ABSTRACT

Seth, Kiran R. Frequency-aware Static Timing Analysis for Power-aware Embed-
ded Architectures (Under the direction of Assistant Professor Dr. Frank Mueller). Power
is a valuable resource in embedded systems as the lifetime of many such systems is con-
strained by their battery capacity. Recent advances in processor design have added support
for dynamic frequency/voltage scaling (DVS) for saving power. Recent work on real-time
scheduling focuses on saving power in static as well as dynamic scheduling environments by
exploiting idle and slack due to early task completion for DVS of subsequent tasks. These
scheduling algorithms rely on a priori knowledge of worst-case execution times (WCET)
for each task. They assume that DVS has no effect on the worst-case execution cycles
(WCEC) of a task and scale the WCET according to the processor frequency. However,
for systems with memory hierarchies, the WCEC typically does change under DVS due to
frequency modulation. Hence, current assumptions used by DVS schemes result in a highly
exaggerated WCET.

The research presented contributes novel techniques for tight and flexible static
timing analysis particularly well-suited for dynamic scheduling schemes. The technical
contributions are as follows: (1) The problem of changing execution cycles due to scaling
techniques is assessed. (2) A parametric approach towards bounding the WCET statically
with respect to the frequency is proposed. Using a parametric model, the effect of changes in
frequency on the WCEC can be captured and, thus, the WCET over any frequency range
can be accurately modeled. (3) The design and implementation of the frequency-aware
static timing analysis (FAST) tool, based on prior experience with static timing analysis,
is discussed. (4) Experiments demonstrate that the FAST tool provides safe upper bounds
on the WCET, which are tight. The FAST tool allows the capture of the WCET of six
benchmarks using equations that overestimate the WCET by less than 1%. FAST equations
can also be used to improve existing DVS scheduling schemes to ensure that the effect of
frequency scaling on WCET is considered and that the WCET used is not exaggerated.
(5) Three DVS scheduling schemes are leveraged by incorporating FAST into them and by
showing that the power consumption further decreases. To the best of my knowledge, this

study of DVS effects on timing analysis is unprecedented.

Frequency-aware Static Timing Analysis for Power-aware Embedded
Architectures

by
Kiran R. Seth

A thesis submitted to the Graduate Faculty of
North Carolina State University
in partial satisfaction of the
requirements for the Degree of
Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

Raleigh
2003

Approved By:

Dr. Alexander Dean Dr. Eric Rotenberg

Dr. Frank Mueller
Chair of Advisory Committee

ii

Biography

Kiran Seth was born on 4** September 1979, in Thane, India. He received his
Bachelor of Engineering in Electronics Engineering from the University of Mumbai, India,
in 2001. In fall of 2001, he came to the North Carolina State University to pursue graduate
studies in Computer Engineering. He will receive the Master of Science degree in Computer

Engineering from NCSU with the defense of this thesis.

iii

Acknowledgements

This thesis was possible because of a lot of guidance and patience of my advisor Dr.
Mueller. I would like to thank him immensely for all his support. I would also like to thank
Dr. Eric Rotenberg and Dr. Alexander Dean for being on my advisory committee. I wish to
thank Aravindh Anantaraman for providing the Architectural Simulator. Thanks are due
to Kaustubh Patil who helped me in writing a thesis draft. Last but not the least I would
like to thank my friends Raviraj Mahatme, Mangesh Dalvi and Harish Vishwanathan.

Contents

List of Figures

1

Introduction

1.1 Worst-Case Execution Time
1.2 Dynamic Voltage Scaling
1.3 Parametric Frequency Model
1.4 Outline e e

Effects of frequency scaling on WCET
Parametric Frequency Model

Timing analysis for Real-time applications
4.1 Static Timing Analysis o
4.2 Frequency-Aware Static Timing Analysis.

Applying FAST framework to DVS schemes

5.1 FAST-EDF Utilization
5.2 FAST - Static Voltage Scaling
5.3 FAST - Cycle-Conserving RT-DVS
54 FAST - Look-Ahead RT-DVS,

Validation Experiments

6.1 Testing the FAST Analysistool
6.1.1 Traditional Static Timing Analysis Tool
6.1.2 FAST Analysis Tool
6.1.3 Experiment 1: Accuracy of FAST analysis tool
6.1.4 Results for FAST Analysis Tool

6.2 Testing FAST-DVS Schemes
6.2.1 DVS Real-Time Scheduling Algorithms
6.2.2 Power Modeling oo
6.2.3 Simulator 1: Event-Based DVS Simulator
6.2.4 Simulator 2: Architectural Simulator

v

vi

N

13
13
16

19
19
21
22
23

6.2.5 Experiment 2a: Performance of FAST-DVS schemes with the Event-
Based Simulator
6.2.6 Results for FAST-DVS Schemes with the Event-Based Simulator . .
6.2.7 Experiment 2b: Performance of FAST-DVS schemes with the Archi-
tectural Simulator
6.2.8 Results for FAST-DVS Schemes with the Architectural Simulator . .

7 Related Work
8 Conclusions and Future Work
Bibliography

Appendix

32

34
34

38

39

40

44

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4
3.5

4.1

5.1
5.2
5.3

6.1
6.2
6.3

Actual vs. Assumed WCEC for fft
Actual vs. Assumed WCET for fft

Sample Instruction Sequence L oL
Ex 1: Perfect run of instruction sequence
Ex 2: Instruction cachemiss oL
Ex 3: Datacachemiss L
Ex 4: Instruction + data cache miss,

Obtaining Safe WCET Bounds

FAST-Static Voltage Scaling for EDF
FAST-Cycle conserving DVS for EDF
FAST-Look ahead DVS for EDF

FAST vs. Traditional WCEC
Exp 2a: Energy Normalized to Base EDF for Various Task Sets
Exp 2b: Energy Normalized to Base EDF for Various Task Sets

vi

Chapter 1

Introduction

This chapter introduces the area of real-time systems and stresses the importance
of static timing analysis to calculate the Worst-Case Execution Time (WCET) for real-time
applications. Scheduling algorithms for low-power real-time systems are introduced along

with some deficiencies in the algorithms.

1.1 Worst-Case Execution Time

Real-time systems are systems where the correct operation of the system depends
not only on logical correctness of the input/output relation, but also on the timeliness of
the system. Each task executing on a real-time system has a definite deadline that it must
meet. Depending on the penalty of missing the deadline, real-time systems can be classified
into hard real-time systems (catastrophic results when missing deadlines) and soft real-time
systems (quality of service suffers due to missed deadline). To schedule tasks on a real-time
system, an accurate bound of the execution time for the tasks is required.

Schedulability tests based on real-time theory depend on safe upper bounds on the
WCET to guarantee that deadlines are met [22, 8, 29]. Bounds on the WCET should also be
as tight as possible. A lax WCET bound may result in an underutilized system consuming
excess energy or providing excess processing power and, thereby, raising cost. Safe and
tight WCET bounds can be provided by static timing analysis for relatively simple, scalar
architectures with in-order execution and static branch prediction (if any branch prediction
at all), and split caches [26, 21, 2, 19, 17, 30, 15, 23, 25].

A number of research groups have addressed various issues in the area of bounding

the WCET of a real-time task. Conventional methods for static analysis have been extended
from unoptimized programs on simple CISC processors to optimized programs on pipelined
RISC processors , and from uncached architectures to instruction and data caches [26, 21,
16, 25, 33, 20]. The challenge of static timing analysis is to provide not only safe but also
tight bounds on the WCET in order to impose a high enough processor utilization. These
analysis approaches result in tight bounds for deterministic microarchitectures with simple

components.

1.2 Dynamic Voltage Scaling

Limitations on the lifetime of embedded devices, particularly battery-powered mo-
bile devices, have resulted in advances in embedded architecture to extend the lifetime of
devices. Microprocessor designs ranging from low-end 8-bit up to high-end 32-bit embedded
architectures (e.g., the Atmel Atmega AVR family on the low end and the Intel XScale on
the high-end, just to name two extremes) support dynamic adjustment of processing speed
to prolong battery life. Generally, two techniques are employed in unison. On one side,
dynamic frequency scaling allows the speed of instruction execution to change during the
operation of a device. On the other side, dynamic voltage scaling modulates the level of
the supply voltage upon demand. Generally, both schemes, referred to as DVS in the fol-
lowing, work hand in hand: When the frequency is lowered by a certain degree, the voltage
can be also be reduced to a lower level. Furthermore, both scaling techniques impact the
power consumption of a device: power scales linearly with the frequency and quadratically
with the voltage. Hence, considerable power savings may result in a concerted approach of
dynamic frequency and voltage scaling [10].

Real-time systems are particularly well-suited to profit from DVS. Due to periodic
task execution, it is generally not feasible to utilize the range of sleeping modes that modern
processors offer. Tasks are invoked frequently (on a periodic basis in the order of a few
milliseconds). The time to enter a sleep mode (and the later wakeup time) is in the order of
tens of milliseconds, which generally matches the order of magnitude of a real-time task’s
period. Hence, suspension in sleep modes is not a viable option for real-time systems. But
real-time systems often have task sets that underutilize the processor. Hence, reducing the
frequency of execution while still meeting deadlines through DVS is a viable option resulting

in considerable power reduction.

Recently, a number of hard real-time DVS scheduling schemes have been studied,
ranging from compiler support [24] over numerous static scheduling approaches [14, 27] to
dynamic methods [27, 3, 13]. All of these approaches have their own merits in that they
provide a solution suitable to certain systems depending on scheduling methods, utilization
bounds of the task sets and architectural properties, such as scaling overhead.

