
ABSTRACT

WANG, CHAO. Transparent Fault Tolerance for Job Healing in HPC Environments.
(Under the direction of Associate Professor Frank Mueller).

As the number of nodes in high-performance computing environments keeps in-

creasing, faults are becoming common place causing losses in intermediate results of HPC

jobs. Furthermore, storage systems providing job input data have been shown to consis-

tently rank as the primary source of system failures leading to data unavailability and job

resubmissions.

This dissertation presents a combination of multiple fault tolerance techniques

that realize significant advances in fault resilience of HPC jobs. The efforts encompass two

broad areas.

First, at the job level, novel, scalable mechanisms are built in support of proactive

FT and to significantly enhance reactive FT. The contributions of this dissertation in this

area are (1) a transparent job pause mechanism, which allows a job to pause when a process

fails and prevents it from having to re-enter the job queue; (2) a proactive fault-tolerant

approach that combines process-level live migration with health monitoring to complement

reactive with proactive FT and to reduce the number of checkpoints when a majority of the

faults can be handled proactively; (3) a novel back migration approach to eliminate load

imbalance or bottlenecks caused by migrated tasks; and (4) an incremental checkpointing

mechanism, which is combined with full checkpoints to explore the potential of reducing the

overhead of checkpointing by performing fewer full checkpoints interspersed with multiple

smaller incremental checkpoints.

Second, for the job input data, transparent techniques are provided to improve the

reliability, availability and performance of HPC I/O systems. In this area, the dissertation

contributes (1) a mechanism for offline job input data reconstruction to ensure availability

of job input data and to improve center-wide performance at no cost to job owners; (2)

an approach to automatic recover job input data at run-time during failures by recovering

staged data from an original source; and (3) “just in time” replication of job input data so

as to maximize the use of supercomputer cycles.

Experimental results demonstrate the value of these advanced fault tolerance tech-

niques to increase fault resilience in HPC environments.

Transparent Fault Tolerance for Job Healing in HPC Environments

by
Chao Wang

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fullfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2009

APPROVED BY:

Dr. Vincent W. Freeh Dr. Yan Solihin
substituted by

Dr. Nagiza Samatova

Dr. Frank Mueller Dr. Xiaosong Ma
Chair of Advisory Committee

ii

DEDICATION

To my parents,

my wife, Ying, and our child, William.

iii

BIOGRAPHY

Chao Wang grew up in Jiangsu, China. He received his Bachelor of Science degree in

Computer Science from Fudan University at Shanghai, China in 1998, and his Master of

Science degree in Computer Science from Tsinghua University at Beijing, China in 2001.

He then worked at Lucent Bell-labs as a researcher for two years, after which he worked at

Cluster File System Inc. as a senior system engineer for another two years.

Chao came to the North Carolina State University in Fall 2005. With the defense

of this dissertation, he will receive a PhD degree in Computer Science from North Carolina

State University in Summer 2009.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank Dr. Frank Mueller, my advisor, for his guidance,

support and patience both personally and professionally. I am also indebted to Dr. Xiaosong

Ma, Dr. Vincent Freeh, Dr. Yan Solihin and Dr. Nagiza Samatova for serving on my

advisory committee.

I would also like to thank Dr. Xiaosong Ma, Dr. Sudharshan Vazhkudai, Dr.

Stephen L. Scott and Dr. Christian Engelmann for their guidance in the process of working

with the collaborative research projects. Especially, I am obliged to Zhe Zhang for his

contributions on the initial work of the offline recovery of job input data, his assistance

in the experiments for recovery of job input data and his work on the simulations of fault

tolerance techniques for job input data. I also would like to thank Paul H. Hargrove from

Lawrence Berkeley National Laboratory for his valuable help on some of the technical details

of BLCR.

Finally, I want to thank my wife, Ying Zheng, for her endless support to me

through my doctoral studies.

v

TABLE OF CONTENTS

LIST OF TABLES. ix

LIST OF FIGURES . x

1 Introduction . 1
1.1 Background . 2

1.1.1 Foundations of HPC and the MPI Standard 2
1.1.2 Multi-level Storage and I/O in HPC Environments 3
1.1.3 Fault Resilience of HPC Jobs . 5

1.2 Motivation . 5
1.3 Contributions of this Dissertation . 7

1.3.1 Reactive and Proactive FT for MPI Jobs 7
1.3.2 FT for Job Input Data . 10

1.4 Dissertation Outline . 13

2 A Job Pause Service under LAM/MPI+BLCR . 14
2.1 Introduction . 14
2.2 Design . 16

2.2.1 Group Communication Framework and Fault Detector 17
2.2.2 Internal Schedule Mechanism in LAM/MPI 18
2.2.3 Job-pause . 19
2.2.4 Process Migration . 20

2.3 Implementation Details . 21
2.3.1 Group Communication Framework and Fault Detector 21
2.3.2 Internal Schedule Mechanism in LAM/MPI 21
2.3.3 Job-pause . 23
2.3.4 Process Migration . 24

2.4 Experimental Framework . 25
2.5 Experimental Results . 26

2.5.1 Checkpointing Overhead . 26
2.5.2 Overhead of Job Pause . 30
2.5.3 Membership/Scheduler Performance 31
2.5.4 Job Migration Overhead . 31

2.6 Conclusion . 33

3 Proactive Process-level Live Migration . 35
3.1 Introduction . 35
3.2 Design . 37

3.2.1 Live Migration at the Job Level . 37

vi

3.2.2 Live Migration at the Process Level 40
3.2.3 Memory Management . 42

3.3 Implementation . 43
3.3.1 Failure Prediction and Decentralized Scheduler 43
3.3.2 Process-Level Support for Live Migration 44
3.3.3 Job Communication and Coordination Mechanism for Live Migration 47

3.4 Experimental Framework . 48
3.5 Experimental Results . 49

3.5.1 Migration Overhead . 49
3.5.2 Migration Duration . 51
3.5.3 Effect of Problem Scaling . 53
3.5.4 Effect of Task Scaling . 53
3.5.5 Page Access Pattern & Iterative Live Migration 54
3.5.6 Process-Level Live Migration vs. Xen Virtualization Live Migration 55
3.5.7 Proactive FT Complements Reactive FT 56

3.6 Conclusion . 57

4 Process-level Back Migration . 58
4.1 Introduction . 58
4.2 Design . 58
4.3 Implementation . 59
4.4 Experimental Results . 60
4.5 Conclusion . 61

5 Hybrid Full/Incremental Checkpoint/Restart . 64
5.1 Introduction . 64
5.2 Design . 65

5.2.1 Scheduler . 66
5.2.2 Incremental Checkpointing at the Job Level 66
5.2.3 Incremental Checkpointing at the Process Level 67
5.2.4 Modified Memory Page Management 70
5.2.5 MPI Job Restart from Full+Incremental Checkpoints 70

5.3 Implementation Issues . 71
5.3.1 Full/Incremental Checkpointing at the Job Level 71
5.3.2 Full/Incremental Checkpointing at the Process Level 71
5.3.3 Restart from Full+Incremental Checkpoints at Job and Process Levels 72

5.4 Experimental Framework . 72
5.5 Experimental Results . 73

5.5.1 Checkpointing Overhead . 73
5.5.2 Checkpointing File Size . 75
5.5.3 Restart Overhead . 78
5.5.4 Benefit of Hybrid Full/Incremental C/R Mechanism 79

5.6 Conclusion . 81

vii

6 Offline Reconstruction of Job Input Data . 83
6.1 Introduction . 83
6.2 Architecture . 84

6.2.1 Metadata: Recovery Hints . 84
6.2.2 Data Reconstruction Architecture 85

6.3 Experimental Setup . 87
6.4 Performance of Transparent Input Data Reconstruction 88
6.5 Conclusion . 93

7 On-the-fly Recovery of Job Input Data . 94
7.1 Introduction . 94
7.2 On-the-fly Recovery . 96

7.2.1 Architectural Design . 97
7.2.2 Automatic Capture of Recovery Metadata 97
7.2.3 Impact on Center and User . 98

7.3 Implementation . 99
7.3.1 Phase 1: PFS Configuration and Metadata Setup 100
7.3.2 Phase 2: Storage Failure Detection at Compute Nodes 101
7.3.3 Phase 3: Synchronization between Compute and Head Nodes 101
7.3.4 Phase 4: Data Reconstruction . 104

7.4 Experimental Framework . 105
7.5 Experimental Results . 105

7.5.1 Performance of Matrix Multiplication 105
7.5.2 Performance of mpiBLAST . 107

7.6 Conclusion . 108

8 Temporal Replication of Job Input Data . 109
8.1 Introduction . 109
8.2 Temporal Replication Design . 111

8.2.1 Justification and Design Rationale 112
8.2.2 Delayed Replica Creation . 114
8.2.3 Eager Replica Removal . 116

8.3 Implementation Issues . 116
8.4 Experimental Results . 118

8.4.1 Failure Detection and Offline Recovery 118
8.4.2 Online Recovery . 119

8.5 Conclusion . 121

9 Related Work . 122
9.1 Fault Tolerance Techniques for MPI Jobs 122
9.2 Fault Tolerance Techniques for Job Input Data 127

viii

10 Conclusion . 130
10.1 Contributions . 130
10.2 Future Work . 132

Bibliography . 135

ix

LIST OF TABLES

Table 1.1 Reliability of HPC Clusters . 1

Table 2.1 Size of Checkpoint Files [MB] . 28

Table 4.1 Minimal Time Steps (Percentage) Remained to Benefit from Back Migration 61

Table 5.1 Savings by Incremental Checkpoint vs. Overhead on Restart 81

Table 8.1 Configurations of top five supercomputers as of 06/2008 . 112

x

LIST OF FIGURES

Figure 1.1 Event timeline of a typical MPI job’s data life-cycle . 4

Figure 2.1 Pause & Migrate vs. Full Restart . 15

Figure 2.2 Job Pause and Migrate Mechanism . 16

Figure 2.3 Group Membership and Scheduler . 22

Figure 2.4 BLCR with Pause in Bold Frame . 23

Figure 2.5 Single Checkpoint on 4 Nodes . 27

Figure 2.6 Single Checkpoint on 8 Nodes . 27

Figure 2.7 Single Checkpoint on 16 Nodes . 28

Figure 2.8 Single Checkpoint Overhead . 29

Figure 2.9 Single Checkpoint Time . 30

Figure 2.10 Pause and Migrate on 4 Nodes . 32

Figure 2.11 Pause and Migrate on 8 Nodes . 32

Figure 2.12 Pause and Migrate on 16 Nodes. 33

Figure 3.1 Job Live Migration . 38

Figure 3.2 Process Migration with Precopy (Kernel Mode in Dotted Frame). 41

Figure 3.3 Process Migration without Precopy (Kernel Mode in Dotted Frame) 42

Figure 3.4 Evaluation with NPB (C-16: Class C on 16 Nodes) . 50

Figure 3.5 Page Access Pattern vs. Iterative Live Migration . 52

Figure 4.1 NPB Results for Back Migration (C-16: Class C on 16 Nodes) 63

Figure 5.1 Hybrid Full/Incremental C/R Mechanism vs. Full C/R . 65

xi

Figure 5.2 Incremental Checkpoint at LAM/MPI . 67

Figure 5.3 BLCR with Incremental Checkpoint in Bold Frame . 68

Figure 5.4 Structure of Checkpoint Files . 69

Figure 5.5 Fast Restart from Full/Incremental Checkpoints . 70

Figure 5.6 Full Checkpoint Overhead of NPB Class D and mpiBLAST . 74

Figure 5.7 Evaluation with NPB Class C on 4, 8/9, and 16 Nodes . 75

Figure 5.8 Evaluation with NPB Class D . 76

Figure 5.9 Evaluation with NPB EP Class C/D/E on 4, 8 and 16 nodes. 77

Figure 5.10 Evaluation with mpiBLAST . 78

Figure 5.11 Savings of Hybrid Full/Incremental C/R Mechanism for NPB and mpiBlast on 16 Nodes 80

Figure 6.1 Cost of finding failed OSTs . 89

Figure 6.2 Round-robin striping over 4 OSTs . 90

Figure 6.3 Patching costs for single OST failure from a stripe count 32. Filesize/32 is
stored on each OST and that is the amount of data patched. Also shown is the cost
of staging the entire file again, instead of just patching a single OST worth of data. 90

Figure 6.4 Patching from local NFS. Stripe count increases with file size. One OST
fails and its data is patched. 92

Figure 6.5 Patching costs with stripe size 4MB . 92

Figure 7.1 Architecture of on-the-fly recovery . 98

Figure 7.2 Steps for on-the-fly recovery . 100

Figure 7.3 File reconstruction. 103

Figure 7.4 Matrix multiplication recovery overhead . 104

Figure 7.5 mpiBLAST performance . 105

Figure 8.1 Event timeline with ideal and implemented replication intervals 110

xii

Figure 8.2 Per-node memory usage from 300 uniformly sampled time points over a 30-
day period based on job logs from the ORNL Jaguar system. For each time point,
the total memory usage is the sum of peak memory used by all jobs in question. 114

Figure 8.3 Objects of an original job input file and its replica. A failure occurred to
OST1, which caused accesses to the affected object to be redirected to their replicas
on OST5, with replica regeneration on OST8. 115

Figure 8.4 Offline replica reconstruction cost with varied file size . 119

Figure 8.5 MM recovery overhead vs. replica reconstruction cost . 119

Figure 8.6 Recovery overhead of mpiBLAST . 121

1

Chapter 1

Introduction

Recent progress in high-performance computing (HPC) has resulted in remark-

able Terascale systems with 10,000s or even 100,000s of processors. At such large counts

of compute nodes, faults are becoming common place. Reliability data of contemporary

systems illustrates that the mean time between failures (MTBF) / interrupts (MTBI) is in

the range of 6.5-40 hours depending on the maturity / age of the installation [1]. Table

1.1 presents an excerpt from a recent study by Department of Energy (DOE) researchers

that summarizes the reliability of several state-of-the-art supercomputers and distributed

computing systems [2, 3]. The most common causes of failure are processor, memory and

Table 1.1: Reliability of HPC Clusters
System # Cores MTBF/I Outage source
ASCI Q 8,192 6.5 hrs Storage, CPU

ASCI White 8,192 40 hrs Storage, CPU
PSC Lemieux 3,016 6.5 hrs

Google 15,000 20 reboots/day Storage, memory
Jaguar@ORNL 23,416 37.5 hrs Storage, memory

storage errors / failures. When extrapolating for current systems in such a context, the

MTBF for peta-scale systems is predicted to be as short as 1.25 hours [4].

Furthermore, data and input/output (I/O) availability are integral to providing

non-stop, continuous computing capabilities to MPI (Message Passing Interface) applica-

tions. Table 1.1 indicates that the storage subsystem is consistently one of the primary

sources of failure on large supercomputers. This situation is only likely to worsen in the

2

near future due to the growing relative size of the storage system forced by two trends:

(1) disk performance increases slower than that of CPUs and (2) users’ data needs grow

faster than does the available compute power [5]. A survey of DOE applications suggests

that most applications require a sustained 1 GB/sec I/O throughput for every TeraFlop

of peak computing performance. Thus, a PetaFlop computer will require 1 TB/sec of I/O

bandwidth. The Roadrunner system at the Los Alamos National Laboratory, which was

the world’s fastest supercomputer on the top500 list in June of 2008 and the first to break

the PetaFlop barrier, has 216 I/O nodes attaching 2048 TB of storage space [6]. An I/O

subsystem of this size makes a large parallel machine itself and is subject to very frequent

failures.

To prevent valuable computation to be lost due to failures, fault tolerance (FT)

techniques must be provided to ensure that HPC jobs can make progress in the presence of

failures.

1.1 Background

This section provides background information required for the topic of this disser-

tation. Section 1.1.1 briefly describes the foundations of HPC, as well as the MPI standard

that is widely used for applications running in HPC environment. Section 2.2 introduces

the storage hierarchies and I/O in most modern HPC systems. Section 2.3 describes fault

resilience of HPC jobs and various solutions.

1.1.1 Foundations of HPC and the MPI Standard

The term “high-performance computing (HPC)” is closely related to the term

“supercomputing”. Though they are sometimes used interchangeably, supercomputing is

a more powerful subset of HPC. HPC also includes computer clusters, a group of linked

computers, working together as a single compute facility. HPC is widely used to solve

advanced computational problems, such as problems involving weather forecasting, climate

research, molecular modeling, physical simulations, and so on. Today, computer systems

approaching the teraflops-region are counted as HPC-computers.

The TOP500 project [6] ranks the world’s 500 most powerful HPC systems. The

TOP500 list is updated twice a year, once in June at the International Supercomputer

3

Conference and again at the IEEE Super Computer Conference in the USA in November.

As of June 2009, the fastest heterogeneous machine is the Cell/AMD Opteron-based IBM

Roadrunner at the Los Alamos National Laboratory (LANL), which consists of a cluster of

3240 computers, each with 40 processing cores, and includes both AMD and Cell processors.

It was announced as the fastest operational supercomputer, with a rate of 1.105 PFLOPS

in June 2008.

Special programming techniques are required to exploit the parallel architectures

of HPC computers. MPI is one such techniques and widely used in HPC environments. MPI

targets high performance, scalability, and portability, which made it the de facto standard

for jobs running on HPC systems, and it remains the dominant model used in HPC today.

Currently, there are two popular versions of the standard: MPI-1 [7] (which emphasizes

message passing and has a static runtime environment), and MPI-2 [8] (which includes new

features, such as parallel I/O, dynamic process management and remote memory opera-

tions). Furthermore, the MPI forum is currently working on MPI-3.

There are numerous implementations of MPI, such as MPICH [9] from Argonne

National Laboratory and Mississippi State University and LAM/MPI [10] from the Ohio

Supercomputing Center. LAM/MPI and a number of other MPI efforts recently merged to

form a combined project, Open MPI [11]. Furthermore, OpenMP [12] is another model for

parallel programming and used for tightly coordinated shared memory machines while MPI

is commonly used for loosely connected clusters. OpenMP divides a task and parallelizes

it among different threads, which run concurrently on different processors/cores. MPI and

OpenMP can be used in conjunction with each other to write hybrid code.

1.1.2 Multi-level Storage and I/O in HPC Environments

Figure 1.1 gives an overview of an event timeline describing a typical supercom-

puting job’s data life-cycle. Users stage their job input data from elsewhere to the scratch

space, submit their jobs using a batch script, and offload the output files to archival systems

or local clusters.

Here, we can divide the storage system into four levels:

1. Primary storage is the memory of the compute nodes. Main memory is directly or

indirectly connected to the CPU of compute node via a memory bus. The I/O device

4

Scratch Space

Parallel I/O

Compute Nodes

job script

/home
Batch Job Queue

Archival System

ftp/scp
output
files

input
files

Time

Input
Staging

Job
Submission

Job
Dispatch

Input
Completion

Output
Completion

Job
Completion

Output
Offload Purge

1
2

3

4

5 7

8

6

...

1 2 5 6 7 843

Figure 1.1: Event timeline of a typical MPI job’s data life-cycle

at this level is actually comprised of two memory buses: an address bus and a data

bus.

2. Secondary storage is the local disk of compute node. It is not directly accessible

by the CPU. I/O channels are used by the compute node to access secondary storage.

However, some HPC systems, such as BG/L, have no local disk.

3. The scratch space of an HPC system is a storage subsystem. It is managed by a

parallel file system, such as Lustre, and is connected to the compute node (clients of

the PFS) through I/O nodes and network connections.

4. The archival system, also known as disconnected storage, is used to backup data.

The archival system increases general information security, since it is unaffected by the

failure of compute nodes and cannot be affected by computer-based security attacks.

Also, archival systems are less expensive than scratch space storage. The I/O between

the compute systems and the archival systems is typically through network transfer

protocols, such as ftp and scp, intervened by human beings or system schedulers

through job scripts.

HPC systems consume and produce massive amounts of data in a short time, which

turns the compute-bound problems into an I/O-bound problem. However, HPC storage

systems are becoming severe bottlenecks in current extreme-scale supercomputers in both

reliability and performance. First of all, storage systems consistently rank as the primary

source of system failures, as depicted in Table 1.1. Second, I/O performance is lagging

5

behind. Much work on the multi-level storage and I/O in HPC environments is needed to

ensure that the data can be transferred, stored and retrieved quickly and correctly.

1.1.3 Fault Resilience of HPC Jobs

The size of the world’s fastest HPC systems has increased from current tera-scale to

next-generation peta-scale. Failures are likely to be more frequent as the system reliability

decreases with the substantial growth in system scale. This poses a challenge for HPC

jobs with respect to fault tolerance and resilience. However, even though it is widely used

for parallel applications running on HPC system, MPI does not explicitly support fault

tolerance.

Resilience mechanisms include fault prevention, detection and recovery, both re-

actively and proactively. At the system level, many approaches have been developed for

fault resilience, such as RAID [13], node/disk failover, and so on. At the job/application

level, some techniques, such as C/R, are deployed. The MPI forum is also working on FT

support in the MPI-3 standard. In this dissertation, we develop FT techniques at the job

level, including both process-level self-healing and job input data recovery.

1.2 Motivation

In today’s large-scale HPC environment, checkpoint/restart (C/R) mechanisms are

frequently deployed that periodically checkpoint the entire process image of all MPI tasks.

The wall-clock time of a 100-hour job could well increase to 251 hours due to the C/R

overhead of contemporary fault tolerant techniques implying that 60% of cycles are spent

on C/R alone [4]. However, only a subset of the process image changes between checkpoints.

In particular, large matrices that are only read but never written, which are common in

HPC codes, do not have to be checkpointed repeatedly. Coordinated checkpointing for MPI

jobs, a commonly deployed technique, requires all the MPI tasks to save their checkpoint

files at the same time, which leads to an extremely high I/O bandwidth demand. This C/R

mechanism also requires a complete restart upon a single node failure even if all the other

nodes are still alive. These problems are projected to increase as HPC has entered the

Petascale era. They require to be addressed through (1) reducing size of the checkpoint file

and overhead of the checkpoint operations and (2) avoiding a complete restart and retaining

6

execution of MPI jobs as nodes fail.

Meanwhile, these frequently deployed techniques to tolerate faults focus on reactive

schemes for recovery and generally rely on a simple C/R mechanism. Yet, they often do not

scale due to massive I/O bandwidth requirements of checkpointing, uninformed checkpoint

placements, and selection of sub-optimal checkpoint intervals. They also require that a new

job be submitted after a failure. Yet, some node failures can be anticipated by detecting a

deteriorating health status in todays systems. This knowledge can be exploited by proactive

FT to complement reactive FT such that checkpoint requirements are relaxed. Thus, to

develop novel, scalable mechanisms in support of proactive FT and to significantly enhance

reactive FT is not only possible but also necessary.

Furthermore, jobs generally need to read input data. Jobs are interrupted or rerun

if job input data is unavailable or lost. However, storage systems providing job input data

have been shown to consistently rank as the primary source of system failures, according

to logs from large-scale parallel computers and commercial data centers [2]. This trend is

only expected to continue as individual disk bandwidth grows much slower than the overall

supercomputer capacity. Therefore, the number of disk drives used in a supercomputer will

need to increase faster than the overall system size. It is predicted that by 2018, a system at

the top of the top500.org chart will have more than 800,000 disk drives with around 25,000

disk failures per year [14].

Thus, coping with failures for job input data is a key issue as we scale to Peta-

and Exa-flop supercomputers.

Hypothesis: The hypothesis of this dissertation is as follows:

By employing a combination of multiple fault tolerance techniques, significant
advances in fault resilience of HPC jobs can be realized through (1) graceful
recovery from faults through dynamic reassignment of work to spare nodes and
(2) input data recovery while jobs are queued or even executing.

In this dissertation, we demonstrate FT techniques in two broad areas. First,

at the job level, we build novel, scalable mechanisms in support of proactive FT and to

significantly enhance reactive FT.

Second, for the job input data, we provide offline recovery, online recovery, and

temporal replication to improve the reliability, availability and performance of HPC I/O

7

systems.

1.3 Contributions of this Dissertation

In the following, we present contributions in detail for both of the directions.

1.3.1 Reactive and Proactive FT for MPI Jobs

The first objective of this work is to alleviate limitations of current reactive FT

schemes through the following contributions:

1. We provide a transparent job pause mechanism within LAM (Local Area Multicom-

puter)/MPI+BLCR (Berkeley Labs C/R). This mechanism allows jobs to pause when

a process fails, with the failing process being restarted on another processor. This

prevents the job from having to re-enter the queue, i.e., the job simply continues its

execution from the last checkpoint.

2. An approach that combines process-level live migration with healthy monitoring was

provided for proactive fault-tolerant in HPC environments. It is imperative to have

such a proactive fault-tolerant middleware in that as the number nodes in a HPC

system increases the failure probability of the system increases and commonly de-

ployed reactive fault-tolerant techniques do not scale well due to their massive I/O

requirement. However, the intent is not to replace reactive fault-tolerant mechanisms,

such as checkpointing, but to complement them (using checkpointing as the last re-

sort). By complementing reactive with proactive FT at the process level, the approach

also reduces the number of checkpoints when a majority of the faults can be handled

proactively.

3. Our work also provides a novel back migration approach to eliminate load imbalance

or bottlenecks caused by migrated tasks. Experiments indicate that the larger the

amount of outstanding execution, the higher the benefit due to back migration will

be.

