
ABSTRACT

SARKAR, ABHIK. Predictable Task Migration Support and Static Task Partitioning for
Scalable Multicore Real-Time Systems. (Under the direction of Frank Mueller.)

Multicores are becoming ubiquitous, not only in general-purpose but also embedded comput-
ing. This trend is a reflection of contemporary embedded applications posing steadily increasing
demands in processing power. On such platforms, prediction of timing behavior to ensure that
deadlines of real-time tasks can be met is becoming increasingly difficult. While real-time
global/semi-partitioned multicore scheduling approaches help to assure deadlines based on firm
theoretical properties, their reliance on task migration poses a significant challenge to timing
predictability in practice. Task migration actually (a) reduces timing predictability for contem-
porary multicores due to cache warm-up overheads, (b) renders locking of cache lines infeasible
for multicore real-time systems and (c) increases traffic on the network-on-chip (NoC) inter-
connect. Additionally, prior work in static task partitioning on multicore architectures focuses
on shared cache organization with a fixed number of cores. Such schemes are not suitable for
static partitioning on scalable multicore architectures that feature private cache organization.
We attempt to address these limitations in this dissertation.

The following are the key contributions of this work:

1. First, a task migration into two cores imposes cache warm-up overheads on the migration
target, which can lead to missed deadlines for tight real-time schedules. We propose a
novel push-assisted cache migration model to pro-actively migrate cache lines through
novel software and micro-architectural support. Our mechanism imposes cache migration
delays at a fraction of the task’s execution time. This delay can be steered to fill idle slots
in the schedule, i.e., it does not contribute to the execution time of the migrated task.
We also propose micro-architectural modifications that further reduce the delay and bus
traffic.

2. Second, locked cache lines that are predominantly used in real-time systems are immobile
during task migration. We address this issue by extending the push-assisted migration
model with several cache migration techniques to efficiently retain locked cache lines on
a bus-based chip multi-processor architecture. We also provide deterministic migration
delay bounds that help schedulers to decide which migration technique(s) to utilize while
migrating a single or multiple tasks. This information also allows the scheduler to deter-
mine feasibility of task migrations, which is critical for the safety of any hard real-time
system. Such proactive migration of locked cache lines in multicores is unprecedented to
our knowledge.



3. Third, we further the use of locked caches on scalable multicore architectures by analyzing
its impact on static task partitioning algorithms. In shared cache architectures, a single
resource is shared among all the tasks. However, in scalable cache architectures with
private caches, conflicts exist only among the tasks scheduled on one core. This calls
for a cache-aware allocation of tasks onto cores. Here, we propose a novel variant of
the cache-unaware First Fit Decreasing (FFD) algorithm called the Naive locked First
Fit Decreasing (NFFD) policy. We propose two cache-aware static scheduling schemes:
(1) Greedy First Fit Decreasing (GFFD) and (2) Colored First Fit Decreasing (CoFFD)
for task sets where tasks do not have intra-task conflicts among locked regions (Scenario
A). NFFD is capable of scheduling high utilization task sets that FFD cannot schedule.
CoFFD consistently outperforms GFFD requiring a lower number of cores and lower
system utilization. For a more generic case where tasks have intra-task conflicts, we split
the task partitioning into two phases: Task Selection and Task Allocation (Scenario B).
Instead of resolving conflicts at a global level, these algorithms resolve conflicts among
regions while allocating a task onto a core and perform unlocking at region-level instead of
task-level. We show that a combination of our novel Dynamic Ordering (Task Selection)
with Chaitin’s Coloring (Task Allocation) scheme reduces the number of cores required
considerably over a basic scheme (combination of Monotone Ordering and Regional FFD).

Overall, this dissertation suggests that deployment of locked caches and hardware support
for cache migration on scalable multi-processors can enable more predictable and efficient multi-
processor scheduling.
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Chapter 1

Introduction

1.1 Real-Time Systems

Real-time Systems are computing environments where temporal correctness is as important as
functional correctness. A real-time system is temporally correct if all real-time tasks meet their
timing constraints. Control systems use real-time software to operate in a temporally correct
fashion in automobiles, aerial vehicles, audio-video devices, medical radiation devices, etc. A
single real-time system can be composed of periodically executing real-time tasks that collect
information from their environment and trigger a response. A delayed response could result
in artifacts that can impact the quality of service or even lead to catastrophic consequences
depending upon the purpose of the system. In a mobile device supporting audio/video appli-
cations, the frame rate leading to a ”flicker-free” visual experience governs the amount of time
in which a video frame should be decoded. A delayed response will result in dropping video
frames, which in turn impacts the visual experience of the customers. However, such failures
do not render a system nonfunctional. Such tasks are called soft real-time tasks and have soft
deadlines. In contrast, when tasks in Anti-lock Brake System(ABS) fail, it causes the wheels
to lock-up, which could lead to catastrophic consequences like loss of life. Such tasks are called
hard real-time tasks and have hard deadlines.

In a system, real-time tasks can be executed periodically, aperiodically or sporadically.
Periodic tasks have regular arrival times. Aperiodic and sporadic tasks may have irregular
arrival times. Aperiodic tasks have soft deadlines while sporadic tasks have hard deadlines.
This work assumes tasks to be periodic. Each task i is periodically released after a time
interval of Pi. Every instance of task i is called a job and denoted as Jn

i where n is the nth
instance of task i. Every real-time task is given a relative deadline Di. Every real-time job has
to respond before a pre-calculated instant of time called its deadline dn

i , which is computed by
adding the task’s relative deadline, Di, to the time instant t at which the nth job of task i was
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released. If Jn
i does not finish execution before dn

i , then the job is deemed to have missed a
deadline. The relative task deadline can be less than, equal to or greater than a task’s period.
In our work, we assume that Di ≤ Pi, which means that Jn

i has to finish prior to the release
of Jn+1

i . The consequence of missing a deadline depends on the criticality of a task. As stated
earlier, a task that renders an encoded stream of video frames has a soft deadline. A video
rendering task failing to meet a deadline leads to a poorer visual experience. However, if a
task that releases brakes fails to meet its deadline in an ABS system, it can cause catastrophic
consequences. Such critical tasks have hard deadlines. Tasks with hard and soft deadlines are
called hard and soft real-time tasks, respectively. A real-time system is composed of at least
a soft/hard real-time task while it can run multiple real-time or non-real-time tasks. In order
to reduce operational costs and to leverage the computational capacity of modern processors,
real-time systems are usually multi-programmed.

Task scheduler(s) running on these systems are responsible for invoking jobs of periodic
tasks. For soft real-time systems, task schedulers may also incorporate a responsive action when
a deadline miss is detected. A deadline miss can be detected in several ways. For example, a
timer-based interrupt can be scheduled by the task scheduler at dn

i for the invocation of Jn
i .

The interrupt will initiate a interrupt routine that checks whether Jn
i has finished its execution.

In case a job misses its deadline, the system has to respond to prevent/reduce subsequent jobs
from missing their deadlines. These actions may vary depending upon the implementation of
the system. For example, the task scheduler may choose to terminate Jn

i or skip job Jn+1
i . In

case certain subsequent jobs are dependent upon Jn
i , then those jobs need to be skipped as

well. In contrast, for hard real-time systems it becomes imperative that each of the task meet
their deadlines for it to be functional. For such systems, the developer needs to analyze the
tasks and make sure that all the tasks meet their deadline prior to launching the system. This
is called schedulability analysis. Schedulability analysis requires the following information:

1. The Worst-Case Execution Time (WCET) of each the task represented as Ei. This can
be obtained by

(a) Static analysis of the source code. This has been a research topic for the real-time
systems community for more than three decades. With the advent of multicores,
multi-level caches and network-on-chip (NoC), it is still an open research area. A
static analysis tool would require certain parameters of a processor architecture,
e.g., execution latency of instructions in an Instruction Set Architecture (ISA), access
latency at different levels of memory hierarchy, number of cycles lost due to a branch
instruction on a system with branch prediction turned off etc. The tool then parses
the instructions and, using an intermediate representation (IR), computes the worst
case number of cycles needed for each basic block to execute. Parsing the IR, like an

2



abstract syntax tree, allows it to converge to a worst case execution path (WCEP)
that delivers the WCET. Since programs usually execute in control flow of tight
loops, the static analysis tool needs the information on the maximum number of
iterations of each loop. Several static analysis tools are available though they are
prone to deliver high upper bounds. However, if static analysis of a task delivers a
WCET lower than the period, the bound is considered safe since the real-time task
cannot exceed this bound.

(b) Dynamically observing the execution time of the task with an exhaustive input set.
This scheme is widely used as certain parameter values assumed by static analysis
tools, like using an upper bound on load-dependent branches, might just be too high
than the ones observed in practice.

This allows us to compute the task density as Ei
Di

. This is the computational demand of
a task on a computational resource. Ei

Pi
gives us the task utilization, which is the same as

task density when Pi = Di.

2. A schedulability test that governs whether a task set is schedulable or not on a given
computing resource. If a task set passes the schedulability test, then it guarantees that
all the tasks will meet their deadlines. However, a schedulability test is dependent upon
the scheduling algorithm. Over the past four decades, various task scheduling algorithms
have been proposed on a computing resource. They are broadly characterized as

(a) Clock driven: These are also known as off-line schedulers as these schedulers fix
the schedules before the system starts. Table Driven and Cyclic scheduling are two
commonly known algorithms under this category [47].

(b) Event driven: These schedulers dynamically schedule tasks at run-time where the
scheduling points are governed by job invocation and job completion. These sched-
ulers can be preemptive or non-preemptive. A preemptive scheduler could suspend
the execution of an already executing task in order to execute a higher priority task.
A non-preemptive scheduler will only grant the computing resource on termination
of an already executing task. Rate Monotonic (RMA) and Earliest Deadline (EDF)
are examples of Event driven scheduling algorithms [54, 29].

A feasible schedule on a single computing resource will not miss any deadline even when
all the tasks are running at their WCET. In other words, a feasible uniprocessor schedule
is the one that satisfies the following condition

U =
∑n

i=1
Ei
Di
≤ 1 , where n is the number of tasks [54]
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Here, U is the aggregate of task densities of all the tasks scheduled on a computing
resource. If we assume Pi = Di, then U can be called the aggregate utilization. The pre-
emptive Earliest Deadline First (EDF) algorithm obtains this optimality for uniprocessor
real-time systems. If U > 1, then the task set cannot be scheduled on a given computing
resource. When U < 1, the system is under-utilized and multiple tasks can share the
computing resource. This needs multiple real-time tasks to be scheduled by a real-time
scheduler that enforces a scheduling policy to share the computing resource.

Most contemporary processors incorporate complex micro-architectural enhancements. Out
of order execution [58, 83], branch prediction [99, 100, 82] and speculative execution with value
prediction [53, 78] are some of the key features that enable these uniprocessors to deliver high
throughput. However, all these features hamper the predictability of WCET for real-time
applications, which is the first requirement in order to perform a robust schedulability analysis.
Thus, for real-time systems, the focus has been to keep the micro-architecture simple by using
in-order processor cores without branch prediction or speculative execution. Another aspect
that throttles the throughput is the memory access delay. With higher throughput processors
the memory access delay gets worse. Even with lower processor frequency the memory access
delays are expensive, e.g., with processor cores running at 700 MHz it takes 70 cycles to access
memory for Tilera processors [36]. To reduce memory accesses, on-chip caches are used to store
the recently accessed memory locations. For general-purpose computing, cache performance is
measured by observing the rate at which the memory references are not found in cache, called
the cache miss-rate. The lower the cache miss-rate, the more effective a cache is. The cache
miss rate is relevant for assessing the average performance. This information is not sufficient for
predictability for real-time systems. Abstract Cache Analysis (ACA) is a mechanism by which
the worst-case cache behavior is modeled [71, 79, 68]. Abstract Cache Analysis is incorporated
with the aforementioned static analysis tools. Instead of assuming all memory references to
cause off-chip memory accesses, an abstract cache is assumed. It is called abstract because the
state of a memory address is abstract in this cache. The absolute state of the cache is known
only at run-time as it is dependent upon the run-time control flow. However, abstract cache
analysis statically analyzes the control-flow graph and determines the abstract state of the
cache at any point in the program, which allows one to predict all cache hits that “must” exist
regardless of the path taken by the program [89]. Static analysis then follows and calculates the
execution time of basic blocks while assuming cache hits for ”must” hit references predicted by
ACA. Eventually, it converges by determining the WCEP and the WCET. In order to perform
ACA, static analysis needs to know some of the key aspects of cache organization.

The following are the features of cache organization that will be referred in this dissertation:

1. Cache line: The smallest granularity at which a cache is accessed. Theoretically, cache line
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Figure 1.1: Generic view of Cache Architecture
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size can be anywhere from the smallest granularity at which the memory is being accessed
to the whole cache size. So, for a 32-bit RISC architecture with 8KB cache may have
cache line size from 32 bits to 8KB. However, in practice neither of them are considered
suitable. With the former cache line size the spatial locality is sacrificed [43]. Spacial
locality suggests that there is a high probability that subsequent memory accesses go to
neighboring memory locations. E.g., this behavior is inevitable especially for instruction
accesses within a basic block. Having a single cache line is not a good idea either. If only
a single cache line is available, then at any time only one block of 8KB can be present
in the cache. When a new block is referenced, the new block replaces the older block. If
every memory reference refers to different 8KB blocks, then every access will cause a cache
miss. Such misses are called conflict cache misses. Thus, cache line sizes in contemporary
micro-processors are 32/64 bytes in size [94].

2. Associativity, Cache sets and Cache ways: In order to explain these characteristics, we
explain the mechanism by which caches are referenced using a physical memory address.
Figure 1.1 shows two types of organizations: A direct-mapped cache and a 2 way set-
associative cache. We assume a 32KB cache being accessed by a 32-bit address. We also
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assume that 64 bytes as the cache line size. In both the cases, the address is broken into
3 parts:

(a) Offset: This is used to address the individual bytes within a cache line. Since the
number of bytes in a cache line are 64 bytes, the number of bits required to address
a 64 byte sized structure is 6 bits. In both cache organizations, the offset uses the
low order 6-bits.

(b) Index: These are the bits that identify if the data corresponding to an address is
located in a cache. For a direct-mapped cache, there is room for only one cache line
per index. With a 2-way set associative cache, there are two entries per index. The
associativity of a direct-mapped cache is 1. It is 2 for a 2-way set-associative cache.
The set of locations that are specified by an index in a set-associative cache is called
a cache set. log2

CacheSize
Associativity×Cache lineSize number of bits are used as an index.

(c) Cache tag: The higher order bits left excluding the aforementioned bits are used as
the tag. When a cache line is read into a cache, the tag of the cache line is stored in
the cache-tag arrays.

When a cache is accessed, the index bits are used to select a cache set in two arrays: the
tag array and the data array. Comparisons between the cached tags and the reference
tag give us a cache hit/miss signal. On a tag match, it is a cache hit; otherwise, it is a
cache-miss. These signals are then used as select lines for the multiplexer that forwards
the data corresponding to the tag that has matched. Figure 1.1 shows that our 2-way
set-associative cache has 2 memory arrays for tags and 2 memory arrays for data. Each
group of memory arrays, i.e., one tag array and its corresponding data array, is called a
cache way. A set associative cache is called fully associative when there is a single cache
set and any cache line can map within that set. So a 32KB fully associative cache will
have a single cache set holding 1024 entries. Usually, fully associative caches are used
for smaller cache structures. Also, a 8/16-way set-associative cache approximates a fully
associative cache [43]. There are no index bits for fully associative caches because there
is only one set and tag bits are all high-order bits excluding offset bits.

3. Cache addressing: The memory address used for addressing a cache can be a physical
or virtual address depending upon whether the memory management unit (MMU) for
virtualizing memory is used or not. Nearly all implementations of virtual memory divide
a virtual address space into virtual pages that map to physical memory regions called the
frames. This requires virtual to physical address translation before the physical memory is
referenced. A cache can be addressed using either of these addresses. If the virtual address
is used then on every context switch, all the contents of the cache need to be flushed. If
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a physical address is used with the MMU unit turned on, the translation from virtual to
physical address needs to be done prior to accessing the cache. This makes cache access a
multiple cycles process. It is worse for real-time systems as dynamic allocation of physical
frames to pages makes it impossible to perform ACA as a virtual memory reference can
be mapped anywhere in the cache. In high performance systems, the caches are addressed
virtually indexed and physically tagged. The virtual indexing allows virtual to physical
memory translation to take place in parallel to the retrieval of cache tags and cache lines
from indexed cache sets. However, this suffers from aliasing, which happens when some
of the bits in the virtual index are changed during translation. In contemporary systems,
pages are usually 4KB. A 4KB page can be addressed by using the 12 low-order bits of a
given virtual address. These are called page offset bits. The page offset bits remain the
same but any of the remaining 20 address bits can be altered during translation. This
poses a problem. In Figure 1.1, we see that the index bits went well past the 12th bit.
There are several ways to tackle this during run-time but for real-time systems it causes
indeterminacy. Since contemporary memories are becoming denser, real-time systems can
run with the MMU turned off so that a flat physical memory address is used directly [94].
The physically indexed and physically tagged cache is a viable and predictable option for
real-time systems.

4. Types of Cache-Misses: When a program starts execution, it does not have any of the
program’s address space cached. This is a state when the cache is said to be “cold”. As
the program resumes execution it populates the cache, i.e., the cache becomes “warm”.
When a cache miss occurs due to accessing a cache line for the first time, it is called a
cold or compulsory cache miss. A capacity cache miss occurs if the program’s address
space does not fit within a given size of the cache. Another form of cache miss is called
the conflict cache miss. Conflict cache misses are those that occur in a cache with a given
associativity and that could have been prevented by a fully associative cache of same size.

5. Replacement Policy: On a cache miss, a new cache line is brought in from memory. In a
set-associative cache, a cache miss occurs if all the cache lines in the cache set are marked
invalid or none of the valid cached tags match with the address’ tag. Invalidations of
cache lines occur due to events like cache flushes and invalidations to maintain coherence
between processor and I/O devices or between processors on a multicore system (to be
described later). If invalid cache lines exist in the indexed set, the incoming cache line is
placed there and the cache entry is marked valid. In case all the cache entries are valid,
one of the cache entries needs to be replaced. Replacement policy decides which cache
line to replace. The replacement policies have widely been studied and proposed. The
most commonly used policy is Least Recently Used (LRU). LRU chooses the cache entry
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that has been residing in the cache set without being referred for the longest time. The
most efficient use of LRU requires a set of counters per cache entry. All the counters need
to be updated at every cache hit/miss. This increases the design complexity of caches.
Hence, most micro-processor use a pseudo-LRU policy [28]. Locked caches provide some
user control over replacement. Locking a cache line prevents a cache line from being
replaced. In the context of real-time systems, locked caches have been used for achieving
predictability. This is the key reason for cache locking to be prevalent among embedded
processors, like the IBMPowerPC 460S,MotorolaMPC7400, Intel 960, ARM940T etc. This
will further be discussed in the later chapters.

6. Multi-level Caches: One would want to design a large cache structure to reduce cache-
misses considerably. Larger caches have higher access time. A processor pipelines instruc-
tions to improve throughput but in order to pump a new instruction in the pipeline every
cycle, it should be able to read an instruction every cycle. Therefore the cache access
latency impacts the critical path of a processor. However, having smaller caches will lead
to a higher cache-miss rate. A middle ground is reached with multi-level caches. The
cache that is closest to the core processor is called the Level-1 cache or the L1 cache. The
farther it goes from the processor, the size and the level of the cache increase. This allows
the L1 cache to be smaller and fast enough to match the throughput of the processor. An
L2 cache can be larger but is still 1-2 orders of magnitude faster than the memory access
latency. Normally, a cache miss at any level leads to an access to the next higher level
of cache. By higher level, we mean farther away from the processor. The traversal of a
cache line from one level to another is another important aspect of multi-level caches. In
an inclusive cache structure, the higher level cache retains the cache line while forwarding
the content to the lower level. In contrast, an exclusive cache structure invalidates a cache
line at the higher cache level. Inclusive caches are useful as they reduce complexity of
cache design. And later in our discussion on multicore cache hierarchy, we will see that
it helps in maintaining coherence at a higher cache level. Exclusive caches are capable of
using the aggregate cache capacity as they do not maintain additional copies.

7. Split and Unified caches: L1 caches are small structures and they are commonly accessed
by two different pipeline stages (with the exception of self modifying code). Also, access
patterns of instructions are different from that of data. A unified cache holds both in-
struction and data cache lines. A small unified cache would result in data cache lines and
instruction cache lines to evict each other. This phenomenon is known as thrashing. To
minimize the thrashing effect and to be able to design caches customized to instruction
and data access behavior separately, vendors use split L1 caches (L1 instruction and L1
data cache). Higher-level caches are designed to be unified as they have large capacity.
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8. Write-through and Write-back caches: A write-through cache sends updates to its higher
levels whenever a cache line is being updated. A write-back cache does not send an update,
but updates a dirty bit associated with the cache line instead. Cache lines at higher cache
levels get updated when they are evicted from lower levels. If a cache connected to the
memory controller is a write-back cache then it considerably reduces the off-chip traffic.
We will discuss more pros and cons of these schemes when we discuss multicores in the
following section.

Even though the ACA determines lower WCET bounds, with increasing processing demand
on real-time systems, task sets might not be schedulable over uni-processors. One of the in-
tuitive mechanisms to improve the throughput of real-time applications would be to increase
the processor frequency. Moore’s Law has been holding for a long time in microprocessor de-
sign, yet single-processor designs have reached a clock frequency wall due to fabrication process
and power/leakage constraints [5]. This has led designers to investigate the option of chip
multiprocessors ( CMPs), a.k.a. multicores, to ensure that performance increases at past rates.

1.2 Multicore Architectures

Application specific cores or accelerators have been used in many embedded systems. In the past
decade the advancement in making homogeneous multicore platforms had been the central focus
of many micro-processor vendors. Symmetric Multi-Processors (SMPs) were developed with the
idea of having multiple processor chips connected via an external shared memory bus, which is
used to interface the processors and the memory controller. There are numerous examples of
such systems, ranging from the high-end SGI Power Challenge, AMD Opteron, Sun Ultraserver
and DEC Alpha Server to the low-end NVidia Tegra and intel Xeon processors. Requests issued
by all the cores are serialized on the SMP bus by a bus arbiter. If the cores use a write-through
cache, each write would then be sending a request to the memory. This would incur a large
amount of traffic that could throttle the performance of all the programs significantly due to lack
of memory bandwidth for simple read requests. The other option is to use a write-back cache.
This will prevent the updates to go to memory in introducing every time there is an update.
This would reduce the traffic but it introduces a problem of a non-coherent view of data. With
write-through cache the memory is always coherent with regard to the contents of the caches.
And every time an update occurs it becomes visible on the bus. A snoop control unit, which
is a part of the cache controller, is responsible for snooping the visible update requests and, in
case the updated cache line is present in local cache, then update it. This requires a cache to
have one read/write port for local processor requests and another one for the snoop requests.
Such a design impedes the performance as a large portion of memory bandwidth is consumed
by the update traffic. Modern processors with write-back caches absorb this update traffic but
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leave memory with stale contents. This also prevents any of the updates to be visible to remote
snoop controllers. But it leaves the cache incoherent. In order to ensure coherency, various
cache-coherent protocols for SMPs were developed. One of the most common protocols is the
MESI protocol. It has four different states that cache lines can be in. The following are the
coherency states:

1. Modified (M): This means that the cache line is present only in local cache, the contents
of the cache line are different from the contents of the memory, and the local processor is
permitted to modify the contents.

2. Exclusive (E): This state dictates that the cache line is resident only in local cache but its
contents are coherent with that in memory. The local processor does not have the right
to modify the contents.

3. Shared (S): This suggests that there are copies held by remote caches besides the local
cache. The contents of the cache line are coherent with memory.

4. Invalid (I): The content of the cache line is not valid.

A cache line’s state can be modified by local/remote accesses. The memory accesses gen-
erated by the local processor are either a read or a write. The key objective of the coherence
protocol is to serialize the writes to a cache line (write serialization) and to make the write
visible to all the processors (write propagation). This requires a signal to be issued by the
cache controller when a local write request finds a cache line in a state other than Modified.
We call this signal Read With Intent to Modify (RWITM). When a remote snoop controller
snoops an RWITM, it accesses the cache to check if it holds a copy of the cache line. On finding
a match, the state of the cache line is transitioned to the Invalid state. If the line in the remote
cache is found in Modified state, the contents of the cache line are “flushed”. Flushing of a
cache line means that the memory is updated with the contents of the cache line. On receiv-
ing acknowledgments from all the processors, the snoop controller on the requesting processor
updates the state of the cache line to modified and the contents of the cache line are modified.

There are several state transitions that take place due to local and remote requests. Fig-
ure 2b shows the state transitions that take place due to locally initiated accesses. The following
is a description of the state transitions:

1. The cache line is in the Modified State:

(a) Read Access : Read the contents and stay in the Modified State;

(b) Write Access: Update the contents and stay in the Modified State.

2. The cache line is in the Exclusive State:
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(a) Read Access : Read the contents and stay in the Exclusive State;

(b) Write Access: Transition to the Modified State and update the contents.

Figure 1.2: MESI-Locally Initiated Accesses
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3. The cache line is in the Shared State:

(a) Read Access : Read the contents and stay in the Shared State;

(b) Write Access: Issue a RWITM bus transaction; on receiving an acknowledgment
from the rest of the processors, transition to the Modified State and update the
contents.

4. The cache line is in the Invalid State:

(a) Read Access : This means that the cache line is not present in the local cache. Hence,
a mem read bus transaction is issued. When none of the remote caches hold a copy,
the state of the cache line is changed to the Exclusive State. If one or more remote
caches hold a copy of the cache line then the cache line has to be allocated in the
Shared State.

(b) Write Access: In response to a cache miss, a RWITM bus transaction is issued. The
state of the cache line is changed to the Modified State.

Figure 1.3 exhibits the state transitions caused by remotely initiated accesses. The remotely
generated bus transactions are RWITM and Mem Read by the cache controllers in response to
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Figure 1.3: MESI-Remotely Initiated Accesses
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locally generated accesses. As we explained before, the snoop controller snoops the bus at every
bus cycle for remote bus transactions. The following is a description of the state transitions
caused by the snoop controller:

1. The cache line is in the Modified State:

(a) Mem Read : The state of the cache line switches to Shared State. But this cache
line also has the latest updated value, so the contents of the cache line are flushed
to update the memory.

(b) RWITM : The cache line is invalidated and the contents are flushed.

2. The cache line is in the Exclusive State:

(a) Mem Read : The state of the cache line switches to Shared. Note that there is no
cache to cache exchange of cache line content. This is because cache-to-cache and
memory-to-cache latencies are comparable for SMPs. Thus, the contents can very
well be supplied by the memory. However Chip Multi-Processors (CMPs) have on-
chip cores connected via an on-chip interconnect. In such architectures, it is efficient
to have cache-to-cache transfers.