Any DVS scheduling scheme is subject to the same constraints as other hard real-
time systems: The worst-case execution time (WCET) of a task has to be known a priori,
i.e., safe bounds on a task’s execution time have to be obtained. Prior work on static timing
analysis provides the means to derive relatively tight WCET bounds for simple embedded
architectures, which are provably safe.

In the context of DVS, static timing analysis is generally assumed to remain valid
with frequency scaling. The conjecture is that reducing a processor’s frequency still results
in the same number of cycles of execution for a task. Hence, considering the processor fre-
quency should suffice to derive safe WCET bounds. However, this simplistic view generally
does not hold for any realistic architectures. Consider the impact of memory references.
Any instruction or data reference that is resolved through a main memory access operates
at external bus frequency. But bus frequencies generally diverge from internal processor
frequencies, and they do not scale at the same rate as DVS scaling does. FE.g., the first
generation Compaq Ipaq has a StrongArm microprocessor (SA-1110) that scales at 8 fre-
quencies but only supports two different external bus frequencies.

In short, when static timing analysis is applied in the context of DVS, tightness and
safety assumptions may no longer hold: WCET bounds may either not be tight (considerable
overestimation upon fast memory operations for lower processor frequencies) or are no
longer safe (underestimation potentially leading to missed deadlines upon a reduced data
bus frequency). As a result, the memory latency also has to be adjusted to discrete values
according to dynamic settings for execution frequencies and memory latencies. Instead
of obtaining one discrete WCET through static timing analysis, different values for each
processor frequency / bus frequency pair would have to be obtained. While this may still
be a feasible approach for a static schedule and for a small number of such frequency pairs,
it becomes infeasible for dynamic scheduling paradigms or a large number of frequency
pairs. For certain scheduling approaches that exhibit intra-task DVS, such a static approach
becomes impossible if tight bounds for the WCET are to be determined since the point of

frequency changes during task execution is typically unknown at static time, e.g., due to

dynamic scheduling, preemption and early completion.

1.3 Parametric Frequency Model

The contribution of this thesis is to remedy this problem by promoting a new
methodology for frequency-aware static timing analysis (FAST). Instead of obtaining a
WCET bound for each frequency pair, FAST takes static timing analysis to a novel level
suitable for dynamic scheduling. FAST expresses WCET bounds as a parametric term whose
components are frequency-sensitive parameters. On the one side, cycles are interpreted in
terms of the processor frequency; on the other hand, memory accesses are expressed in terms
of the memory latency overhead due to the external bus speed. This parametric expression
of the WCET allows one to determine on-the-fly the WCET for a given frequency pair.
This is particularly appealing when scheduling decisions occur dynamically and when the
number of frequency pairs becomes large, such as is the case with state-of-the-art processors

with fine-grained frequency settings.

1.4 Outline

This introductory chapter briefly describes the requirements of real-time systems
as well as the current deficiencies of DVS schemes. Static timing analysis for real-time
applications along with the proposed parametric frequency model is introduced. Next, the
motivation for the parametric frequency model and the model itself are described in detail.
This is followed by a description of the FAST framework and several FAST-DVS schemes.
The feasibility of the approach is shown in a set of experiments that demonstrate flexibility
and competitiveness while still providing tight bounds on the WCET. Related as well as

future work and a summary conclude the document.

Chapter 2

Effects of frequency scaling on

WCET

In this chapter, the effects of frequency modulation on the WCET of applications
are discussed. The motivation for a parametric frequency model is also explained along
with the challenges of supporting the novel model in a static timing analysis tool.

Real-time systems that use DVS-based scheduling scale the WCET assuming that
the WCEC remains constant, even with a change in the frequency. This assumption holds
for systems where the memory latency can scale with processor frequency (systems with
on-chip memory). In contrast, for a system where the memory latency does not scale
with processor frequency (systems with off-chip memory, dynamic memory and memory
hierarchies), the WCEC of a task does not remain constant when the frequency is scaled.
For such systems, typically, when there is an increase in the frequency, the number of cycles
required to access memory also increases. This behavior is caused by a constant access
latency for memory references, regardless of changing processor frequencies. The memory
access latency depends on the front-side bus (FSB) instead of the processor frequency.
Usually the FSB has a constant frequency, or it does not provide scaling at the same rate as
a processor, i.e., FSB frequencies typically are constrained by a considerably smaller range.

Let us assume a constant FSB frequency, which is the most common case. Con-
sider a sequence of non-memory referencing instructions. The number of cycles required
to execute this sequence is commonly assumed to remain the same regardless of processor

frequency changes. If the sequence of instructions also has memory referencing instructions,

3000000

2500000 :

2000000

1500000

1000000 /,x”'

500000 -

Number of Cycles

—e— Actual WCEC

0 —— Assumed WCEC

100 175 250 325 400 475 550 625 700 775 850 925

Frequency (MHz)

Figure 2.1: Actual vs. Assumed WCEC for fft

upon frequency scaling the non-memory instructions would require the same number of cy-
cles for execution. But the number of cycles required to execute the memory referencing
instructions changes, depending on the current processor frequency and the constant FSB
frequency. Usually, a decrease in the frequency decreases the number of cycles required to
access the memory. By assuming that the WCEC remains constant, one ignores the fact
that the WCEC reduces with frequency, which results in WCET overestimations.

Figure 2.1 depicts results for the C-lab real-time benchmark fft, where the actual
WCEC for a system with a memory hierarchy is compared to a constant WCEC. The WCEC
for the benchmark was calculated for a simple in-order pipeline with instruction and data
caches. In this example, it is assumed that the memory access latency is constant. Figure 2.1
illustrates that the number of WCEC increases proportionally with the processor frequency.
This results from an increasing number of wait cycles for a constant time memory latency as
the frequency increases. The slope of the actual WCEC depends on the number of accesses
to main memory (and the latency to frequency ratio). Hence, the slope depends on the
number of misses in the instruction and data caches combined. Therefore, the accuracy of

paradigms that measure the worst-case behavior of the instruction and data caches not only

30

—e— Actual WCET
.\ —— Assumed WCET

Time (ms)
/-/r/./

=
o

100 175 250 325 400 475 550 625 700 775 850 925

Frequency (MHz)

Figure 2.2: Actual vs. Assumed WCET for fft

control the accuracy of the WCEC, but they also affect the accuracy by which the WCEC
can be scaled with frequency. Figure 2.2 depicts the equivalent WCET to the two WCEC
curves in Figure 2.1. The actual WCET depicted indicates the assumption of a constant
WCEC independent of frequency modulations result in considerable overestimations of the
WCET.

The objective of the research described in this thesis is to accurately model the
actual WCEC and, thereby, the actual WCET of real-time tasks. A a parametric frequency
model is derived for this purpose. The model provides WCET bounds that remain tight and
accurate throughout any frequency range. The parametric model complements real-time
systems employing a DVS-base scheduling scheme, and it is paramount to achieving higher
power savings. Ignoring the change in WCEC with frequency results in considerably smaller

power savings.

Chapter 3

Parametric Frequency Model

In this chapter, the parametric frequency model is discussed. The frequency model
can be used to estimate the WCET in the form of a parametric equation allowing the
calculation of accurate WCET with the change in frequency.

The proposed parametric frequency model can be used for timing analysis with any
simple in-order single-issue pipeline. The model is applicable to systems with or without a
memory hierarchy. A system without memory hierarchy (without caches) behaves just like a
system with a memory hierarchy where all the memory accesses are misses. The parametric
frequency model can also be applied to a system without caches. The examples consider the
model in a system with a memory hierarchy, and solutions are contributed to the technical
challenges posed. It is assumed that the system is equipped with an on-chip instruction and
data cache and that the main external memory has a constant access latency. To accurately
model the WCET in systems with memory hierarchies, the parametric frequency model is
proposed, that can captures the effect of frequency scaling accurately by splitting the WCEC
of a task into two components. The first component, i, captures the ideal number of cycles
required to execute the task assuming perfect caches. In other words, 7 does not scale with
frequency. The second component, m, counts the total number of instruction and data
cache misses for the task. m is the part of the WCEC that scales with frequency and
depends on the memory access latency. If a system without caches is considered, ¢ would
count the total number of cycles used for non-memory operations while m would count the

total number of memory references. Thus, the WCEC is expressed as follows:

WCEC =i+mN (3.1)

A: addR2 Rl R3
B: load R4, [M1]

C: aldR2 Rl R4
D: addR2 R1 R5

Figure 3.1: Sample Instruction Sequence

where N is the number of cycles required to access the memory, which depends on the
latency of the memory L and the frequency f of the processor. Therefore, we may also
express Equation 3.1 in terms of frequency as shown in Equation 3.2. Thus WCEC is

expressed as a function of the frequency.

WCEC =i+mLf (3.2)

For a simple pipeline, the WCEC can be easily be converted into the WCET by
dividing by the frequency. This frequency model can accurately model the actual WCET
because it separates the WCEC into components, one that scales and one that does not
scale with processor frequency.

The following examples are presented to show that the parametric model can cap-
ture the effects of different sequences of instructions in a task. Only sequences that contain
data or instruction cache misses are of concern since they are affected during frequency
scaling. A sequence of instructions without any cache misses can be captured exclusively
by the ¢ component and represents a trivial example for the parametric model. For the fol-
lowing examples, let NV = 10, as shown in the figures below. Separate instruction and data
caches are assumed and frequency scaling for the model with an arbitrary simple in-order
pipeline.