4. We develop an incremental checkpointing mechanism and combine it with full check-

point. We explore the possibility of reducing the overhead of checkpointing by period-

ically performing full checkpoints, separated by several incremental checkpoints. The

8

results show that the performance of the hybrid full/incremental C/R mechanism is

significantly lower than that of the original full mechanism.

Job Pause Service

C/R has become a requirement for long-running jobs in large-scale clusters due

to a mean-time-to-failure (MTTF) in the order of hours. After a failure, C/R mechanisms

generally require a complete restart of an MPI job from the last checkpoint. A complete

restart, however, is unnecessary since all nodes but one are typically still alive. Furthermore,

a restart may result in lengthy job requeuing even though the original job had not exceeded

its time quantum.

We overcome these shortcomings. Instead of job restart, we have developed a

transparent mechanism for job pause within LAM/MPI+BLCR. This mechanism allows

live nodes to remain active and roll back to the last checkpoint while failed nodes are dy-

namically replaced by spares before resuming from the last checkpoint. Our methodology

includes LAM/MPI enhancements in support of scalable group communication with fluctu-

ating number of nodes, reuse of network connections, transparent coordinated checkpoint

scheduling and a BLCR enhancement for job pause. Experiments in a cluster with the

NAS (NASA Advanced Supercomputing) Parallel Benchmark suite show that our overhead

for job pause is comparable to that of a complete job restart. Yet, our approach allevi-

ates the need to reboot the LAM run-time environment, which accounts for considerable

overhead resulting in net savings of our scheme in the experiments. Our solution further

provides full transparency and automation with the additional benefit of reusing existing

resources. Executing continues after failures within the scheduled job, i.e., the application

staging overhead is not incurred again in contrast to a restart. Our scheme offers addi-

tional potential for savings through incremental checkpointing and proactive diskless live

migration.

Proactive Live Migration

As the number of nodes in HPC environments keeps increasing, faults are becoming

common place. Reactive FT often does not scale due to massive I/O requirements and relies

on manual job resubmission.

9

This work complements reactive with proactive FT at the process level. Through

health monitoring, a subset of node failures can be anticipated when one’s health dete-

riorates. A novel process-level live migration mechanism supports continued execution of

applications during much of processes migration. This scheme is integrated into an MPI ex-

ecution environment to transparently sustain health-inflicted node failures, which eradicates

the need to restart and requeue MPI jobs.

The objective is to reduce the aggregated downtimes over all nodes. It is accom-

plished by avoiding roll-back (restarting the entire application from the last checkpoint) by

engaging in preventive migration. Such migration moves a process from one node to an

other while maintaining the consistency of the global state of the entire MPI job. Health

monitoring techniques, such as supported by the Baseboard Management Controller (BMC)

and the Intelligent Platform Management Interface (IPMI), are used to anticipate node fail-

ures. A deteriorating health of a node triggers live process-level migration, which allows

execution to continue while a process image is incrementally and asynchronously transferred

to a spare node as an enhancement to the Linux BLCR.

Back Migration

After an MPI task is migrated, the performance of this and other MPI tasks may

be affected due to dependence on the interconnect topology, even in a homogeneous cluster.

It has been shown that task placement in large-scale interconnects can have a significant

impact on performance for certain communication patterns. Communication with neighbors

one to three hops away may deteriorate after migration if the distance increases to k hops

since a spare node is often at the boundary of an interconnect volume. The additional cost

in latency may result in imbalance at collectives, where the spare node incurs the most

overhead. In such an environment, migrating computation back to the failed node once it

has recovered can improve overall performance.

We design a strategy to assess the benefit of back-migration at the process level

that dynamically decides if it is beneficial to re-locate a migrated task running on a spare

node back on the original node once the node has recovered if such relocation has the

potential to increase performance. We implement a back migration mechanism within

LAM/MPI and BLCR based on process-level live migration in reverse direction.

10

Hybrid Full/Incremental Checkpoint/Restart

Checkpointing addresses faults in HPC environments but captures full process

images even though only a subset of the process image changes between checkpoints.

We design a high-performance hybrid disk-based full/incremental checkpointing

technique for MPI tasks to capture only data changed since the last checkpoint. Our

implementation integrates new BLCR and LAM/MPI features that complement traditional

full checkpoints. This results in significantly reduced checkpoint sizes and overheads with

only moderate increases in restart overhead. After accounting for cost and savings, benefits

due to incremental checkpoints significantly outweigh the loss on restart operations.

The savings due to replacing full checkpoints with incremental ones increase with

the frequency of incremental checkpoints. Overall, our novel hybrid full/incremental check-

pointing is superior to prior non-hybrid techniques.

1.3.2 FT for Job Input Data

The second objective of this work is to improve the reliability, availability and

performance of the job input data through the following contributions:

1. We explore a mechanism of offline job input data reconstruction to ensure availability

of job input data and to improve center-wide performance. With data source infor-

mation transparently extracted from the staging request, our framework allows jobs

to be scheduled even when parts of their prestaged input data are unavailable due to

storage system failures. This is accomplished through transparent data reconstruction

at no cost to job owners.

2. We present an approach to automatic recover job input data during failures by re-

covering staged data from an original source. The proposed mechanism captures I/O

failures (e.g., due to storage node failures) while a running job is accessing its in-

put file(s) and retrieves portions of the input file that are stored on the failed nodes.

We further deploy this technique in current high performance computing systems to

recover the input data of applications at run-time. The implementation of the mech-

anism is realized within the Lustre parallel file system. An evaluation of the system

using real machines is also presented.

11

3. We propose “just in time” replication of job input data so as to maximize the use of

supercomputer cycles. The mechanism adds selective redundancy to job input data

by synergistically combining the parallel file system with the batch job scheduler to

perform temporal replication transparently. These replicas will be used for fast data

recovery during a job execution and are subsequently removed when the job completes

or finishes consuming the input data.

We show that the overall space and I/O bandwidth overhead of temporal replication

is a reasonable small fraction of the total scratch space on modern machines, which

can be further improved by optimizations to shorten the replication duration.

Offline Reconstruction of Job Input Data

Our target environment is that of shared, large, supercomputing centers. In this

setting, vast amounts of transient job data routinely passes through the scratch space,

hosted on parallel file systems. Supercomputing jobs, mostly parallel time-step numerical

simulations, typically initialize their computation with a significant amount of staged input

data.

We propose offline data reconstruction that transparently verifies the availability

of the staged job input data and fetches unavailable pieces from external data sources in

case of storage failures. Our approach takes advantage of the existence of an external

data source/sink and the immutable nature of job input data. Collectively, from a center

standpoint, these techniques globally optimize resource usage and increase data and service

availability. From a user job standpoint, they reduce job turnaround time and optimize the

usage of allocated time.

Periodic data availability checks and transparent data reconstruction is performed

to protect the staged data against storage system failures. Compared to existing approaches,

this technique incurs minimum user operational cost, low storage usage cost, and no com-

putation time cost. It also reduces the average job waiting time of the entire system and

increases overall center throughput and service.

We implement offline recovery schemes into parallel file systems so that applica-

tions can seamlessly utilize available storage elements.

12

On-the-fly Recovery of Job Input Data

Storage system failure is a serious concern as we approach Petascale computing.

Even at today’s sub-Petascale levels, I/O failure is the leading cause of downtimes and job

failures.

We contribute a novel, on-the-fly recovery framework for job input data into super-

computer parallel file systems. The framework exploits key traits of the HPC I/O workload

to reconstruct lost input data during job execution from remote, immutable copies. Each

reconstructed data stripe is made immediately accessible in the client request order due to

the delayed metadata update and fine-granular locking while unrelated accesses to the same

file remain unaffected.

We implement the recovery component within the Lustre parallel file system, thus

building a novel application-transparent online recovery solution. Our solution is integrated

into Lustre’s two-level locking scheme using a two-phase blocking protocol.

Temporal Replication of Job Input Data

Storage systems in supercomputers are a major reason for service interruptions.

RAID (Redundant Arrays of Inexpensive Disks) solutions alone cannot provide sufficient

protection as 1) growing average disk recovery times make RAID groups increasingly vul-

nerable to disk failures during reconstruction, and 2) RAID does not help with higher-level

faults such as failed I/O nodes.

We present a complementary approach based on the observation that files in the

supercomputer scratch space are typically accessed by batch jobs whose execution can be

anticipated. Therefore, we propose to transparently, selectively, and temporarily replicate

“active” job input data by coordinating parallel file system activities with those of the

batch job scheduler. We implement a temporal replication scheme in the popular Lustre

parallel file system and evaluate it with real-cluster experiments. Our results show that the

scheme allows for fast online data reconstruction with a reasonably low overall space and

I/O bandwidth overhead.

13

1.4 Dissertation Outline

The remaining chapters are structured as follows. Chapters 2, 3, 4 and 5 present

the reactive FT and proactive FT approaches for MPI jobs, i.e., the job pause service,

proactive live migration, back migration and hybrid full/incremental C/R, respectively. We

describe in detail the offline reconstruction in Chapter 6, the on-the-fly recovery in Chapter

7 and the temporal replication in Chapter 8. Chapter 9 discusses the related work and

Chapter 10 summarizes the contributions of this research and discussed possibilities for

future work.

14

Chapter 2

A Job Pause Service under

LAM/MPI+BLCR

2.1 Introduction

To prevent valuable computation to be lost due to failures, C/R has become a

requirement for long-running jobs. Current C/R mechanisms commonly allow checkpoints

to be written to a global file system so that in case of failure the entire MPI job can be

restarted from the last checkpoint. One example of such a solution is LAM/MPI’s C/R

support [10] through BLCR [15]. A complete restart, however, is unnecessary since all but

one node are typically still alive.

The contribution of this chapter is to avoid a complete restart and retain exe-

cution of MPI jobs as nodes fail, as depicted in Figure 2.1. As such, we pause the MPI

processes on live nodes and migrate the MPI processes of failed nodes onto spare nodes.

We have developed a transparent mechanism as an extension to LAM/MPI+BLCR that

reuses operational nodes within an MPI job. Functional nodes are rolled back to the last

checkpoint, retaining internal communication links within LAM/MPI+BLCR, before the

corresponding processes are paused. Meanwhile, a failed node is replaced with a spare node

where the corresponding MPI task is recovered from the last checkpoint. Hence, live nodes

remain active while failed nodes are dynamically and transparently replaced. This solution

removes any requeuing overhead by reuses existing resources in a seamless and transparent

manner.

15

(a) job full restart

(b) job pause + migrate

Nodes

failure

restart

lamboot
n0 n2n1 n3

mpirun

1 20checkpoint

lamboot
n0 n2n1

1 20

Nodes

failure

pause

lamboot
n0 n2n1 n3

mpirun

checkpoint

migrate

1 20

1 2
3

Figure 2.1: Pause & Migrate vs. Full Restart

Our solution comprises several areas of innovation within LAM/MPI and BLCR:

(1) crtcp, one of the Request Progression Interface (RPI) options [16] of LAM/MPI, is

enhanced to reuse the network connections between live nodes upon the faults. (2) Lamd

(LAM daemon) is complemented with a scalable group communication framework based on

our prior work [17], which notifies the Lamd of live nodes about replacement nodes. (3)

Lamd is supplemented with a novel scheduler that transparently controls periodic check-

pointing and triggers migration upon node failures while ensuring that live nodes are paused,

which prevents LAM/MPI from prematurely terminating a job. (4) BLCR is supplemented

with a job pause/restart mechanism, which supports multi-threading.

We have conducted a set of experiments on a 16-node dual-processor (each dual

core) Opteron cluster. We assess the viability of our approach using the NAS Parallel

Benchmark suite. Experimental results show that the overhead of our job pause mechanism

is comparable to that of a complete job restart, albeit at the added benefits of full trans-

parency and automation combined with the reuse of existing resources in our case. Hence,

our approach avoids requeuing overhead by letting the scheduled job tolerate the fault so

that it can continue to execute. We are furthermore investigating additional benefits of our

scheme for incremental checkpointing and proactive diskless live migration.

The remainder of this chapter is structured as follows. Section 2.2 presents the

design of our transparent fault-tolerance mechanism. Section 2.3 identifies and describes

the implementation details. Subsequently, the experimental framework is detailed and mea-

16

surements for our experiments are presented in Sections 2.4 and 2.5, respectively. Finally,

the work is summarized in Section 2.6.

2.2 Design

This section presents an overview of the design of transparent fault tolerance with

LAM/MPI+BLCR. The approach extends the C/R framework of LAM/MPI with an in-

tegrated group communication framework and a fault detector, an internal schedule mech-

anism (Figure 2.3), the job pause mechanism and actual process migration (Figure 2.2).

As a result, BLCR is supplemented with the new capability of cr pause, the transparent

job-pause functionality.

paused MPI

process

paused MPI

process

failed MPI

process

live node

live node failed node

migrated

MPI process

existing

connection

failed

spare node

process

migration

new connection

new
connection

shared storage

failed

Figure 2.2: Job Pause and Migrate Mechanism

In the following, the design of the protocol is given. As depicted in Figure 2.3,

the scheduler daemon acts as a coordination point between the membership daemon and

mpirun, the initial LAM/MPI process at job invocation. The main logical steps can be

summarized as follows. 1) The membership daemon monitors the system and notifies the

scheduler daemon upon the faults. 2) The scheduler daemon coordinates the job pause for

17

functional nodes and process migration for failed ones. 3) The nodes perform the actual

pause and migration work, as depicted in Figure 2.2. 4) All active processes (MPI tasks)

continue the MPI job.

1. membership daemon and scheduler daemon: initialization through lamboot ;

2. membership daemon: maintains the group membership information and monitors

for faults;

3. membership daemon: notifies the scheduler upon detecting a fault;

4. scheduler daemon: selects replacement nodes for the failed ones and notifies the

respective mpirun processes governed by the LAM runtime environment;

5. each notified mpirun: propagates the job-pause request to each MPI process on

live nodes and sends a process migration command to the replacement nodes;

6. each MPI process on live nodes: engages in job-pause; meanwhile,

7. replacement nodes: restart from the checkpoint file to migrate the process;

8. each MPI process on live nodes/replacement nodes (migrated): contin-

ues/resumes execution.

The implementation details of this algorithm with respect to LAM/MPI are given in the

next section.

2.2.1 Group Communication Framework and Fault Detector

In our prior work [17], we devised a scalable approach to reconfigure the commu-

nication infrastructure after node failures within the runtime system of the communication

layer. A decentralized protocol maintains membership of nodes in the presence of faults.

Instead of seconds for reconfiguration, our protocol shows overheads in the order of hun-

dreds of microseconds and single-digit milliseconds over MPI on BlueGene/L nodes (BG/L)

with up to 1024 processors.

We complemented lamd, the low-level communication daemon of LAM/MPI run-

ning on each node, with this scalable group communication framework from our prior work.

We further designed a fault detector based on a single timeout mechanism. Excessive delay

in response from any process to a message request is assumed to indicate process (node)

failure. In our framework, link failures are handled similarly to node failures since the cause

of a long communication delay is not distinguished, i.e., different causes of failure can be

18

handled uniformly (and will be uniformly referred to as “node failures” or simply “fail-

ures”). When the detector determines a failure, it triggers the scheduler through a message

containing the ID of the failed node.

2.2.2 Internal Schedule Mechanism in LAM/MPI

We next describe the mechanism to control a job’s schedule upon node failure.

This schedule mechanism is rooted within the LAM runtime environment, independent

of the system-level batch scheduler governing job submission, such as Torque/OpenPBS

(Portable Batch System). The protocol for the internal scheduler is as follows: It

• launches periodic checkpoint commands at a user-specified frequency;

• determines replacement nodes for failed nodes when a fault occurs; and

• launches job pause commands to mpiruns.

The mechanism has been implemented under the following design principles: The scheduler

• is integrated into the run-time environment;

• is decentralized, without any single point of failure; and

• provides good scalability due to the underlying group communication framework and

its own functional layer on top.

The scheduler daemon is the main part of the schedule mechanism. In addition, mpirun

also ties in to the schedule framework, most notably through the propagation of job pause

commands.

In our current implementation, the schedule mechanism stores the information

about the MPI job (such as mpirun-pid@node-id, mpi-process-pid@node-id, etc.) on a reli-

able shared storage or, in an alternative design, keeps them in memory. Both approaches

have pros and cons. Nonetheless, the overhead of maintaining and utilizing such informa-

tion is in the order of microsecond, regardless of the storage location. Hence, compared

to overhead for C/R of up to tens of seconds, this bookkeeping overhead of the scheduler

is insignificant. In our implementation, mpirun is responsible for logging the information

about the MPI job on shared storage or in memory after a successful launch of the job.

During finalization of the job, mpirun will disassociate this information.

19

2.2.3 Job-pause

As depicted in Figure 2.2, upon node failure, the job-pause mechanism allows the

processes on live nodes to remain active by rolling back computation to the last check-

point (rather than necessitating the traditional complete cold restart of an MPI job under

LAM/MPI, which would incur long wait times in the job submission queues). At the LAM

level, job-pause reuses the existing connections among the processes. Furthermore, at the

C/R level (using BLCR), part of the state of the process is restored from the checkpoint

state instead of a complete restart of the process. Currently, we use the existing process and

its threads without forking or cloning new ones. Furthermore, we do not need to restore the

parent/child relationships (in contrast to cr restart), but we still restore shared resource

information (e.g., mmaps and files). LAM uses the module of crtcp to maintain the TCP

connections (sockets) among the MPI processes.

BLCR restores the state of the MPI processes (i.e., the sockets are kept open by

the crtcp module during the cr pause). Hence, we can safely reuse the existing connections

among the processes. Even though BLCR does not support transparent C/R of socket

connections, this does not adversely affect us here since LAM/MPI relies on communication

via crtcp rather than through lower-level network sockets.

A pause of the MPI job process is initiated by mpirun. In response, the following

sequence of events occurs:

1. mpirun: propagates the job-pause request to each MPI process on live nodes;

2. BLCR on live nodes: invokes the cr pause mechanism;

3. paused process: waits for mpirun to supply the information about the migrated

process;

4. mpirun: updates the global list with information about the migrated process and

broadcasts it to all processes;

5. paused process: receives information about the migrated process from mpirun;

6. paused process: builds its communication channels with the migrated process;

7. paused process: resumes execution from the restored state.

Similar to the checkpoint and restart functionality of BLCR, the novel pause mech-

anism of BLCR also interacts with LAM through a threaded callback function. The callback

is provided as part of our LAM enhancements and registered at the initialization of crtcp.

The pause mechanism performs an ioctl() call to enter the pause state. As part of the pause

20

functionality, a process rolls back its state to that of a former checkpoint, typically stored

on disk. This rollback is the inverse of checkpointing, i.e., it restarts a process at the saved

state. However, there are consequential differences. Pause/rollback reuses the existing pro-

cess without forking a new one. Furthermore, existing threads in the process are reused.

Only if insufficient threads exist will additional ones be created (cloned, in Linux terms).

Hence, it becomes unnecessary to restore the Process ID (PID) information or re-create

parent/child relationships from the checkpoint data.

2.2.4 Process Migration

When the scheduler daemon receives a node failure message from the membership

daemon, it performs a migration to transfer processes, both at application and runtime

level, from the failed node to the replacement nodes. This happens in a coordinated fashion

between the mpirun processes and new processes launched at the replacement nodes,

Several issues need to be solved here: First, mpirun launches a cr restart com-

mand on appropriate nodes with the relevant checkpoint image files. In our system, the

scheduler daemon determines the most lightly loaded node as a migration target, renames

the checkpoint file to reflect the change and then notifies mpirun to launch cr restart from

the relevant node with the right checkpoint file.

Second, the checkpoint files of all processes have to be accessible for replacement

nodes in the system. This ensures that, at the fault time, the process can be migrated to

any node in the system using the checkpoint file. We assume a shared storage infrastructure

for this purpose.

Finally, knowledge about the new location of the migrated process has to be com-

municated to all other processes in the application. Since we operate within the LAM

runtime environment, a node ID (instead of a node’s IP address) is used for addressing

information. Thus, migration within the LAM runtime environment becomes transparent,

independent of external system protocols, such as Network Address Translation (NAT),

firewalls, etc. Our system also updates the addressing information on-the-fly instead of

scanning and updating all the checkpoint files, thereby avoiding additional disk access over-

head for writes.

At the point of process migration, the following sequence of events occurs:

1. mpirun: sends a process migration command (cr restart) to the replacement node;

21

2. BLCR on the replacement node: executes the cr restart mechanism referencing

the checkpoint file on shared storage;

3. restarted process: sends its new process information to mpirun;

4. mpirun: updates the global list with information about the migrated process and

broadcasts it to all processes;

5. restarted process: builds its communication channels with all the other processes;

6. restarted process: resumes execution from the saved state.

Since all the information is updated at run-time, the normal restart operation of BLCR is

executed from the replacement node without any modification.

2.3 Implementation Details

Our fault tolerance architecture is currently implemented with LAM/MPI and

BLCR. Our components are implemented as separate modules to facilitate their integration

into the run-time environment of arbitrary MPI implementations. Its design and imple-

mentation allows adaptation of this architecture to other implementations of MPI, such as

MPICH (MPI Chameleon) [9] and OpenMPI [11].

2.3.1 Group Communication Framework and Fault Detector

Figure 2.3 depicts the framework for group communication implemented as a pro-

cess of the lam daemon (lamd). The so-called membership daemons in the LAM universe

communicate with each other and with the scheduler daemons through out-of-band com-

munication channel provided by the LAM runtime environment.

2.3.2 Internal Schedule Mechanism in LAM/MPI

As main part of the schedule mechanism, the scheduler daemon is also implemented

as a process of lamd communicating through the out-of-band communication channel, just

as the membership daemon does (Figure 2.3).

When the scheduler daemon receives a failure message from the membership dae-

mon, it consults the database to retrieve information about the MPI job and the nodes in

the LAM universe. Based on this information, the most lightly loaded node is chosen as

a migration target. Alternate selection policies to determine a replacement node can be

22

membershipd

schedulerdMPI app

mpirun
lamd

membershipd

schedulerdMPI app

lamd

out-of-band

communication

channel

TCP

socket

Figure 2.3: Group Membership and Scheduler

readily plugged in. Next, a job pause command is issued to mpirun through the scheduler

daemon at the node on which mpirun is launched.

Triggered by the scheduler, mpirun retrieves information from an application

schema file created during the last checkpoint. This application schema specifies the argu-

ments required to initiate a cr restart on specified nodes. We implemented an extension to

mpirun that modifies and enhances the application schema at run-time with the following

information received from the scheduler:

• For the processes on the live nodes, replace cr restart with cr pause using the respec-

tive arguments to the command;

• For the processes to migrate, replace the node number of the failed node with the

replacement node. Update naming references referring to nodes with regard to this

file to reflect any migrations.

23

2.3.3 Job-pause

The pause implementation in LAM/MPI relies on the out-of-band communication

channel provided by lamd. Its design is not constrained to the interfaces of LAM/MPI

and may be easily retargeted to other MPI or C/R implementations. In our case, crtcp

[16] and cr [10] are utilized, which represent the interface to the most commonly used C/R

mechanism provided by LAM (while other C/R mechanisms may coexist).

When a node fails or a communication link lapses, the MPI-related processes on

other live nodes will block/suspend waiting for the failure to be addressed, which realizes the

passive facet of the job pause mechanism. On the active side, we restore the failed process

image from a checkpoint file. This checkpoint information encompasses, among other data,

pending MPI messages. Hence, in-flight data on the network does not unnecessarily have to

be drained at pause time. Consequently, a process can be individually paused at arbitrary

points during its execution.

thread1

thread2

running normally
blocked in ioctl()

handler_thr

block in ioctl()

run handler functions

checkpoint_req()

unblocks

handler_thr

checkpoint

still running normally

receives signal, runs handlers,

and ioctl()

signal other threadsother work

barrier

barrier

cleanup

block

first thread restores

shared resource

 registers/signals

reg/sig

registers/signals

mark checkpoint as complete

continue normal execution

Figure 2.4: BLCR with Pause in Bold Frame

Figure 2.4 shows the steps involved during the job pause in reference to BLCR.

A detailed account of the individual events during checkpointing and restarting is given in

24

the context of Figures 1 and 2 of [15] and is abbreviated here due to space constraints. Our

focus is on the enhancements to BLCR (large dashed box).

In the figure, time flows from top to bottom, and the processes and threads involved

in the pause are placed from right to left. Activities performed in the kernel are surrounded

by dotted lines. The callback thread (right side) is spawned as the application registers

a threaded callback and blocks in the kernel until a pause occurs. When mpirun invokes

the pause command of BLCR, it provides the process id and the name of a checkpoint file

to pause as an argument. In response, the pause mechanism issues an ioctl call, thereby

resuming the callback thread that was previously blocked in the kernel. After the callback

thread invokes the individual callback for each of the other threads, it reenters the kernel

and sends a pause signal to each threads. These threads, in response, engage in executing

the callback signal handler and then enter the kernel through another ioctl call.

Once in the kernel, the threads invoke the thaw command using VMADump to

take turns reading their register and signal information from the checkpoint file. In our

implementation, they no longer need to restore their process IDs and process relationships

as we retain this information. After a final barrier, the process exits the kernel and enters

user space, at which point the pause mechanism has completed.

