improve the average-case performance of a system, its worst-case

behavior is not easily predictable. Hence, data cache analysis has hence been the focus of

much research in recent years.

The static timing analyzer framework used in this dissertation is shown in Figure

2.2 [5, 6, 7, 8]. Source files constituting a program are first compiled using an enhanced

GCC compiler to obtain information about the control flow and memory references in the
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Figure 2.2: Static Timing Analysis Framework

program. This information is fed to a static cache simulator that simulates the instruction

cache to produce instuction cache categorizations for the given program. The instruction

cache categorizations, along with some machine-dependent information, are fed to the core

timing analyzer that then calculates an upper bound for the worst-case exeution time of a

task.

It may be observed that there is no data cache analysis incorporated in this frame-

work. In Chapter 4, this issue is addressed, and a framework for data cache analysis is

presented. The data cache analysis framework is then integrated into the static timing

analyzer shown in Figure 2.2.

2.3 Cache Memory

While the processing power and speed of a processor double almost every 18

months, the same cannot be said about the speed of the memory that they need to access

frequently. In order to bridge this gap between the processor speeds and memory speeds,

most modern processors have a memory hierarchy in place. A typical memory hierarchy is

shown in Figure 2.3. A register file, located in the processor core itself, is the fastest and

smallest memory in the hierarchy. Disk memory is the slowest and largest memory and is

located far away from the processor. Since faster technology is more expensive, the size of

the memory is forced to be smaller as the memory gets faster. Hence, the amount of storage

decreases moving from lower levels of memory to upper levels [9, 10, 11, 12].

The basic principle that enables such a memory hierarchy to bridge the gap be-

tween processor speeds and memory access times is locality of reference. In simple terms,

this principle refers to the fact that, if a certain memory element is accessed at a certain

time, it is very likely that the same memory element or consecutive memory elements in
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Figure 2.3: Memory Hierarchy in a Typical Computer System

the same memory line will be accessed in the near future. The former is termed temporal

locality and the latter, spatial locality.

A cache is a small, fast area of memory that is located on or close to the processor

chip. It stores frequently accessed memory lines for fast retrieval. When a program executes

a memory access instruction, the first step is to check whether this requested memory line

is already in the cache. If the requested memory line is located in cache, a cache hit occurs.

Otherwise, a cache miss occurs.

The number of cycles required to retrieve the requested data from lower levels

in the memory hierarchy is termed miss penalty. Cache misses are classified into three

categories, namely, compulsary, capacity and conflict. Compulsary misses, also known as

cold misses, are the ones that are incurred the first time a certain memory line is brought

into the cache. Capacity misses occur when the cache is not large enough to hold a program’s

entire working set. Conflict misses occur if two memory lines map to the same cache line.

The basics of mapping between memory and cache lines are discussed below.
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2.3.1 Cache Organization

Every memory line in the main memory maps to a certain line in the cache memory.

Since the main memory is much larger than cache, this mapping is many-to-one. There are

three cache organizations based on the mapping function used.

1. Direct mapped: In a direct mapped cache, a certain memory line can map only to

one specific line in the cache. The cache line is determined by performing a modulo

operation on the address of the memory line.

2. Fully Associative: This is on the other end of the spectrum, where a certain memory

line can be mapped to any line in cache. Hence, the mapping is not dependent on

memory address, but rather on the usage of the cache.

3. Set associative (k-way): In this method, the cache is divided into sets. Each set consits

of k cache lines. A modulo operation on the address of a memory line determines which

cache set is to be used. The memory line may then be placed in any cache line within

the identified set. A fully associative cache is a set associative cache with just one set

and a direct mapped cache, a 1-way set associative cache.

Figure 2.4 depicts these three different cache organizations and shows which cache

lines a particular memory line may be mapped to. This memory line is represented by a

shaded rectangle, and the cache lines that it may be mapped to in the different organizations

are also represented by shaded rectangles. The numbers above each rectangle representing

a memory line or a cache line are line numbers. In the case of set-associative caches, the

labels (prefixed by S) below indicate set numbers. In this example, the set associative cache

has an associativity of 2, indicating a set size of two.

2.3.2 Replacement Policy

Multiple memory lines that map to the same cache line could replace each other

in cache. In a direct mapped cache, this replacement is straightforward since every memory

line maps to one specific cache line. In case of a set associative cache, when a set is full,

any new memory line that maps to the same set has to replace one of the memory lines

that already exist in the set. Now, there arises the question of which line to select for

replacement. There are several replacement policies and some of the commonly used ones

are described below.
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Figure 2.4: Possible Mappings Between Main and Cache Memories

1. First In First Out (FIFO): Here, the line which was brought into the cache the earliest

is the first to be replaced.

2. Least Recently Used (LRU): This policy replaces the cache line that was used the

longest time ago.

3. Random: As the name suggests, in this case, a cache line is chosen at random for

replacement.

2.3.3 Write Policy

Memory accesses may be of two types: read and write. When a memory write is

performed, there are two issues that need to be considered, namely, the issue of bringing

the accessed memory line into cache and the issue of writing the modified data into main

memory. There are four policies based on these issues.

1. Write Through: When a memory write is performed, the modified contents are written

through to the cache and the main memory.

2. Write Back: When a memory write is performed, it is written only to the cache. It is

written to main memory later when the cache line is replaced.

3. Write Allocate: The memory line is modified and then brought into the cache.

4. Write No Allocate: The memory line is modified, but it is not brought into the cache.
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Systems specify a write policy for both a cache hit and a cache miss. The two

most commonly used combinations of policies are the write through with no write allocate

and the write back with write allocate.

2.3.4 Instruction and Data Caches

Instructions used to execute a program and data used by programs are both stored

in memory. Since the way that instructions are interpreted and used is different from the

way that data is used, typically, at the higest level of cache, there is a segregation between

the part that holds instructions and the part that holds data. These are known as the

instruction cache and the data cache, respectively.
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Chapter 3

Task Model

In the work presented in this dissertation, the focus is on periodic, hard real-

time tasks. Every task is assumed to have a deadline less than or equal to its period, an

assumption that is reasonable in a majority of hard real-time systems.

A task is assumed to have two types of characteristics, namely basic and derived.

A basic characteristic of a task is one that is defined for a specific single task, and a derived

characteristic is one that is defined in the context of a given set of tasks.

As introduced in Section 2.1.2, every periodic real-time task has four basic char-

acteristics. In addition to these four characteristics, a task may have more characteristics,

both basic and dervied. The notations used in this dissertation for the basic and derived

characteristics of a task are now presented.

A task is denoted by Ti, where i is a unique identifier assigned to the task. The

jth instance of Ti is denoted as job Ji,j . The basic characteristics of Ti are represented by

the 5-tuple (Φi, Pi, Ci, ci, Di).

1. Φi represents the phase of a task, i.e., the time between the start of the system and

the release of the first instance of the task (first job).

2. Pi represents the period of a task, i.e., the inter-arrival time between consecutive

instances of the task.

3. Ci represents the worst-case execution time (WCET), of a task, i.e., the longest

possible execution time for the task.

4. ci represents the best-case execution time (BCET), of a task, i.e., the shortest possible
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execution time for the task.

5. Di represents the relative deadline of a task, i.e., the time by when the task must

complete its execution relative to its time of release.

In the context of a specific task set, a task has a set of derived characteristics,

represented by the 3 tuple (Bi, �i, ∆i).

1. Bi represents the blocking time of a task, i.e., the time for which its execution might

be interrupted due to a task with lower priority that holds a shared resource required

by the task.

2. �i represents the response time of a task, i.e., the time between the release of the task

and its completion.

3. ∆i represents the data-cache related delay incurred by a task due to interruptions by

other tasks.

The lowest common multiple (LCM) of the periods of all tasks within a task set

is known as the hyperperiod of the task set.

The work presented in this dissertation is divided into three major components. In

the first component, data cache behavior is characterized with respect to a single task. In

this component, only four basic characteristics of a task are used — phase, period, WCET

and relative deadline. In the second component, the concept of preemptions among tasks

is introduced. In this component, one basic characteristic and three derived characteristics

are added to every task. The basic characteristic added is the best-case execution time of

the task. The derived characteristics, in the context of a task set, are response time and

data-cache related delay. In the final component, a task may have critical sections within

its execution. In this context, every task has an additional derived characteristic, namely

blocking time.
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Chapter 4

Data Cache Analysis - Single Task

In this chapter, an analytical technique for statically characterizing data cache

behavior in the context of a single real-time task is presented. An existing data cache

analysis framework, known as the Cache Miss Equations framework [13] was enhanced to

analyze a single task and calculate the number and positions of data cache misses that the

task incurs.

First, background information about the Cache Miss Equations framework is pro-

vided. Next, the enhancements incorporated by the work presented in this chapter are

discussed. Finally, experimental results are provided.

4.1 Cache Miss Equations Overview

The Cache Miss Equation (CME) framework proposed by Ghosh et al. [13] is a

method to generate a set of linear Diophantine equations to characterize the behavior of a

data cache in loop nest oriented code consisting of scalar and non-scalar (array) memory

references.

4.1.1 Terminology

Iteration Space

Every iteration of a loop nest is represented as an entity known as an iteration

point. For example, in a loop nest of depth 3, the iteration where the values of the induction

variables are 1, 2 and 3, respectively, for each loop starting from the outermost one, would
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be represented as the iteration point �i = (1, 2, 3). The set of all iteration points for a given

loop nest is known as its iteration space.

Reference and Access

A reference is a static memory read or write instruction in the program. A par-

ticular execution of a reference is termed as a memory access.

Reuse Vectors

In order to summarize data reuse among references in loop nest oriented code,

the CME framework uses the concept of reuse vectors as defined by Wolf and Lam [14].

If a reference accesses the same memory line in two iterations �i1 and �i2, where �i2 > �i1,

�r = �i2 −�i1 is called a reuse vector. For example, consider the matrix multiplication code

shown in Figure 4.1(a).

for(i = 0; i < N; ++i)
for(k = 0; k < N; ++k)

for(j = 0; j < N; ++j)
C[j][i] += A[k][i] * B[j][k]

(a) Matrix Multiplication Code

r

i

j

k

(b) Iteration Space for Matrix Multiplication Code

Figure 4.1: Loop Nest and Iteration Space with one Reuse Vector �r = (0, 0, 1) for A[k][i]

Here, the reference B(j, k) has a reuse, which is represented by the reuse vector

(0, 1, 0). Reuse vectors are classified into four types as described below.

1. Self-temporal reuse A self-temporal reuse occurs when a reference accesses the

same memory element in different iterations.

2. Self-spatial reuse A self-spatial reuse occurs when a reference accesses the same

memory line in different iterations.
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3. Group-temporal reuse A group-temporal reuse occurs when different references

access the same memory element.

4. Group-spatial reuse A group-spatial reuse occurs when different references access

the same memory line.

Consider the matrix multiplication code in Figure 4.1(a) again. The iteration

space for this code is shown in Figure 4.1(b). An example reuse vector �r = (0, 1, 0) is shown

in the iteration space.

Perfectly Nested and Rectangular Loops

A perfectly nested loop is one in which all memory references are found in the

inner most loop of the loop nest. A rectangular loop is one in which the upper bound of an

inner loop does not depend on the current iteration of an outer loop.

4.1.2 Cache Miss Equations

CMEs are a set of equations whose solutions represent potential cache misses for

references in a loop nest. They relate the iteration space of the loop nest, base addresses of

arrays, array sizes and the cache parameters in a precise fashion. For every reference, and

along every reuse vector for that reference, two kinds of CMEs are generated — cold miss

equations and replacement miss equations. The term along a reuse vector means that, for

a reference, only that reuse vector is assumed to be present, ignoring the presence of any

other reuse vectors.

Cold Miss Equations

Solutions to cold miss equations represent potential cold data cache misses. These

are misses that occur upon the first access to a memory line, hence making them compulsary

by definition. Cold misses may occur in two cases, namely, when a reference reuses data

from an iteration point that is outside the iteration space and when a reference reuses data

that is mapped to a different cache line.
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Replacement Miss Equations

Solutions to replacement equations account for the remaining misses, namely, ca-

pacity and conflict misses. For a given reference, replacement miss equations along a par-

ticular reuse vector represent interference with any other reference, including itself (self-

conflict).

Solving CMEs directly is computationally complex. However, mathematical tech-

niques for manipulating these equations are employed to make the process tractable [15, 16].

Solutions to each CME only represent potential cache misses. The effects of multiple CMEs

are composed to find the actual miss points. A detailed description of the generation of

CMEs and the algorithm to compute the actual misses may be found in [13].

4.1.3 CME Implementation Overview

In the work presented in this dissertation, an existing implementation of the CME

framework is re-used and enhanced. The original implementation framework, named Coy-

ote, is derived from work by Bermudo et al. [15]. The Coyote framework utilizes basic reuse

vectors as suggested in [14]. The Coyote framework is extended, in the work presented in

this dissertation, to take into account the precise shape of the iteration space. This ex-

tended Coyote framewok forms the data cache analyzer in Figure 4.7 of Section 2.2.2 and

will be referred to as such in the remainder of this dissertation.

4.2 Conceptual Enhancements to the CME framework

The original CME framework imposes several restrictions on programs that it

can analyze. Fundamental among these are as follows. First, the upper bounds of all

loops must be known at compile-time. Second, array subscript expressions must be affine

functions of the loop induction variables. Third, the program can contain only perfectly

nested, rectangular loops. Fourth, the program cannot contain data-dependent conditionals.

Several enhancements were introduced into the CME framework in order to relax some of

the above restrictions. These enhancements are depicted by the block diagram shown in

Figure 4.2.

Recent work by Vera et al. [17] relaxes the assumption about perfectly nested

loops and allows sequential loop nests of equal depth by transforming arbitrary loop nests.
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This part of the loop transformation is done in the blocks (d) and (e) of Figure 4.2. A

disadvantage of this scheme is that it leads to changes in representation of reuse and iteration

spaces. In order to overcome this disadvantage and yet allow arbitrary loop nests, the

concept of forced loop fusion is introduced. This is represented by block (f) in Figure 4.2.

These loop transformations are explained in detail in Section 4.3.

The enhanced framework permits non-rectangular loops in programs. Conceptu-

ally, a non-rectangular loop is represented by a condition posed on the upper bound of an

inner loop, based on the current value of the induction variable of an outer loop. They are

treated as such since any condition that is based solely on induction variables is analyzable

statically.

Finally, programs with data-dependent conditionals that have no “else” part are

permitted. If the condition is not satisfied, one part of the code is simply skipped. An

upper bound on the number of misses incurred by a program with such a conditional is

calculated. For a direct-mapped cache, the worst case is to assume that the condition is

satisfied.

Since the data cache analyzer reuses the original Coyote framework (shown in block

(g) of Figure 4.2), up to the CME generation stage, the equations are generated assuming

that all references in the loop nest are executed at every point in the iteration space.

However, several statically analyzable conditionals are introduced during forced loop fusion

and while handling non-rectangular loop nests. Consequently, the reuse vectors generated

are no longer correct and could lead to overly optimistic (unsafe) or overly pessimistic

(unreal) results. To prevent timing violations and ensure timing safety, an extra analysis

step is added to the actual miss calculation stage. This step is represented by block (h) of

Figure 4.2.

4.3 Loop Transformations

The data cache analyzer performs several loop transformations on a program in

order to make programs with arbitrary loop nests analyzable by the CME framework. In

the first step, the depths of all loop nests in the program are equalized by introducing

dummy loops with a single iteration where required. In the second step, forced loop fusion

is applied to these sequential loop nests of equal depth. The concept of forced loop fusion

is explained in Section 4.3.1.
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Figure 4.2: Data Cache Analyzer: Enhanced Coyote Framework

4.3.1 Forced Loop Fusion

Forced loop fusion is a technique whereby iteration spaces of several loop nests

of equal depth are concatenated to form one single loop nest. The basic idea behind this

technique is to concatenate iterations of all loops at the same depth. In order to maintain

the correct order of memory accesses within loops, conditionals based on the loop induction

variables are introduced as required.

The algorithm for performing forced loop fusion is described in Figure 4.3. Fusion

starts from the outermost level and proceeds inwards. For every distinct level in the input

loop nests, a corresponding level is introduced in the fused output loop nest. The number

of iterations of the fused loop is the sum of the number of iterations of every loop at that

level in the input loop nests.

As an example, consider the loop nests shown in Figure 4.4(a). Here, the input

program has two distinct loop levels. Fusion is started at the outer loop level. Since there

are two loops at that level, with M and P number of iterations respectively, the outer

level of the fused loop nest would have a number of iterations equal to M + P . In order

to maintain the correct order of memory accesses, one conditional is introduced for each

reference in the innermost loop to specify when that reference is to be executed with respect

to the recently fused loop level. The resulting loop nest after one level of fusion is shown
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        oldindex = (new index for level − 

lb new = lower bound for new loop at curr level
ub new = upper bound for new loop at curr level
for each loop level in loop nests
      n iter = 0
      for each loop at curr level
            n iter += num iters in curr loop
      lb new = 1
      ub new = n iter
      remove loops at curr level from loop nests
      add new loop at curr level to loop nests with new index
      update subscripts of all references in loop nests as follows:
      for each reference
            for each subscript referring to curr loop level

n iter = num iters in curr level

        num iters. in orig. loop represented by old index)

Figure 4.3: Forced Loop Fusion Pseudocode

in Figure 4.4(b). The same process is repeated for the subsequent levels in the input loop

nests until one single, perfectly nested loop is formed. The final fused output loop nest

obtained in this example in shown in Figure 4.4(c).

4.4 Deriving Exact Data Cache Reference Patterns

The original CME work provides slightly pessimistic results for certain programs.

In addition to the conceptual enhancements presented in Section 4.2, new approaches are

proposed to overcome this pessimism.

4.4.1 Causes for Pessimism in CME Framework

Each individual CME only represents iteration points that could potentially suffer

a data cache miss. These iteration points are then analyzed considering the combined effect

of all reuse vectors for the reference, thus categorzing the reference as a miss or a hit in

the data cache for that particular iteration point. The CME framework produces slightly

pessimistic estimates for the number of misses that each reference in a loop nest incurs.
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for (l = 1; l <= P; l++)

          references

     for (j = 1; j <= N; j++)

     for (m=1; m<=Q; m++)

 references

for (i = 1; i <=M; i++)

(a) Original Loop Nests

(i => ii − M)

     for (j = 1; j <= N; j++)
          if(1 <= ii <= M)

for (ii = 1; ii <=(M+P); ii++)

              updated refs.
(i => ii)

     for (m = 1; m <= Q; m++)
          if(M < ii <= (M+P))

          updated refs.

(b) After Fusing Outermost Levels

for (ii = 1; ii <=(M+P); ii++)
     for (jj = 1; jj <= (N+Q); jj++)
          if(1 <= ii <= M) && 

          updated refs. 

 (1 <= jj <= N)
              updated refs.

    if(M < ii <= (M+P)) && 
 (N < jj <= (N+Q))

(j => jj)

(m => jj − N)

(c) Final Fused Loop Nest

Figure 4.4: Example Illustrating Forced Loop Fusion

There are several reasons for this.

First, the implementation of CMEs, as provided by Coyote, does not analyze all

iteration points due to the complexity involved. Instead, a representative sample of the

iteration space is considered for analysis and a confidence value is given as a feedback.

The second problem stems from the layout of array elements in cache lines. In

the original CME framework by Ghosh et al. [13], all arrays are assumed to be aligned in

memory lines and, hence, cache lines. This assumption might not always be true — the first

element of an array may have a non-zero offset from the start of the cache line. The Coyote

framework relaxes this assumption and takes exact base addresses into consideration during

its analysis [15, 16]. However, even Coyote does not take arbitrary reuses into account.

If arrays are not cache-aligned and elements are accessed in non-sequential order,

they may have reuses that the original CME framework does not detect. As an example,

consider a two-dimensional array a[1..10][1..10] that has a column-major layout. For the

sake of simplicity, consider a data cache that is large enough to hold the array entirely. Let

the size of each cache line be 32 bytes and the size of each array element be 4 bytes. The

base address of the array is assumed to be such that it causes the the mapping shown in

Figure 4.5.

Now, consider an iteration space of depth two that traverses the array in row-

major order. The elements a[1][1], a[1][2] and a[1][3] are correctly categorized by the CME

framework as cold misses since it is the first time those memory lines are accessed. Next,

elements like a[3][3] are also classified as cold misses since they are on a different memory

line than previously accessed data. In a similar fashion, the CME framework also classifies

access a[5][2] as a cold miss. However, in reality, since a[5][2] is on the same memory line
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6,2 7,2 1,3 2,3

4,3 5,3 6,3 8,3 9,3

1,1 4,1 5,1 6,1

7,1 8,1 9,1 2,2 3,2

8,2 9,2 10,2

3,3 7,3 10,3

2,1 3,1

10,1 1,2 4,2

5,2

Figure 4.5: Sample Mapping of 2-D Column-Major Array in Cache

as a[1][3], it has already been brought into the cache and should actually be classified as a

hit. Ignoring such reuse leads to pessimism in the miss count.

A third reason for pessimism in the CME framework is that it only captures reuse

between uniformly generated references. Reuse across variables is not captured. While

this impacts array references only for layouts where one array ends and another starts in

the same cache line, it severely impacts programs that have frequent references to scalar

variables that share cache lines due to their placement in memory.

4.4.2 Enhancements for Removal of Pessimism

In the work presented in this dissertation, the stress is on deriving exact data

cache reference patterns. This makes it mandatory for the data cache analyzer to consider

all iteration points while computing actual miss points. This increases the complexity of

computation. However, since the analysis is a static one that pre-computes all data cache

reference patterns by code analysis, this one-time overhead is considered to be reasonable.

Moreover, the improvement an exact pattern promises in accuracy of static timing analysis

for a single task is a significant motivation for this approach in spite of the overhead.

The second problem described in Section 4.4.1 is not easy to resolve using reuse

vectors. Hence, a different approach is taken and further analysis is performed on the

iteration points that are classified as compulsory misses by the CME framework. This is

represented by the block (i) in Figure 4.2. The analysis is as follows. First, a check is

conducted to see if there exists any prior iteration that references an element in the same

cache line as that of the reference under consideration. If so, a second check is conducted to

see if this reference has been replaced since it was last brought into the data cache. In order

to avoid traversing the iteration space to find such iterations, a back-tracking approach is
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used. Elements that map to the same cache line as the reference under consideration are

mapped back to the iteration space. This produces an iteration point that refers to these

elements. Afterwards, the check to ensure that this iteration point is earlier in the iteration

space than the current iteration is a simple process. Since the number of elements that can

map to any cache line is a constant, the complexity involved in this process is generally

affordable.

If a program has many scalars, the first access to each of them is treated as a miss

by the original framework. Here, each variable would be considered separately and, hence,

reuse vectors do not capture reuse between them. In order to overcome this limitation,

scalars of equal size that are adjacent in memory are merged and treated as an array for the

purposes of data cache analysis. This merging is performed as part of a pre-analysis phase

as shown in block (b) of Figure 4.2. Hence, reuse between different scalars that map to the

same cache line is captured by treating them as elements of a single array.

The result produced by the data cache analyzer, with the conceptual enhancements

presented in Section 4.2 and the enhancements presented in this section, is a series of data

cache miss/hit patterns - one for every reference in the program being analyzed.

4.5 Putting it All Together: An Example

In this section, a simple example illustrating data cache analysis approach is pro-

vided. Consider a direct-mapped, 1 KB data cache with a line size of 32 bytes. The input

loop nests for the example task is shown in Figure 4.6(a). The input code consists of four

memory references, named 1, 2, 3 and 4 in the order of the first execution of each reference.