(b) RWITM : Invalidate the cache line and the contents are read from memory.

3. The cache line is in the Shared State
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(a) Mem Read : The cache line stays in the Shared State

(b) RWITM : Invalidate the cache line and the contents are read from memory.

4. The Cache line is in the Invalid State: This means that remote cache does not hold a
copy of the accessed cache line.

Advancement in fabrication technology has enabled vendors to pack a larger number of pro-
cessor cores with private and shared caches within a single chip. This has motivated researchers
to investigate different multi-processor cache structures.

1. Shared higher-level caches (like an L2 cache) with coherent lower-level caches (like an L1)
that are connected via a coherent bus have been proposed. They have become prevalent in
contemporary embedded system designs, e.g., the NVidia Tegra 3 has four ARM processor
cores with 32KB L1 Instruction/data caches and a 1MB shared L2 cache [4]. The primary
concern looking forward with shared L2 caches is that they do not scale with large numbers
of cores. This is due to the coherency traffic as a single RWITM causes all the cores to
check their caches and send an acknowledgment. Also, large L2 caches impact the access
latency thereby hurting the common case scenario. Large L2 caches contribute to 50% of
power dissipation due to leakage current, which contributes significantly to overall power
consumption [91].

2. Multi-level private caches. The private caches in multi-programmed workloads exhibit
lower conflicts and reduced access latency for L2 caches [16]. These processor cores with
private L1+L2 caches may be connected via a shared bus or point-to-point interconnects.
The Intel Pentium D is an example of such a cache design [2]. For large scale CMPs,
processors with mesh interconnects have been in production, e.g., the Tile64Pro from
Tilera Corporation. These cores are called tiles. Each tile has private L1+L2 caches and
an interconnect router. In a mesh interconnect a tile is connected to its neighbors using
a high bandwidth network. The frequency of tile-to-tile transfer typically matches the
processor frequency. The routing can also be software controlled and message passing
between cores is supported.

3. Directory-based caches: A hybrid of the two schemes has also been proposed. The tile
based architecture supports a directory-based coherence protocol. A directory entry con-
tains the tag of a cache line and its coherency status. The directory entry also holds
an array of bits with each bit representing a tile. A bit value of 1 indicates that the
corresponding tile contains a copy of the cache line. There is only one directory entry for
each cache line and thus it has to be at a fixed location. Early designs suggested these
to be located at the memory controller assuming an on-chip memory controller. But this
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would generate a lot of traffic over the interconnect. Like a single shared cache, a single
directory becomes an unscalable structure. This motivated the design of a distributed
directory. A directory is distributed among tiles. Each cache line has a unique home
tile. The home tile of a cache line is dereferenced by certain bits in address similar to the
mapping of a cache line to a cache set. Each tile now contains an additional tag array and
a corresponding directory entry array. Please note that the home tile can be a remote
tile. On a cache miss, a requester tile sends a message to the home tile. Based on the
coherency status, additional messages are generated by the home tile to other tiles that
hold a copy of the cache line. Those tiles then respond accordingly to the home tile and
the requester tile. The Tilera architecture can be configured to support a Private L1+L2
with message passing or a Private L1+L2 with a distributed shared L3 cache.

There has been a substantial amount of research that has improved the average case exe-
cution of high performance applications. This has helped multicores to become ubiquitous in
several devices that are used on a daily basis, from laptops, cellular phones to supercomputers.
However, feasibility of multicores in real-time systems is still under investigation for different
cache hierarchies, interconnects and memory interfaces. The following subsections present those
reasons in detail.

1.3 Multicore Real-time Systems

As the number of tasks increases, the processing demand in terms of overall processor utiliza-
tion keeps increasing. Thus, a complex system like an automotive subsystem that increases
the number of tasks with every new release puts more pressure on computing resources. As
discussed before, due to high power leakage with high frequencies, multicores support the exe-
cution of multi-programmed workloads. This trend already extends to embedded designs with
heterogeneous multicores (e.g., for cell phones) and also homogeneous multicores at a larger
scale [6]. Thus, it is evident that multicores will become ubiquitous over the next few years.

1.3.1 Scheduling Real-time Tasks on Multicores

As discussed before, schedulability of a real-time task set is dependent upon the predictability
of WCET on a given architecture under a given scheduling policy. In the past decade, several
multi-processor scheduling policies have been proposed. These scheduling policies can be widely
be characterized as:

1. Static Partitioned Scheduling: Under this type of scheduling, tasks are assigned to a core
and are not allowed to migrate [30, 18]. Each core runs an independent scheduler. Though
optimal assignment of tasks to partitions has been proven to be an NP-complete problem,
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simple heuristics like first fit decreasing (FFD) have been found to be quite efficient under
task partitioning[44]. In Chapter 4, we will be discussing this algorithm in detail.

2. Global Scheduling: The major drawback with Static Partitioning is that it is unable to
distribute tasks that have high density/utilization, i.e., tasks with a utilization greater
than 0.5. To address this limitation, global scheduling techniques have been and are
being proposed. The fundamental premise of these techniques is that tasks may migrate
between cores. Some global scheduling techniques suffer from reduced system utilization
[30, 50]. A whole class of fair scheduling algorithms have recently been developed for
multicore scheduling that give better utilization bounds [15, 59, 10, 11, 84, 14]. However,
under global/fair scheduling it is hard to achieve a tighter bound on the number task
migrations. Therefore, these algorithms were proposed as non-work-conserving schedules.
A non-work-conserving schedule is one where the computing resource remains idle even
though there are tasks ready to be scheduled.

3. Semi-Partitioned Scheduling: Another way of limiting the number of task migrations is
to use Semi-partitioned scheduling. Here, some of the tasks are statically scheduled while
others are allowed to migrate. In such a system, there is a hierarchy of schedulers. There
may be a single global scheduler that is invoked at certain events to allocate migratable
tasks on different cores. While each core runs an independent scheduler that is responsible
for scheduling allocated tasks on a core only. The original work on semi-partitioning
was directed at soft real-time systems [12]. Subsequently, several algorithms have been
proposed for hard real-time systems [32, 37].

1.3.2 Challenges with Multicore Schedulability

As mentioned in Section 1.3.1, the basic assumption of partitioned/semi-partitioned scheduling
is that the tasks are migratable. However, the schedulability analysis for these scheduling
policies considers the overhead of task migration to be either zero or some constant value. In
order to assume zero migration costs, these algorithms assume processor architectures without
any caches, i.e., a memory reference will cause a memory access regardless of the migration. Such
an assumption might render tasks unschedulable due to a prohibitively high WCET. Research
work conducted upon using caches in multicores has resorted to shared caches. This simplifies
the cache analysis as all the tasks are assumed to be sharing a single cache resource. This allows
the tasks to have lower utilizations. Pessimistic migration costs are within the allowable range
such that the task sets are still schedulable. However, as we have explained, shared caches are
unscalable. With increasing processing requirement in every computing domain, including real-
time systems, scalable multicore architectures are bound to become ubiquitous. These scalable
architectures use private caches. Not much research has been conducted on the usage of private
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caches in multicores real-time systems. These assumptions for multicore scheduling algorithms
may lead to an inaccurate analysis. Also, static partitioning on scalable multi-processors with
private caches have not been studied.

1.4 Problem Statements and Contributions

This dissertation assesses if scalable multicore architectures with private caches are suitable
for real-time systems. The following are the issues presented and solutions proposed in this
document:

1. In Chapter 2, we present a push-assisted cache migration scheme [77]. We illustrate that
task migration actually (a) reduces timing predictability for scalable multicores due to
cache warm-up overheads while (b) increasing traffic on the network-on-chip (NoC) inter-
connect. This chapter puts forth a fundamentally new approach to increase the timing
predictability of multicore architectures aimed at task migration. A task migration be-
tween two cores imposes cache warm-up overheads on the migration target, which can lead
to missed deadlines for tight real-time schedules. We propose novel micro-architectural
support to migrate cache lines. We present two micro-architectural schemes (a) Whole
Cache Migration (WCM) and (b) Regional Cache Migration (RCM). We illustrate that
our mechanisms are capable of providing predictable cache migration over a conventional
Prefetch Task Model (PTM). Our experimental results show that RCM reduces overheads
considerably. This overhead can be steered to fill idle slots in the schedule, i.e., they do
not contribute to the execution time of the migrated task. This migration overhead can
also be used by schedulers to select migratable tasks during semi-partitioning of task
sets [80].

2. In Chapter 3, we illustrate the idea of migrating locked cache lines. Locking cache lines
in hard real-time systems is a common means of achieving predictability of cache access
behavior and tightening as well as reducing worst-case execution time, especially in a
multi-tasking environment. Tasks with locked cache lines need to proactively migrate
these lines before the next invocation of the task. Otherwise, cache locking on multicore
architectures becomes useless as predictability is compromised. This chapter proposes en-
hancements to hardware-based push-assisted cache migration as a means to retain locks
on cache lines across migrations [74]. We improve our RCM and WCM techniques with
pipelined cache migration schemes that significantly reduce the cache migration delay of
an individual task migration. We also present parallel migration mechanism that maxi-
mizes the bus utilization in the midst of multiple cache migrations. We further provide
deterministic migration delay bounds that help the scheduler decide which migration
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technique(s) to utilize to relocate a single or multiple tasks.

3. In Chapter 4, we further the concept of locked caches on scalable multicore architectures
by analyzing its impact on static task partitioning algorithms. In shared cache architec-
tures, a single resource is shared among all the tasks. The objective of task partitioning
on a shared cache architecture is to reduce response time of tasks. With scalable archi-
tectures, there are abundant computing and cache resources and the focus shifts toward
efficiently utilizing computing resources. Also, in scalable cache architectures with pri-
vate caches, conflicts exist only among the tasks scheduled on one core. This calls for
a cache-aware allocation of tasks onto cores. Here, we propose a novel variant of the
cache-unaware First Fit Decreasing (FFD) algorithm called the Naive locked First Fit
Decreasing (NFFD) policy. We propose two cache-aware static scheduling schemes: (1)
Greedy First Fit Decreasing (GFFD) and (2) Colored First Fit Decreasing (CoFFD) for
task sets where tasks do not have intra-task conflicts among locked regions (Scenario A)
[75]. NFFD is capable of scheduling high utilization task sets that FFD cannot schedule.
Experiments also show that CoFFD consistently outperforms GFFD resulting in a lower
number of cores and lower system utilization. For a more generic case where tasks have
intra-task conflicts, we split task partitioning into two phases: task selection and task
allocation (Scenario B) [76]. Instead of resolving conflicts at a global level, these algo-
rithms resolve conflicts among regions while allocating a task onto a core and perform
unlocking at the region level instead of the task level. We show that a combination of
our novel Dynamic Ordering (task selection) with Chaitin’s Coloring (task allocation)
scheme reduces the number of cores required considerably over a basic scheme (combina-
tion of Monotone Ordering and Regional FFD). Regional unlocking allows this scheme to
outperform CoFFD for medium utilization (0.40 > locked task utilization ≥ 0.25) task
sets from Scenario A. However, CoFFD performs better than any other scheme for high
utilization (0.55 > locked task utilization ≥ 0.40) task sets from Scenario A.

1.5 Hypothesis

Advancement in processor technology provides an opportunity to avail large numbers of compu-
tational resources in the form scalable multiprocessors. With the ever increasing computational
demand of real-time systems, we foresee the deployment of such systems on scalable multipro-
cessors. The primary limitation in multiprocessor real-time scheduling is that they are agnostic
of private cache organization. Such cache organization results in:

1. Unpredictability of task migration costs in global/semi-partitioned scheduling; and

2. Ineffective use of computational resources during static partitioning.
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We attempt to address these limitation in this dissertation. Hence, the hypothesis of this
dissertation is the following:

Multiprocessor real-time scheduling algorithms can more effectively utilize scalable multicore
platforms when global/semi-partitioned scheduling techniques predict cache migration costs ac-
curately and static partitioning considers the impact of private caches. Deployment of locked
caches and hardware support for cache migration on scalable multi-processors can enable more
predictable and efficient multiprocessor real-time scheduling.

1.6 Organization

Chapter 2 analyzes the impact of task migration and presents a hardware mechanism for mi-
grating cache lines from one core to another during the slack available within the schedule.
Chapter 3 defines the problem of task migration for hard real-time systems using locked cache
lines and presents mechanisms to handle individual/multiple cache migrations efficiently. Chap-
ter 4 presents static partitioning mechanisms for private locked caches on scalable multiprocessor
architectures. Chapter 5 discusses open problems for future work and presents the conclusions
drawn from this work.
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Chapter 2

Push-Assisted Migration of

Real-Time Tasks in Multicore

Processors

2.1 Timing Predictability and Micro-architectural Challenges

Multicores have been a research topic in micro-architecture, which has led to rapid industry
adoption (Intel Core, AMD Barcelona, Sun Niagara, IBM Power) and even advanced scalable
multicore designs [5, 6] due to the frequency wall. Past research has focused on improving
parallelization strategies [23, 95, 73, 90, 39] to increase average performance and to provide
scalability on the memory path [22, 57, 46, 33, 87, 56], including capacity-oriented schemes
that scavenge unused neighboring cache lines [34, 24, 26, 101]. Yet, timing predictability ac-
tually deteriorates in multicores. Thus the results and inferences drawn from contemporary
high-performance computer architecture research are not directly applicable to real-time sys-
tems. High performance applications do not have deadlines so that deviations from average
performance do not render a system dysfunctional. Real-time systems largely consist of multi-
ple tasks, often periodically scheduled, such that each task is able to meet its deadline. Jobs
of a periodic task are then released at regular intervals to obtain sensor readings, perform pro-
cessing actions of often control-theoretic nature and then engage in actuator actions. Jobs of
real-time tasks systems have to complete by their deadline. These jobs require accurate timing
predictability to ensure deadlines can be met, which could easily be affected by minor devia-
tions on complex multicore architectures that dilate execution. The dilation of interest in this
work is due to migration of a task or an application between processor cores. Task migrations
in contemporary architectures are followed by cache warm-ups on the migration target. Cache
warm-ups are usually ignored or have insignificant impact for high-performance computing. For
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example, architectural simulations make use of so-called simpoints, i.e., simulation points that
delineate program phases. The idea is to reach a stable architectural state at which average
case can be studied [40]. In contrast, cache warm-ups have considerable impact on real-time
systems because any dilation in execution time of real-time tasks could lead to system failure.

Multicore research is actively working towards providing scalable multicores with large L2
caches. Distributed shared L2 caches, private L2 caches, and hybrids involving both designs
are being actively compared by the high-performance research community. The size of such
L2 caches often provides real-time systems with enough resources to fit all tasks within the
L2. Consequently, tighter WCETs help tasks to become schedulable by allowing them to
meet their deadlines. However, task migrations may cause deadlines to be missed due to
dilations in execution time, e.g., due to cache warm-up. Thus task migration on multicore
architectures deters the predictability of the WCET of real-time tasks significantly. In order
to evaluate the impact of cache warm-ups without any extraneous effects, we simulated a
multicore architecture. Our experimental results on the simulated multicore architecture over
a set of WCET benchmarks show that task migration can dilate the execution time anywhere
from less than a percent to up to 56.6%.

2.2 Introduction

We propose a novel software mechanism to highlight the impact of pro-active migration of
cache lines in order to increase the predictability of real time tasks. We follow it up with a
novel hardware/software mechanism to dramatically increase predictability in the presence of
migration by providing micro-architectural support for task migration that is further suitable
for static timing analysis, an area not covered by previous work on WCET analysis for multi-
level caches in multicores and shared-memory multiprocessors [60, 98, 42]. In this work we are
assuming a multicore architecture with private L1 and L2 caches as explain in the previous
chapter. Our solution is based upon transfer of L2 cache lines of a migrated task from a source
core to a target core over the coherence interconnect. This migration is initiated between
a task’s job completion and the next job’s invocation, preferably in idle slots of the real-time
schedule. Research has been conducted to keep relative deadlines much shorter than periods for
tasks in control systems to reduce variation in response time [13, 49]. This leads to composition
of tasks with high density but low utilization as shown in Figure 2.2 that also leave idle slots due
to slack available in the system. We propose a software scheme, where the scheduler launches
a task at the target core that prefetches cache lines. Thus this scheme is called Pre-fetch Task
Migration (PTM). It reduces the time dilation to which the task is subjected on the target
core as a result of its migration. However, it is not able to prefetch instruction cache lines and
imposes high overhead that cannot be reduced. Hence, we investigate a pure hardware scheme,
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Figure 2.1: Task Execution amid Task MigrationC1I$ D$Cold L2$C0I$ D$Task $ FootprintInit ExecJob0 Job1Core0 Core0 ExecCold $ MissesCore1Task Timeline Before Migration After Migration
called Whole Cache Migration (WCM), that restores the whole cache context of the task onto
the target core. However, this mechanism involves high overhead, leaving not enough time to
migrate all lines before the next job invocation on the target core. Hence, we propose a software
assisted hardware scheme, called Regional Cache Migration (RCM), that allows the developer
to transfer knowledge about the memory space to be migrated to the cache controller and then
initiate a push operation (instead of a pull) of the lines to the target. Thus the cache controller
can identify a subset of cache lines subject to migration, which reduces migration overhead.
RCM reduces the overhead for all tested benchmarks, for some by an order of magnitude,
while constraining the dilation caused by task migration close to the dilation experienced by
a task under WCM. The objective of this work is to provide hardware support that enables
predictability and reduction in cache-related migration delay (CRMD).

2.3 Problem Analysis

This section presents the performance impact of migration of tasks on predictability of their
WCET.

Experimental Architecture: Our experimental model assumes a CMP architecture with
private L1+L2 caches. These processor cores are connected via a bus-based interconnect. This
choice was made to exhibit similar properties to contemporary tile-based architectures with the
assumption of a QoS-based interconnect [48]. It then excludes the complexity introduced by
the interconnects and uncovers the predictability challenge caused by cache misses only. The
simulated environment is composed of a two-core CMP. Each core is composed of an in-order
processor with a private 32KB L1 cache and a private 2MB L2 cache. The standard MESI
coherence protocol is used to maintain coherence across L2 Caches. SESC [72], an event driven
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simulator is used to design this architecture.
Experimental Model: Figure 2.1 shows the experiment methodology of this work. We

assume the real-time applications to be composed periodically invoked real-time tasks. The
timeline shows the instances of execution of a task (jobs). Job 0 initializes the task at core 0.
The initialization warms the local cache of core 0 which is shown as the Task Cache Footprint.
In our experimental model, we treat the first job (job 0) of a task to be part of an initialization
phase where the cache is warmed up. The next release of the task, job 1, is invoked on the same
core while the cache is warm. As the task footprint is within the local cache, job 1 does not
incur any L2 cache misses. In a uniprocessor scenario, if the footprints of all tasks fit within the
local cache, then static timing analysis for each load can use the L2 cache hit latency instead
of the memory latency as the upper bound. This approach gives a much tighter bound for the
WCET of a task. However, in a multicore environment, this WCET does not hold anymore as
subsequent jobs of the task might be scheduled on a different core as shown in Figure 2.1. Job
2 executes on core 1 whose local L2 does not contain the task footprint. Hence, job 2 spends
a substantial amount of time in bringing the cache lines from core 0 to core 1. However, the
extent of impact can be unbounded. This is the subject of the analysis of our experimental
study.

Table 2.1: WCET Benchmarks

Benchmark Functionality Algorithmic
Name Complexity

bs Binary search on a given array of records O(logn)
crc Cyclic redundancy check computation on 40 bytes of data O(n)
cnt Counts non-negative numbers in a matrix O(n)

stats Statistics program uses floating point operations O(n)
bsort Bubble sort program O(n2)

matmult Matrix multiplication of two matrices O(n3)

Impact of Migration on WCET: Experiments were performed over a subset of the
WCET benchmarks from Malardalen [7]. Table 2.1 lists those benchmarks along with their
functionality and their algorithmic complexity. Each of these benchmarks were executed as
described in Experimental Model. The results of the experiments as listed in Table 2.2. The
first column lists the name of the benchmark and the second column shows the size of the
dataset in terms of kilobytes. The third and fourth columns provide the execution time in
cycles for tasks before migration (with warm caches), and after migration (with cold caches),
respectively, and the fifth column expresses the increase in execution time due to migration as a
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Table 2.2: Task migration & dilation in WCET

Benchmark Dataset Before After WCET
Name Size Migration Migration Dilation

(kbytes) (cycles) (cyles) (%)
bs 1024 1595 2497 56.55

crc 1 6972 8292 18.93
cnt 308 2014528 2309082 14.62

stats 781 11676261 12428101 6.43
srt 2 4002752 4006507 0.09

matmult 2.6 954106 963203 0.95

Table 2.3: Matrix multiplication WCET v/s matrix size

Matrix Before After WCET
Dimension Migration Migration Dilation

(cycles) (cyles) (%)
15x15 189116 192231 1.64
30x30 1456796 1468135 0.78
60x60 11448656 11484769 0.31

percentage. The results show that the increase in execution time over WCET due to migration
varies from 56.6 percent for binary search to less than a percent for matrix multiplication.
However, it is important to understand the characteristics of the tasks that are more susceptible
to dramatic changes in execution time. One such characteristic is the algorithmic complexity.
Our experiments show that accurate knowledge of algorithmic complexity of a real-time task
can help to identify tasks that are more affected by the migration than others. Benchmarks
whose complexity is O(n) tend to get affected by migration the most. This is because the critical
operations (compare, multiply etc.) and number of load operations grow proportionally with
the number of data elements. Since L2 miss latency is much higher than any CPU operation,
a substantial number of cold misses can have a significant impact on the execution time of a
task. This is true for the crc and cnt benchmarks, shown in Table 2.2. However, the stats
benchmark, which contains algorithms with complexity O(n), shows lesser impact than cnt and
crc. There are two reasons for this behavior: (a) Stats has floating point arithmetic that takes a
significantly larger number of cycles than integer arithmetic. Hence, the ratio between L2 miss
latency and critical floating point operations is significantly reduced, and (b) Stats is composed
of multiple algorithms of linear complexity that reuse the same dataset. Benchmarks matrix
multiplication and sort are of complexity O(n3) and O(n2), respectively. The increase in their
execution cycles due to task migration is less than one percent due to heavy data reuse.
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Table 2.4: Bubble Sort WCET v/s Number of Elements

Array Before After WCET
Elements Migration Migration Dilation

(cycles) (cyles) (%)
50 161160 162400 0.8

100 641155 643040 0.29
250 4002752 4006507 0.09

We conducted experiments to obtain the execution cycles for different sizes of data sets for
Matrix Multiplication and Sort. Tables 2.3 and 2.4 show the results for Matrix Multiplication
and Sort, respectively. The first column gives the size of the data set, the second and third
columns list the execution time that the tasks takes to complete before migration (with warm
caches) and after migration (with cold caches), respectively, and the fourth expresses the in-
crease in execution time due to migration as a percentage. The results show that even these
benchmarks experience greater impact when the data set is small.

Task migration and impact on schedulability: Since the impact of task migration can
be quite large, it can adversely affect the schedulability of tasks. Using a simple task set, we
demonstrate that a single task migration can force the migrated task or other tasks within the
task set to miss their deadlines under both static and dynamic scheduling. We chose matmult
and Cnt, termed as MM and Cnt, respectively, to construct a task set as shown in Figure 2.2.
We selected matmult for its high complexity among the benchmarks studied (implies high data
re-use). We chose Cnt as it was among the benchmarks whose execution time increased by 14%
due to migration. We then examined the impact of task migration using both the (a) static and
(b) dynamic scheduling schemes. Figure 2.2(a) shows a static schedule across two cores. On
core 0, a task set composed of matmult and cnt is deployed. On core 1, a task set composed of
only matmult is running. The scheduler grants matmult higher static priority. This system is
non-preemptive. The system progresses as expected until the scheduler experiences a request
from a sporadic task to be scheduled on Core 0. There may be several reasons for a task to
be scheduled on a specific core. For example, the core may be connected to a sensor or an
actuator. Interrupts triggered by a device can invoke a sporadic task to execute on core 0. As
a consequence, at some point on the timeline the scheduler decides to migrate task cnt to core
1. This decision is marked by an arrow from core 0 timeline to core 1. This allows cnt to be
released on core 1 one unit before the release time of matmult on core 1. Since the system
in Figure 2.2 is non-preemptive cnt executes to completion. However, due to a cold cache
encountered by cnt on core 1, there is a 14% dilation in the execution time of cnt on core 1.
This delays the release of matmult that misses its deadline as shown in Figure 2.2(a).
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Figure 2.2: Task migration and scheduling anomalies

MM Cnt MM MM MM MMCnt Cnt CntMM MM MM MM MM Cnt MM CntMM SPCnt Migrated Cnt Pre-empted by MMCore1 Dilated Cnt WCET; misses deadline
MM Cnt MM MM MM MMCnt Cnt CntMM MM MM MM MM MMMM SPCnt Migrated MM misses deadline on Core1Core0Core1 Dilated Cnt WCET; pushes MMCnt

MM(e=2,p=5,d=3) Cnt(e=2,p=6,d=4) SP: Sporadic Task
Core0
MM Cnt MM MM MM MMCnt Cnt Cnt MMCore0 MM MM MM MM MM MMCore1 Cnt Cnt Migrated MM CntMMDilated Cnt WCET; misses deadline

(a) Static scheduling without pre-emption
(b) Static scheduling with pre-emption
(c) Earlier Deadline FirstHyper-period SP

One might argue that if the system was preemptive then matmult would have preempted
the migrated task and met its deadline. However, Figure 2.2(b) exhibits that if preemptive
scheduling allows matmult to meet its deadline on core 1, it results in a deadline miss when cnt
resumes execution after matmult’s completion. This is again attributed to the extra latency
added to the execution of cnt while encountering cold cache misses on core 1. Next, we investi-
gate how a dynamic scheduling algorithm such as Earliest Deadline First (EDF) behaves in the
wake of task migration. First, we confirmed whether the task set is schedulable under EDF. In
order to accomplish that, we computed the utilization and the density of task set running cnt
and matmult on core 0. The utilization of the task set is less than one but the density is greater
than one. Thus we assessed the schedulability of the task set on a per-job level within the hy-
perperiod. The task set is schedulable as cnt and matmult meet all their deadlines within their
hyperperiod as shown in Figure 2.2(c). However, towards the end of hyperperiod, a sporadic
task forces the scheduler to migrate cnt from core 0 to core 1 for the next hyperperiod. As
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per EDF, matmult’s job with higher priority gets to execute before cnt. However, as in static
scheduling, cnt fails to meet its deadline under EDF.