Once the MPI processes have completed the pause and resume operation, they

will wait for mpirun to supply information about the migrated process before establish-

ing connections with the migrated process based on the received information. Once the

connections have been established, the processes continue their normal execution.

2.3.4 Process Migration

Process migration after a failure is initiated on the replacement node when it

receives a restart request from mpirun. Within the callback handler, the migrated process

relays its addressing information to mpirun. This addressing information can later be

identified as type struct gps in the LAM universe. Next, mpirun broadcasts this information

to all other processes and, conversely, sends information about all other processes (generated

from the application schema) to the migrated process.

Once the processes receive the addressing information from mpirun, they reset the

information in their local process list before establishing a TCP connection between each

other. Notice that the connections among the paused processes remain active, i.e., only the

25

connections between the migrated process and the paused processes need to be established.

Another enhancement with LAM/MPI for process migration is accomplished as fol-

lows. The LAM daemon establishes a named socket visible through the local file system (typ-

ically under the name /tmp/lam-<username>@<hostname>/ or, alternatively, location-

dependent on the TMPDIR environment variable or the LAM MPI SESSION PREFIX

variable). Since LAM initializes this location information at startup time and never re-

freshes it thereafter, we force a reset of the naming information at the replacement node

resulting in an update of the directory reference inside the callback function of the migrated

process.

The functionality to realize process migration discussed so far enhances LAM/MPI

runtime system. In addition, upon restarting a BLCR-checkpointed job on a different node,

we must ensure that the operating system on all nodes supplies the exact same libraries

across migration. Any library reference by an executable that is migrated has to be portable

across migrations. BLCR does not save state of shared libraries (e.g., initialization state

of library-specific variables). As of late, some distributions of Linux are using “prelinking”

to assign fixed addresses for shared libraries in a manner where these fixed addresses are

randomized to counter security attacks. We had to deactivate the prelinking feature in our

system to provide cross-node compatible library addresses suitable for process migration.

2.4 Experimental Framework

We conducted our performance evaluations on a local cluster that we control.

This cluster has sixteen compute nodes running Fedora Core 5 Linux x86 64 (Linux kernel-

2.6.16) connected by a Gigabit Ethernet switch. Each node in the cluster is equipped

with four 1.76GHz processing cores (2-way SMP with dual-core AMD Opteron 265 pro-

cessors) and 2 GB memory. A 750 GB RAID5 array provides shared file service through

NFS over the Gigabit switch, which is configured to be shared with MPI traffic in these

experiments. We extended the latest versions of LAM/MPI (lam-7.2b1r10202) and BLCR

(blcr-0.4.pre3 snapshot 2006 09 26) with our job pause mechanism for this platform.

26

2.5 Experimental Results

We assessed the performance of our system in terms of the time to tolerate faults

for MPI jobs using the NAS Parallel Benchmarks (NPB) [18]. NPB is a suite of programs

widely used to evaluate the performance of parallel systems. The suite consists of five

kernels (CG, EP, FT, MG, and IS) and three pseudo-applications (BT, LU, and SP).

In the experiments, the NPB suite was exposed to class C inputs running on 4,

8, and 16 nodes. IS was excluded from experiments due to its extremely short completion

time (≈10 seconds on 16 nodes), which did not reliably allow us to checkpoint and restart

(with about the same overhead). All job pause/restart results were obtained from five

samples with a confidence interval of ±0.1s for short jobs and ±3s for long jobs with a 99%

confidence level.

Prior work already focused on assessing the cost of communication within the

LAM/MPI and BLCR environments to checkpoint and restart MPI jobs [15, 19]. Our job

pause and process migration mechanism decreases the communication by avoiding to re-

establish the connections among the paused processes. Yet, the benefits of our approach

lie in its applicability to proactive fault tolerance and incremental checkpointing. Our

experiments are targeted at capturing the overhead of our approach, comparing it to prior

approaches and analyzing the cause of its cost.

2.5.1 Checkpointing Overhead

Our system periodically takes snapshots of the MPI jobs at checkpoints yielding a

transparent fault tolerance mechanism. Jobs can automatically recover by continuing from

the most recent snapshot when a node fails. Figures 2.5, 2.6, and 2.7 depict the checkpoint

overhead for 4, 8 and 16 nodes. As shown by these results, the overhead of job-pause C/R

is uniformly small relative to the overall execution time of a job (benchmark), even for a

larger number of nodes.

Figure 2.8 depicts the measured overhead for single checkpointing relative to the

base execution time of each benchmark (without checkpointing). For most benchmarks, the

ratio is below 10%. Figure 2.9 depicts the corresponding time for single checkpointing. This

time is in the order of 1-12 seconds, except for MG and FT as discussed in the following.

MG has a larger checkpoint overhead (large checkpoint file), but the ratio is skewed

27

0

200

400

600

800

1000

1200

1400

BT CG EP FT LU MG SP

S
ec

o
n

d
s

No Checkpoint Single Checkpoint

Figure 2.5: Single Checkpoint on 4 Nodes

0

100

200

300

400

500

600

700

BT CG EP FT LU MG SP

S
ec

o
n

d
s

No Checkpoint Single Checkpoint

Figure 2.6: Single Checkpoint on 8 Nodes

due to a short overall execution time (see previous figures). In practice, with more realistic

and longer checkpoint intervals, a checkpoint would not be necessitated within the appli-

cation’s execution. Instead, the application would have been restarted from scratch. For

longer runs with larger inputs of MG, the fraction of checkpoint/migration overhead would

have been much smaller.

As shown in prior work [15], checkpoint times increase linearly with the applica-

tion’s virtual memory (VM) size for processes that consume significantly less than half of

the system’s physical memory. However, when a process utilizes a VM size approaching or

exceeding half the physical memory on the system, overheads increase up to an order of

magnitude. This artifact explains the relatively high cost of FT for checkpointing (Figures

2.5, 2.8 and 2.9) and pause/restart (Figure 2.10) when it is run on just four nodes. For

a larger number of nodes, the problem size is split such that smaller amounts of the VM

28

0

50

100

150

200

250

300

350

400

450

BT CG EP FT LU MG SP

S
ec

o
n

d
s

No Checkpoint Single Checkpoint

Figure 2.7: Single Checkpoint on 16 Nodes

are utilizes, which eliminates this problem. This property of checkpoint overhead relative

to VM utilization is not inherent to our solution; rather, it is inherent to the checkpoint

mechanism used in combination with the operating system.

Table 2.1 depicts the size of the checkpoint files for one process of each MPI

application. The average file size is 135 MB on 16 nodes, 259 MB for 8 nodes, and 522.91

MB for 4 nodes. Writing many files of such size to shared storage synchronously may be

feasible for high-bandwidth parallel file systems. In the absence of sufficient bandwidth for

simultaneous writes, we provide a multi-stage solution where we first checkpoint to local

storage. After local checkpointing, files will be asynchronously copied to shared storage, an

activity governed by the scheduler. This copy operation can be staggered (again governed

by the scheduler) between nodes. Upon failure, a spare node restores data from the shared

file system while the remaining nodes roll back using the checkpoint file on local storage,

which results in less network traffic.1

Table 2.1: Size of Checkpoint Files [MB]
Node # BT CG EP FT LU MG SP

4 406.90 250.88 1.33 1841.02 185.51 619.46 355.27
8 186.68 127.17 1.33 920.82 99.50 310.36 170.47
16 111.12 63.50 1.33 460.73 52.61 157.31 100.39

1In our experiments, we simply copy exactly one checkpoint file to shared storage, namely the file of the
node whose image will be migrated.

29

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
T

 4

B
T

 9

B
T

1
6

C
G

 4

C
G

 8

C
G

1
6

E
P

 4

E
P

 8

E
P

1
6

F
T

 4

F
T

 8

F
T

1
6

L
U

 4

L
U

 8

L
U

1
6

M
G

 4

M
G

 8

M
G

1
6

S
P

 4

S
P

 9

S
P

1
6

Execution Time Checkpoint Overhead

Figure 2.8: Single Checkpoint Overhead

Overall, the experiments show that the checkpoint/restart overhead of the MPI

job

1. is largely proportional to the size of the checkpoint file (Table 2.1 and Figure 2.9);

and

2. is nearly the same at any time of the execution of the job.

The first observation indicates that the ratio of communication overhead to com-

putation overhead for checkpoint/restart of the MPI job is relatively low. Since checkpoint

files are, on average, large, the time spent on storing/restoring checkpoints to/from disk

accounts for most of the measured overhead. This overhead can be further reduced. We

are currently investigating the potential for savings through incremental checkpointing and

proactive diskless live migration, which would reduce the checkpoint and pause overheads,

respectively.

In our experiments, communication overhead of the applications was not observed

to significantly contribute to the overhead or interfere with checkpointing. This is, in part,

due to our approach of restarting from the last checkpoint. Hence, our autonomic fault-

tolerance solution should scale to larger clusters.

The second observation about checkpoint overheads above indicated that the size

30

0

5

10

15

20

25

30

B
T

 4

B
T

 9

B
T

1
6

C
G

 4

C
G

 8

C
G

1
6

E
P

 4

E
P

 8

E
P

1
6

F
T

 4

F
T

 8

F
T

1
6

L
U

 4

L
U

 8

L
U

1
6

M
G

 4

M
G

 8

M
G

1
6

S
P

 4

S
P

 9

S
P

1
6

S
e
c
o

n
d

s

223.668

Figure 2.9: Single Checkpoint Time

of the checkpoint file remains stable during job execution. The NPB codes do not allocate or

free heap memory dynamically within timesteps of execution; instead, all allocation is done

during initialization, which is typical for most parallel codes (except for adaptive codes [20]).

Thus, we can assume the time spent on checkpoint/restart is constant. This assumption is

critical to determine the optimal checkpoint frequency [21].

2.5.2 Overhead of Job Pause

As mentioned in the implementation section, the job pause mechanism comprises

two parts: cr pause within BLCR and the pause work at the LAM level. Experiments

indicated that the overhead of cr pause is almost the same as that of cr restart. Though we

reuse existing processes and avoid restoring the parent/child relationship as cr restart does,

we still need to restore the entire shared state (mmaps, files, etc.), which is generally large

and accounts for the main overhead of cr pause/cr restart. The overall effect on our scheme

is, however, not bounded by the roll-back on operational nodes. Instead, it is constrained by

process migration, which uses cr restart to restore the process from the checkpoint file on

the replacement node. The pause mechanism at the LAM level actually saves the overhead

to reconnect sockets between the processes. This is reflected in Figures 2.10, 2.11, and

31

2.12, which show that our approach is performing nearly at par with with the job restart

overhead for 4, 8 and 16 nodes. Yet, while job restart requires extra overhead for rebooting

the LAM subsystem of processes, our approach does not incur this cost as it reuses existing

processes.

2.5.3 Membership/Scheduler Performance

The decentralized group membership protocol, adopted from our prior work [17]

and integrated in LAM, has been shown to yield response times in the order of hundreds of

microseconds and single-digit milliseconds for any reconfiguration (node failure) under MPI.

This overhead is so small that it may be ignored when considering the restart overhead in

the order of seconds / tens of seconds.

The overhead of our new scheduler is also small. The impact of scheduling is

actually spread over the entire execution of the MPI job. Yet, when considering fault

tolerance, only the overheads to (a) determine the replacement node and (b) trigger mpirun

need to be accounted for. Any global information about the MPI job is maintained by

mpirun at job initiation and termination. The overhead to determine the replacement node

and to trigger mpirun is also in the order of hundreds of microseconds and, hence, does not

significantly contribute to the overall overhead of C/R.

2.5.4 Job Migration Overhead

The overhead of process migration represents the bottleneck of our fault tolerance

approach. The job-pause mechanism of other (non-failed) nodes results in lower overhead,

and the overhead of the group membership protocol and our novel scheduler is insignificant,

as explained above. Let us consider the potential of our approach for job migration in

contrast to a full restart. Figures 2.10, 2.11, and 2.12 show that the performance of job

pause is only 5.6% larger than a complete job restart (on average for 4, 8 and 16 nodes).

Yet, job pause alleviates the need to reboot the LAM run-time environment, which accounts

for 1.22, 2.85 and 6.08 seconds for 4, 8 and 16 nodes. Hence, pause effectively reduces the

overall overhead relative to restart.

Our approach has several operational advantages over a complete restart. First,

job pause enables seamless and transparent continuation of execution across node failures.

32

0

0.5

1

1.5

2

2.5

3

3.5

BT CG EP FT LU MG SP

S
ec

o
n

d
s

Job Restart

LAM Reboot

Job Pause and Migrate

31.45+1.22 32.11

Figure 2.10: Pause and Migrate on 4 Nodes

0

1

2

3

4

5

6

7

BT CG EP FT LU MG SP

S
ec

o
n

d
s

Job Restart

LAM Reboot

Job Pause and Migrate

Figure 2.11: Pause and Migrate on 8 Nodes

In contrast, a complete restart may be associated with a lengthy requeuing overhead in

the job submission system. Second, our approach is suitable for proactive fault tolerance

with diskless migration. In such a scenario, healthy nodes would not need to roll back their

computation. Instead, only the image of the unhealthy node is sent to a replacement node,

which seamlessly picks up computation from there. The only effect on healthy nodes is that

their socket connections have to be updated, which our scheme already supports. We are

pursuing this approach, which with our novel job pause mechanism can now be realized.

The behavior of FT in Figures 2.10, 2.11, and 2.12, which differs from other codes,

can be explained as follows. As previously mentioned, the checkpoint file of FT for 4 nodes

exceeds half the physical memory. As a result, its pause and restart time goes up by an

order of magnitude, as documented previously in the BLCR work [15].

Furthermore, consider the overhead of EP in Figures 2.9, 2.10, 2.11, 2.12. The

33

0

1

2

3

4

5

6

7

8

9

10

BT CG EP FT LU MG SP

S
ec

o
n

d
s

Job Restart

LAM Reboot

Job Pause and Migrate

Figure 2.12: Pause and Migrate on 16 Nodes

checkpoint/pause&migrate/restart overhead of EP is becoming more dominant as we in-

crease the number of nodes. This is caused by the small footprint of the checkpoint file

(about 1 MB), which results in a relatively small overhead for storing/restoring the check-

point file. Thus, the overhead of the migration combined with job pause mainly reflects the

variance of the communication overhead inherent to the benchmark, which increases with

the node count.

2.6 Conclusion

This chapter contributes a fresh approach for transparent C/R through our novel

job pause mechanism. The mechanism, implemented within LAM/MPI+BLCR, allows

live nodes to remain active and roll back to the last checkpoint while failed nodes are

dynamically replaced by spares before resuming from the last checkpoint. Enhancements to

LAM/MPI include (1) support of scalable group communication with fluctuating number

of nodes, (2) transparent coordinated checkpointing, (3) reuse of network connections upon

failures for operational nodes, and (4) a BLCR enhancement for the job pause mechanism.

We have conducted experiments with the NAS Parallel Benchmark suite in a 16-node dual-

processor Opteron cluster. Results indicate that the performance of job pause is comparable

to that of a complete job restart, albeit at full transparency and automation. A minimal

overhead of 5.6% is only incurred in case migration takes place while the regular checkpoint

overhead remains unchanged. Yet, our approach alleviates the need to reboot the LAM

run-time environment, which accounts for considerable overhead resulting in net savings

34

of our scheme in the experiments. Furthermore, job pause reuses existing resources and

continues to run within the scheduled job, which can avoid staging overhead and lengthy

requeuing in submission queues associated with traditional job restarts. Our experiments

also indicate that, after the initialization phase, checkpoints are constant in size for a given

application, regardless of the timing of checkpoints. Our job pause approach further offers

an additional potential for savings through incremental checkpointing and proactive diskless

live migration, which are discussed in Chapters 3 and 5.

35

Chapter 3

Proactive Process-level Live

Migration

3.1 Introduction

This chapter promotes process-level live migration combined with health monitor-

ing for a proactive FT approach that complements existing C/R schemes with self healing

whose fault model is based on the work by Tikotekar et al. [22].

Health monitoring has recently become a wide-spread feature in commodity and,

even more so, in server and HPC components. Such monitors range from simple processor

temperature sensors to BMCs with a variety of sensing capabilities, including fan speeds,

voltage levels and chassis temperatures. Similarly, the SMART disk standard provides the

means to trigger events upon disk errors indicating disk problems, which can be saved in

log files or which can trigger exception handling mechanisms. Aided by such capabilities,

node failures may be anticipated when the health status of a node deteriorates, i.e., when

abnormal sensor readings or log entries are observed.

Health monitoring has been used to model failure rates and, in a reactive manner,

to determine checkpoint intervals [23, 24]. In this work, we venture beyond reactive schemes

by promoting a proactive approach that migrates processes away from “unhealthy” nodes

to healthy ones. Such a self-healing approach has the advantage that checkpoint frequencies

can be reduced as sudden, unexpected faults should become the exception. This requires the

availability of spare nodes, which is becoming common place in recent cluster acquisitions.

36

We expect such spare nodes to become a commodity provided by job schedulers upon

request. Our experiments assume availability of 1-2 spare nodes.1

The feasibility of health monitoring at various levels has recently been demon-

strated for temperature-aware monitoring, e.g., by using ACPI [25], and, more generically,

by critical-event prediction [26]. Particularly in systems with thousands of processors, fault

handling becomes imperative, yet approaches range from application-level and runtime-level

to the level of OS schedulers [27, 28, 29, 30]. These and other approaches differ from our

work in that we promote live migration combined with health monitoring.

We have designed an automatic and transparent mechanism for proactive FT of

arbitrary MPI applications. The implementation, while realized over LAM/MPI+BLCR,

is in its mechanisms applicable to any process-migration solution, e.g., the Open MPI

FT mechanisms [11, 31]. The original LAM/MPI+BLCR combination [10] only provides

reactive FT and requires a complete job restart from the last checkpoint including job

resubmission in case of a node failure. The work presented in the last chapter enhances this

capability with a job pause/continue mechanism that keeps an MPI job alive while a failed

node is replaced by a spare node. Paused, healthy tasks are rolled back to and spare nodes

proceed from the last checkpoint in a coordinated manner transparent to the application.

The contribution of this chapter is to avoid roll-backs to prior checkpoints whenever

possible. By monitoring the health of each node, a process is migrated as a precaution to

potentially imminent failure. To reduce the impact of migration on application performance,

we contribute a novel process-level live migration mechanism as an enhancement to the

Linux BLCR module. Thus, execution proceeds while a process image is incrementally and

asynchronously transferred to a spare node. This reduces the time during which the process

is unresponsive to only a short freeze phase when final changes are transferred to the spare

node before re-activating execution on the target node. Hence, MPI applications execute

during much of process migration. In experiments, we assessed the trade-off between lower

end-to-end wall-clock times of jobs subject to live migration vs. the slightly prolonged

duration for migration as opposed to a traditional process-freeze approach. Depending

on the estimated remaining up-time of a node with deteriorating health, one can choose
1Our techniques also generalize to task sharing on a node should not enough spare nodes be available,

yet the cost is reduced performance for tasks on such shared nodes. This may result in imbalance between
all tasks system-wide resulting in decreased overall performance. Such imbalance might be tolerable when
faulty nodes can be brought back online quickly so that processes can migrate back to their original nodes.

37

between live and frozen migration schemes.

Our results further demonstrate that proactive FT complements reactive schemes

for long-running MPI jobs. Specifically, should a node fail without prior health indication

or while proactive migration is in progress, our scheme reverts to reactive FT by restarting

from the last checkpoint. Yet, as proactive FT has the potential to prolong the mean-

time-to-failure, reactive schemes can lower their checkpoint frequency in response, which

implies that proactive FT can lower the cost of reactive FT. More specifically, experimental

results indicate that 1-6.5 seconds of prior warning are required to successfully trigger live

process migration while similar operating system (OS) virtualization mechanisms require

13-24 seconds. The approach further complements reactive FT by nearly twice as long a

checkpointing interval due to proactive migration when 70% of the failures are predicted

only a few seconds prior (derived from [26]).

The remainder of this chapter is structured as follows. Sections 3.2 and 3.3 present

the design and implementation of our process live migration mechanism. Section 3.4 de-

scribes the experimental setup. Section 3.5 discusses experimental results. Section 3.6

summarizes the contributions.

3.2 Design

Figure 3.1 depicts the system components and their interaction, i.e., the chrono-

logical steps involved in process migration of each MPI job and job dependencies with data

exchanges. In the following, we discuss system support for live migration at two levels: (1)

the synchronization and coordination mechanisms within an MPI job and (2) live migra-

tion with incremental update support at the process/MPI task level. We further consider

the tradeoff between live and frozen migration options and develop approaches to manage

“dirty” memory, i.e., memory written since the last incremental update.

3.2.1 Live Migration at the Job Level

Figure 3.1 depicts steps 1-6, each of which are described in the following.

Step 1: Migration Trigger: In our system, the per-node health monitoring

mechanism is realized on top of a BMC. It is equipped with sensors to monitor different

properties, e.g., sensors providing data on temperature, fan speed, and voltage. We also

38

nodes

lamboot n0 n2n1 n3

job run

lamd
scheduler

lamd
scheduler

lamd
scheduler

lamd
scheduler

MPI app MPI app MPI app

scheduler
1. failure
predicted 2. dest. found

MPI app MPI app

3. iterative
pre-copyMPI app MPI app

4. drain in-flight data 5. stop©

MPI appMPI app MPI app
6.1 connect

migrate

resume

6.2 restore in-flight data,
resume normal operation

mpirun

BMC\IPMI BMC\IPMI BMC\IPMI BMC\IPMI

Figure 3.1: Job Live Migration

employ IPMI, an increasingly common management/monitoring component that provides

a standardized message-based interface to obtain sensors readings for health monitoring.

We further designed a decentralized scheduler, which can be deployed as a stand-alone

component or as an integral process of an MPI daemon, such as the LAM daemon (lamd).

The scheduler will be notified upon deteriorating health detected by BMC/IPMI, e.g., due

to a sensor reading exceeding a threshold value.

Step 2: Destination Node Determination: When the scheduler component

on the health-decaying node receives the early warning issued in step 1, it first chooses a

spare node as a replacement for the unhealthy node. Spare nodes are increasingly becoming

a commodity in clusters. We expect that job schedulers may soon simply allocate a limited

number of spares as a default or upon request during job submission. As of now, we still

have to explicitly over-provision by setting a constant number of nodes aside during job

submission.

These spare nodes comprise the destination for process migration. However, if

no spare node was set aside during job submission or if all nodes were already used, we

choose the most lightly loaded node as a migration destination, in which case the node

39

doubles for two MPI tasks. Sharing nodes may result in imbalance due to bearing twice

the load of regular nodes, which generally results in lower overall application performance.

Such imbalance might be tolerable when faulty nodes can be brought back online quickly

so that processes can migrate back to their original nodes. Nonetheless, higher sustained

application performance can be guaranteed when unloaded spares are available as migration

targets.

Step 3: Memory Precopy: Once a destination node is determined, the sched-

uler initiates the migration of a process on both destination and source nodes. The objective

of the first stage of migration is to transfer a memory snapshot of the process image to the

spare node, yet to allow the application to execute during this stage, hence the name live

migration. The transfer of the process image occurs at page granularity and is repeated for

pages written to by the application between image scans. During the first process image

scan (first iteration), all non-zero pages are transferred from the source node to the destina-

tion node. On subsequent scans/iterations, only the pages updated since the previous scan

are transferred. When the number of such “dirty” pages between scans does not change

significantly anymore, the scan loop terminates. System support for tracking dirty pages is

discussed later in the context of memory management.

Step 4: In-flight Message Drainage: Before we stop the process and mi-

grate the remaining dirty pages with the corresponding process state to the destination

node, all MPI tasks need to coordinate to reach a consistent global state. Based on our

LAM/MPI+BLCR design, message passing is dealt with at the MPI level while the process-

level BLCR mechanism is not aware of messaging at all. Hence, we employ LAM/MPI’s

job-centric interaction mechanism for the respective MPI tasks to clear in-flight data in the

MPI communication channels.

Step 5: Stop&Copy: Once all the MPI tasks (processes) reach a consistent

global state, the process on the source node freezes (suspends) application execution but

still copies the remaining dirty pages (written to since the last iteration in step 3) and the

final process state (registers, signal information, pid, files etc.) to the destination node. All

other MPI tasks are suspended at their point of execution.

Step 6: Connection Recreation, Messages Restoration and Job Contin-

uation: When the process is ready on the destination node, it sets up a communication

channel with all other MPI tasks. Subsequently, the drained in-flight messages are restored,

40

and all the processes resume execution from the point of suspension.

3.2.2 Live Migration at the Process Level

The incremental precopy and stop© (steps 3 and 5 in Figure 3.1) are per-

formed at the process level involving only the destination and source nodes. Yet, there

are trade-offs between simply stopping an application to engage in a frozen copy and the

alternative of a live precopy with continued application progress. The latter, while generally

resulting in shorter overall application wall-clock time, comes at the expense of background

network activity, possibly even repeatedly transmitting dirtied pages. This also raises the

question when the iterative precopy loop should terminate.

Figures 3.2 and 3.3 show migration with precopy (live) and without (stop©-

only). Compared to a traditional job resubmission resuming execution from the last check-

point in a reactive FT scheme, both of these proactive migration schemes lower the expected

execution time of the MPI application in the presence of failures. This is especially the case

for HPC environments where the MTBF is low, which typically implies that the number of

compute nodes is high, the run-time of an application is long, and the memory footprint is

large.