Characteristics of the two variables in the code, namely, A and B, are shown in Table 4.1.

Table 4.1: Characteristics of Variables
Ref Dimensions Base Address Element Size
A 1..10, 1..10 151944 4
B 1..10, 1..10 153000 4

First, the input loop nests are pre-processed in accordance with the transforma-

tions described in Section 4.3.1. Recall that forced fusion concatenates loop bodies by

extending the first iteration space with the second one. Loop bodies are conditionally exe-

cuted depending on the iteration point in the fused space. The resulting loop nest is shown
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for(k = 1; k <= 10; k++)

for(j = 1; j <= 5; j++)
A[i][j] = 19 ;

for(i = 1; i <=10; i++)

D[s][m] = 13 ;
for(m = 1; m <= 5; m++)

for(s = 1; s <= 10; s++)
D[i][k] = A[i][k] + 7 ;

(a) Original Loop Nests

&& (j >=16) && (j <= 20) )

for(i = 1; i <=20; i++)

D[i−10][j−15] = 13 ;

for(j = 1; j <= 20; j++)
if( (i >=1) && (i <= 10)

&& (j >=0) && (j <= 5) )
A[i][j] = 19 ;

if( (i >=1) && (i <= 10)
&& (j >=6) && (j <= 15) )

D[i][j−5] = A[i][j−5] + 7 ;

if( (i >=11) && (i <= 20)

(b) Transformed Loop Nest

Figure 4.6: Loop Transformation

in Figure 4.6(b).

Using this transformed loop nest as input, cache miss equations are generated

using the data cache analyzer (extended Coyote framework). The miss/hit patterns that

are produced as a result are shown in Table 4.2. Column one shows the reference number.

Column two indicates the number of misses the original Coyote framework produces for the

given program and column three shows the results produced by the enhanced data cache

analyzer.

Table 4.2: Coyote Output vs. Data Cache Analyzer Output (Hit: dot, Miss: M)
Ref Coyote Data Cache Analyzer Output

misses Miss/Hit patterns
1 50 MMMMM.......M.....................................
2 100 .....MMMMM................M......................M

..................................................
3 100 MMMMMMMMMM............M...M......................M

..................................................
4 50 ..................................................

The original Coyote framework cannot analyze loop nests with the structure shown

in Figure 4.6(a). It is given the transformed loop nest shown in Figure 4.6(b), but has no

knowledge of the conditionals introduced due to loop transformations. Hence, the Coyote
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framework assumes that all the references are executed at every point in the fused iteration

space and produces very pessimistic results.

On the other hand, the miss/hit patterns produced by the data cache analyzer are

accurate. They not only convey information about the number of misses for every reference,

but also about their positions in the access space of the reference.

4.6 Implications to the Static Timing Analyzer

The data cache analysis technique presented thus far in this chapter implies sig-

nificant improvements to static timing analysis. The static timing analyzer framework

described in Section 2.2.2 is now enhanced to include the data cache analyzer. The re-

sulting framework is depicted in Figure 4.7. The shaded blocks represent the novel and

enhanced modules of the framework.

Control flow and memory reference information is now fed to the input generator

module, which is responsible for performing scalar merging, loop transformations, etc. as

explained in Sections 4.3 and 4.4. The resulting single, perfectly nested loop is given to the

data cache analyzer, which then produces data cache miss/hit patterns, also termed data

cache reference patterns. These patterns indicate which data cache accesses are guaranteed

Configuration
Miss/Hit

I−Cache
Categorizations

Static Cache
Simulator

Machine

Information
Dependent

Patterns

WCET
Prediction

Timing
Analyzer

GCC
Compiler

Source
Files

Cache
Configuration

Analyzer IP
Generator

Data CacheCache

Control flow
& Memory
Refs. Info.

Analyzer

Figure 4.7: Static Timing Analysis Framework Enhanced with Data Cache Analyzer
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to be hits and which others are not.

The data cache reference patterns indicate the position of each miss in a sequence

of references. However, in this chapter, the aim is to obtain WCET estimates for a single

task ignoring the interference from other tasks in the system. For this purpose, it is sufficient

to use just the number of data cache misses that a reference incurs. Hence, in this chapter,

only the number of misses is fed to the core timing analyzer. The timing analyzer considers

the impact of these cache misses in the context of pipeline analysis and path traversal to

obtain bounds on the WCET of the task.

In order to obtain safe and tight WCET bounds, static timing analysis considers

one loop nest at a time starting with the inner-most nest. The times of the longest paths are

then repeatedly determined as long as a change in the cache or processor states is observed.

A steady state is said to be reached when two consecutive loop iterations result in the same

WCET bound. The remaining loop iterations are then guaranteed to be bound by this

fixpoint as well [18]. The overall bound for an inner loop can be used directly in the context

of the outer loop in conjunction with adjustments due to caching effects between loop

nests. This method assumes a consistent pattern for the worst-case cache categorization,

even across loops. While this assumption is valid in the case of an instruction cache, it may

not be valid for a data cache.

Consider n data cache misses for a reference, where n may exceed the upper bound

on the number of iterations for an inner loop. Hence, misses extend beyond the iterations of

the inner loop. Furthermore, these misses may be scattered over a subset of iterations of the

outer loop, not necessarily following any regular pattern, as was observed in the experiments.

To handle such misses, the next iteration of the outer loop needs to be considered when

finding a fixpoint for the inner loop. This increases the number of iterations of the inner loop

that need to be considered before reaching a steady state, thus increasing the complexity of

static timing analysis. A method is now presented to solve this problem with a space and

time complexity O(r + 1), where r is the number of references in a loop nest.

To illustrate the solution, consider the code shown in Figure 4.8(a). For the sake

of demonstration, assume that the number of misses predicted by the data cache analyzer

for the refernce A[i][j] is 13. The inner j loop is timed once considering the reference A[i][j]

to be a miss. This is termed the miss time for the loop. Next, the inner loop is timed

considering the same reference to be a hit and this is termed the hit time. During timing

analysis, information about the miss and hit times of the inner loop for specific iterations



28

for(i = 1; i < 10; ++i)

for(j = 1; j <= 10; ++j

A[i][j] = 19;

(a) Sample Loop Nests

Iterations with Iterations with
i miss time for j loop Hit time for j loop
1 10 0
2 3 7

3..10 0 10
(b) Miss and Hit Time

Figure 4.8: Miss Pattern Crossing Loop Nests

of the outer loop are propagated. Table 4.8(b) shows these values for the example being

considered.

This concept, when extended to a loop nest with several references, leads to an al-

gorithm with complexity O(r+1) since several permutations of miss/hit status of references

need to be considered unlike just two timings in the current example.

4.7 Experimental Setup

Several experiments are conducted to demonstrate the data cache analysis tech-

nique introduced in this chapter. In all experiments, a direct-mapped cache of size 1 kilobyte

is assumed unless otherwise mentioned. All but two of the benchmarks used in the experi-

ments are taken from the DSPStone benchmark suite [19].

These benchmark programs are modified to replace pointer-based memory accesses

with equivalent array accesses to make them statically analyzable. The concept of abstract

inlining is used to inline all the functions in the benchmark due to implementation con-

straints. Since these changes do not affect the order of memory accesses in the benchmarks,

they are acceptable for the purposes of data cache analysis. Some of the benchmarks in

the DSPStone suite are not suitable since they have indirect memory accesses, which are

currently not analyzable by the data cache analyzer.

A sorting benchmark, simple-srt-test, is taken from the CLAB benchmark suite.

Lastly, a synthetic benchmark is contructed in order to assess the contributions of the data

cache analyzer in comparison to those of the original Coyote framework.
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Table 4.3: Comparison: Coyote/Data Cache Analyzer/Trace-Driven for 4KB Data Cache
Benchmark Coyote framework Data Cache Analyzer Simulator

used Misses Hits Misses Hits Misses Hits
convolution 400 400 26 374 26 374
dotproduct 8 0 3 5 1 7

fir 599 1192 26 573 26 573
lms 1207 9449 27 1071 27 1071

matrix1 4600 779400 39 4561 38 4562
nrealupdates 1200 2400 52 1148 50 1150
simple-srt-test 14 59986 14 29686 14 29686

looptest 39 161 26 174 26 174

4.8 Experimental Results

In this section, results from experiments conducted using the benchmarks de-

scribed above are presented. The first set of experiments compares results obtained from

the original Coyote framework and the enhanced data cache analyzer. Table 4.3 shows the

number of misses and hits produced by the original framework and the enhanced analyzer,

respectively.

For all except the last benchmark, arrays are assumed to be aligned on cache line

boundaries for the sake of simplicity. For all benchmarks, it may be observed that there

is a mismatch in the total number of accesses (hits+misses) between the original Coyote

framework and the data cache analyzer.

As explained in Section 4.5, this is due to the fact that the original framework

cannot analyze the benchmarks as they are. Thus, the benchmarks are transformed to a

form accepted by the original framework. However, during this process, several conditionals

based on the loop induction variables are introduced, which the Coyote framework is not

aware of and cannot take into consideration. Hence, it assumes the entire fused iteration

space with accesses in an unconditional fashion, thereby causing a mismatch in the total

number of accesses.

It may be observed that Coyote does not catch even a single hit in reality in any

except the last two benchmarks shown in Table 4.3. Hence, for these benchmarks, the

very fact that the data cache analyzer is able to analyze them is an advantage that the

original framework does not possess. For the simple-srt-test benchmark, the loop nest is

non-rectangular. Since Coyote does not recognize non-rectangular benchmarks, it assumes
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that the entire rectangular space is traversed.

For the sake of comparison on equal ground, a synthetic benchmark with a loop

structure that is analyzable by Coyote is constructed. This is shown the last row in Table

4.3. For this benchmark, it may be observed that the data cache analyzer produces tighter

estimates than the original Coyote framework. The reason for this is two-fold. First, arrays

are not aligned on cache line boundary as assumed by Coyote, and, second, adjacent scalars

that share a cache line are not recognized as such by Coyote (explained in Section 4.4).

In order to verify the correctness of the results obtained above, a cache simulation is

performed for each of the benchmarks, using worst-case input. These results are also shown

in Table 4.3. It may be observed that the data cache analyzer never underestimates the

worst-case performance of a task. Table 4.4 shows the per-reference breakdown of the same

results for one of the benchmarks. The reason for the small disparity between the results of

the data cache simulator and the data cache analyzer is that the data cache analyzer only

considers reuse within a variable. Reuse across multiple variables is not considered. As

explained in Section 4.2, this problem is handled in the case of scalars since the disparity

would be much more significant there.

simple-srt-test is a sorting benchmark taken from the CLAB suite. This benchmark

contains data dependent conditionals and non-rectangular loops. It may be observed from

results that the data cache analyzer produces an exact bound on the number of cache misses

for this benchmark.

Table 4.4: Per-Reference Misses by Data Cache Analyzer vs. Trace-Driven for matrix1
Reference Data Cache Analyzer Simulator

1 13 13
2 13 13
3 13 12

4..10 0 0

The final set of experiments conducted demonstrates the fact that consideration

of a data cache for purposes of timing analysis makes a significant difference to the WCET

bound produced by the timing analyzer. The results in Table 4.5 show the worst case

execution cycles (WCEC) when data references are considered as 1) always miss, 2) first N

misses and 3) cold misses only. The second category, namely first N misses, uses the output

produced by the data cache analyzer framework. The third category uses cold miss counts
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from the trace-driven simulator to verify results.

From the results in Table 4.5, it may be seen that considering every reference as

a miss would severely overestimate the WCET bounds. On the other hand, the estimate

produced by the data cache analyzer is a tight upper bound on the number of data cache

misses, thereby enabling tight WCET bounds. For a cache size of 4 KB, which is large

enough to fit the entire data set for all benchmarks, the estimate comes very close to the

estimate considering only cold misses as provided by the trace-driven simulator. For a

smaller cache size which results in additional misses, the estimate produced by the data

cache analyzer is tight.

Table 4.5: Timing Analysis for Different Data Cache Categorizations in Cycles
Benchmark Always First N Misses Cold

Miss 1K Cache 4K Cache Misses
convolution 8791 5051 5051 5051
dotproduct 530 480 480 460

fir 12797 7097 7097 7097
lms 18544 11814 11814 11814

matrix1 96168 52378 50558 50548
nrealupdates 23338 12658 11858 11838
simple-srt-test 668894 372034 372034 372034

looptest 6482 4742 4742 4742
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Chapter 5

Data Cache Analysis - Multiple

Tasks

In Chapter 4, a technique that characterizes data cache behavior for a single task is

presented. In this technique, the data cache is assumed to be used solely by the task being

analyzed, ignoring the effects of interference from other tasks. However, most practical

real-time systems have multiple tasks.

In the next three chapters (Chapters 6, 7 and 8), data cache analysis techniques

for task sets with multiple tasks executing in a prioritized fashion are presented.

5.1 Response Time Analysis

Response time analysis is used to determine schedulability of a task set [20, 21].

The response time of a task, as explained in Chapter 3, is the time between its release and

its completion. The worst-case response time of a task includes a) the worst-case execution

time of the task, b) the execution of higher-priority jobs within the response time of the task

and c) the data-cache related delay experienced by the task due to interference from other

tasks. In the context of tasks with critical sections, the worst-case response time includes

an additional waiting time due to lower-priority tasks.

The response time of a task is calculated using an iterative approach as indicated

in Equation 5.1.
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�n+1
i = Ci + Bi +

∑
∀k∈hp(i)

��
n
i

Pk
� · Ck + ∆i (5.1)

In some situations, there arises a need to calculate the response time of a particular

job. Equation 5.2 is used in such a scenario.

�n+1
i,j = Ci + Bi,j +

∑
∀(k,l)∈hp(i,j)

��
n
i,j

Pk
� · Ck,l + ∆i,j (5.2)

In Equations 5.1 and 5.2, the set hp denotes the set of tasks/jobs with a higher

priority than the current task/job. For every task/job, the value of � that converges this

equation is its response time.

5.2 Experimental Framework

The next three chapters use a common experimental framework, described below.

In all experiments, a 4KB, direct-mapped data cache with a hit penalty of 1 cycle and a

miss penalty of 100 cycles is assumed. Several task sets are constructed using the DSPStone

benchmarks ([19]) with different data set sizes. The benchmarks used, along with their

stand-alone WCETs and BCETs (with base execution times calculated using the technique

described in Chapter4), are shown in Table 5.1. A benchmark ID is given to each of

the benchmarks. This ID will be referenced in experimental result tables. The prefixed

numbers in some of the benchmarks indicate the number of iterations within the task. In

all benchmarks, with the exceptions of matrix1 and dot-product, the number of iterations

is 100 in cases where there is no prefix.
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Table 5.1: Stand-Alone WCETs and BCETs of DSPStone Benchmarks
ID Name WCET BCET ID Name WCET BCET
1 convolution 7491 7491 15 matrix1 59896 54015
2 200convolution 14191 14191 16 fir 9537 9537
3 300convolution 20891 20891 17 500fir 43937 43937
4 500convolution 34291 34291 18 600fir 54837 52537
5 600convolution 45291 40991 19 700fir 65937 61137
6 700convolution 55491 47691 20 800fir 77037 69737
7 800convolution 66191 54391 21 900fir 88137 78337
8 900convolution 76391 61091 22 1000fir 99237 86937
9 1000convolution 87091 67791 23 lms 14536 14536
10 n-real-updates 16738 16738 24 600lms 89636 79536
11 300n-real-updates 56538 47338 25 700lms 112636 92536
12 400n-real-updates 92238 62638 26 800lms 135636 105536
13 500n-real-updates 127538 77938 27 900lms 158636 118536
14 dot-product 750 750 28 1000lms 181636 131536
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Chapter 6

Preemption Delay Analysis

In this chapter, data cache analysis techniques for systems with multiple tasks that

execute in a prioritized, preemptive manner are presented. Here, all tasks are assumed to

be completely preemptive.

In a prioritized, preemptive real-time system, every task is assigned a priority. At

any given time, the task with the highest priority must be scheduled for execution. An

implication of this requirement is that, when a certain task becomes ready for execution, it

preempts the execution of the currently executing task if it has a higher priority.

When a task is preempted, a subset of its memory lines may be evicted from the

cache due to execution of tasks with higher priority. Consequently, when the preempted

task resumes its execution at a later point in time, it may incur additional delay in order to

reload the evicted cache lines. This additional delay is termed Cache Related Preemption

Delay (CRPD). Assuming that all the cache lines loaded by a preempted task are evicted

by some task with a higher priority, although safe, is a very pessimistic assumption.

The fundamental steps involved in this calculation of a safe and tight estimate of

the CRPD of a task are given below.

1. Preemption delay: Calculation of the delay incurred due to a certain preemption,

given the preempted task, the set of possible preempting tasks and the time that

preemption occurs.

2. Number of preemptions: Calculation of np, an upper bound on the number of

times a task can be preempted during its execution in the context of a task set.
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3. Worst-case scenario: Identification of the placement of the np preemption points

in the iteration space of the preempted task such that the worst possible preemption

delay is obtained.

The rest of this chapter focuses on analysis techniques for data caches. The same

issues have been studied by Staschulat et al. for instruction caches [22], [23]. The work

presented here is orthogonal to the work by Staschulat et al.

6.1 Methodology

In this section, a technique to calculate a safe and tight estimate of the data-cache

related preemption delay (D-CRPD) for a task and, hence, estimates of the WCET and

response time of the task, is presented. The method incorporates D-CRPD calculations

into the WCET calculation itself. Furthermore, to make the preemption delay calculation

as accurate as possible, the intersection of the set of cache lines that are useful to the

preempted task on resuming execution and the set of cache lines that are potentially used

by higher-priority tasks in the meantime is calculated.

The calculation of worst-case execution time with data-cache related preemption

delay is performed in two phases. In the first phase, base execution times are calculated

for every task in the system, independent of other tasks. In the second phase, preemption

delay is calculated and added to the worst-case execution time of a task.

6.1.1 Phase 1: Calculation of Base Time and Data Cache Patterns

In order to calculate the base execution times for tasks, every task is analyzed

individually using the data cache analyzer described in Chapter 4. This produces data

cache reference patterns for each task, which are then used by the static timing analyzer to

build timing trees for every task. The timing tree provides information about the timing

of individual nodes (functions/loops) in a given task. It is to be noted that this base time

does not include the D-CRPD and is calculated only once for every task.

6.1.2 Phase 2: Preemption Delay Calculation

In this phase, the data cache analyzer and the timing analyzer interact repeatedly

to calculate the WCET of a task with D-CRPD included. The timing analyzer calculates
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the execution time of the given program up to a preemption point. At this point, the data

cache analyzer is invoked to calculate the number of additional data cache misses due to

the preemption. The delay due to these misses is added to the remaining execution time of

the task under consideration and the process is repeated for subsequent preemptions.

The data cache analyzer presented in Chapter 4 is capable of producing miss/hit

patterns for every task. These patterns indicate not only the number of data cache misses,

but also their positions. In Chapter 4, the analysis is for a single task and information on

the number of misses is sufficient. In the current section, a method to use information about

the positions of these misses to calculate the preemption delay at a given point is presented.

All data cache reference patterns for a task are merged maintaining the order of

memory accesses. References that access the same cache line are connected together to

form a chain that effectively indicates cache reuse. All chains for a task together form its

access chains. An example with just three cache line chains is shown in Figure 6.1. Chains

for different cache lines are shown using a different line style. Within each chain, a miss is

represented by the letter ’M’ and a hit is represented by a dot.

M  M  M  M  M  M  M  M  M  M  .  .  .  .  .  .  .  .  .  .  .  .  .  M  .  .  .  M  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  M  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Figure 6.1: Access Chains for Cache Lines 1, 2 and 3

Each point in the access chains of a task is assigned a weight that indicates the

number of additional data cache misses that would be incurred if a preemption were to occur

just after that point. This weight is calculated as follows. First, the number of different

cache-line chains that cross this point are counted. This effectively eliminates cache lines

that are not used after the access point under consideration. Additionally, two checks are

performed.

1. Chains in which the next access point on the chain is a miss in the pattern are not

counted. The rationale behind this is as follows. If the point were a miss in the first

place, it would be due to some intra-task interference. Hence, a preemption before

that point will not cause any further delay with respect to the cache line that the

chain represents.

2. Chains that correspond to cache lines that are not used by any higher-priority task are
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not counted. This ensures that only the cache lines that could potentially be replaced

after preempting the current task are considered.

Access chains for a task need to be constructed only once. However, since the

assignment of weights for every point is dependent on higher-priority tasks in the task set,

the weights are specific to a job in the context of a task set rather than a task.

6.2 An Upper Bound On Preemptions

In this section, a formula to calculate a guaranteed upper bound on the number

of preemptions for a task is first presented. Next, the worst-case placement of these points

in the iteration space of the preempted task is identified.

Consider a task Ti. An upper bound on the number of preemptions incurred by

Ti is given by Equation 6.1.

ni
p =

∑
j∈hp(i)

(�Di

Pj
�) (6.1)

Once again, the set hp(i) denotes the set of tasks with a higher priority than Ti.

Access chains are constructed as described in Section 6.1.2. From these chains, the sum of

the ni
p most expensive delays is calculated. This forms an upper bound on the worst-case

preemption delay of the task under consideration. The preemption delay thus calculated is

added to the WCET of the task. This method for calculating the number of preemptions

is denoted as HJ-P in all experimental results presented later.

Equation 5.1 is used in this section to calculate the response time of a task. How-

ever, this section assumes that task do not have any critical sections. Hence, the blocking

time factor is eliminated. In order to calculate the response time of a particular task, the

WCET, with D-CRPD included, of every higher-priority task is required. Hence, the pro-

cess starts with the calculation of the response time of the task with the highest priority and

proceeds towards the task with the lowest priority. For every task, the D-CRPD is calcu-

lated using the method described above. The resulting execution time is used in Equation

5.1.
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6.3 Preemption Delay Costs

As shown in Section 6.2, an upper bound on the worst-case preemption delay for a

task may be obtained by adding together, the np most expensive preemption delays. In this

process, no constraints are imposed on the interval between consecutive preemption points.

Table 6.1: Example Task Set Characteristics - Task Set 1
Benchmark Period Stand alone

(=deadline) WCET

convolution 62500 7491
fir 125000 9537
lms 125000 14536

n-real-updates 250000 16738
matrix1 250000 54168

The reason for using this upper bound is an observation regarding the reuse of

cache lines in a task. Consider a task set with characteristics as shown in Table 6.1. The

distribution of preemption costs for the second, third, fourth and fifth tasks of this task set

are shown in Figure 6.2. The X-axis shows the access space in order of memory accesses

and the Y-axis shows the cost of preemption at a point in terms of the calculated weight

at the point. The calculation of the weight at a given iteration point is decribed in Section

6.1.2.

From these graphs, it may be observed that, for the benchmarks in Figures 6.2(a),

6.2(b) and 6.2(c), a large number of access points have the highest preemption cost. Fur-

thermore, they are all consecutive, indicating that a preemption at any of these points

would result in the same preemption delay. Hence, picking the np most expensive points

gives a reasonably tight bound on the worst-case preemption delay.