Hence we obtain the following:

1. Cold cache misses incurred by a migrated task substantially dilate the WCET of a task.
Such dilation may prevent the migrated task and other tasks from meeting their deadlines.

2. Theoretical and simulated schedules show that the impact of task migration on schedula-
bility is not restricted to any particular type of scheduling algorithm (static or dynamic)
or the system aspect (preemptive or non-preemptive).

3. Aspects like algorithmic complexity of the program, size of the data set, data set reuse
and latency of critical operations performed by the task are important factors that can
help in gauging the impact of task migration on WCET.

2.4 Proposed Solution

In this section, we present the proposed solution at a high level and discuss any assumptions
made for the experimental model. As shown in the previous section, task migration can signif-
icantly dilate the WCET of a task.

The architecture of contemporary multicore designs is completely ignorant of task migration.
A simple experimental scenario was constructed (see Figure 2.2). It illustrates this inability
inherent to task migration leading to a deadline failure of scheduled tasks. However, since
scheduler is aware of the task migrations it can also initiate cache migrations from source core
to target core. The same task set is modeled with our proposed solution shown in Figure 2.3.

The key difference in these scenarios is that when the scheduler decides to migrate a task,
it actively forces the migration of cache lines from source (core 0) to target (core 1). Such
active movement of cache content comes at the cost of up-front migration overhead in contrast
to the traditional delayed overhead at the next job activation. In presently discussed scheme,
this overhead does not contribute to the execution time of the task’s next job because cache
migration takes place prior to this next job’s invocation at the target (core 1). In the depicted
case, cache migration also completes before the next job of Cnt is invoked at the target (core
1). Such a scheme allows a scheduler to decide dynamically if a task is migratable or not.
Our proposed migration techniques can also be used to facilitate predictable Cache-Related
Migration Delay (CRMD) that can further be used for determining schedulability statically [80].
Here, we investigate two schemes: The Pre-fetch Task Model and the Push-assisted Cache

Migration Model. These schemes will be discussed in the following sections.
In this chapter, we use an experimental model with the following underlying assump-

tions. We assume separate communication channels for processor-to-memory and processor-
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Figure 2.3: Task Migration Coupled with Cache Migration
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to-processor traffic on a network-on-chip interconnect, like the ones supported in the TilePro64
(Tile Dynamic Network (TDN) and Memory Dynamic Network (MDN)) [6]. We also as-
sume the processor-to-processor communication to support some form of QoS that bounds the
processor-to-processor delay. This allows us to gauge the potential of cache migration in terms
of the cache footprint of tasks and their execution complexity. We also assume that the caches
are physically index and physically tagged. To understand the effect of migration on individual
tasks, we evaluate single task migration. Our experimental model requires that cache migration
take place during idle slots for both source and target cores (or any other bus activity). Such
isolation has been proposed for systems that alternate between computational and communi-
cation phases [64]. In our recent publication, we have proposed a semi-partitioned scheduling
algorithm that also shows the availability of slack [80]. If migration were to take place during
a task’s execution on any of the cores, the network-on-chip mentioned earlier isolates memory
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requests from processor-to-processor communication. Furthermore, this chapter does not focus
on inter-task cache conflicts as such conflicts are orthogonal to this study. In our recent publi-
cation, we have proposed a semi-partitioned scheduling algorithm that resolves cache conflicts
and exploits our cache migration mechanism to improve the response time for real-time tasks
[80]. We will discuss this work briefly in Section 2.8.

2.5 Migration Models

In order to explain the migration model, we use “source” and “target” to refer to the core/cache
where the task is currently running and where the scheduler migrates the task to before the
next invocation, respectively.

2.5.1 The Conventional Pull Model

Task migrations are scheduler events. Contemporary processors do not have any support to
notify the cores of such events. The source core stops executing the task while the target core
starts executing the same. Hence, when a task is migrated by the operating system from a
source core to a target core, it suffers from L1 (and L2) cold misses as it warms up its working
set. These misses in the L1+L2 caches of the target core are resolved one at a time by a shared
L3 cache or the L1/L2 caches of the source core for MESI and MOESI coherence protocols,
respectively. Hence, each cache miss results in multiple coherence messages being sent over the
on-chip interconnect (bus or point-to-point) and competes with memory references from other
cores. Initial read references on the target core force the use of coherence messages resulting
in transitions into a shared cache state on both ends while subsequent writes inflict additional
coherence traffic for invalidations. This is termed a pull-based scheme as it reacts to misses one
at a time on demand before pulling data over the NoC interconnect.

2.5.2 The Pre-fetch Task Model(PTM)

The pre-fetch task model is a software scheme. Each task registers a set of regions that define
the anticipated cache footprint. Each region is defined by the starting address and size of
region in terms of bytes. When the scheduler decides on migrating a task, it consults the region
specifications and spawns a pre-fetch task on the target as shown in Figure 2.4. Since this is an
execution driven mechanism and occupies processor, the pre-fetch task has the lowest priority
at the target core. Thus it is active only when there is an idle slot available at the target. A
pre-fetch task issues a sequence of read requests at the granularity of a cache line, which on
completion warms both L1 data and L2 unified caches. On completion of this task, all the
cache lines within the critical regions of a migrated task have been pre-fetched. The prefetch
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Figure 2.4: Task Migration with Pre-fetch Task supportMM Cnt MM MM MM MMCnt Cnt CntMM MM MM MM MM MM SPMM meets deadline on Core1Core0Core1
MM(e=2,p=5,d=3) Cnt(e=2,p=6,d=4) SP: Sporadic Task Cnt MMPTScheduler spawns PT on targetPT: Pre-fetch Task

Cnt pre-empts PT
task is terminated at the target core once the migrated task resumes execution at target core
regardless of the state of the pre-fetch task. Since it has the lowest priority, it is descheduled
by tasks that run prior to the invocation of the migrated task as shown in Figure 2.4 where
Cnt pre-empts the pre-fetch task PT.

A software scheme like the Pre-fetch Task Model seems simple to implement but de-
scheduling of the pre-fetch task prevents any prefetching to take place while tasks other than
the migrated tasks resume execution. While a task executes on a core, it consumes processor L1
cache resources extensively. However, L2 cache resources may have idle cycles available. Thus
a hardware solution may use the idle cycles at L2 cache controller to prefetch lines. However,
a pre-fetch model is eventually a pull model with requests actively issued by the target rather
than passively. Therefore, such a scheme, irrespective of a software or hardware solution, will
have the disadvantages that apply to any pull model scheme. A pull model is not aware of
the cache lines that are available at the source. If a line is not in the source cache then the
read request is futile. Such unnecessary read requests dilate the time required for pre-fetching
to complete and cause additional traffic on the NoC. Additionally, a pull based scheme will
always issue requests for one cache line at a time. This is because it is not aware of locality
of the cache lines present at the source. Hence, there is no scope for improvement in reducing
the overhead of cache migration. Thus we describe a hardware scheme in the following section,
which exhibits the following improvements over PTM:

1. It delivers tighter WCET of the migrated tasks,

2. It eliminates any futile transactions for cache lines that do not exist at sources,

3. It has the capability to use idle L2 cache cycles at source and target while the processors
is busy serving other tasks,

4. It Parallelizes the transactions to reduce migration overhead, and
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5. It also provides the opportunity to reduce the coherency related transaction after migra-
tion

2.5.3 The Push-assisted Cache Migration Model

Figure 2.5: Task Migration with Push-assisted Cache Migration supportMM Cnt MM MM MM MMCnt Cnt CntMM MM MM MM MM MM SPMM meets deadline on Core1Core0Core1
MM(e=2,p=5,d=3) Cnt(e=2,p=6,d=4) SP: Sporadic Task

Cnt MMScheduler activates the push block at source Cache migration by source to target push requests
In a push model, memory requests are initiated by the source core in order to warm up the

target cache instead of demand-driven requests issued by the target. We propose such a novel
push-based hardware mechanism initiated by the Operating System on the source core that
transfers warm cache lines to the target core. Such movement is proactive in the sense that it
is initiated prior to task reactivation on the target core and continues in parallel once this task
resumes execution on the target. The present implementation exploits the slack time that a
task has prior to the next invocation of the task on the target. The sequence of events in the
process of cache migration then is as follows.

1. The task notifies the OS of its completion.

2. The OS invokes the scheduler routine to determine target core for the task.

3. The OS initiates cache migration by setting the “target register” within the special-
purpose hardware, called the push block.

4. The push block, in conjunction with the source cache controller, migrates the cache con-
tents by placing memory requests, called the push requests, for each migrated cache line.
This is shown in Figure 2.5.
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The Push Block

The push block has the responsibility to identify migratable lines. Only a subset of valid cache
lines are migratable. A migratable line has to be associated with the task being migrated. In
case all the valid lines are migrated, it has the following drawbacks:

1. The push block will take a longer time to migrate the task since it will require a larger
number of cache line migrations.

2. The target will experience cache pollution because of the displacement of the valid lines
of some other task running on it.

3. On re-invocation of remaining tasks at the source, the system bus experiences a large
number of coherence messages.

Thus to identify a migratable line, the push block may need support from the cache or the
OS. We will discuss the implementation requirements of the push block in the discussion of the
variants of the push model.

Whole Cache Migration (WCM)

WCM replicates the cache context of the migrated task at the target such that after re-
invocation, the migrated task’s execution behaves as though the task had not migrated. It
is a complete hardware mechanism where the push block scans each and every cache block in
order to find the migratable lines. However, the push block requires the cache lines to hold a
task identifier (task ID) in order to prevent it from migrating the valid lines of other dormant
tasks as discussed in the section above. This mechanism has the advantage of replicating all
the cache contents of the task at the target. However, in case the cache footprint of the task is
very small as compared to the size of the L2 cache, a lot of cycles are wasted while accessing
non-migratable cache lines.

Regional Cache Migration (RCM)

RCM borrows the concept from PTM of allowing developers to specify expected cache footprint
of the task, in terms of regions, and uses that information to push cache lines. This can be
derived by abstract cache analysis or the user may define a set a locked cache lines as presented
in Chapter 3. This reduces the number of cache lines being visited by the push model and also
eliminates the requirement for the cache to store task identifiers in order to determine migratable
cache lines. In our experimental model, this is accomplished by adding an instruction that allows
the programmer to fill a limited number of registers called “region registers” within the push
model. Each region register contains a start address and the size of a frequently reused region

31



expressed in bytes. A programmer can identify contiguous locations of memory that form the
majority of the memory footprint by updating the region registers. At the set-up phase tasks
save the region register values as part of task’s context. When a task is activated on a core, the
region registers of the push block at the core are updated as part of updating the task context.

When a migration is triggered, the push block identifies the migratable lines as valid lines
belonging to the regions specified by region registers. RCM has the advantage of scanning fewer
cache lines than WCM. However, since one can specify only a limited number of regions, this
could limit the programmer from identifying the whole cache footprint. Thus some cold cache
misses may be retained.

Push Request

We next discuss the integration of the memory request generated by the push model (the push
request) with the MESI protocol on a CMP architecture. Once the push block identifies the
cache line to be migrated, it issues the push request. Unlike a read/write request, the push
request is only referenced by the target cache but never by the memory controller. The push
request is issued by the push block. It does not constitute a demand request but rather a write
request on behalf of the target made by the source. However, the implementation of a push
request may have effects on the cache performance and the bus bandwidth requirement. The
push model might find a migratable line in shared, exclusive or modified state. The shared cache
lines are read at the source and allocated to the target and initialized with shared state. The
task replacing the migrated task may or may not use those lines. If the task uses the lines then
it may save on cache misses. In case it does not, a line in shared or invalid state does not change
the task’s cache performance. However, the choice of implementation might make a difference
for migratable lines that are in exclusive or modified state. If a line is in modified state, the
re-activation of the task at the target may write to those lines again. Hence, if the lines in the
modified or exclusive state are changed to shared state, then there is a possibility that when the
task resumes execution at the target, the system experiences a number of invalidation requests
posted by the target. However, in case that does not happen, those lines could be used by
the tasks that get scheduled on the source core following the migrated task. Therefore, it is
worthwhile to analyze the two scenarios for the migration of lines in exclusive or modified state.

1. Modified/Exclusive state to Shared State: change the state to Shared at the source cache,
issue a write back to the memory if the state is a modified line, issue a push request to
target, allocate a cache line in shared state at target cache.

2. Modified/Exclusive state to Exclusive State: change the state to invalid at source cache,
issue a write back to the memory if the state is modified, issue a push request to target,
allocate a cache line in exclusive state at target cache.
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Bulk Cache Migration (BCM)

The push models discussed in WCM and RCM allow only a single push request to be generated
by a source at a time. A push block waits for a push request to complete (i.e. wait for the
acknowledgment from the target) before issuing a subsequent push request. This behavior is
similar to the read performed in a pull model.

However, as the push requests are generated at the source core, there is an opportunity for
overlapping multiple transactions. Subsequent push requests may be initiated without waiting
for the acknowledgment from the target to arrive. Thus as the push block places a request on the
bus, it can initiate another cache read. This pipelines the processing of multiple push requests
and overlaps the overheads caused by multiple transactions. Thus in this work we couple the
RCM with BCM to exploit the potential of BCM to decrease the overhead significantly.

2.6 Simulation Platform

Table 2.5: Simulation Parameters

Component Parameter
Processor Model in-order
Cache Line Size 32B
L1 I-Cache
Size/Associativity

32KB/2-way

L1 D-Cache
Size/Associativity

32KB/4-way

L1 hit latency 1 cycle
Replacement Policy LRU
L2 Cache
Size/Associativity

2MB/8-way

L2 Hit Latency 20 cycles
L2 Replacement Policy LRU
Coherence Protocol MESI
Push Request Latency 50 cycles
Network Configuration Bus based
Processor To Processor De-
lay

2 cycles

External Memory Latency 480 cycles

Our proposed solution requires micro-architectural modifications to a stable bus-based mul-
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ticore CMP architecture. We chose SESC [72], a light-weight event driven simulator that
implements a stable bus-based CMP supporting the MIPS instruction set. Our base experi-
mental model consists of a multicore CMP architecture where each core has private L1 and L2
caches. This design is very close to the tile-based architecture [101] except that we assume a
private L2 cache for each core while they consider each L2 cache to have two sections. In their
design, one acts like local L2 while the other is a part of a shared L2 distributed across the
cores. In contrast to their work, the focus of our work is towards the timing predictability of
the system, for use in real-time systems. Simulator has been modified to provide scheduling
capabilities. However, the scheduling and migration overhead is minimal as the scheduler is
implemented using emulated system calls. This is because our work does not concentrate upon
scheduling overheads.

Contemporary static timing analyzers predict the performance of a task assuming no con-
tention for system resources. There has been research work on providing QoS-like cache par-
titioning [45] that dynamically changes the performance of the running applications over the
period of their execution. The focus of their research is to increase the throughput or to provide
fairness to admitted tasks. However, none of the objectives address predictability and not sub-
jected to real-time systems. Static cache partitioning may be a means to reduce the inter-task
cache contention. However, it has not been very popular because of potentially waste of critical
cache space. Hence, we chose to use a system that keeps the cache contention to the minimum
while also providing enhanced predictability.

The system architecture specifications are presented in Table 2.5. A unique parameter in
this system is the “push request” latency. A push request incurs latencies of L2 cache access
at source and at destination, round trip of push and acknowledgment messages on the bus and
delays involved in setting up the request of those messages on the bus. These costs contribute
to the aggregate latency of one push request with an assumed cost of 50 cycles.

2.7 Evaluation

2.7.1 Prefetch Task Model

Prefetch Task Migration and Potential to Bound WCET: The evaluation results for
the Prefetch Task Model are depicted in Table 2.6. The first column lists the name of the
benchmarks. The second, third and fourth columns provide the execution time in cycles for
tasks before migration (with warm caches), after migration without PTM and after migration
with PTM, respectively, and the fifth column expresses the increase in execution time due to
migration (with PTM) as a percentage. These results exhibit the potential of pro-actively
warming up the target cache before the migrated task’s subsequent invocation. We see that
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Table 2.6: Prefetch Task Model & Potential to Bound WCET

Benchmark WCET Exec. Time Exec. Time Dilation PTM PTM Overhead
Name (Warmed Cache) w/o “PTM ” with “PTM” in WCET Overhead vs. WCET

[cycles] [cycles] [cycles] (%) [cycles] (%)
bs 1595 2497 2109 32.22 2001363 125477

crc 6972 8292 7925 13.67 8183 117.36
cnt 2014528 2309082 2015194 0.033 599811 29.77

stats 11676261 12428101 11678209 0.017 1528712 13.09
srt 4002752 4006507 4003610 0.02 6582 0.16

matmult 954106 963203 954496 0.041 13914 1.45

PTM has a significant impact on reducing the dilation in execution time due to migration.
However, it is less effective for bs and crc. This is because PTM is capable of prefetching
only data which causes L1 instruction cache misses. The benchmarks bs and crc have different
characteristics. Benchmark bs has a large memory footprint. However, the number of data
accesses are of O(log N), i.e. only a subset of the data is accessed. Thus the number of data
accesses is approaching the same order of the number of instruction accesses. Hence, L2 misses
on instruction accesses contribute significantly to the dilation in execution time of the migrated
task. On the contrary, crc has a very small data footprint that is smaller than the instruction
footprint. In this case as well, L2 misses on instruction accesses contribute significantly. Since,
the execution time for all the other benchmarks is driven by the data accesses, PTM delivers the
desired outcome of approaching the execution time with warmed cache. Thus we can deduce
that migrating the instructions become equally important when executing benchmarks that
have low data accesses.

PTM and Prefetch Task Overhead: The cache migration scheme hides the latency
incurred by making cache lines available on the target core before they are referenced. Hence,
it is important to accurately predict the number of cycles required to migrate the cache footprint
of the task so that the process of migration completes before the task is invoked at the target. In
Table 2.6, the sixth column shows the overhead incurred by prefetching, which is the execution
time of the prefetch task, and the seventh column represents the overhead with respect to
the WCET. The migration overhead of the prefetch task is composed of not only cache-to-
cache migration but also the instructions executed to generate the prefetch requests. Since the
prefetch task references the data region of the migrated task, the overhead is proportional to the
data footprint. The overhead is less than 30% of the target WCET for most of the benchmarks.
However, for bs and crc, it is very high. The benchmark bs has a large data footprint. Its
overhead is high because the cache-to-cache transfer grows by O(N) while the execution cycles
scale with O(log N). However, in case of crc, the cache misses incurred while accessing the
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footprint of the prefetch task dominates. Hence, the cycles required to execute the prefetch
task inflate the overhead and, in comparison to the small WCET of crc, the overhead seems
large. Unfortunately, the overhead with prefetching may get worse if the user-specified regions
were inaccurate as described in Section 2.5. Also, in the wake of an in-order core, which is
prevalent in real-time systems, the requests will be serialized.

2.7.2 Push-assisted Cache Migration Model

Table 2.7: WCM Performance & Overhead

Benchmark Execution Time Deviation from WCM WCM Overhead
Name “WCM” [cycles] tight WCET Overhead vs. WCET

[cycles] (%) [cycles] (%)
bs 1842 15.48 1737657 108944

crc 7490 7.43 68617 984
cnt 2014631 0.005 566240 25.28

stats 11677428 0.099 1317796 11.28
srt 4004448 0.042 37035 0.92

matmult 958121 0.42 79543 8.34

Hardware Cache Migration & Potential to Bound WCET: We performed an evalua-
tion on the simulation platform discussed in the previous section. Table 2.7 shows the potential
of the push-assisted cache migration scheme in achieving performance close to the tighter WCET
bounds for the migrated task. The first column shows the name of the benchmarks. The second
and third columns express the execution time of migrated tasks with WCM in cycles and in
percentage of deviation from tight WCET, respectively. The whole cache migration scheme
maximizes the ability of cache migration in restricting WCET. However, our current imple-
mentation of the whole cache migration scheme pushes the lines from one L2 cache to another
but does not push it up to the L1 cache of the target core. Due to the L1 misses suffered by
the tasks, the results show an extra cost in cycles to complete compared to warmed-up L1+L2
caches. Therefore, there is a deviation experienced by all the benchmarks. However, bs and
crc have deviate more from the tighter WCET bound provided by the warmed up cache, which
is similar to PTM. We can deduce that L1 cache misses become significant for tasks that have
an algorithmic complexity lower than O(n) or tasks that have small data set size with close to
linear algorithmic complexity. Data set size alone cannot be considered a sufficient criterion
because the execution cycles consumed by computation can be the dominating factor as was the
case for matmult and bubblesort. We will compare WCM and PTM along with the discussion

36



on RCM results. One might consider warming up the L1 cache, too. However, one of the key
features of our hardware scheme is to enable tasks to execute concurrently to cache migration
with minimum conflict. Since L1 cache accesses are very frequent, contention caused by push
requests will be highly undesirable. Hence, we will keep our hardware push model to transfer
cache lines among L2 caches only.

WCM and Cache Migration Overhead: The fourth and fifth columns in Table 2.7
shows the amount of overhead that WCM incurs in absolute number of cycles and as a percent
of the target WCET, respectively. We find similar behavior to PTM where bs and crc had a
considerably large overhead when compared to the target WCET. The remaining benchmarks
experience migration overheads of less than 30% over the target WCET.

One of the primary drawbacks of WCM is the scanning of the whole cache to identify
migratable lines. If a line is non-migratable, the tags or cache lines are not read. Also, the
requests are not placed on the bus. Additionally, subsequent task ID checks only need index and
column lines to be activated in an incremental fashion for WCM. Hence, we are assuming that
a non-migratable line adds a cycle to the overhead instead of a cache miss latency. However,
contemporary L2 cache sizes are in the order of MBs, which could exceed the task’s cache
footprint by orders of magnitude. Thus tasks that have a very small cache footprint still pay a
high cache migration overhead as the overhead is then proportional to the cache size instead of
the task’s cache footprint. Such undesirable behavior is alleviated by RCM.

RCM vs. WCM: Due to the aforementioned practical issues associated with WCM
that were confirmed by simulated performance results, we propose a software-assisted micro-
architectural support technique. Real-time applications primarily perform computation on
globally visible static buffers since WCET estimates for dynamic memory allocations are dif-
ficult to bound and allocations of memory blocks may cause unnecessary conflict misses. The
utilization of large local buffers is discouraged because embedded environments have limited
stack size that requires applications to conserve memory needs. Thus most embedded applica-
tions perform computations over buffers of static length used over the lifetime of the application.
Hence, developers tend to have sufficient knowledge about the size of the data set so that each
task can be associated with a vector containing the critical regions of the data set. This is
explained in detail in Section 2.5.3.

Next, we present RCM results while comparing PTM, WCM and RCM. Table 2.8 compares
the execution time of the benchmarks with different cache migration schemes. Each value in
the table is a percentage of additional cycles over the WCET required by a migrated job to
finish under the respective cache migration scheme. It shows that all the schemes discussed are
effective in reducing the dilation in execution of the migrated tasks considerably. The results
show that WCM approaches the tighter WCET bound closest for most of the benchmarks.
However, PTM performs better for srt and matmult. This is because in these benchmarks,
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Table 2.8: Migration Paradigms and Percent Additional Execution over WCET

Benchmark No Cache PTM WCM RCM RCM
Name Migration (Data Only) (Data + Instr.)

(%) (%) (%) (%) (%)
bs 56.55 32.23 15.49 27.52 17.3

crc 18.93 13.67 7.4 14.26 8.34
cnt 14.62 0.033 0.005 0.03 0.02

stats 6.43 0.017 0.009 0.01 0.01
srt 0.09 0.021 0.042 0.058 0.044

matmult 0.95 0.04 0.42 0.44 0.43

the data fits within the L1 cache and has a smaller instruction footprint. Thus the number of
cycles saved for L1 data cache hits outweigh the number of cycles spent on L2 cache misses for
instructions. However, if a task other than the migrated task executes before the re-invocation
of the migrated task, then the probability of lines evicting from L1 cache becomes high. Hence,
PTM may lose its advantage over the push-based hardware mechanisms. The fifth and sixth
columns exhibit the results for variants of RCM. RCM (Data Only) performs comparable to
WCM for most benchmarks except bs and crc. This is because the cache misses caused by
instructions become dominant. This underlines the significance of the results in the sixth
column showing that, if the developer is able to specify both data and instructions clearly,
it can match the effect of WCM. Push-assisted Cache Migration schemes show a significant
reduction in execution time for bs too but the dilation in execution time is still exceeding 10%.

Whether or not a task can be migrated is based upon the overhead of migration. This
overhead does not contribute to the execution of the application but rather constitutes the
overhead for migrating the task’s cache footprint such that the performance of the application

Table 2.9: Cache Migration Overhead cycles over WCET [percent]

Benchmark PTM WCM RCM RCM Bulk RCM
Name (Data Only) (Data + Instr) (Data + Instr)

(%) (%) (%) (%) (%)
bs 125477 108944 106833 106868 47238

crc 117 984 21.3 40 18.38
cnt 29.77 25.28 25.29 25.32 11.20

stats 13.09 11.28 10.92 10.93 4.93
srt 0.16 0.92 0.081 0.099 0.045

matmult 1.458 8.34 1.39 1.43 0.64
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is as stated in Table 2.8. As discussed earlier, the WCM scheme has a high overhead because
it requires references to non-migratable cache lines. We have shown that RCM can make
tasks approach the ideal performance obtained by WCM. Hence, if RCM is able to reduce the
overhead of cache migration significantly compared to WCM, it may be considered a viable
micro-architectural scheme.

This potential of RCM is evaluated against all other schemes in Table 2.9. The first column
holds the benchmark names and the other columns show the ratio of the overhead to the WCET
bound in percent for the respective cache migration schemes. Before investigating the RCM
results, it is important to notice that WCM behaves poorly in terms of overhead against PTM
for crc, srt and matmult. PTM has an overhead proportional to the cache footprint of the
task while WCM’s overhead depends on the cache size, which is significantly larger than the
cache footprint for the aforementioned benchmarks. However, WCM has lower overhead than
PTM for bs, cnt and stats whose cache footprint is large. This is because PTM has an extra
overhead caused by execution of the prefetch task. RCM blends the advantages of PTM and
WCM. It eliminates the execution overhead of PTM and the excessive number of look-ups of
WCM. Hence, the overhead of RCM is the least among all the schemes for all the benchmarks.

The comparison between the RCM (Data Only) and RCM (Data + Instruction) shows that
the developers have to critically choose the variant of RCM. For example, the migration overhead
for crc reduces from 984% for WCM to 21.3% for RCM with data regions migrated and 40% for
data+instruction region migration. However, the performance of RCM with data+instruction
regions migrated closely approaches that of WCM. Thus for benchmarks like cnt and stats, one
might choose only data region migrations while for crc, one should give preference to RCM with
data+instructions region migrations.