One of our objectives is to reduce the aggregate downtimes over all nodes, i.e., the

duration of the stop© step should be small. Live migration with incremental precopy

results not only in shorter downtime on the local node (to transfer dirty pages plus other

process state) but also in reduced suspension of all other nodes (once MPI message queues

are drained) since fewer pages remain dirty after precopy. Another objective is to tolerate

the imminent fault. The shorter the migration duration, the higher the probability that

our proactive scheme makes a reactive restart from a prior checkpoint unnecessary. Frozen

migration consisting only of the stop© step takes less overall time during migration,

thereby increasing chances for successful migration. A compromise might even be to stop

the precopy step prematurely upon receipt of another fault event indicating higher urgency

of the health problem.

Two major factors affect the tradeoff between the downtime and the migration

duration. First, the network bandwidth shared between the MPI job and the migration

activity is limited. If an application utilizes less network bandwidth, more bandwidth can

be consumed by the migration operation. Thus, the precopy step may only have minimum

41

thread1 thread2

running normally transfer all

non-zero pages

transfer

dirty pages

transfer dirty pages,

registers/signals

transfer

registers/signals

precopy

thread

create athread

thread1 thread2

first iteration

of precopy

other iterations

of precopy

stop©

receives pages

and save to

corresponding

memory

restore

registers/signals

save dirty

pages

save dirty pages

restore

registers/signals

normal execution

source node destination node

stop

barrier

barrier

barrier

barrier

Figure 3.2: Process Migration with Precopy (Kernel Mode in Dotted Frame)

impact on application progress. More communication-intensive applications, however, may

leave less unused bandwidth for live migration (during precopy). This could both slow

down a local MPI task (with potentially globally unbalanced progress due to communica-

tion) and prolong precopy duration, ultimately requiring a premature termination of this

step. High-end HPC installations may provide multiple network backbones to isolate MPI

communication from I/O traffic, the latter of which covering checkpointing and migration

traffic as well. In such systems, bandwidth issues may not be as critical (but cannot be

fully discounted either).

Second, the page write rate (dirtying rate) affects the trade-off between down-

time and migration duration. The dirtying rate is affected by the memory footprint (more

specifically, the rewrite working set) of the application. A larger number of pages repeat-

edly written within a tight loop will prolong the precopy duration, which might lower the

probability for successful migration (compared to non-live migration). In fact, the page

42

thread1 thread2

transfer all non-

zero pages,

registers/signals
transfer

registers/signals

thread1 thread2

stop©

receives pages and save to

corresponding memory,

restore registers/signals
restore

registers/signals

normal execution

source node destination node

stop

barrier

barrier

barrier

barrier

Figure 3.3: Process Migration without Precopy (Kernel Mode in Dotted Frame)

access patterns of the studied benchmarks will be shown to differ significantly. We further

discuss this issue in the experimental section.

3.2.3 Memory Management

A prerequisite of live migration is the availability of a mechanism to track modified

pages during each iteration of the precopy loop. Two fundamentally different approaches

may be employed, namely page protection mechanisms or page-table dirty bits. Different

implementation variants build on these schemes, such as the bookkeeping and saving scheme

that, based on the dirty bit scheme, copies pages into a buffer [32].

Under the page protection scheme, all writable pages of a process are write-

protected before each iteration occurs. When a page is modified (written to for the first

time), a page fault exception is raised. The triggered exception handler enables write access

to the page and records the page as dirty. Upon return from the handler, the write access is

repeated successfully, and subsequent writes to the same page execute at full speed (without

raising an exception). At the next iteration, pages marked as dirty are (1) write protected

again before being (2) copied to the destination node. This ordering of steps is essential to

43

avoid races between writes and page transfers.

Under the dirty bit scheme, the dirty bit of the page-table entry (PTE) is dupli-

cated. The dirty bit is set in response to handling by the memory management unit (MMU)

whenever the first write to the page is encountered. At each iteration, the duplicate bit is

checked and, if set, is first cleared before the page is transferred to the destination node.

To provide this shadow functionality, kernel-level functions accessing the PTE dirty bit are

extended to also set the duplicate bit upon the first write access.

The page protection scheme has certain draw-backs. Some address ranges, such

as the stack, can only be write protected if an alternate signal stack is employed, which

adds calling overhead and increases cache pressure. Furthermore, the overhead of user-

level exception handlers is much higher than kernel-level dirty-bit shadowing. Thus, we

selected the dirty bit scheme in our design. Implementation-specific issues of this scheme

are discussed in detail in the next section.

3.3 Implementation

We next provide implementation details of our process-level live migration under

LAM/MPI+BLCR. The overall design and the principle implementation methodology are

applicable to arbitrary MPI implementations, e.g., OpenMPI and MPICH.

3.3.1 Failure Prediction and Decentralized Scheduler

As outlined in Section 3.2, the capabilities of the BMC hardware and IPMI software

abstraction were utilized by our framework to predict failures. In the following, we focus

on the system aspects of the live migration mechanism to tolerate imminent faults and only

to a lesser extent on fault prediction, a topic mostly beyond the scope of this chapter.

The scheduler is implemented as a process of lamd communicating through the

out-of-band channel provided by LAM/MPI. When the scheduler daemon is notified by the

BMC/IPMI health monitoring component, it consults the database to retrieve information

about the MPI jobs and the nodes in the LAM universe. A spare node or, alternatively,

the most lightly loaded node is chosen as the migration target. In our implementation, we

also check the BMC/IPMI sensor readings with preset thresholds to determine if the degree

of urgency allows accommodation of a precopy step. For example, if the temperature

44

is higher than a high watermark (indicating that failure is almost instantly imminent),

the frozen migration (stop©-only) is launched, which guarantees a shorter migration

duration. However, if the value is closer to the low watermark (indicating that failure is likely

approaching but some time remains), the live migration (with its precopy step) is launched,

which reduces overall application downtime. The design allows additional schemes, selected

through a combination of sensor and history information, to be integrated as plug-ins in

the future.

Next, we present implementation details of the process-level mechanisms, including

dirty page tracking and process image restoration, as they were realized within BLCR. This

is followed by the MPI-level implementation details based on the fundamental capabilities

of BLCR, including the maintenance of consistency of a global state for the entire MPI job,

as realized within LAM/MPI.

3.3.2 Process-Level Support for Live Migration

As part of our implementation, we integrated several new BLCR features to extend

its process-level task migration facilities and to coordinate LAM/MPI’s callback mechanism

amongst all MPI processes. The scheduler discussed previously issues the cr save and

cr restore commands on the source and destination nodes, respectively, when it deems live

migration with precopy to be beneficial. Subsequently, once the precopy step has completed,

LAM/MPI issues the cr stop and cr quiesce commands on the source node and all other

operational nodes, respectively.

Precopy at the Source Node: cr save

The cr save command implements a sequence of steps specific to our live migration.

It first sends a signal to the process on the source node where it triggers the creation of a

new thread. This thread performs the precopy work at the user level. We chose a solution at

the user level since a kernel-level precopy can block application threads, thereby hampering

overall computational progress. During the first iteration of the precopy loop, all non-empty

pages are transferred to the destination node. Subsequent iterations, in contrast, result in

transfers of only those pages modified since the last iteration. The top half of Figure 3.2 at

the source node depicts this procedure. Recall that the dirty bit approach implemented in

45

our system tracks if a page has been written to since the last transfer (iteration).

The Linux kernel maintains a dirty bit in the PTE. It is automatically set by the

hardware (MMU) when the page is modified. Yet, we cannot utilize this dirty bit for our

purposes since its state is tightly coupled with the Linux memory management, specifically

the swap subsystem. We have to clear such a flag for each iteration of our page sweep, yet

clearing the PTE dirty bit would indicate that a page need not be written on a subsequent

swap-out, which is violating consistency. Instead of modifying the dirty bit semantics, we

decided to shadow the dirty bit within the reserved bits of PTE. Updates to this shadow

dirty bit may occur through system functions without much overhead (compared to user-

level page protection).

This shadow dirty bit still needs to be preserved across swapping, which is a chal-

lenge since swapped PTEs are partially invalidated. One solution would be to simply disable

swapping, which might be an option for HPC, but a more general solution is preferable.

Linux actually preserves selected fields of a swapped out PTE, among other things to as-

sociate with it the swap disk device and the offset into the device where the page resides.

This swap information includes a set of bits that are preserved, one of which we utilized

as the shadow dirty bit. We implemented this approach in x86 64 and i386 Linux kernels

similar to an orthogonal IA64 design by HP [33].

During live migration, a precopy thread iteratively transfers dirty pages to the

destination node until one of the following conditions is satisfied:

• The aggregate size of dirty memory during the last iteration is less than a lower

memory threshold (default: 1MB);

• the aggregate difference of transferred memory in consecutive iterations is less than

a small difference threshold (indicating that a steady state of the rate in which pages

are written to is reached);

• the remaining time left before the expected failure is below a lower overhead threshold.

As shown in Figures 3.5(a) and 3.5(b), the page dirty modification eventually stabilizes or

its fluctuation is regular (repeats periodically). We could support an empirical factor in the

algorithm to keep a profile history of the page modification rate and its regularity. Such

model parameters could steer future application runs during live migration / precopy in

46

choosing a more sensitive termination condition. This could be especially beneficial for jobs

with long runtime (a large number of timesteps) or repeated job invocations.

Once the precopy step terminates, the thread informs the scheduler, who then

enters the stop© step in a coordinated manner across all processes of the MPI job.

This includes issuing the cr stop command on the source node.

Freeze at the Source Node: cr stop

The redesigned cr stop command signals the process on the source node to freeze

execution, i.e., to stop and copy the pages dirtied in the last iteration of the precopy step

to the destination node. Threads of the process subsequently take turns copying their

own state information (registers, signal information, etc.) to the destination node. This

functionality is performed inside the Linux kernel (as an extension to BLCR) since process-

internal information needs to be accessed directly and in a coordinated fashion between

threads. The lower half of Figure 3.2 depicts these actions at the source node.

Between the precopy and freeze steps, the processes of an MPI job also need to

be globally coordinated. The objective is to reach a consistent global state by draining all

in-flight messages and delaying any new messages. This is accomplished in two parts at the

source node, implemented by the cr save and cr stop commands. At the destination node,

a single command implements the equivalent restore functionality.

Precopy and Freeze at the Destination Node: cr restore

At the destination node, the cr restore command with our extensions is issued

by the scheduler. This results in the immediate creation of an equal number of threads

as were existent on the source node, which then wait inside the Linux kernel for messages

from the source node. A parameter to the command, issued by the scheduler, indicates

whether or not a live/precopy step was selected on the source node. In either case, one

thread receives pages from the source node and places them at the corresponding location

in local memory. All threads subsequently restore their own state information received from

the corresponding source node threads, as depicted in Figures 3.2 and 3.3 at the destination

node. After the process image is fully transferred and restored, the user mode is entered.

Next, the MPI-level callback function is triggered, which creates the connections with the

47

other MPI processes of the compute job and restores the drained in-flight messages discussed

next.

Process Quiesce at Operational Nodes: cr quiesce

In steps 4 and 6 of our design (cf. Section 3.2), processes on all other operational

nodes drain the in-flight messages before the stop© step. They then remain suspended

in this step, creating a connection with the new process on the destination (spare) node and

ultimately restoring in-flight messages after. This sequence of actions is triggered through

the newly developed cr quiesce command. In our implementation, issuing this command

signals the process (MPI task), which subsequently enters the MPI-level callback function

to drain the messages, waits for the end of the stop© step of the faulty/spare nodes,

and then restores its communication state before resuming normal execution.

3.3.3 Job Communication and Coordination Mechanism for Live Migra-

tion

In our implementation, we extended LAM/MPI with fundamentally new function-

ality provided through our BLCR extension to support live migration of a process (MPI

task) within a job. Our approach can be divided into four stages introduced in their re-

spective temporal order:

Stage 1: Live/Precopy: The scheduler of the LAM daemon, lamd, determines

whether or not live/precopy should be triggered. If sufficient time exists to accommodate

this stage, the cr save and cr restore commands are issued on the source and destination

nodes, respectively. During the precopy step, the compute job continues to execute while

dirty pages are sent iteratively by a precopy thread on the source node. If time does not

suffice to engage in this live/precopy stage, the next stage is entered immediately.

Stage 2: Pre-Stop&Copy: In this stage, the scheduler issues a stop©

command for mpirun, the initial LAM/MPI process at job invocation, which subsequently

invokes the cr stop and cr quiesce commands on the source node and any other operational

nodes, respectively. Once signaled, any of these processes first enters the callback function,

which had been registered as part of the LAM/MPI initialization at job start. The call-

back forces a drain of the in-flight data to eventually meet a consistent global state for all

48

processes (MPI tasks).

Stage 3: Stop&Copy: Upon return from the callback function, the process on

the source node stops executing and transfers the remaining dirty pages and its process

state. Meanwhile, the processes on other operational nodes suspend in a waiting pattern,

as discussed previously.

Stage 4: Post-Stop&Copy: Once all the state is transferred and restored at the

destination (spare) node, the process is activated at this node and invokes the LAM/MPI

callback function again from the signal handler. Within the callback handler, the migrated

process relays its addressing information to mpirun, which broadcasts this information to

all other processes. These other processes update their entry in the local process list before

establishing a connection with the migrated process on the spare. Finally, all processes

restore the drained in-flight data and resume execution from the stopped state.

3.4 Experimental Framework

Experiments were conducted on the same cluster used in Chapter 2. The nodes

are interconnected by two networks, both 1 Gbps Ethernet. The OS used is Fedora Core

5 Linux x86 64 with our dirty bit patch as described in Sections 3.2 and 3.3. One of

the two networks was reserved for LAM/MPI application communication while the other

supported process migration and other network traffic. In the next section, we present

results for these two network configurations. As discussed in Section 3.2.2, the MPI job

and the migration activity may compete for network bandwidth if only a single network is

available. However, it is common for high-end HPC to install two separate networks, one

reserved for MPI communication and the other for operations such as I/O, booting, system

setup and migration. In our experiments, we also assessed the system performance with

a single network responsible for both MPI communication and migration activities. The

results are not significantly different from those with two networks, which shows that for the

applications evaluated in our system communication and memory intensity do not coincide.

For the future work, we will create and assess applications with varying communication

rates and memory pressure to measure the tradeoff between live and frozen migrations and

to provide heuristics accordingly, as discussed in the next section.

We have conducted experiments with several MPI benchmarks. Health deteriora-

49

tion on a node is simulated by notifying the scheduler daemon, which immediately initiates

the migration process. To assess the performance of our system, we measure the wall-clock

time for a benchmark with live migration, with stop©-only migration and without mi-

gration. The migration overheads are introduced by transferring the state of the process,

including the dirty pages, and the coordination among the MPI tasks. In addition, the

actual live migration duration can be attributed to two parts: (1) the overhead incurred by

the iterative precopy and (2) the actual downtime for which the process on the source node

is stopped. Accordingly, precopy durations and downtimes are measured.

3.5 Experimental Results

Experiments were conducted to assess (a) overheads associated with the migration,

(b) frozen and live migration durations, (c) scalability for task and problem scaling of

migration approaches, and (d) page access patterns and migration times.

Results were obtained for the NPB version 3.2.1 [18], a suite of programs widely

used to evaluate the performance of parallel systems. Out of the NPB suite, the BT, CG,

FT, LU and SP benchmarks were exposed to class B and class C data inputs running on

4, 8 or 9 and 16 nodes. Some NAS benchmarks have 2D, others have 3D layouts for 23

or 32 nodes, respectively. In addition to the 16 nodes, one spare node is used, which is

omitted (implicitly included) in later node counts in this chapter. The NAS benchmarks

EP, IS and MG were not suitable for our experiments since they execute for too short a

period to properly gauge the effect of imminent node failures. (With class B data inputs,

completion times for EP, IS and MG are 11.7, 4.8 and 4.1 seconds, respectively, for 16-node

configurations.)

3.5.1 Migration Overhead

The first set of experiments assesses the overhead incurred due to one migration

(equivalent to one imminent node failure). Figure 3.4(a) depicts the job execution time

without any migration, with live migration and with frozen (stop©-only) migration

under class C inputs on 16 nodes. The corresponding overheads per scheme are depicted

in Figure 3.4(b). The results indicate that the wall-clock time for execution with live

migration exceeds that of the base run by 0.08-2.98% depending on the application. The

50

 100

 150

 200

 250

 300

 350

 400

 450

BT CG FT LU SP

Se
co

nd
s

No-migration
Live

Stop&Copy

(a) Job Execution Time for NPB C-16

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

BT CG FT LU SP

Se
co

nd
s

Live
Stop&Copy

(b) Migration Overhead for NPB C-16

 0

 1

 2

 3

 4

 5

 6

 7

 8

BT CG FT LU SP

28.27

Se
co

nd
s

Live-downtime
Live-precopytime

S&C-downtime

(c) Migration Duration for NPB C-16

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

B
T(Live)

B
T(S&

C
)

C
G

(Live)

C
G

(S&
C
)

FT(Live)

FT(S&
C
)

LU
(Live)

LU
(S&

C
)

SP(Live)

SP(S&
C
)

Se
co

nd
s

Downtime
Overhead

(d) Downtime vs. Overhead for NPB C-16

 0

 100

 200

 300

 400

 500

BT CG FT LU SP

1.8GB

M
em

or
y

tr
an

sf
er

re
d

(M
B

)

Live-s&c
Live-precopy

Stop&Copy

(e) Memory Transferred for NPB C-16

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

B
T(Live)

B
T(S&

C
)

C
G

(Live)

C
G

(S&
C
)

FT(Live)

FT(S&
C
)

LU
(Live)

LU
(S&

C
)

SP(Live)

SP(S&
C
)

Se
co

nd
s

Class-B
Class-C

(f) Problem Scaling: Overhead NPB 16

 0

 5

 10

 15

 20

 25

 30

B
T(Live)

B
T(S&

C
)

C
G

(Live)

C
G

(S&
C
)

FT(Live)

FT(S&
C
)

LU
(Live)

LU
(S&

C
)

SP(Live)

SP(S&
C
)

Se
co

nd
s

4-nodes
8/9-nodes
16-nodes

(g) Task Scaling: Overhead of NPB C

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

BT(Live)

BT(S&C)

CG(Live)

CG(S&C)

FT(Live)

FT(S&C)

LU(Live)

LU(S&C)

SP(Live)

SP(S&C)

4 9 16 4 9 16 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16 4 9 16 4 9 16

Sp
ee

du
p

of nodes

Loss-in-speedup

(h) Speedup for NPB Class C

Figure 3.4: Evaluation with NPB (C-16: Class C on 16 Nodes)

51

overhead of frozen migration is slightly higher at 0.09-6%. The largest additional cost of

6.7% was observed for FT under class B inputs for 16 nodes (not depicted here) due to

its comparatively large memory footprint (113 MB) and relatively short execution time (37

seconds). Amongst BT, CG, FT, LU and SP under classes B and C running on 4, 8 or 9

and 16 nodes, the longest execution time is 20 minutes (for SP under class C inputs on 4

nodes, also not depicted here). Projecting these results to even longer-running applications,

the overhead of migration becomes less significant (if not even insignificant) considering the

equivalent checkpointing overhead under current MTTF rates.

3.5.2 Migration Duration

Besides overhead due to migration, we assessed the actual migration duration in-

cluding live migration (precopy duration) and the downtime of other nodes during migration

schemes. Figure 3.4(c) depicts (a) live migration with the precopy and downtime fractions

and (b) frozen migration with only its downtime during the stop© step, both for NPB

with class C inputs on 16 nodes. The precopy duration was measured from the issuing of the

cr save command to its completion. The stop© downtime was measured from issuing

cr stop on the source node / cr quiesce on the operational nodes to the resumption of the

job execution. Live downtime ranged between 0.29-3.87 seconds while stop© downtime

was between 1.04-7.84 seconds. Live migration pays a penalty for the shorter downtime in

that its precopy duration is prolonged. Precopy adds another 2.35-24.4 seconds. Nonethe-

less, the precopy stage does not significantly affect execution progress of the application as

it proceeds asynchronously in the background. Figure 3.4(d) illustrates this fact for each

scheme by comparing the downtime (from Figure 3.4(b)) with migration overhead for both

frozen (stop©) and live migration. Both schemes show a close match between their re-

spective downtime and overhead numbers. (Some benchmarks show shorter overhead than

the absolute downtime due to larger variances in job execution times subsuming the shorter

overheads, see Section 3.5.3.)

Figure 3.4(e) depicts the amount of memory transferred during migration. With

frozen (stop©-only) migration, memory pages of a process cannot be modified while

the process remains inactive in this stage. In contrast, live migration allows pages to be

modified and consequently requires repeated transfers of dirty pages. Hence, both precopy

duration and downtime are a function of the write frequency to disjoint memory pages.

52

Frozen (stop©-only) migration results in larger memory transfers (50.7-448.6MB) than

just the stop© step of live migration (1.7-251MB), yet the latter incurs additional

transfers (127.4-1565MB) during the precopy step. This result is consistent with the down-

time observations of the two schemes discussed above. Our experiments also indicate an

 0

 100

 200

 300

 400

 500

30 60 90

of

 u
pd

at
ed

 p
ag

es
 (

sa
m

pl
e

ov
er

 0
.1

 s
ec

on
d)

Elapsed time (seconds)

(a) Page Access Pattern of CG C-16

 0

 5000

 10000

 15000

 20000

 25000

30 60 90 120

of
 u

pd
at

ed
 p

ag
es

 (
sa

m
pl

e
ov

er
 0

.1
 s

ec
on

d)
Elapsed time (seconds)

(b) Page Access Pattern of FT C-16

0 1.07 2.15 2.23
Elapsed time (seconds)

117.9
115.9
114.8

59.4
57.9

0

Tr
an

sf
er

 /
di

rty
 ra

te
 (M

B
/s

ec
)

62MB 62.2MB

1.6MB
1.5MB
1.6MB

Memory dirtied during
this iteration

Memory transferred

(c) Iterative Live Migration of CG C-16

0 6.96
Elapsed time (seconds)

246.2

119.6

64.4

0

Tr
an

sf
er

 /
di

rty
 ra

te
 (M

B
/s

ec
)

448.6MB

Memory dirtied during
this iteration

Memory transferred

384.4MB

136.2MB

384.4MB384.4MB384.4MB

138.3MB 142.5MB

12.93 15.04 21.01 23.16 29.12 35.09 37.03

87.6

(d) Iterative Live Migration of FT C-16

Figure 3.5: Page Access Pattern vs. Iterative Live Migration

approximate cost of 0.3 seconds for MPI-level coordination and communication during live

migration plus a cost of less than 0.1 seconds transferring process state information, e.g.,

registers and signal information. Hence, both the precopy duration and the downtime are

almost entirely due to the overhead of transferring memory pages. Hence, the overall trends

and patterns of Figures 3.4(c) and 3.4(e) tend to be similar.

53

3.5.3 Effect of Problem Scaling

Figure 3.4(f) depicts the effect of migration on scaling the problem size with class

B and C inputs on 16 nodes. For BT, FT and SP, we observe an increase in overhead as

the task size increases from class B to class C. This behavior is expected as problem scaling

results in larger data per node. However, the inverse behavior is observed for CG and LU.

Though the actual downtime becomes longer as the task size increases from class B to class

C, the absolute downtime (0.27-1.19 seconds) is so small that its effect is subsumed by the

variance of overall job execution time (up to 11 seconds for CG and up to 8 seconds for

LU), ultimately resulting in an overall decrease in overhead for increasing task sizes.

3.5.4 Effect of Task Scaling

We next examined migration under strong scaling by increasing the number of

nodes. Figure 3.4(g) depicts the overhead for NPB codes with class C inputs on varying

number of nodes (4, 8 or 9 and 16). In most cases, overheads tend to decrease as the number

of nodes increases. Yet, BT(Stop&Copy), CG(Live), LU(Stop&Copy) and SP(Live) show

no obvious trends. As with problem scaling, this can be attributed to the relatively minor

migration downtime, which is effectively subsumed by variances in job execution times.

Hence, no measurable effect on task scaling is observed in these cases.

Figure 3.4(h) depicts the speedup on 4, 8 or 9 and 16 nodes normalized to the

wall-clock time on 4 nodes. The figure also shows the relative speedup of live migration, of

frozen migration (stop©-only) and without migration. The lightly colored portion of

the bars represents the execution time of the benchmarks in the presence of one migration.

The aggregate value of light and dark stacked bars presents the execution time without

migration. Hence, the dark portions of the bars show the loss in speedup due to migration.

The largest loss in speedup is 0.21 with FT on 16 nodes. This can be attributed to FT’s

relatively large migration overhead (8.5 seconds) compared to its rather short execution time

(150 seconds). While the overhead increases proportionately to the memory footprint, the

memory footprint is limited by system hardware (total memory size), which also limits the

migration overhead. Hence, our results indicate an increasing potential for strong scaling

of the benchmarks.

54

3.5.5 Page Access Pattern & Iterative Live Migration

Next, page access patterns of the NPB application are analyzed with respect to

their effect on live migration, specifically on precopy duration and downtime. Figures 3.5(a)

and 3.5(b) depict the page access pattern of CG and FT with class C inputs on 16 nodes.