The distribution of these delays is a direct indication of the reuse of cache lines in

the respective tasks. In most programs, ninety percent of the time is spent in ten percent

of the code. Within this ten percent, there are repetitive reuse patterns, which implies

temporal and spatial reuse. Hence, during the execution of this portion of the program, all

data that is used in the portion is already in the data cache. Preemption at any point in

this portion would result in more or less the same cache lines being evicted, hence causing

the same preemption delay.
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(a) lms benchmark
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(b) n-real-updates benchmark
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(c) matrix1 benchmark
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(d) fir benchmark

Figure 6.2: Distribution of Preemption Costs Across the Iteration Space

Although the above behavior is observed in some cases, there are some benchmarks

(Figure 6.2(d)) in which a gradual increase is observed in the preemption cost up to some

point and then a decrease in the cost for successive access points. Hence, in the next section,

methods to tighten the worst-case preemption delay bound are presented.

6.4 Tightening Preemption Delay Bounds

In Section 6.2, a method is described to calculate the WCET of a task with D-

CRPD. However, in that section, simplified methods are used to calculate the maximum

number of preemptions and the total preemption delay incurred. In this section, methods

to calculate significantly tighter estimates of the number of preemptions and a more real-

istic, yet safe method to identify the worst-case placement of these preemption points are

presented.
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6.4.1 Preemption Delay Affects Critical Instant

Real-time systems theory often assumes that, in the case of a fixed-priority schedul-

ing scheme, the worst-case response times for all tasks in a task set are exhibited when all

tasks are released simultaneously. This instant of release of all tasks is known as the critical

instant of the task set. While this is true in general, it does not necessarily hold true when

preemption costs are taken into account.

Table 6.2: Task Set, Optional Phasing
Φ P C ∆

T0 1 3 1 0
T1 0.875 15 4.625 0.125
T2 0.125 20 2.25 0.75
T3 0 25 1 0.125

Consider the task set with characteristics shown in Table 6.2. The first column

indicates the task ID, the second column indicates the phase Φ, the third column indicates

the period P , the fourth column indicates the WCET C and the fifth column indicates the

preemption delay ∆, respectively, for tasks T0 to T3. The scheduling policy used in this

example is the static Rate Monotone (RM) policy.

Figure 6.3 depicts the schedule obtained for this task set when all tasks are released

simultaneously (ignoring phase Φi). In contrast, Figure 6.4 depicts the schedule obtained

when tasks are released according to the phasing indicated in the second column of Table 6.2.

In both these figures, the hashed rectangles indicate normal execution of task and the black

rectangles indicate preemption delay. It may be observed that, in Figure 6.4, the response

time of T3 (15 units) exceeds its response time in Figure 6.3 (14 units). This example

demonstrates the fact that, when considering preemption costs, it is not safe to assume

that the critical instant occurs when all tasks are released simulataneously. Furthermore, it

is to be noted that there appears to be no straightforward method to calculate the critical

instant for a task set in such a context.

6.4.2 Eliminating Infeasible Preemption Points

The formula used to calculate an upper bound on the number of preemptions for a

task in Section 6.2 is based on the number of jobs of higher priority tasks that are released
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Figure 6.3: Preemption with Synchronous Release
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Figure 6.4: Preemption with Φ Phasing

in the period of the lower priority task. This leads to the consideration of several infeasible

preemption points either because the lower priority job has not been scheduled at all and,

hence, cannot be preempted, or because it has already finished executing. In this section,

a method that considers the best and worst case execution times of higher priority jobs

to eliminate these infeasible points is presented. As demonstrated in Section 6.4.1, the

critical instant does not necessarily occur when all tasks are released at the same time.

Furthermore, it is not straightforward to calculate the critical instant for a task set. Hence,

WCET calculations are performed for every job in the hyperperiod of a task set, for a given

phasing. The response time for each job is calculated using Equation 5.2, after eliminating

the term for blocking time since tasks are assumed not to have critical sections.

The method used to eliminate infeasible preemption points is described in the

remainder of this section. However, for the sake of simplicity, it is assumed that the pre-

emption delays for all preemptions are zero. The actual calculation of preemption delay

and the identification of the placement of preemption points in the iteration space of the

preempted task are discussed in the next section.

An example illustrating the methodology to eliminate infeasible preemption points

is now presented. The characteristics of the example task set are shown in Table 6.3. The
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hyperperiod of this task set is 200 and all jobs within this hyperperiod are considered in the

analysis. Once again, the task set is scheduled using the RM scheduling policy.

Table 6.3: Example Task Set Characteristics - Task Set 2
Task Period WCET BCET

= deadline
T0 20 7 5
T1 50 12 10
T2 200 30 25

For the purposes of this analysis, the construction of a timeline for every task

indicating release points for all higher priority jobs is required. Each of these release points

is a potential preemption point for the task under consideration and the goal is to eliminate

the infeasible ones. Figures 6.5 and 6.6 show the time lines for tasks T1 and T2, respectively.

The arrows represent job releases and are numbered consecutively. The preemption points

that get eliminated as a result of this analysis are circled. Best-case execution times are

laid out above the time axis and worst-case execution times, below the time axis. In this

example, black rectangles are used for jobs of task T0, gray rectangles for those of task T1

and the red rectangles, for those of T2.

First, consider the timeline for task T1 (Figure 6.5). In order to determine whether

release point 1 is a feasible preemption point for J1,0, two checks are performed. First, it

is determined whether J1,0 can get scheduled in the previous interval, i.e., between points

0 and 1. Secondly, it is determined whether any execution of J1,0 remains beyond point 1.

For the first condition, the BCETs of all higher priority jobs (in this examples, J0,0) are

used. Since there is idle time after placing the BCET of J0,0 (5 units), it is determined that

J1,0 could be scheduled before point 1. To check if any execution of J1,0 remains beyond

point 1, the sum of the WCETs of J0,0 and J1,0, 7 and 12 units respectively, are used. Since

this does not exceed point 1, J1,0 is guaranteed to finish within the current interval. Hence,

it is concluded that no preemptions are possible for J1,0.

Second, proceed to the next release of T1, i.e., J1,1. During the interval between

release points 3 and 4, in the best case, no higher priority job needs to be scheduled. Hence,

J1,1 can be scheduled in this interval. Next, it is determined that, in the worst case, J1,1 is

not guaranteed to finish before point 4. This leads to the conclusion that point 4 is a feasible

preemption point for J1,1. Proceeding this way, the maximum number of preemptions for
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Figure 6.5: Timeline for Task T1
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Figure 6.6: Timeline for Task T2

J1,1 is determined to be 1. The analysis is repeated for further releases of T1 within the

hyperperiod.

In the above example, it may be observed that the second release of T1, namely

J1,1, has a higher number of preemptions than J1,0, hence creating the possibility of a worse

response time for J1,1 by the addition of the preemption delay. Once again, this proves

the claim that the critical instant does not necessarily occur when all tasks are released

simultaneously.

The maximum number of preemptions for releases of task T2 is calculated using

the same analysis. The timeline for T2 is shown in Figure 6.6. For this task, two higher

priority tasks need to be considered, namely T0 and T1. Starting with J2,0, it is determined

that release point 1 is a feasible preemption point since J2,0 can be scheduled before point 1

and is not guaranteed to finish before point 1. Similarly, it is determined that points 2 and 3

are feasible. However, when the interval between points 3 and 4 is considered, it is observed

that, even in the best case, the execution of J1,1 occupies the entire interval. Hence, there is

no possibility of J2,0 being scheduled in this interval. This leads to the elimination of point

4 as a feasible preemption point for J2,0. In the worst-case, J2,0 finishes execution at time

82. Hence, points 6, 7, 8, 9, 10 and 11 are also eliminated. At the end of the hyperperiod,

the analysis determines that the maximum number of preemptions for J2,0 is 4. On the
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other hand, the method described in Section 6.2 produces a bound of 9 for the same job.

In summary, the method is as follows. Consider a set of tasks T0, ..., Tn. Let Ji,0,

..., Ji,k represent the jobs of task Ti. Assume that task T0 has the highest priority and that

task Tn has the lowest priority using a static priority scheme.

A timeline between 0 and the hyperperiod of the task set is constructed for every

task Ti, and the releases of all higher priority jobs are marked on this timeline. The feasibility

of a release point (say x) as a preemption point for Ji,j is determined by performing two

checks for the interval between release points x and x− 1. First, it is checked whether Ji,j

has a possibility of being scheduled in this interval based on the BCETs of higher priority

jobs. If not, point x is not a feasible preemption point. If yes, a further check if performed

to determine if any portion of execution of Ji,j remains beyond point x. If yes, point x

is a feasible preemption point. For this, the WCETs of all jobs executing in this interval,

including Ji,j, are considered in order of priority.

The above calculations are repeated for every interval between potential preemp-

tion points for Ji,j until it is guaranteed to finish. This analysis is performed for every job

in the hyperperiod of the task set.

6.4.3 Extension to a Dynamic Scheduling Policy

The analysis presented in Section 6.4 assumes a static priority scheme. The analy-

sis may be extended to support dynamic priority schemes as follows. Instead of calculating

priorities in the beginning of the analysis and assuming that they never change, job priorities

are recalculated at the beginning of every interval between consecutive preemption points.

This introduces the flexibility of being able to use different scheduling policies. The current

implementation of this methodology supports the static Rate Monotone (RM) policy and

the dynamic Earliest Deadline First (EDF) policy.

6.4.4 Calculation of the Preemption Delay

In Section 6.4.2, the method to eliminate infeasible preemption points is described

in isolation, without details about calculation of the preemption delay incurred at every

feasible point. In this section, the calculation of preemption delay at every point is described.

Every preemption point determined to be feasible for a task is a point in time. This point in

time needs to be translated into an execution point in the iteration space of the preempted
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task. The preemption delay at this point may then be calculated using the access chains of

the preempted task as explained in Section 6.1.2.

The static timing analyzer framework described in Section 2.2.2 provides best-

case and worst-case execution time estimates for a program. Furthermore, given a certain

interval of time, it can provide information about the iteration point at which the program

could be at the end of the interval both in the best and the worst-case scenarios.

To explain the above with an example, consider the task set whose characteristics

are shown in Table 6.3. On the timeline for task T2 shown in Figure 6.6, point 1 is identified

to be a feasible preemption point. In order to obtain the additional delay due to preemption

at point 1, the iteration point reached by J2,0 at the time of preemption must be identified.

Using the feasible preemption point analysis described in Section 6.4.2, the mini-

mum and maximum execution times available for a task in every interval between preemp-

tion points is calculated. In the current example, the BCETs and WCETs of jobs J0,0 and

J1,0 are used. In the first interval, after subtracting the time required for the higher priority

jobs, 5 units of time remain in the best case and 1 unit of time remains in the worst case,

for the execution of J2,0. These provide an upper and lower bound, respectively, for the

time available for J2,0 in the interval.

The upper and lower bounds thus identified are each supplied as inputs to the static

timing analyzer framework. The framework performs best and worst-case timing analysis

of the preempted task to produce, for each input, two iteration points. One iteration point

represents the latest possible point that could be reached (i.e., cannot be exceeded) by the

preempted task in the given time and is obtained from best-case timing analysis of the task.

The second iteration point represents the earliest iteration point that is guaranteed to be

reached in the given time and is obtained from worst-case timing analysis of the preempted

task.

Considering the earliest and latest iteration points among the four iteration points

obtained provides the range of iteration points that the preempted task could have reached

when it is preempted. Now, the preemption delay at each point in this range is calculated

and the maximum delay among those is considered to be the worst-case preemption delay

due to preemption at the particular point. This delay is added to the remaining worst-case

execution time of the task.

Upon resumption of the preempted task, execution should continue from the itera-

tion where it had left off. However, this is imprecise since it is not known at what points the
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preemption delay is actually incurred during the execution of the task. Hence, for future

preemption points, determination of the iteration range where the task is supposed to be

when it is preempted is not guaranteed.

In order to solve the above problem and provide safe estimates of the worst-case

preemption delay at every point, the following solution is devised. When a task is pre-

empted, the delay is calculated as indicated above. When the task later resumes execution,

it enters a preemption delay phase for a time equal to the calculated delay. In this phase,

the task prefetches all data cache items that contribute to the delay. Once done, the task

resumes normal execution. If a task gets preempted during its preemption delay phase,

it pessimistically starts the same preemption delay phase all over again once it resumes

execution. This new phase ensures that all future delay calculations are accurate.

In the current example, assume that T2 is a program that has a loop with 100

iterations. Using the lower bound of the time available for its execution (1 unit), assume

the static timing analyzer determines that J2,0 is guaranteed to reach at least iteration 4 and

cannot proceed beyond iteration 7. Similarly, assume it determines that J2,0 is guaranteed

to reach at least iteration 9 in 5 units of time (upper bound of the time available for its

execution) and does not proceed beyond iteration 13 in the same amount of time. Now, the

delays for each iteration point in the entire range between 4 and 13 are calculated. Among

these, the highest delay is chosen and added to the remaining WCET of J2,0.

The algorithm used to implement the above method of calculating worst-case pre-

emption delay at a given preemption point is summarized below. The static timing analyzer

framework is invoked to perform worst-case partial timing on the minimum available ex-

ecution time for the preempted task. This yields the beginning of the range of iteration

points to be considered. Next, the timing analyzer is invoked to perform best-case partial

timing on the maximum available execution time for the preempted task. This yields the

end of the range of iteration points. The range thus identified is provided to a function that

iterates through the access chains of the preempted task and calculates the highest delay

in the given range.

In the method described thus far, it is assumed that, for every task, the values of

its period, deadline and phase are known a-priori. For a given phasing of tasks, the method

presented in Section 6.4.2 calculates the worst-case response times for all tasks. Instead, a

modification to the method to calculate the worst-case response times for tasks regardless

of the phasing of the tasks is now presented.
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In the algorithm described above, for every preemption point, a range of iteration

points where the preempted task could be when it is preempted is calculated. The maximum

preemption delay in this range is assumed to be the preemption delay at the preemption

point.

Instead, it is now assumed that the maximum delay in the entire iteration space

is incurred at every preemption point. Further, in order to allow any phasing among tasks,

extra preemptions are added for every job. Assume that the maximum possible phasing for

any task is x units. Furthermore, for any given task, the maximum phasing is less than or

equal to its own period. Under these conditions, Equation 6.2 gives the number of extra

preemptions to add in case of a static-priority policy, and Equation 6.3 gives the number of

extra preemptions in the case of a dynamic-priority scheduling policy.

pextrai,j
x =

i−1∑
hp=1

(�min(x, Pi)
Php

�) (6.2)

pextrai,j
x =

n∑
hp=1

(



�min(x,Pi)

Php
�) , if hp �= i

0 , otherwise


) (6.3)

However, it may be observed that, every time a lower-priority task gets preempted,

at least one higher-priority task executes. The minimum amount of execution time of this

higher-priority task may be safely assumed to be at least equal to the shortest best-case

execution time (BCET) among all higher-priority tasks. Hence, the shortest BCET is

subtracted from the maximum possible phase of the lower-priority task before adding any

more extra preemptions, thereby tightening the bound on the number of extra preemptions.

This calculation effectively produces an upper bound on the number of preemptions and on

the worst case response times for a maximum phasing of x.

Consider the example used earlier in Section 6.4.1. The task-set characteristics

for this example are shown in Table 6.2. Figure 6.3 shows response times of tasks when all

tasks are released simultaneously. In order to calculate the response time of a task with a

maximum phasing of 1 unit, this scenario is used. In accordance with Equation 6.2, one

extra preemption needs to be added to each task. For example, for task T1, the response

time is calculated assuming three preemptions instead of two and considering the maximum

preemption delay at each of these points. In this example, since it is assumed that a task

has a constant preemption delay, ∆, for any preemption, that value is used as the maximum
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preemption delay and a response time of 8 units is obtained instead of 7.875 units.

When a preemption takes place, it results in a context-switch at the operating

system level. The operating system code that is executed in order to perform the context-

switch may also use the data cache and, hence, alter the results of the feasible preemption

point analysis. In the current experiments, this factor has not been considered. However,

conceptually, this issue may be dealt with in the following manner.

First, the data cache lines that are used by the operating system code are identified.

Since this code may not adhere to the constraints that the data cache analysis framework

poses on the programs, it cannot be used. Hence, a predetermined area in the memory is

allocated to hold the operating system code, thereby constraining the data cache lines that

it may use.

Second, the effects that the execution of operating system code would have on

the tasks being analyzed need to be considered. For this purpose, while calculating the

preemption delay incurred by a task at a given preemption point using access chains, the

cache lines allocated for the operating system code qre considered as potential candidates

for eviction. In other words, the operating system code would be treated as the highest

priority task in the system and would execute every time there is a preemption.

6.4.5 Analysis Algorithm

An algorithm briefly describing the methodology is shown in Figures 6.8 to 6.10.

The implementation of the system uses an event hierarchy. Every event has a handler that

performs all operations necessary on the occurrence of the particular event. Several event

types exist, each with a priority. Every event has a type, a time of occurrence and informa-

tion about the task and job that the event corresponds to. The events are ordered by time

and, upon ties, by priority based on the type of event. The various events in the system,

in order of priority, are BCEndExec, WCEndExec, BCPreemption WCPreemption, Dead-

lineCheck, JobRelease, BCStartExec, WCStartExec and DCacheRelatedDelayPhaseEnd.

The algorithm in Figures 6.8 to 6.10 describes the actions that take place when a certain

event is triggered. In the algorithm, the events are described in an order that follows the

flow of the logic rather than priority.

The basic flow of operations in the analysis is as follows. Stand-alone WCETs and

BCETs are calculated for each region of each task. JobRelease and DeadlineCheck events
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are pre-created based on task periods and inserted into a global event list. Events in the

event list are handled one at a time until there are no more events. The basic life-cycle of

a job is described below. Upon release of a job, it is first determined when that job gets

scheduled and whether any job that is currently executing gets preempted due to this release.

This triggers a B/WCStartExec event which signifies the start of execution of a job. If a

preemption occurs due to the job release, B/WCPreemption events are also triggered. The

B/WCStartExec events schedule B/WCEndExec events or DCacheRelatedDelayPhaseEnd

events as the case may be. Finally, a DeadlineCheck event is triggered and is responsible

for checking if a certain job misses its deadline.

The creation dependencies between event types are represented by the state-

transition diagram shown in Figure 6.7. An arrow from one event type to another indicates

that the handler of the first event type may create an event of the second type. Events that

do not have a creator in the diagram are created at the beginning outside any of the event

types.

BCStartExec Event

DCacheRelatedDelayPhaseEnd Event

BCEndExec Event

WCEndExec Event

JobRelease Event

DeadlineCheckEvent

WCPreemption Event

WCStartExec Event

BCPreemption Event

Figure 6.7: Creation Dependencies among Event Types
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Structures global to all events are described below
bc service queue, wc service queue : queues of all released jobs that have not yet completed

Possible status : READY and IN SERVICE
event list : list of events ordered first by time and then by the priority of the type of event

Parameters for each event are described below
current time : Time at which event occurs, curr job : Job which the event corresponds to

Functions used in event handlers :
insertIntoB/WCServiceQueue(job, status)

inserts job with given status into priority-ordered service queue
removeFromB/WServiceQueue(job)

removes given job from service queue
insertIntoEventList(ev job, ev time, ev type)

inserts an event of type ev type into the event list for time ev time and job ev job
removeFromEventList(ev job, ev type)

removes events of ev type corresponding to ev job

JobRelease event: This event represents the release of a new job of a task
if (event queue is empty) {

insertIntoEventList(curr job, current time, B/WCStartExec)
} else {

q job ← head of b/wc service queue
if (curr job has higher priority than q job) {

insertIntoEventList(curr job, current time, B/WCStartExec)
if (status of q job is IN SERVICE)

insertIntoEventList(q job, current time, B/WCPreemption)
else

removeFromEventList(q job, B/WCStartExec)
}
}
insertIntoB/WCServiceQueue(curr job, READY)

BCPreemption event : This event represents the preemption of a task in the best case
removeFromEventList(curr job, BCEndExec)
update best case remaining time for curr job

Figure 6.8: Algorithm for Calculation of WCET w/ Delay
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WCPreemption event : This event represents the preemption of a task in the worst case
if (curr job in DCache Related Delay Phase) {

removeFromEventList(curr job, DCacheRelatedDelayPhaseEnd)
} else {

removeFromEventList(curr job, WCEndExec)
calculate preemption delay
}
update worst case remaining time for curr job

BCStartExec event : This event represents the best-case start of execution
of the current job

set status of curr job to IN SERVICE in bc service queue
insertIntoEventList(curr job, current time + best-case remaining time of curr job, BCEndExec)

B/WCEndExec event : This event represents the best/worst-case end of execution
of the current job

removeFromB/WCServiceQueue(curr job)
update best/worst case remaining time for curr job
if (b/wc service queue has more jobs in it) ) {

retval ← first READY job ready job in b/wc service queue
if (retval == TRUE) {

insertIntoEventList(ready job, current time, B/WCStartExec)
}
}
WCStartExec event : This event represents the worst-case start of execution

of the current job
set status of curr job to IN SERVICE in wc service queue
if (curr job in DCache Related Delay Phase) {

insertIntoEventList(curr job, current time + preemption delay,
DCacheRelatedDelayPhaseEnd)

} else {
insertIntoEventList(curr job, current time + worst-case remaining time of curr job, WCEndExec)
}
DeadlineCheck event : This event checks whether the given job has

exceeded its deadline
If yes, all associated structures are deleted from the event list and the bc and wc service queues

Figure 6.9: Algorithm (cont.) for Calculation of WCET w/ Delay
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DCacheRelatedDelayPhaseEnd event : This event represents the end of the dcache related
delay phase for the current job

update worst case remaining time for curr job
insertIntoEventList(curr job, current time, WCStartExec)

Main Algorithm : This is the starting point of the analysis
for every task in the task-set {

create JobRelease events for all jobs of task
create DeadlineCheck events for all jobs of task

}
while (events in event list) {

get highest priority event and handle it based on event type
}

Figure 6.10: Algorithm (cont.) for Calculation of WCET w/ Delay
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6.4.6 Correctness of Analysis

The algorithm described in Section 6.4.5 calculates the worst-case response time of

a job in the context of a given task set. Equation 5.2 shows the calculation of the worst-case

response time of a job Ji,j. In the context of fully preemptive tasks, the response time of

a job is the sum of three components, namely the base WCET of the task, the execution

time of higher-priority jobs and the data-cache related delay incurred due to preemption by

higher-priority jobs. The blocking time term in Equation 5.2 is not used. The formulation

for each of these components for a job Ji,j and a proof of their correctness are presented in

this section.

Explanation of the new symbols used in the formulation is as follows. nri represents

the number of regions within a task Ti. Cr
i,j represents the WCET of region r of a job Ji,j .

An added superscript of rem represents remaining WCET of job Ji,j at a given time and

a subscript of base represents its base WCET. reli,j represents the time of release of job

Ji,j , calculated as (φi,j + (j − 1) · Pi). I represents an interval between two consecutive

releases of higher-priority jobs for Ji,j and trem
I represents the time remaining before the

end of an interval I. ∆I
i,j represents the data-cache related delay experienced by job Ji,j

due to preemption by the release of a higher-priority job at the end of an interval I. hp(i, j)

represents the set of jobs that have a higher priority than job Ji,j.

Theorem 6.4.1 The response time of a job Ji,j, calculated as the sum of the values produced

by Equations 6.4, 6.8 and 6.9, is a safe upper bound on the worst-case response time of Ji,j

in the context of fully preemptive tasks.

The correctness of Theorem 6.4.1 is proved using Lemmas 6.4.2, 6.4.3 and 6.4.4.