Consider a sequence of four instructions, as shown in the Figure 3.1.

This instruction sequence is executed in a processor with a simple six-stage in-
order pipeline. The pipeline stages are fetch (IF), decode (ID), issue (IS), execute (EX),
memory access (MEM) and write-back (WB).

1. The Figure 3.2 shows the perfect run of the instruction sequence through the pipeline.
None of the instructions experience an I-cache or a D-cache miss. Since there are
no cache misses, only the ¢ component is calculated. The WCEC captured by the
parametric model as WCEC =9 + 0N.

Cycles 1| 2

IF

ID

IS

>0 [0 |,

EX

> ®m (00|

MEM

> W 0|0

WB

> | 0O |0

D

Figure 3.2: Ex 1: Perfect run of instruction sequence

2. In Figure 3.3, observe the effects of an instruction cache.

10

Consider instruction B

resulting in a miss. While instruction B misses in the instruction cache, all other cache

accesses result in hits. Since instructions are stalled till the miss on B is resolved,

the number of cycles involved can be separated into two components. With ¢ = 9

and m = 1 in Equation 3.1, the WCEC is accurately captured by the model as
WCEC = 9+ 1N. Hence, the WCEC is accurately modeled for any value of IV

resulting in an accurate WCET regardless of frequencies.

3. In Figure 3.4, observe the effects of a data cache miss. Instruction B misses in the

data cache while all other cache accesses are hits. With ¢ = 9 and m = 1, the WCEC

Cycles 1| 2| 3| 4| 5| 6| -| —-|12|13|14|15|16|17|18|19
IF A/B/B|B/B|B|-| —-|B|C|D

ID A B|C|D

IS A B|C|D

EX A B|C|D

MEM A B|C|D
wWB A B|C|D

Figure 3.3: Ex 2: Instruction cache miss

11

Cycles 1 2| 3| 4] 5| 6| -| —|16]17|18|19
IF A|B|C|D

ID A/B|C|D

IS A/B|C|D| -| -|D

EX A/B|C| -| -|IC|D

MEM A|B| -| -|B|C|D
WB A B|{C|D

Figure 3.4: Ex 3: Data cache miss

is again calculated as 94 1N. Since the data miss stalls the previous instructions, one
can separate the number of cycles required for the memory access. However, had the
Instruction C or any other stalled instruction performed any useful work instead of
being stalled, a potential for overestimation would occur for the model, e.gq., for multi-
cycle floating-point operations, branch mispredictions, etc. Any such overestimation
results from the overlap of useful cycles with the memory stall. In the model, the
1 component counts these useful cycles while the m component counts data miss.
Overlap would not be considered by the model. For example, if instruction C took an

extra cycle to execute, the new WCEC would become 10 + 1N. The model does not

Cycles 1 2| 3| 4| 5| 6| -| —|13|14|15/16| —|24|25| 26|27
IF A/B|C|C|C|C| -| -|[C|D

ID A | B C|D

IS A|B cC|/D| -/D

EX A|B c| -|C|D

MEM A/B|l-| -|B|B|B|B|-|B|C|D
WB A B|C|D

Figure 3.5: Ex 4: Instruction + data cache miss

12

consider the overlap between the data miss and the extra cycle used by instruction C.
A similar problem is also observed in example 1 if the instruction miss overlaps with

a high execution latency instruction.

The potential for overestimations implies that the obtained WCET obtained still
provides an upper bound on the execution time, albeit not necessarily a tight one.
But removing overestimations due to instructions with high execution latencies is
non-trivial because instructions may have different execution latencies. Subsequent

experiments show that these design choices have a diminishing affect on the tightness

of WCET bounds.

4. In Figure 3.5, observe the effects of a simultaneous instruction and data cache misses.
Instruction B results in a data cache miss while the instruction C results in an in-
struction cache miss. All other cache accesses are hits. With ¢ = 9 and m = 2, the
WCEC = 9+ 2N. The instruction and the data cache misses cannot be serviced
together. Hence, instruction B is stalled till instruction C’s cache miss is serviced.
The model captures all sequences of instructions where a cache miss stalls yet another
cache miss. Notice that the two misses in question need not result from consecutive
instructions. Some overestimation is observed because of overlapping of some work

with the miss cycles.

In the above examples, different combinations of cache misses were considered,
which can occur in a simple pipeline. In the presence of these misses, the parametric
model accurately captures the worst-case timing behavior for any sequence of instructions.
Overestimation is expected when a high execution latency operation overlaps with a miss

or when an I-cache miss overlaps with a D-cache miss.

13

Chapter 4

Timing analysis for Real-time

applications

In this chapter, conventional static timing analysis is described and the approach is
briefly contrasted to dynamic timing analysis methods. Novel enhancements, necessitated
by DVS, are specified to adapt conventional static timing analysis to a frequency-aware

static timing analysis (FAST) tool.

4.1 Static Timing Analysis

Schedulability analysis for hard real-time systems requires that the worst-case
execution time (WCET) be safely bounded in order to ensure feasibility of scheduling a
task set for a given scheduling policy, such as rate-monotone and earliest-deadline-first
scheduling [22]. If the execution time of a task were obtained through dynamic timing
analysis based on experimental or trace-driven approaches, these values would not provide
a safe bound of the WCET [32]. On the one side, it is difficult to determine the worst-case
input set even for moderately complex tasks that would exhibit the WCET, and to perform
exhaustive testing over the entire input space is infeasible except for trivial cases. On the
other side, even if the worst-case input set was known, the interaction between the software
and hardware might cause the task to exhibit its WCET for a different input set. The
cause of this behavior is architectural complexity, such as complex pipelines and caching
mechanisms.

Static timing analysis is a viable alternative to dynamic timing analysis, and while

14

various static approaches have been studied, this research will constrains itself to one such
toolset without loss of generality [15, 25, 33]. The WCET bounds obtained by static tim-
ing analysis provide a guaranteed upper bound on the computation time of a task. Static
timing analysis performs the equivalent of a traversal over all execution paths to determine
timing information independent of a program trace and without tracking values or program
variables. Loop bodies only require a few traversals to determine the worst-case behavior
of the entire loop due to an efficient fixed-point approach. As the execution paths are tra-
versed, the behavior of the architectural components along the execution paths is captured.
The paths are composed to form loops, functions and ultimately the entire application to
calculate both WCEC and WCET.

Figure 4.1 depicts an overview of the organization of this timing analysis toolset.
An optimizing compiler has been modified to produce control flow and branch constraint
information as a side effect of the compilation of a source file. The original research compiler
VPCC/VPO [4] was replaced by GCC with a Portable Instruction Set Architecture (PISA)
backend that interfaces with SimpleScalar. Real-time applications are compiled into assem-
bly code using the GCC PISA-compiler. The control-flow graph and instruction as well
as data references are extracted from the assembly code. Upper bounds on the number of
iterations performed by loops are provided, a prerequisite for performing static timing anal-
ysis. A static instruction cache simulator uses the control flow information to construct a
control-flow graph of the program that consists of the call graph and the control flow of each
function. The program’s control-flow graph is then analyzed, and a caching categorization
for each instruction and data reference in the program is produced. Separate categorizations
are provided for each loop level in which the instructions and data references are contained.

The categorizations for instruction references are described in Table 4.1. Next, the tim-

»

Compiler

Source Gcce (PISA) Control Flow & WCET
Files I/D-References Prediction

Cache

Categorization

Figure 4.1: Obtaining Safe WCET Bounds

15

ing analyzer uses the control flow and constraint information, caching categorizations, and
machine dependent information (e.g., pipeline characteristics) to calculate bounds on the

WCET.

‘ Cache Category ‘ Definition ’

always miss |Instruction may not be in cache
when referenced.

always hit |Instruction will be in cache when
referenced.

first miss Instruction may not be in cache
on 1st reference for each loop ex-
ecution, but is in cache on subse-
quent references.

first hit Instruction is in cache on 1st ref-
erence for each loop execution,
but may not be in cache on sub-
sequent references.

Table 4.1: Instruction Categories for WCET

This approach differs from prior toolset in [1]. The tool separates static I-cache and
D-cache (instruction/data cache) analysis. The D-cache analysis currently lacks sufficiently
detailed information about references for the GCC compilation phase, and D-cache analysis
does not fully match the SimpleScalar model. The focus of this research is on enhancing
the timing analyzer with respect to the FAST model and PISA instruction set. But since
the SimpleScalar-based architectural simulation environment [28] is used to validate the
approach, simplifying assumptions about the data caches have to be made. Specifically, it
is assumed that a constant number of data cache accesses to be misses for each application
to model compulsory misses. The remaining references are considered to be hits, which
models a sufficiently large cache.

The timing analyzer uses the control-flow information and loop bounds, caching
categorizations, and pipeline description to derive WCET bounds. The pipeline simulator
considers the effect of structural hazards (an instruction occupying the universal function
unit for multiple cycles), data hazards (a load-dependent instruction stalls for at least one
cycle if it immediately follows the load), branch prediction (backward-taken/forward-not-

taken), and cache misses (derived from caching categorizations) for alternative execution

16

paths through a loop body or a function. Static branch prediction is easily accommodated
by worst-case analysis: the misprediction penalty is added to the non-predicted path (not-
taken path for backward branches and taken path for forward branches). Path analysis (see
below) selects the longest execution path as usual. Once timings for alternate paths in a
loop are obtained, a fixed-point algorithm (quickly converging in practice), is employed to
safely bound the time of the loop based on the its body’s cycle counts.