We sampled the number of memory pages modified per 0.1 second interval. The page size

is 4KB on our experimental system. The write frequency to memory pages of CG is lower

(∼393/interval) than that of FT (between 1000/interval and 5000/interval). Both codes

show a certain regularity in their write patterns, albeit quite an individual one each.

To compare the iterative live migration with the page access pattern, we further

evaluated the aggregate amount of the transferred memory and the duration of each iteration

of a full memory sweep, as depicted in Figures 3.5(c) and 3.5(d). During the first iteration,

all non-empty pages are transferred (depicted as dark gray in the figures). In subsequent

iterations, only those pages modified since the last iteration (light gray) are transferred.

We observed that the write patterns of Figures 3.5(a) and 3.5(b) are in accord with those

depicted in Figures 3.5(c) and 3.5(d). For CG, memory pages written in the last two

iterations account for 1.6MB corresponding to a write frequency of 393 pages. However,

the dirtied memory in the second iteration is only 1.6MB while that in the first iteration is

62.2MB overall, even though the iteration durations are the same. This happens because the

first iteration occasionally coincides with the initialization phase of the application. There,

higher per-page memory access frequencies (2000-8000 per 0.1 second) persist combined

with more frequent cold misses in cache. (This effect was experimentally confirmed but

is not explicitly reflected in Figure 3.5(c)). For FT, 138MB and 384MB overall of dirtied

memory was transferred in an alternating pattern during consecutive iterations (Figure

3.5(d)) corresponding to the most significant clusters at 1200 and 4600 page updates in

Figure 3.5(b).

These profile patterns of the page modification rate could be archived and sub-

sequently utilized as an empirical factor for future application runs/precopy decisions to

choose a more sensitive termination condition (see Section 3.2). Besides the page access

pattern, the communication pattern also affects the precopy decision. For example, if the

application is both communication intensive and memory intensive, the opportunity for the

precopy operation to complete before an imminent failure is low for high migration over-

55

head and significant network contention. Three main criteria for trading off live and frozen

migration and for precopy termination conditions are:

• thresholds, e.g., temperature watermarks in Section 3.3.1, memory/difference/overhead

thresholds in Section 3.3.2;

• available network bandwidth determined by dynamic monitoring; and

• size of the write set. (If the memory dirtying rate is faster than the available network

rate, the precopy operation may be ineffective.)

Based on these conditions, a heuristics algorithm can be designed. However, the applications

we evaluated are not sufficient to design such an algorithm. In future work, we plan to create

and assess applications with varying communication rate and memory access pattern that

are more suitable.

3.5.6 Process-Level Live Migration vs. Xen Virtualization Live Migra-

tion

We next provide the performance comparison of our approach to another solution

at the OS virtualization layer in the context of proactive FT of MPI applications [34]. The

common benchmarks measured with both solutions on the same hardware were NPB BT,

CG, LU and SP. For these NPB codes with class C inputs on 16 nodes, the overhead of mi-

grating an entire guest OS ranged between 4-14 seconds under Xen virtualization while the

process-level solution caused only around 1 second overhead. The time taken from initiating

migration to actual completion on 16 nodes ranged between 14-24 seconds for live migra-

tion as opposed to a near-constant cost of 13-14 seconds for frozen migration (stop©),

both under Xen virtualization. In contrast, our process-level solution only requires 2.6-6.5

seconds for live migration and 1-1.9 seconds for frozen (stop©-only) migration. The

main difference between the two solutions is that the Xen virtualization solution induced a

13 second minimum overhead to transfer the entire memory image of the inactive guest VM

(with a guest memory cap of 1GB) while the process-level solution constrained migration

to only the memory of the respective process. Hence, our solution (with 1-6.5 seconds of

prior warning to successfully trigger live process migration) significantly outperforms the

Xen virtualization solution (with 13-24 seconds of prior warning). One could argue that

56

only a subset of the OS image needs to be migrated, yet the strength of virtualization lies

in its transparency, yet it comes at the cost of indiscriminate transfer of the entire virtual

memory range.

3.5.7 Proactive FT Complements Reactive FT

We claim that proactive FT complements its reactive sister. This was already em-

pirically shown in Figure 3.4(h) where we noted that scalability of live migration depends

on the amount of transferred memory. Once local memory is exhausted by an application,

the overhead of a single migration will remain constant irrespective of the number of nodes.

Of course, the rate of failures in larger systems is bound to increase, but proactive FT sup-

ports larger systems while reactive schemes result in increased I/O bandwidth requirements,

which can become a bottleneck. This supports our argument that proactive schemes are

important since they can complement reactive schemes in lowering checkpoint frequency

requirements of the latter.

An analytical argument for the complementary nature is given next. The objective

here is to assess the ability of proactive FT to successfully counter imminent faults, which

subsequently allows reactive schemes to engage in less frequent checkpointing. Let the time

interval between checkpoints be Tc, the time to save checkpoint information be Ts, and

the MTBF be Tf . Then, the optimal checkpoint rate is Tc =
√

2× Ts × Tf [21]. We also

observed that the mean checkpoint time (Ts) for BT, CG, FT, LU and SP with class C inputs

on 4, 8 or 9 and 16 nodes is 23 seconds on the same experimental cluster [35]. With a MTBF

of 1.25 hours [4], the optimal checkpoint rate Tc is Tc =
√

2× 23× (1.25× 60× 60) = 455

seconds. Let us further assume that 70% of failures can be predicted [26] and can thus

be avoided by our proactive migration. (Sahoo et al. actually reported that up to 70% of

failures can be predicted without prior warning; with a prior warning window, the number

of proactively tolerated failures could even exceed 70%.) Our solution can then prolong

reactive checkpoint intervals to Tc =
√

2× 23× (1.25/(1− 0.7)× 60× 60) = 831 seconds.

The challenge with proactive FT then becomes (1) to provide a sufficient number of spare

nodes to avoid initial failures by live or frozen migration and (2) to repair faulty nodes in

the background such that jobs running over the course of days can reclaim failed nodes for

future proactive FT.

57

3.6 Conclusion

We have contributed a novel process-level live migration mechanism with a concrete

implementation as an enhancement to the Linux BLCR module and an integration within

LAM/MPI. By monitoring the health of each node, a process can be migrated away from

nodes subject to imminent failure. We show live migrations to be beneficial to frozen

migration due to a lower overall overhead on application wall-clock execution time. This

lower overhead is attributed to the asynchronous transfer of a large portion of a migrated

process image while the application stays alive by proceeding with its execution. Process-

level migration is also shown to be significantly less expensive than migrating entire OS

images under Xen virtualization. The resulting proactive approach complements reactive

checkpoint/restart schemes by avoiding roll-backs if failures are predicted only seconds

before nodes cease to operate. Thus, the optimal number of checkpoints of applications can

be nearly cut in half when 70% of failures are addressed proactively.

58

Chapter 4

Process-level Back Migration

4.1 Introduction

A migrated task could present a bottleneck due to (1) increased hop counts for

communication from/to the spare node, (2) reduced resources in heterogeneous clusters

(lower CPU/memory/network speed), or (3) placement of multiple MPI tasks on a node if

not enough spare nodes are available. We contribute back migration as a novel method-

ology. We have implemented the back migration mechanism within LAM/MPI and BLCR

based on process-level live migration in reverse direction. Our results indicate that we can

benefit from back migration when, on average, 10.19% of execution is still outstanding just

for our set of benchmarks. For larger applications, benefits are projected to occur for even

smaller remaining amounts.

4.2 Design

To determine if we can benefit from back migration before actually migrating back

an MPI task when the original node is recovered, the performance of MPI tasks across all

nodes must be monitored. Systems, such as Ganglia [36], htop [37] and PAPI [38], monitor

the performance of entire nodes rather than MPI task-specific performance or even timestep-

specific metrics. Per-node measurements tend to be inaccurate as they fail to capture the

“velocity” of an MPI job before and after task migration. In our design, we eliminate

node-centric draw-backs through self-monitoring within each MPI task.

59

During a job’s execution, MPI tasks record the duration of a timestep and relay

this information to the same decentralized scheduler that we designed for migration trigger

as shown in Figure 3.1. The scheduler compares the “velocity” of the MPI job before and

after task migration to decide whether or not to migrate an MPI task back to the original

node once this node is brought back online in a healthy state. The decision considers (a)

the overhead of back migration and (b) the estimated time for the remaining portion of the

job, which is also recorded for the MPI job and communicated between the job and the

scheduler. We assume back migration overhead to be symmetric to the initial migration

overhead.

4.3 Implementation

Our approach requires that MPI tasks perform self-monitoring of execution progress

along timesteps. One solution is to provide an interposition scheme that intercepts selected

runtime calls of an application at the PMPI layer similar to mpiP [39], a lightweight pro-

filing library for MPI applications to collect statistical information about MPI functions.

However, to estimate the benefit of the potential back migration, we must need information

about the number of active MPI tasks, which the MPI standard does not natively support.

Thus, our implementation provides an API with calls that can be directly added to MPI ap-

plication code within the timestep loop. These called routines subsequently communicate

with the decentralized scheduler to allow timestep-centric bookkeeping of an MPI task’s

progress. Our back migration approach can be divided into three stages described in the

following.

Stage 1: Pre-Live Migration: Instrumentation is added around the time step

loop of the MPI application to measure the overhead of each time step. This information

is subsequently sent together with the bound on the total number of time steps and the

current time integration number to the scheduler of the LAM daemon, which records the

last information it received.

Stage 2: Live Migration: When a health problem is predicted to result in a

future node failure so that live migration is triggered, the scheduler measures and records

the migration overhead.

60

Stage 3: Post-Live Migration: Just as prior to live migration, the application

and scheduler continue to assess the overhead of time steps. The scheduler further compares

the difference in “velocity” of the MPI job before and after the migration and compares it

with the migration overhead to decide whether or not to migrate an MPI task back to the

original node once this node is brought back online in a healthy state.

4.4 Experimental Results

The experimental framework for back migration is the same as the one used for

live migration in Chapter 3.

Results were obtained for NPB as depicted in Figure 4.1. Figure 4.1(a) shows the

downtime fraction of live migration from the original node to a spare for different CPU

frequencies at the destination node. For BT, FT, LU and SP, we observe an increase in

downtime as the CPU frequency on the spare node decreases, which is expected as slower

CPU frequencies result in longer migration. For CG, no obvious increasing behavior is

observed since the main computation of CG is matrix multiplication, which is dominated

by memory accesses and communication rather than CPU frequency-centric effects. The

corresponding overheads of one time step per CPU frequency are depicted in Figure 4.1(b).

Figures 4.1(c) and 4.1(d) depict the savings of back migration for BT and LU. Figures 4.1(e)

and 4.1(f) depict the cross-over region of the previous figures indicating the minimal number

of required time steps to benefit from back migration BT and LU are representative for the

remaining NPB codes. The results for CG, FT and SP are also measured and assessed but

not depicted here since they follow the same trends.

Benefits from the back migration are obtained when

R× (Td − To)− Tm > 0

which implies

R > Tm/(Td − To)

where R is the number of remaining time steps of the benchmark, Td is the overhead of

one time step on the spare/destination node, To is the overhead of one time step of the

benchmark on the original node, and Tm is the back-migration overhead (assumed to be

symmetric to the initial migration overhead to the spare node). Tm plays an important role

in the calculation of benefits when the number of remaining time steps (R) is low, which

61

leads to a cross-over point as depicted in Figures 4.1(e) and 4.1(f). Benefits due to migration

increase as the CPU frequency on the spare node decreases when R is large enough to cover

up the effect of Tm.

Table 4.1 summarizes the time steps required to obtain benefits for BT, CG, FT,

LU and SP class C on 16 nodes. The number below the benchmark name is the total

number of time steps of the benchmark. The results in the table indicate that benefits from

back migration occur when as little as 1.33% and as much as 65% of the MPI job execute

time remains to be executed, depending on the benchmark, for an average of 10.19% of

outstanding execution time. These results are highly skewed by the short runtime duration

of the NPB codes, particularly by FT, which has a comparatively short job execution time

and high migration overhead. For larger applications, benefits are projected to occur for

even smaller fractions of execution time.

Table 4.1: Minimal Time Steps (Percentage) Remained to Benefit from Back Migration
CPU Frequency BT CG FT LU SP
of Spare Node (200) (75) (20) (250) (400)

1.6GHz 14 7 13 13 26
(7%) (9.3%) (65%) (5.2%) (6.5%)

1.4GHz 13 8 4 7 9
(6.5%) (10.67%) (20%) (2.8%) (2.25%)

1.2GHz 6 5 5 7 9
(3%) (6.67%) (25%) (2.8%) (2.25%)

1.0GHz 3 1 4 9 10
(1.5%) (1.33%) (20%) (3.6%) (2.5%)

In general, the larger the amount of outstanding execution and the larger the

performance difference between nodes, the higher the benefit due to back migration will be.

These results illustrate a considerable potential of back migration particularly for large-scale

clusters with heterogeneous nodes or multi-hop, non-uniform message routing. This is an

aspect without studied investigation, to the best of our knowledge.

4.5 Conclusion

We contributed a mechanism to migrate an MPI task back to the original node

once this node is brought back online in a healthy state to eliminate the potential load

62

imbalance or bottlenecks caused by the initially task migrated, which is an unprecedented

concept, to the best of our knowledge.

63

0

2

4

6

8

10

12

BT CG FT LU SP

Se
co

nd
s

CPU@1.8GHz
CPU@1.6GHz
CPU@1.4GHz
CPU@1.2GHz
CPU@1.0GHz

(a) Live Migration Downtime for NPB C-16

0

1

2

3

4

5

6

7

8

9

10

BT CG FT LU SP

Se
co

nd
s

CPU@1.8GHz
CPU@1.6GHz
CPU@1.4GHz
CPU@1.2GHz
CPU@1.0GHz

(b) Overhead of One Time Step for NPB C-16

-20

0

20

40

60

80

100

120

140

160

1 10 100 1000

Time Steps of the Benchmark Remained

Sa
vi

ng
s b

y
B

ac
k

M
ig

ra
tio

n
(S

ec
on

ds
) Spare node CPU at 1.0GHz

Spare node CPU at 1.2GHz

Spare node CPU at 1.4GHz

Spare node CPU at 1.6GHz

(c) Savings of Back Migration for BT C-16

-5

0

5

10

15

20

25

30

35

1 10 100 1000

Time Steps of the Benchmark Remained

Sa
vi

ng
s b

y
B

ac
k

M
ig

ra
tio

n
(S

ec
on

ds
) Spare node CPU at 1.0GHz

Spare node CPU at 1.2GHz

Spare node CPU at 1.4GHz

Spare node CPU at 1.6GHz

(d) Savings of Back Migration for LU C-16

-2

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time Steps of the Benchmark Remained

Sa
vi

ng
s b

y
B

ac
k

M
ig

ra
tio

n
(S

ec
on

ds
) Spare node CPU at 1.0GHz

Spare node CPU at 1.2GHz
Spare node CPU at 1.4GHz
Spare node CPU at 1.6GHz

(e) Remaining Time Steps for BT C-16

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time Steps of the Benchmark Remained

Sa
vi

ng
s b

y
B

ac
k

M
ig

ra
tio

n
(S

ec
on

ds
) Spare node CPU at 1.0GHz

Spare node CPU at 1.2GHz

Spare node CPU at 1.4GHz

Spare node CPU at 1.6GHz

(f) Remaining Time Steps for LU C-16

Figure 4.1: NPB Results for Back Migration (C-16: Class C on 16 Nodes)

64

Chapter 5

Hybrid Full/Incremental

Checkpoint/Restart

5.1 Introduction

This Chapter contributes a hybrid full/incremental C/R solution to significantly

reduce the size of the checkpoint file and the overhead of the checkpoint operations. Besides

the original nodes allocated to an MPI job, it assumes the availability of spare nodes where

processes (MPI tasks) may be relocated after a node failure. The Chapter further reduces

the overhead of the restart operation due to roll-back after node failures, i.e., restoration

from full/incremental checkpoints on spare nodes, which only moderately increases the

restart cost relative to a restore from a single, full checkpoint. After accounting for cost and

savings, benefits due to incremental checkpoints significantly outweigh the loss on restart

operations for our novel hybrid approach.

We conducted a set of experiments on an 18-node dual-processor (each dual core)

Opteron cluster. We assessed the viability of our approach using the NAS Parallel Bench-

mark suite and mpiBLAST. Experimental results show that the overhead of our hybrid

full/incremental C/R mechanism is significantly lower than that of the original C/R mech-

anism relying on full checkpoints. More specifically, experimental results indicate that the

cost saved by replacing three full checkpoints with three incremental checkpoints is 16.64

seconds while the restore overhead amounts to just 1.17 for an overall savings of 15.47 sec-

onds on average for the NAS Parallel Benchmark suite and mpiBLAST. The potential of

65
Nodes

failure

restart

lamboot
n0 n2n1

mpirun

0 00full chkpt

lamboot
n0 n2n1

4 44

(b) New Full/Incr C/R

(a) Old Full C/R

1 11

2 22

3 33

4 44

n3

full chkpt

full chkpt

full chkpt

full chkpt

Nodes

failure

restart

lamboot
n0 n2n1

mpirun

0 00full chkpt

lamboot
n0 n2n1

1 11

1 11

n3

incr chkpt

full chkpt

incr chkpt

incr chkpt

Figure 5.1: Hybrid Full/Incremental C/R Mechanism vs. Full C/R

savings due to our hybrid incremental/full C/R technique should even be higher in practice

as (1) much higher ratios than just 1/3 for full/incremental checkpoints may be employed

and (2) the amount of lost work would be further reduced if more frequent, lighter weight

checkpoints were employed. Moreover, our approach can be easily integrated with other

techniques, such as job-pause and migration mechanisms (discussed in Chapters 3 - 5) to

avoid requeuing overhead by letting the scheduled job tolerate faults so that it can continue

executing with spare nodes.

The remainder of this chapter is structured as follows. Section 5.2 presents the

design of our hybrid full/incremental C/R mechanism. Section 5.3 identifies and describes

the implementation details. Subsequently, the experimental framework is detailed and

measurements for our experiments are presented in Sections 5.4 and 5.5, respectively. The

work is then summarized in Section 5.6.

5.2 Design

This section presents an overview of the design of the hybrid full/incremental C/R

mechanism with LAM/MPI and BLCR. We view incremental checkpoints as complementary

to full checkpoints in the following sense. Every n-th checkpoint will be a full checkpoint to

capture an application without prior checkpoint data while any checkpoints in between are

incremental, as illustrated in Figure 5.1(b). Such process-based incremental checkpointing

reduces checkpoint bandwidth and storage space requirements, and it leads to a lower rate

of full checkpoints.

66

In the following, we first discuss the schedule of the full/incremental C/R. We then

discuss system support for incremental checkpoints at two levels. First, the synchronization

and coordination operations (such as the in-flight message drainage among all the MPI tasks

to reach a consistent global state) at the job level are detailed. Second, dirty pages and

related meta-data image information are saved at the process/MPI task level, as depicted

in Figure 5.3. We employ filtering of “dirty” pages at the memory management level,

i.e., memory pages modified (written to) since the last checkpoint, which are utilized at

node failures to restart from the composition of full and incremental checkpoints. Each

component of our hybrid C/R mechanism is detailed next.

5.2.1 Scheduler

We designed a decentralized scheduler, which can be deployed as a stand-alone

component or as an integral process of an MPI daemon, such as the LAM daemon (lamd).

The scheduler will issue the full or incremental checkpoint commands based on user-configured

intervals or the system environment, such as the execution time of the MPI job, storage

constraints for checkpoint files and the overhead of preceding checkpoints.

Upon a node failure, the scheduler initiates a “job pause” mechanism in a co-

ordinated manner that effectively freezes all MPI tasks on functional nodes and migrates

processes of failed nodes [35]. All nodes, functional (paused ones) and migration targets

(replaced failed ones), are restarted from the last full plus n incremental checkpoints, as

explained in Section 5.2.5.

5.2.2 Incremental Checkpointing at the Job Level

Incremental Checkpointing at the Job Level is performed in a sequence of steps

depicted in Figure 5.2 and described in the following.

Step 1: Incremental Checkpoint Trigger: When the scheduler decides to

engage in an incremental checkpoint, it issues a corresponding command to the mpirun

process, the initial LAM/MPI process at job invocation. This process, in turn, broadcasts

the command to all MPI tasks.

Step 2: In-flight Message Drainage: Before we stop any process and save

the remaining dirty pages and the corresponding process state in checkpoint files, all MPI

67
nodes

n0 n2n1lamd

MPI app MPI app MPI app

1. incr. cmd

3. process incr. chkpt

MPI app

shared

storage

MPI app MPI app

2. drain in-flight data

MPI app MPI app

4. restore in-flight data, resume normal operation

mpirun

lamd lamd

mpirun

MPI app MPI app MPI app

MPI app

Figure 5.2: Incremental Checkpoint at LAM/MPI

tasks coordinate a consistent global state equivalent to an internal barrier. Based on our

LAM/MPI+BLCR design, message passing is handled at the MPI level while the process-

level BLCR mechanism is not aware of messaging at all. Hence, we employ LAM/MPI’s

job-centric interaction mechanism for the respective MPI tasks to clear in-flight data in the

MPI communication channels.

Step 3: Process Incremental Checkpoint: Once all the MPI tasks (processes)

reach a globally consistent state, all the MPI tasks perform the process-level incremental

checkpoint operations independently, as discussed in Section 5.2.3.

Step 4: Messages Restoration and Job Continuation: Once the process-

level incremental checkpoint has been committed, drained in-flight messages are restored,

and all processes resume execution from their point of suspension.

5.2.3 Incremental Checkpointing at the Process Level

Incremental checkpointing of MPI tasks (step 3 in Figure 5.2) is performed at

the process level, which is shown in detail in Figure 5.3. Compared to a full checkpoint,

the incremental variant lowers the checkpoint overhead by saving only those memory pages

modified since the last (full or incremental) checkpoint. This is accomplished via our BLCR

enhancements by activating a handler thread (on right-hand side of Figure 5.3) that signals

68

compute threads to engage in the incremental checkpoint. One of these threads subsequently

saves modified pages before participating in a barrier with the other threads, as further

detailed in Section 5.3.2.

thread1

thread2

running normally
blocked in ioctl()

handler_thr

block in ioctl()

run handler functions

checkpoint_req()

unblocks

handler_thr

incr_checkpoint

still running normally

receives signal, runs handlers,

and ioctl()

signal other threadsother work

barrier

barrier

cleanup

block

first thread restores

dirty pages

 shared resource

 registers/signals

reg/sig

registers/signals

mark checkpoint as complete

continue normal execution

Figure 5.3: BLCR with Incremental Checkpoint in Bold Frame

A set of three files serve as storage abstraction for a checkpoint snapshot, as

depicted in Figure 5.4:

1. Checkpoint file a contains the memory page content, i.e., the data of only those memory

pages modified since the last checkpoint.

2. Checkpoint file b stores memory page addresses, i.e., address and offset of the saved

memory pages for each entry in file a.

3. Checkpoint file c covers other meta information, e.g., linkage of threads, register snap-

shots, and signal information pertinent to each thread within a checkpointed process

/ MPI task.

File a and file b maintain their data in a log-based append mode for successive

incremental checkpoints. The last full and subsequent incremental checkpoints will only be

69

chkpt file a

incr

chkpt 1

P6P5P1P4P3P4P2P4P3P2P1P0

full chkpt
incr

chkpt 2

incr

chkpt 3

Pi: content of memory page i

chkpt file b

chkpt file c

A0

O0

A5

O10

A6

O11

A1

O1

A2

O2

A3

O3

A4

O4

A2

O5

A4

O6

A3

O7

A4

O8

A1

O9

Ai: address of memory page i

Oi: offset in file a of the corresponding memory page

structure info of file b register info signal info etc.

Figure 5.4: Structure of Checkpoint Files

discharged (marked for potential removal) once the next full checkpoint has been committed.

Their availability is required for the potential restart up until a superseding checkpoint is

written to stable storage. In contrast, only the latest version of file c is maintained since

all the latest information is saved as one meta-data record, which is sufficient for the next

restart.

In addition, memory pages saved in file a by an older checkpoint can be discharged

once they are captured in a subsequent checkpoint due to page modifications (writes) since

the last checkpoint. For example, in Figure 5.4, memory page 4 saved by the full checkpoint

can be discharged when the first incremental checkpoint saves the same page. Later, the

same page saved by the first incremental checkpoint can be discharged when it is saved

by the second incremental checkpoint. In our on-going work, we are developing a garbage

collection thread for this purpose. Similar to segment cleaning in log-structured file systems

[40], the file is divided into segments (each of equal size as they represent memory pages)

that are written sequentially. A separate garbage collection thread tracks these segments

within the file, removes old segments (marked appropriately) from the end and puts new

checkpointed memory data into the next segment. As a result, the file morphs into a large

circular buffer as the writer thread adds new segments to the front and the cleaner thread

removes old segments from the end toward the front (and then wraps around). Meanwhile,

checkpoint file b is updated with the new offset information relative to file a.

70

5.2.4 Modified Memory Page Management

We utilize a Linux kernel-level memory management module that has been ex-

tended by a page-table dirty bit scheme to track modified pages between checkpoints as

described in Chapter 3. This is accomplished by duplicating the dirty bit of the page-table

entry (PTE) and extending kernel-level functions that access the PTE dirty bit so that the

duplicate bit is set, which incurs negligible overhead (see Chapter 3 for details).