Lemma 6.4.2 An upper bound on the execution time of a job Ji,j, without considering the

effects of interference from other jobs, is given by Equation 6.4.

Base WCET of Ji,j =
nri∑
r=1

Cbase,r
i,j (6.4)

The calculation of the base WCET of a job is performed using the static timing

analyzer. The correctness of the static timing analyzer and, hence, that of Lemma 6.4.2 is

assumed in this dissertation (see [5, 6, 7, 8] for details).
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The execution time of higher-priority jobs within the response time of Ji,j is cal-

culated by counting the number of instances of every higher-priority task that may execute

within the response time of Ji,j and multiplying it by the execution time of the specific

higher-priority job. Calculation of the execution time of higher-priority jobs is shown in

Equation 6.5.

hpexi,j =
∑

(k,l)∈hp(i,j)

(��i,j

Pk
� ·

nrk∑
r=1

Cr
k,l) (6.5)

Since the algorithm described in Section 6.4.5 calculates response times for every job in the

task set, the relative phasing between jobs is known. Using this information, the calculation

in Equation 6.5 is tightened. After the release of Ji,j , the time during which no other higher-

priority job is released may be calculated using information about relative phasing as shown

in Equation 6.6. The execution time remaining after the release of Ji,j for any higher-priority

job released before Ji,j is calculated as shown in Equation 6.7.

ati,j = min
(k,l)∈hp(i,j)

[max(�reli,j − φk,l

Pk
� · Pk, 0) + φk,l − reli,j] (6.6)

remreli,j =
∑

(k,l)∈hp(i,j),relk,l<reli,j

Crem
k,l (6.7)

The difference between the times calculated in Equations 6.6 and 6.7 gives the time for

which Ji,j may execute without being preempted. Equation 6.8 shows the calculation for

the new, tighter estimate on the execution time of higher-priority jobs within the response

time of Ji,j, performed in accordance with the algorithm described in Section 6.4.5.

hpexi,j =
∑

(k,l)∈hp(i,j)

(��i,j −max((ati,j − remreli,j), 0)
Pk

� ·
nrk∑
r=1

Cr
k,l) (6.8)

Lemma 6.4.3 An upper bound on the execution time of higher-priority jobs within the

response time of a job Ji,j , in the context of fully preemptive tasks, is given by Equation

6.8.

Proof Assume that max((ati,j − remreli,j), 0) is not subtracted from the iterative portion

of Equation 6.8. It means that this time can be stretched due to execution of higher-priority

jobs in between. By definition of (ati,j − remreli,j), all higher-priority jobs released before

Ji,j have completed execution and no higher-priority jobs have been released yet after Ji,j .

Contradiction. Hence, max((ati,j−remreli,j), 0) can be subtracted from the iterative portion

of Equation 6.8 without jeopardizing safety of the analysis.
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Every release of a higher-priority job is a potential preemption point for Ji,j .

Consider an interval between two such consecutive releases. According to the algorithm

described in Section 6.4.5, the job release at the end of this interval can be a feasible

preemption point for Ji,j if a) there is a possibility that Ji,j is scheduled in the interval

and b) there is a possibility that Ji,j has not completed execution before the end of the

interval. These conditions are mathematically represented and the preemption delay is

given by Equations 6.9.

conda =
∑

(k,l)∈hp(i,j)

crem
k,l < trem

I

condb =
∑

(k,l)∈hp(i,j)

Crem
k,l + Crem

i,j > trem
I

PDi,j =
∑

∆I
i,j,∀I s.t. (conda ∧ condb) (6.9)

Lemma 6.4.4 An upper bound on the data-cache related delay experienced by job Ji,j due

to preemptions by higher-priority jobs, in the context of fully preemptive tasks, is given by

Equation 6.9.

Proof Consider the interval between two consecutive preemption points, p−1 and p. Assume

that jobs J0,k0, ..., Ji,ki
have been released at some prior point and have not yet completed

execution at p−1. Further, assume that Ji,ki
is the job for which an upper bound on the

number of preemptions is to be calculated.

Let x be the length of the interval between preemption points p−1 and p. There

are three cases to consider.

1:
∑i−1

j=0 cj,kj
< x,

∑i
j=0 Cj,kj

> x. Assume Ji,ki
cannot be preempted at p, i.e., it

cannot be running at time p. However, ∃
j=0..i−1

ej,kj s.t. cj,kj
≤ ej,kj

≤ Cj,kj
and

p−1+
∑i−1

j=0 ej,kj
< p and p−1+

∑i
j=0 ej,kj

> p, i.e., Ji,ki
is running at p. Contradiction.

Hence, p is a feasible preemption point.

2:
∑i−1

j=0 cj,kj
< x,

∑i
j=0 Cj,kj

< x. Assume Ji,ki
can be preempted at p, i.e., it may

be running at time p. Hence, ∃
j=0..i−1

ej,kj s.t. cj,kj
≤ ej,kj

≤ Cj,kj
and p−1 +

∑i−1
j=0 ej,kj

< p and p−1 +
∑i

j=0 ej,kj
> p. However,

∑i
j=0 Cj,kj

< x implies p−1 +
∑i

j=0 ej,kj
< p. Contradiction. Hence, Ji,ki

cannot be running at p, and p is not a

feasible preemption point.
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3:
∑i−1

j=0 cj,kj
> x. Assume Ji,ki

can be preempted at p, i.e., it may be running at

time p. Hence, ∃
j=0..i−1

ej,kj s.t. cj,kj
≤ ej,kj

≤ Cj,kj
and p−1 +

∑i−1
j=0 ej,kj

< p

and p−1 +
∑i

j=0 ej,kj
> p. However,

∑i−1
j=0 cj,kj

> x implies p−1 +
∑i−1

j=0 ej,kj
> p.

Contradiction. Hence, Ji,ki
cannot be running at p, and p is not a feasible preemption

point.

Proof Assume that the sum of the values produced by Equations 6.4, 6.8 and 6.9 is not

a safe upper bound on the worst-case response time of a job. This implies that the value

produced by at least one of the equations is an underestimation of the specific component

represented by the equation. Lemmas 6.4.2, 6.4.3 and 6.4.4 demonstrate the correctness of

each component of the response time of a job as a safe upper bound. Contradiction. Hence,

the sum of the values produced by Equations 6.4, 6.8 and 6.9 is a safe upper bound on the

worst-case response time of the job.

6.4.7 Complexity of Analysis

Static data cache analysis to produce data cache reference patterns is performed

only once for each task. Here, the iteration space of a task is iterated through, hence making

the time and space complexity proportional to the number of data references, nd in the task,

namely O(nd).

The complexity of the algorithm presented above is O(nJ ∗ nT ∗ nd) where nJ is

the number of job releases in the hyperperiod of the task set and nT is the number of tasks.

The algorithm iterates over every interval between job release points. This introduces a

complexity of nJ . Within each interval, the algorithm iterates over currently active jobs in

order of priority. Since systems where a task has a deadline less that or equal to its period

are considered, there can be at most one job of a particular task active at any time. Hence,

iterating over active jobs adds a complexity of nT . Finally, at every identified preemption

point, maximum possible delay incurred by the preempted task is calculated using its access

chains and information about the range of iteration points at which the preempted task is

determined to be when it is preempted. This introduces a complexity of nd since nd is the

length of the access chain of a task. However, in reality, this range is usually much smaller

than nd for a given preemption point since it is limited by the largest interval between two

consecutive potential preemption points for a task.
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6.5 Experimental Results

In all experiments, task sets that have a base utilization (utilization without con-

sidering data cache related delays) of 0.5, 0.6, 0.7 and 0.8 are used. Task sets of different

sizes (2, 4, 6, 8) are constructed for each of these utilizations. For a utilization of 0.8, a

task set consisting of 10 tasks is also constructed. In all these task sets, a static priority

scheme is assumed.

An upper bound on the number of preemptions, np, for a task is calculated using

three different methods to provide a comparison.

1. np is determined by using Equation 6.1. This is denoted as HJ-P in the results.

2. np is calculated by considering indirect preemption effects as proposed by Staschulat

et al. This method uses the periods and response times of tasks [23]. This is denoted

as Stas-R.

3. np is calculated using the range of execution times of higher priority jobs as proposed

in Section 6.4. This method uses the periods, WCETs and BCETs of tasks to cal-

culate feasible preemption points. Two methods are used for the actual calculation

of preemption delay as described in Section 6.4.4. The method using the maximum

delay in a range of iteration points (where the task is determined to be) is denoted

as OurFP-RangeMax and the one using the maximum delay in the entire iteration

space is denoted as OurFP-ItSpMax.

In the current set of experiments, the maximum phasing for a task, used in Equa-

tions 6.2 and 6.3, is assumed to be 1000 cycles. Although all the methods calculate an

upper bound on the number of preemptions for a task, the first two methods do not provide

information about the placement of the preemption points. Hence, in these cases, the np

largest delays for a task are considered in order to obtain its D-CRPD.

Several experiments are performed to demonstrate the working of the new methods

(OurFP-RangeMax and OurFP-ItSpMax) in comparison to prior methods (HJ-P and Stas-

R). The results of these experiments are now presented and discussed.
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Table 6.4: Task Set Characteristics: Benchmark IDs and Periods [cycles] for Task Sets
# Tasks 2 4 6 8 10

U = 0.5
IDs 16, 19 1, 15,

18,
22

23, 3, 6, 11,
19, 26

2, 3, 4, 11, 15, 18,
7, 27

Periods 50K, 200K 50K,
400K,
500K,
100K

400K,
500K,
1000K,
1000K,
2000K

100K, 400K,
500K, 800K,
1000K, 2000K,
2000K, 4000K

U = 0.6
IDs 21, 27 1, 15,

8, 27
3, 4, 6, 11,
19, 26

2, 5, 6, 11, 15, 18,
7, 27

Periods 300K, 500K 50K,
400K,
500K,
1000K

100K,
400K,
500K,
1000K,
1000K,
2000K

100K, 400K,
500K, 800K,
1000K, 2000K,
2000K, 4000K

U = 0.7
IDs 27, 21 16, 9,

7, 27
3, 17, 8, 7,
20, 27

3, 5, 20, 11, 15, 19,
8, 26

Periods 300K, 500K 50K,
400K,
500K,
1000K

100K,
400K,
500K,
1000K,
1000K,
2000K

100K, 400K,
500K, 800K,
1000K, 2000K,
2000K, 4000K

U = 0.8
IDs 27, 26 28,

13,
27,
19

21, 8, 20,
13, 25, 19

8, 26, 20, 15, 9, 11,
8, 21

10, 8, 15, 9, 5, 11,
20, 27, 22, 17

Periods 300K, 500K 500K,
500K,
1000K,
2000K

400K,
500K,
500K,
1000K,
1000K,
2000K

400K, 500K,
800K, 800K,
1000K, 2000K,
2000K, 4000K

100K, 625K,
625K, 625K,
1000K, 1000K,
1250K, 1250K,
2500K, 5000K
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6.5.1 Response Time Analysis

In the first set of experiments, the task sets described in Table 6.4 are used.

Response time analysis is performed using all the methods described in Section 6.5 for cal-

culating the number of preemptions. Results obtained for the task sets with base utilization

of 0.5 and 0.8 are shown in Figures 6.11 and 6.12 respectively. Results for utilizations of 0.6

and 0.7 exhibit similar trends and are hence omitted. Different graphs are used to present

upper bounds on the three metrics studied, namely the number of preemptions, the WCET

with preemption delay and the response times for tasks. In each graph, the x-axis represents

the several task sets used. Tasks within each task set are numbered in decreasing order of

priority.

The method that uses only feasible preemption points consistently derives a much

tighter bound on the number of preemptions for a given task compared to the two prior

methods (HJ-P and Stas-R). Since the number of preemption points identified is smaller,

bounds for the WCET with preemption delay and the response time for each task are also

significantly tighter, as indicated in the results. Even the method that calculates an upper

bound on the number of feasible preemption points for any possible phasing of tasks up

to a given maximum (OurFP-ItSpMax) provides significantly tighter bounds than the two

prior methods.

It may be observed from the graphs that, for some of the tasks, response times

are not indicated for the first two methods of comparison (HJ-P and Stas-R). This means

that the response time of the task exceeded its deadline, making the task set unschedulable.

Results from the new methods (OurFP-RangeMax and OurFP-ItSpMax) show that these

task sets are, in reality, schedulable. This underlines the potential benefits of the feasible

preemption analysis techniques. For calculation of the response time, a fixed-point approach

is used. Calculations are performed only as long as the deadline of the given task is not

exceeded. In the Stas-R method, the value of the response time obtained in one iteration

of this fixed-point approach is used to calculate the number of preemptions in the next

iteration. Hence, if the response time of a task exceeds its deadline, the iterative calculation

is stopped and the number of preemptions is not reported.

Widening gaps between results using the new methods (OurFP-RangeMax and

OurFP-ItSpMax) and using the two prior methods (HJ-P and Stas-R) show an increase in

the effectiveness of the new methods, especially for lower-priority tasks. Since tasks with a
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(a) # Preemptions for U = 0.5

(b) WCET w/ Delay for U = 0.5

(c) Response Time for U = 0.5

Figure 6.11: Results for U=0.5 using RM Policy
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(a) # Preemptions for U = 0.8

(b) WCET w/ Delay for U = 0.8

(c) Response Time for U = 0.8

Figure 6.12: Results for U=0.8 using RM Policy
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lower priority are less likely to be scheduled in the initial intervals, more preemption points

are deemed infeasible by the new methods, hence producing tighter bounds. This feature of

the new methods prevents the exponential increase in the number of preemptions observed

in the method HJ-P for successive tasks.

Analysis times using the method OurFP-RangeMax are indicated in Table 6.5.

The most significant factors affecting the analysis time of a task are the number of memory

accesses within the task and the actual loop nest structure of the task. The actual task set

characteristics, which determine the number of jobs of each task in the hyperperiod of the

task set, also contribute to this time, albeit in a much less significant way.

Table 6.5: Analysis Times in Seconds
Utilization = 0.5 Utilization = 0.8

Task Set Size Analysis Time Task Set Size Analysis Time
2 33.65 2 558.44
4 177.80 4 626.47
6 175.20 6 436.49
8 417.85 8 419.33

10 415.11

Between the two base utilizations whose results are shown in Figures 6.11 and

6.12, it may be observed that the 0.8 utilization shows a higher number of preemptions than

the 0.5 utilization. This is due to the increased WCET in the case of higher utilization.

Increased WCET means that the tasks have a greater number of feasible preemptions once

they have started execution and, hence, the response times of tasks increase. It may be

observed from the results that the WCET bound of a task does not depend significantly

on its priority unlike the response time. This is due to the fact that the stand-alone, or

base, WCET dominates the total preemption delay cost. Thus, the WCET with preemption

delay does not necessarily increase monotonically with decreasing priority.

From the results, several observations can be made regarding the two prior methods

(HJ-P and Stas-R). While both of them produce very similar results for the first two tasks

in a task set, they start to exhibit differences for lower priority tasks. The Stas-R method

consistently performs better than the HJ-P method since it correctly takes effects of indirect

preemptions into account.

As already observed, the new method OurFP-RangeMax produces significantly
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tighter bounds than the two prior methods, HJ-P and Stas-R, in all cases. Furthermore,

the method that produces an upper bound for the number of preemptions for any phasing

of tasks, namely OurFP-ItSpMax, also usually performs significantly better than both prior

methods. However, in the case of the task with second-highest priority, it gives a higher

number of preemptions (and, hence, WCET with delay and response time) than the Stas-R

method. The reason for this is as follows. Since the task with second-highest priority has

only one higher-priority task, the Stas-R and OurFP-ItSpMax methods actually calculate

the same number of preemptions. However, in OurFP-ItSpMax, extra preemptions are

added (and, hence, extra preemption delay) to account for any phasing less than or equal

to a given maximum. This makes the number of preemptions higher than that produced

by Stas-R.

To illustrate the variation in the maximum number of preemptions obtained by

the new method OurFP-RangeMax between the various jobs of a task, results are provided

for two of the task sets in Tables 6.6 and 6.7 respectively. As already observed from the

graphs in Figures 6.11 and 6.12, OurFP-RangeMax always produces a significantly lower

value for the number of preemptions than that produced by the two prior methods. Moving

towards lower priority tasks, it may be observed that there is a difference between the

number of preemptions for different jobs of the same task by noting that the minimum,

maximum and average values obtained over all the jobs are different from each other. In

the case of the task set with base utilization 0.8, it may be observed that the number of

preemptions for certain tasks are not reported in the Stas-R method. This is for the same

reason already explained with reference to the graphs in Figures 6.11 and 6.12, i.e., the

number of preemptions cannot be calculated since the response times of those tasks exceed

their respective deadlines.

In these experiments, it is also observed that the number of preemptions obtained

for the first job of every task (released at the same time as all higher priority jobs) is not

always the maximum value obtained across all jobs. This proves the claim made in Section

6.4.1 about the critical instant not being the instant at which jobs of all tasks are released

at the same time. It further underlines the necessity to perform such a feasible preemption

point analysis for every job in the hyperperiod of a task set rather than once for every task.



65

Table 6.6: Number of Preemptions (# P) for Task Set with U = 0.5
Benchmark Period WCET BCET # Jobs # P

(cycles) (cycles) (cycles) OurFP- HJ-P Stas-R
RangeMax
avg min max

200convolution 100k 14191 14191 40 0 0 0 0 0
300convolution 400k 20891 20891 10 0 0 0 4 1
500convolution 500k 34291 34291 8 0 0 0 7 2

300n-real-updates 800k 56538 47338 5 0.2 0 1 12 4
matrix1 1000k 59896 54015 4 1 1 1 17 6
600fir 2000k 54837 52537 2 1 1 1 34 8

800convolution 2000k 66191 54391 2 1 1 1 35 14
900lms 4000k 158636 118536 1 3 3 3 71 27

Table 6.7: Number of Preemptions (# P) for Task Set with U = 0.8
Benchmark Period WCET BCET # Jobs # P

(cycles) (cycles) (cycles) OurFP- HJ-P Stas-R
RangeMax
avg min max

n-real-updates 100k 16738 16838 50 0 0 0 0 0
900convolution 625k 76391 61091 8 0.75 0 1 7 1

matrix1 625k 59896 54015 8 1 1 1 8 3
1000convolution 625k 87091 67791 8 1.25 1 2 9 5
600convolution 1000k 45291 40991 5 0.6 0 2 16 7

300n-real-updates 1000k 56538 47338 5 1.4 0 3 17 10
800fir 1250k 77037 69737 4 1.75 1 2 23
900lms 1250k 158636 118536 4 3.75 3 5 24
1000fir 2500k 99237 86937 2 4.5 3 6 47
500fir 5000k 43937 43937 1 1 1 1 94

6.5.2 Task Sets with Staggered Releases

In the first set of experiments (presented in Section 6.5.1), it is assumed that all

tasks in a task set are released simultaneously (synchronous release). However, since the

analysis technique is capable of producing worst-case response time bounds for a task set

with a particular phasing, experimental results for such a case are now presented. For this

purpose, the task set characteristics from Table 6.4 are reused. However, in this set of

experiments, the phasing of the tasks is changed. Tasks in every task set are released in

reverse order of priority. Every task has a maximum phase of 1000 cycles or its own period,
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whichever is smaller.

(a) Difference in WCET w/ Delay for U = 0.5

(b) Difference in Response Time for U = 0.5

Figure 6.13: Results for U = 0.5 (Staggered - Synchronous)

In these experiments, the results of OurFP-RangeMax between the first set and

the current set of experiments are similar. For this reason, the differences obtained in the

bounds for the WCET and response times of task sets with synchronous and staggered

releases are presented. The differences are shown in Figures 6.13 and 6.14. The graph also

shows differences between maximum possible values (obtained using OurFP-ItSpMax) and

synchronous release.

For most tasks, there are very small changes in the values of WCET and response

times for the phased task sets compared to the difference between the maximum possible

values and synchronous release. This is because, in OurFP-ItSpMax, extra preemptions are

added to account for any possible phasing up to a given maximum (1000 cycles in this set

of experiments). Furthermore, it is assumed that the maximum possible delay is incurred

at every preemption point. Since the increase or decrease in WCET is entirely dependent
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(a) Difference in WCET w/ Delay for U = 0.8

(b) Difference in Response Time for U = 0.8

Figure 6.14: Results for U = 0.8 (Staggered - Synchronous)

on the relative positioning of jobs at different points in the hyperperiod, it is difficult to

determine the phasing of a task set that would result in the worst possible response-times

for all tasks. This illustrates the merit of the method that calculates an upper bound on

the number of preemptions irrespective of phasing (OurFP-ItSpMax).

6.5.3 Effects of WCET/BCET on # of Preemptions

In order to study the effects that the ratio of WCET of a task to its BCET has on

the upper bound for the number of preemptions it incurs, a set of experiments is performed

with synthetic task sets. The ratio of WCET to BCET for every task is varied, maintaining

all other parameters. The characteristics of the task sets used in this set of experiments

are shown in Table 6.8. Table 6.8 also indicates the number of preemptions obtained for

the tasks using the HJ − P bound and using the method by Staschulat et al. (Stas-R).
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Since synthetic tasks are used, there is no actual code from which to construct access chains

for calculation of preemption delay. Hence, a fixed value needs to be assumed for the

preemption delay. Since the preemption delay is significantly less than the base WCET of

a task, a delay value of 0 is assumed in this set of experiments for the sake of simplicity.

The primary goal in this set of experiments is to show how the WCET/BCET ratio affects

the number of preemptions.

Table 6.8: # Preemptions for Task Sets with U=0.5 and U=0.8
Task Period WCET # Preemptions
ID (cycles) (cycles) HJ-P Stas-R

U = 0.5
0 10K 1K 0 0
1 80K 16K 8 2
2 100K 5K 12 4
3 200K 30K 25 8

U = 0.8
0 10K 1.5K 0 0
1 80K 20K 8 3
2 100K 15K 12 6
3 200K 50K 25 19

The results obtained for the various ratios using the analysis presented in Section

6.4 (OurFP-RangeMax), for utilizations 0.5 and 0.8, are shown in Figures 6.15(a) and

6.15(b), respectively. For utilizations of 0.5 and 0.8, WCET/BCET ratios of 1, 1.5, 2,

2.5 and 3 are used. As before, in every case, the bounds obtained by the method that

eliminates infeasible preemption points is significantly lower than those obtained by the

two prior methods (HJ-P and Stas-R). As the ratio of WCET/BCET increases, the upper

bound on the number of preemptions increases slightly for small ratios. After a ratio of

around 3, the number of preemptions start to decrease once again. However, the number of

preemptions does not go below the number obtained with ratio equal to 1. This is expected

since the schedule with WCET/BCET ratio of 1 has the least amount of slack.

The maximum increase in the number of preemptions compared to the number

with ratio equal to 1 is found to be approximately 30 percent. Hence, even if the BCET of

a task is set to 0, the pessimism in the results obtained is not very significant. In fact, the

results would still be tighter than those produced by the two prior methods. This is a useful
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(a) U = 0.5

(b) U = 0.8

Figure 6.15: # Preemptions given by OurFP-RangeMax for Varying WCET/BCET

observation since several timing analyzers only provide WCET bounds for a task, but not

BCET bounds. Even in such cases, the feasible preemption analysis would be applicable

and useful to obtain reasonably tight bounds on the worst-case number of preemptions.