The fixed-point approach generally requires path analysis for only a few iterations.
Given the longest path for the first iteration, the next-longest path is determined for the
second iteration, which may differ from the original path due to caching effects. The lengths
of these paths are monotonically decreasing due to cache effects, and once a fixed-point is
reached, subsequent loop iterations can be safely approximated by this fixed-point timing
value. When the longest paths of consecutive iterations are combined, the tool accounts
for the pipeline overlap between the tail of the earlier path and the head of the path that
follows. The alternative — no overlap — is tantamount to draining the pipeline between
iterations. Using this fixed-point approach, the timing analyzer ultimately derives WCET
bounds, first for each path, then for loops, and finally for functions within the program.
A timing analysis tree is constructed, where each node of the tree corresponds to a loop
or function. Nodes in the tree are processed in a bottom-up manner. In other words,
the WCET for an outer loop / caller is not calculated until the times for all of its inner
loops / callees are known. This means that the timing analyzer predicts the WCET for
programs by first analyzing the innermost loops and functions before proceeding to higher-
level loops and functions, eventually reaching the tree’s root (e.g., main()). The timing
analysis tree provides a convenient method for obtaining WCET for a specific scope. From
the description in this section, it becomes evident that static timing analysis is non-trivial,

even for simple pipelines.

4.2 Frequency-Aware Static Timing Analysis

The static timing analysis tool calculates the WCEC for a particular task. How-
ever, static timing analysis has to be performed whenever the processor frequency is changed.
Re-assessing the WCET bound is paramount to temporal safety since a change in the pro-
cessor frequency causes a change in the number of cycles required to access the memory

since front-side bus frequencies do not scale at all (or at least not at the same rate). Due to

17

the change in memory latency, the WCEC information for different paths changes, which
may result in a different worst-case path than before. The frequency model can be elegantly
incorporated into static timing analysis such that it calculates the number of cycles for each
possible worst-case path in the program. The following technical innovations to the static
timing analysis framework support such flexible calculations.

Instead of using the memory access cycles to simulate the sequence of instructions
in the pipeline, the ideal number of cycles is calculated assuming all cache accesses to be
hits. The instruction and data cache misses are accumulated as a side-effect to compose a
first-order polynomial equation describing the WCEC.

Static timing analysis requires different paths through the same node (loop or
function) to be compared. The path with the worst WCEC is used as the WCEC for the
node. After integrating the frequency model into the framework, one has to compare two
equations to determine which one was to result in a larger number of execution cycles. The
challenge here is posed by having to consider both equations: One of them has greater
WCEC for some range of frequencies while the other has greater WCEC for the rest of the
frequency range. Remember that the frequency model is a first-order polynomial. Consider
the case where two equations intersect, i.e., both polynomial have a common solution.

Three approaches to address this problem are proposed.

1. One can maintain an ordered list of equations and the ranges where subsequent poly-
nomials represent a larger WCEC than previous ones. Since the frequency model
is a first-order polynomial with different slopes, there exists an intersection point

constraining the range for each equation.

2. Alternatively, a curve-fitting equation could capture the effects of both equations.
This obviates the need for maintaining large numbers of equations but increases the
complexity of the parametric equation. A higher-order polynomial with strict upper
bounds on each base polynomial would provide a relatively close fit. The resulting
curve would not be as tight as in case (1) but may suffice if the slopes of the original
polynomials do not diverge significantly. This would impose more overhead on dy-
namic scheduling schemes that have to perform additional arithmetic to evaluate the

equation upon any scheduling action.

3. Another, easier solution is to declare a valid range of frequencies for the processor. If

18

two equations intersect outside the given range, the equation that provides the higher
WCEC within the valid range can be chosen. If two equations intersect within this
specified range, a simple curve-fitting technique through a first-order polynomial that
provides a WCEC greater or equal to the values of either of the original equations can

be used.

By using one of the above techniques, it is ensured that a FAST equation ob-
tained always provides an upper bound on the WCEC of the task, regardless of the chosen
frequency. For the FAST framework, the third and the easiest technique to bound FAST

equations is used.

19

Chapter 5

Applying FAST framework to DVS

schemes

In this chapter, FAST equations for WCET are incorporated into existing DVS-
EDF scheduling algorithms as proposed by Pillai and Shin through (a) static voltage scaling,
(b) cycle-conserving RT-DVS and (c) look-ahead RT-DVS [27]. With only minimal changes
to the original algorithms, the FAST equations can be integrated into the respective DVS

schemes, thereby improving energy savings obtained.

5.1 FAST-EDF Utilization

Most DVS scheduling algorithms use the assumption that the WCEC is constant
with frequency when scaling the WCET. By not considering the effect on WCEC during
frequency modulation, DVS schemes assume a considerably overestimated WCET. Thus,
DVS schemes fail to completely utilize available slack because the scaled WCET is not a
tight bound. The parametric frequency model is implemented in the FAST framework.
Parametric equations obtained by FAST can be used in DVS scheduling schemes to ensure
that the scaled WCET remains an accurate and tight bound of the execution time for a
task. Thus, the efficiency of DVS schemes can be increased to further reduce the power
consumption of the system.

DVS schemes can execute a task set at a lower frequency provided that a schedu-
lability test deems the task set feasible and tasks do not exceed their WCET. The schedu-

lability test for earliest-deadline-first scheduling algorithm is expressed in Equation 5.1.

20

C, Oy Cp

b TS 1

5 BT TR S (5.1)
Cy, Co, -+, C), represent the WCET for each of the n tasks. Py, P», ---, P, represent the

respective periods of the tasks. As is common in base EDF, tasks’ deadlines are assumed to
be equal to their periods. We can also express Equation 5.1 in terms of WCEC, as shown

1m Equa‘ 10on 5.2.

Plfm PQfm Pnfm o

For current DVS schemes based on EDF scheduling, the schedulability test ex-

pressed in Equation 5.3 must be satisfied by the task set to ensure feasibility. The Equation
5.3 is derived from Equation 3.1. Equation 5.3 represents the utilization of the system under

frequency scaling.
Ci Oy

Zb =2 < .
P1+P2+ + <« (5.3)

P,
The term « in Equation 5.3 is the scaling factor. It identifies actual (scaled) frequency such
that o = f./ fim, where f. is the lowest scaled frequency and f,, is the peak frequency. The
Equation 5.3 can also be represented in terms of the WCET as shown Equation 5.4. Note
that in Equation 5.2 the f. = f,,, while in Equation 5.4 f. = afy,.

WCEC, WCEC, WCEC, _
Py fm Py fm Pafm —

(5.4)

The DVS-EDF schedulability test expressed in Equation 5.3 does not consider the
effect of frequency scaling on WCET. By combining Equation 3.2 with Equation 5.3, a
more accurate scaling factor is created taking the effects of frequency scaling on WCET
into account, as seen in Equation 5.5.

il + amlLf'm Zn + aanfm <

Pof Pt - C (5:5)

To obtain Equation 5.5, substitute the WCET by C; = (i1 + miLf)/f derived
from Equation 3.2. The number of cycles, N, is expressed in terms of the frequency, f,
and the memory latency, L, using the relation N = L x f. Since the schedulability test in
Equation 5.5 is used for frequency scaling, substitute f = af, in WCET equations. The

schedulability test in Equation 5.5 is transformed into Equation 5.6 to consider the scaling

21

EDF-test(«):

> i1 15/Pj
fm(1-L Z?:l m.i/P.i)
else return false;

if < a return true;

select-frequency:

use lowest frequency

fk:g{fb' "afm|f1 << fma:c}
such that EDF-test(fx/ fimaz) is true;

Figure 5.1: FAST-Static Voltage Scaling for EDF

factor.

Z?=1 Z'j/Pj
(= LS my Py = © (5.6)

The scaling factor in Equation 5.6 results in a much lower frequency f. without

changing the complexity of the original test shown in Equation 5.3. The WCET used is not

exaggerated, and slack is exploited efficiently.

5.2 FAST - Static Voltage Scaling

The static voltage scaling schemes introduced of Pillai and Shin [27] uses the
modified EDF test shown in Equation 5.3 to calculate the scaling factor «. This algorithm
uses all static slack in the system. The processor frequency for the entire task set is set
statically. Dynamic slack produced during runtime due to early completion of tasks is not
considered for frequency scaling. The FAST equations for the WCET can be integrated
into the static voltage scheme as shown in Figure 5.1. Equation 3.1 represents the WCET
of all tasks, and the scaling factor is calculated using Equation 5.6. The FAST static
voltage scaling algorithm performs better than the original static voltage scheme because

it considers the portion of WCET that scales with frequency.

22

select-frequency ():

use lowest frequency
fk:e{fla o 7fma;v|f1 << fmaz} such that

>ie11/P;
fm(1 - L7, my/Pj)

S fk/fmax 5

upon task-release(7}):
set ij = iWCET and mj = IMMWCET ;
select frequency/();
upon task-completion(T}):
set ij = lactual and mj = Mactual ;
/*Mactuar are the actual number of misses
for this invocation,
tactual are the ideal number of cycles for
this invocation not counting the miss cycles*/

select frequency();

Figure 5.2: FAST-Cycle conserving DVS for EDF

5.3 FAST - Cycle-Conserving RT-DVS

The cycle conserving RT-DVS by Pillai and Shin [27] calculates the utilization for
a task set at every task release and task completion. Upon task release, the utilization
is calculated based on the WCET. Upon task completion, the utilization is calculated by
considering the actual execution time of the completed task instead of the WCET. This
algorithm uses the static slack available in the system as well as the dynamic slack generated
due to early task completions. Figure 5.2 shows the necessary modifications to the original
algorithm to incorporate the FAST equations.