5.2.5 MPI Job Restart from Full+Incremental Checkpoints

Upon a node failure, the scheduler coordinates the restart operation on both the

functional nodes and the spare nodes. First, the process of mpirun is restarted, which, in

turn, issues the restart command to all the nodes for the MPI tasks. Thereafter, recovery

commences on each node by restoring the last incremental checkpoint image, followed by

the memory pages from the preceding incremental checkpoints in reverse sequence up to

the pages from the last full checkpoint image, as depicted in Figure 5.5. The scan over all

incremental checkpoints and the last full checkpoint allows the recovery of the last stored

version of a page, i.e., the content of any page only needs to be written once for fast restart.

After process-level restart has been completed, drained in-flight messages are restored, and

all the processes resume execution from their point of suspension. Furthermore, some pages

saved in preceding checkpoints may be invalid (unmapped) in subsequent ones and need

not be restored. The latest memory mapping information saved in checkpoint file c is also

used for this purpose.

chkpt file a

restart

incr

chkpt 1

P6P5P1P4P3P4P2P4P3P2P1P0

full chkpt
incr

chkpt 2

incr

chkpt 3

Pi: content of memory page i

Figure 5.5: Fast Restart from Full/Incremental Checkpoints

71

5.3 Implementation Issues

Our hybrid full/incremental checkpoint/restart mechanism is currently implemented

with LAM/MPI and BLCR. The overall design and implementation allows adaptation of

this solution to arbitrary MPI implementations, such as MPICH and OpenMPI. Next, we

present the implementation details of the full/incremental C/R mechanism, including the

MPI-level communication/coordination realized within LAM/MPI and the process-level

fundamental capabilities of BLCR.

5.3.1 Full/Incremental Checkpointing at the Job Level

We developed new commands lam full checkpoint and lam incr checkpoint to issue

full and incremental checkpoint commands, respectively. The decentralized scheduler relays

these commands to the mpirun process of the MPI job. Subsequently, mpirun broadcasts

full/incremental checkpoint commands to each MPI tasks. At the LAM/MPI level, we also

drain the in-flight data and reach to a consistent internal state before processes launch the

actual checkpoint operation (see step 2 in Figure 5.2). We then restore the in-flight data

and resume normal operation after the checkpoint operation of the process has completed

(see step 4 in Figure 5.2).

5.3.2 Full/Incremental Checkpointing at the Process Level

We integrated several new BLCR features to extend its process-level checkpointing

facilities, including the new commands cr full checkpoint and cr incr checkpoint to trigger

full and incremental checkpoints at the process level within BLCR. Both of these commands

write their respective portion of the process snapshot to one of the three files (see Section

5.2 and Figure 5.4).

Figure 5.3 depicts the steps involved in issuing an incremental checkpoint in refer-

ence to BLCR. Our focus is on the enhancements to BLCR (large dashed box). In the figure,

time flows from top to bottom, and the processes and threads involved in the checkpoint

are placed from right to left. Activities performed in the kernel are surrounded by dotted

lines. A callback thread (right side) is spawned as the application registers a threaded

callback and blocks in the kernel until a checkpoint has been committed. When mpirun

invokes the newly developed cr incr checkpoint command extensions to BLCR, it provides

72

the process id as an argument. In response, the cr incr checkpoint mechanism issues an

ioctl call, thereby resuming the callback thread that was previously blocked in the kernel.

After the callback thread invokes the individual callback for each of the other threads, it

reenters the kernel and sends a signal to each thread. These threads, in response, engage in

executing the callback signal handler and then enter the kernel through another ioctl call.

Once in the kernel, the first thread saves the dirty memory pages modified since

the last checkpoint. Then, threads take turns saving their register and signal information

to the checkpoint files. After a final barrier, the process exits the kernel and enters user

space, at which point the checkpoint mechanism has completed.

The command cr full checkpoint performs similar work, except that once the kernel

is entered, the first thread saves all the non-empty memory pages rather than only the dirty

ones.

5.3.3 Restart from Full+Incremental Checkpoints at Job and Process

Levels

A novel command, lam fullplusincr restart, has been developed to perform the

restart work at the job level with LAM/MPI. Yet another command, cr fullplusincr restart,

has been devised to support the restart work at the process level within BLCR. In concert,

the two commands implement the restart from the three checkpoint files and resume the

normal execution of the MPI job as discussed in Section 5.2.

5.4 Experimental Framework

Experiments were conducted on a dedicated Linux cluster comprised of 18 compute

nodes, each equipped with two AMD Opteron-265 processors (each dual core) and 2 GB of

memory. The nodes are interconnected by two networks, both with 1 Gbps Ethernet. The

OS used is Fedora Core 5 Linux x86 64 with our dirty bit patch as described in Section 5.2.

We extended LAM/MPI and BLCR with our hybrid full/incremental C/R mechanism of

this platform.

For all following experiments we use the MPI version of the NPB suite [18] (version

3.3) as well as mpiBLAST. NPB is a suite of programs widely used to evaluate the perfor-

mance of parallel system, while the latter is a parallel implementation of NCBI BLAST,

73

which splits a database into fragments and distributes the query tasks to workers by query

segmentation before the BLAST search is performed in parallel.

5.5 Experimental Results

Experiments were conducted to assess (a) overheads associated with the full and

incremental checkpoints, (b) full and incremental checkpoint file size and memory check-

pointed (which is the main source of the checkpointing overhead), (c) restart overheads

associated with the full and incremental checkpoints, and (d) the relationship between

checkpoint interval and checkpoint overhead.

Out of the NPB suite, the BT, CG, FT, LU and SP benchmarks were exposed to

class C data inputs running on 4, 8 or 9 and 16 nodes, and to class D data inputs on 8

or 9 and 16 nodes. Some NAS benchmarks have 2D, others have 3D layouts for 23 or 32

nodes, respectively. The NAS benchmark EP is exposed to class C, D and E data inputs

running on 4, 8 and 16 nodes. All the other NAS benchmarks were not suitable for our

experiments since they execute for too short a period to be periodically checkpointed, such

as IS, as depicted in Figure 5.7(a), or they have excessive memory requirement, such as the

benchmarks with class D data inputs on 4 nodes.

Since the version of mpiBLAST we used assigns one process as the master and

another to perform file output, the number of actual worker processes performing parallel

input is the total process number minus two. Each worker process reads several database

fragments. With our experiments, we set the mpiBLAST-specific argument -use-virtual-

frags, which enables caching of database fragments in memory (rather than local storage)

for quicker searches.

5.5.1 Checkpointing Overhead

The first set of experiments assesses the overhead incurred due to one full or

incremental checkpoint. Figures 5.7(a), 5.8(a), 5.9(a) and 5.10(a) depict the base execution

time of a job (benchmark) without checkpointing while Figures 5.7(b), 5.8(b), 5.9(b) and

5.10(b) depict the checkpoint overhead. As these results show, the checkpoint overhead is

uniformly small relative to the overall execution time, even for a larger number of nodes.

Prior work [35] already compared the overhead of full checkpointing with the base execution,

74

92%

93%

94%

95%

96%

97%

98%

99%

100%

B
T

.9

B
T

.1
6

C
G

.8

C
G

.1
6

L
U

.8

L
U

.1
6

M
G

.8

M
G

.1
6

S
P

.9

S
P

.1
6

m
p

iB
L

A
S

T
.4

m
p

iB
L

A
S

T
.8

m
p

iB
L

A
S

T
.1

6

Execution time Full checkpoint overhead

Figure 5.6: Full Checkpoint Overhead of NPB Class D and mpiBLAST

and the ratio is below 10% for most NPB benchmarks with Class C data inputs. Figure 5.6

depicts the measured overhead for single full checkpointing relative to the base execution

time of NPB with Class D data inputs and mpiBLAST (without checkpointing). The ratio

is below 1%, except for MG, as discussed in the following.

MG has a larger checkpoint overhead (large checkpoint file), but the ratio is skewed

due to a short overall execution time (see Figure 5.8(a)). In practice, with more realistic and

longer checkpoint intervals, a checkpoint would not be necessitated within the application’s

execution. Instead, the application would have been restarted from scratch. For longer runs

with larger inputs of MG, the fraction of checkpoint/migration overhead would have been

much smaller.

Figures 5.7(b), 5.8(b), 5.9(b) and 5.10(b) show that the overhead of incremental

checkpointing is smaller than that of full checkpointing, so the overhead of incremental

checkpointing is less significant. Hence, a hybrid full/incremental checkpointing mechanism

reduces runtime overhead compared to full checkpointing throughout, i.e., under varying

number of nodes and input sizes.

75

0

200

400

600

800

1000

1200

BT CG FT IS LU MG SP

Jo
b

 e
x

e
c
u

ti
o

n
 t

im
e
 (

se
c
o

n
d

s)

on 4 nodes

on 8/9 nodes

on 16 nodes

(a) Job Execution Time

0

10

20

30

40

50

60

B
T

.4

B
T

.9

B
T

.1
6

C
G

.4

C
G

.8

C
G

.1
6

F
T

.4

F
T

.8

F
T

.1
6

L
U

.4

L
U

.8

L
U

.1
6

S
P

.4

S
P

.9

S
P

.1
6

C
h

ec
k

p
o

in
t

o
v

er
h

ea
d

 (
se

co
n

d
s)

Full chkpt

Incr. chkpt

(b) Checkpoint Time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

B
T

.4

B
T

.9

B
T

.1
6

C
G

.4

C
G

.8

C
G

.1
6

F
T

.4

F
T

.8

F
T

.1
6

L
U

.4

L
U

.8

L
U

.1
6

S
P

.4

S
P

.9

S
P

.1
6

C
h

ec
k

p
o

in
t

fi
le

 s
iz

e
(M

B
)

Full chkpt

Incr. chkpt

(c) Checkpoint File Size

0

1

2

3

4

5

6

7

8

9

B
T

.4

B
T

.9

B
T

.1
6

C
G

.4

C
G

.8

C
G

.1
6

F
T

.4

F
T

.8

F
T

.1
6

L
U

.4

L
U

.8

L
U

.1
6

S
P

.4

S
P

.9

S
P

.1
6

R
es

ta
rt

 o
v

er
h

ea
d

 (
se

co
n

d
s)

From full chkpt

From full+3incr. chkpt

(d) Restart Time

Figure 5.7: Evaluation with NPB Class C on 4, 8/9, and 16 Nodes

5.5.2 Checkpointing File Size

Besides overhead due to checkpointing, we assessed the actual footprint of the

checkpointing file. Figures 5.7(c), 5.8(c), 5.9(c) and 5.10(c) depict the size of the checkpoint

files for one process of each MPI application. Writing many files of such size to shared storage

synchronously may be feasible for high-bandwidth parallel file systems. In the absence of

sufficient bandwidth for simultaneous writes, we provide a multi-stage solution where we

first checkpoint to local storage. After local checkpointing, files will be asynchronously

copied to shared storage, an activity governed by the scheduler. This copy operation can

be staggered (again governed by the scheduler) between nodes. Upon failure, a spare node

restores data from the shared file system while the remaining nodes roll back using the

checkpoint file on local storage, which results in less network traffic.

Overall, the experiments show that:

1. the overhead of full/incremental checkpointing of the MPI job is largely proportional

to the size of the checkpoint file;

76

0

2000

4000

6000

8000

10000

12000

BT CG LU MG SP

Jo
b

 e
x

e
c
u

ti
o

n
 t

im
e
 (

se
c
o

n
d

s)

on 8/9 nodes

on 16 nodes

(a) Job Execution Time on 8/9 and 16 Nodes

0

5

10

15

20

25

30

35

40

45

50

BT CG LU MG SP

C
h

ec
k

p
o

in
t

o
v

er
h

ea
d

 (
se

co
n

d
s)

Full chkpt

Incr. chkpt

(b) Checkpoint Time on 16 Nodes

0

200

400

600

800

1000

1200

1400

1600

1800

BT CG LU MG SP

C
h

ec
k

p
o

in
t

fi
le

 s
iz

e
(M

B
)

Full chkpt

Incr. chkpt

(c) Checkpoint File Size on 16 Nodes

0

2

4

6

8

10

12

14

16

BT CG LU MG SP

R
es

ta
rt

 o
v

er
h

ea
d

 (
se

co
n

d
s)

From full chkpt

From full+3incr. chkpt

(d) Restart Time on 16 Nodes

Figure 5.8: Evaluation with NPB Class D

2. the overhead of full checkpointing is nearly the same at any time of the execution of

the job;

3. the overhead of incremental checkpointing is nearly the same at any interval; and

4. the overhead of incremental checkpointing is lower than that of full checkpointing

(except some cases of EP, which are lower than 0.45 seconds, which is excessively

short. If required at this sort rate, one can employ full checkpointing only).

The first observation indicates that the ratio of communication overhead to com-

putation overhead for C/R of the MPI job is relatively low. Since checkpoint files are, on

average, large, the time spent on storing/restoring checkpoints to/from disk accounts for

most of the measured overhead. This overhead is further reduced by the potential savings

through incremental checkpointing.

For full/incremental checkpointing of EP (Figure 5.9(b)), incremental checkpoint-

ing of CG with Class C data inputs (Figure 5.7(b)) and incremental checkpointing of mpi-

BLAST (Figure 5.10(b)), the footprint of the checkpoint file is small (smaller than 13MB),

77

1

10

100

1000

10000

100000

Class C Class D Class E

Jo
b

 e
x

e
c
u

ti
o

n
 t

im
e
 (

se
c
o

n
d

s)

on 4 nodes

on 8 nodes

on 16 nodes

(a) Job Execution Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

C.4 C.8 C.16 D.4 D.8 D.16 E.4 E.8 E.16

C
h

ec
k

p
o

in
t

o
v

er
h

ea
d

 (
se

co
n

d
s)

Full chkpt

Incr. chkpt

(b) Checkpoint Time

0.1

0.3

0.5

0.7

0.9

1.1

1.3

C.4 C.8 C.16 D.4 D.8 D.16 E.4 E.8 E.16

C
h

ec
k

p
o

in
t

fi
le

 s
iz

e
(M

B
)

Full chkpt Incr. chkpt

(c) Checkpoint File Size

Figure 5.9: Evaluation with NPB EP Class C/D/E on 4, 8 and 16 nodes

which results in a relatively small overhead. Thus, the checkpoint overhead mainly reflects

the variance of the communication overhead inherent to the benchmark, which increases

with the node count. However, the overall checkpoint overhead for these cases is smaller

than 1 second. Hence, communication overhead of the applications did not significantly

contribute to the overhead or interfere with checkpointing. This indicates a high potential

of our hybrid full/incremental checkpointing solution to scale to larger clusters, and we have

analyzed our data structures and algorithms to assure suitability for scalability. Due to a

lack of large-scale experimentation platforms flexible enough to deploy our kernel modifi-

cations, new BLCR features and LAM/MPI enhancements, such larger scale experiments

cannot currently be realized, neither at National Labs nor at larger-scale clusters within

universities where we have access to resources.

The second observation about full checkpoint overheads above indicated that the

size of the full checkpoint file remains stable during job execution. The benchmarks codes

do not allocate or free heap memory dynamically within timesteps of execution; instead, all

allocation is performed during initialization, which is typical for most parallel codes (except

for adaptive codes [20]).

The third observation is obtained by measuring the checkpoint file size with dif-

ferent checkpoint intervals for incremental checkpointing, i.e., with intervals of 30, 60, 90,

120, 150 and 180 seconds for NPB Class C and intervals of 2, 4, 6, 8, 10 and 12 minutes for

NPB Class D and mpiBLAST.

Thus, we can assume the time spent on checkpointing is constant. This assumption

is critical to determine the optimal full/incremental checkpoint frequency.

The fourth observation verifies the superiority and justifies the deployment of our

hybrid full/incremental checkpointing mechanism.

78

0

2000

4000

6000

8000

10000

12000

14000

4(6) 8(10) 16(18)

Number of workers (number of compute nodes)

Jo
b

 e
x

ec
u

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

(a) Job Execution Time

0.1

1

10

100

4(6) 8(10) 16(18)

Number of workers (number of compute nodes)

C
h

ec
k

p
o

in
t

o
v

er
h

ea
d

 (
se

co
n

d
s) Full chkpt

Incr. chkpt

(b) Checkpoint Time

1

10

100

1000

10000

4(6) 8(10) 16(18)

Number of workers (number of compute nodes)

C
h

ec
k

p
o

in
t

fi
le

 s
iz

e
(M

B
)

Full chkpt

Incr. chkpt

(c) Checkpoint File Size

0

1

2

3

4

5

6

7

4(6) 8(10) 16(18)

Number of workers (number of compute nodes)

R
es

ta
rt

 o
v

er
h

ea
d

 (
se

co
n

d
s)

From full chkpt

From full+3incr. chkpt

(d) Restart Time

Figure 5.10: Evaluation with mpiBLAST

5.5.3 Restart Overhead

Figures 5.7(d), 5.8(d) and 5.10(d) compare the restart overhead of our hybrid

full/incremental solution from one full checkpoint plus three incremental checkpoints with

that of the original solution restarting from one full checkpoint. The results indicate that

the wall clock time for restart from full plus three incremental checkpoints exceeds that

of restart from one full checkpoint by 0-253% depending on the application, and it is 68%

larger (1.17seconds) on average for all cases. The largest additional cost of 253% (10.6

seconds) was observed for BT under class D inputs for 16 nodes due to its comparatively

large memory footprint of the incremental checkpointing. Yet, this overhead is not on

the critical path as failures occur significantly less frequently than periodic checkpoints,

i.e., our hybrid approach reduces the cost along the critical path of checkpointing. For

mpiBLAST and CG, the footprint of incremental checkpointing is comparatively so small

that the overhead of restarting from full plus three incremental checkpoints is almost the

79

same as that of restarting from one full checkpoint. Yet, the time saved by three incremental

checkpoints over three full checkpoints is 16.64 seconds on average for all cases. Even for

BT under class D inputs for 16 nodes (which has the largest restart cost loss ratio), the

saving is 23.38 seconds while the loss is 10.6 seconds. We can further extend the benefit by

increasing the incremental checkpointing count between two full checkpoints.

We can also assess the accumulated checkpoint file size of one full checkpoint

plus three incremental checkpoints, which is 185% larger than that of one full checkpoint.

However, as just discussed, the overhead of restarting from one full plus three incremental

checkpoint is only 68% larger. This is due to the following facts:

1. a page saved by different checkpoints is only restored once;

2. file reading for restarting is much faster than file writing for checkpointing; and

3. some pages saved in preceding checkpoints may be invalid and need not be restored

at a later checkpoint.

5.5.4 Benefit of Hybrid Full/Incremental C/R Mechanism

Figure 5.11 depicts sensitivity results of the overall savings (the cost saved by

replacing full checkpoints with incremental ones minus the loss on the restore overhead)

for different number of incremental checkpoints between any adjacent full ones. Savings

increase proportional to the number of incremental checkpoints (as the y axis in the figure

is on a logarithmic base), but the amount of incremental checkpoints is still limited by stable

storage capacity (without segment-style cleanup). The results are calculated by using the

following formulae:

Sn = n× (Of −Oi)− (Rf+ni
−Rf)

where Sn is the saving with n incremental checkpoints between two full checkpoints, Of is

the full checkpoint overhead, Oi is the incremental checkpoint overhead, Rf+ni
is the over-

head of restarting from full+n incremental checkpoints and Rf is the overhead of restarting

from one full checkpoint. For mpiBLAST and CG, we may even perform only incremental

checkpointing after the first full checkpoint is captured initially since the footprint of incre-

mental checkpoints is so small that we will not run out of drive space at all (or, at least,

for a very long time). Not only should a node failure be the exception over the set of all

nodes, but the lower overhead of a single incremental checkpoint provides opportunities to

80

0.1

1

10

100

1000

1 2 3 4 5 6

Number of incremental checkpoints between two full checkpoints

S
av

in
g

s
(s

ec
o

n
d

s)
CG.D

SP.D

BT.D

mpiBLAST

LU.D

CG.C

FT.C

BT.C

MG.D

LU.C

SP.C

Figure 5.11: Savings of Hybrid Full/Incremental C/R Mechanism for NPB and mpiBlast on 16 Nodes

increase checkpoint frequencies compared to an application running with full checkpoints

only. Such shorter incremental checkpoint frequencies reduce the amount of work lost when

a restart is necessitated by a node failure. Hence, the hybrid full/incremental checkpointing

mechanism effectively reduces the overall overhead relative to C/R.

Table 5.1 presents detailed measurements on the savings of incremental check-

pointing, the overhead of restart from full plus incremental checkpoints, the relationship

between the checkpoint file size and restart overhead, and the overall benefit from the hybrid

full/incremental C/R mechanism. The benchmarks are sorted by the benefit. The table

shows that (1) the cost caused by restart from one full plus one incremental checkpoints

(which is Rf+1i
- Rf) is low, compared to the savings by replacing full checkpoints with

incremental ones (which is Of - Oi), and can be ignored for most of the benchmarks; (2) the

restart cost is nearly proportional to the file size (except that some pages are checkpointed

twice at both full and incremental checkpoints but later only restored once and thus lead to

no extra cost); (3) for all the benchmarks, we can benefit from the hybrid full/incremental

C/R mechanism, and the performance improvement depends on the memory access char-

acteristics of the application.

Naksinehaboon et al. provide a model that aims at reducing full checkpoint over-

81

Table 5.1: Savings by Incremental Checkpoint vs. Overhead on Restart
Benchmarks CG.D SP.D BT.D mpiBLAST LU.D CG.C FT.C BT.C MG.D LU.C SP.C

Savings of (Of - Oi) 36.20 6.73 7.79 3.34 2.81 1.85 1.69 1.22 1.51 0.38 0.28
Restart overhead

of 0.03 1.28 3.45 0.01 0.59 0.01 0.20 -0.02 0.81 0.02 0.04
(Rf+1i

- Rf)
File increases caused

by 1 incr. chkpt 17.26 1151.88 1429.14 10.45 561.46 2.10 384.41 100.67 1205.23 41.09 80.98
(MB)

Benefit of hybrid C/R (S1) 36.17 5.45 4.34 3.33 2.21 1.84 1.50 1.25 0.70 0.36 0.24

head by performing a set of incremental checkpoints between two consecutive full check-

points [41]. They further develop a method to determine the optimal number of incremental

checkpoints between full checkpoints. They obtain

m =
⌈

(1− µ)×Of

Pi × δ
− 1

⌉
where m is the number of incremental checkpoints between two consecutive full checkpoint,

µ is the incremental checkpoint overhead ratio (µ = Oi/Of), Pi is the probability that a

failure will occur after the second full checkpoint and before the next incremental checkpoint,

and δ is additional recovery cost per incremental checkpoint. With the data from Table 5.1,

we can determine

m =
⌈

9.92
Pi

− 1
⌉

. Since 0 < Pi < 1, a lower bound for m is 8.92, which indicates the potential for even more

significant savings than just those depicted in Figure 5.11.

Overall, the overhead of the hybrid full/incremental C/R mechanism is signifi-

cantly lower than the original periodical full C/R mechanism.

5.6 Conclusion

This work contributes a novel hybrid full/incremental C/R mechanism with a

concrete implementation within LAM/MPI and BLCR with the following features: (1) It

provides a dirty bit mechanism to track modified pages between incremental checkpoints;

(2) only the subset of modified pages is appended to the checkpoint file together with page

metadata updates for incremental checkpoints; (3) incremental checkpoints complement full

checkpoints by reducing I/O bandwidth and storage space requirements while allowing lower

82

rates for full checkpoints; (4) a restart after a node failure requires a scan over all incremen-

tal checkpoints and the last full checkpoint to recover from the last stored version of a page,

i.e., the content of any page only needs to be written to memory once for fast restart; (5)

a decentralized scheduler coordinates the full/incremental C/R mechanism among the MPI

tasks. Results indicate that the performance of the hybrid full/incremental C/R mechanism

is significantly lower than that of the original full C/R. For the NPB suite and mpiBLAST,

the average savings due to replacing three full checkpoints with three incremental check-

points is 16.64 seconds — at the cost of only 1.17 seconds if a restart is required after a node

failure due to restoring one full plus three incremental checkpoints. Hence, the overall sav-

ing amounts to 15.47 seconds. Even more significant saving would be obtained if the rate of

incremental checkpoints between two full checkpoints was increased. Our hybrid approach

can further be utilized to (1) develop an optimal (or near-optimal) checkpoint placement

algorithm, which combines full and incremental checkpoint options in order to reduce the

overall runtime and application overhead; (2) create and assess applications with varying

memory pressure to measure the tradeoff between full and incremental checkpoints and to

provide heuristics accordingly; and (3) combine related job pause/live migration techniques

with incremental checkpoints to provide a reliable multiple-level fault tolerant framework

that incurs lower overhead than previous schemes. Overall, our hybrid full/incremental

checkpointing approach is not only novel but also superior to prior non-hybrid techniques.

83

Chapter 6

Offline Reconstruction of Job

Input Data

6.1 Introduction

As mentioned in Chapter 1, recovery operations are necessary to reconstruct pre-

staged data, in the event of storage system failure before the job is scheduled. These

operations are performed as periodic checks to ensure data availability for any given job.

Further, the recovery is performed as part of system management even before the job is

scheduled. Therefore, it is not charged against the users’ compute time allocation. In the

absence of reconstruction, user jobs are left to the mercy of traditional system recovery or

put back in the queue for rescheduling.