6.5.4 Static-Priority vs Dynamic-Priority Scheduling Policy

In all the above experiments, the static RM scheduling policy is used. However,

the analysis framework is conceptually able to support dynamic-priority scheduling policies

as well. In order to demonstrate this, a set of experiments is performed using the EDF

scheduling policy. For this purpose, once again, the task sets whose characteristics are
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shown in Table 6.4 are used. Tasks in every task set are released in reverse order of the

lengths of their periods (i.e., in reverse order of priority as determined by the RM scheduling

policy). A phase difference of 10 cycles is used between successive tasks. Figures 6.16 and

6.17 compare results obtained using both the RM and the EDF scheduling policies for base

utilizations of 0.5 and 0.8 respectively. Only the task sets that actually exhibit a difference

in behavior between the two policies are presented.

From the above results, it may be observed that, in some cases, the EDF policy

increases the response times of tasks with shorter periods (higher priority according to the

RM policy) in comparison to the RM policy. This is due to the fact that the relative

deadlines of jobs alter their priorities. For the same reason, the EDF policy sometimes

decreases the response times of tasks with longer periods compared to the RM policy. The

experiments demonstrate the applicability of the feasible preemption analysis technique to

systems with dynamic-priority scheduling policies.
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(a) # Preemptions for U = 0.5

(b) WCET w/ Delay for U = 0.5

(c) Response Time for U = 0.5

Figure 6.16: Comparison of Results for RM and EDF for U=0.5
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(a) # Preemptions for U = 0.8

(b) WCET w/ Delay for U = 0.8

(c) Response Time for U = 0.8

Figure 6.17: Comparison of Results for RM and EDF for U=0.8
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Chapter 7

Tasks with Non-Preemptive

Regions

In Chapter 6, a framework to provide worst-case response time estimates for tasks

in a multi-task, preemptive, hard real-time environment is presented. In such a system,

every task has a priority. A task with a higher priority may preempt a task with a lower

priority. The lower priority task then experiences a data-cache related preemption delay

(D-CRPD) when it resumes execution, which increases its WCET and, hence, response

time.

A fundamental assumption in the previous analysis is that all tasks are completely

preemptive. In other words, a task may be interrupted by a task with higher priority at any

time during its execution. However, this assumption may need to be relaxed for some tasks.

A task may have a period in its execution during which it executes in a critical section.

While a task is in a critical section, no other task may enter a critical section.

In this chapter, tasks are allowed to have a critical section within their execution.

In order to maintain logical correctness of tasks, it is assumed that a task executing within

a critical section cannot be preempted. In other words, every critical section is assumed to

be a non-preemptive region (NPR). A framework that statically analyzes task sets in such

an environment and calculates worst-case response times for all tasks is now presented.

The complexity in the analysis of tasks with non-preemptive regions arises from

the fact that the actual execution time of a task is usually unknown. Instead, a range of

possible execution times bounded by the best and worst-case execution times of the task is
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considered. Hence, if a higher-priority task is released when a lower-priority task is already

in execution, an exact point of execution where the lower-priority task is guaranteed to be

at the time cannot be identified. Thus, a situation might arise where the lower-priority task

could be inside a non-preemptive region but is not guaranteed to be.

7.1 Methodology

A NPR is represented by the first and last iteration points of the range of con-

secutive iteration points during which a particular task may not be interrupted. Every

task is hence effectively divided into multiple regions starting with a preemptive region and

every alternate region representing a NPR. The static timing analyzer described in Section

2.2.2 is enhanced to calculate the worst-case and best-case execution times of every region

based on the start and end iteration points of each NPR. For the sake of simplicity, the

discussion in this section assumes that every task has at most one NPR. Hence, every task

has three regions where regions 1 and 3 are preemptive and region 2 is a NPR. Examples

with multiple NPRs are discussed later.

In the analysis described in Chapter 6, whenever an instance of a task is released,

it is placed in a service queue and the scheduler is invoked. The scheduler chooses the task

with the highest priority at the current time, preempting any lower priority task that might

be executing at the time. However, in the new analysis, a task with higher priority may be

required to wait if a lower-priority task is executing in its NPR. In order to calculate the

worst-case response time for every task, several possible scenarios need to be considered.

Suppose that a task T1 is released at time t and has three regions where the middle

one is a NPR. At time t + x, a higher-priority task T0 is released. At time t + x, there are

three possible cases:

1. T1 has finished executing its first region and started executing its NPR in both best

and worst cases;

2. T1 has not finished executing its first region or has already finished its NPR and

entered its third region in both cases; or

3. T1 has started executing its NPR in the best case, but not in the worst case.

Cases 1 and 2 are straightforward. In case 1, T0 has to wait until T1 finishes executing its

NPR. In the best case, this time is equal to the best-case remaining execution time of T1’s
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NPR. In the worst-case, it is equal to the worst-case remaining execution time of task T1’s

NPR. In case 2, T1 gets preempted and T0 starts to execute immediately.

In case 3, it is not certain whether T1 has started executing its NPR or not. Hence,

the best and worst possible scenarios for each task are considered in order to determine its

worst-case response time. For T0, the worst case is to assume that T1 has already started

executing its NPR and add the worst-case remaining execution time of T1’s NPR to the

response time of T0. On the other hand, the best case for T0 is to assume that T1 has not

yet started executing its NPR and, hence, may be preempted. The scenarios are reversed

for T1. Its best case is to assume that it has already started executing its NPR and,

hence, is not preempted. Its worst case is to assume that it gets preempted by T0 and add

the associated preemption delay to its remaining execution time. By considering parallel

execution scenarios for each task, safe response time estimates may be obtained.

7.1.1 Illustrative Examples

An illustrative example of the methodology to analyze tasks with non-preemptive

regions is now presented. Consider the task set whose characteristics are specified in Table

7.1. The first column shows the task name. The second and third columns show the phase

and period (equal to the deadline) of the each task. Assume that the Rate Monotonic (RM)

scheduling policy is used for this task set and, hence, that the task with the shortest period

has the highest priority. The fourth and fifth columns show the WCETs and BCETs of

each of the three regions of a task.

Table 7.1: Task Set Characteristics - Task Set 1 [RM policy → T0 has Highest Priority]
Task Phase Period WCET BCET

= deadline (r1/r2/r3) (r1/r2/r3)
T0 10 20 5/0/0 3/0/0
T1 15 50 7/0/0 5/0/0
T2 0 200 10/14/6 7/9/4

For ease of understanding, the same task set is also evaluated assuming that all

three regions of every task are fully preemptive. Figure 7.1(a) shows the best and worst-case

timelines for this case below and above the horizontal time axis respectively. The arrows

show release points of the three tasks. The lightly shaded rectangles represent preemptive

execution regions of tasks.
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Now, a non-preemptive region is added to task T2, as indicated in Table 7.1.

Figure 7.1(b) shows the timeline for this situation. Here, the black rectangles represent

non-preemptive regions of execution. For the sake of comparison, the second region of task

T2 is shown as a black rectangle in Figure 7.1(a) although it is fully preemptive in that

example.

BEST CASE

T0

T1

50454035302520151050

T2

T2

T1

T0

WORST CASE

(a) Results with No NPR

BEST CASE

T0

T1

T2

50454035302520151050

T2

T0

T1WORST CASE

(b) Results with NPR

Figure 7.1: Best and Worst Case Results for Task Set 1

In Figure 7.1(b), it may be observed that some execution regions overlap. This is

because, at every release point, if there is some task that could be executing in its NPR but

is not guaranteed to be, both best and worst case scenarios are considered for the higher

and lower-priority tasks. In reality, only one of the scenarios takes place and there is no

simultaneous execution of multiple tasks.

Every point on the timeline where an event occurs is now considered, and the best
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or worst-case scenarios as the case may be examined.

Time 0: Job J2,0 is released.

Best case:

J2,0: It is the only job that is ready to execute and hence starts executing. It it scheduled

to finish region 1 at time 7.

Worst-case:

J2,0: It is the only job that is ready to execute and hence starts executing. It it scheduled

to finish region 1 at time 10.

Time 7:

Best case:

J2,0: It finishes executing region 1 and starts executing its NPR. It is scheduled to finish at

time 16.

Time 10: Job J0,0 is released.

Best case:

J0,0: It is scheduled immediately since there is a chance that J2,0 has not yet started exe-

cuting its NPR. It is scheduled to finish region 1 at time 13.

J2,0: It continues executing its NPR.

Worst case:

J0,0: Since there is a chance that J2,0 has started its NPR, J0,0 has to wait for at most 14

units of time (worst-case remaining execution time of J2,0’s NPR). It is scheduled to start

at time 24.

J2,0: It has finished executing region 1 . Since there is a chance that J2,0 has not started

its NPR, it gets preempted by J0,0 and it now re-scheduled to start its NPR at time 15

(adding the WCET of J0,0).

Time 13:

Best case:

J0,0: Finishes executing region 1. Since it has no more regions, it is done.

Time 15: Job J1,0 is released.

Best case:

J1,0: It is scheduled immediately since there is a chance that J2,0 has not yet started exe-

cuting its NPR. It is scheduled to finish region 1 at time 20.

J2,0: It continues executing its NPR.

Worst-case:
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J1,0: Since J0,0, which has a higher priority that J1,0 is waiting, J1,0 is not scheduled now.

J2,0: Since there is a chance that J2,0 has not started its NPR, it gets preempted by J1,0

and it re-scheduled to start its NPR at time 22 (adding the WCET of J1,0).

Time 16:

Best case:

J2,0: It finishes executing its NPR. Since there are higher priority tasks waiting, region 3 of

J2,0 is scheduled at time 24 (add BCETs of J0,0 and J1,0).

Time 20:

Best case:

J1,0: It finishes executing region 1. Since it has no more regions, it is done.

Time 22:

Best case:

J0,1: It starts executing region 1. It is scheduled to finish at time 33.

Worst case:

J2,0: It starts executing its NPR. It is scheduled to finish this region at time 36.

Time 24:

Best case:

J2,0: It starts executing region 3. It is scheduled to finish this region at time 28.

Worst case:

J0,0: It starts executing region 1. It is scheduled to finish at time 29.

Time 28:

Best case: J2,0: It finished executing region 3. It is now done.

Time 29:

J0,0: It finishes executing region 1. Since it has no more regions, it is done.

J1,0: It starts executing region 1. It is scheduled to finish at time 36.

Time 30: Job J0,1 is released.

Best case:

J0,1: It starts executing region 1. It is scheduled to finish at time 33.

Worst case:

J0,1: Since J2,0 is guaranteed to have started its NPR, J0,1 has to wait until J2,0 completes

its NPR and is hence scheduled for time 36.

Time 36:

Worst case:
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J2,0: It finishes executing its NPR.

J0,1: It starts executing region 1. It is scheduled to finish at time 41.

Time 41:

Worst case:

J0,1: It finishes executing region 1. Since it has no more regions, it is done.

J1,0: It resumes executing region 1. It is scheduled to finish at time 47.

Time 47:

Worst case:

J1,0: It finishes executing region 1. Since it has no more regions, it is done.

J2,0: It starts executing region 3. It is scheduled to finish at time 53.

Time 50: J0,2 is released.

The analysis proceeds in a similar fashion up to the hyperperiod of the task set,

namely 200. In this example, for the sake of simplicity, preemption delay calculations are

not shown. The delay at every resumption point is assumed to be zero. Actual preemption

delay calculations are performed in the same manner as that discussed in Section 6.4.4.

Table 7.2: Example Task Set Characteristics - Task Set 2
Task Phase Period WCET BCET

= deadline (r1/r2/r3) (r1/r2/r3)
T0 15 20 5/0/0 3/0/0
T1 10 50 3/4/5 2/4/2
T2 0 200 10/14/6 7/9/4

As a second example, consider the task set shown in Table 7.2. The structure of

the table is the same as that of Table 7.1. The best and worst-case scenarios for the three

tasks in this task set are shown in Figure 7.2. Until time 15, the analysis is similar to that

in the first example and is hence omitted. However, in this example, J1,0 is released before

J0,0. Also, both tasks T1 and T2 have NPRs. Hence, when J0,0 is released at time 15, the

analysis is different and is explained below.

Time 15: J0,0 is released.

Best case:

J0,0: Since there is a chance that neither J1,0 nor J2,0 has started its NPR, J0,0 starts exe-

cuting region 1. It is scheduled to finish at time 18.
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Figure 7.2: Best and Worst-Case Scenarios for Task Set 2

J1,0: It continues executing its NPR.

J2,0: It continues executing its NPR.

Worst case:

J0,0: Since there is a chance that either J2,0 or J1,0 has started its NPR, J0,0 has to wait.

The worst-case remaining execution times of the NPRs of both J2,0 and J1,0 are calculated

and the maximum of the two is considered as the worst-case waiting time of J0,0. In this

case, the waiting time is the maximum of 9 and 2 time units, which is 9 time units. Hence,

J0,0 is scheduled to start execution at time 24.

J1,0: Since there is a chance that it has not started its NPR, it gets preempted by J0,0. It

is rescheduled to start its NPR at time 29 (adding the WCET of J0,0).

J2,0: Since there is a chance that it has not started its NPR, it gets preempted by J0,0. It

is rescheduled to start its NPR at time 27 (adding the WCET of J0,0).

Time 16:

J1,0: It finishes executing its NPR. Since there is a higher-priority task waiting, region 3 is

scheduled to start at time 19 (add BCET of J0,0).

J2,0: It finishes executing its NPR. Since there are higher-priority task waiting, region 3 is

scheduled to start at time 27 (add BCETs of J0,0 and J1,0).

Time 18:

Best case:

J0,0: It finishes executing region 1. Since it has no more regions, it is done.

Time 19:

Best case:

J1,0: It starts executing region 3. It is scheduled to finish at time 21.
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Time 21:

Best case:

J1,0: It finishes executing region 3. Since it has no more regions, it is done.

Time 24:

Worst case:

J0,0: It starts executing region 1. It is scheduled to finish at time 29.

Time 27:

Best case:

J2,0: It starts executing region 3. It is scheduled to finish at time 31.

Worst case:

J02,0: It starts executing its NPR. It is scheduled to finish at time 41.

Time 29:

Worst case:

J0,0: It finishes executing region 1. Since it has no more regions, it is done.

J1,0: It starts executing region 1. It is scheduled to finish at time 32.

Time 31:

Best case:

J2,0: It finishes executing region 3. Since it has no more regions, it is done.

Time 32:

Worst case:

J1,0: It finishes executing region 1. It starts executing its NPR. It is scheduled to finish at

time 36.

Time 35: J0,1 is released.

Best case:

J0,1: It starts executing region 1. It is scheduled to finish at time 38.

Worst case:

J0,1: Since either J2,0 or J1,0 is guaranteed to be in its NPR, J0,1 has to wait. The worst-

case remaining execution times of the NPRs of both J2,0 and J1,0 are calculated and the

maximum of the two is considered as the worst-case waiting time of J0,1. In this case, the

waiting time is the maximum of 6 and 1 time units, which is 6 time units. Hence, J0,1 is

scheduled to start execution at time 41.

Time 36:

Worst case:
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J1,0: It finishes executing its NPR.

Time 38:

Best case:

J0,1: It finishes executing region 1. Since it has no more regions, it is done.

Time 41:

Worst case: J2,0: It finishes executing its NPR.

J0,1: It starts executing region 1. It is scheduled to finish at time 46.

Analysis proceeds further until the hyperperiod of the task set, namely 200.

7.2 Analysis Algorithm

An algorithm briefly describing the methodology is shown in Figures 7.3 to 7.6.

The implementation of the system uses an event hierarchy similar to the one described in

Section 6.4.5. However, the actual handling of some of the events is different. The events

that are handled differently are described in Figures 7.3 to 7.6.
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Structures global to all events are described below
bc service queue, wc service queue : queues of all released jobs that have not yet completed

Possible status : READY, WAITING SCHED and IN SERVICE
event list : list of events ordered first by time and then by the priority of the type of event

Parameters for each event are described below
current time : Time at which event occurs, curr job : Job which the event corresponds to

Functions used in event handlers :
insertIntoB/WCServiceQueue(job, status)

inserts job with given status into priority-ordered service queue
removeFromB/WServiceQueue(job)

removes given job from service queue
checkIfNPRInWorstCase(job)

checks whether given job is guaranteed to have started execution of its NPR in the worst-case
checkIfNPRPossibleInBestCase(job)

checks whether given job has possibly started execution of its NPR in the best-case
calculateWaitTimeForJob(rel job, exec job)

calculates the maximum amount of time rel job would get delayed due to exec job’s NPR
insertIntoEventList(ev job, ev time, ev type)

inserts an event of type ev type into the event list for time ev time and job ev job
removeFromEventList(ev job, ev type)

removes events of ev type corresponding to ev job

JobRelease event: This event represents the release of a new job of a task
preempt, suspend : boolean values initialized to FALSE
create event: boolean value initialized to TRUE
curr wait, wait time, wc start exec : integers initialized to 0
status : enumeration with possible values of IN SERVICE, WAITING SCHED and READY

Best-case handling:
If (event queue is empty) create event ← TRUE
else {

for every job (q job) in bc service queue starting from lowest priority job {
if (curr job has higher priority than q job) {

if (status of q job is IN SERVICE) {
if (q job is in not in NPR in best case) preempt ← TRUE

Figure 7.3: Algorithm for NPR-Aware Calculation of WCET w/ Delay
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else if (q job is in NPR even in worst case) {
curr wait ← best case remaining exec time
if (wait time 〈 curr wait) wait time ← curr wait
status ← WAITING SCHED
}
} else if (status of q job is WAITING SCHED) {

removeFromEventList(q job, BCStartExec)
insertIntoEventList(q job, current time + BCET of curr job, BCStartExec)
} else if (status of q job is READY) {

removeFromEventList(q job, BCStartExec)
if (q job just finished one sub part and is ready to start next one) preempt ← TRUE
}
if (preempt == TRUE) insertIntoEventList(q job, current time, BCPreemption)
} else {

create event ← FALSE, status ← READY
break from for loop
}
}
}
if (create event == TRUE) insertIntoEventList(curr job, current time + wait time, BCStartExec)
insertIntoBCServiceQueue(curr job, status)

Worst-case handling:
If (event queue is empty) {

create event ← TRUE
} else {

for every job (q job) in wc service queue starting from lowest priority job{
if (curr job has higher priority than q job) {

create event = create event AND TRUE
npr ← checkIfNPRInWorstCase(q job)
npr possible ← checkIfNPRPossibleInBestCase(q job)
if (npr possible == TRUE) {

curr wait ← calculateWaitTimeForJob(curr job, q job)
if (wait time 〈 curr wait) wait time ← curr wait
if (status of q job is WAITING SCHED) {

reschedule WCStartExec event for q job
preempt ← suspend ← FALSE
} else preempt ← suspend ← TRUE

Figure 7.4: Algorithm (cont.) for NPR-Aware Calculation of WCET w/ Delay
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create event ← create event AND TRUE
status ← WAITING SCHED
} else if (npr == TRUE) {

curr wait ← max npr exec time remaining for q job
if (wait time 〈 curr wait)

wait time ← curr wait
preempt ← suspend ← FALSE
create event ← create event AND TRUE
status ← WAITING SCHED
} else {

preempt ← TRUE
if ((status == WAITING SCHED) AND (q job has already waited for task in NPR))

suspend ← TRUE
else suspend ← FALSE
create event ← TRUE
}
if ( (preempt == TRUE) AND (suspend == TRUE) ) {

insertIntoEventList(q job, WCPreemptionAndSuspension)
else if (preempt == TRUE) insertIntoEventList(q job, WCPreemption)
} else {

create event ← FALSE, status ← READY
break from for loop
}
}
if (create event == TRUE)

insertIntoEventList(curr job, current time + wait time, WCStartExec)
}
insertIntoWCServiceQueue(curr job, status)

WCPreemptionAndSuspension : This event represents preemption and suspension
of the current job

Perform functions of WCPreemption event
wc start time ← resumption time for curr job
insertIntoEventList(curr job, wc start time, WCStartExec)
set status of curr job to WAITING SCHED in wc service queue

Figure 7.5: Algorithm (cont.) for NPR-Aware Calculation of WCET w/ Delay
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BCEndExec event : This event represents the best-case end of execution of the current region
create event : boolean value initialized to TRUE, event time : integer initialized to current time
status : enumeration with possible values of IN SERVICE, WAITING SCHED and READY
removeFromBCServiceQueue(curr job)
update best case remaining time of current job
if (curr job has another region) {

if (region currently ending is NPR) {
if (higher-priority job waiting for curr job’s NPR to end) create event ← FALSE
else {

delay ← sum of BCETs of waiting higher-priority tasks
event time ← current time + delay
status ← WAITING SCHED
}
} if (create event == TRUE) insertIntoEventList(curr job, event time, BCStartExec)
insertIntoBCServiceQueue(curr job, status)
}
if ( (curr job has no more regions) AND (bc service queue has more jobs in it) ) {

retval ← first READY job ready job in bc service queue
if (retval == TRUE) insertIntoEventList(ready job, current time, BCStartExec)
}
WCEndExec event : This event represents the worst-case end of execution

of the current region
create event : boolean value initialized to TRUE
removeFromWCServiceQueue(curr job)
update wc remaining time of current job
if (curr job has another region) {

if (region currently ending is NPR) {
if (higher-priority job waiting for curr job’s NPR to end) create event ← FALSE
if (create event == TRUE) insertIntoEventList(curr job, current time, WCStartExec)
}
insertIntoWCServiceQueue(curr job, READY)
}
if ( (curr job has no more regions) AND (wc service queue has more jobs in it) ) {

retval ← first READY job ready job in wc service queue
if (retval == TRUE) insertIntoEventList(ready job, current time, WCStartExec)
}

Figure 7.6: Algorithm (cont.) for NPR-Aware Calculation of WCET w/ Delay
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7.3 Correctness of Analysis

The algorithm described in Section 7.2 calculates the worst-case response time of a

job in the context of a given task set. Equation 5.2 shows the calculation of the worst-case

response time of a job Ji,j . As explained in Section 5.1, the response time of a job, in

the context of tasks with critical sections, is the sum of four components, namely the base

WCET of the task, the execution time of higher-priority jobs, the data-cache related delay

incurred due to preemption by higher-priority jobs and the waiting time incurred due to

lower-priority jobs executing in a NPR. The formulation for each of these components for

a job Ji,j and a proof of their correctness are presented in this section.

Explanation of the new symbols used in the formulation is as follows. NPRr
i,j is a

boolean value that indicates whether region r of job Ji,j is a NPR or not. bstri,j represents

the earliest possible start time for region r of job Ji,j. lp(i, j) represents the set of jobs that

have a lower priority than job Ji,j.

Theorem 7.3.1 The response time of a job Ji,j, calculated as the sum of the values produced

by Equations 6.4, 7.5, 7.6 and 7.7, is a safe upper bound on the worst-case response time

of Ji,j in the context of tasks with non-preemptive regions.

The correctness of Theorem 7.3.1 is proved using Lemma 6.4.2 (stated and proved

in Section 6.4.6) and Lemmas 7.3.2, 7.3.3 and 7.3.4 (stated and proved below).

The base WCET of a job does not include the effects of interference from other

jobs. Hence, Lemma 6.4.2 may be reused in this context.