The FAST cycle conserving DVS scheme outperforms the original scheme since it
takes the actual execution times as well the scaling levels of previous tasks into account.
The scheme derives the current system utilization after task completion by considering the
actual execution time. In FAST cycles-conserving RT-DVS, the total number of cycles and
the total number of misses experienced by a task are determined during executing, e.g.,
by hardware counters, which have become quite common for modern architectures. The
actual execution time is also converted into a FAST equation to consider its scaling with

frequency. The system utilization and the scaling factor are calculated through Equations

23

5.5 and 5.6.

5.4 FAST - Look-Ahead RT-DVS

The look-ahead RT-DVS schemes by Pillai and Shin [27] finds the minimum
amount of work that may be performed between now and the next scheduling event without
missing any deadlines. All work is deferred till the last possible moment, also referred to
as last-chance scheduling [12]. As a side effect, the frequency may be increased as execu-
tion approaches a deadline. In practice, most tasks complete execution early, i.e., prior
to their WCET. Hence, the frequency rarely has to be raised to complete by a deadline.
This algorithm also uses all the static slack (idle) as well as most of the dynamic slack.
Figure 5.4 depicts the modified original algorithm to integrate the FAST equations into the
DVS scheme. Figure 5.4 also shows a modification to the look-ahead RT-DVS algorithm for
task — completion by setting c_left; = C; (see appendix). The FAST look ahead scheme
also takes advantage of FAST equations to lower energy consumption of the algorithm. The
terms i_left and m_left describe the computation left in the form of a FAST equation.
Hardware counters are employed to track total cycles completed and total misses inflicted
while a task is executing. The s component shown in Figure 5.4 cannot be converted into
a FAST equation unless considerable changes are made to the algorithm. Doing so would
make the algorithm more aggressive leading to lower frequencies. To avoid excessive mod-
ifications, only the next scheduled task is expressed in the form of a FAST equation. The
experiments show that the performance of the algorithm is improved even with minimal

modifications to the algorithms.

select-frequency (x): use lowest frequency
frelfvs- s fmaalfr < -+ < finax}
such that « < ft/fmaz ;
upon task-release(7}):
set cleft; = Cj,
i_left; = i_wcet; and m_left; = m_wcet; ;
defer();
upon task-completion(T}):
set cleft; = Cj,
i_left; = i_wcet; and m_left; = m_wcet; ;
defer();
during task-execution(T}):

decrement c_left;, i_left; and m_left; ;

defer():
set U = Cl/Pl ++Cn/Pn,
set s =0

fori=1 to n,TjeT, -, Ty|D1>---> D,
/*Note: reverse EDF order of tasks*/
set U=U—C;/P; ;
set z; = max (0, cleft; — (1 —U)(Dj — Dy)) ;
set U="U + (cleft; —z;)/(Dj — D) ;
set s = s+ x;;
S =8 — Xp;
t = D, — current_time;
(ileft, +s)/t

X = 5

frn (1 — L x m_left, /t)

select-frequency (x);

Figure 5.3: FAST-Look ahead DVS for EDF

25

Chapter 6

Validation Experiments

This chapter describes the experiments performed to verify the FAST analysis tool
and the FAST-DVS schemes. Six real-time benchmarks from the C-lab real-time benchmark
suite [9], namely srt, fft, mm, Ims, adpcm and cnt, are used to calculate the WCET and

create the tasksets for all the experiments.

6.1 Testing the FAST Analysis tool

To test the FAST framework, the FAST analysis tool is compared with the tra-
ditional static timing analysis tool. The traditional static timing analyzer provides a tight
bound of the execution time for the application. It is expected that the WCET calculated
by the FAST analysis tool will match the WCET obtained from the traditional static timing

analyzer.

6.1.1 Traditional Static Timing Analysis Tool

The traditional static timing analysis tool [15] was redesigned to make it compat-
ible with an Architectural Simulator based on the SimpleScalar toolset [1]. The original
research compiler VPCC/VPO [4] was replaced by GCC with a Portable Instruction Set
Architecture (PISA) backend that interfaces with the Architectural Simulator. The pipeline
defined in the timing analyzer is the same pipeline defined in the Architectural Simulator
and consists of six stages (fetch, decode, issue, execute, memory and write back). The
pipeline also features branch prediction based on the Ball-Larus heuristic. All instruction

execution latencies are based on the MIPS R10K latencies. Specifically, a constant memory

26

latency of 100ns is used. The timing analyzer takes into account a 8KB I-cache and a 8KB
D-cache.

Real-time applications are compiled into assembly code using the GCC PISA-
compiler. The control-flow information is supplied to the static instruction cache simulator
to obtain the caching categorizations for real-time application. These categorizations ob-
tained for the I-cache are used in the timing analyzer to determine accurate WCET. Since
an accurate static D-cache simulator is unavailable at this time, categorizations for the data
accesses are obtained by assuming that a constant number of data cache accesses are misses
for each application to model compulsory misses. The remaining references are considered
to be hits, which models a sufficiently large cache. This assumption mimics a data cache
simulator. The WCET calculated is an upper-bound for the real-time application but is
not a tight bound. Using these data cache categorizations is better than assuming that all

data accesses are misses.

6.1.2 FAST Analysis Tool

The traditional static timing analyzer was redesigned to create the FAST frame-
work. The FAST analysis tool, like its predecessor, is based on the portable ISA (PISA)
used by the architectural simulator. The FAST tool uses the same six-stage simple in-order
pipeline used in the traditional static timing analysis tool. The static cache simulation
strategy and the static data cache assumption remain the same as well. The simplifying
assumption used for data accesses does not affect the design of FAST, i.e., the frequency
model supports a more precise static data cache analysis as well.

The traditional static analysis tool calculates the WCEC for the application with-
out differentiating between cycles contributed by memory accesses and cycles contributed
by processor operations. The static timing analyzer is converted into the FAST analysis
tool by changing the method of calculating WCEC; by separating the cycles contributed by
the memory and those contributed by the processor.

When incorporating the frequency model into the static timing analyzer, two paths
with FAST equations that result in intersecting first-order polynomials may be encountered.
In this case, the third method introduced in Section 3.2 (to choose the equation resulting
in the worst-case behavior) is used. First, it is determined if one equation is always greater

than the other for the valid range of frequencies (100MHz-1GHz). Otherwise, approximate

27

the two equations by using another first-order polynomial equation providing a safe upper
bound. The new first-order polynomial is formed by using the maximum values obtained
at minimum frequency (100MHz) and maximum frequency (1GHz) from the two conflicting
first-order equations. This may result in slight overestimations but, overall, still provides a
sufficiently tight bound of the WCEC, as will be seen. The branch misprediction penalty is
removed from the FAST equation if branch misprediction overlaps with a data miss stall.
The overestimation caused by instructions with execution latencies higher than one are not
removed from the equation as they contribute insignificant savings.

The procedure of obtaining WCET estimates from the FAST analysis tool remains
the same as the procedure for the traditional static timing analyzer, explained in section

6.1.1.

6.1.3 Experiment 1: Accuracy of FAST analysis tool

Six real-time benchmarks from the C-lab real-time benchmark suite [9], commonly
utilized for WCET experiments, are studied. Three floating-point benchmarks, adpcm,
Ims and fft, as well as three integer benchmarks, cnt, srt and mm, are analyzed. These
benchmarks were compiled by the PISA GCC compiler integrated with the SimpleScalar-
based tool set. From the compilation of these benchmarks, the control-flow graphs and

instruction layouts were obtained, which are taken as inputs to the FAST analyzer and the

Bench-| Equations |WCET:Static timing analysis/ FAST (WCEC)
marks i m |100MHZ| 400MHZ | 700MHZ 1000MHZ
fft | 355933 | 24658 | 600628/ | 1340578/ | 2079876/ 2820478/
602675 | 1342625 | 2081993 2822525
adpem [3026370(544104 (8433905 / [24749525/ 141065145/ 57380765/
8467410 | 24790530 | 41113650 57436770
lms | 167890 | 29905 | 466438/ | 1363598/ | 2260748/ 3157898/
466940 | 1364090 | 2261240 3158390
cnt 71221 | 6066 | 131880/ | 313860/ | 495840/ 677820/
131881 | 313861 495841 677821
mm |2038538| 59134 |2629877/| 4403897/ | 6177917/ 7951937/
2629878 | 4403898 | 6177918 7951938
srt [3509420(102145(4530868/ | 7595218/ |10659568/| 13723918/
4530870 | 7595220 | 10659570 13723920

Table 6.1: WCEC of FAST vs. Traditional

28

static cache analyzer. The FAST output is the WCEC in the form of a parametric equation
conforming with the parametric frequency model. The same benchmarks were also exposed
to the original static timing analysis tool set for comparison. The original static timing
analyzer must be run separately for each frequency under consideration to account for
changed memory latency for a given processor frequency. In contrast, the FAST framework

captures the same effect in an equation (derived from a single analysis step).