To start with, this mode of recovery is made feasible due to the transient nature

of job data and the fact that they have immutable, persistent copies elsewhere. Next,

many high-performance data transfer tools and protocols (such as hsi [42] and GridFTP

[43]) support partial data retrieval, through which disjoint segments of missing file data—

specified by pairs of start offset and extent—can be retrieved. Finally, the costs of network

transfer is decreasing much faster than that of disk-to-disk copy. These reasons, collectively,

enable and favor offline recovery.

A staged job input data on the scratch parallel file system may have originated

from the “/home” area or an HPSS archive [44] in the supercomputer center itself or from

an end-user site. To achieve proactive data reconstruction, however, we need rich metadata

84

about data source and transfer protocols used for staging. In addition, we need sophisticated

recovery mechanisms built into parallel file systems.

In the rest of this chapter, we describe the process of automatically extracting

recovery metadata and instrumenting a parallel file system in Section 6.2. This provides

a proof-of-concept implementation for our offline data recovery approach. In Sections 6.3

and 6.4, the experimental framework and results are presented, respectively. The work is

subsequently summarized in Section 6.5.

6.2 Architecture

6.2.1 Metadata: Recovery Hints

To enable offline data recovery, we first propose to extend the parallel file system’s

metadata with recovery information, which can be intelligently used to improve fault toler-

ance and data/resource availability. Staged input data has persistent origins. Source data

locations, as well as information regarding the corresponding data movement protocols, can

be recorded as optional recovery metadata (using the extended attributes feature) on file

systems. For instance, the location can be specified as a uniform resource index (URI) of the

dataset, comprised of the protocol, URL, port and path (e.g., “http://source1/StagedInput”

or “gsiftp://mirror/StagedInput”). In addition to URIs, user credentials, such as GSI (Grid

Security Infrastructure) certificates, needed to access the particular dataset from remote

mirrors can also be included as metadata so that data recovery can be initiated on behalf of

the user. Simple file system interface extensions (such as those using extended attributes)

would allow the capture of this metadata. We have built mechanisms for the recovery meta-

data to be automatically stripped from a job submission script’s staging/offloading com-

mands, facilitating transparent data recovery. One advantage of embedding such recovery-

related information in file system metadata is that the description of a user job’s data

“source” and “sink” becomes an integral part of the transient dataset on the supercom-

puter while it executes. This allows the file system to recover elegantly without manual

intervention from the end users or significant code modification.

85

6.2.2 Data Reconstruction Architecture

In this section, we present a prototype recovery manager. The prototype is based

on the Lustre parallel file system [45], which is being adopted by several leadership-class

supercomputers. A Lustre file system comprises of the following three key components:

Client, MDS (MetaData Server) and OSS (Object Storage Server). Each OSS can be

configured to host several OSTs (Object Storage Target) that manage the storage devices

(e.g., RAID storage arrays).

The reconstruction process is as follows. 1) Recovery hints about the staged data

are extracted from the job script. Relevant recovery information for a dataset is required to

be saved as recovery metadata in the Lustre file system. 2) The availability of staged data

is periodically checked (i.e., check for OST failure). This is performed after staging and

before job scheduling. 3) Data is reconstructed after OST failures. This involves finding

spare OSTs to replace the failed ones, orchestrating the parallel reconstruction, fetching the

lost data stripes from the data source, using recovery hints and ensuring the metadata map

is up-to-date for future accesses to the dataset.

Extended Metadata for Recovery Hints: As with most parallel file systems,

Lustre maintains file metadata on the MDS as inodes. To store recovery metadata for a

file, we have added a field in the file inode named “recov”, the value of which is a set

of URIs indicating permanent copies of the file. The URI is a character string, specified

by users during data staging. Maintaining this field requires little additional storage (less

than 64 bytes) and minimal communication costs for each file. We have also developed two

additional Lustre commands, namely lfs setrecov and lfs getrecov to set and retrieve the

value of the “recov” field respectively, by making use of existing Lustre system calls.

I/O Node Failure Detection: To detect the failure of an OST, we use the cor-

responding Lustre feature with some extensions. Instead of checking the OSTs sequentially,

we issue commands to check each OST in parallel. If no OST has failed, the probe returns

quickly. Otherwise, we wait for a Lustre-prescribed timeout of 25 seconds. This way, we

identify all failed OSTs at once. This check is performed from the head node, where the

scheduler also runs.

File Reconstruction: The first step towards reconstruction is to update the

stripe information of the target file, which is maintained as part of the metadata. Each

86

Lustre file f is striped in a round-robin fashion over a set of mf OSTs, with indices Tf =

{t0, t1, . . . , tmf
}. Let us suppose OST fi is found to have failed. We need to find another

OST as a substitute from the stripe list, Tf . To sustain the performance of a striped

file access, it is important to have a distinct set of OSTs for each file. Therefore, in our

reconstruction, an OST that is not originally in Tf will take OST fi’s position, whenever

at least one such OST is available. More specifically, a list L of indices of all available

OSTs is compared with Tf and an index ti′ is picked from the set L − Tf . We are able

to achieve this, since Lustre has a global index for each OST. The new stripe list for the

dataset is T ′
f = {t0, t1, . . . , ti−1, ti′ , ti+1, . . . , tmf

}. When a client opens a Lustre file for the

first time, it will obtain the stripe list from the MDS and create a local copy of the list,

which it will use for subsequent read/write calls. In our reconstruction scheme, the client

that locates the failed OST updates its local copy of the stripe and sends a message to the

MDS to trigger an update of the master copy. The MDS associates a dirty bit with the file,

indicating the availability of updated data to other clients. A more efficient method would

be to let the MDS multicast a message to all clients that have opened the file, instructing

them to update their local copies of the stripe list. This is left as future work.

When the new stripe list T ′
f is generated and distributed, storage space needs to

be allocated on OST ti′ for the data previously stored on OST ti. As an object-based file

system [46], Lustre uses objects as storage containers on OSTs. When a file is created, the

MDS selects a set of OSTs that the file will be striped on and creates an object on each

one of them to store a part of the file. Each OST sends back the id of the object that it

creates and the MDS collects the object ids as part of the stripe metadata. The recovery

manager works in the same way, except that the MDS only creates an object in OST ti′ .

The id of the object on the failed OST ti is replaced with the id of the object created on

OST ti′ . The length of an object is variable [46] and, therefore, the amount of data to be

patched is not required to be specified at the time of object creation.

In order to patch data from a persistent copy and reconstruct the file, the recovery

manager needs to know which specific byte ranges are missing. It obtains this information

by generating an array of {offset, size} pairs according to the total number of OSTs used

by this file, mf , the position of the failed OST in the stripe list, i, and the stripe size, ssize.

Stripe size refers to the number of data blocks. Each {offset, size} pair specifies a chunk

of data that is missing from the file. Given the round-robin striping pattern used by Lustre,

87

it can be calculated that for a file with size fsize, each of the first k = fsize mod ssize

OSTs will have dfsize
ssize e stripes and each of the other OSTs will have bfsize

ssize c stripes. For

each OST, it can be seen that in the jth pair, offset = j × ssize, and in each pair except

the last one, size = ssize. If the OST has the last stripe of the file, then size will be smaller

in the last pair.

The recovery manager then acquires the URIs to remote permanent copies of the

file from the “recov” field of the file inode, as we described above. Then, it establishes a

connection to the remote data source, using the protocol specified in the URI, to patch each

chunk of data in the array of {offset, size} pairs. These are then written to the object on

OST ti′ . We have built mechanisms so that the file reconstruction process can be conducted

from the head node or from the individual OSS nodes (to exploit parallelism), depending

on transfer tool and Lustre client availability.

Patching Session: At the beginning of each patching operation, a session is

established between the patching nodes (the head node or the individual OSS nodes) and

the data source. Many data sources assume downloads occur in an interactive session that

includes authentication, such as GridFTP [43] servers using UberFTP client [47] and HPSS

[44] using hsi [42]. In our implementation, we use Expect [48], a tool specifically geared

towards automating interactive applications, to establish and manage these interactive ses-

sions. We used Expect so that authentications and subsequent partial retrieval requests

to the data source can be performed over a single stateful session. This implementation

mitigates the effects of authentication and connection establishment by amortizing these

large, one-time costs over multiple partial file retrieval requests.

6.3 Experimental Setup

In our performance evaluation, we assess the effect of storage node failures and

its subsequent data reconstruction overhead on a real cluster using several local or remote

data repositories as sources of data staging.

Our testbed for evaluating the proposed data reconstruction approach is a 40-

node cluster at Oak Ridge National Laboratory (ORNL). Each machine is equipped with a

single 2.0GHz Intel Pentium 4 CPU, 768 MB of main memory, with a 10/100 Mb Ethernet

interconnection. The operating system is Fedora Core 4 Linux with a Lustre-patched kernel

88

(version 2.6.12.6) and the Lustre version is 1.4.7.

Since our experiments focus on testing the server-side of Lustre, we have setup the

majority of the the cluster nodes as I/O servers. More specifically, we assign 32 nodes to

be OSSs, one node to be the MDS and one node to be the client. The client also doubles

as the head node. In practice, such a group of Lustre servers will be able to support a

fairly large cluster of 512-2048 compute nodes (with 16:1-64:1 ratios seen in contemporary

supercomputers).

We used three different data sources to patch pieces of a staged input file: (1)

An NFS server at ORNL that resides outside the subnet of our testbed cluster (“Local

NFS”) (2) an NFS server at North Carolina State University (“Remote NFS”) and (3) a

GridFTP [49] server (“GridFTP”) with a PVFS [50] backend on the TeraGrid Linux cluster

at ORNL, outside the Lab’s firewall, accessed through the UberFTP client interface [47].

6.4 Performance of Transparent Input Data Reconstruction

As illustrated in Section 6.2, for each file in question, the reconstruction procedure

can be divided into the following steps. 1) The failed OSTs are determined by querying

the status of each OST. 2) The file stripe metadata is updated after replacing the failed

OST with a new one. 3) The missing data is patched in from the source. This involves

retrieving the URI information of the data source from the MDS, followed by fetching the

missing data stripes from the source and subsequently patching the Lustre file to complete

the reconstruction. These steps are executed sequentially and atomically as one transaction,

with concurrent accesses, to the file in question, protected by file locking. The costs of the

individual steps are independent of one another, i.e., the cost of reconstruction is precisely

the sum of the costs of the steps. Below we discuss the overhead of each step in more detail.

In the first step, all the OSTs are checked in parallel. The cost of this check grows

with the number of OSTs due to the fact that more threads are needed to check the OSTs.

Also, the metadata file containing the status of all OSTs will be larger, which increases the

parsing time. This step induces negligible network traffic by sending small status checking

messages. The timeout to determine if an OST has failed is the default value of 25 seconds

in our experiments. Shorter timeouts might result in false positives.

Figure 6.1 shows the results of benchmarking the cost of step 1 (detecting OST

89

0.30

0.10

0.05

0.02

0.01

0.001
32168421

O
v
e

rh
e

a
d

(s
e
c
o

n
d
s
)

Number of storage nodes

1 OST/OSS
4 OST/OSS

16 OST/OSS

Figure 6.1: Cost of finding failed OSTs

failures) when there are no such failures. In other words, this is the cost already observed in

the majority of file accesses, where data unavailability is not an issue. In this group of tests,

we varied the number of OSTs per I/O node (OSS), which in reality is configured by system

administrators. High-end systems tend to have multiple OSTs per OSS, medium-sized or

smaller clusters often choose to use local disks and have only one OST per OSS. From Figure

6.1, it can be seen that the overhead of step 1 is fairly small with a moderate number of

OSTs. In most cases, the step 1 cost is under 0.05 seconds. However, this overhead grows

sharply as the number of OSTs increases to 256 (16 OSTs on each of the 16 OSSs) and

512 (16 OSTs on each of the 32 OSSs). This can be attributed to the network congestion

caused by the client communicating with a large number of OSTs in a short span. Note

that the current upper limit of OSTs allowed by Lustre is 512, which incurs an overhead of

0.3 seconds, which is very small considering this is a one-time cost for input files only.

The second recovery step has constant cost regardless of the number of OSTs as

the only parties involved in this operation are the MDS and the client that initiates the file

availability check (in our case, the head node). In our experiments, we also assessed this

overhead and found it to be in the order of milliseconds. Further, this remains constant

regardless of the number of OSSs/OSTs. The cost due to multiple MDS (normally two for

Lustre) is negligible.

The overhead of the third recovery step is expected to be the dominant factor in

the reconstruction cost when OST failures do occur. Key factors contributing to this cost

90

1 2 4 4421 221 14 33 33

1 432 1 432

File size = 16MB, Stripe count = 4, Stripe size = 1MB

1 2 43

File size = 16MB, Stripe count = 4, Stripe size = 2MB

File size = 16MB, Stripe count = 4, Stripe size = 4MB

Figure 6.2: Round-robin striping over 4 OSTs

 0.25

 1

 4

 16

 64

 256

 1024

2GB1GB512MB256MB128MB

P
a

tc
h

in
g

 c
o
s
t(

s
e

c
o
n

d
s
)

File size

Whole file staging in
1MB chunk
2MB chunk
4MB chunk

(a) Remote NFS

 0.25

 1

 4

 16

 64

 256

 1024

2GB1GB512MB256MB128MB

P
a

tc
h

in
g

 c
o
s
t(

s
e

c
o
n

d
s
)

File size

Whole file staging in

1MB stripe
2MB stripe
4MB stripe

(b) Local NFS

 0.25

 1

 4

 16

 64

 256

2GB1GB512MB256MB128MB

P
a

tc
h

in
g

 c
o
s
t(

s
e

c
o
n

d
s
)

File size

Whole file staging in
1MB chunk
2MB chunk
4MB chunk

(c) GridFTP

Figure 6.3: Patching costs for single OST failure from a stripe count 32. Filesize/32 is
stored on each OST and that is the amount of data patched. Also shown is the cost of
staging the entire file again, instead of just patching a single OST worth of data.

are the amount of data and the layout of missing data in the file. It is well known that

non-contiguous access of data will result in lower performance than sequential accesses. The

effect of data layout on missing data is more significant if sequential access devices such as

tape drives are used at the remote data source. More specifically, factors that may affect

patching cost include the size of each chunk of missing data, the distance between missing

chunks, and the offset of the first missing chunk. Such a layout is mostly determined by the

striping policy used by the file. To give an example, Figure 6.2 illustrates the different layout

of missing chunks when OST 3 fails. The layout results from different striping parameters,

such as the stripe width (called “stripe count” in Lustre terminology) and the stripe size.

The shaded boxes indicate missing data stripes (chunks).

We conducted multiple sets of experiments to test the data patching cost using a

variety of file striping settings and data staging sources. Figures 6.3(a)-(c) show the first

91

group of tests, one per data staging source (Remote NFS, Local NFS, and GridFTP). Here,

we fixed the stripe count (stripe width) at 32 and increased the file size from 128MB to

2GB. Three popular stripe sizes were used with 1MB, 2MB, and 4MB chunks as the stripe

unit, respectively. To inject a failure, one of the OSTs is manually disconnected so that

1/32 of the file data is missing. The y-axis measures the total patching time in log scale.

For reference, a dotted line in each figure shows the time it takes to stage-in the whole file

from the same data source (in the absence of our enhancements).

We notice that the patching costs from NFS servers are considerably higher with

small stripe sizes (e.g., 1MB). As illustrated in Figure 6.2, a smaller stripe size means the

replacement OST will retrieve and write a larger number of non-contiguous data chunks,

which results in higher I/O overhead. Interestingly, the patching costs from the GridFTP

server remains nearly constant with different stripe sizes. The GridFTP server uses PVFS,

which has better support than NFS for non-contiguous file accesses. Therefore, the time

spent obtaining the non-contiguous chunks from the GridFTP server is less sensitive to

smaller stripe sizes. However, both reconstructing from NFS and GridFTP utilize standard

POSIX/Linux I/O system calls to seek in the file at the remote data server. In addition,

there is also seek time to place the chunks on the OST. A more efficient method would

be to directly rebuild a set of stripes on the native file system of an OST, which avoids

the seek overhead that is combined with redundant read-ahead caching (of data between

missing stripes) when rebuilding a file at the Lustre level. This, left as future work, should

result in nearly uniform overhead approximating the lowest curve regardless of stripe size.

Overall, we have found that the file patching cost scales well with increasing file

sizes. For the NFS servers, the patching cost using 4MB stripes is about 1/32 of the entire-

file staging cost. For the GridFTP server, however, the cost appears to be higher and less

sensitive to the stripe size range we considered. The reason is that GridFTP is tuned for

bulk data transfers (GB range) using I/O on large chunks, preferably tens or hundreds of

MBs [51]. Also, the GridFTP performance does improve more significantly, compared with

other data sources, as the file size increases.

Figures 6.4 and 6.5 demonstrate the patching costs with different stripe counts.

In Figure, 6.4 we increase the stripe count at the same rate as the file size to show how

the patching cost from the local NFS server varies. The amount of missing data due to

an OST failure is 1
stripe count × file size. Therefore, we patch the same amount of data for

92

 1

 2

 4

 8

 16

 32

 64

 128

1GB/32512MB/16256MB/8128MB/4

P
a
tc

h
in

g
 c

o
s
t(

s
e
c
o
n
d
s
)

File size/Stripe count

1MB chunk
2MB chunk
4MB chunk

Figure 6.4: Patching from local NFS. Stripe count increases with file size. One OST fails
and its data is patched.

 0.25

 1

 4

 16

 64

 256

3216841

P
a

tc
h

in
g

 c
o

s
t(

s
e

c
o

n
d

s
)

Stripe count

256 MB file
512 MB file

1 GB file

(a) Patching from remote NFS server

 0.25

 1

 4

 16

 64

 256

3216841

P
a

tc
h

in
g

 c
o

s
t(

s
e

c
o

n
d

s
)

Stripe count

256 MB file
512 MB file

1 GB file

(b) Patching from local NFS server

 0.25

 1

 4

 16

 64

 256

3216841
P

a
tc

h
in

g
 c

o
s
t(

s
e

c
o

n
d

s
)

Stripe count

256 MB file
512 MB file

1 GB file

(c) Patching from GridFTP server

Figure 6.5: Patching costs with stripe size 4MB

each point in the figure. It can be seen that the patching cost grows as the file size reaches

512MB and remains constant thereafter. This is caused by the fact that missing chunks in

a file are closer to each other with a smaller stripe count. Therefore, when one chunk is

accessed from the NFS server, it is more likely for the following chunks to be read ahead

into the server cache. With larger file sizes (512MB or more), distances between the missing

chunks are larger as well. Hence, the server’s read-ahead has no effect. Figure 6.5 shows

the results of fixing the stripe size at 4MB and using different stripe counts. Note that a

stripe count of 1 means transferring the entire file. From this figure, we can see how the

cost of reconstructing a certain file decreases as the file is striped over more OSTs.

93

6.5 Conclusion

We have proposed a novel way to reconstruct transient, job input data in the

face of storage system failure. From a user’s standpoint, our techniques help reduce the

job turnaround time and enable the efficient use of the precious, allocated compute time.

From a center’s standpoint, our techniques improve serviceability by reducing the rate

of resubmissions due to storage system failure and data unavailability. By automatically

reconstructing missing input data, a parallel file system will greatly reduce the impact of

storage system failures on the productivity of both supercomputers and their users.

94

Chapter 7

On-the-fly Recovery of Job Input

Data

7.1 Introduction

In HPC settings, data and I/O availability is critical to center operations and user

serviceability. Petascale machines require 10,000s of disks attached to 1,000s of I/O nodes.

Plans for 100k to 1M disks are being discussed in this context. The numbers alone imply

severe problems with reliability. In such a setting, failure is inevitable. I/O failure and data

unavailability can have significant ramifications to a supercomputer center at large. For

instance, an I/O node failure in a parallel file system (PFS) renders portions of the data

inaccessible resulting in either application stalling on I/O or being forced to be resubmitted

and rescheduled.

Upon an I/O error, the default behavior of file systems is to simply propagate the

error back to the client. Usually, file systems do little beyond providing diagnostics so that

the application or the user may perform error handling and recovery. For applications that

go through rigid resource allocation and lengthy queuing to execute on Petascale super-

computers, modern parallel file systems’ failure to mask storage faults appears particularly

expensive.

Standard hardware redundancy techniques, such as RAID, only protect against en-

tire disk failures. Latent sector faults (occurring in 8.5% of a million disks studied [52]), con-

troller failures, or I/O node failures can render data inaccessible even with RAID. Failover

95

strategies require spare nodes to substitute the failed ones, an expensive option with thou-

sands of nodes. It would be beneficial to address these issues within the file system to

provide graceful, transparent, and portable data recovery.

HPC environments provide unique fault-tolerance opportunities. Consider a typ-

ical HPC workload. Before submitting a job, users stage in data to the scratch PFS from

end-user locations. After the job dispatch (hours to days later) and completion (again hours

or days later), users move their output data off the scratch PFS (e.g., to their local storage).

Thus, job input and output data seldom need to reside on the scratch PFS beyond a short

window before or after the job’s execution. Specifically, key characteristics of job input data

are their being (1) transient, (2) immutable, and (3) redundant in terms of a remote source

copy.

We propose on-the-fly data reconstruction during job execution. We contribute

an application-transparent extension to the widely used Lustre parallel file system [45],

thereby adding reliability into the PFS by shielding faults at many levels of an HPC storage

system from the applications. With our mechanism, a runtime I/O error (EIO) captured

by the PFS instantly triggers the recovery of missing pieces of data and resolves application

requests immediately when such data becomes available.

Such an approach is a dramatic improvement in fault handling in modern PFSs.

At present, an I/O error is propagated through the PFS to the application, which has no

alternative but to exit. Users then need to re-stage input files if necessary and resubmit

the job. Instead of resource-consuming I/O node failover or data replication to avoid such

failures, our solution does not require additional storage capacity. Only the missing data

stripes residing on the failed I/O node are staged again from their original remote location.

Exploiting Lustre’s two-level locks, we have implemented a two-phase blocking protocol

combined with delayed metadata updates that allows unrelated data requests to proceed

while outstanding I/O requests to reconstructed data are served in order, as soon as a stripe

becomes available. Recovery can thus be overlapped with computation and communication

as stripes are recovered. Our experimental results reinforce this by showing that the increase

in job execution time due to on-the-fly recovery is negligible compared to non-faulting runs.

Consider the ramifications of our approach. From a center standpoint, I/O failures

traditionally increase the overall expansion factor, i.e., (wall time + wait time)/wall time

averaged over all jobs (the closer to 1, the better). Many federal agencies (DOD, NSF, DOE)

96

are already requesting such metrics from HPC centers. From a user standpoint, I/O errors

result in dramatically increased turnaround time and, depending on already performed

computation, a corresponding waste of resources. Our method significantly reduces this

waste and results in lower expansion factors.

The remainder of this chapter is structured as follows. Section 7.2 presents the

design of the on-the-fly recovery mechanism. Section 7.3 identifies and describes the imple-

mentation details. Subsequently, the experimental framework is detailed and measurements

for our experiments are presented in Sections 7.4 and 7.5, respectively. The work is then

summarized in Section 7.6.

7.2 On-the-fly Recovery

The overarching goal of this work is to address file systems’ fault tolerance when

it comes to serving HPC workloads. The following factors weigh in on our approach.

(1) Mitigate the effects of I/O node failure: An I/O node failure can adversely

affect a running job by causing it to fail, being requeued or exceeding time allocation, all of

which impacts the HPC center and user. Our solution promotes continuous job execution

that minimizes the above costs. (2) Improve file system response to failure: File system

response to failure is inadequate. As we scale to thousands of I/O nodes and few orders of

magnitude more disks, file systems need to be able to handle failure gracefully. (3) Target

HPC workloads: The transient and immutable nature of job input data and its persistence

at a remote location present an unique opportunity to address data availability in HPC

environments. We propose to integrate fault tolerance into the PFS specifically for HPC

I/O workloads. (4) Be inclusive of disparate data sources and protocols: HPC users use a

variety of storage systems and transfer protocols to host and move their data. It is desirable

to consider external storage resources and protocols as part of a broader I/O hierarchy. (5)

Be transparent to client applications: Applications are currently forced to explicitly handle

I/O errors or to simply ignore them. We promote a recovery scheme widely transparent to

the application. (6) Performance: For individual jobs, on-the-fly recovery should impose

minimal overhead on existing PFS functionality. For a supercomputing center, it should

improve the overall job throughput compared to requeuing the job.

97

7.2.1 Architectural Design

To provide fault tolerance to PFS, the on-the-fly recovery component should be

able to successfully trap I/O error of a system call resulting from I/O node failure. In a

typical parallel computing environment, parallel jobs are launched on the numerous compute

nodes (tens of thousands), and each one of those processes on the compute nodes perform

I/O. Figure 7.1 depicts the overall design. Each compute node can act as a client to

the parallel file system. Upon capturing an I/O error from any of these compute nodes,

data recovery is set in motion. The calling process is blocked, and so is any other client

trying to access the same unavailable data. The recovery process consults the MDS of

the PFS to obtain remote locations where persistent copies of the job input data reside.