The execution time of higher-priority jobs within the response time of Ji,j is cal-

culated by counting the number of instances of every higher-priority task that may execute

within the response time of Ji,j and multiplying it by the execution time of the specific

higher-priority job as shown in Equation 7.1.

hpexi,j =
∑

(k,l)∈hp(i,j)

��i,j

Pk
� ·

nrk∑
r=1

Cr
k,l (7.1)

Since the algorithm described in Section 7.2 calculates response times for every job in the

task set, the relative phasing between jobs is known. Using this information, the calculation

in Equation 7.1 is tightened. After the release of Ji,j , the time during which no other higher-

priority job is released may be calculated using information about relative phasing as shown
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in Equation 7.2. The execution time remaining after the release of Ji,j for any higher-priority

job released before Ji,j is calculated as shown in Equation 7.3. (Note: Equations 7.2 and

7.3 are the same as Equations 6.6 and 6.7, respectively and are repeated for convenience.)

ati,j = min
(k,l)∈hp(i,j)

[max(�reli,j − φk,l

Pk
� · Pk, 0) + φk,l − reli,j] (7.2)

remreli,j =
∑

(k,l)∈hp(i,j),relk,l<reli,j

Crem
k,l (7.3)

The difference between the times calculated in Equations 7.2 and 7.3 gives the time for

which Ji,j may execute without being preempted. Execution time of all NPRs of Ji,j is

calculated as shown in Equation 7.4.

npri,j =
nri∑
r=1

(Cr
i,j ·NPRr

i,j) (7.4)

Equation 7.5 shows the calculation for the new, tighter estimate on the execution time

of higher-priority jobs within the response time of Ji,j , performed in accordance with the

algorithm described in Section 7.2.

hpexi,j =
∑

(k,l)∈hp(i,j)

��i,j −max((ati,j − remreli,j), 0) − npri,j

Pk
� ·

nrk∑
r=1

Cr
k,l (7.5)

Lemma 7.3.2 An upper bound on the execution time of higher-priority jobs within the

response time of a job Ji,j, in the context of tasks with non-preemptive regions, is given by

Equation 7.5.

Proof Assume that max((ati,j − remreli,j), 0) is not subtracted from the iterative portion

of Equation 7.5. It means that this time can be stretched due to execution of higher-priority

jobs in between. By definition of (ati,j − remreli,j), all higher-priority jobs released before

Ji,j have completed execution and no higher-priority jobs have been released yet after Ji,j .

Contradiction. Hence, max((ati,j−remreli,j), 0) can be subtracted from the iterative portion

of Equation 7.5 without jeopardizing safety of the analysis.

Assume that npri,j is not subtracted from the iterative portion of Equation 7.5. It

means that this time can be stretched due to preemption by higher-priority jobs. npri,j rep-

resents the execution time of regions of Ji,j that are non-preemptive. Contradiction. Hence,

npri,j can be subtracted from the iterative portion of Equation 7.5 without jeopardizing

safety of the analysis.
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Every release of a higher-priority job is a potential preemption point for Ji,j .

Consider an interval between two such consecutive releases. According to the algorithm de-

scribed in Section 7.2, the job release at the end of this interval can be a feasible preemption

point for Ji,j if a) there is a possibility that Ji,j is scheduled in the interval, b) there is a

possibility that Ji,j has not completed execution before the end of the interval and c) Ji,j is

not guaranteed to be executing in a NPR. These conditions are mathematically represented

and the preemption delay is given by Equations 7.6.

conda =
∑

(k,l)∈hp(i,j)

crem
k,l < trem

I

condb =
∑

(k,l)∈hp(i,j)

Crem
k,l + Crem

i,j > trem
I

condc = ¬(∃r s.t.

r−1∑
cr=1

Crem,cr
i,j < trem

I ∧
r∑

cr=1

Crem,cr
i,j > trem

I ∧NPRr
i,j = 1)

PDi,j =
∑

∆I
i,j,∀I s.t. (conda ∧ condb ∧ condc) (7.6)

Lemma 7.3.3 An upper bound on the data-cache related delay experienced by job Ji,j due

to preemptions by higher-priority jobs, in the context of tasks with non-preemptive regions,

is given by Equation 7.6.

Proof Assume the end of interval I is a feasible preemption point for Ji,j . Assume condi-

tions a) and b) are satisfied. Conditions a) and b) have been proved necessary in Section

6.4.6. Assume condition c) is not satisfied. It means that a region of Ji,j is guaranteed to

be executing in a NPR. Hence, the end of interval I cannot be a feasible preemption point

for Ji,j . Contradiction. This proves that condition c) is also necessary.

Assume the end of interval I is a not feasible preemption point for Ji,j . Assume

conditions a) and b) are satisfied. It means that Ji,j continues to execute even after a higher-

priority job is released at the end of the interval. Conditions a) and b) have been proved

sufficient when tasks are completely preemptive. Assume condition c) is also satisfied. It

means that Ji,j is guaranteed not to be in a NPR. This is a violation of strict-priority

scheduling. Hence, the end of interval I is a feasible preemption point for Ji,j . This proves

that condition a), b) and c) are sufficient.

The calculation of the waiting time that Ji,j experiences due to lower-priority jobs

executing in their NPRs at the time of release of Ji,j, in accordance with the algorithm
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described in 7.2, is given by Equation 7.7.

waiti,j = max
(m,n)∈lp(i,j)

Crem,r
m,n ,∀r s.t.

NPRr
m,n = 1 ∧ bstrm,n < reli,j ∧ bstrm,n + Crem,r

m,n > reli,j (7.7)

Lemma 7.3.4 An upper bound on the waiting time that job Ji,j experiences due to lower-

priorty jobs executing in non-preemptive regions is given by Equation 7.7.

Proof Assume that the worst-case waiting time for Ji,j is zero. Assume there exists at

least one region r of a lower-priority job such that r is a NPR and has possibly started, but

is not guaranteed to have ended, before the release of Ji,j, thus satisfying the conditions

in Equation 7.7. Due to the first assumption, Ji,j preempts a job that could be executing

within a NPR. Contradiction (Violation of NPR). Hence, the waiting time for Ji,j is greater

than zero when the conditions in Equation 7.7 are satisfied. Once Ji,j starts to wait, it has

to wait until the longest possible remaining execution among lower-priority jobs that may

be in a NPR is completed (represented by the max function in Equation 7.7).

Proof Assume that the sum of the values produced by Equations 6.4, 7.5, 7.6 and 7.7

is not a safe upper bound on the worst-case response time of a job. This implies that

the value produced by at least one of the equations is an underestimation of the specific

component represented by the equation. Lemmas 6.4.2, 7.3.2, 7.3.3 and 7.3.4 demonstrate

the correctness of each component of the response time of a job as a safe upper bound.

Contradiction. Hence, the sum of the values produced by Equations 6.4, 7.5, 7.6 and 7.7 is

a safe upper bound on the worst-case response time of the job.

7.4 Experimental Results

For all experiments, task sets that have a base utilization (utilization without con-

sidering data cache related delays) of 0.5, 0.6, 0.7 and 0.8 are constructed using benchmarks

from the DSPStone benchmark suite. Task sets of different sizes (2, 4, 6, 8) are constructed

for each of these utilizations. For a utilization of 0.8, a task set consisting of 10 tasks is also

constructed.

In the first set of experiments, response time analysis is performed using the

method presented in Section 7.1 to calculate the number of preemptions and the worst-

case preemption delay. Due to the fact that the benchmarks used in experiments do not
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Table 7.3: Characteristics of Regions of Tasks with NPR
ID Region 1 Region 2 (NPR) Region 3

WCET / BCET WCET / BCET WCET / BCET
5N 39371 / 38271 5084 / 2184 836 / 536
6N 39371 / 38971 10924 / 6024 5196 / 2696
7N 46771 / 44471 14224 / 7224 5196 / 2696
8N 52371 / 48771 18824 / 9624 5196 / 2696
9N 61571 / 55471 15424 / 7224 10096 / 5096
11N 33494 / 31194 5337 / 3737 17707 / 12407
12N 52294 / 43194 9647 / 4847 30297 / 14597
13N 68444 / 53344 12987 / 5587 46107 / 19007
15N 28912 / 26172 22400 / 20760 8584 / 7083
17N 32302 / 32302 9045 / 9045 2590 / 2590
18N 45802 / 45402 5845 / 4545 3190 / 2590
19N 58652 / 55352 5845 / 4545 1440 / 1240
20N 56502 / 53602 11545 / 9045 8990 / 7090
21N 69352 / 63552 11545 / 9045 7240 / 5740
22N 70152 / 64052 17245 / 13545 11840 / 9340
24N 47756 / 45956 4649 / 3549 37231 / 30031
26N 66506 / 60406 5239 / 3939 63891 / 41191
27N 59256 / 54956 20639 / 15639 78741 / 47941

already have a NPR, an iteration range is chosen from the valid iteration range of a partic-

ular task and marked as non-preemptive. Table 7.3 shows execution times of each region as

determined by the timing analyzer based on the chosen iteration ranges for a subset of the

benchmarks. Since there are only have a fixed set of benchmarks, the same benchmark is

used with and without NPRs in different task sets. The length of a task’s NPR as a portion

of its total execution time ranges from 4% to 37% in both the worst and the best cases.

The characteristics of task sets with base utilization 0.5 and 0.8 are shown in Table

7.4. The characteristics and results for utilizations 0.6 and 0.7 are similar and are hence

omitted. The first column shows the tasks used in each task set. The IDs assigned to

benchmarks in Table 5.1 are used to identify the tasks. If a task is chosen to have a NPR

in a certain task set, the letter N is appended to its ID to indicate this fact. In this case,

the WCETs and BCETs for the task are as shown in Table 7.3. Otherwise, they are as

indicated in Table 5.1. The second column shows the phases of the tasks and the third

column shows the periods (equal to the deadlines) of tasks. The phases of the tasks are

chosen in a way to demonstrate interesting features of the analysis presented in Section 7.1.
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Table 7.4: Task Set Characteristics: Benchmark IDs, Phases[cycles] and Periods [cycles]
# Tasks 2 4 6 8 10

U = 0.5
IDs 16, 19N 1,

15N,
18N,
22

23, 3, 6,
11N, 19, 26

2, 3, 4, 11, 15N,
18, 7, 27

Phases 4K, 0 1K,
0,
10K,
0

32K, 32K,
32K, 0, 0, 0

0, 0, 0, 0, 0, 0, 0,
0

Periods 50K, 200K 50K,
400K,
500K,
1000K

400K,
500K,
1000K,
1000K,
2000K

100K, 400K,
500K, 800K,
1000K, 2000K,
2000K, 4000K

U = 0.8
IDs 27, 26N 28,

13N,
27,
19

21, 8N, 20,
13, 25, 19

8, 26, 20, 15N, 9,
11, 8, 21

10, 8, 15, 9, 5,
11N, 20, 27, 22, 17

Phases 0, 0 54K,
0, 0,
0

49K, 0, 0, 0,
0, 0

27K, 27K, 27K, 0,
0, 0, 0, 0

32K, 32K, 32K,
32K, 32K, 0, 0, 0,
0, 0

Periods 300K, 500K 500K,
500K,
1000K,
2000K

400K,
500K,
500K,
1000K,
1000K,
2000K

400K, 500K,
800K, 800K,
1000K, 2000K,
2000K, 4000K

100K, 625K,
625K, 625K,
1000K, 1000K,
1250K, 1250K,
2500K, 5000K

Results obtained for task sets in the above set of experiments are shown in Figures

7.7 and 7.8 for base utilizations of 0.5 and 0.8, respectively. Each graph shows the results of

analysis of the same task sets using both the static Rate Monotonic (RM) scheduling policy

and the dynamic Earliest Deadline First (EDF) scheduling policy. For each utilization, a

separate graph shows the upper bound on the number of preemptions, the WCET with

preemption delay and the response time respectively. These values form the y-axes in the

graphs. In each case, the average values of these parameters over all jobs of a task are

plotted. On the x-axis for each graph, the tasks used in each experiment are shown. Tasks
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(a) # Preemptions for U = 0.5

(b) WCET w/ Delay for U = 0.5

(c) Response Time for U = 0.5

Figure 7.7: Results for U=0.5 under RM and EDF Scheduling

are grouped by task set and, within a task set, by task id starting from 0.

For each scheduling policy, results using three analysis techniques are presented.

The first one is NPR unaware (Preemptive), in which all tasks are assumed to be completely

preemptive, obtained using the analysis presented in Chapter 6. The second is a NPR-aware

analysis, in which some tasks have a non-preemptive region in the middle (PartialNPR).

The third analysis is a NPR-aware analysis, in which the tasks with a non-preemptive region
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(a) # Preemptions for U = 0.8

(b) WCET w/ Delay for U = 0.8

(c) Response Time for U = 0.8

Figure 7.8: Results for U=0.8 under RM and EDF Scheduling

are assumed to be completely non-preemptive (NonPreemptive). The results for fully non-

preemptive schedules are obtained using the algorithm described in Figures 7.3 to 7.6 and

by setting the lengths of the first and third regions to zero. In these graphs, response time

values for tasks that end up missing their deadlines are omitted.

At the outset, it is to be noted that, if a task is supposed to have a non-preemptive

region, then forcing the task to be completely preemptive is unsafe since the results of the

task could be incorrect (due to possible data races). Hence, the results of the NPR unaware
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(Preemptive) analysis are unsafe as far as the tasks with NPR are concerned. It is purely for

the sake of comparison that these results are presented here. On the other hand, making a

task that is supposed to have a portion which is non-preemptive completely non-preemptive

is conservative, yet safe.

From the graphs, several observations may be made. First of all, it may be observed

that the results for the RM scheduling policy and the EDF scheduling policy are almost

the same for most tasks. For RM and EDF to exhibit a difference in behavior, a task with

a longer period needs to have an earlier deadline than one with shorter period somewhere

in the execution timeline. This could happen in two situations, namely, when the shorter

period does not divide the longer period and when there is phasing between the tasks.

In most of the task sets used in the current set of experiments, neither case occurs as

observable from the results. However, for a base utilization of 0.8, small differences may

be observed between the two policies. Similar to observations made in Section 6.5, in some

cases, the EDF policy increases the response times of tasks with shorter periods (higher

priority according to the RM policy) in comparison to the RM policy. This is due to the

fact that the relative deadlines of jobs alter their priorities. For the same reason, the EDF

policy sometimes decreases the response times of tasks with longer periods compared to the

RM policy.

For most of the task sets, it may be observed that the response time estimates

obtained from the NonPreemptive analysis is shorter than those obtained from the Partial-

NPR analysis. The reason for this is as follows. In the PartialNPR analysis, the following

situation could occur. When a task is released, some task with a lower priority might have

started its NPR, but is not guaranteed to have done so. In this situation, according to the

analysis technique described in Section 7.1, the effects of contradicting worst-case scenarios

for both tasks involved are considered. In other words, the worst possible scenario is as-

sumed for each task. This is done in order to ensure safety of the response time estimates.

In reality, however, only one of the scenarios can actually occur. In the case of the Non-

Preemptive analysis, a task that has a NPR is assumed to be completely non-preemptive.

Hence, a situation such as the one described above cannot occur.

On the other hand, in some task sets, the NonPreemptive analysis causes some

high-priority tasks to miss their deadlines. This is because the waiting times for the high-

priority tasks are now longer since the length of the non-preemptive region of a task extends

to its entire execution time. This compensates, in part, for the pessimism that the Par-
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tialNPR method introduces and may be observed by the fact that the actual differences

between response times of tasks in the two cases are not significant.

Next, a sensitivity study is conducted using the example task set shown in Table

7.1. The same periods, phases and total execution times are maintained for all tasks.

However, the length of the NPR in T2 is varied in both the best and worst cases. Starting

from a completely preemptive version of T2, a NPR is added and extended from the middle

outwards symmetrically in both directions until T2 is completely non-preemptive. Table

7.5 shows the WCETs and BCETs of each region for different experiments. The average

response times over all jobs of each task using the RM scheduling policy are shown in Figure

7.9. Response times are omitted from the graph if any job of a task misses its deadline. At

one extreme, where T2 is completely preemptive, it may be observed that the response time

of T0 is the same as its WCET since it executes to completion right after its initial release.

At the other extreme, when T2 is completely non-preemptive, it may be observed that T0

misses its deadline due to increased waiting time. This sensitivity study demonstrates the

improved schedulability of the PartialNPR analysis over the NonPreemptive analysis.

Figure 7.9: Response Times of Tasks

In summary, the techniques presented in Section 7.1 enable a study of the effects

Table 7.5: WCET/BCET Ratios for T2

Expt. # 1 2 3 4 5 6 7 8
Region1 30/20 13/9 11/8 9/7 7/6 5/4 3/2 0/0

Region2:NPR 0/0 4/2 8/4 12/6 16/8 20/12 24/16 30/20
Region3 0/0 13/9 11/8 9/7 7/6 5/4 3/2 0/0
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of having a non-preemptive region and the advantages of having partial NPRs compared

to completely non-preemptive tasks in a task set. Assuming that a task is completely

non-preemptive, though simpler to analyze, has the disadvantage that there is an increased

probability of some high-priority task missing its deadline. On the other hand, a completely

preemptive system might not be acceptable for certain kinds of tasks that inherently possess

a region in which they should not be preempted in order to preserve correctness.
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Chapter 8

Resource-Sharing Tasks

In Chapter 7, a methodology to analyze tasks with critical sections is presented.

In that chapter, logical correctness of tasks is maintained by executing all critical sections

as non-preemptive regions (NPRs). Using that methodology, schedulability of task sets

is improved in comparison to a fully non-preemptive scheduling policy by allowing (legal)

preemptions outside the NPR. A fundamental assumption there is that a task executing in

a NPR cannot be preempted by any higher-priority task for the entire duration of the NPR.

The need for a critical section typically arises due to access of shared resources by

multiple tasks. While it is important to prevent two tasks from accessing a shared resource

at the same time, it is not necessary to disallow preemptions altogether in such a critical

section. In other words, although a shared resource has to be relinquished voluntarily by

a task that has acquired it (making the resource non-preemptible), the task holding the

resource may still be preempted. Several resource sharing policies have been proposed to

control accesses to shared resources in the context of real-time systems. The fundamental

aim of all these polices is to maintain correctness of all tasks while maximizing schedulability

by reducing the waiting time for tasks that do not use a particular resource that has been

acquired by some lower-priority task.

In this chapter, a framework that incorporates resource sharing policies within the

process of estimation of worst-case response times of hard real-time tasks, in the presence

of data caches, is presented.
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8.1 Methodology

Currently, the Priority Inheritance Protocol (PIP) is used to manage accesses

to shared resources [24]. Although the analysis technique being presented in this section

can conceptually support different resource sharing policies with minor extensions to the

algorithm, the discussion through the rest of this chapter is in the context of the Priority

Inheritance Protocol for the sake of simplicity.

In PIP, when a task (say T0) with a priority higher than the currently executing

task (say T1) is released, T1 is preempted and T0 is scheduled immediately. If T0 later

requests access to a shared resource, there are two possibilities. The resource could be

available, in which case it is immediately granted to T0. Alternatively, the resource could

have been acquired by T1 before it was preempted. In such a case, T1 is now scheduled

again and is allowed to execute until it relinquishes the required resource. For this duration

of time, T1 executes at the priority of T0. In other words, T1 inherits the priority of T0 until

the required resource is relinquished. The reason for this is to ensure that T1 cannot be

preempted by tasks with priority between those of T0 and T1, thus preventing a situation

termed priority inversion.

Every task is split into multiple regions, namely regions that access some shared

resource(s) and regions that do not. A total ordering is assumed among all shared resources

in the system being analyzed. If a task needs multiple resources simultaneously, it requests

them in accordance with the total order and releases them in the reverse order of request

to avoid deadlocks in the system.

8.1.1 Motivating and Illustrative Examples

In this section, the methodology is illustrated using examples. In all examples,

the deadline of a task is assumed to be equal to its period. Consider the task-set shown in

Table 8.1. The first column indicates task names. The second and third columns show the

phases and periods of tasks, respectively. The fourth and fifth columns show the worst-case

and best-case execution times (WCET and BCET) of each of the regions of a task. In this

example, every task has three regions, the second of which is the one in which resource

requests are made. The sixth column indicates the name of the resource being used in the

second region of a task.

Figure 8.1(a) shows the results obtained for this task set using a resource-sharing
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Table 8.1: Task Set Characteristics - Task Set 1 [RM policy → T0 has Highest Priority]
Task Phase Period WCET BCET Resource used

= deadline (r1/r2/r3) (r1/r2/r3) in region r2
T0 15 20 2/2/1 1/1/1 R2

T1 10 50 2/3/2 2/2/1 R1

T2 0 200 10/14/6 7/9/4 R1

protocol, specifically the Priority Inheritence Protocol. This method will henceforth be

refered to as ResourceSharingAnalysis. For the sake of comparison, for the same task-set,

results obtained using the analysis technique described in Chapter 7 are also presented. That

method is referred to as NPRAnalysis (equivalent to PartialNPR in the results presented in

Section 7.4). It is to be noted that, in NPRAnalysis, a task executing in a critical section

cannot be preempted by any other task. These results are shown in Figure 8.1(b). For

the sake of simplicity, data cache related delays are assumed to be zero in these examples.

Calculation of data cache related delays will be discussed in Section 8.2.

In both Figures 8.1(a) and 8.1(b), the x-axis represents time. Best-case scenarios

and worst-case scenarios for each individual task are shown below and above the x-axis,

respectively. It is important to note that the timelines do not indicate an actual schedule,

but rather best and worst-case possibilities for each task. The arrows represent releases of

tasks. Since the deadline of a task is assumed to be equal to the period of the task, a release

of a task serves as the deadline for the previous release of the task. The shaded rectangles

represent task execution in a preemptive region where no shared resource is accessed and

the hatched rectangles represent task execution in a region where it accesses one or more

shared resources. Different resources are depicted using different styles of hatching.

Instead of examining the entire timeline, the portions of the timeline that exhibit

differences between NPRAnalysis and ResourceSharingAnalysis are examined. First, con-

sider time 10. At this time, task T2 is executing and the first instance of task T1 is released.

There is a possibility that T2 has already finished executing region r1 and has entered region

r2 (best case), but it is not guaranteed to be so (worst case). In NPRAnalysis (shown in

Figure 8.1(b)), the assumption is that a task executing in its NPR is not preemptible by

any other task. In this situation, the worst-case scenario for task T1 is that it has to wait

for task T2 to finish executing its NPR. On the other hand, in ResourceSharingAnalysis

(shown in Figure 8.1(a)), although a shared resource is not preemptible until a task volu-
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Figure 8.1: Best and Worst Case Results for Task Set 1
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tarily relinquishes it, the task itself can be preempted until some shared resource being held

by it is required by a higher-priority task. Hence, in this situation, task T1 preempts task

T2 in both the best and the worst cases.

While using ResourceSharingAnalysis (8.1(a)), at time 12, task T1 finishes execut-

ing region r1 in the worst-case and enters region r2. On entering region r2, T1 requests

access to resource R1. Since there is a possibility that T2 has already acquired that resource

(best case for T2), the worst case for T1 is to allow T2 to execute and wait until the resource

is relinquished. On the other hand, since there is a possibility that the resource R1 has still

not been acquired by T2, the best case for T1 is that it acquires R1 immediately.

At time 15, an instance of task T0 is released. Once again, in Figure 8.1(b), since

there is a possibility that T2 has already entered its NPR, the worst case for T0 is for it

to wait for the completion of T2’s NPR. Hence, it is scheduled to start at time 24. On the

other hand, in Figure 8.1(a), since T2 can be preempted, T0 gets scheduled immediately

in both the best and the worst cases. Furthermore, in ResourceSharingAnalysis, since T2

never requests resource R1, it can complete executing all its regions, resulting in a response

time equal to its WCET. This example demonstrates the advantages of using a resource

sharing policy as opposed to assuming that a task in a NPR is not preemptible at all.