6.1.4 Results for FAST Analysis Tool

The WCEC equations for the six benchmarks obtained from the static timing
analysis tool and the FAST tool are compiled in Table 6.1 and in Figure 6.1.
The FAST scheme differs from conventional static timing analysis without para-

metric expressions of frequencies by less than half a percent. Hence, it is concluded that

1.005
Ofrequency = 100MHz
B frequency = 400MHz
1.004 — -
O frequency = 800MHz
— Ofrequency = 1000MHz
1.003 +
1.002 +
=)
IS
vd
1.001 + B
1.000 — — N
0.999 — — — — — —
0.998
fft adpcm Ims cnt mm srt
Benchmarks

Figure 6.1: FAST vs. Traditional WCEC

29

the FAST equations accurately model the WCEC obtained from the static analysis tool.
Since the effects of scaling on WCEC are accurately modeled by the FAST equations, the
scaling of the WCET can also be accurately captured.

Table 6.1 shows the WCEC for all six benchmarks calculated for four different fre-
quencies using the FAST equations and compared with the corresponding WCEC obtained
from the static timing analysis tool. Figure 6.1 plots the ratio of the WCET for the FAST
tool and the static timing analysis tool.

As shown in the Table 6.1 and Figure 6.1, cnt, mm and srt show that the FAST
bounds on WCET match the bounds obtained by the static timing analyzer exactly. For
fft, adpcm and lms the FAST bounds on WCET are very close to the bounds obtained by
the static timing analyzer. The overestimation in these benchmarks is due to the presence
of floating point operations that have overlapping execution latencies with memory stalls
(see Section 2.2, Figure 3.4).

Thus, the FAST tool can accurately model the WCEC of tasks with a negligible

error (<1%) by using the parametric frequency model.

6.2 Testing FAST-DVS Schemes

The performance of the FAST-DVS schemes developed in the previous chapter is
compared to the original DVS schemes [27]. The FAST-DVS schemes are expected to use
the leverage provided by the FAST equations to outperform the original DVS schemes.

6.2.1 DVS Real-Time Scheduling Algorithms

To test the FAST-DVS schemes, several EDF algorithms for the architectural
simulator have been implemented. Scheduling algorithms ranging from base EDF, cycle-
conserving RT-DVS, look-ahead RT-DVS, FAST static voltage scaling, FAST cycle conserv-
ing RT-DVS and FAST look ahead RT-DVS were modeled. All the scheduling algorithms
can choose a frequency between 100MHz to 1GHz for the next scheduled task. The base
EDF algorithm runs all tasks at 1GHz. All algorithms switch the processor frequency to
100MHz during idle times in the schedule, the lowest available frequency, since it is not
realistic to put a processor into sleep mode (with millisecond overheads) for frequent task

releases (in the order of milliseconds).

30

6.2.2 Power Modeling

Two power models are employed to evaluate the performance of the scheduling

algorithms - the generic power model and the Wattch power model.

1. The generic power model assumes that power consumed in each cycle depends only
on the frequency and voltage of operation. The hardware structures accessed in the

cycle are ignored. The power is calculated using Power = Voltage? x frequency.

2. The Wattch power models [6] are integrated into the architectural simulator to mea-
sure power and energy. The original Wattch models use a Reservation Update Unit
(RUU) based microarchitecture. The models are modified to closely match the struc-
tures of a simple processor. Modifications to support dynamic voltage scaling (DVS)

were also made.

The frequency /voltage settings used for DVS are loosely based on the Intel Xscale,
which is reported to have 5 settings ranging from 150 MHz/0.76 V to 1 GHz/1.8 V [18]. From
the Xscale, 37 frequency /voltage settings were extrapolated, ranging from 100 MHz/0.70 V
to 1 GHz/1.8 V in 25 MHz/0.03 V increments.

6.2.3 Simulator 1: Event-Based DVS Simulator

To test the FAST-DVS schemes, several DVS algorithms were implemented in a
scheduling simulator. Implementation features include generic static voltage scaling support
and scheduling algorithms ranging from base EDF, cycle-conserving RT-DVS, look-ahead
RT-DVS, FAST static voltage scaling, FAST cycle conserving RT-DVS to FAST look ahead
RT-DVS. All the scheduling algorithms can choose a frequency between 100MHz to 1GHz
for the next scheduled task. The base EDF algorithm runs all tasks at 1GHz. All algo-
rithms switch the processor frequency to 100MHz during idle times in the schedule, the
lowest available frequency, since it is not realistic to put a processor into sleep mode (with
millisecond overheads) for frequent task releases (in the order of milliseconds). A combina-
tion of task sets resulting from application workloads of six real-time benchmarks, namely
srt, fft, mm, lms, adpcm and cnt, were studied. The task sets were exposed to the simulator,
and energy consumption was calculated for all scheduling algorithms. The execution times

were derived from exposing the benchmarks to a cycle-accurate pipeline model implemented

31

in the SimpleScalar-based simulator [28]. By exploiting a cycle-accurate architectural sim-
ulator, the total number of cache misses as well as the total number of cycles executed can
be obtained. The execution times obtained from the architectural simulator are scaled with
frequency using the same assumption used while formulating the FAST parametric model.
Namely, it is assumed that the total number of execution cycles does not remain constant
with frequency. The same execution time scaling method is used for all the voltage scaling
algorithms.

To evaluate the different FAST-DVS and DVS schemes, several tasksets were
formed using the cnt, srt, mm, adpcm, fft and lms benchmarks. Three groups were formed
as follows - G1: cnt, srt, mm (all integer), G2:adpcm, fft, Ims (all floating point) and G3:cnt,
mm, fft, Ims (mixed). The periods were chosen for each benchmark and from each group
two tasksets are created — one with high utilization, and one with low utilization. The high
utilization tasksets have a utilization of approximately 0.9 while the low utilization tasksets
have a utilization of approximately 0.5.

The energy per cycle is calculated at a particular frequency by using the relation

Energy = Voltage? x frequency. This simulator only implements the generic power model.

6.2.4 Simulator 2: Architectural Simulator

A multi-tasking environment has been modeled using a cycle-accurate simulator
built using the SimpleScalar toolset [7]. The architectural simulator supports a simple
six-stage in-order processor pipeline model.

The simulator models various memory-mapped counters (e.g., the watchdog counter)
and registers (e.g., the current frequency register, etc.). The scheduler accesses these regis-
ters and counters to specify the next task, the next event, etc.

The benchmarks and scheduler are compiled using the SimpleScalar GCC-based
compiler which targets the SimpleScalar ISA (PISA), a MIPS-like ISA [7]. Thus, actual
binaries are loaded and executed by the processor simulator. Each task has its own binary,
including the scheduler itself.

Currently, the simulator has the ability to execute up to four independent threads,
one of which is the real-time scheduler itself. The scheduler thread is invoked on two events:
(1) completion of a task and (2) release of a task.

Task releases are implemented by the scheduler using a count-down timer provided

32

by the processor, called the release timer. Before turning the processor over to the next
task, the scheduler sets the release timer to interrupt at the next task release.

At the start of simulation, the scheduler is invoked first. After deciding which
task to execute next, the scheduler sets the release timer and is swapped out. The next
task is then swapped in. The scheduler is invoked again when either the task finishes or
is interrupted by the release timer. The scheduler makes a scheduling decision on each
invocation.

In summary, the software and hardware of the multi-tasking system are modeled
in significant detail. In particular, the scheduler overhead, both in terms of processor cycles
and power consumption, is included by virtue of executing it like any other task. The

simulator uses the generic power model, as well as the Wattch power model.

6.2.5 Experiment 2a: Performance of FAST-DVS schemes with the Event-

Based Simulator

To evaluate the different FAST-DVS and DVS schemes, several tasksets were
formed using the cnt, srt, mm, adpcm, fft and Ims benchmarks. Three groups were formed
as follows - G1: cnt, srt, mm (all integer), G2:adpcm, fft, lms (all floating point) and G3:cnt,
mm, fft, Ims (mixed). Periods were chosen for each benchmark, and from each group two
tasksets are created — one with high utilization, and one with low utilization. The high
utilization tasksets have a utilization of approximately 0.9 while the low utilization tasksets
have a utilization of approximately 0.5.

The tasksets were executed on Simulator 1 (event-based simulator) using the dif-
ferent scheduling algorithms. The power consumed by the tasksets for each scheduling

algorithm were noted.

6.2.6 Results for FAST-DVS Schemes with the Event-Based Simulator

Figures 6.2(a) to 6.2(f) show the Energy for all the DVS schemes normalized to the
base EDF scheme for all six tasksets. The figures show a decrease in power consumption for
all the FAST-DVS schemes when compared to the original RT-DV'S schemes. The first, third
and fifth bars in the graphs show the energy consumption for the original RT-DVS schemes.
The second, fourth and sixth bars in the graphs show the improved energy consumption for

the FAST-DVS schemes. Note that the generic energy model is used to obtain results.

33

For the integer taskset G1, savings are considerable (excess of 50%) between the
original scheme and the corresponding FAST scheme for the static and cycle-conserving
approaches (Figures 6.2(a) and 6.2(b)). The look-ahead scheme shows none or only marginal
savings under FAST for high and lower utilizations, respectively. This is caused by fact that
the FAST look-ahead scheme runs the taskset at a lower frequency and has to recover by
raising the frequency more often than the original look-ahead scheme.

The results are also sensitive to the task set, as a comparison with the floating-point
taskset G2 shows. Figures 6.2(c) and 6.2(d) indicate that G2 still experiences considerable
savings for high utilizations — and slightly lower ones for lower utilizations — under the
corresponding FAST scheme. In case of G2, savings for the static and cycle-conserving
schemes are even higher. The results for the integer/floating point mix of G3 in Figures
6.2(e) and 6.2(f) show savings at levels between the G1 and G2 tasksets for static and cycle-
conserving schemes. The look-ahead version of FAST results in less significant savings,
mostly due to already very aggressive savings due to the original look-ahead scheme.