Bulk Cache Migration: One of the key aspects of push-based cache migration scheme is
to issue push requests in parallel as described in Section 2.5.3. The last column of Table 2.9
clearly shows that bulk transfer of push requests can reduce the cache migration overhead by
more than 50%. Even though a detailed study of NoC is beyond the scope of this work, such
bulk transfer promises to maintain low migration overhead even with increased network latency
and multi-hop cache to cache transfers. This is because of the pipe-lining of the transactions.
This aspect will be studied in detail in Chapter 3.

Cache Migration and Coherence States: Another aspect of overhead is the extra band-
width requirements that cache migration imposes. This overhead may affect the performance
of concurrently running tasks. Table 2.10 compares the requests issued to the bus during cache
migration schemes against a conventional scheme where no cache lines are migrated. The sec-
ond, third and fourth columns report the read, write and push requests issued onto the bus
without cache migration, with cache migration for both the data and instruction regions, and
with cache migration for both data and instruction region along with their state (shared if
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shared at source, exclusive if exclusive or modified at source), respectively. It can be deduced
that those tasks accessing their complete data set will have minor or no difference in the total
accesses issued with or without cache migration. This is evident among benchmarks like crc,
cnt, stats and srt. However, bs, which accesses only log(n) elements of its data set (array), suf-
fers a significant bandwidth overhead. The forced migration of the whole data set issues more
push requests than the number of read/write requests that the task issues in the absence of
cache migration. Matmult has a resultant array that, if not migrated, causes only write misses.
Since the developer specifies this resultant array to be migrated, cache migration scheme with-
out state migration support migrates those modified cache lines as shared to the target. Thus
they not only incur push traffic but also lead to write misses on subsequent writes. A similar
behavior can be seen for srt. Hence, such write misses can be avoided by our state migration
extension to our cache migration schemes, e.g., when lines in modified or exclusive state at
the source are migrated as exclusive lines to target. Thus subsequent writes do not require
invalidations that are otherwise required for matmult and srt (third column of Table 2.10). It
can be concluded that the push-assisted cache migration scheme imposes only minor pressure
on bandwidth unless the data accessed is too small compared to the data set.

Cache migration and Task Migration Decision: Task migrations are performed by a
Real-Time Operating System (RTOS) in response to certain events. Currently, an RTOS does
not consider the impact of cold cache misses on the execution time of migrated tasks. Our push-
based cache migration techniques overlap the cache transfers with slack time available for the
task. However, it is not safe to assume that the RTOS can ignore the impact of task migration
with the availability of cache migration mechanisms. We argue that an RTOS should utilize
knowledge about the task’s cache migration overhead and the available slack time in deciding
when and if a task should be migrated. Hard real-time systems would require cache migration
to complete within the available slack time. On the other hand, soft real-time systems may
allow cache migration to continue even after the next instance of the task has started execution

Table 2.10: Cache Migration and Bandwidth Overhead[number of requests]

Benchmark No Cache Migration Cache Migration Cache Migration
(Data + Instr.) (Ex + Data + Instr)

Push Read Write Push Read Write Push Read Write
bs 0 27 1 32780 1 1 32780 1 1
crc 0 39 4 54 0 4 54 0 3
cnt 0 9808 2 9813 1 2 9813 1 2

stats 0 25027 7 25002 27 7 25002 27 6
srt 0 74 65 77 1 65 77 1 2

matmult 0 182 86 263 5 86 263 5 1
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at the target. Furthermore, the RTOS may make an optimal decision of which task is to be
migrated among a set of possible candidates based upon cache migration overhead and available
slack time. While the development of such policies is out of the scope of the current work.

2.8 Related Work

Yan and Zhang have recently proposed techniques to calculate the WCET of tasks in real-
time multicore systems [97, 96, 98], and other approaches develop multi-level WCET cache
analysis as well [60, 42]. These approaches are limited to shared L2 instruction caches in
their bounding of WCET and none of them consider task migration. Choffnes et al. propose
migration policies for multicore fair-share scheduling in the context of soft real-time systems
[27]. Their technique strives to minimize migration costs while ensuring fairness among the
tasks by maintaining balanced scheduling queues as new tasks are activated. Li et al. discuss
migration policies that facilitate efficient operating system scheduling in asymmetric multicore
architectures [52, 51]. Their work focuses on fault-and-migrate techniques to handle resource-
related faults in heterogeneous cores and does not operate in the context of real-time systems.
In contrast, our work focuses on homogeneous cores and strives to improve system utilization
by allowing migrations while providing timeliness guarantees for real-time systems. Calandrino
et al. propose scheduling techniques that account for co-schedulability of tasks with respect to
cache behavior [9, 19]. Their approach is based on organizing tasks with the same period into
groups of cooperating tasks. While their method improves cache performance in soft real-time
systems, they do not specifically address issues related to task migration. Other similar cache-
aware scheduling techniques have been developed [35], but they do not target real-time systems
and do not address task migration issues.

Eisler et al. [34] develop a cache capacity increasing scheme for multicores that scavenges
unused neighboring cache lines. They consider “migration” of cache lines amounting to dis-
tribution of data in caches while we focus on task migration combined with data migration
mechanisms that keep data local to the target core. Acquaviva et al. [17, 8] assess the cost of
task migration for soft real-time systems. They assume private memory and different operating
system instances per core on a low-end processor. In contrast, we assume private caches with a
single operating system instance, which more accurately reflects contemporary embedded mul-
ticores [6]. Their focus is on task replication and re-creation across different memory spaces
while our work focuses on task migration within partly shared, partly private memory spaces.

In a recent publication [80], we use the push-assisted cache migration to bound the CRMD
(Cache Related Migration Delay). In this paper, we present a predictable semi-partitioned
strategy for scheduling a set of independent hard real-time tasks on homogeneous multicore
platforms using cache locking and locked cache migration. Semi-partitioned scheduling strate-
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gies form a middle ground between the two extreme approaches, namely global and partitioned
scheduling. By making most tasks non-migrating (partitioned), run-time migration overhead is
minimized. On the other hand, by allowing some tasks to migrate among cores, schedulability
of task sets has been improved. Locked cache migration is used, which makes the migration
overhead between job executions more predictable. We also assume that a migratable task oc-
cupies one cache way. If caches have k ways, then k-1 ways are used by purely partitioned tasks
and one way is used by the migrating task. A migrating task migrates between two cores. In
this work, the predicted CRMD is added to the WCET while the slack time on the two cores is
used to fit the migrating task. Simulation results demonstrate the effectiveness of our approach
in improving task set schedulability over purely partitioned approaches while maintaining real-
time predictability of migrating tasks. The results shows an average increase in utilization
of 37.31% and an average increase in density of 81.36% compared to purely partitioned task
allocation.

2.9 Conclusions

In this Chapter, we identified task migration as a key contributor to unpredictability in deter-
mining WCET bounds of real-time tasks on multicore architectures. With larger L2 caches and
increasing numbers of processing units, WCET bounds have the potential to become tighter in
the future. Static timing analyzers can capitalize on large L2 caches in that, after the initial
warm-up of the cache, execution of real-time tasks will become predictable. This work has
shown that, in the wake of task migrations, dilation in execution time due to cache warm-up
will become significant enough to occasionally prevent real-time tasks from meeting deadlines.
It is thus imperative to develop real-time systems capable of tightly bounding — if not elimi-
nating — the impact of task migration. Simulation results on a subset of WCET benchmarks
experience a dilation in execution time ranging from of 6% to 56.6% for tasks whose algorithmic
complexity does not exceed O(n). Tasks with higher complexity show a significant dilation for
small data set sizes.

We consolidate the idea of proactive cache migration as a means to diminish the dilation
introduced by the target warm-up overhead using a software technique called PTM. PTM
launches low priority prefetch tasks at the target core to prefetch the cache lines that belong to
the address ranges specified by the programmer. The software approach shows that it can pre-
vent the dilation in execution time but may result in high and potentially unbounded migration
delay requirements. Hence, we propose two schemes of push-assisted cache-to-cache migration
in multicores. (1) WCM, a hardware scheme replicating the cache context of the task onto the
target L2 cache, reduces dilation in execution time to less than a percent for the majority of
simulated tasks, except for those with the smallest data set sizes or an algorithmic complexity
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lower than O(n). WCM eliminates any execution overheads of PTM but still maintains a high
overhead due to a complete scan of the cache. (2) RCM uses the address range specification
capabilities of PTM with hardware-based pushing of cache lines of WCM. This allows RCM
to achieve performance benefits similar to WCM while making the cache migration overhead
proportional to the cache footprint of the task. This demonstrates that cache migration is a
feasible solution for preserving execution times after task migration close to those tight WCET
bounds otherwise only valid in the absence of migration.

We further enhance the MESI coherence protocol to significantly reduce or even eliminate
the number of write misses due to task migration. This eliminates extra bandwidth requirements
due to cache migration except for residuals of tasks with large data sets.

In our recent publication we use this migration mechanism to predict the Cache Related
Migration Delay (CRMD) and improve task set schedulability by using it in combination with
a semi-partitioned scheme. Locked cache migration has been used to improve the predictability
of cache migration. We delve in detail on providing support to migrate locked caches for tasks
in the next chapter.
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Chapter 3

Deterministic Task Migration for

Hard Real-Time Tasks in Multicore

Processors

3.1 Introduction

Locking cache contents in uniprocessor hard real-time systems has been a popular option for
hard real-time systems designers. Locked cache contents are immune to cache replacement,
which improves the predictability of cache access behavior of a hard real-time task. Additionally,
large caches with high associativities reduce intra-task conflicts [43], which can enable shorter
worst-case execution time (WCET) for hard real-time tasks by using locks. Conventionally, the
programmer incurs a cost of loading the locked cache lines prior to the execution of the task [66].
Subsequently, execution of the task assumes cache hits for locked lines. However, the impact
of locked cache lines has not been studied on multicore platforms, where their immobility may
render global multicore scheduling policies unusable. Also, under such policies, the migration
delay is assumed to be constant and added to the WCET of the task. Such assumptions may
lead to highly conservative migration delays. This problem worsens with simultaneous task
migrations that are prevalent in such scheduling mechanisms.

Pinning hard real-time tasks onto cores and using partitioning across multicores is a sub-
optimal solution as we discussed in Chapter 1. Another approach to the problem is static
analysis of the migration delay by modeling cold caches after migration. However, static analysis
may result in loose WCET bounds that potentially render a hard real-time system unschedulable
that otherwise would have been schedulable had cold misses been avoided due to cache locking.

Thus we identify locked cache line mobility as a hindrance to task migration in real-time
systems. We propose task migration support that can render task migrations efficient and
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predictable for multicore scheduling techniques. Any solution to preserve predictability for
locked cache lines has to be proactive in nature to guarantee that these lines are also locked at
the target core after migration. Previously, we proposed a cache migration scheme that push
cache lines of a migrating task from a source core to the target core during idle slots in the
schedule. This work technically contributes in the following ways:

1. This work is the first one to consider mobility requirements of locked cache lines for task
migration. Otherwise impractical theoretically optimal multicore scheduling techniques
thus become realistic in the context of hard real-time systems. Prior work is not directed
towards locked cache lines.

2. In Chapter 2, we provided a hardware/software mechanism called Regional Cache Migra-
tion (RCM) to identify and move large contiguous memory regions specified by a limited
number of Region Registers. We extend the identification of migratable cache lines to
locked cache lines. We then expose the potential of reducing individual cache migration
delays by pipe-lining the cache-to-cache transfers. We propose two such schemes that
work with RCM. These schemes, called Controlled Cache Migration Pipelining (CCMP)
and Streamed Cache Migration Pipelining (SCMP), reduce migration delays by 48% and
56%, respectively in our experiments.

3. In Chapter 2, we proposed a hardware mechanism called Whole Cache Migration (WCM)
for cache footprints that are sparse w.r.t. memory address space. However, it imposes an
overhead that becomes proportional to the cache size instead of the number of migratable
cache lines. In this work, we present another hardware based mechanism called Set-Scan
Cache Migration that presents an efficient and practical solution to sparse locked cache
footprints.

4. in Chapter 2, we considered single task migration. Such an assumption leads to multiple
task migrations to take place sequentially, thereby under-utilizing the bus bandwidth.
In this work, we propose a novel mechanism that can be used while generating a work
conserving static schedule that may incur multiple cache migrations. We introduce a
mechanism that can support multiple cache migrations in parallel without any conflicts
and provide an alternative to pipelined cache migration schemes.

5. While SSCM that works efficiently for single task migration, we show that it cannot be
synchronized for parallel migration with RCMs. We fill this gap by proposing Slotted-
SSCM that allows multiple cache migrations based on RCM and Slotted-SSCM to progress
in parallel without any bus conflicts.

6. We also propose a Slotted-SSCM Pipelining model that reduces the migration delay for
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single task migrations by 46.7% over SSCM on average for a subset of Malerdalen WCET
benchmarks [7].

7. In Chapter 2, migration costs are assessed by assuming migration of the total cache foot-
print of a task. Thus, the overheads stated in Chapter 2 for RCM are too loose. Here,
we allow pre-determined locked cache lines to migrate. We also establish deterministic
migration delay bounds for each scheme irrespective of whether cache locks are used to
lock contiguous (RCM like) or sparse (SSCM like) memory locations.

3.2 Problem Analysis

In this section, we exhibit the importance of task migration in the presence of cache locking in
multicore platforms as a problem for real-time systems.

Cache Locking in Hard Real-time Systems: Hard real-time tasks have stringent dead-
lines that have to be met or the system may fail. Recent research works have considered
systems that co-schedule non-real-time along with real-time tasks while sharing common re-
sources [81, 62]. In such systems, one such time-critical shared resource is the on-chip cache.
Soft real-time or non-real-time tasks may have large memory footprints that lead to intra-task
cache contention. In contrast, hard real-time tasks are constructed to have smaller memory
footprints. Especially with the current trend of large L2 and L3 caches, we believe that hard
real-time tasks can fit within the cache with low or no intra-task contention. Nonetheless, inter-
task cache contention with other non-real-time tasks hampers the cache behavior predictability
of hard real-time tasks. Thus cache locks are useful to improve the predictability of cache
behavior. As a side effect of memory regions at lower levels of the memory hierarchy, execution
time of hard real-time tasks may be reduced significantly since intra-task cache contention may
be low if not eliminated.

Cache locks have long been studied for uniprocessor systems. Locks can be applied statically
or dynamically. In static cache locking, the system locks the entries pertaining to a task into the
cache at start-up phase. These locked entries are resident within the cache during the lifetime
of the task. On the other hand, dynamic locking requires reload points to be identified. At
these reload points, cache lines pertaining to a certain region are locked. Study of dynamic
and static cache locking analysis is not the focus of our work. Though in this work we are
considering static cache locking.

Impact of Cache locks on multi-tasking systems: We conducted experiments on a
uniprocessor model with and without cache locks for hard real-time tasks to substantiate the
impact of cache locking for hard real-time systems. Table 3.1 shows a subset of Malardalen
WCET Benchmarks [7] used in our experiments as hard real-time benchmarks. Each of these
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Table 3.1: Experimental Benchmarks

Benchmark Functionality / Hard Real-Time Routines
fft1 1024-point Fast Fourier Transform (Cooly-Turkey algorithm)

jfdctint Discrete-cosine transformation (8x8 pixel block)
bs Binary search (array of records)

crc Cyclic redundancy check (40 bytes of data)

benchmarks was run individually along with a non-real-time Cnt benchmark.
Assumptions of the study: We model a processor with an in-order core and multi-level

inclusive caches in SESC. WCET benchmarks have small memory footprints. Therefore, to
model inter-task contention, we used configurations with small caches as usually is the case
in real-time systems literature [55, 65, 69]. Our experimental cache hierarchy has 2KB 4-
way associative L1 data and instruction caches, and a 8KB 8-way associative unified L2 cache
with a cache line size of 32 bytes at both cache levels. We have used inclusive caches as
they are common in commercial processors because they prevent write-backs of non-dirty lines
during replacement from L1 to L2 that are otherwise required in exclusive caches. Also, multi-
processors tend to constrain the coherence protocol to a single level, .i.e., at L2 to simplify
design. The simulated caches were modified to support locks at both L1 and L2 levels. For
inclusive caches, a line locked in L1 is also locked in L2. One may argue that such a design
would lead to a waste of L2 cache space. However, we consider that such a provision allows
an application developer to choose the level of cache that benefits the application. In order to
perform that we implemented a lock instruction to the Instruction Set Architecture used by
SESC processor model. The lock instruction uses two arguments: memory address and the level
at which a line is to be locked. Static locking has been used to lock cache lines. Unfortunately,
there is no static analysis tool available with unified multi-level cache locking to select cache
lines for locking to that would derive optimal WCET bounds. Thus we lock instruction and
global data pertaining to all the paths within the hard real-time tasks that fit within the large L2
caches. An optimal selection of cache lines to lock reduces inter and intra task conflicts induced
by locking. The work presented in this chapter focuses on providing support for migrating
locked cache lines on multicore architectures. Shekhar et al. use our multicore locked cache
line migration support to semi-partition the tasks while focusing on resolving inter- and intra-
task conflicts [80]. The L1, L2 and Memory access latencies have been set to 1, 10 and 100
cycles, respectively. As for the benchmarks, bs and crc benchmarks are being executed as hard
real-time tasks. The inner loops of fft1 and jfdctint have been re-factored as stand-alone hard
real-time tasks.

Table 3.2 shows the impact of cache locking when each of the benchmarks are run in con-
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Table 3.2: Impact of Cache Locking (when contented with cnt)

Benchmark WCET WCET Number of Reduction
(No lock) (lock) Lines locked in WCET

[cycles] [cycles] (Level)
fft 13922 8302 47 (2) 59.6 %

jfdctint 6125 2143 36 (2) 34.9 %
bs 1842 590 10 (1) 32.03 %

crc 12936 9423 41 (1) 72.8 %

tention with the cnt benchmark that uses streaming input data. The first column contains the
benchmark names, second and third columns show the WCET of the benchmarks when run
without locks and with static locks. The fourth column shows the number of cache lines stat-
ically locked in L2 cache and the level at which they were originally locked. The fifth column
quantifies the reduction in WCET percentage obtained by using static locks. The WCETs in
this work are experimentally observed maximum execution times obtained by feeding different
inputs due to a lack of static WCET analysis tools. All benchmarks show a considerable drop
in WCET with locked lines versus without them. It is evident that the streaming nature of
the input data in cnt leads to inter-task conflicts, which leads to eviction of the lines in these
benchmarks. This is prevented when the lines are being locked. However, it should also be
noted that locks show high improvements in observed WCET because they do not have much
intra-task cache contention as it is assumed that the L2 caches have enough associativity to
accommodate for the footprint of hard real-time tasks.

We also take this opportunity to show that multi-level cache locking can be beneficial when
L1 cache space is scarce. fft and jfdctint have large instruction memory footprints. Therefore,
they have been locked at the L2 level. bs and crc have small instruction footprints. Their
instructions have been locked in L1. The total number of lines locked for crc is comparable to
fft and jfdctint because crc uses a buffer that is equivalent to the size of the instruction footprint
that gets locked in L1 data cache.

These results pose the primary advantages of cache locking namely; immunity from inter-
task contention and improvement in execution time for short hard real-time tasks. Those are
the key reasons for cache locking to be prevalent among embedded processors, like the IBM
PowerPC 460S, Motorola MPC7400, Intel 960, ARM 940T etc. Studies on intra-task cache
conflicts, and work on identification of locked cache lines is orthogonal to ours and studied
elsewhere [85, 86, 70, 66, 65, 92]. These results also emphasize that without locks, dilation in
execution time of hard real-time tasks can have adverse effects as documented in Chapter 2.

Multicore Cache Architecture Assumption: The cache organization is similar to that
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of Chapter 2. Figure 4.2 exhibits the two SMP designs that use the private caches. Both archi-
tectures have three levels of caches except that in Figure 3.1(a) the L3 cache is shared among
processors while in Figure 3.1(b) sharing begins at the L2 cache. Tile processors from Intel and
Tilera with on-chip message passing capabilities have recently been advocated. Therefore, we
choose the design shown in Figure 3.1(a) based on current industrial trends.

Figure 3.1: Symmetric Multi-processors
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3.3 Proposed Solution and Assumptions

In this section, we present the problem scenario and justify our proposed solution at a high
level.

Chapter 2 presented push-assisted cache migration with micro-architectural enhancements
that migrate the cache lines pertaining to a task proactively. Such active movement of cache
content comes at the cost of up-front migration delay in contrast to the traditional delayed
overhead at the next job activation [77]. We assumed tasks are statically scheduled on every
core, with each core running its own scheduler. We presented a single task migration scenario
that triggers a task migration following a dynamic task admittance. A task that has ample
slack time before its next invocation is chosen to migrate. The slack time that the task has is
overlapped with proactive migration of cache lines from source core to target core. Thus the
overhead does not contribute to the execution of the task when it resumes on the target core,
as shown in Figure 3.2. The proposed solution is not applicable when multiple tasks may be
migrated. Also, if the decision of task migration happens just prior to the migration, there is
no slack that can be used. In this case, one needs to add the migration cost to the schedule.
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One such scenario is when using schedulers like PFair [59]. This schedules tasks on quantum
basis. The scheduler is invoked periodically. The scheduling is globally synchronous across all
cores, i.e., execution of tasks are stalled and the scheduler selects the tasks to be scheduled
on the given computing resources for next time quanta. E.g., Figure 3.3 shows a set of tasks
executed (A,B,C,D,E,F,G) on a quad-core. At every scheduling point, the scheduler is invoked.
In the first two time quanta the task selection does not cause any task migrations. In the third
time quanta, scheduler decides to schedule B,D,E,G on the 4 cores. At least 2 tasks are to be
migrated as tasks B and D were previously executing at the same computing resources as E and
G, respectively. The scheduler decides to schedule B and D at a different computing resource.
This incurs task migrations of B and D and the migration cost gets added to the schedule as
shown in the figure. However, multiple task migrations can be highly unpredictable as will
be illustrated later. Also, the addition of the migration cost to the schedule motivates us to
reduce the migration cost. As the PFair algorithm has been proven to be theoretically optimal
for multicore task scheduling, we assume that these algorithms can be used to generate off-line
static schedules while retaining predictable migration costs with our migration support.

Figure 3.2: Scheduler Initiated Cache Migration Overlaps Slack TimeTask n Task n+1Slack TIme
Migration delayCore 0Core 1 Scheduler Initializes Cache Migration Cache Migration Concluded

The simplest way of performing proactive cache migration is to unlock the lines at the source
core. Thereafter, the target core can load and lock these lines. Both unlock and lock sequences
can be encapsulated into threads spawned by the scheduler at the source and the target cores, in
that order. Please note that this will contribute to the migration delay as shown in Figure 3.2.
Such a scheme has following drawbacks:

1. In real-time systems, threads execute on a simple in-order core. This means that only
one demand request can be issued at a time. This serializes all the demands.

2. Each demand request in a contemporary bus-based SMP will be snooped by all caches.
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This will induce multiple response actions on all cache controllers of the system. This not
only affects the bus bandwidth but causes useless cache accesses. This, in turn, makes
parallel transactions highly unpredictable and inefficient.

3. As demand requests originate from an executable, these executables have their own exe-
cution overheads to calculate simple addresses.

4. Unlocking at the source before locking lines at the target, does not prevent off-chip accesses
when re-loads are issued.

Figure 3.3: Cache Migration follows Pfair scheduling1234 ABCDProcessors AEFG DEBGScheduling Points
Migration Delay for tasks B and DTask ExecutionScheduler ExecutionCache Migration

These inadequacies led us to exploit push-based micro-architectural cache migration pre-
sented in Chapter 2. Firstly, we enhance the current state of the art of push-assisted cache
migration to improve the performance of individual cache migrations. Then, we propose a novel
scheme that allows the scheduler to orchestrate multiple cache migrations to synchronize and
proceed in parallel seamlessly. We also show that we have a pre-calculated bound within which
they complete.

We assume the scheduler can identify if the target core has enough cache lines for all
lock requests of the migrated task. Such issues are orthogonal to our work because scheduler
interaction is required irrespective of the type migration (thread-based pull or hardware-based
push). In a recent publication, we proposed a mechanism that resolves locked region conflicts
before using our migration model to deduce the migration cost of statically determined task
migrations in order to semi-partition the task on a multicore architecture [80]. Here, we intend
to show that if a hard real-time task has been chosen for migration, then we can deliver an
efficient and predictable cache migration delay.
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3.4 Migration Models

In order to explain the migration model, we use “source” and “target” to refer to the core/cache
where the task is currently running and where the scheduler migrates the task to before it
resumes execution, respectively.

3.4.1 Push Model

A Push Model is one where memory requests are initiated by the source core in order to warm
up the target cache instead of demand-driven requests issued by the target. We introduced
two such migration schemes: Whole Cache Migration (WCM) and Regional Cache Migration
(RCM). WCM is a hardware mechanism, where every cache controller has a push logic block and
each cache line has a PID associated with it. When the task migrates, the target is initialized to
start pushing the cache lines with a push request. The push request is a point-to-point request.
This means that a push request will be issued by a source core and referenced by the target core
only. This prevents any useless acknowledgments or cache accesses by cores besides source and
target. Therefore a push request carries the information about the target core, along with the
data and the tag of the cache line that is being migrated. However, WCM scans through the
whole cache in order to identify each cache line that needs to be migrated. Thus the migration
overhead is directly proportional to size of the cache. RCM is a hardware/software approach
that uses support of dedicated registers called Regional Registers (RR). RRs hold regions of
consecutive memory locations as pairs of start and end addresses. Each Task Control Block
(TCB) will hold region information for RRs as identified by the programmer. The scheduler
fills these limited number of registers before migration. Thereafter, a push block unit computes
addresses sequentially that fall within these regions, searches for them in the cache and pushes
them to the target. Since this scheme uses addresses to search the cache, cache lines do not
need a PID. Refer Chapter 2 for further details on the hardware complexity of the push block,
and integration of push requests with coherence.

3.4.2 Regional Cache Migration (RCM)

Figure 3.4 depicts the diagrammatic representation of two cache line transfers performed con-
secutively using RCM. Each cache line transfer has a cache read at the source, followed by a
bus transaction to the target succeeded by a write at target, which finally concludes with an
acknowledgment request that is also monitored by the memory controller (in case it carries a
write-back message from the target). We use RCM scheme as our base scheme, yet with a
minor modification: we add a lock-bit check with each cache read as we migrate only locked
cache lines. In RCM, a cache read is initiated by the push logic only after the acknowledgment
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has been received. This serializes each transaction. Next, we deduce the migration delay Tm

for RCM based cache migration. Let us assume that the worst-case cache access time is D
cycles, uncontended cache-to-cache migration takes B cycles and the number of locked cache
lines is Cn. Each cache line takes two cache accesses (incurring (2×D) cycles delay), and one
push request put onto the bus by the source tile/core (incurring B cycles delay) and another
transaction placed on the bus by target tile/core to acknowledge the push request, which can
be piggybacked with a write-back of the evicted cache line (incurring another B cycles delay).
Thus, each cache-to-cache transaction takes (2×(B +D)) cycles. The serialized nature of RCM
gives us the migration delay Tm incurred by a single task migration as

Tm = Cn × (2× (B + D)),

Figure 3.4: Regional Cache Migration Operational Sequence

Read (D) Write (D) Read (D) Write (D)

Bus(B) Ack(B) Bus(B) Ack(B)

Cache Read

Cache Read

RCM in its current form is inefficient. Each cache read waits for the acknowledgment to
arrive. When a cache is being read or written to, the bus is idle. When the bus is being accessed,
the cache controllers are idle. To mitigate this under-utilization of cache and bus resources, we
present our first novel scheme called Controlled Cache Migration Pipe-lining.