As a second example, consider the task set whose characteristics are shown in

Table 8.2. The first, second and third columns indicate the task name, phase and period

of each task, respectively. The fourth and fifth columns show the WCET and BCET of

each region of a task. In the sixth and seventh columns, worst-case and best-case resource

request times are indicated. The eighth and ninth columns indicate the worst-case and

best-case resource release times, respectively. The resource request and release times are

relative to the start of the region in which they are used, namely region r2.

Table 8.2: Task Set Characteristics - Task Set 2 [T0 has Highest Priority]
Task Phase Period WCET BCET Request Release

(r1/r2/r3) (r1/r2/r3) WC BC WC BC
T0 15 200 3/6/4 2/4/2 R1: 0 R1: 0 R1: 6 R1: 4

R2: 2 R2: 1 R2: 6 R2: 4
T1 10 200 5/8/6 3/5/4 R2: 0 R2: 0 R2: 8 R2: 5
T2 0 200 7/10/6 5/8/4 R1: 0 R1: 0 R1: 10 R1: 8

Figure 8.2 shows the results obtained using ResourceSharingAnalysis for the task
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set shown in Table 8.2. In this example, nested resource usage occurs. Portions of the

timeline shown in Figure 8.2 that illustrate the methodology being presented are discussed

below.

Consider the events that occur at time 15. The first instance of task T0 is released.

Since T0 has the highest priority, it gets scheduled immediately, preempting the currently

executing task, T1. T0 completes execution of its first region, r1 (at time 12 in the best case

and at time 13 in the worst case), and then requests the resource R1. Since it is guaranteed

that resource R1 has been acquired by task T2 in both the best and worst cases, T0 gets

blocked and T2 gets scheduled. T2 now executes at the priority of T0 until it relinquishes

resource R1.

Later, task T0 requests resource R2 while still holding resource R1. On the one

hand, it is possible that R2 has already been acquired by T1, so that the worst case for T0

is that it gets blocked for the remaining resource usage time of T1. On the other hand, it

is possible that R2 has not yet been acquired by T1, so that the best case for T0 is that it

obtains R2 immediately.

BEST CASE R1

Legend

R2

15 20 605 10 25 30 35 40 45 50 550

T2

T1

T0

T0

T1

T2

WORST CASE

Figure 8.2: Best and Worst Case Results for Task Set 2
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8.2 Data-Cache Related Delay

In the examples provided in Section 8.1.1, the data-cache related delays are as-

sumed to be zero. In this section, calculation of data-cache related delays is described. As

explained in Section 6.4.4, the data-cache related preemption delay (D-CRPD) of a task is

calculated by identifying the range of iteration points at which a task is guaranteed to be

within at the time that it is preempted. The delay at each point in this range is calculated

using the access chains for the preempted task and the maximum among these is assumed

to be the preemption delay at the given preemption point.

When a resource-sharing policy is used to control accesses to shared resources in

a system, a situation may arise where a task that requests a resource is denied access to

the resource because another lower-priority task has already acquired the same resource at

an earlier point in time. In this situation, the task requesting the resource gets blocked and

the lower-priority task is scheduled and allowed to execute until the required resource is

relinquished by it. Since the task requesting the resource has already started its execution,

there is a possibility that it loads some of its data into the data cache. When it gets

blocked and lower-priority tasks are allowed to execute, some of these data cache lines may

potentially be evicted from the data cache by the lower-priority tasks. Consequently, when

the blocked task resumes execution at a later point in time, it experiences an additional

delay to reload the evicted data cache lines into the data cache, similar to that experienced

due to preemption. This delay is termed Data-Cache Related Blocking Delay (D-CRBD).

Calculations of the D-CRBD of a task are performed in a manner similar to that

of D-CRPD. However, there are two distinctions. In the case of D-CRPD, the exact point of

execution of the preempted task at the time of preemption is unknown. Instead, a range of

iteration points where the task may be is identified. In the case of D-CRBD, since blocking

occurs at the time when a resource is requested, the exact iteration point of the requesting

task at the time is known.

The second distinction occurs in the identification of data cache lines that may

be used by tasks that are responsible for causing the delay. In the case of D-CRPD, all

cache lines used by all tasks with priority higher than the preempted task may potentially

be candidates for eviction and, hence, need to be considered as such. On the other hand,

in the case of D-CRBD, only the data cache lines used in specific resource-usage regions of

specific tasks need to be considered.
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The algorithm used to calculate the blocking time for a task that is blocked due to

request for a particular resource is shown in Figure 8.3. In addition to the resource usage

time remaining for the resource being requested by the task that currently holds it, nested

resource usage must be taken into account. For example, assume that a task T0 requests

a resource R1 and gets blocked on that account by task T1. The blocking time for task T0

includes the resource usage time remaining for R1 by task T1 and the blocking times that

T1 might in turn incur due to other resources that it requests while holding resource R1.

The union of data cache lines used in the regions thus identified forms the set of data cache

lines that may potentially be used while task T0 is blocked and, hence, may contribute to

the D-CRBD experienced by task T0.

function: calculateWaitTime(requesting task, res, task holding resource, wait time)
wait time ← wait time + resource usage time remaining for task holding resource
for (every resource other res requested by task holding resource while holding res) {

wait time res ← 0
checkIfAvailableAndCalculateWaitTimeIfNot(task holding resource, other res, wait time res)
wait time ← wait time + wait time res
}

function: checkIfAvailableAndCalculateWaitTimeIfNot(requesting task res, wait time)
acquirers bc ← tasks that have possibly acquired res in the best case
acquirers wc ← tasks that have possibly acquired res in the worst case
if (requesting task has not already waited for res) {

if (either acquirers bc or acquirers wc contains tasks) {
for (every task acquirer in acquirers bc) {

calculateWaitTime(requesting task, acquirer, res, wait time)
}
for (every task acquirer in acquirerswc) {

calculateWaitTime(requesting task, acquirer, res, wait time)
}
}
}

Figure 8.3: Algorithm to Calculate D-CRBD

8.3 Analysis Algorithm

An algorithm briefly describing the methodology to incorporate resource-sharing

policies into the calculation of response times for real-time tasks in the presence of data

caches is shown in Figures 8.4 to 8.7. The implementation of the system uses an event

hierarchy similar to the one described in Sections 6.4.5 and 7.2. Six new event types are

added, namely B/WCRequestResource, B/WCReleaseResource and B/WCBlocking events.
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Structures global to all events are described below
bc service queue, wc service queue : queues of all released jobs that have not yet completed

Possible status : READY, WAITING SCHED, WAITING UNSCHED and IN SERVICE
event list : list of events ordered first by time and then by the priority of the type of event

Parameters for each event are described below
current time : Time at which event occurs, curr job : Job which the event corresponds to

Functions used in event handlers :
insertIntoB/WCServiceQueue(job, status)

inserts job with given status into priority-ordered service queue
removeFromB/WServiceQueue(job)

removes given job from service queue
insertIntoEventList(ev job, ev time, ev type)

inserts an event of type ev type into the event list for time ev time and job ev job
removeFromEventList(ev job, ev type)

removes events of ev type corresponding to ev job

JobRelease event: This event represents the release of a new job of a task
preempt, suspend : boolean values initialized to FALSE
create event: boolean value initialized to TRUE
curr wait, wait time, wc start exec : integers initialized to 0
status : enumeration : IN SERVICE, WAITING SCHED, WAITING UNSCHED and READY
Best-case and Worst-case handling:
If (event queue is empty) create event ← TRUE
else {

for every job (q job) in b/wc service queue starting from lowest priority job {
if (curr job has higher priority than q job) {

if (status of q job is IN SERVICE) {
preempt ← TRUE
} else if (status of q job is WAITING SCHED) {

removeFromEventList(q job, B/WCStartExec)
insertIntoEventList(q job, current time + B/WCET of curr job, B/WCStartExec)
} else if (status of q job is READY) {

removeFromEventList(q job, B/WCStartExec)
if (q job just finished one sub part and is ready to start next one) preempt ← TRUE
}
if (preempt == TRUE) insertIntoEventList(q job, current time, B/WCPreemption)
} else {

Figure 8.4: Algorithm for Calculation of WCET w/ Delay for Resource-Sharing Tasks

B/WRequestResource events are responsible for carrying out the functions required to re-

quest for a resource in the best and worst case, respectively. B/WCReleaseResource events

handle the release of a resource. B/WCBlocking events are responsible for carrying out the

functions required when a task gets blocked due to denial of a requested resource. Once

again, the actual handling of some of the events is different from that described in Sections

6.4.5 and 7.2. The events that are handled differently and the newly added events are

described in Figures 8.4 to 8.7.
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create event ← FALSE, status ← READY
break from for loop
}
}
}
if (create event == TRUE) insertIntoEventList(curr job, current time, B/WCStartExec)
insertIntoB/WCServiceQueue(curr job, status)

BCPreemption event : This event represents the preemption of a task in the best case
removeFromEventList(curr job, BCEndExec)
removeFromEventList(curr job, BCRequestResource)
removeFromEventList(curr job, BCReleaseResource)
update best case remaining time for curr job

WCPreemption event : This event represents the preemption of a task
in the worst case

removeFromEventList(curr job, WCStartExec)
removeFromEventList(curr job, WCEndExec)
removeFromEventList(curr job, WCRequestResource)
removeFromEventList(curr job, WCReleaseResource)
if(curr job has potentially started its NPR) {

insertIntoEventList(curr job, current time + WCET of preempting task, WCStartExec)
set status of curr job to WAITING SCHED in wc service queue
} else set status of curr job to READY in wc service queue
calculate data-cache related delay for all regions of curr job

and update DCache Related Delay Phase
update worst case remaining time for curr job

BCBlocking event : This event represents the blocking of a task in the best case
removeFromEventList(curr job, BCEndExec)
removeFromEventList(curr job, BCRequestResource)
removeFromEventList(curr job, BCReleaseResource)
update best case remaining time for curr job

WCBlocking event : This event represents the blocking of a task in the worst case
removeFromEventList(curr job, WCEndExec)
removeFromEventList(curr job, WCRequestResource)
removeFromEventList(curr job, WCReleaseResource)
calculate data-cache related delay for all regions of curr job

and update DCache Related Delay Phase
update worst case remaining time for curr job

Figure 8.5: Algorithm (cont.) for Calculation of WCET w/ Delay for Resource-Sharing
Tasks
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BCStartExec event : This event represents the best-case start of execution of the current region
set status of curr job to IN SERVICE in bc service queue
insertIntoEventList(curr job, current time + best-case remaining time of curr job, BCEndExec)
if (current region uses resources) {

for (each resource res required in current region in order of request) {
event time ← calculate best-case request time for res
insertIntoEventList(curr job, event time, BCRequestResource)
}
for (each resource res required in current region in reverse order of request) {

event time ← calculate best-case release time for res
insertIntoEventList(curr job, event time, BCReleaseResource)
}
}
BCRequestResource event : This event represents the request for a resource in the best case
update best case remaining time for curr job and request for resource required
if (resource is not acquired) insertIntoEventList(curr job, current time, BCBlocking)

BCReleaseResource event : This event represents the release of a resource
in the best case

update best case remaining time for curr job and release resource

WCStartExec event : This event represents the worst-case start of execution
of the current region

set status of curr job to IN SERVICE in wc service queue
if (curr job in DCache Related Delay Phase) {

insertIntoEventList(curr job, current time + preemption delay, DCacheRelatedDelayPhaseEnd)
} else

insertIntoEventList(curr job, current time + worst-case remaining time of curr job, WCEndExec)
if (current region uses resources) {

for (each resource res required in current region in order of request) {
event time ← calculate worst-case request time for res
insertIntoEventList(curr job, event time, WCRequestResource)
}
for (each resource res required in current region in reverse order of request) {

event time ← calculate worst-case release time for res
insertIntoEventList(curr job, event time, WCReleaseResource)
}
}

Figure 8.6: Algorithm (cont.) for Calculation of WCET w/ Delay for Resource-Sharing
Tasks
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WCRequestResource event : This event represents the request for a resource in the worst case
update worst case remaining time for curr job
for every job (q job) in wc service queue {

if (curr job has higher priority than q job) {
if (status of q job is WAITING SCHED) {

curr start time ← worst-case start time of q job
removeFromEventList(q job, WCStartExec)
insertIntoEventList(q job, curr start time + worst-case time done of curr job, WCStartExec)
}
}
}
if (request for resource denied) insertIntoEventList(curr job, current time, WCBlocking)

WCReleaseResource event : This event represents the release of a resource
in the worst case

for every job (q job) in wc service queue {
if (curr job has higher priority than q job) {

if (status of q job is WAITING SCHED) {
curr start time ← worst-case start time of q job
removeFromEventList(q job, WCStartExec)
insertIntoEventList(q job, curr start time + worst-case time done of curr job, WCStartExec)
}
}
}
release resource

WCEndExec event : This event represents the worst-case end of the current region
create event : boolean value initialized to TRUE
removeFromWCServiceQueue(curr job)
for every job (q job) in wc service queue {

if (curr job has higher priority than q job) {
if (status of q job is WAITING SCHED) {

curr start time ← worst-case start time of q job
removeFromEventList(q job, WCStartExec)
insertIntoEventList(q job, curr start time + worst-case time done of curr job, WCStartExec)
}
}
}
Perform functions of NPR-Aware WCEndExec event

Figure 8.7: Algorithm (cont.) for Calculation of WCET w/ Delay for Resource-Sharing
Tasks



110

8.4 Correctness of Analysis

The algorithm described in Section 8.3 calculates the worst-case response time of

a job in the context of a given task set. Equation 5.2 shows the calculation of the worst-case

response time of a job Ji,j . In the context of resource-sharing tasks, response time of a job

is the sum of five components, namely the base WCET of the task, the execution time of

higher-priority jobs, the D-CRPD incurred due to preemption by higher-priority jobs, the

blocking time incurred due to shared resources and the D-CRBD incurred due to blocking

by lower-priority jobs. The formulation for each of these components for a job Ji,j and a

proof of their correctness are presented in this section.

The new symbols introduced in this formulation are explained as follows. ∆R
i,j

represents the data-cache related delay experienced by job Ji,j due to blocking by a lower-

priority job using a resource R that is required by Ji,j . δr
i,j represents the delay incurred by a

higher-priority job due to blocking by region r of a lower-priority job Ji,j . Resi,j represents

the set of resources used by job Ji,j and Resr
i,j represents the set of resources used by Ji,j

in a specific region r. wstri,j represents the latest possible start time for region r of job

Ji,j . bcreqR,r
i,j and wcreqR,r

i,j represent the best and worst-case request times, respectively for

resource R within region r of job Ji,j. Similarly, bcrelR,r
i,j and wcrelR,r

i,j represent the best

and worst-case release times for R. Resource request and release times are relative to the

start of the region in which they are used. lp(i, j) represents the set of jobs that have a

lower-priority than Ji,j . Due to the usage of resource-sharing protocols, the priority of a

job may be different at different points of time. cpt
i,j represents the current priority of Ji,j

at time t and chp(i, j)t represents the set of jobs that have a higher priority than job Ji,j

at a time t.

Theorem 8.4.1 The response time of a job Ji,j, calculated as the sum of the values produced

by Equations 6.4, 8.5, 6.9, 8.8 and 8.10, is a safe upper bound on the worst-case response

time of Ji,j in the context of resource-sharing tasks.

The correctness of the theorem is proved using Lemmas 6.4.2 and 6.4.4 (stated

and proved in Section 6.4.6), and Lemmas 8.4.2 and 8.4.3 (stated and proved below).

The base WCET of a job does not include the effects of interference from other

jobs. Hence, Lemma 6.4.2 may be reused in this context.

The execution time of higher-priority jobs within the response time of Ji,j is cal-
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culated by counting the number of instances of every higher-priority task that may execute

within the response time of Ji,j and multiplying it by the execution time of the specific

higher-priority job. In the context of resource-sharing tasks, there may be some lower-

priority executing at an inherited priority that is higher than Ji,j and, hence, need to be

considered as a higher-priority job. Calculation of the set of lower-priority jobs that need to

be considered as higher-priority jobs is shown in Equation 8.1. Calculation of the execution

time of higher-priority jobs is shown in Equation 8.2.

setlpi,j = {(m,n)} s.t.((m,n) ∈ (lp(i, j) ∩ chp(i, j)t)) ∧ (cpt−1
m,n �= cpt

m,n),

∀t s.t. (t > reli,j) ∧ (t < �i,j) (8.1)

hpexi,j =
∑

(k,l)∈hp(i,j)

(��i,j

Pk
� ·

nrk∑
r=1

Cr
k,l) +

(
∑

(m,n)∈setlpi,j

(��i,j

Pm
� ·

nrm∑
r=1

Crem,r
m,n ,∀r s.t. Resr

m,n �= ∅)) (8.2)

Since the algorithm described in Section 8.3 calculates response times for every job in the

task set, the relative phasing between jobs is known. Using this information, the calculation

in Equation 8.2 is tightened. After the release of Ji,j , the time during which no other higher-

priority job is released may be calculated using information about relative phasing as shown

in Equation 8.3. The execution time remaining after the release of Ji,j for any higher-priority

job released before Ji,j is calculated as shown in Equation 8.4. (Note: Equations 8.3 and

8.4 are the same as Equations 6.6 and 6.7, respectively and are repeated for convenience.)

ati,j = min
(k,l)∈hp(i,j)

[max(�reli,j − φk,l

Pk
� · Pk, 0) + φk,l − reli,j] (8.3)

remreli,j =
∑

(k,l)∈hp(i,j),relk,l<reli,j

Crem
k,l (8.4)

The difference between the times calculated in Equations 8.3 and 8.4 gives the time for

which Ji,j may execute without being preempted. Equation 8.5 shows the calculation for

the new, tighter estimate on the execution time of higher-priority jobs within the response
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time of Ji,j, performed in accordance with the algorithm described in Section 8.3.

hpexi,j =
∑

(k,l)∈hp(i,j)

(��i,j −max((ati,j − remreli,j), 0)
Pk

� ·
nrk∑
r=1

Cr
k,l) +

(
∑

(m,n)∈setlpi,j

(��i,j −max((ati,j − remreli,j), 0)
Pm

�

·
nrm∑
r=1

Crem,r
m,n ,∀r s.t. Resr

m,n �= ∅)) (8.5)

Lemma 8.4.2 An upper bound on the execution time of higher-priority jobs within the

response time of a job Ji,j , in the context of resource-sharing tasks, is given by Equation

8.5.

Proof Assume that max((ati,j − remreli,j), 0) is not subtracted from the iterative portion

of Equation 8.5. It means that this time can be stretched due to execution of higher-priority

jobs in between. By definition of (ati,j − remreli,j), all higher-priority jobs released before

Ji,j have completed execution and no higher-priority jobs have been released yet after Ji,j .

Contradiction. Hence, max((ati,j−remreli,j), 0) can be subtracted from the iterative portion

of Equation 8.5 without jeopardizing safety of the analysis.

Resource-sharing tasks are fully preemptive as far as preemption delay calculations

are concerned. Hence, Lemma 6.4.4 may be reused in this context.

Calculation of the set of regions within a lower-priority job that could block a

higher-priority job Ji,j requesting a resource R is shown in Equation 8.6.

setregR
i,j = {r} s.t.R ∈ Resr

k,l ∧ bstrk,l + bcreqR,r
k,l < reli,j

∧wstrk,l + wcrelR,r
k,l > reli,j (8.6)

The calculation of the blocking time that Ji,j experiences due to denial of resource R, in

accordance with the algorithm described in 8.3, is given by Equation 8.7 and the total

blocking time for Ji,j is given by Equation 8.8.

BR
i,j = max

(k,l)∈lp(i,j),R∈Resk,l,r∈setregR
i,j

[Crem,r
k,l +

∑

R′∈Resr
k,l,req(R′ )≥req(R),rel(R′ )≤rel(R)

BR
′

k,l ]

(8.7)

Bi,j =
∑

R∈Resi,j

BR
i,j (8.8)



113

Due to potential blocking by the regions identified in Equation 8.6, job Ji,j experiences data-

cache related delay. The calculation of the data-cache related that Ji,j experiences due to

denial of resource R is given by Equation 8.9 and the total data-cache related blocking delay

for Ji,j is given by Equation 8.10. Note that the formulae for blocking time and blocking

delay are specific to the Priority Inheritance Protocol.

∆R
i,j = �(k,l)∈lp(i,j),R∈Resk,l,r∈setregR

i,j
[δr

k,l +
∑

R′∈Resr
k,l,req(R′ )≥req(R),rel(R′ )≤rel(R)

∆R
′

k,l]

(8.9)

∆i,j =
∑

R∈Resi,j

∆R
i,j (8.10)

Lemma 8.4.3 a) An upper bound on the blocking time that job Ji,j experiences due to

lower-priorty jobs holding resources required by Ji,j is given by Equation 8.8.

b) An upper bound on the data-cache related delay that job Ji,j experiences due to

all possible blocking scenarios identified using Equation 8.8 is given by Equation 8.10.

Proof Priority inheritance is transitive. If a job Ji,j is blocked on resource R by a lower-

priority job Jk,l, it is possible that Jk,l in turn gets blocked on resource R
′
by Jm,n, which

has a priority lower than Jk,l. By definition of the Priority Inheritance Protocol, Jm,n

transitively inherits the priority of Ji,j and finishes using resource R
′
. Then, it resumes its

initial priority and Jk,l executes at the priority of Ji,j until it relinquishes R. This transitive

property of PIP proves the recursive part of the calculation shown in Equations 8.7 and 8.9.

The correctness of the direct blocking time and blocking delay is now proved.

Assume region r of Jk,l directly blocks Ji,j due to resource R.

a) R ∈ Resk,l is a necessary condition since the resource has to be used in region

r in order to block.

b) Assume bstrk,l + bcreqR,r
k,l >= reli,j. This implies that, even in the best case,

resource R has not yet been acquired by the lower-priority job Jk,l before the release of Ji,j .

Hence, region r of Jk,l cannot directly block Ji,j . Contradiction. Hence, bstrk,l + bcreqR,r
k,l <

reli,j.

c) Assume wstrk,l + wcrelR,r
k,l <= reli,j . It means that, even in the worst case,

resource R has already been relinquished by the lower-priority job Jk,l before the release

of Ji,j. Hence, region r of Jk,l cannot directly block Ji,j . Contradiction. Hence, wstrk,l +

wcrelR,r
k,l > reli,j.
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a), b) and c) demonstrate that the three conditions are necessary in order to

ascertain whether a region can directly block a higher-priority job that requests a particular

resource.

Assume region r of Jk,l does not directly block Ji,j due to resource R. Assume

that all three conditions for region r in Equation 8.7 are satisfied. It means that there

is a possibility that resource R has been acquired by Jk,l, but no guarantee that it has

been relinquished, before the release of Ji,j. Hence, region r of Jk,l directly blocks Ji,j .

Contradiction. This proves that the three conditions specified in Equation 8.7 are sufficient

to determine whether a region directly blocks a higher-priority job. Once the regions that

could block job Ji,j are identified, the data-cache related blocking delay calculation is a

union of delays due to each region.

Proof Assume that the sum of the values produced by Equations 6.4, 8.5, 6.9, 8.8 and

8.10 is not a safe upper bound on the worst-case response time of a job. This implies that

the value produced by at least one of the equations is an underestimation of the specific

component represented by the equation. Lemmas 6.4.2, 8.4.2, 6.4.4 and 8.4.3 demonstrate

the correctness of each component of the response time of a job as a safe upper bound.