All results depend on the FAST equation for the benchmarks. The scalability
of the WCET depends on the number of misses counted during timing analysis. Due to a
worst-case analysis, the number of misses are usually highly exaggerated, especially for data
caches. This means that the original schemes are penalized heavily due to their assumptions
about scaling the WCET. Using the FAST equations, the DVS schemes can improve the
tightness of the WCET, which is already highly exaggerated, thereby improving energy
consumption.

Overall, FAST equations with the RT-DVS schemes are more greedy and results
in lower frequencies. The relative energy benefits are highest in the static RT-DVS scheme
because it has the most scope for improvement. The cycle conserving and the look-ahead
RT-DVS schemes are dynamic schemes and already scale the frequency aggressively. The
addition of the FAST equations to these aggressive schemes enables them to scale the
frequency even more aggressively, showing lower energy consumption. Hence, benefits for

FAST are being observed in all cases.

34

6.2.7 Experiment 2b: Performance of FAST-DVS schemes with the Ar-

chitectural Simulator

The tasksets used for this experiment are the same as those described in section
6.2.5. The three tasksets G1, G2 and G3 with a high and a low utilization were executed on
Simulator 2 (architectural simulator) using the different scheduling algorithms. The power

consumed by the tasksets for each scheduling algorithm were noted.

6.2.8 Results for FAST-DVS Schemes with the Architectural Simulator

Figures 6.3(a) to 6.3(f) show the Energy for all the DVS schemes normalized to
the base EDF scheme for all six tasksets. The figures show a decrease in power consumption
for all the FAST-DVS schemes when compared to the original RT-DVS schemes. Note that
the generic energy model and the Wattch power model are used to obtain results.The first,
third and fifth set of bars in the graphs show the energy consumption for the original RT-
DVS schemes. The second, fourth and sixth bars in the graphs show the improved energy
consumption for the FAST-DVS schemes.

The results obtained differ from those from the Event-Based Simulator but show
a similar trend. The Normalized values for energy are higher, but the difference between
the performance of the original and the FAST schemes is promising.

The difference between the original and FAST version of the static scheme is
between 30% to 55%. The normalized values for the generic energy model and the Wattch
model are different, but show a similar trend of energy savings.

The original cycle conserving scheme is an aggressive dynamic scheme. The FAST
cycle conserving scheme improves the original scheme by providing extra savings between
16% to 38%.

The look-ahead scheme is the most aggressive RT-DVS scheme and the energy
savings observed are between -4% and 9%. It must be noted that usually, the FAST look-
ahead scheme runs at a lower frequency, but due to the aggressive nature of the algorithm,
it has to recover at a higher frequency as compared to the original scheme. Due to the
quadratic nature of the Energy-frequency relation.

As observed for section 6.2.5 the results are also sensitive to the task set. All
results depend on the FAST equation for the benchmarks. Overall, FAST equations with

the RT-DVS schemes are more greedy and results in lower frequencies. The energy benefits

35

observed are different for the different energy models, but show a similar trend. The relative
energy benefits are highest in the static RT-DVS scheme because it has the most scope for
improvement. The cycle conserving and the look-ahead RT-DVS schemes are dynamic
schemes and already scale the frequency aggressively. The addition of the FAST equations
to these aggressive schemes enables them to scale the frequency even more aggressively,
showing lower energy consumption. Hence, benefits for FAST are being observed in all

cases.

Energy normalized to base EDF Energy normalized to base EDF

Energy normalized to base EDF

0.35
LL
0.3 [a)]
L
b
0.25 ©
o
o
-
0.2 -
Q
N
©
0.15
€
=
2
0.1
>
(=
=
(3]
0.05 =t
L
: B = =
Static RT- FAST Static Cycle FAST Cycle Look-ahead ~ FAST Look-
DvVS RT-DVS Conserving Conserving RT-DVS ahead RT-
RT-DVS RT-DVS Dvs
DVS-EDF Schemes
(a) Taskset G1 with utilization 0.9
0.6
LL
05 B
()
%]
©
0.4 o
[=]
=
°
(9]
03 N
<
€
=
0.2 o
=
>
o
@
0.1 =
L
0 ‘ ‘ _ I
Static RT- FAST Static Cycle FAST Cycle Look-ahead FAST Look-
Dvs RT-DVS Conserving ~ Conserving RT-DVS ahead RT-
RT-DVS RT-DVS Dvs
DVS-EDF Schemes
(c) Taskset G2 with utilization 0.9
0.4
0.35 a
[T}
[}
03 @
[
e
0.25 9
°
[}
02 N
<
0.15 g
o
c
>
0.1 >
=
()
0.05 LICJ
0 1
Static RT- FAST Static Cycle FAST Cycle Look-ahead FAST Look-
DVs RT-DVS Conserving Conserving RT-DVS ahead RT-
RT-DVS RT-DVS Dvs

DVS-EDF Schemes

(e) Taskset G3 with utilization 0.9

0.12

0.1

0.08

0.06

0.04

0.02

o

0.18

0.16

0.14

0.12

0.1

0.08

0.04

0.02

o

0.12

36

...

Static RT- FAST Static Cycle FAST Cycle Look-ahead ~ FAST Look-
Dvs RT-DVS Conserving Conserving RT-DVS ahead RT-
RT-DVS RT-DVS Dvs

DVS-EDF Schemes

(b) Taskset G1 with utilization 0.5

B =l N

Static RT- FAST Static Cycle FAST Cycle Look-ahead FAST Look-
Dvs RT-DVS Conserving Conserving RT-DVS ahead RT-
RT-DVS RT-DVS DVS

DVS-EDF Schemes

(d) Taskset G2 with utilization 0.5

0.1

0.06

0.04

.I---_

Static RT- FAST Static Cycle FAST Cycle Look-ahead FAST Look-
Dvs RT-DVS Conserving Conserving RT-DVS ahead RT-
RT-DVS RT-DVS DVs

DVS-EDF Schemes

(f) Taskset G3 with utilization 0.5

Figure 6.2: Exp 2a: Energy Normalized to Base EDF for Various Task Sets

@Wattch model
VA2f model

Energy normalized to base EDF
by

0.40
0.30
0.20
0.10
0.00

Static RT- FAST Static Cycle FAST Cycle Look-ahead FAST Look-

Dvs RT-DVS Conserving Conserving RT-DVS ahead RT-

RT-DVS RT-DVS DvVs
DVS-EDF Schemes
(a) Taskset G1 with utilization 0.9

1.00

@ Wattch model
0.0

| VA2f model

Energy normalized to base EDF
o

0.40
0.30
020
0.10
0.00
Static RT- FAST Static Cycle FAST Cycle Look-ahead FAST Look-
DvS RT-DVS Conserving Conserving RT-DVS ahead RT-
RT-DVS RT-DVS Dvs
DVS-EDF Schemes
(c) Taskset G2 with utilization 0.9
0.60

Wattch model
VA2f model

o
1
8

o
x
3

o
o
S

Energy normalized to base EDF

0.00
Static RT- FAST Static Cycle FAST Cycle Look-ahead FAST Look-
Dvs RT-DVS Conserving Conserving RT-DVS ahead RT-
RT-DVS RT-DVS Dvs

DVS-EDF Schemes

(e) Taskset G3 with utilization 0.9

Energy normalized to base EDF

Energy normalized to base EDF
oo o o o o
3 a 8 &8 8 %

Energy normalized to base EDF

37

o
@
3

@ Wattch model
"2f model

o
~
&

0.40

0.05 +
0.00
Static RT- FAST Static Cycle FAST Cycle Look-ahead FAST Look-
Dvs RT-DVS Conserving Conserving RT-DVS ahead RT-
RT-DVS RT-DVS DvVs
DVS-EDF Schemes
(b) Taskset G1 with utilization 0.5
0.60

o
@
3

o
=
8

o
N
3

o
5

0.00 ~+
Static RT- FAST Static Cycle FAST Cycle Look-ahead FAST Look-
DVS RT-DVS Conserving Conserving RT-DVS ahead RT-
RT-DVS RT-DVS Dvs
DVS-EDF Schemes
(d) Taskset G2 with utilization 0.5
0.45
@ Wattch model
040 A2f model
0.35 +
0.30
0.25
0.20 +
0.15
0.10
0.05
0.00 +
Static RT- FAST Static Cycle FAST Cycle Look-ahead FAST Look-
DVs RT-DVS Conserving Conserving RT-DVS ahead RT-
RT-DVS RT-DVS DvVs

DVS-EDF Schemes

(f) Taskset G3 with utilization 0.5

Figure 6.3: Exp 2b: Energy Normalized to Base EDF for Various Task Sets

38

Chapter 7

Related Work

This chapter describes prior work in timing analysis for real-time applications and
DVS scheduling algorithms.

Recently, a number of research groups have addressed various issues in the area
of predicting the worst-case execution time (WCET) of real-time programs. Conventional
methods for static analysis have been extended from unoptimized programs on simple CISC
processors to optimized programs on pipelined RISC processors, and from uncached archi-
tectures to instruction and data caches [26, 21, 16, 25, 33, 20]. All these methods obtain
discrete values to bound the WCET in a non-parametric fashion.