Controlled Cache Migration Pipe-lining (CCMP)

Subsequent cache reads can be serviced while a request has been placed on the bus as caches
are supported to issue multiple requests. Thus a pending request buffer is created that holds
two pending requests at a time. This means that, at any time, there can be only two pending
push requests and no cache read can be performed until one of the acknowledgments reaches
the source core. This is shown in Figure 3.5. One unique observation of such pipelining is that
bus transactions of push requests and acknowledgments do not interfere with each other as seen
in Figure 3.5. Individually, each push request requires (2× (B + D)) to complete as explained
previously. In Figure 3.5, for the purpose of evaluating migration delay, we assume that the
first and second push requests form the first pair, and the third and fourth push requests form
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Figure 3.5: Controlled Cache Migration Pipe-lining Operational Sequence
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the second pair. In the figure, we see that the first push request in the second pair begins
when the first request in the first pair finishes. Thus, one can say that each new pair of push
requests is at an offset of (2×(B +D)) cycles. So, assuming that Cn is an even number of cache
lines, the last pair of push requests begin at ((Cn−2

2 × 2× (B + D)). The last pair would finish
migration when the second push request of the last pair finishes. Since the second push request
lags behind the first one by D cycles, the last pair takes (2 × (B + D) + D). So for an even
number of Cn, the migration delay is (Cn

2 × (2× (B + D)) + D) cycles. If Cn is an odd number,
then the last push request is not paired but rather constitutes a single push request. The cache
migration is considered to be finished as soon as the last transaction finishes. This last request
takes (2× (B + D)) to finish. Since Cn is an odd number, the number of pairs considering the
last transaction pair is bCn

2 c. So, for an odd Cn, the migration delay is (bCn
2 c× (2× (B + D))).

Hence, Tm for all Cn is
Tm = bCn/2c × 2× (B + D) + V

where V=0 if Cn is odd and V=D if Cn is even.
Figure 3.5 further illustrates that if the third cache read is allowed just after the completion

of the second cache read, then the push transaction issued by the third cache read can only
conflict if the bus delay is greater than half of the cache read access. Thus the CCMP model
is valid for processors where the bus delay is less than or equal to the cache access. With the
advent of HyperTransport [1] and Intel Quickpath interconnect [3], we believe the cache-to-
cache transport delays will remain smaller than the cache accesses. The observation mentioned
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above lead us to develop our next scheme called Streamed Cache Migration Pipe-lining.

Streamed Cache Migration Pipe-lining (SCMP)

This migration model allows every subsequent transaction to resume with cache reads without
waiting for any acknowledgments to arrive. This scheme is extremely efficient when the bus
delay is shorter than half of the cache read access time. Figure 3.6 depicts the migration of
three cache lines from a source to a destination under SCMP. As shown in Figure 3.6, none of
the push requests conflict effectively resulting in streaming behavior of cache migration.

Figure 3.6: Streamed Cache Migration Pipe-lining Operational Sequence
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Since each subsequent request lags behind the previous request by D cycles, the last trans-
action starts ((Cn − 1) ×D) cycles after the first push request is issued. The last transaction
takes (2×B + D). Thus, the migration delay incurred by SCMP is

Tm = Cn ×D + (2×B + D).
The above schemes improve the performance of individual cache migrations. But in sit-

uations where multiple cache migrations are required, there is room to engage in seamlessly
parallel cache migrations.

3.4.3 Parallel Cache Migrations

When multiple hard real-time tasks are migrated simultaneously, support for multiple cache
migrations is required. Suppose all cache migrations were using RCM. By maintaining a mul-
tiple of B as a time difference between cache reads of any two RCM chains, we can support
multiple cache migrations without contention (see Figure 3.7). We denote a cache migration by
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Figure 3.7: Parallel Multiple RCMs
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core pairs, where a core pair contains a source core ID and a destination core ID. For example,
the first RCM in Figure 3.7 is denoted by the core pair (1,2), where 1 and 2 are the core IDs of
source and destination cores, respectively. Also, multiple cache migrations can support a core
to be a source as well as a target at the same time: In RCM, source cache is idle waiting for
an acknowledgment once a cache line has been pushed. This idle time can be used for a write
in case it is the target of another cache migration by placing the two transactions next to each
other as shown in Figure 3.7. In fact, the only scenario when synchronization does not hold
true is for inverted source,target pairs. For example, in PFair the tasks to be scheduled in the
next time quanta are first identified. In order to find the tasks to be migrated, the allocated
tasks may be visited in some order for allocating them to cores. If a task was executing on a
core that has not been allotted to any other task yet, then it gets reserved for that task. In
case it has already been taken by another task, then the task is migrated. Such a scheme will
not lead migrations of core pairs (1,2) and (2,1). To obtain pairs like (1,2) and (2,1), one of
the allotments has to precede the other. If (1,2) occurred first then core 1 has been allotted
to another task. If such allotment was due to a task migrating from 2 to 1, then 2 has al-
ready been allotted. This contradicts our assumption that (1,2) occurred before (2,1). Same
logic is applicable to non-existence of circular transactional paths, like (1,2),(2,3),(3,1). Parallel
transactions have the ability to maximize the utilization of the bus bandwidth. However, it
depends upon how many bus transactions can be performed between a push request and its
acknowledgment, which is the limit to the number of transactions that can be supported in
parallel. Numerically it is equal to bD/Bc.

This scheme additionally requires synchronization between parallel cache migrations across
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cores such that a cache migrations shown in Figure 3.7 do not conflict with each other. The key
to this scheme are the initialization and synchronization of these transactions by the scheduler.
The scheduler and cache controllers interact as follows:

1. The scheduler determines the tasks subject to migration and creates core pairs. Note that
core pairs will have distinct targets but can have identical sources.

2. First, core pairs with the same source core need to be placed into separate parallel trans-
actions, which we call buckets. Thus, each bucket will hold core pairs with distinct source
cores. This allows each migration within a bucket to run in parallel. We use count sort
to split the core pairs between buckets. Count sort makes two passes over the core pairs.
During the first pass, it counts the number of times each source core id appears and stores
the count value per source core. During second pass, the count value corresponding to a
core pair’s source core is used as the bucket ID and then decremented. This step would
put cache migrations (1,2), (3,1) and (5,6) in a single bucket as these migrations can be
performed in parallel as shown in Figure 3.7. However, this will put (3,7) and (5,8) in
a separate bucket as they share sources 3 and 5 with cache migrations depicted in the
earlier bucket. Thus, cache migrations within a bucket can run in parallel but each bucket
is sequential with respect to another.

3. As can be seen in Figure 3.7, parallelism is obtained by utilizing each bus cycle for
transactions. However, if there are two core pairs (1,2) and (3,1) in a bucket, where core
1 is a destination in the former and a source in the latter, it is important that these two
cache migrations consume the bus cycles right after one another. For example, if the
cache migrations (5,6) and (3,1) switch places in Figure 3.7, then there will be a conflict
between the second cache line read for (1,2) and the first cache line write for (3,1). To
avoid that, we use partial ordering.

Algorithm 23 shows the partial ordering algorithm used. The algorithm requires an an
input the number of cores, a list of cache migration core pairs CPList and an Array of
tuples CMD. Each entry of CMD has two members: The num value and a pointer to a
core pair ptr. A core pair contains two core IDs in a member called pair. A core pair can
point to another one using a next pointer. Line 1 initializes each entry of CMD with 0
(num) and Null (ptr) values. The loop in lines 3-17, iterates over all core pairs in CPList.
The nested loop iterates over both the core IDs for the pair member of a selected core pair.
Line 4 checks if there is any other core pair that has already been allocated to the core
denoted by id. If there is no entry then the num value is incremented and the ptr to that
of the corresponding CMD entry points to c, which is the selected core pair. Otherwise,
the loop at line 8 iterates over each of the core IDs of the already seen core pair. One
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of the core IDs is going to be the same as id. The other is going to be either higher or
lower than id. In case it is higher, then c precedes the already seen entry. Otherwise,
the already seen core pair precedes c. This is done by modifying the next pointer of the
preceding core pair, which gives us a partial order. The num value corresponding to id is
incremented and the respective ptr entry points to the preceding core pair. This partial
ordering is accomplished by lines 9-17. Lines 18 initialize the partOrder list with no valid
entries. The loop in lines 19-20 iterates over each CMD entry. If an entry’s num value
is found to be non-zero, then that entry points to a core pair that is at the head of a
chain of core pairs. This chain may only have a single core pair entry or a list of core
pairs. Line 21 appends this chain to partOrder. Line 22 decrements the num values of
CMD entries corresponding to the core IDs that appears in the chain. The num values
are decremented as many number of times as they appear in the chain, which is at most
2: as a source and as a destination. When a num value becomes zero, the corresponding
ptr is changed to NULL. Finally, line 23 returns partOrder, which holds an ordered list
of cache migration core pairs with partial ordering between core pairs that use a common
core.

Figure 3.8 shows the steps taken by our algorithm to order a given set of core pairs with
an example. Following is a description of these steps:

(a) shows an unordered list of core pairs: In order to sort them, we use an array of
tuples, CMD, consisting of a numerical value and a pointer to a core pair. Here
we assume 8 cores. CMD is indexed by core ID. The numerical value at an array
index denotes the number of core pairs involving a particular core. Since each cache
migration is bound to have a unique target core and a source core can occur only
once within a bucket. The maximum number of core pairs a core might be involved
within a bucket is 2: Once as a source and Once as a target. The numerical values
are initialized to zero and all the pointers are initialized to NULL.

(b) selects core pair (1,3): This updates the first and the third items in the array. Their
numerical values are incremented from 0 to 1. Both the array items point to the
core pair (1,3).

(c) selects core pair (4,2): This updates the second and the fourth items in the array.
Their numerical values are incremented from 0 to 1. Now both of them point to the
core pair (4,2).

(d) selects core pair (6,5): Updates are made to the sixth and the fifth items similar to
the prior two steps.

(e) selects the last the core pair (5,4): As we can see from the previous steps, the fifth
and the fourth items already have an entry, each. However, both the entries point
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ALGORITHM 1: Partial Ordering of Parallel Cache Migrations
Input: CPList: List of cache migration core pairs, numOfCores: total number of

cores,CMD[numOfCores]: Cache Migration Decriptor array
Output: partOrder: ordered list of cache migrations

1 initialize CMD ;
2 foreach CPList c do
3 foreach c.pair id do
4 if CMD[id].num 6= 0 then
5 CMD[id].num := 1 ;
6 CMD[id].ptr := c ;
7 continue;

end
8 foreach CMD[id].ptr.pair cid do
9 if id < cid then

10 incrementCMD[id].num;
11 c.next := CMD[id].ptr;
12 CMD[id].ptr := c;
13 break;

end
14 if id > cid then
15 incrementCMD[id].num;
16 CMD[id].ptr.next := c;
17 break;

end
end

end
end

18 initialize partOrder;
19 foreach numOfCores coreId do
20 if CMD[coreId] 6= 0 then
21 Append partOrder with CMD[coreId].ptr;
22 Decrement num values for each ID that appears in list pointed by

CMD[coreId].ptr;
end

end
23 return partOrder;
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Figure 3.8: Partial Ordering of Core Pairs
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to a different core pair. So, we first try to update the entries for the 5 (source) and
then 4 (target).

i. Here, the numerical value of the fifth item is incremented from 1 to 2. The
corresponding pointer which points to core pair (6,5) is dereferenced. To con-
struct an order, we allow core pairs to point to the core pair next in order. In
this example, when we encounter two core pairs using a core ID, we compare
the their paired cores as they are bound to be dissimilar. The core pair whose
paired core ID is smaller precedes the other core pair. Therefore, at the end
of this sub-step, the fifth item is pointing to core pair (5,4) that precedes (6,5)
since the paired core’s ID 4 is smaller than ID 6.

ii. Here, the numerical value of the fourth item is incremented from 1 to 2. The
pointer pointing to core pair (4,2) is dereferenced. The paired core ID 2 is
smaller than ID 5, that of the current core pair. Therefore, (4,2) precedes (5,4)
and the fourth item points to (4,2). At the end of this sub-step, all core pairs
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have updated the array of tuples. All partial orders have been formed.

(f) begins forming the absolute order by traversing the array of tuples in ascending order
of their core IDs. The item at index 1 points to core pair (1,3). The numerical values
for the first and the third items are decremented as this core pair is removed and
placed at the head of the ordered list.

(g) reads the second item in the array. This points to the core pair (4,2), which is at
the head of partOrder, an ordered list of core pairs. All core pairs in the list are
removed in that order and updated at the end of partOrder. While removing each of
the core pairs, the corresponding items in the arrays are decremented. At the end of
this step, all core pairs are removed. The process will terminate by reading 0 values
of the rest of the entries suggesting that no other core pairs need to be ordered.

This ordering allows one to establish a synchronization among RCMs, like the one shown
in Figure 3.7. Once ordered, we know that migration from 3 to 1 has to be started at a
time instant such that the behavior shown in the figure can be replicated. This can be
achieved by giving an offset value to each RCM. An offset indicates the number of cycles
that a cache controller should wait to start an RCM relative to the start of the first RCM.
For a static schedule, these offsets for each scheduling point can be computed offline and
loaded into the Thread Control Blocks (TCB) of migrated tasks.

4. The core with an offset of zero packs its region registers within a data block. As we are
using only 4 pairs of region registers, they fit within the size of 32 bytes (size of a cache
block). This methodology is used because sources for two transactions in different buckets
can be same. If we allow the scheduler to update the region registers, then the scheduler
would need to activate after every bucket finishes. This can be avoided by an initial
transfer from target to source. This requires additional 4 pairs of region registers within
the push block that has to be sent to the source. But it does not change the parallelization
of transactions because the transactions are already two-way communication. This adds
a small overhead of 2×B + D cycles.

5. Each Snoop controller detects the very first message on the bus and records the current
cycle time. This value is then added to the offsets. This allows all targets to determine
when to issue the request for initialization of push requests.

Note that all the offsets can be predetermined because the transaction time for each cache
migration is bounded. Even with parallel transactions, the time at which a bucket of transaction
finishes can be predicted accurately to compute the offsets for next bucket of transactions.
Within a bucket, the offset values are such that the transactions are B cycles apart. If there
is a single transaction in a bucket, it can use pipe-lined models like SCMP or CCMP. This
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synchronization only requires an additional set of RRs, offset value registers and minor logic to
extend access to these registers.

Until now, we have considered RCM-based approaches. RCM is useful when long sequential
paths of code, global data arrays, or closely located groups of global variables are locked.
However, the locking of sparse memory locations needs cache migration support as well. This
motivates a hardware solution called the Set-Scan Cache Migration model.

3.4.4 Set-Scan Cache Migration (SSCM)

Figure 3.9: Set-Scan Cache Migration Operational Sequence
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The push block in SSCM identifies the locked lines pertaining to the migrated task through
hardware enhancements. Since the push block is unaware of the locked regions, it requires a
Process Identifier (PID) information associated with the cache line to determine that the locked
cache line belongs to the migrated task. Thus each cache line holds a PID tag to associate itself
to a process. In a conventional cache access, the content of the whole set is read. If the
searched tag matches to any entry then it is forwarded. However, SSCM can have multiple
matches because multiple locked entries may belong to the same process within a set. Hence,
SSCM reads the whole cache set, identifies the first matching line and forwards it to be placed
on the SMP bus for migration. Instead of discarding the recurring entries of the set, they can
be buffered. Thus multiple matching entries can be identified in very short time while the first
matched entry is in transit. On receiving acknowledgment, the next matching entry can be
transmitted immediately without any read delays. This is shown in Figure 3.9, where the push
request marked 2 is placed on the bus as soon as the ACK for the push request marked 1 has
arrived. This prevents the hardware mechanism from reading a set multiple times. When there
are no matching entries in a set at all (as is the case with the first read in Figure 3.9) extra
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reads may be introduced, each adding an extra read latency to the total migration cost. The
mathematical analysis of this scheme introduces another parameter, namely the number of sets
within the cache. The number of sets is computed by size of the cache(Sc)

Associativity(A) . In SSCM, each cache
set is read once, this incurs an overhead of Sc

A ×D. In addition to that each cache line migration
would result in two bus transactions and one cache access at the target giving a migration delay
Tm of

Tm = Sc
A ×D + Cn × (2×B + D).

Figure 3.10: Conflicts between RCM and SSCM Push Requests
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So far, we discussed the parallelization of cache migration in terms of RCM. SSCM is a
sequential cache migration scheme that could benefit from parallelization as well. In particular,
a set of RCM migrations may issue when another set of migrations uses SSCM. A constraint of
SSCM is that a push request cannot be overlapped with pushes of RCM. Figure 3.10 illustrates
the cause: A set read may find zero or multiple lines to migrate. Thus we propose an aligned
version of the SSCM called Slotted-SSCM.

Figure 3.11: Slotted-SSCM Operational Sequence
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Slotted-SSCM

This migration model regulates the progress of cache set reads and issuance of push requests.
Cache migration is now divided into slots. Each slot has a duration of 2 × (B + D). When a
set read yields only one push request, it takes one slot of time. In Slotted-SSCM, if no match
is found, it takes one slot and if multiple matches are found then each line migrated accounts
for one slot of time by adding delays. This is shown in Figure 3.11. Thus such a migration can
now run in parallel with other chains of RCM cache migrations.

However, such a scheme complicates the estimation of migration delay. This is due to the
delays added to migrations of cache lines that have been identified by a prior set read operation.
This causes every cache line migration to take (2×(B+D)) cycles. In addition to that, each set
that does not result in a cache migration will also cost (2×(B +D)) cycles. This could result in
varying migration delays for a given number of locked cache lines to be migrated. For example,
let us assume a 2-way associative cache that has only two cache sets and the user locks two
cache lines. If the two cache lines map onto a single set, then it will lead to two cache set reads
and two cache migrations. Since one of the cache set reads results in two cache migrations, that
cache set read’s delay consumes one cache migration delay. Thus, a total migration delay of
3× (B + D) is incurred. On the other hand, if the two locked lines are mapped onto separate
cache sets, then each cache set read would result in a cache migration. This means that each
cache set read delay will consume a cache migration delay. This leads to a migration cost of
2× (B + D). This shows that the migration delay is now dependent upon the mapping of the
cache lines. The simple example shows that this delay can be deduced by adding the cache line
migration delays and futile cache set read delays. The former is simply Cn× 2× (B + D). The
latter is the number of futile set reads× 2× (B + D). The number of futile set reads is the
maximal when locked cache lines are locked to the fewest number of sets that they can map on
to, which is dCn

A e. In that case, the number of futile sets read is as Sc
A − d

Cn
A e. Thus, the

worst-case cache migration delay experienced by Slotted-SSCM is
Tmwc = (Sc

A − d
Cn
A e+ Cn)× 2× (B + D).

Slotted-SSCM migration creates a deterministic behavior of the issuance of push requests.
In analogy to the parallel execution of RCM chains under SCMP, we can develop a pipe-lined
cache migration model for Slotted-SSCM.

Slotted-SSCM Pipe-lining

This migration model takes us back to pipe-lined migration, but for Slotted-SSCM instead of
RCM. This is similar to SCMP in that the push block proceeds with the next set read without
waiting for any acknowledgments of the previous transfer. A cache access delay of D cycles is
associated with every migrated line. As for SCMP, 2×B +D cycles of the last push request do
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Figure 3.12: Slotted-SSCM Pipe-lining Operational Sequence
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not overlap with any other push traffic. However, as for Slotted-SSCM, when a cache set holds
multiple locked cache lines for a migrated task, the first migrated line experiences a delay due to
an actual set read while subsequent transactions add a fake cache access delay as shown in Fig-
ure 3.12. Also, as for Slotted-SSCM, this incurs a delay of D cycles for every futile set read. For
example, the first cache set read in the figure results in no cache migration. Therefore, besides
every cache line migrated, this also incurs the the delay for the number of futile set reads.
As derived previously, the worst case number of futile set reads is Sc

A − d
Cn
A e. Hence, the

worst-case cache migration delay for Slotted-SSCM Pipe-lining is
Tmwc = D × (Sc

A − d
Cn
A e+ Cn) + 2×B + D.

3.5 Simulation Platform

Our proposed solution requires micro-architectural modifications to a stable bus-based multicore
CMP architecture.

The system architecture specifications are presented in Table 3.3. The base simulator en-
vironment has been enhanced that allows us to trigger task migration across cores. The pur-
pose of this work is not to provide a scheduling mechanism but rather to evaluate the micro-
architectural mechanisms based on migration costs due to single and multiple cache migrations.
These mechanisms can be used with different schedulers. The recently proposed Predictable
Execution Model (PREM) suggests that by isolating different phases within a task one can
provide predictability [64]. We believe that for multicores, a cache migration phase can be
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Table 3.3: Simulation Parameters

Component Parameter
Processor Model in-order
Cache Line Size 32B
L1 I-Cache Size/Associativity 2KB/4-way
L1 D-Cache
Size/Associativity

2KB/4-way

L1 Access latency 1 cycle
Replacement Policy LRU
L2 Cache Size/Associativity 8KB/8-way
L2 Access Latency 10 cycles
L2 Replacement Policy LRU
Coherence Protocol MESI
Network Configuration Bus based
Processor To Processor Delay 2 cycles
External Memory Latency 100 cycles

added to the already existing memory and execution phases. Thereby, one can produce certain
static schedules that allow the bus to be used for a single cache migration or co-locate multiple
cache migrations with predictable migration costs obtained by our cache migration models.
PFair also decides on all task migrations at the same time. This again allows cache migrations
to occur simultaneously [15].

The cache model has been extended to allow us to support locks at different levels of caches.
The migration models have been designed and implemented as part of the cache controller
model. This allows the detection of locked cache lines, issuance of push requests from “source”
core to “target” core and regulation of the rate of requests issued according to the migration
models.

3.6 Evaluation

3.6.1 RCM v/s. SSCM

First, we compare the migration delays incurred by programmer-assisted implementations of
RCM and complete hardware solutions for cache migration in SSCM as shown in Table 3.4.
The first column shows the benchmarks used, the second column shows the number of cache
lines that were locked, third column shows the migration delay experienced by RCM and fourth
expresses the same in cycles for SSCM. The locked lines are statically locked prior to execution
of the benchmark. The cache lines locked are composed of the instructions address space and
the global variables and tables being used. As can be seen that for fft, jfdctint and crc, SSCM
performed better than RCM. This is because SSCM identifies multiple cache entries in a set
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through one cache access while RCM needs to perform as many cache reads as the number of
cache lines are locked. This shows that the three benchmarks have their locked lines distributed
over the entire cache. In case of bs, the migration delay experienced by SSCM is significantly
larger than for RCM. This is because the number of cache lines locked for bs is much lower
than the number of cache sets. Each futile cache set read adds to the migration delay. Looking
back at the Tm derived for SSCM, Sc

A ×D is much larger than Cn × (2×B + D).

Table 3.4: Migration Delays: RCM vs SSCM

Program Number of RCM SSCM
locked cache

lines [cycles] [cycles]
fft 47 1128 978

jfdctint 36 864 824
bs 10 240 460

crc 41 912 894

3.6.2 Pipelined RCM techniques

In Section 3.4, we presented two similar pipelining schemes, CCMP and SCMP. Table 3.5
shows the potential of these schemes over serialized RCM scheme. The first column shows
the benchmarks used. Second, third and fifth columns show migration delays incurred by
RCM, CCMP and SCMP in cycles, respectively. Fourth and sixth columns show reduction in
migration delay achieved by CCMP and SCMP over RCM in percent. These results correspond
to the equations derived in Section 3.4.

Consider the differences between the schemes. SCMP performs well if the bus delay is less
than or equal to half the cache access delay. Once the bus delay exceeds this threshold, CCMP
becomes more efficient. This remains true till the bus delay is less than or equal to the cache
access delay. However, pipelining becomes infeasible once the bus delay exceeds the cache access
delay. This can be mitigated by adding delays to balance cache access and bus delays. This
enables CCMP when the bus delay is marginally greater than the cache access delay. For higher
bus delays, one may have to introduce multiple hops.

3.6.3 Slotted SSCM techniques

In Section 3.4, we presented the Slotted-SSCM and Slotted-SSCM Pipelining migration mod-
els. Table 3.6 shows the experimental and worst-case migration delays for the two schemes.
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Table 3.5: Pipelined Cache Migration

Program RCM CCMP CCMP SCMP SCMP
[cycles] [cycles] Savings [cycles] Savings

fft 1128 576 48.9% 484 57.1%
jfdctint 864 442 48.8% 374 56.7%

bs 240 130 45.8% 114 52.5%
crc 912 446 48.9% 394 56.8%

The experimental results are obtained by triggering a migration of individual benchmarks from
one core to another. The worst-case migration delays are computed by the Tmwc obtained in
Section 3.4 for Slotted-SSCM and Slotted-SSCM Pipe-lining. The first column shows the bench-
marks used. Second, third and fifth columns show the experimental migration delay in cycles
for SSCM, Slotted-SSCM and Slotted-SSCM Pipelining, respectively. Fourth and sixth columns
show the analytical worst-case migration delay for Slotted-SSCM and Slotted-SSCM Pipelining,
respectively. It can be seen that migration delays are significantly reduced by pipelining. How-
ever, the worst case migration delay for both Slotted-SSCM and Slotted-SSCM Pipelining are
considerably higher than their corresponding experimental results. This is because, in practice,
locked cache lines are spread across the sets while the worst case occurs when the locked lines
are located within the smallest number of sets that can hold those lines. Thus we recommend
that experimental migration delays to be computed off-line if the distribution of locked cache
lines is known. This can be inferred from cache design parameters and lock addresses. In order
to compute the migration delay, one has to find the sets that the locked cache lines are mapped
to.