Contradiction. Hence, the sum of the values produced by Equations 6.4, 8.5, 6.9, 8.8 and

8.10 is a safe upper bound on the worst-case response time of the job.

8.5 Experimental Results

In all experiments, task sets that have a base utilization (utilization without con-

sidering data cache related delays) of 0.5 and 0.8 are used. Task sets of different sizes (2, 4,

6, 8) are constructed for both these utilizations. For a utilization of 0.8, a task set consisting

of 10 tasks is also constructed.

The characteristics of the task sets constructed are shown in Table 8.3. The table

indicates the task IDs, phases (cycles) and periods (cycles) of each task in the various task

sets. The task IDs correspond to those assigned in Table 5.1. Task IDs that only have a

single number indicate that the corresponding task does not use any shared resource. In

contrast, IDs of tasks that use a shared resource are assigned a suffix of a dash followed by a

number. This new ID is used to distinguish between different resource usage characteristics.

Table 8.4 shows the resource usage characteristics for tasks that use some shared
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Table 8.3: Task Set Characteristics for Resource Sharing Tasks
# Tasks 2 4 6 8 10

U = 0.5
IDs 16, 19-1 1, 15-1, 18-

1, 22
23-1, 3, 6,
11-1, 19, 26

2, 3, 4, 11-1, 15-1,
18, 7, 27

Phases 45.4K, 0 40K, 47491,
0, 0

32K, 32K,
32K, 0, 0, 0

50K, 50K, 50K,
40K, 0, 0, 0, 0

Periods 50K, 200K 50K, 400K,
500K,
1000K

100K,
400K,
500K,
1000K,
1000K,
2000K

100K, 400K,
500K, 800K,
1000K, 2000K,
2000K, 4000K

U = 0.8
IDs 27-1, 26-1 28, 13-1, 27-

2, 19
21-1, 8-1,
20, 13, 25,
19

8, 26, 20-1, 15-2,
9, 11, 8, 21

10-1, 8, 15, 9, 5,
11-2, 20-2, 27, 22,
17

Phases 60K, 0 100K, 70K,
0, 0

60K, 0, 0, 0,
0, 0

27K, 27K, 27K, 0,
0, 0, 0, 0

85.2K, 85.2K,
85.2K, 85.2K,
85.2K, 54K, 0, 0,
0, 0

Periods 300K, 500K 500K,
500K,
1000K,
2000K

400K,
500K,
500K,
1000K,
1000K,
2000K

400K, 500K,
800K, 800K,
1000K, 2000K,
2000K, 4000K

100K, 625K,
625K, 625K,
1000K, 1000K,
1250K, 1250K,
2500K, 5000K

resource. The first column indicates a task ID that corresponds to task IDs in Table 8.3. The

second column shows the resource being used and the third and fourth columns indicate the

iteration points at which the resource is requested and released, respectively. The format

of the iteration point is as follows. Each pair of numbers within parantheses indicates one

loop level, starting with the outermost level and proceeding inwards. Within each pair, the

first number indicates the number of the loop in the current level (in case of sequential loop

nests) and the second number indicates the iteration number within that loop.

Results for the task sets in Table 8.3, obtained using both the RM and the EDF

scheduling policies, are shown in Figures 8.8 and 8.9, respectively. For each task set, results

using two different analysis techniques are presented. The first technique is Resource-

SharingAnalysis, which employs a resource-sharing protocol (specifically, the Priority In-
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Table 8.4: Resource Usage Characteristics
Task ID Resource Request Iter Release Iter

8-1 R1 (1, 0), (2, 400) (1, 0), (2, 600)
R2 (1, 0), (2, 500) (1, 0), (2, 600)
R3 (1, 0), (2, 800) (1, 0), (2, 850)

10-1 R1 (1, 0), (2, 30) (1, 0), (2, 50)
11-1 R1 (1, 0), (2, 150) (1, 0), (2, 250)
11-2 R1 (1, 0), (2, 150) (1, 0), (2, 200)

R2 (1, 0), (2, 170) (1, 0), (2, 190)
13-1 R2 (1, 0), (2, 300) (1, 0), (2, 450)
15-1 R1 (1, 0), (4, 5), (1, 5) (1, 0), (4, 6, (1, 2)

R2 (1, 0), (4, 8), (1, 2) (1, 0), (4, 9, (1, 8)
15-2 R1 (1, 0), (4, 5), (1, 5) (1, 0), (4, 8, (1, 8)
18-1 R2 (1, 0), (2, 300) (1, 0), (2, 400)
19-1 R1 (1, 0), (2, 350) (1, 0), (2, 500)
20-1 R1 (1, 0), (2, 300) (1, 0), (2, 400)
20-2 R2 (1, 0), (2, 450) (1, 0), (2, 500)
21-1 R1 (1, 0), (2, 300) (1, 0), (2, 400)
23-1 R1 (1, 0), (2, 50) (1, 0), (2, 75)
26-1 R1 (1, 0), (2, 650) (1, 0), (2, 750)
27-1 R2 (1, 0), (2, 450) (1, 0), (2, 650)
27-2 R1 (1, 0), (2, 400) (1, 0), (2, 800)

R2 (1, 0), (2, 650) (1, 0), (2, 750)

heritance Protocol) to control accesses to shared resources as described in this chapter. The

second technique is NPRAnalysis (discussed in Chapter 7) and results obtained using this

analysis are shown for the sake of comparison. In the case of NPRAnalysis, any region

where a shared resource is used is assumed to be a non-preemptive region, i.e., a region

during which a task cannot be preempted by any other task.

The technique presented in this chapter extends from NPRs to resource-sharing

protocols without loss of tightness. The method itself, bounding D-CRPD for resource-

sharing tasks, is without precedence. Hence, no comparison with prior work can be pre-

sented.

From the graphs, several observations may be made. First of all, RM and EDF

exhibit little or no differences. In cases where they do exhibit differences (some task sets

with utilization = 0.8), the behavior is as expected. The EDF policy sometimes increases

the response times of tasks with shorter periods (higher priority according to the RM policy)
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(a) # Preemptions for U = 0.5

(b) WCET w/ Delay for U = 0.5

(c) Response Time for U = 0.5

Figure 8.8: Results for U=0.5 using RM and EDF Policies
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(a) # Preemptions for U = 0.8

(b) WCET w/ Delay for U = 0.8

(c) Response Time for U = 0.8

Figure 8.9: Results for U=0.8 using RM and EDF Policies
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and sometimes decreases the response times of tasks with longer periods, compared to the

RM policy. As explained in Section 6.5, this is due to the fact that the relative deadlines

of jobs alter their priorities.

It may be observed from the graphs that tasks with a high priority sometimes have

a higher response time in the case of NPRAnalysis compared to ResourceSharingAnalysis.

This is expected since NPRAnalysis disallows preemptions altogether when a task is ex-

ecuting in a critical section and could thereby cause a delay in the start of execution of

some higher-priority tasks. On the other hand, in the case of ResourceSharingAnalysis, a

higher-priority does not have to wait unless (and until) it requires a resource that has been

acquired by some lower-priority task.

For some higher-priority tasks, however, it may be observed that the response time

is higher in the case of ResourceSharingAnalysis compared to NPRAnalysis. This is possible

due to the fact that, in ResourceSharingAnalysis, a task may get blocked by a lower-priority

task when it requests a resource and, consequently, may experience some data-cache related

blocking delay. In the case of NPRAnalysis, although the start of execution of a higher-

priority task may get delayed if a lower-priority task is executing in its critical section, a

higher-priority task can never get blocked by a lower-priority task once it begins to execute.

Hence, in NPRAnalysis, a task does not experience data-cache related blocking delay.

Another observation that may be made from the graphs is that some lower-priority

tasks have a higher number of preemptions in the case of ResourceSharingAnalysis compared

to NPRAnalysis while others have a lower number of preemptions. Although this may seem

contradictory, both these results are valid. Some lower-priority task might be executing in

a critical section when a higher-priority task is released. In this situation, NPRAnalysis

disallows preemption of the lower-priority task whereas ResourceSharingAnalysis does not.

Hence, the number of preemptions could be more in the case of ResourceSharingAnaly-

sis. In some cases, due to relative positioning of jobs and the data-cache related delays

experienced by tasks, lower-priority tasks could have a lower number of preemptions in

ResourceSharingAnalysis compared to NPRAnalysis.

Based on the above observations, there is no clear answer to the question of whether

using resource-sharing protocols is a better option than making critical sections completely

non-preemptive when data-cache related delays are taken into account. The answer is de-

pendent on the characteristics of the task set at hand. Analysis techniques, such as the

ones presented in Chapter 7 and in this chapter, may be used to statically determine which
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method is better suited for a given task set.
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Chapter 9

Related Work

Data Cache characterization to predict the behavior of a data cache in the context

of a single task has been the focus of much research in the past. While some of these

approaches trade off accuracy of analysis for speed of analysis, others trade off speed of

analysis for flexibility and the detail of the output information produced.

Trace-based simulators may be used to describe data cache behavior accurately

for a specific input, but they are very slow and do not provide any information about the

cause of the misses. Furthermore, they do not provide worst-case execution time guarantees

since they work on specific inputs.

Several methods that statically bound data cache behavior have been proposed.

Rawat [25] proposes a method to statically analyze data cache behavior using interference

graphs on live-ranges of references in a program. This method does not allow global data and

assumes that any execution path may potentially be the worst-case path, thus increasing

the number of paths that must be explored exponentially.

Lim et al. [26] propose a method that takes data caching into account while com-

puting the WCET for tasks. This method works for static memory references. For memory

references whose addresses are unknown at compile-time, a hardware bit is set to zero,

indicating that the reference must not be loaded into the data cache when the program is

executed, effectively making the reference a data cache miss every time. Kim et al. [27]

propose a method that classifies data references as static or dynamic. However, they do not

deal with arrays or pointers.

Li et al. [28] use data flow analysis to analyze data cache behavior. White et

al. [29] propose a method for direct-mapped caches. This work is based on static cache
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simulation. These methods have high computational complexity due to the explosion of the

data-flow state in the presence of arrays. Lundqvist et al. [30] present a study that shows

to what extent data cache accesses are predictable and conclude that a majority of data

cache accesses can be predicted.

Cache locking [31, 32] and cache partitioning [33] techniques have been used to

make data cache behavior more predictable in real programs. In cache locking [31, 32],

selected data is loaded into cache and locked in place so that it may not be replaced until

the cache is explicitly unlocked. During the locked interval, since the cache contents are

known, cache behavior is predictable. This approach has the disadvantage that locking and

unlocking introduce some overheads. Furthermore, if the data is too large to fit into cache,

it has to be completely unloaded from cache to make sure cache behavior is still predictable.

This leads to performance loss. Recent work shows improvements in these methods for the

case of instruction caches [34]. However, since data caches stride over large data sets, it is

difficult to prevent loss in performance.

In cache partitioning, the cache is partitioned such that different portions may store

different types of data [33] or store data used by different tasks in preemptive systems.

Recently, some analytical methods for predicting data cache behavior have been

proposed. They include the Cache Miss Equations by Ghosh et al. [13], which has been

built upon in this dissertation, a probabilistic method of analysis as proposed by Fraguella

et al. [35] and another analytical method by Chatterjee et al. [36]. The basic idea behind

all these methods is the same – to characterize data cache behavior by means of a set of

mathematical equations. On solving these equations, information about data cache behavior

may be obtained. Vera et al. have proposed analytical methods based on the Cache Miss

Equations to predict data cache behavior [16, 17].

The CME framework [13], in its original form, and the probabilistic methods [35]

can be used only for perfect loop-nests with no data dependent conditionals.

The formula-based method [36] is a method that models cache behavior exactly

using Presburger formulae to specify cache misses. This method can also deal with multiple

loop nests and conditionals. However, it has been applied only for small programs. The

applicability in real programs has not been tested.

Vera et al [16, 17] build upon the cache miss equations to efficiently produce cache

misses in loop-nest-oriented code. Their focus is on analysis speed and, for this, accuracy

is traded off to a certain extent. In the work presented in this dissertation, the main focus
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is accuracy in order to be able to supply the static timing analysis framework an accurate

count of the data cache misses in a program.

Other techniques have been proposed to calculate preemption delay and analyze

schedulability in a multi-task preemptive system. These techniques do not specifically

analyze data cache behavior. Instead, they provide a more generic solution applicable to a

cache including specific solutions for instruction caches.

Early on, Basumallick et al. conducted a survey of cache related issues in real-

time systems [37]. This survey discusses some initial work related to the calculation of

preemption delay. Busquets-Mataix et al. propose a method to incorporate the effect of

instruction caches on response time analysis (RTA) [38]. They compare cached RTA with

cached Rate Monotonic Analysis (RMA) and conclude that cached RTA outperforms cached

RMA. Lee et al. propose and enhance a method to calculate an upper bound for cache

related preemption delay in a real-time system [39, 40]. They use cache states at basic

block boundaries and data flow analysis on the control flow graph of a task to analyze cache

behavior and calculate preemption delay.

Another approach by Tomiyama et al. calculates cache related preemption delay

for the program path that requires the maximum number of cache blocks [41]. This path is

determined by an integer linear programming technique. In this paper, an empty cache is

assumed at the beginning of every job and hence, each preemption is analyzed individually.

Effects of multiple preemptions are not considered. Negi et al. combine the techniques

proposed by Tomiyama et al. [41] and by Lee et al. [39, 40] to develop an enhanced framework

[42]. Once again, multiple preemptions are not considered in their work since an empty cache

is assumed at the beginning of a task.

The work by Lee et al. is enhanced by Staschulat et al. [22, 23]. The authors

propose a complete framework for the calculation of response time for tasks in a given task

set.

They address the three issues enumerated in the Section 6.1, namely calculation of

the maximum number of preemption points, identification of their placement and calculation

of the delay at each point. However, their focus is not on data caches, but on instruction

caches.

In their work, Staschulat et al. discuss the concept of indirect preemptions [23].

Table 9.1 provides a sample task set with phase Φ, period P , WCET C and preemption

delay ∆, respectively, for tasks T1 to T4. For simplicity, ∆ is assumed to be fixed per task,
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Figure 9.1: Preemption with Φ Phasing

i.e., incurred when inflicted by any higher priority task.

Table 9.1: Task Set, Optional Phasing
Φ P C ∆

T1 2 3 1 0
T2 1 15 4.625 0.125
T3 0 20 2.25 0.75
T4 0 25 1 0.125

In Figure 9.1, execution is depicted by shaded boxes and the preemption delay is

depcited by black boxes. Staschulat et al. observe that several indirect preemptions affect

lower priority tasks only once. For example, in the figure, T2 is affected by the first two

invocations of T1. T3 is actually only affected by the first and third invocations since, after

being preempted once, it is not scheduled at all until T2 completes execution. Furthermore,

while incurring the delay due to preemption, T3 is preempted again at time eight. Hence,

the entire preemption cost is charged again when T3 resumes at time nine. This results in

a response time of R3 of 11 units. It has been shown in Chapter 4 that considering indirect

preemption along the lines of Staschulat et al. produces pessimistic results.

In more recent work [43], Staschulat et al. propose a timing framework that consid-

ers predictable and unpredictable (input-dependent) data cache accesses. For unpredictable

accesses, a tight bound of their impact on predictable accesses and a worst-case estimate of

the number of additional data cache misses is calculated. As such, their work considers any

reused cache content to be replaced when a conflicting range of accesses for unpredictable

data references exists, up to the number of cache blocks in either set. Alternatively, they

handle cold misses for small arrays that entirely fit into cache and do not suffer replace-

ments at all. In the work presented in this dissertation, no assumption is made about the
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size of arrays. Furthermore, only predictable data accesses are analyzed. Notice that for

array traversals exceeding cache size, their scheme breaks down as they assume that the

entire cache has been replaced. As their schemes and those presented in this dissertation

are complementary, it would be interesting to study the compatibility of these methods.

However, such a study is beyond the scope of this dissertation.

There have been several pieces of work that provide schedulability analysis and

tests for non-preemptive systems [44]. However, their fundamental assumption is that every

task is completely non-preemptive. They do not allow any task to be partially or fully

preemptive. This assumption simplifies analysis greatly but decreases schedulability of task

sets. In order to increase schedulability, yet achieve lower analysis complexity, methods are

proposed to ”defer” preemptions to known points in time by splitting a job into several

small sub-jobs and allowing preemptions only at the end of a sub-job [45, 46, 47]. Recent

work by Bril et al. demonstrates flaws in these method [48, 49].
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Chapter 10

Conclusion

This dissertation presents techniques that make static data cache analysis in the

context of multiple tasks executing in a prioritized manner feasible for a large class of

programs. The techniques presented are applicable to independent, periodic, hard-real

time tasks executing on a single, in-order processor. The work presented consists of three

major components.

10.1 Summary of Contributions

In the first component (Chapter 4), data cache behavior is analyzed with respect to

a single task, without taking into account the effects that the execution of other tasks may

have on it. In this component, an existing framework known as the Cache Miss Equations

framework [13, 15] is enhanced to remove some restrictive assumptions and construct data

cache reference patterns for scalar and non-scalar (array) references.

Experimental results using the enhanced framework indicate improvements in the

tightness of worst-case cache behavior of one, sometimes even two orders of magnitude

over the original CME approach. These results tightly and safely approximate results from

trace-driven cache simulation under worst-case input. Subsequent bounds on the WCET

by the timing analyzer underline the applicability of these results for end-to-end timing

analysis. This work resulted in a publication [50].

The second component (Chapter 6) analyzes multiple tasks. Here, every task is

assigned a unique priority and is assumed to be completely preemptive. Analysis techniques

to calculate an upper bound on the number of preemptions that a task may undergo and
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the worst-case preemption delay incurred at each preemption point are presented. Using

these results, safe and tight upper bounds on the worst-case execution times and response

times of tasks are calculated.

This component also demonstrates that the critical instant for a task set need not

occur upon simultaneous release of all tasks when considering data cache related preemption

delay. Hence, every job in the hyperperiod of a task set is analyzed individually.

Experimental results indicate significantly tighter bounds for (a) the number of

preemptions, (b) the WCET and (c) the response time of a task compared to prior methods.

The improvements are up to an order of magnitude over the prior methods. To the best of

the author’s knowledge, this work is novel in its contribution of a methodology to integrate

data caches into preemption delay determination and in the consideration of critical instants

for staggered releases of tasks. This work resulted in several publications [51, 52, 53].

The last component (Chapters 7, 8) consists of analytical techniques for tasks that

may have critical sections within them. This component consists of two sub-parts. In the

first sub-part, it is assumed that a task executing in a critical section cannot be preempted

by any other task for the duration of the critical section. In other words, critical sections

are treated as non-premptive regions. In the second sub-part, resource-sharing policies are

employed to control accesses to shared resources that are used within critical sections. Here,

although a resource, once acquired, has to be voluntarily relinquished by the acquiring task,

the task itself may be preempted until a resource it holds is required by some higher-priority

task.

Experimental results indicate that techniques in both the sub-parts demonstrate

improved schedulability over completely non-preemptive systems. However, between the

two methods, there is no clear answer to the question of which method is better since it

depends on the characteristics of the task set being analyzed. Parts of this work resulted

in a publication [54].

10.2 Future Work

This dissertation and several other works of research have proposed techniques

to make caches more predictable in the context of real-time systems. However, there is

still research needed before caches can be safely used in mission-critical real-time systems

without requiring unnecessary pessimism in the analysis. Furthermore, several new areas
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(a) Condition is Not Satisfied
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(b) Condition is Satisfied

Figure 10.1: Replacements using LRU

with real-time requirements require new methods of analysis.

10.2.1 Short-Term Goals

Throughout the work presented in this dissertation, a direct-mapped data cache

has been assumed. However, set-associative caches are commonly used in practical systems.

The extension of the data cache analysis to support set-associative caches is not trivial,

specially in the presence of the data-dependent conditions that are allowed by the framework

presented in Chapter 4.

In Section 4.2, it is assumed that an upper bound on the number of data cache

misses in the presence of a data-dependent condition (with no “else” part) can be obtained

by assuming that the condition is satisfied. While this is true in the case of direct-mapped

caches, the same is not guaranteed for set-associative caches due to the presence of a re-

placement policy.

Consider the reference stream 1, 2, 3, 4, 4, 3, 2, 5, 8, 10, 2 where each number

denotes a memory line being accessed. The numbers in boldface indicate the lines that are

only accessed if a certain data-dependent condition is satisfied. Assume the system that

executes the program generating these references has a 4-way set-associative data cache

with just one set. Further, assume that it uses the LRU (Least Recently Used) replacement

policy (described in Section 2.3.2. Figure 10.1 shows the replacements that take place when

the reference stream above is accessed. Figure 10.1(a) shows replacements that occur when

the condition is not satisfied and Figure 10.1(b) shows those that occur when the condition

is satisfied.
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It may be observed from the figures that, due to the replacement policy used, the

case where the condition is not satisfied actually has a higher number of data cache misses.

This serves as a counter-example to the assumption made in Section 4.2 when it comes to

set-associative caches. This also serves to show the need for research to extend the data

cache analysis techniques presented in this dissertation to set-associative caches.

Data caches have some inherent difficulties that are a challenge to overcome. One

such difficulty is calculating the WCET of a task in the presence of generic (if-then-else),

data-dependent conditions. The cache hit/miss status of an access in a particular iteration

depends on accesses in previous iterations. Assuming the worst order of accesses for every

iteration in isolation need not necessarily result in overall worst-case behavior. Hence, such

an assumption could jeopardize safety of the analysis. By imposing certain constraints that

are reasonable in practice, analysis methods may be developed to characterize data cache

behavior for programs with generic data-dependent conditionals and the development of

such methods is an area of research to be explored.

10.2.2 Medium and Long-Term Goals

Cyber physical systems: Cyber physical systems are integrations of computa-

tions with physical processes that are finding an increasing number of applications in todays

world. The usage of such systems in a real-time environment finds applications in assisted

living, smart clothes, avionics, automotive networks, disaster response, etc. to mention a

few. Dependability, efficiency and performance in computation, communication and control

are primary requirements of such systems, introducing several new challenges in the areas

of security and timing analysis [55].

Due to the inherent unpredictability introduced by data caches in timing analysis,

several cyber-physical systems are tending towards usage of scratchpad memory — a portion

of cache reserved for direct and private use by the CPU, i.e., a software-managed cache — as

a substitute [56, 57, 58, 59, 60]. A data cache has the advantage of being managed generically

by hardware while scratchpad memory needs to be explicitly managed through software

for each task. On the other hand, scratchpad memory has the advantage of increased

predictability.

The study of the pros and cons of using data caches over using scratchpad memories

and the development of new methods of analysis to make their combined usage viable in
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cyber physical systems is an interesting area for future research. In order to make data

cache analysis feasible for such systems, every component (computation, communication

and control) of a task may be modeled as a separate sub-task with precedence constraints

introduced to maintain correctness.

Multi-core systems: Starting from personal computers to the most advanced

computing machines, there is movement towards multi-core architectures. Several embed-

ded multi-core architectures are already in existence. Architects of such systems have several

options for cache organization, each of which has its own advantages in terms of system

performance, cost and simplicity. Adding real-time requirements to embedded multi-core

systems brings to light a whole new set of challenges in program analysis. Cache character-

ization for data-sharing tasks now requires consideration of issues such as cache coherence

and false sharing. The need for program analysis solutions for embedded multi-core archi-

tectures with real-time requirements creates an interesting avenue for research.
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