Vivancos et al. describe techniques for addressing static timing analysis for vari-
able loop bounds [31]. The so-called parametric timing analysis allows dynamic schedulers
to re-assess the WCET based on dynamically determined loop bounds during program exe-
cution. Chapman et al. [11] used path expressions to combine a source-oriented parametric
approach of WCET analysis with timing annotations, verifying the latter through the for-
mer. Bernat and Burns also proposed using algebraic expressions to represent the WCET of
subprograms, where the algebraic expression is parameterized by some of the subprogram’s
parameters [5]. These approaches differ in that they address fundamental problems in
static timing analysis. The FAST approach, in contrast, aims at isolating execution effects
as a function of the processor frequency, a unique, unprecedented approach complementing
existing work on static timing analysis.

The research also discusses the effects of DVS on timing analysis. To the best of

my knowledge, this study of DVS effects on timing analysis is unprecedented.

39

Chapter 8

Conclusions and Future Work

In this work, novel techniques for tight and flexible static timing analysis were
developed most suitable — but not restricted to — dynamic scheduling schemes. The essence
of the approach lies in providing frequency-aware bounds on the WCET through static
timing analysis. Using a frequency-sensitive parametric model, the effect of combined
DFS/DVS on the WCEC can be captured and, thus, accurately model the WCET over
any frequency range. These techniques are implemented in a frequency-aware static timing
analysis (FAST) tool leveraging prior expertise on static timing analysis. Experiments show
the capability of FAST to derive safe upper bounds on the WCET, which are almost as
tight (within 1%) as conventional, non-parametric timing analysis. FAST equations can
also be used to improve existing DVS scheduling schemes to ensure that the effect of fre-
quency scaling on WCET is considered and that the WCET used is not exaggerated. This
is demonstrated by incorporating FAST into three DVS scheduling schemes. Results indi-
cate significant energy savings over the base DVS schedulers due to FAST. The FAST-DVS
schemes depend on the number of memory accesses in the program, the latency of the

memory and the accuracy of the worst-case memory access analysis.

40

Bibliography

1]

8]

A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and F. Mueller. Virtual simple
architecture (VISA): Exceeding the complexity limit in safe real-time systems. In

International Symposium on Computer Architecture, pages 250-261, June 2003.

R. Arnold, F. Mueller, D. B. Whalley, and M. Harmon. Bounding worst-case instruction
cache performance. In IEEFE Real-Time Systems Symposium, pages 172—181, December
1994.

H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Dynamic and agressive schedul-
ing techniques for power-aware real-time systems. In IEEE Real-Time Systems Sym-

posium, December 2001.

M. E. Benitez and J. W. Davidson. A portable global optimizer and linker. In ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
329-338, June 1988.

G. Bernat and A. Burns. An approach to symbolic worst-case execution time analysis.

In 25th IFAC Workshop on Real-Time Programming, May 2000.

David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. In Proceedings of the 27th Annual
International Symposium on Computer Architecture, pages 83-94, Vancouver, British

Columbia, June 2000. IEEE Computer Society and ACM SIGARCH.

Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating future microprocessors:
The simplescalar tool set. Technical Report CS-TR-1996-1308, University of Wisconsin,
Madison, July 1996.

Giorgio C. Buttazzo. Hard Real-Time Computing Systems. Kluwer, 1997.

[9]

[10]

[11]

[14]

[16]

[17]

[18]

[19]

41

C-Lab. Wecet benchmarks. Available from http://www.c-
lab.de/home/en/download.html.

A.P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-power cmos digital design.
In IEEE Journal of Solid-State Circuits, Vol. 27, pp. 473-484., April, 1992.

R. Chapman, A. Burns, and A. Wellings. Combining static worst-case timing analysis

and program proof. Real-Time Systems, 11(2):145-171, 1996.

H. Chetto and M. Chetto. Some results of the earliest deadline scheduling algorithm.
IEEE Transactions on Software Engineering, 15(10):1261-1269, October 1989.

A. Dudani, F. Mueller, and Y. Zhu. Energy-conserving feedback edf scheduling for
embedded systems with real-time constraints. In ACM SIGPLAN Joint Conference
Languages, Compilers, and Tools for Embedded Systems (LCTES’02) and Software
and Compilers for Embedded Systems (SCOPES’02), pages 213-222, June 2002.

F. Gruian. Hard real-time scheduling for low energy using stochastic data and dvs
processors. In Proceedings of the International Symposium on Low-Power Electronics

and Design ISLPED’01, Aug 2001.

C. A. Healy, R. D. Arnold, F. Mueller, D. Whalley, and M. G. Harmon. Bound-
ing pipeline and instruction cache performance. IFEE Transactions on Computers,

48(1):53-70, January 1999.

C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrating the timing analysis of
pipelining and instruction caching. In IEEE Real-Time Systems Symposium, pages
288-297, December 1995.

Y. Hur, Y. H. Bae, S.-S. Lim, B.-D. Rhee, S. L. Min, C. Y. Park, M. Lee, H. Shin, and
C. S. Kim. Worst case timing analysis of RISC processors: R3000/R3010 case study.
In IEEE Real-Time Systems Symposium, pages 308-319, December 1995.

Intel. Intel XScale Microarchitecture Technical Summary, July 2000.

Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient microarchitecture modeling and path
analysis for real-time software. In IEFEE Real-Time Systems Symposium, pages 298—

397, December 1995.

[20]

[21]

[22]

[24]

[25]

[26]

42

Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software: Beyond
direct mapped instruction caches. In IEEFE Real-Time Systems Symposium, pages 254—
263, December 1996.

S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y. Park, H. Shin, and C. S.
Kim. An accurate worst case timing analysis for RISC processors. In IEEFE Real-Time

Systems Symposium, pages 97-108, December 1994.

C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. J. of the Association for Computing Machinery, 20(1):46—61, January
1973.

T. Lundqvist and P. Stenstréom. An integrated path and timing analysis method based
on cycle-level symbolic execution. Real-Time Systems, 17(2/3):183-208, November
1999.

D. Mosse, H. Aydin, B. Childers, and R. Melhem. Compiler-assisted dynamic power-
aware scheduling for real-time applications. In Workshop on Compilers and Operating

Systems for Low Power, October 2000.

F. Mueller. Timing analysis for instruction caches. Real-Time Systems, 18(2/3):209—
239, May 2000.

C. Y. Park. Predicting program execution times by analyzing static and dynamic

program paths. Real-Time Systems, 5(1):31-61, March 1993.

P. Pillai and K. Shin. Real-time dynamic voltage scaling for low-power embedded

operating systems. In Symposium on Operating Systems Principles, 2001.

E. Rotenberg. Using variable-Mhz microprocessors to efficiently handle uncertainty in
real-time systems. In 34th International Symposium on Microarchitecture, pages 28 —

39, December 2001.

J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo. Deadline Scheduling for
Real-Time Systems. Kluwer, 1998.

H. Theiling and C. Ferdinand. Combining abstract interpretation and ilp for mi-
croarchitecture modelling and program path analysis. In IEEE Real-Time Systems

Symposium, pages 144-153, December 1998.

[31]

32]

43

E. Vivancos, C. Healy, F. Mueller, and D. Whalley. Parametric timing analysis. In
ACM SIGPLAN Workshop on Language, Compiler, and Tool Support for Embedded
Systems, August 2001.

J. Wegener and F. Mueller. A comparison of static analysis and evolutionary testing
for the verification of timing constraints. Real-Time Systems, 21(3):241-268, November
2001.

R. T. White, F. Mueller, C. Healy, D. Whalley, and M. G. Harmon. Timing analysis
for data and wrap-around fill caches. Real-Time Systems, 17(2/3):209-233, November
1999.

APPENDIX

44

45

APPENDIX

Modified Look-ahead DVS-EDF

A number of DVS schemes were proposed by Pillai and Shin for scheduling hard
real-time systems [27]. A simple, static scaling version uniformly scales the frequency for
all tasks based on utilization tests for schedulability, both for rate-monotone and EDF
scheduling. Cycle-conserving EDF lowers utilization upon task completion temporarily to
the proportion of the actual execution time. Look-ahead EDF is an extension to these
scheme that capitalizes on early task completion by deferring work for future tasks in favor
of scaling the current task. Scaling of the current task occurs based on a modified utilization
test that benefits from both idle slots and early task completion. At any completion (both
early and on time), the utilization is effectively reduced for the completing task (up until
its next release time).

Specifically, upon task completion, cc; = c_left; = 0 according to Cycle-Conserving
EDF and Look-ahead EDF, respectively. The defer calculations of Look-ahead EDF then
reassesses the utilization based on future and past deadlines for released and completed
tasks, respectively.

We modified the Look-ahead EDF by setting cleft; = C; at task completion
instead of assigning a zero value. In addition, we reassess the utilization strictly based on
the next deadline in the future, irregardless of whether tasks are already released and not.
This allows us to look ahead even further in the schedule and, thereby, potentially save
additional energy by lowering frequencies more aggressively, and it retains the safety of
the schedule by adhering to the EDF utilization test. If the WCET is not fully utilized,
then other tasks may still benefit from early completion up to the threshold given by the
idle times left in the schedule. This modified Look-ahead EDF scheme was implemented
in our comparison and is shown to result in up to 34% higher energy consumption than
the original scheme. On the average, the modified scheme consumes an additional 5-11%
of energy for utilizations between 25% and 100%. At high utilizations, our modification
occasionally requires between 0.5-8% more energy, which is due to considering an actual
time of cc; = 0 in the original scheme up to the next release of a task. Hence, it would be
possible to switch between the two schemes based on a utilization threshold as a trigger.

Additional savings over the modified scheme due to early completion can only be obtained

46

by considering the density of a schedule at some instance in time, such as given by the

maximal schedule utilized in our feedback EDF scheme.