Table 3.6: SSCM Variants

Program SSCM Slotted Slotted Slotted Slotted
SSCM SSCM SSCM Pipe- SSCM Pipe-

(WC) lining lining (WC)
[cycles] [cycles] [cycles] [cycles] [cycles]

fft 978 1128 1752 484 744
jfdctint 824 864 1512 374 644

bs 460 768 888 320 414
crc 894 1008 1608 434 684

For example, assume a task that has 4 locked cache lines in a 4-way associative cache with
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4 cache sets. As explained in Section 3.4, the worst case scenario happens when the cache
lines map into dCn

A e number of cache sets. For our scenario, this is d44e = 1. This case is
represented in Figure 3.13(b). However, in practice, the locked cache lines are mapped as
shown in Figure 3.13(a). In the figure, on the right side of each cache set, we show the number
of cycles taken by Slotted-SSCM for that cache set. As explained in Section 3.4, each set
without a locked cache line causes a delay of 2×(B +D). Once a line is found, this delay covers
the first migrated line. Every additional line migrated from a set incurs a delay of 2× (B + D).
In Figure 3.13(a), set 0 incurs 2 × (B + D) cycles due to a futile cache set read. Set 1 has
two locked cache lines. The cache set read covers the first cache line migrated but it incurs an
additional migration delay due to the migration of the second locked cache line. Thus, set 1
takes 4 × (B + D) cycles. Set 2 and set 3 hold one locked cache line. Thus, they incur only a
cache set read delay of 2×B + D. In practice, the migration delay is 10× (B + D). However,
for the worst-case scenario shown in Figure 3.13(b), set 0 incurs one cache set read delay and
three cache migration delays accounting for 8× (B +D) cycles. The rest of the cache sets incur
a cache set read delay of 2 × (B + D) cycles. This results in a worst case migration delay of
14× (B + D).

Since migration delays for these schemes are deducible off-line, we compare the experimental
delays and observe that Slotted-SSCM Pipelining is able to reduce the migration delay over
SSCM on an average by 46.7%.

Figure 3.13: Offline Computation of Migration Delays for Slotted-SSCM
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3.6.4 Parallel vs. Pipelined Cache Migration

In this Chapter, we introduced pipelined schemes like CCMP, SCMP and Slotted-SSCM with
pipelining. When multiple cache migrations have to be handled, pipelined cache migrations
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for each task can be performed one after the other. However, system-level parallelism of cache
migration can also be obtained by issuing multiple instances of RCM and Slotted-SSCM cache
migrations as shown in Figure 3.7. Pipelined cache migration is useful for reducing migration
delay for individual migrations while parallel migrations can utilize maximum bandwidth. For
example, our experimental model with cache access delays of 10 and bus delays of 2 cycles
supports 5 parallel cache migrations for an aggregate bandwidth utilization of 100%.

Table 3.7: Parallel vs Pipeline

List of Parallel Pipelined Scheduler’s
tasks Migration Migration Choice of

migrating Cost Cost Migration
[cycles] [cycles]

1,2,3,4 1142 1366 Parallel
1,2,4 1142 1252 Parallel

2,4 926 768 Pipeline
1,3,4 1142 992 Pipeline

When multiple task migrations occur, the scheduler needs to compare the cost of running
a sequence of pipelined migrations against that of parallel migration. To illustrate, we choose
a scenario where fft(1), jfdctint(2), bs(3), and crc(4) are running on a multicore system. We
assume that they all use RCM as the base cache migration scheme and all of them can migrate
in parallel when selected. Table 3.7 depicts four combinations that exhibit the behavior of
parallel and pipelined migrations. The first column shows the set of migrating tasks. The
second and third columns show the migration cost in cycles for parallel migration and serialized
SCMPs. The last column shows the choice that the scheduler makes. It can be deduced from
Table 3.7 that when the number of cache migrations are large and all the RCM migration costs
are comparable, parallel migration exhibits shorter migration cost (rows 1 and 2). Pipelined
migration performs better when the number of migrations are small (row 3). Parallel migration
cost is determined by the highest individual migration cost. Hence, it performs worse than
pipelined migration when the variance for the costs of individual migrations is high (row 4).
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Chapter 4

Static Task Partitioning for Locked

Caches in MultiCore Real-Time

Systems

4.1 Introduction

The past two chapters have focused upon improving the predictability of cache migration cost
that can be leveraged by global/semi-partitioning multi-processor scheduling algorithms. In
the previous chapter, we discussed the potential of using locked caches in multicore real-time
systems and the ability of such a hardware facility to make migrations predictable. In this
chapter, we discuss the potential of cache locking for static partitioning algorithms. In general,
cache locking techniques provide predictability to a task’s cache access behavior. Cache locking
can be realized at various granularities. Studies on uniprocessor cache locking have assumed
the entire L1 cache to be locked [66, 67]. Another study on cache locking for shared caches
has assumed locking of individual cache lines [88]. Locked caches on uniprocessors identify sets
within a single cache way for a given task set to improve predictability and, indirectly, utiliza-
tion/response time of tasks while ensuring schedulability on a single core. Most contemporary
research aims at optimizing the analysis on aforementioned systems [25, 38]. These algorithms
assume a shared cache space and use Integer Linear Programming algorithms in order to select
cache lines that lower the response time of the tasks. Liu et al. have proposed locked caches
for private L1 caches and partitioning for shared L2 caches of an SMP architecture [55]. They
also focus upon finding the optimal response time of tasks on fixed numbers of cores. These
algorithms may find reduced response time but they do not focus upon efficient distribution of
the tasks on scalable CMPs like the 64 core TilePro64 [6]. E.g., let us assume that we have
to partition 40 tasks on a 64 core CMP. Best response time can be achieved by allocating one
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Figure 4.1: Tile-based Architecture
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task per core. However, such a task distribution underutilizes the system in that a smaller set
of cores could have sufficed.

In contrast, this work extends to scalable multicore architectures where tasks are statically
partitioned. Our work focuses on distributing tasks over disjoint cores while considering their
locked state. A real-time system developer may choose to lock a set of cache lines to tighten
the WCET bound. This work uses these tightened WCET bounds to statically allocate tasks
on a disjoint set of cores.

As stated earlier, research on cache contention has primarily considered shared caches. Due
to the unscalability of such an architecture, the focus has been toward packing as many tasks on
these limited/fixed number of cores. Such schemes become inapplicable to scalable multicores,
such as shown in Figure 4.1. These architectures use private L1+L2 caches. Any task allocation
algorithm on such architectures requires prior knowledge of each task’s Worst Case Execution
Time (WCET). However, the WCET of a task obtained by static cache analysis depends on
cache analysis of all other tasks on a particular core. In this work, it is assumed that private
L2 caches are large enough with high associativity (16-32 ways) to hold the data space and
instructions of hard real-time tasks. This simplifies the analysis of L2 caches as any access to
the L2 cache is a hit after a compulsory miss on warm-up. Thus, a tighter upper bound on the
Worst Case Execution Time (WCET) can be established by modeling references resolved at the
L2 level as hits after the warm-up phase of the first job execution in a periodic task system.
Still, the access latency of L2 caches is an order of magnitude higher than that of L1 caches so
that bounds on WCET are not as tight as they could be. To further tighten WCET bounds,
cache locking of selected lines in L1 can be employed on scalable multicore platforms.

As stated before, prior literature on uniprocessor locking techniques focuses on filling a single
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cache way while reducing the overall utilization of a core. Reduction of the system utilization
can be achieved by placing all tasks with conflicting locked cache regions on different cores on
scalable architectures. However, such a scheme would consume a large number of cores and
result in under-utilization of computing resources. Also, multiple cache ways per L1 cache can
be dedicated to locking. Hence, the objective of allocating tasks on scalable multicores has to
be balanced between the following objectives:

1. Reduction of the number of cores; and

2. Reduction of the overall system utilization.

Static task partitioning has been considered as a viable scheduling option for real-time tasks
on multiple cores. Such scheduling schemes aim at minimizing the number of cores for a set of
tasks with given worst-case execution time (WCET). However, partitioning tasks with locked
cache regions involves resolving the conflicts between locked regions of different tasks.

In this work, we split the problem into two scenarios.

1. Scenario A presents the problem with task sets of locked regions that can fit within a cache
way. These task sets do not have any intra-task cache conflicts by design. It is further
shown why naive solutions are inadequate. One of the most commonly used partitioning
algorithm is the First Fit Decreasing (FFD) algorithm. First, we extend this algorithm
with an approach called Naive Locked FFD (NFFD). Prior to allocation, NFFD decides
to use cache locking for tasks that have prohibitively high utilization without locking. It
avoids conflict analysis among locked regions by placing each locked task on a different
core before allocating unlocked tasks using FFD. We call this algorithm cache-unaware
as it avoids any form of analysis on locked cache regions. Then, we develop and evaluate
two cache-aware partitioning algorithms: (1) Greedy First Fit Decreasing (GFFD), and
(2) Colored First Fit Decreasing (CoFFD). GFFD tries to allocate tasks onto a minimum
number of cores [18]. This scheme lacks prior information on the number of cores of a
concrete processor but rather reasons abstractly about the minimum number of cores of
a hypothetical processor design. CoFFD, a more sophisticated scheme, exhibits a novel
approach based on graph coloring that delivers task partitioning. In contrast to GFFD,
CoFFD initially assumes a given number of cores for an architecture. The algorithm then
tries to allocate a given task set onto the fixed number of cores. In case of failure, the
number of cores is incremented and the attempt to allocate tasks to cores is repeated.
If the objective is to achieve minimum utilization, tasks should be allocated with all
candidate regions locked as this lowers their WCET.

2. Scenario B looks into a more generic case: Tasks can have locked regions that cause intra-
task conflicts and thus require multiple cache ways to avoid such conflicts. Also, static
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analysis tools are capable of providing regional access frequencies. This allows us to lock
and unlock parts of a task’s address space. These changes render Scenario A solutions to
be inadequate for task sets from Scenario B as explained in Section 4.5. We tackle this
problem by splitting task partitioning into two phases: task selection and task allocation.
task selection algorithms pick a task in some order and task allocation algorithms try
to resolve regional conflicts at individual cores while allocating tasks onto them. We
present two task allocation mechanisms, namely Regional First Fit Decreasing (RFFD)
and Chaitin’s Coloring (CC). We further present two task selection mechanisms, namely
Monotonic (Mono) and Dynamic (Dyn). The task allocation algorithms are extrapolated
from Scenario A solutions. Monotonic task selection is a commonly used FFD ordering,
which delivers a monotonic order between tasks. However, our novel Dynamic scheme
utilizes regional conflict information to order tasks while dynamically changing their order
as tasks get allocated.

Table 4.1: Locking and Conflict Analysis for 32 Tasks

Number Number of Cores Required
of Tasks FFD NFFD GFFD CoFFD
High util. Failed 32 22 20
Med. util. 31 31 21 20
Low. Util. 23 22 14 12

Table 4.1 depicts a comparison of the number of allocated cores for different Scenario A

task sets of 32 tasks using FFD, NFFD, GFFD and CoFFD on an architecture that uses system
parameters shown in Table 4.2. We consider two utilizations for each task: one with locking
for all the regions specified by the developer (ulocked) and another without locking any of those
regions (uunlocked). A task is termed to be of high, medium and low utilization when (0.55 >

ulocked ≥ 0.40), (0.40 > ulocked ≥ 0.25) and (0.25 > ulocked ≥ 0.10), respectively. The first
column depicts the number of tasks in the task sets. The remaining columns show the number
of cores consumed by the task set under FFD, NFFD, GFFD and CoFFD, respectively. We
observe that FFD fails to allocate high utilization task sets as uunlocked exceeds the utilization
bound of 1 for such tasks. This is because it forces regions to be unlocked while the other
policies allow locking. NFFD performs better than FFD for low utilization tasks as well. The
table shows that the number of cores allocated by cache-aware schemes is significantly lower
than the allocations performed by cache-unaware schemes. As the objective is to minimize the
number of cores, the two algorithms are adapted to consider both ulocked and uunlocked during
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allocation. The algorithms select one of these versions to avoid lock conflicts while ensuring
that utilization constraints are met. We observe that CoFFD consistently results in allocating
fewer cores than GFFD. Task sets composed of high utilization tasks allocate fewer cores under
CoFFD with at most 3% higher system utilization than GFFD. For low utilization task sets,
CoFFD allocates fewer cores and lowers system utilization by up to 40% over GFFD.

For task sets from Scenario B, the combination of Mono+CC outperforms Mono+RFFD for
highly conflicted task sets. This shows the effectiveness of using the coloring mechanism at in-
dividual cores. In contrast, Mono+CC does not perform as consistently for low contention task
sets. This necessitates the applicability of a global ordering scheme like Dyn to be used, which
complements region level coloring at individual cores. Our results show that Dyn+CC consis-
tently performs better than Mono+RFFD. For high contention task sets, Dyn+CC achieves
up to a 22% reduction in number of cores allocated, i.e., it allocates 21 cores as opposed to
27 cores (Mono+RFFD). Even for low contention task sets, it is able to achieve a reduction of
up to 17%. Since Dyn+CC deals with a more generic problem set, it is also applicable to task
sets from Scenario A. While comparing the CoFFD with Dyn+CC, we observe that CoFFD
performs better that Dyn+CC for High Utilization tasks. That is because unlocking a region
or a task does not allow multiple tasks to be scheduled together. Thus, the global ordering
achieved by CoFFD is better. However, CoFFD is unable to unlock entire tasks for medium
utilization tasks either while the unlocking at regional granularity is feasible and thus Dyn+CC
performs better. These observations suggest that CoFFD and Dyn+CC perform far better than
näıve implementations of FFD-based task partitioning on distributed core CMPs.

Summary of contributions: This research makes the following contributions in the con-
text of hard real-time systems with cache locking:

1. This work is the first to employ locked caches on massive multicore architectures for hard
real-time systems.

2. We implement two task partitioning algorithms for Scenario A type task sets: GFFD
and CoFFD. These algorithms resolve the conflicts at task level by selectively locking or
unlocking tasks.

3. Our novel CoFFD algorithm (i) derives task allocations for a given number of cores
resulting in a feasible schedule, (ii) enhances a coloring algorithm to deliver balanced
allocation and (iii) reduces the number of cores relative to Greedy First Fit Decreasing
(GFFD).

4. For Scenario B, we propose a novel mechanism to resolve conflicts at the granularity of
regions. We propose a Dynamic (Dyn) ordering mechanism that adapts to the changes
in the regional conflict graph induced by the allocation of tasks to cores. Dynamic order-
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ing consistently allows the allocation of tasks on fewer cores with both Task Allocation
algorithms. Dyn+CC proves to be the best among all the combinations of Task Selection
and Task Allocation Schemes.

4.2 Related Work

In the past decade, there has been considerable research promoting locked caches in the context
of multitasking real-time systems. Static and dynamic cache locking algorithms for instruction
caches have been proposed to improve system utilization in [66, 65]. Several methods have been
developed to lock program data that is hard to analyze statically [93]. Further techniques have
been developed for cache locking that provide performance comparable to that obtained with
scratchpad allocation [67]. Recently, cache locking has also been proposed for multicore systems
that use shared L2 caches [88]. Liu et al. propose cache locking for private L1 caches while using
cache partitioning for L2 caches [55]. Their focus has been upon reducing the task utilization
while partitioning a task set on all the processor cores in the system. This is applicable to
unscalable shared cache architectures. In contrast, our work focuses upon optimizing allocation
of computational resources. These related efforts show that cache locking is a viable solution in
future real-time system designs for multicores. Guan et al. propose L2 cache partitioning using
cache coloring for soft real-time systems [38]. Paolieri et al. have proposed hardware cache
partitioning mechanisms for multicore real-time systems with shared L2 caches [63]. However,
the focus of both of these cache partitioning schemes is to pack as many real-time tasks as
possible on an unscalable multicore architecture.

4.3 System Design

In this section, we describe our system architecture and assumptions to WCET analysis for this
study. The objective of this work is to best utilize a private cache architecture. This corresponds
to the current trend in potentially mesh or tile-based multicore designs. Tile-based architectures
consist of a large number tile processors (cores). Each tile consists of an in-order processor, a
private L1, a private L2 cache and a router (see Figure 4.1). Each tile acts as a node on a mesh
interconnect. Recent work has added Quality-of-Service (QoS) policies to mesh-interconnects
[61]. We have identified these trends as the driving force for the simplification of our system.
We assume an architecture that has private caches and has a QoS-based interconnect. We
assume that the first level of cache allows a certain number of ways of the associative cache to
be locked as shown in Figure 4.2. We also assume that the L2 caches are large enough with
high associativity so that the address space of allocated hard real-time tasks on a core fit within
the L2 cache. Thus, we assume that the off-chip references occur only while accessing sensory

76



data, which accounts for a very small fraction of the total references. Also, these systems can
have inclusive or non-inclusive L2 caches. With inclusive caches, the locked regions in L1 need
to be locked in L2 as well. Our algorithms are applicable to a system considering both data and
instruction caches. However, for the simplicity of analysis we assume that instruction references
for hard real-time tasks are all hits at the first level of cache. We also assume that loads to the
lines that have not been locked in the L1 cache bypass the L1 cache (as in a previous research
work [41]). This allows cores with lower core utilization to co-schedule non-real-time tasks
along with hard real-time tasks without affecting the deterministic behavior of the latter. Such
hybrid execution of application tasks has been considered in recent research [62]. Here, we
analyze two scenarios

1. A hard real-time task can only lock one cache line per set. All the locked regions of a task
can fit within a direct mapped L1 cache. So, for a 8KB L1 cache with an associativity of
two, a hard real-time task can lock up to 4KB of cache content. We call this Scenario A.

2. A hard real-time task can lock multiple cache lines per set. Here, conflicting locked regions
are able to occupy multiple cache ways. So, for a 8KB L1 cache with an associativity of
two, a hard real-time task can lock all of the 8KB cache space or any subset at cache line
granularity. We call this Scenario B.

Figure 4.2: A Lock-based Architecture
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We assume that all hard real-time tasks are periodic. Each task’s deadline is the same as
its period, i.e., an invocation of a task’s job has to finish before its next invocation. We further
assume that the system runs a scheduler per core. Each of these schedulers independently
schedules the tasks allocated to this core. We assume them to utilize Earliest Deadline First
(EDF) scheduling. EDF optimally schedules tasks for uniprocessor, i.e., the utilization bound
for each core is defined by the following equation:

∑n
i=1

Ci
Pi
≤ 1, where Ci and Pi are the

WCET and the period of the i th task, respectively. Deadlines are assumed to be the same as
the periods.

For the algorithms, each task needs to provide the following information: <listlocked−sets,
WCETlocked, WCETunlocked>. listlocked−sets is the list of sets where the programmer intends
to lock a cache line for the task. WCETlocked and WCETunlocked are the WCETs of a task
when all the lines of listlocked−sets are locked and unlocked, respectively. WCETlocked does not
include the overhead of loading the contents of a task because it is a one-time cost incurred at
system start-up.

We also assume that the real-time tasks are pairwise independent. Hence, these tasks do
not cause any coherence traffic on the interconnect.

4.4 Task Partition Algorithms: Scenario A

4.4.1 Cache-Unaware Schemes

Static task partitioning algorithms for multicore architectures have been widely studied. Most
of these approaches consistently aim at minimizing the number of cores utilized [18]. They
use bin-packing schemes considering a single utilization value per task. These algorithms for
distributed systems are cache unaware. In the following section, we present two cache-unaware
schemes, namely FFD and NFFD.

First Fit Decreasing (FFD)

FFD is a commonly used algorithm for allocating tasks on distributed cores. This implemen-
tation assumes that the tasks are unlocked, i.e., we consider all tasks with a utilizations of
uunlocked using WCETunlocked. This algorithm takes task (i), already allocated set of cores
Nprocs and a flag that decides whether task to be allocated in a locked state or unlocked state
if it adds a new core to Nprocs. The FFD algorithm picks tasks in decreasing order of their
uunlocked and allocates them using Algorithm 9. Line 1 sorts the cores in Nproc in decreasing
order of core utilization. Lines 3-8 iterate over the cores until the task is allocated or until all
cores have been considered and task could not be allocated. A task is allocated to a core if a
core’s utilization does not exceed 1 (utilization bound for EDF). If a task could not be allocated
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to any core in Nprocs, lines 9-13 add a new core to Nprocs and the task is allocated to it in an
unlocked state.

ALGORITHM 2: FFD Task Allocation (baseFFD)
Input: i : task, Nprocs : processors, isLock: boolean
Output: Nprocs number of processors

1 Nprocs.sort(decreasing utilization) ;
2 foreach Nprocs j do
3 if Success = false then
4 if i.uunlocked ≤ 1 - j.u then
5 allocate task i to core j;
6 j.u = j.u + i.uunlocked;
7 Success := true ;
8 break;

end
end

end
9 if Success = false then

10 allocate Newproc;
11 Nprocs := Nprocs ∪Newproc;
12 allocate task i to Newproc;
13 if isLock = true then

Newproc.u := i.ulocked;
end
else

Newproc.u := i.uunlocked;
end

end

Naive Locked FFD (NFFD)

We extend FFD with a simple approach of using locked caches. Tasks are defined to be locked
or unlocked prior to their allocation. Thus, all the tasks have a single WCET before allocation,
which is WCETlocked for a locked task or WCETunlocked otherwise. Bin packing has difficulties
to co-locate multiple tasks with high utilization. Any task whose utilization is greater than a
certain threshold is deemed to be locked. Each of these locked tasks is allocated to a separate
core as the algorithm is cache-unaware. The algorithm proceeds to allocate the set of unlocked
tasks with an initial value of Nprocs, the number of cores assigned to locked tasks.
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4.4.2 Cache-Aware Task Partitioning

We next present two cache-aware mechanisms. Initially, our algorithms consider two values,
WCETlocked and WCETunlocked.The listlocked−sets item is used to deduce a conflict matrix
Mconf for locked tasks. A conflict among the locked sets indicates the existence of common
locked cache set(s). Each empty entry in Mconf (i, j) signifies the absence of conflicts between
tasks i and j while every filled entry signifies existence of a conflict.

ALGORITHM 3: Greedy First Fit Decreasing Heuristic (GFFD)
Input: M : Set of Tasks, Assoc : Number of locked ways per cache, Mconf : conflict

Matrix
Output: Nprocs number of processors

1 Nprocs := 1 ;
2 M .sort(decreasing ulocked);
3 while M is not empty do
4 Success := false ;
5 Nprocs.sort(decreasing utilization) ;
6 i := M .front;
7 foreach Nprocs j do
8 if k:=IsAllocatable(j,i,Assoc,Mconf ) 6= −1 then
9 if i.ulocked ≤ 1 - j.u then

10 allocate task i to core j in kth way;
11 j.u = j.u + i.ulocked;
12 Success := true ;
13 break ;

end
end

end
14 if Success = false then
15 Nprocs := baseFFD(i, Nprocs,true);

end
end

Greedy First Fit Decreasing (GFFD)

We first illustrate GFFD by example using a conflict graph in Figure 4.3. An undirected conflict
graph of four nodes/vertices is depicted in Figure 4.3. A conflict graph in the context of task
partitioning is a graph G = (V ; E), where every vertex/node v ∈ V corresponds uniquely to a
task and an edge(i; j) ∈ E indicates that tasks i and j are in conflict and cannot be allocated
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Figure 4.3: Greedy First Fit Decreasing in Operation

onto the same core. The objective is to map nodes into buckets while keeping the number
of buckets low. The FFD algorithm arranges nodes in traversal order via heuristics before
allocating them. In this example, the algorithm establishes an allocation order of nodes 2, 1, 0
and 3. At each step, the node in question checks if it can be placed within any of the existing
buckets. A node can be allocated to a bucket if the bucket does not contain any node that
conflicts with it. In the example, node 0 gets allocated to a bucket that contains node 2, which
does not conflict with 0. In case all buckets conflict, a new bucket is created, e.g., during the
allocation of nodes 1 and 3.

We developed a modified version of the FFD algorithm. We call this Greedy First Fit
Decreasing (GFFD). Algorithm 3 presents the details of the algorithm. This algorithm takes a
task set and the number of locked ways per cache as an input. The idea is to incrementally add
cores to the schedule starting with an initial number of cores, Nprocs, of 1. Lines 3-13 proceed
to allocate tasks in FFD fashion using ulocked. Line 8 uses a procedure IsAllocatable() that
returns the cache way that is still unassigned to any locked lines of tasks that conflict with any
locked lines of task i. In case a valid cache way is found and the allocation of the task with
the locked region passes the schedulability test, the task is allocated to the core. If, however,
all the lockable cache ways of the core’s L1 are in conflict or the schedulability test fails, the
algorithm tries to allocate the task to another core until it runs out of cores in Nprocs. If the
task remains unallocated, line 15 uses Algorithm 9 to allocate the task. The value of true for
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the third parameter to baseFFD forces the task to be allocated in locked state when a new
core is added to Nprocs.

GFFD identifies task conflicts only after a task has been committed for allocation, even
though a conflict matrix is already present. The algorithm does not have a prior notion of
the number of cores available within the system. Furthermore, the order in which tasks are
assigned to cores is still based on task utilization. We can do better. When tasks contend for
cache regions, analysis of the cache conflict graph yields superior, conflict-guided allocations.
Such analysis considers tasks in a conflict-conscious order that ensures they can co-exist with
each other for a given number of cores. To this end, we adapted a graph coloring approach
by Chaitin [21, 20] that is widely used in register allocation, which is based on the following
theorem:

Chaitin’s Theorem 1 Let G be a graph and v ∈ V(G) such that deg(v) < k, where deg(v)
denotes the number of edges of vertex v. A graph G is k-colorable if and only if G - v is
k-colorable.

This theorem provides the basis for graph decomposition by repeatedly deleting vertices
with degree less than k until either the graph is empty or only vertices with degree greater than
or equal to k are left. In the latter case, the graph cannot be colored. However, by removing
a task from a conflict graph using some heuristic, a new coloring attempt can be made for the
remaining of the graph. Figure 4.4 shows how Chaitin’s theorem can be used in practice. In
this example, the conflict graph is the same as in the FFD example in Figure 4.3. This new
example shows how Chaitin’s approach allocates the set of nodes to two buckets/colors. At first,
the algorithm fills up a stack removing one node at a time. A node is a viable candidate for
being pushed onto the stack if and only if the degree is less than 2. When a node is removed, it
reduces the degree of its neighbor in the remainder of the graph. Since all nodes can be pushed
onto the stack, the graph is two-colorable (cf. Chaitin’s theorem). During the following steps,
nodes are popped off the stack and associated with a color/bucket. In our example, Chaitin’s
algorithm successfully allocates nodes to two buckets. In contrast, three buckets were required
by the FFD algorithm.

Algorithm 14 shows the task coloring mechanism, which is responsible for finding non-
conflicting tasks that can be grouped together in a given number of colors. The number of
colors is equal to the number of locked cache ways that can be filled within a given number
of cores. Lines 4-13 fill up two data-structures, colorStack and spilledList. Every iteration of
this loop finds a task that can be placed on either of these stacks. Line 5 searches through the
list of unallocated tasks and finds the task with lowest degree. A task with minimum degree
is pushed onto colorStack if and only if its degree is less than NumOfColors. Otherwise, the
algorithm finds a task using a heuristic that focuses on minimizing a metric. For example in
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Figure 4.4: Chaitin’s Coloring in Operation with 2 Colors
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Algorithm 14 it minimizes the metric ulocked/degree at line 10. The objective of this heuristic
is to decrease the conflict degrees of as many tasks as possible and, at the same time, to pick
a task that causes the minimum increase in the system utilization while remaining unlocked
(uunlocked). This task is then added to the spilledList. While removing the tasks from M , we
decrease the conflict degree of neighbors.

Colored First Fit Decreasing (CoFFD)

Once all tasks have been distributed among either of the stacks, lines 13-27 put the tasks
in colorStack into different colorLists. Assigning a task from colorStack to a colorList is
equivalent to allocating the task to a core as each color corresponds to a lockable cache way.
The colorLists are associated with cores in a round robin manner, i.e., if the number of lockable
cache ways per task is equal to two and the number of cores is three, then there are a total of
six colorLists. The first, second and third colorLists are associated with the first cache way on
cores one, two and three, respectively. The fourth, fifth and sixth colorLists are associated with
the second cache way on cores one, two and three. Lines 15-16 pop a task from the colorStack

and re-populate the conflict edges in the graph with the tasks that have already been colored.
The algorithm then loops through all the colors until it finds a color that has not been allocated
to any of its neighbors in the graph. Line 20 picks the core associated with that color. For a
task to be assigned a color, the task has to pass the EDF schedulability test.

Furthermore, the current utilization of the core has to be less than aveCoreUtil, where
aveCoreUtil has been computed at line 14. These conditions prevent colorLists from becoming
unbalanced. Chaitin’s algorithm in its purest form is

• unaware of the tasks in the spilledList and

• unable to deliver a balanced colorList.
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ALGORITHM 4: Task Coloring Algorithm
Input: M : Set of Tasks, NumOfColors : Number of Cores × Number of locked ways

per cache, Mconf : conflict Matrix
Output: colorList , spilledList, rejectedTaskList

1 colorStack := empty;
2 spilledList := empty;
3 colorList := empty;
4 while M is not empty do
5 t := lowest degree task by linear search of M ;
6 if t.degree < NumOfColors then
7 push t onto colorStack ;
8 remove t from M and Mconf ;

end
9 else

10 t := task with minimum (uunlocked/degree) ;
11 push t onto spilledList ;
12 remove t from M and Mconf ;

end
end

13 aveCoreUtil = colorStack.u
NumOfColors ;

14 while colorStack is not empty do
15 t := Pop colorStack ;
16 repopulate Mconf ;
17 curColor:=0;
18 for curColor = 0→ NumOfColors− 1 do
19 if None of the neighbors has this color then
20 curCore := curColor mod number Of Cores ;
21 if curCore.u < aveCoreUtil and curCore.u + t.u ≤ 1 then
22 t.color := curColor ;
23 colorList[curColor] := t ;
24 Add t.u to curCore.u ;
25 break ;

end
end

end
26 if t.color is not a valid Color then
27 push t onto rejectedTaskList ;

end
end
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E.g., if none of the tasks are conflicting then all tasks can be given the same color. Conditions
at line 21 allow the tasks to be evenly distributed across cores. If either of the conditions fail,
then the algorithm moves on to the next color until all the colors have been tried. If a task
cannot be assigned a valid color, it is moved to rejectedTaskList.

ALGORITHM 5: Colored First Fit Decreasing (CoFFD)— Uncolored Lists
Input: rejectedTaskList, Assoc : Number of locked ways per cache, Mconf : conflict

Matrix,Nprocs : number of cores
1 rejectedTaskList.sort(decreasing ulocked);
2 foreach rejectedTaskList i do
3 Nprocs.sort(decreasing u);
4 Success = false;
5 foreach Nprocs j do
6 foreach Assoc k do
7 if IsAllocatable(j,i,Assoc,Mconf ) 6= −1 then
8 allocate task i to core j in kth associativity;
9 j.u = j.u + i.ulocked;

10 Success = true;
11 goto ;

end
end

end
12 if Success==false then
13 put task i on spilledList ;

end
end

14 spilledList.sort(decreasing uunlocked);
15 foreach SpilledList i do
16 if Nprocs 6= baseFFD(i,Nprocs,false) then
17 return Failed Allocation;

end
end

18 return Successful Allocation;

The task coloring stage outputs partially filled cores and a list of tasks in rejectedTaskList

and spilledStack. These are subsequently used by the second part of the allocation shown in
Algorithm 18. Algorithm 18 first tries to allocate tasks from the rejectedTaskList. It sorts
the tasks of rejectedTaskList in decreasing order of their ulocked. Each iteration of the loop
starting at line 2 then picks a task in order and tries to allocate it in FFD fashion on Nprocs. If a
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task cannot be allocated to a core, it is moved to the spilledList. Once the rejectedTaskList is
empty, all the tasks in spilledList are allocated using baseFFD. If all the tasks in spilledList

are allocated, the task set is deemed to be schedulable on a given number of Nprocs cores.
Otherwise, Nprocs is incremented by the caller of CoFFD. This process repeats until a schedule
has been found.

Figure 4.5: Task Coloring in Operation
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Figure 4.5 depicts a step-by-step working example:

(a) Tasks are grouped in a conflict graph. Our example has five tasks with ulocked utilizations
of 0.5, 0.3, 0.4, 0.2 and 0.2. Each task conflicts with its neighboring task. Therefore,
tasks form a chain of conflicts in the graph.
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(b) Our graph coloring algorithm is applied to split the tasks in ColorLists. The task set is
split into two colors alternating between adjacent tasks in the same colorList.

(c) We assume a multicore system with single-way locking in the L1 cache. Since the aggregate
utilization is 1.6, Nprocs is initialized with the ceiling of system utilization, which is 2. The
tasks in each colorList are sorted in decreasing order of ulocked. The cores are filled in a
round-robin fashion. The green colorList fits within core zero. Tasks in the red colorList

are allocated to core one. Tasks with higher utilization (0.5 and 0.4) are allocated to core
one while the task with utilization 0.2 is moved to the rejectedTaskList as it exceeds the
utilization bound of 1.

(d) The algorithm now tries to allocate the task from rejectedTaskList to core zero. It fails
due to task conflicts with an already allocated task and due to the availability of only one
cache way for locking.

(e) At this stage, the task is moved to the spilledList. The task’s utilization is increased to
uunlocked. This changes its utilization from 0.2 to 0.4.

(f) The task is allocated on core 0 with this inflated utilization because such allocation does
not violate the utilization bound on core 0.

Applicability to task sets from Scenario B: Algorithms discussed till now assume that
the locked cache regions of a task fit within a single cache way. Tasksets from Scenario B have
intra-task conflicts within locked regions. The following are two techniques to apply the NFFD,
GFFD and CoFFD policies to task sets from Scenario B:

1. Lock only one region out of all the conflicting regions: This could significantly increase
the WCETlocked, which may render a task unschedulable.

2. Retain all the locked regions of a task that can fit within the whole cache while treating all
the conflicting regions as one region that spans from the least indexed set to the maximum
indexed set: Each core’s cache can be treated as a direct-mapped cache, where a region is
assumed to be spread across all the sets. This effectively partitions the cache horizontally.
This solution does not have a notion of cache associativity and leads to inefficient task
allocations.

As stated above, both techniques are highly inefficient. This motivates us to develop algo-
rithms specifically for Scenario B. We present them next.
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4.5 Task Partition Algorithms: Scenario B

The algorithms presented in this section assume tasks to have intra-task conflicts and assume
that a task can use multiple cache ways as described in Section 4.3. So far we have assumed
that conflicting tasks can only share a resource either by locking all specified regions or keep-
ing all of them unlocked. This is useful when locked regions should remain transparent to
the programmer. We can improve on our results if programmers can accurately estimate the
upper bound on the number of references to each locked cache line (e.g., based on upper loop
bounds). This can be achieved through static analysis of tasks i.e., by specifying the number
of references (Nrefs) for each locked cache region in listlocked set. We can then compute the
reference frequency, Rf , of a locked region for task t as

Rf = Nrefs

Periodt
.

This becomes the basis for resolving conflicts at a finer granularity. However, the prior
solutions do not provide us enough flexibility as conflicts are resolved at task level. The task
partitioning algorithm for Scenario B is being split into two phases: task allocation and task
selection.

4.5.1 Task Allocation

The task allocation mechanism resolves conflicts between regions of task t and the tasks that
have already been allocated onto the core. We use two heuristics for resolving regional conflicts,
namely:

1. Regional First Fit Decreasing (RFFD): RFFD allocates a list of regions to a given cache
associativity. The regions are sorted in decreasing order of their Rf . Regions are picked
for allocation in that order. The algorithm then attempts to allocate a region to every
cache way until it finds one where it does not conflict with any allocated region. If
the regional allocation fails then it is considered unlocked. Once all the regions have
been considered for allocation, a dilated WCET is computed based upon the unallocated
regions. A task with dilated WCET is deemed to be allocatable if the utilization bound of
1 is not exceeded. Otherwise the task allocation fails on that core. Please note that when
a new task is being considered for allocation, all the regions of the previously allocated
tasks are reallocated along with the regions of the new task.

2. Chaitin’s Coloring algorithm (CC): Chaitin’s algorithm is used in its original form For
region allocation using conflict graph for regions as depicted in Figure 4.4. The number of
colors is the cache associativity. All the regions that have not been colored are unallocated
regions. A task is deemed to be allocated if the utilization bound of 1 is not exceeded.
Otherwise task allocation fails on that core. Similar to RFFD, allocation of regions is
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not permanent. Regions are reallocated whenever another task is being considered for
allocation on the core.

4.5.2 Task Selection

As for the task Selection, we use the following two heuristics:

1. Monotonic Order (Mono): This uses task selection procedure of similar to GFFD, where
tasks are picked in the decreasing order of WCETlocked. Then, each task is considered
for allocation on every core until a core is found where it can be allocated along with
the tasks that have already been allocated. Otherwise, a new core is added to the list of
cores, which is then considered during allocation of current and subsequent tasks.

2. Dynamic Order (Dyn): Monotonic ordering using Utillocked and Utilunlocked is oblivious
of conflicts. Here, we present a scheme that orders tasks according to their Utilprobabilistic

and dynamically adjusts to changes in the regional conflict graph caused by allocation
of tasks to cores. In order to obtain Utilprobabilistic, we first generate a directed graph of
conflicting regions. A conflicting region X is considered to be replaced by another region
Y if Y’s Rf is greater than that of X. The edge in the conflict graph runs from Y to
X. So this adds an incoming edge to region X and an outgoing edge from region Y. If a
majority of conflicting regions replace a region then it is considered to be unlocked for the
purpose of calculating Utilprobabilistic at task selection stage. Utilprobabilistic is obtained
by the following equation:

Utillocked + (
∑unlocked regions

i=0 Rf i)× latencylower cache.

The task with the highest Utilprobabilistic is picked for allocation. Inspired from Chaitin’s
coloring algorithm, every task allocation can be used to dynamically change the state of
the graph. We observe that with our greedy allocation process, when a task allocation fails,
the remaining tasks get allocated to the newly created core more often than to previously
existing ones. Hence, the directed graph should contain the conflicts pertaining to the
unallocated regions and the regions allocated to the newly created core, only. Algorithm 25
shows the dynamic process. The Utilprobabilistic of tasks is initialized based upon the initial
graph containing all the regions. As stated earlier, the task selector picks the task t that
has the largest Utilprobabilistic through a linear search over the list of tasks. Our algorithm
is then called to allocate t, which changes the state of the graph as explained below.

The algorithm begins by declaring UremTasksFromGraphs, which holds those tasks
that have been allocated but have not been removed from the Mconf . The loop starting
at line 2 iterates till all tasks have been allocated to a core in Nprocs. On each iteration,
one task is allocated. Line 3 picks a task t that has the highest Utilprobabilistic using a
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linear search over the list of tasks M . Lines 4 through 8 try to allocate task t to any one of
the Nprocs cores. If TaskAllocation(t) succeeds, then the task is allocated to core i. Task t

is added to UremTasksFromGraphs, which is a list of allocated tasks that have not been
removed from the directed graph Mconf . It then goes back to line 2 to start allocating
another task. In case TaskAllocation(t) fails to allocate the task to any of the Nprocs

cores, lines 9 and 10 add a new core to Nprocs and allocate task t to the new core. At this
point, UremTasksFromGraph contains all the allocated tasks since the last addition of
a new core. The loop starting at line 11 iterates over each of those tasks using an iterator
rt while removing them from UremTasksFromGraph. The nested loop beginning at line
12 populates rr with every iteration from the list of regions owned by rt. In line 13, one
region is selected at a time, denoted as cr, which conflicts with rr. For clarification, rr and
cr are regions removed from and resident within the directed graph, respectively. Lines
15 through 16 remove these edges by decrementing NConfs values for the corresponding
regions. If the edge is an incoming edge for cr, then line 18 decrements the incoming
edge count. The ratio numberofIncomingedges

numberofedges gives an approximate indication of whether a
locked region will remain locked or not when allocated. Lines 14 and 19 compute this ratio
for cr before and after removal of an edge as priorProbability and currentProbability,
respectively. If this ratio is > 0.5, then for the purpose of calculating Utilprobabilistic it
is assumed to be unlocked. Thus, if this ratio changes from being > 0.5 to ≤ 0.5, then
the increase in utilization due to unlocking is added to Utilprobabilistic to the task that
owns cr. However if the ratio changes from being ≤ 0.5 to > 0.5, then Utilprobabilistic

is being reduced. Lines 20 through 23 perform these changes accordingly. Line 24 adds
this task t to UremTasksFromGraphs. At this point, UremTasksFromGraphs holds
only one task. The control returns back to line 2 for allocation of another task where a
task is selected based upon these changes in Utilprobabilistic. Once all the tasks have been
allocated, Nprocs is returned.

Solutions for Scenario A can be used in several ways. If tasks can meet their deadlines only
under locking with WCETlocked, then these algorithms will allocate them with WCETlocked.
If WCETlocked and WCETunlocked are provided, then both fully locked and fully unlocked
scenarios can be assessed by the algorithms. Dealing with execution times at coarser levels
seems more attractive to the developers. This allows them to select lockable lines with rough
estimates of the access patterns.

Solutions for Scenario B allow us to tackle a more generic case where a task may lock multiple
locked regions that may require multiple cache ways to accommodate the locked address space
for a task. These algorithms also utilize memory access frequencies that static analysis tools,
such as [70], are capable of deducing. This allows us to partition tasks while resolving conflicts
among regions within a core. These solutions are also applicable to Scenario A and we present
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ALGORITHM 6: Task Selection: Probabilistic Utilization
Input: M : Set of Tasks, Assoc: Number of locked ways per cache, t: allocated task ,

Mconf : Directed Conflict Graph of Regions, InEdges:Incoming Edges per
Region, NConfs: Number of Conflicts per Region,

Output: Nprocs: Number of processors
1 declare UremTaskFromGraphs: Unremoved Tasks from Mconf ;
2 while M is not empty do
3 t = linear search to pick task with highest Uprob ;
4 foreach Nprocs i do
5 if TaskAllocation(t)isSuccessful then
6 allocate t → i;
7 UremTaskFromGraph := UremTaskFromGraph ∪ t;
8 goto 2;

end
end

9 Nprocs:=Nprocs ∪ new;
10 t → new;
11 foreach UremTaskFromGraph rt do
12 foreach rt.lockedRegions rr do
13 foreach Mconf cr do
14 priorProbability := InEdges[cr]

NConfs[cr] ;
15 NConfs[cr]:=NConfs[cr] - 1;
16 NConfs[rr]:=NConfs[rr] - 1;
17 if Mconf [ct][rt]==-1 then
18 InEdges[cr] := InEdges[cr] - 1;

end

19 currentProbability := InEdges[cr]
NConfs[cr] ;

20 if priorProbability ≤ 0.5 ∧ currentProbability > 0.5 then
21 cr.task.Uprob = cr.task.Uprob + cr.Uunlocked − cr.Ulocked;

end
22 if priorProbability > 0.5 ∧ currentProbability ≤ 0.5 then
23 cr.task.Uprob = cr.task.Uprob − cr.Uunlocked + cr.Ulocked;

end
end

end
end

24 UremTaskFromGraph:= UremTaskFromGraph ∪ t;
end

25 return Nprocs;
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our experimental observation in the following sections.

4.6 Algorithmic Complexity

Bin packing is known to be NP-hard. Any known optimal solution is exponential in complex-
ity. Besides experimental evaluations, it is important to assess the complexity of sub-optimal,
heuristic approaches to assess their scalable in terms of number of tasks and cores. In the
following, the algorithmic complexity of GFFD and CoFFD are assessed.

For the purpose of complexity analysis, let the number of tasks be X and the number of
cores be Y . Let t be the task to be allocated next.

GFFD: The outer loop in algorithm 3 iterates over all tasks. The inner loop from 8-13
iterates over all cores. The function IsAllocatable iterates over the task to task conflict set,
Mconf , bounded by the number of tasks, to detect if t conflicts with any of the tasks allocated
to a core, i.e., IsAllocatable has an algorithmic complexity of O(X). Thus, the combined
algorithmic complexity of GFFD is O(Y X2)).

CoFFD: CoFFD consists of algorithms 14 and 18. The former algorithm colors the tasks
while allocating them to cores. It has two loops. The first loop between lines 4 and 12 iterates
over all tasks. The nested computations of linear search at line 5, reduction of number of
conflicts for tasks conflicting with t at line 8 and 12, and linear search at line 10 are bounded
bounded by the number of tasks, i.e., they have an algorithmic complexity of O(X) for a
combined complexity of O(X2) for the first loop. The second loop between lines 14 and 27
iterates over all tasks while pushing them onto a stack. The nested loop within iterates over
the set of colors, which is bounded by the number of cores, Y . The nested conditional at line
19 iterates over the set of neighboring nodes in the repopulated graph whose cardinality is
bounded by the number of tasks, X. This implies an algorithmic complexity of O(Y X2) for the
second loop, which dominates the complexity of the first loop, i.e., is the overall algorithmic
complexity of algorithm 14. The algorithmic complexity of algorithm 18, sequentially invoked
next, is O(Y X2) following the same argument as for GFFD since their algorithmic structure
are equivalent in terms of loop iterators, i.e., the rejected task list is bounded by the number
of cores. The loop iterating over the spilled list is bounded by the number of tasks but its
complexity is dominated by the previous loop. Thus, the algorithmic complexity of CoFFD
is O(Y X2). If this algorithm fails to allocate tasks to a given number of cores, the algorithm
is repeated with an incremented number of cores. This increases the complexity of CoFFD to
O(Y 2X2).

Mono+RFFD: A monotonic task selection that tasks be sortd. Heap sorting X number
of tasks would have a complexity of O(XlogX). Then each task will be picked for allocation on
each available core leading to the complexity of monotonic task selection as O(YX). Now, if the
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number of regions is R and the cache associativity is A, then RFFD’s algorithmic complexity is
O(AR2). That is because the complexity of RFFD can be computed in the same ways as that
of GFFD. Instead of allocation of tasks on a given number of cores, regions are allocated over
a given number of cache associativity. As the associativity is a constant, RFFD’s complexity
can be stated as O(R2). Since RFFD allocation is nested within Mono selection, the overall
complexity of Mono+RFFD is O(Y XR2). With the number of cores being much less than the
number of tasks and regions, one can approximate this complexity as O(XR2).

Dyn+CC: In order to determine the algorithmic complexity of this algorithm, we refer to
Algorithm 25. The outermost loop at line 2 iterates over all tasks introducing a complexity of
O(X). The combined complexity with the linear search at line 3 is O(X2). The nested loop at
line 4 iterates over each core with Chaitin’s coloring based region allocation. The complexity of
Chaitin-based region allocation can be determined the same way it was determined for Chaitin-
based task allocation. Instead of tasks, here we are allocating regions to a given number of
cache ways. The complexity of Chaitin-based task allocation is O(X2). Similarly, it is O(R2)
for region allocation. Combining the complexity of the two outer loops leads to an algorithmic
complexity of O(Y XR2). This complexity can be approximated as O(XR2) as the number
of cores is much less than the number of regions or tasks. Now we determine the complexity
of the removal of the regions from the conflict graph. Line 11 iterates over a set of tasks in
UremTasksFromGraphs. One might deduce that this may deliver a complexity of O(X2)
when combined with the loop at line 2. However, this loop gets executed only X number of
times. That is because each task is removed from the graph only once. If a task is allocated
in the loop at line 4 then the loop at line 11 is not executed. Thus, the combined complexity
of iterations at line 2 and 11 is O(X). When combined with the complexity introduced by
the nested loops at line 12 and 13, the overall complexity of region removal becomes O(XR2).
This matches algorithmic complexity for Chaitin-based region allocation. Hence, the overall
algorithmic complexity of Dyn+CC is O(XR2).

The algorithmic complexity of Dyn+CC and Mono+RFFD is the same and is dominated
by the number of regions. CoFFD has a higher complexity than GFFD. The additional term
is the number of cores, which is not the dominant component.

4.7 Task set Generation

Due to the unavailability of a full-blown real-time application for massive multicore architec-
tures, we decided to utilize synthetic task sets in our experiments. This allows us to vary task
set parameters like utilization of tasks, size of the locked regions, number of tasks, and number
of regions per task, which in turn tests corner cases of our algorithms. For scenario B, as it
allows larger numbers of locked regions, we also focus upon generation of denser conflict graphs.
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We assume that static analysis tools, such as [70] deliver the WCETlocked, WCETunlocked and
Rf , which is beyond the scope of this work.

Here, we explain the procedure of generating benchmarks for Scenario B, as it is less re-
strictive in its constraints. Next the steps used in automating the pseudo-random benchmark
generation.

1. We use Task Graph For Free (TGFF) [31] to generate a conflict graph with a given number
of regions (200) and with a randomly chosen number of conflicts per region, which is a
randomly generated proportion of the total number of regions. (For high conflicts, the
upper bound is 0.9 and lower bound varies from 0.1-0.5; for low conflicts, the lower bound
is 0.1 and the upper bound varies from 0.2-0.5).

2. Randomly generate a number of accesses for each region within a given range of accesses
(50-200).

3. Generate tasks and randomly pick a number of regions(2-8) for each until all the regions
have been allocated to a task. The last task generated may have a lower number of
regions than the lower bound of two regions. The lockable associativity of the L1 cache
is assumed to be four.

4. The total number of references to locked regions were derived by aggregating the number
of references incurred within the locked regions of the task. Since the programmer will be
locking the regions in L1 (highest utilization benefit), we assume that these locked lines
consume 90% of the total data loads. Out of the remaining 20%, we assume 18% are hits
in the L2 cache and 2% are references to sensory data that goes off chip. We randomly
choose 6-9 instructions per load. This lets us infer the number of instruction fetches that
incur L1 cache hits (see Section 4.3). These assumptions allow us to derive a WCETlocked

for a task. The processor cores are assumed to feature an in-order 3-stage pipeline, with
each instruction taking one cycle to execute, except branch instructions which incur a
penalty of three cycles. The L1, L2 and Memory access latencies have been assumed to
be 1, 10 and 100 cycles, respectively.

5. To derive the WCETunlocked, we assume unlocked regions to hit in L2 cache. If two locked
regions are accessed by two different paths, then the increase in WCET is due to just one
region (the one that dominates the references), not both. Thus, we randomly select tasks
to accommodate such behavior. This also results in varied increases in execution time
between WCETlocked and WCETunlocked across tasks.

6. Next, each task i is assigned a period to group them into the following categories of
utilization: medium-high utilization (0.55 > Ulockedi

> 0.30), and medium-low utilization

94



(0.30 > Ulockedi
> 0.1)).

7. We assume that the tasks do not have any inter-task dependencies.

8. We assume task utilizations to be equal to a task’s density. In other words, a task’s
deadline is equal to its period.

The generation of benchmarks for Scenario A differs from Scenario B in the following aspects:

1. First, a given number of tasks are generated. Then, each of them is given a number of
randomly generated locked cache regions instead of generating a conflict graph. These
locked cache regions are generated such that there is no intra-task conflict. In order to
generate memory regions, we assume the cache architecture shown in Table 4.2. The table
also displays the characteristics of the tasks and locked regions generated. The lockable
associativity of cache, in Scenario A is lower than that of scenario B.

2. In Scenario A, we unlock a task while in Scenario B, we unlock a region. In order to
observe the performance of task sets that have only high utilizations, we partition the
utilization range into: high 0.55 > Ulocked > 0.40 , medium 0.4 > Ulocked > 0.25, low
0.1 > Ulocked > 0.25.

Table 4.2: System Parameters

Parameter Value
Cache Line Size 32B

L1 Cache Size/Associativity 8KB/2-way
Lockable associativity 1/2
locked regions per task 1 - 4
Sets locked by a task 8-114 out of 128
Size of locked regions 8-57 sets
Max. size of task sets 42
total tasks generated 126

Min. locked regions by a task 1

4.8 Evaluation

This section firstly presents the improvement of cache-aware schemes over cache-unaware schemes
for task sets from Scenario A. Then it compares the performance of GFFD and CoFFD for task
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sets of Scenario A. This is followed by evaluation with different combinations of task selection
and task allocation (Mono+RFFD, Mono+CC, Dyn+RFFD, Dyn+CC) on task sets of Sce-
nario B. Then we compare the performance of the best solutions from both the scenarios when
applied upon task sets of Scenario A. This assesses the applicability of these algorithms.

4.8.1 Scenario A

We present our experimental results for a system that supports single locked cache ways. Such a
scheme is also applicable when considering horizontal cache partitioning, where all the lockable
ways in each set are dedicated to a task.

Table 4.3: Allocated Cores for Cache-aware & Cache-unaware Schemes

Number High Util. Med. Util. low Util.
of Tasks Unaware Aware Unaware Aware Unaware Aware

4 4 3 4 2 3 2
8 8 5 8 4 5 3
12 12 8 12 5 8 4
16 16 10 16 8 12 6
20 20 13 20 11 16 8
24 24 15 23 15 19 10
28 28 19 27 19 21 11
32 32 20 31 21 22 12
36 36 21 35 22 23 15
42 42 25 41 24 24 17

Cache-unaware vs. Cache-aware: First, we compare the cache-aware schemes (FFD,
NFFD) against cache-unaware ones (GFFD, CoFFD). Table 4.3 shows the best allocations
produced by schemes within the two categories, i.e., NFFD (cache-unaware) and CoFFD (cache-
aware). On average, the number of cores used by cache-aware schemes is 40% less than that of
contemporary allocation schemes applicable for distributed core mechanisms. We also observe
that the contemporary FFD fails to allocate high utilization task sets. It performs worse than
NFFD for low utilization task sets as shown earlier in Table 4.1.

Allocations while retaining locked state: Table 4.4 depicts the results of our algorithms
when tasks are allocated in locked state, i.e., with an execution time of WCETlocked. The first
column shows the number of tasks in the task set. The second and third columns show the
number of cores allocated by GFFD and CoFFD, respectively, when a task set is composed
of high utilization tasks only. The fourth and fifth columns represent the same for medium
utilization tasks, and the sixth and seventh columns for lower utilization tasks. Lower core

96



Table 4.4: Allocated Cores for CoFFD & GFFD: All Tasks Locked

Number High Util. Med. Util. low Util.
of Tasks GFFD CoFFD GFFD CoFFD GFFD CoFFD

4 3 3 3 2 3 2
8 6 5 5 4 4 4
12 9 8 6 5 5 5
16 11 10 9 8 8 8
20 13 13 12 11 12 11
24 16 15 16 15 16 15
28 20 19 20 19 20 19
32 22 20 22 21 22 21
36 24 21 24 22 23 22
42 27 25 25 24 24 23

allocations are depicted in bold font. In all cases, CoFFD results in fewer cores allocated than
GFFD, especially as the number of tasks increases. As more tasks are added to the system, the
conflict graph becomes denser. CoFFD avoids conflicts strategically due to its coloring scheme
while the greedy scheme results in a less conflict-conscious allocation.

Table 4.5: CoFFD vs GFFD: Selected Tasks Unlocked

Number GFFD CoFFD GFFD CoFFD Util.
of Tasks Util. Util. decreased

by CoFFD
4 2 2 1.48 0.88 40.54 %
8 3 3 2.05 2.027 0.88 %
12 5 4 3.77 3.06 18.83 %
16 7 6 5.07 4.13 18.54 %
20 9 8 7.33 5.86 19.64 %
24 11 10 8.6 7.04 18.13 %
28 12 11 10.2 8.65 15.19 %
32 14 12 11.57 9.7 16.16 %
36 15 15 12.67 10.27 18.94 %
42 17 17 14.04 11.87 20.37 %

Allocations with all or none: This experiment allows allocation of tasks either with
locking of all regions or while leaving all of them unlocked. After a locked allocation with
WCETlocked is attempted, algorithms can fall back to an unlocked allocation with WCETunlocked

for a given task in case conflicts have prevented the allocation on a given core. Table 4.5 depicts
the results with best results in bold face. The first column shows the number of tasks in the
task set. The second and the third columns show the number of cores allocated by GFFD and
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CoFFD, respectively. Sets with higher/medium utilization tasks result in similar allocations.
This is because it is difficult for the higher utilization tasks to be allocated under the inflated
execution budget of WCETunlocked. However, tasks with lower utilizations can be allocate tasks
with WCETunlocked. The fourth and the fifth columns depict the system utilization delivered
under the allocations of the algorithms. The last column shows the decrease in system uti-
lization achieved by CoFFD over GFFD. The results indicate that CoFFD beats GFFD not
only in terms of allocating fewer cores but also in improving system utilization by over 18%
for task sets with large numbers of tasks. This is because GFFD inflates the execution budget
of tasks that cannot be allocated to cores under locking. In addition, conflict analysis prior to
allocation allows the algorithm to apply heuristics to reduce the number of tasks that remain
unlocked. The results of CoFFD are due to combined heuristics for selecting spilled tasks.
Heuristic 1 selects the task with the least WCETunlocked

degreeofConflicts2 value, which emphasizes the task’s
degree. This prevents the number of cores to be increased when non-conflict placements are
still feasible. Algorithmically, CoFFD avoids spills of tasks onto the stack (see Algorithm 18).
Heuristic 2 selects the task with the least WCETunlocked value. Of the two heuristics, CoFFD
selects the one that results in the allocation of fewer cores. For example, most task sets in
Table 4.5 resulted in the allocation of fewer cores under heuristic 1, but the last task set would
have resulted in the allocation of 18 cores whereas heuristic 2 reduced this allocation to 17.

4.8.2 Scenario B

Next we present results of our algorithms that statically partition tasks for task sets of Scenario
B. For scenario B, we generated a large set of benchmarks that can be varied with regard
to utilization (medium-high, medium-low and mixed) and density of conflicts (high and low).
A total of 1200 experiments were conducted. Each conflict ratio and utilization range, 10
benchmarks were created with different randomization seed values.

Mono+RFFD vs. Mono+CC: Table 4.6 shows the impact of of CC over RFFD on
high conflict task sets. The first column shows the conflict ratio range of the high conflict
benchmarks. Due to the large set of results, we only present the Best and Worst cases for CC
over RFFD along with the average number of cores used per benchmark. The second column
indicates conflict ratio ranges. The third, fourth and fifth columns show the results associated
with benchmarks of high-medium, low-medium and mixed utilization ranges. Each of these
columns have two sub-columns that depict the results for Mono+RFFD and Mono+CC for each
utilization range and case. The results show that Mono+CC allocates the task sets to fewer or
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Table 4.6: Mono+RFFD vs. Mono+CC for High Conflict: Number of cores allocated

Conflict Performance high-medium Util. Range low-medium Util. Range mixed Util. Range
Ratio Ratio Category Mono+RFFD Mono+CC Mono+RFFD Mono+CC Mono+RFFD Mono+CC

0.1-0.9
Best 24 22 14 12 19 17

Average 22.4 21.3 12.9 12 18.4 17.1
Worst 22 22 12 12 18 18

0.2-0.9
Best 25 22 14 12 17 15

Average 22.6 21.2 13 12.1 18.1 17
Worst 21 21 13 13 19 18

0.3-0.9
Best 27 23 14 12 18 15

Average 23.7 22 13.6 12.5 19 17.6
Worst 21 20 13 12 19 19

0.4-0.9
Best 23 21 15 13 20 17

Average 24.1 22.8 13.5 12.6 19 17.5
Worst 21 21 12 12 17 17

0.5-0.9
Best 27 23 15 13 20 17

Average 25 23.1 14 13.2 19.3 18.1
Worst 23 23 13 13 19 19

Table 4.7: Mono+RFFD vs. Mono+CC for low Conflict: Number of cores allocated

Conflict Performance high-medium Util. Range low-medium Util. Range mixed Util. Range
Ratio Range Category Mono+RFFD Mono+CC Mono+RFFD Mono+CC Mono+RFFD Mono+CC

0.1-0.2
Best 21 20 10 9 15 14

Average 20.2 20.1 9.8 9.7 14.1 13.9
Worst same same same same 13 13

0.1-0.3
Best 20 21 12 11 16 15

Average 20.3 20.4 10.8 10.6 15.3 15.1
Worst same same 10 11 16 17

0.1-0.4
Best 22 21 12 10 15 14

Average 20.1 20.1 11.2 10.3 15.2 14.9
Worst 18 19 11 11 14 15

a similar number of cores compared to Mono+RFFD for all the high-conflict benchmarks. This
is primarily because the conflicts are high enough such that resolving them locally at the level
of a core proves to be useful. Table 4.7 compares the performance of the CC over RFFD on low
conflict task sets. The layout of the table is same as that of Table 4.6. However, we observe
here that the worst cases force Mono+CC to map the tasks onto more cores than required by
Mono+RFFD. This highlights the limits of a locally efficient coloring mechanism as it does
not perform better at a global scale. This is because even though the coloring scheme does a
better job at packing a given set of tasks within a core, sometimes failure to allocate some tasks
within a core could pave the path for a better fit of subsequent tasks. This is the basis for our
Dynamic algorithm that is sensitive to conflicts and provides a better global ordering during
task selection phase.
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Table 4.8: Average allocations performed by Scenario B algorithms: Number of cores allocated

Conflict high-medium Util low-medium Util mixed Util
Ratio Range Mono+ Mono+ Dyn+ Dyn+ Mono+ Mono+ Dyn+ Dyn+ Mono+ Mono+ Dyn+ Dyn+

RFFD CC RFFD CC RFFD CC RFFD CC RFFD CC RFFD CC
0.1-0.9 22.4 21.3 21.1 20.3 12.9 12 12.4 11.6 18.4 17.1 16.6 16.1
0.2-0.9 22.6 21.2 21 20.4 13 12.1 12.3 11.7 18.1 17 16.4 15.9
0.3-0.9 23.7 22 22.2 21 13.6 12.5 12.9 12.2 19 17.6 17.5 16.7
0.4-0.9 24.1 22.8 22.5 21.3 13.5 12.6 12.8 12.3 19 17.5 17.3 16.8
0.5-0.9 25 23.1 24.1 22.1 14 13.2 13.2 12.4 19.3 18.1 17.9 17.1
0.1-0.2 20.2 20.1 19.8 19.7 9.8 9.7 9.7 9.4 14.1 13.9 13.4 13.4
0.1-0.3 20.3 20.4 20.1 20 10.8 10.6 10.5 10.3 15.3 15.1 14.3 14.1
0.1-0.4 20.1 20.1 19.9 19.7 11.2 10.3 10.6 10.2 15.2 14.9 14.4 14.2

Table 4.9: Best and Average improvement by Dyn+CC over Mono+RFFD

Conflict Improvement high- low-
Ratio Case medium medium mixed
Type Util Util util

High
Best 22% 17% 19%

21 vs 27 10 vs 12 17 vs 21
Average 10.49% 10.03% 11.81%

Low Best 5.26% 17% 13%
18 vs 19 10 vs 12 13 vs 15

Average 1.78% 5.72% 6.21%

Scenario B algorithms performance: Table 4.8 shows the average performance of the
various algorithmic combinations of the task selection and task allocation algorithms for all
conflict ratio ranges (low and high) on all utilization ranges (high-medium, low-medium and
mixed). The first column shows the conflict ratios. The second, third and fourth columns
show the results on benchmarks with high-medium, low-medium and mixed utilization ranges,
respectively. Each of those columns have 4 sub-columns all task selection and task alloca-
tion combinations (in the following order: Mono+RFFD, Mono+CC, Dyn+RFFD, Dyn+CC).
Due to the large number of results, we again resort to presenting the average number of cores
allocated per benchmark for given conflict and utilization ranges. The highlighted numbers
are again the best allocations. The highlighted results clearly show that Dyn+CC produces
the best allocations compared to any other combination. Also, Dyn+RFFD consistently out-
performs Mono+RFFD. Dyn+RFFD performs better than Mono+CC for the cases where the
latter performed worse than Mono+RFFD. This shows the effectiveness of the Dynamic task
selection mechanism. However, one should note that Dyn+RFFD does not always outperform
Mono+CC, even though Dyn+CC is the best performing algorithm overall. Table 4.9 shows
the Improvement achieved by Dyn+CC over the base case of Mono+RFFD. The first column
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shows the two conflict ratio range types. The second column identifies the best and average case
improvements in each of the cases. The third, fourth and fifth columns depict the improvement
in terms of percentages, while the best case also shows the allocated core numbers (Dyn+CC vs.
Mono+RFFD). Dyn+CC shows distinct high improvement percentage benefits for high conflict
task sets (up to 6 cores). Among all the utilization ranges, the mixed utilization range produces
the highest average improvement. This shows that the Dyn+CC algorithm not only works well
with corner cases but it also performs best with systems that have a variety of utilizations and
conflict densities.

Table 4.10: CoFFD vs Dyn+CC: task vs region unlocking

Number High Util. Med. Util. low Util.
of Tasks CoFFD Dyn+CC CoFFD Dyn+CC CoFFD Dyn+CC

16 10 10 8 8 6 6
20 13 14 11 10 8 8
24 15 17 15 12 10 10
28 19 20 19 14 11 11
32 20 22 21 15 12 13
36 21 25 22 18 15 15
42 25 27 24 20 17 17

CoFFD vs Dyn+CC: Dyn+CC has been the most useful combinations for task set of
Scenario B. Thus, it becomes imperative to gauge its effectiveness relative to benchmarks of
Scenario A and compare its performance against CoFFD. Table 4.10 depicts such results with
higher conflict density task sets. CoFFD performs better that Dyn+CC for High Utilization
tasks. That is because unlocking a region or a task does not allow multiple tasks to be scheduled
together. Thus, the global ordering achieved by CoFFD is better. However, CoFFD is unable to
unlock tasks of medium utilization either where the unlocking at regional granularity is feasible.
Thus, Dyn+CC performs better. With low utilization task sets, CoFFD is able to unlock tasks
and still allocate other tasks along with it. This makes both CoFFD and Dyn+CC perform
well. Nonetheless, CoFFD benefits from a superior global ordering, which allows it to find a
better allocation with our 32-task benchmark as shown in the table.
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Chapter 5

Conclusion and Future Work

In this chapter, we present the conclusion drawn from the current state of our research work
and the scope of the future work that may be pursued.

5.1 Conclusions

The work presented in this document first identifies task migration as a key contributor to
unpredictability in determining WCET bounds of real-time tasks on multicore architectures.
With larger L2 caches and increasing numbers of processing units, WCET bounds have the
potential to become tighter in the future. Static timing analyzers can capitalize on large L2
caches in that, after the initial warm-up of the cache, execution of real-time tasks will become
predictable. This work has shown that, in the wake of task migrations, dilation in execution
time due to cache warm-up will become significant enough to occasionally prevent real-time
tasks from meeting deadlines. It is thus imperative to develop real-time systems capable of
tightly bounding — if not eliminating — the impact of task migration. Simulation results on
a subset of WCET benchmarks experience a dilation in execution time ranging from of 6%
to 56.6% for tasks whose algorithmic complexity does not exceed O(n). Tasks with higher
complexity show a significant dilation for small data set sizes.

We consolidate the idea of proactive cache migration as a means to diminish the dilation
introduced by the target warm-up overhead using a software technique called PTM. PTM
launches a low priority prefetch task at the target core to prefetch the cache lines that belong
to the address ranges specified by the programmer. The software approach shows that it
can prevent the dilation in execution time but may result in high and potentially unbounded
migration delay requirements. Hence, we propose two schemes of push-assisted cache-to-cache
migration in multicores. (1) WCM, a hardware scheme replicating the cache context of the
task onto the target L2 cache, reduces dilation in execution time to less than a percent for the
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majority of simulated tasks, except for those with the smallest data set sizes or an algorithmic
complexity lower than O(n). WCM eliminates any execution overheads of PTM has but still
maintains a high overhead due to a complete scan of the cache. (2) RCM uses the address range
specification capabilities of PTM with hardware-based pushing of cache lines of WCM. This
allows RCM to achieve performance benefits similar to WCM while making the cache migration
overhead proportional to the cache footprint of the task. (3) This overhead is further reduced
by BCM, which allows multiple push requests to be processed simultaneously. Through these
contributions, migration overhead for most of the tasks is reduced to less than 20% of the task’s
execution time. This demonstrates that cache migration is a feasible solution for preserving
execution times after task migration close to those tight WCET bounds otherwise only valid in
the absence of migration.

We further enhance the MESI coherence protocol to significantly reduce or even eliminate
the number of write misses due to task migration. This eliminates extra bandwidth requirements
due to cache migration except for residuals of tasks with large data sets.

The work further promotes multicores in hard real-time systems under cache locking. In
hard real-time systems, cache locking increases the predictability of worst-case execution time
potentially resulting in higher utilization. On multicore platforms, optimal scheduling assumes
task migration as a fundamental premise. This work discusses support required under cache
locking for proactive lock and cache content migration. We develop a wide range of cache
migration models that provide deterministic migration delay.

We exploit pipelining for Regional Cache Migration (RCM) through Controlled Cache Mi-
gration Pipelining (CCMP) and Streamed Cache Migration Pipelining (SCMP) that reduce the
migration cost over RCM by 48% and 56%, respectively. We expose system-wide parallelism
for cache migration through a novel hardware synchronization mechanism. This allows multiple
cache migrations to overlap and maximize system bus utilization. We also present a hardware
mechanism called Set-Scan Cache Migration (SSCM) to migrate sparse cache locks that cannot
be specified by large memory regions within Region Registers. Slotted-SSCM, an extension
to SSCM, allows cache migrations to progress in parallel with RCM-based cache migrations.
Slotted-SSCM also lends itself to pipelining that leads to Slotted-SSCM Pipelining. Slotted-
SSCM Pipelining delivers a reduction in migration cost over SSCM by 46.7%. Individually,
Slotted-SSCM may seem to have high overhead with large caches due to extra set reads. This
cost can be mitigated if Region Registers (otherwise recommended for RCM) are used to specify
a group of contiguous sets that contains locked lines. This is based on the observation that
locks that seem sparse in large memory space may fit within a small set of cache sets. This
hybrid design of RCM and Slotted-SSCM has the potential to significantly reduce the overhead
of extra cache set reads.

The cache migration schemes mentioned in this work provide the scheduler with opportuni-
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ties to deliver deterministic and efficient cache migrations. Single cache migrations should make
use of pipelined mechanisms. SCMP and Slotted-SSCM Pipelining deliver the best results. In
case of multiple cache migrations, the scheduler can choose between parallel migration and
pipelined migration based on the knowledge of individual migration costs.

The work presented in this document finally studies static partitioning of real-time tasks
with locked caches on distributed cache systems. Contemporary static scheduling schemes may
not use locked caches. However, this renders certain high utilization tasks unschedulable as
their unlocked WCET is prohibitively high. A simplistic solution would be to allowing locking
of such tasks and placing locked tasks onto different cores. We call this Naive locked FFD
(NFFD) as it locks certain tasks with high utilizations and is unaware of caches.

This work proposes two cache-aware algorithms for Scenario A type task sets. These algo-
rithms allocate tasks in a multicore environment where tasks are allowed to lock cache lines in
a specified subset of cache ways in each core’s private L1 cache. The first algorithm, GFFD,
is an enhanced version of the First Fit Decreasing (FFD) algorithm. The second, CoFFD, is
based on a graph coloring method. CoFFD reduces the number of core requirements from 25%
to 60% compared to NFFD with an average reduction of 40%. CoFFD consistently performs
better than GFFD as it lowers both the number of cores and the overall system utilization.

Further, we present algorithms for task sets of Scenario B. Tasks within these task sets can
have intra-task cache conflicts and allocate these conflicting locked regions into different cache
ways. These algorithms resolve conflicts among locked regions by locking and unlocking regions
instead of locking or unlocking entire tasks as was the case in Scenario A. Here, task partitioning
is split into task selection and task allocation phases. We use two task allocation mechanisms,
namely (a) Regional FFD and (b) Chaitin’s coloring. We propose two task selection algo-
rithms, namely (a) Monotone and (b) Dynamic. The combination of Mono+CC outperforms
Mono+RFFD for highly conflicted task sets. This shows the effectiveness of using the col-
oring mechanism at individual cores. In contrast, Mono+CC does not consistently perform
best for low contention task sets. This necessitates a global ordering scheme like Dyn, which
complements core-level coloring. Our results show that Dyn+CC consistently performs better
than Mono+RFFD. For high contention task sets, Dyn+CC achieves up to a 22% reduction
in the number of cores allocated, i.e., it allocates 21 cores as opposed to 27 for Mono+RFFD.
Even for low contention task sets, Dyn+CC is able to achieve a reduction of up to 17%. Since
Dyn+CC deals with a more generic problem set, it is also applicable to task sets of Scenario
A. While comparing CoFFD against Dyn+CC, we observe that CoFFD performs better than
Dyn+CC for high utilization tasks. That is because unlocking a region or a task does not allow
multiple tasks to be scheduled together. Thus, the global ordering achieved by CoFFD is supe-
rior. However, CoFFD is unable to unlock medium utilization tasks. In contrast, unlocking at
regional granularity is feasible and thus Dyn+CC performs better. These observations suggest
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that CoFFD and Dyn+CC perform far better than contemporary FFD-based task partitioning
on distributed core CMPs. Overall, this work is unique in considering the challenges of future
multicore architectures for real-time systems. This work also provides key insights into task
partitioning with locked caches for architectures with private caches and presents the ways in
which this line of research may be extended.

Overall, this dissertation promotes deployment of locked caches and hardware support for
cache migration on scalable multi-processors that can enable more predictable and efficient
multiprocessor real-time scheduling.

5.2 Future Work

There are several additional directions in which this work can be extended.

5.2.1 Holistic Task Partitioning on Scalable Multicore Real-Time Systems

The algorithms of Chapter 4 are applicable to any multicore system that has two levels in
the memory hierarchy. We resolved conflicts among locked regions in private L1 cache while
assuming that the private L2 cache has sufficient associativity and size to hold all the locked
regions of all the tasks mapped to its corresponding core. As our solution only supports two
levels, we consider partitioning the tasks onto cores based on conflict resolution at the L2 cache
level and references to unlocked regions to be issued to the memory.

Figure 5.1 shows a 32 core tile-based architecture. There are four on-chip memory con-
trollers that interface with four separate memory chips. Consider the mesh interconnect in
the highlighted part of Figure 5.1. This highlighted portion depicts a quartile. Memory traffic
from/to each quartile is statically routed to/from a designated memory controller along the
mesh and arbitrated using a time-division-multiplexed (TDM) approach, as described below.

We assume a dimension-order Y-X routing, i.e., a request from a core to a memory controller
first traverses interconnect vertically until it cannot go any further, and then travels horizontally.
For example, the routing paths of requests from tile 3 and 4 are A → B → C → H and
D → E → F → G → H. The traffic from the from the memory controller to the cores uses
a separate channel and uses X-Y routing. The bandwidth allocated to memory traffic from a
given core along a given route is proportional to the number of hops from the core to the target
of that link. For example, the bandwidth along link C is divided among tiles 3, 2 and 1 in
the ratio 3:2:1 since traffic from tile 3 crosses three hops to get to the target of link C, tile 2
crosses two hops and tile 1 crosses one hop. If we assume that each hop takes one cycle, the
NoC latencies for tiles 1, 2 and 3 across link C are 2, 3 and 6 cycles, respectively. Similarly,
NoC latencies for tiles 2 and 3 across link B are 2 and 3 cycles and that for tile 3 across link
A is 1 cycle. Hence, the total NoC latency for traffic from tile 1, 2 and 3 to reach tile 0 is 3, 5
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Figure 5.1: Memory Traffic Routing of a Quartile
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and 6 cycles, respectively. Similarly, traffic from tiles 4, 5, 6 and 7 takes 10, 9, 7 and 4 cycles,
respectively, to reach tile 0. Since, the router at tile 0 receives traffic from all the 8 cores in
the quartile, each request may have to wait for a maximum of 8 cycles before being received by
the memory controller. For safety, we assume that the NoC latency of every memory request is
the maximum of all these latencies, namely 18 cycles. This is the number of cycles needed in
each direction by the traffic involving tile 4 and the memory controller. In order to study the
impact of memory latency on our algorithms, we assume two cases:

1. Fully-pipelined memory: This is the ideal scenario where all memory references take
the minimum number of cycles needed to access memory. As per TilePro64 specifica-
tion, each memory access takes 70 cycles [36]. This delivers the following latency for
an access to an unlocked cache line: 70(memory) + 2 × 18 (controller tonfro tile) +
2(bypassed processor tonfro router) = 108cycles

2. TDM-based memory: This is the worst case scenario which does not parallelize or pipeline
memory requests. For the architecture depicted in Figure 5.1, it adds another 490 cycles to
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the access latency derived for fully-pipelined memory. That is because a memory access
from one tile has to multiplex with requests from for seven other tiles (7 × 70). This
delivers an access latency of 598 cycles to an unlocked cache line.

To evaluate our mechanism on an L2 cache, we use our worst (Mono+RFFD) and best(Dyn+CC)
algorithms described in Chapter 4. we conducted some experiments on a few synthetic bench-
marks of Scenario B. We use the TGFF-based procedure to generate benchmarks, as described
in the previous chapter. We generate 25 benchmarks (medium-low utilization and high conflict
ratios) for both the fully-pipelined and the TDM-based latency cases. As explained in Chap-
ter 4, medium-low utilization has (0.30 > Ulockedi > 0.1)). Also, recollect that the conflict ratio
is the ratio between the number of conflicts a region has versus the total number of regions.
Since the conflicts are randomly generated using TGFF, high conflict ratios have an upper
bound of 0.9 and the lower bound varies from 0.1-0.5 1. We assume that the instructions of
all tasks fit within the L1 cache. For each benchmark, TGFF generates a conflict graph of 200
regions that are distributed among tasks. The number of regions per task is between 4 and 8.

Table 5.1: Average core allocation: Sensitivity to Memory Latency

Conflict Fully-Pipelined TDM-based
Ratio Range Mono+ Dyn+ Mono+ Dyn+

RFFD CC RFFD CC
0.1-0.9 17.2 14.6 30.2 27.8
0.2-0.9 17.6 14.8 30.8 28
0.3-0.9 17.8 13.8 31.2 28
0.4-0.9 18.2 15.2 31.2 27.6
0.5-0.9 18.4 14.8 31.8 27.6

Table 5.1 shows the preliminary results obtained on these synthetic benchmarks with a
lockable associativity of 8 for an L2 cache. The first column shows the conflict ratios. The
second and third columns correspond to fully-pipelined and TDM-based latencies, respectively.
Each of those columns have 2 sub-columns that show the average allocations obtained by the
Mono+RFFD and the Dyn+CC algorithms, respectively. These averages are obtained across 5
benchmarks, each corresponding to a group of conflict ratio ranges and latencies. The results
show that Dyn+CC delivers better core requirements than Mono+RFFD. However, due to the
high latency in TDM-based memory access, it is almost impossible to unlock any of the regions.

1To read more on utilization ranges and conflict ratios, please refer page 93
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Thus, the improvements obtained by Dyn+CC are solely due to the coloring localized within
each core.

The aforementioned system assumptions and the results obtained point us to research op-
portunities that will complement task partitioning studied in this dissertation

1. As shown in Figure 5.1, the memory controllers are dedicated to serve a particular quartile.
This would require memory partitioning that allows all the tasks mapped to a particular
quartile to access only one memory controller. Strategies to partition memory need to be
accommodated along with cache-based task partitioning to devise a holistic approach.

2. The results obtained also show that by reducing the upper bound of memory latency, a
significant improvement can be obtained in allocations. This is another area that would
require certain hardware schemes to either parallelize the memory accesses or pipeline
them. These also need to be studied in combination with the memory partitioning strate-
gies.

3. A more immediate extension to our work would be to support multi-level caches. This
would require integrating conflict graphs for multiple levels of a memory hierarchy.

5.2.2 Thermal Analysis of Multicore Real-Time Systems

This topic is motivated by exhibiting the use of task migration for improving the reliability of
multicore real-time systems. Heavy and frequent access of architectural resources by certain
real-time tasks may cause temperature of those resources to rise to high levels. Partitioned
scheduling, which is heavily being used in real-time systems, may be susceptible to these effects
because of a lack of task migration. We intend to analyze how task migration coupled with
cache migration can help in bringing down the temperatures while preventing the dilation in
the execution time of the task.
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