(We discuss below how this metadata is captured.) It then creates the necessary objects

to hold the data stripes that are to be recovered. Using the recovery metadata, remote

patching is performed to fetch the missing stripes from the source location. The source

location could be “/home”, or an HPSS archive in the same HPC center, or a remote

server. The patched data is stored in the PFS, and the corresponding metadata for the

dataset in question is updated in the MDS. More specifically, missing stripes are patched

in the client request order. Subsequently, blocked processes resume their execution as data

stripes become available. Thus, the patching of missing stripes not yet accessed by the

client is efficiently overlapped with client I/O operations to significantly reduce overhead.

7.2.2 Automatic Capture of Recovery Metadata

To enable on-demand data recovery, we extend the PFS’s metadata with recovery

information. Staged input data has persistent origins. Source data locations, as well as

information regarding the corresponding data movement protocols, are recorded as optional

recovery metadata (using the extended attributes feature) on file systems. Locations are

specified as a URI of the dataset comprised of the protocol, URL, port and path (e.g.,

http://source1/StagedInput or gsiftp://mirror/StagedInput). Simple file system interface

extensions (e.g., extended attributes) capture this metadata. We have built mechanisms for

the recovery metadata to be automatically stripped from a job submission script’s staging

commands for offline recovery [53] that we utilize here for online recovery. By embedding

such recovery-related information in file system metadata, the description of a user job’s

98

Client
System call

Parallel File System

Normal I/O access

Patching from remote sources

Storage Subsystem
Interconnection
Network

io-node io-node

io-node

EIO

On-demand
Recovery MDS

Archive

/home

NFS HSI GridFTP

Data
Source

Figure 7.1: Architecture of on-the-fly recovery

data source and sink becomes an integral part of the transient dataset on the supercomputer

while it executes. User credentials, such as GSI certificates, may be needed to access the

particular dataset from remote mirrors. These credentials can also be included as file

metadata so that data recovery can be initiated on behalf of the user.

7.2.3 Impact on Center and User

Performance of online recovery requires further analysis. PFS at contemporary

HPC centers can support several Gbps of I/O rate. However, this requires availability of all

data and absence of failures in the storage subsystem. When faced with a RAID recoverable

failure (e.g., an entire disk failure), file systems perform in either “degraded” or “rebuild”

mode, both of which incur perceivable performance losses [54]. In cases where standard

hardware-based recovery is not feasible, the only option is to trigger an application failure.

As application execution progresses, the performance impact (and potential waste

of resources) due to failures increases resulting also in substantially increased turnaround

time when a job needs to be requeued. These aspects also impact overall HPC center

serviceability.

On-the-fly recovery offers a viable alternative in such cases. With ever increasing

network speeds, HPC centers’ connectivity to high-speed links, highly tuned bulk transport

99

protocols are extremely competitive. For instance, ORNL’s Leadership Class Facility (LCF)

is connected to several national testbeds like TeraGrid (a 10Gbps link), UltrascienceNet,

Lambda Rail, etc. Recent tests have shown that a wide-area Lustre file system over the

TeraGrid from ORNL to Indiana University can offer data transfer speeds of up to 4.8

Gbps [55] for read operations bringing remote recovery well within reach.

Depending on how I/O is interspersed in the application, remote recovery has

different merits. The majority of HPC scientific applications conduct I/O in a burst fashion

by performing I/O and computation in distinct phases. These factors can be exploited

to overlap remote recovery with computation and regular I/O requests. Once a failure is

recognized and recovery initiated, the recovery process can patch other missing stripes of

data that will eventually be requested by the application and not just the ones already

requested. Such behavior can improve recovery performance significantly.

At other times, however, we may not be able to overlap recovery efficiently. In

such cases, instead of consuming compute time allocation, a job might decide that being

requeued is beneficial, thereby compromising on turnaround time. Thus, a combination of

factors, such as I/O stride, time already spent on computation, cost of remote recovery and

a turnaround time deadline, can be used to decide if and when to conduct remote data

reconstruction. Nonetheless, the cause of I/O errors needs to be rectified before the next

job execution. Although this is beyond the scope of this chapter, we have built the basis for

a dynamic cost-benefit analysis. Our experiments analyze results and discuss their affect

on job turnaround time in light of on-the-fly recovery.

7.3 Implementation

In this section, we illustrate how on-the-fly recovery has been implemented in

Lustre FS. Should a storage failure occur due to an OSS or OST failure, the original input

data can be replenished from the remote data source by reconstructing unavailable portions

of files.

In supercomputers, remote I/O is usually conducted through the head or service

nodes and, therefore, these nodes are likely candidates for the initiation of recovery. In

our implementation, the head node of a supercomputer doubles as a recovery node and has

a Lustre client installed on it. It schedules recovery in response to the requests received

100

from the compute nodes, which observe storage failures upon file accesses. The head node

serves as a coordinator that facilitates recovery management and streamlines reconstruction

requests in a consistent and non-redundant fashion. Figure 7.2 depicts the recovery scenario.

Events annotated by numbers happen consecutively in the indicated order resulting in four

distinct phases.

Head Node Computing NodesArchive MDSOSTs

X
5. file/OST

3. data access

7. object renew
8. get extent lock

9. update metadata
10. unblock
clients with

new metadata

12. re-access data
will block by extent lock

6. block waiting reply
from head node

11. update local metadata

1. setup with --failout 2. staging: set URI

4. get EIO

14. fetch file data
15. file patch

17. access file data

Phase 1

Phase 2

Phase 3

Phase 4

13. get URI

16. put extent lock

Figure 7.2: Steps for on-the-fly recovery

7.3.1 Phase 1: PFS Configuration and Metadata Setup

For on-the-fly recovery, the client needs to capture the OST failure case immedi-

ately. Hence, we configure all OSTs in Lustre’s “fail-out” mode (step 1 of Figure 7.2). Thus,

any operation referencing a file with a data stripe on a failed OST results in an immediate

I/O error without ever blocking. In step 2, we further extend the metadata of the input

files (at the MDS) with recovery information indicating the URI of a file’s original source

upon staging (see [53]).

101

7.3.2 Phase 2: Storage Failure Detection at Compute Nodes

To access the data of a file stored in the OST, the application issues calls via the

standard POSIX file system API. The POSIX API is intercepted by the Lustre patched

VFS system calls.

Due to the fail-out mode, both I/O node and data disk failures will lead to an

immediate I/O error at the client upon file access (steps 3 and 4). By capturing the I/O

error in the system function, we obtain file name and index of the failed OST or, in case of a

disk failure, the location of the affected OST. In step 5, the client sends relevant information

(file name, OST index) to the head node, which, in turn, initiates the data reconstruction.

Hence, we perform online/real-time failure detection at the client for on-the-fly recovery

during application execution, much in contrast to prior work on offline recovery that dealt

with data loss prior to job activation [53].

7.3.3 Phase 3: Synchronization between Compute and Head Nodes

Upon receiving the data reconstruction request from the client, the head node

performs two major tasks. First, it sends a request to the MDS, which locates a spare OST

to replace the failed one and creates a new object for the file data on this spare. It next

fetches the partial file data from the data source and populates the new object on the spare

OST with it. When multiple compute nodes (Lustre clients) access the same data of this

file, the head node only issues one reconstruction request per file per OST (even if multiple

requests were received). At this point, compute nodes cannot access the object on the

new OST as the data has not been populated. Once a stripe becomes available, compute

nodes may access them immediately. To support such semantics, synchronization between

the clients and OSTs is required. The fundamental mechanism for such synchronization is

provided by Lustre locks.

Lustre Intent/Extent Lock Basics: Lustre provides two levels of locking,

namely intent and extent locks. Intent locks arbitrate metadata requests from clients to

MDS. Extent locks protect file operations on actual file data. Before modifying a file, an

extent lock must be acquired. Each OST accommodates a lock server managing locks for

stripes of data residing on that OST.

102

Synchronization Mechanism: We have implemented a centralized coordinator,

a daemon residing on the head node. It consists of multiple threads that handle requests

from clients and perform recovery. Upon arrival of a new request, the daemon launches

the recovery procedure while the client remains blocked, just as other clients requesting

data from this file/OST (step 6). Data recovery (step 7) is initiated by a novel addition

to Lustre, the (lfs objectrenew) command. In response, the MDS locates a spare OST (on

which the file does not reside yet) and creates a new object to replace the old one. Note

that the MDS will not update its metadata information at this time. Instead, the update is

deferred lazily to step 9 to allow accesses to proceed if they do not concern the failed OST.

In step 8, the daemon acquires the extent lock for the stripes of the new object.

Since the (new) object information is hidden from other clients, there cannot be any con-

tention for the lock. In step 9, the metadata information is updated, which utilizes the

intent mechanism provided by Lustre again. In step 10, clients waiting for the patched

data are unblocked and the new metadata is piggybacked. After clients update their locally

cached metadata (step 11), they may already reference the new object. However, any access

to the new object will still be blocked (step 12), this time due to their attempt to acquire

the extent lock, which is still being held by the daemon on the head node.

Adjustment of the OST Extent Lock Grant Policy: In step 8, the daemon

requests extent locks for all stripes of the recovery object. Consider the example in Fig.

7.3. Extent locks for stripes 2, 6, 10 and 14 are requested from OST 5. Upon a request

for stripe 2, OST 5 grants the largest possible extent ([0,-1] where -1 denotes ∞) to the

daemon. Afterward, requests for stripes 6, 10 and 14 match with lock [0,-1] resulting in an

incremented reference count of the lock at the client without communicating with OST 5.

Our design modifies this default behavior of coarse-granular locking. We want to

ensure that the extent lock to the stripes will be released one-by-one immediately after

the respective stripe is patched. However, with Lustre distributed lock manager (DLM),

the daemon only decrements the reference count on lock [0, -1] and releases it after all the

stripes are patched.

To address this shortcoming, we adjust the extent lock grant policy at the OST

server. Instead of granting the lock of [0,-1], a request from the daemon on the head node is

granted only the exact range of stripes requested. This way, extent locks for different stripes

differ (in step 8). Also, once a stripe is patched, the respective lock can be released so that

103

OST1 OST2 OST3 OST4 OST1 OST2 OST3 OST4

1 2 43 5 6 87 9 10 1211 13 14 15

1 2 43

5 6 87

9 10 1211

13 14 1615

1 2 43

5 6 87

9 10 1211

13 14 1615

OST5

2

6

10

14

Fail

File size = 16MB, Stripe count = 4, Stripe size = 1MB

16

Figure 7.3: File reconstruction

other clients can access the patched data right away. Meanwhile, clients blocked on other

stripes to be patched remain blocked on the extent locks. The extent lock policy is only

updated for requests from the daemon on the head node without impacting the requests

from other clients. Thus, it imposes no penalty in the non-failure case.

Such metadata update delay and two-phase blocking of clients provides the follow-

ing properties: 1) Before any metadata update, clients can either access their cached data

(which is consistent since stagein data is immutable) or request recovery (upon an I/O er-

ror). Either way, clients may still access the stripes of the old objects, but the new objects

remain invisible to them until the head node has patched the data and notified the clients

to update the metadata. 2) Before patching the actual file data, the head node obtains an

extent lock for all stripes of the new object, thereby blocking other clients that access the

data now or later. 3) After patching the data, the extent locks per stripe are immediately

released so that other clients can access partial data (stripes). Meanwhile, the daemon

continues to patch subsequent stripes to provide pipelined overlap between patching and

application progress. 4) The extent lock is further utilized for the second phase of blocking.

Thus, data patching becomes an independent task that can be offloaded to the OSSs to

distribute the patching workload in a scalable manner. 5) An OSS failure only affects a

subset of the computing nodes (the Lustre clients) even though all the clients participate

in the parallel I/O operations. Furthermore, most of the affected clients are blocked by the

extent locks without any communication with the centralized coordinator on the head node,

104

as discussed previously. Hence, the approach scales as communication with the centralized

coordinator is limited to few nodes.

0.01

0.1

1

10

100

64L 64R 128L 128R 256L 256R 512L 512R 1024L 1024R

File Size (MB; L: Local NFS; R: Remote SSHFS)

R
ec

o
v

er
y

 o
v

er
h

ea
d

/p
at

ch
in

g
 c

o
st

(s
ec

o
n

d
s)

up-front recovery overhead
mid-way recovery overhead
up-front patching cost
mid-way patching cost

(a) Varied file size

0.01

0.1

1

10

100

1(L) 1(R) 2(L) 2(R) 4(L) 4(R) 8(L) 8(R) 16(L) 16(R)

Number of compute nodes (L: Local NFS; R: Remote SSHFS)

R
ec

o
v

er
y

 o
v

er
h

ea
d

/p
at

ch
in

g
 c

o
st

(s
ec

o
n

d
s)

up-front recovery overhead mid-way recovery overhead
up-front patching cost mid-way patching cost

(b) Varied # compute nodes

Figure 7.4: Matrix multiplication recovery overhead

7.3.4 Phase 4: Data Reconstruction

In step 13, the URI of the remote file is obtained. In steps 14 and 15, stripes on

the new object are populated. Due to per-stripe extent locks, stripes may be patched in

any order. In our implementation, the clients subjected to I/O errors will supply the file

range to access in their reconstruction request to the head node. The head node retains

the order of the stripe requests and patches them accordingly. This speeds up application

progress during reconstruction, particularly when files are accessed sequentially and a failure

occurs in the middle of reading a file. In contrast, request-ignorant patching would hamper

application progress by initiating a patch starting with the lowest indexed stripe of an OST,

even though this stripe has already been read by clients.

To this end, we have implemented a new Lustre command, lfs patch. Since phase

3 already obtains the extent lock for all the stripes, the new command can update the data

range directly. Also, we set the file position in the patch system function instead of invoking

lseek() at the user level. This allows us to bypass the overhead associated with automatic

read-ahead (due to VFS caching). The extent lock for each stripe is released immediately

after patching so that clients can access the stripe instantly (step 16).

105

7.4 Experimental Framework

We used the same 17-node linux cluster at NCSU as our testbed. The OS on

each node was Fedora Core 5 Linux x86 64 with a Lustre-patched RHEL5 2.6.18 Linux

kernel (Lustre 1.6.3). In our experiments, the cluster nodes were setup as I/O servers,

compute nodes (Lustre clients), or both, as indicated below. We used different data staging

sources for the job input data: (1) “/home” on the local NFS file system at the same

HPC center with patching cost at 34.41MB/sec; (2) a server at another campus accessed

by a file system client, SSHFS, based on Filesystems in Userspace (FUSE) and secure shell

with a patching cost of 6.31MB/sec. Other patching sources, e.g., GridFTP servers, might

incur further delay. However, since most of the patching cost is shown to be overlapped

with computation or I/O operations, changes in patching cost remain largely hidden from

applications.

0

50

100

150

200

250

300

350

1(3) 2(4) 4(6) 8(10) 14(16)

Number of workers (number of compute nodes)

Jo
b

 r
u

n
 t

im
e

(s
ec

o
n

d
s) no failure

up-front recovery w/ local NFS

mid-way recovery w/ local NFS

up-front recovery w/ remote SSHFS

mid-way recovery w/ remote SSHFS

(a) Job run time

0

0.5

1

1.5

2

2.5

1(3) 2(4) 4(6) 8(10) 14(16)

Number of workers (number of compute nodes)

R
ec

o
v

er
y

 o
v

er
h

ea
d

 (
se

co
n

d
s)

up-front recovery overhead w/ local NFS

mid-way recovery overhead w/ local NFS

up-front recovery overhead w/ remote SSHFS

mid-way recovery overhead w/ remote SSHFS

(b) Recovery overhead

Figure 7.5: mpiBLAST performance

7.5 Experimental Results

We assessed overhead and patching cost of on-the-fly recovery using an MPI bench-

mark and an MPI application.

7.5.1 Performance of Matrix Multiplication

We first assessed an MPI kernel that performs dense matrix multiplication (MM)

with the standard C = A × B matrix operations, where A, B and C are n × n matrices.

A and B are stored consecutively in an input file. We vary n to manipulate the size of

106

the input file. Only one MPI task (the master) reads the input file before broadcasting the

data to all the other tasks (workers). The matrix product A×B is distributed to all MPI

processes. Since input occurs early during execution and since the code is more compute

intensive, we focus on the recovery overhead, i.e., the difference in job execution time of

the jobs with and without failure.

Figure 7.4(a) shows the experimental results of matrix multiplication for increasing

matrix dimensions, n (totaling 64MB, 128MB, 256MB, 512MB and 1GB). The MPI job runs

on 16 compute nodes (one MPI task each). Figure 7.4(b) depicts the experimental results

for varying number of compute nodes (1, 2, 4, 8 and 16) and a 256MB data input. For both

of these tests, the stripe count (stripe width) for the input file was 4 and the stripe size

was 1MB. We configured 5 OSTs (1OST/OSS) with the file residing on 4 OSTs and the

spare OST for reconstruction. Some nodes double as both I/O and compute nodes. Since

the configuration is the same, both with or without our solution, this provides a fair test

environment.

To assess our system’s capability to handle random storage failures, we varied the

point in time where a failure occurred. In one experiment, we failed one of the OSTs up

front, right as the MPI job started to run. This resulted in the master MPI task to experience

an I/O error upon its first data access to the failed OST. In another experiment, we failed

one OST mid-way during job execution. The master captures the I/O error immediately

and sends a recovery request for the lost data to the daemon on the head node. Figures

7.4(a) and 7.4(b) indicate that the recovery overhead, from an application standpoint, is

below 0.8 seconds for all cases. This is consistent in the sense that patching is overlapped

with job I/O and hidden from the application. However, the actual time overlap between

the patching and the job I/O varies. The recovery overhead for both up-front and mid-

way recovery ranges from 0.06 to 0.75 seconds. Although the reconstruction cost in Figure

7.4(a) rises with file size, this is hidden from the application. While the patching cost from

remote SSHFS is ∼ 5 times that of local NFS, the recovery overhead for jobs patching from

remote SSHFS is only slightly higher than local patching. The increase is dominated by

the patching of the first stripe, which cannot be overlapped; subsequent stripes incur little

extra cost.

107

7.5.2 Performance of mpiBLAST

We also assessed the performance of our solution using the mpiBLAST benchmark,

a parallel implementation of NCBI BLAST, which splits a database into fragments and

distributes the query tasks to workers by query segmentation before the BLAST search is

performed in parallel.

Since mpiBLAST is more input-intensive, we discuss the impact of failure on the

overall performance. Figure 7.5(a) shows the job run time. Figure 7.5(b) depicts the

recovery overhead. mpiBLAST assigns one process to perform file output and another to

schedule search tasks. Hence, the number of actual workers is the number of all the MPI

processes minus two. Each worker accesses several files.

We configured 9 OSTs and increased compute nodes from 3 to 16 so that some

double as server nodes (since our testbed has a total of 17 nodes). We distributed each

input file to four of the OSTs by the Lustre stripe distribution policy and then failed one

OST. As the number of worker processes increases, more files need to be accessed, i.e.,

more files reside on the failed OST and require recovery so that the recovery overhead also

increases (see Figure 7.5(b)). The number of failed files grows at the same rate as the

workers. Compared to the overall runtime, the increase in recovery overhead is moderate.

This is due to (1) parallel recovery of failed files referenced by disjoint workers and (2)

reduced per-file patching cost for more workers as file sizes decrease due to work sharing.

Figure 7.5(b) shows that the recovery overhead for jobs patching from remote SSHFS is

higher than for local patching due to the slower data source. Also, with more workers, more

failed files exist. Consequently, recovery becomes more costly, yet at a moderate growth rate

due to the aforementioned overlap. For the benchmarks we used, such moderate recovery

overhead is negligible compared with the job runtime. We expect that the same holds true

for most supercomputing jobs as large jobs tend to run much longer and as input files are

typically only read in the job initialization phase. Wallclock time estimates generally cover

such negligible overhead. Hence, additional time need not be budgeted for the job due to

our techniques.

108

7.6 Conclusion

We have presented the design of a novel on-the-fly recovery framework as a means

to address fault tolerance within parallel file systems in HPC centers. The recovery frame-

work provides a seamless way for a running job’s input data to be reconstructed from its

remote source in case of I/O errors. We have designed the system to take advantage of key

characteristics of HPC I/O workloads such as their immutable input data, sequential access

and persistent remote copy. We have further implemented this design into the Lustre par-

allel file system commonly used in supercomputer centers. Results with I/O-intensive MPI

benchmarks suggest that the recovery mechanism imposes little overhead. Both HPC cen-

ters and users stand to benefit from improved serviceability, data availability and reduced

job turnaround time in the face of storage system failure.

109

Chapter 8

Temporal Replication of Job Input

Data

8.1 Introduction

Currently, the majority of disk failures are masked by hardware solutions such as

RAID [13]. However, it is becoming increasingly difficult for common RAID configurations

to hide disk failures as disk capacity is expected to grow by 50% each year, which increases

the reconstruction time. The reconstruction time is further prolonged by the “polite” policy

adopted by RAID systems to make reconstruction yield to application requests. This causes

a RAID group to be more vulnerable to additional disk failures during reconstruction [14].

According to recent studies [56], disk failures are only part of the sources causing

data unavailability in storage systems. RAID cannot help with storage node failures. In

next-generation supercomputers, thousands or even tens of thousands of I/O nodes will be

deployed and will be expected to endure multiple concurrent node failures at any given

time. Consider the Jaguar system at Oak Ridge National Laboratory, which is on the

roadmap to a petaflop machine (currently No. 5 on the Top500 list with 23,412 cores and

hundreds of I/O nodes). Our experience with Jaguar shows that the majority of whole-

system shutdowns are caused by I/O nodes’ software failures. Although parallel file systems,

such as Lustre [45], provide storage node failover mechanisms, our experience with Jaguar

again shows that this configuration might conflict with other system settings. Further,

many supercomputing centers hesitate to spend their operations budget on replicating I/O

110

Scratch Space

Parallel I/O

Compute Nodes

job script

/home
Batch Job Queue

Archival System

ftp/scp

output

files

input

files

Time

Input

Staging

Job

Submission

Job

Dispatch
Input

Completion

Output

Completion

Job

Completion

Output

Offload
Purge

1
2

3

4

5 7

8

6

...

1 2 5 6 7 843

Ideal Replication IntervalImplemented Replication Interval

Figure 8.1: Event timeline with ideal and implemented replication intervals

servers and instead of purchasing more FLOPS.

Figure 8.1 gives an overview of an event timeline describing a typical supercom-

puting job’s data life-cycle. Users stage their job input data from elsewhere to the scratch

space, submit their jobs using a batch script, and offload the output files to archival systems

or local clusters. For better space utilization, the scratch space does not enforce quotas but

purges files after a number of days since the last access. Moreover, job input files are often

read-only (also read-once) and output files are write-once.

Although most supercomputing jobs performing numerical simulations are output-

intensive rather than input-intensive, the input data availability problem poses two unique

issues. First, input operations are more sensitive to server failures. Output data can be eas-

ily redirected to survive runtime storage failures using eager offloading [57]. As mentioned

earlier, many systems like Jaguar do not have file system server failover configurations to

protect against input data unavailability. In contrast, during the output process, parallel

file systems can more easily skip failed servers in striping a new file or perform restriping

if necessary. Second, loss of input data often brings heavier penalty. Output files already

written can typically withstand temporary I/O server failures or RAID reconstruction de-

lays as job owners have days to perform their stage-out task before the files are purged from

the scratch space. Input data unavailability, on the other hand, incurs job termination and

resubmission. This introduces high costs for job re-queuing, typically orders of magnitude

larger than the input I/O time itself.

Fortunately, unlike general-purpose systems, in supercomputers we can anticipate

future data accesses by checking the job scheduling status. For example, a compute job is

111

only able to read its input data during its execution. By coordinating with the job scheduler,

a supercomputer storage system can selectively provide additional protection only for the

duration when the job data is expected to be accessed.

We proposed temporal file replication, wherein a parallel file system performs

transparent and temporary replication of job input data. This facilitates fast and easy

file reconstruction before and during a job’s execution without additional user hints or

application modifications. Unlike traditional file replication techniques, which have mainly

been designed to improve long-term data persistence and access bandwidth or to lower

access latency, the temporal replication scheme targets the enhancement of short-term data

availability centered around job executions in supercomputers.

We have implemented our scheme in the popular Lustre parallel file system and

combined it with the Moab job scheduler by building on our previous work on coinciding

input data staging alongside computation [53]. We have also implemented a replication-

triggering algorithm that coordinates with the job scheduler to delay the replica creation.

Using this approach, we ensure that the replication completes in time to have an extra copy

of the job input data before its execution.

We then evaluate the performance by conducting real-cluster experiments that

assess the overhead and scalability of the replication-based data recovery process. Our

experiments indicate that replication and data recovery can be performed quite efficiently.

Thus, our approach presents a novel way to bridge the gap between parallel file systems

and job schedulers, thereby enabling us to strike a balance between an HPC center resource

consumption and serviceability.

8.2 Temporal Replication Design

Supercomputers are heavily utilized. Most jobs spend significantly more time

waiting in the batch queue than actually executing. The popularity of a new system ramps

up as it goes towards its prime time. For example, from the 3-year Jaguar job logs, the

average job wait-time:run-time ratio increases from 0.94 in 2005, to 2.86 in 2006, and 3.84

in 2007.

112

Table 8.1: Configurations of top five supercomputers as of 06/2008
System # Aggr- Scratch Memory Top

Cores egate Space to 500
Memory (TB) Storage Rank

(TB) Ratio
RoadRunner(LANL) 122400 98 2048 4.8% 1
BlueGene/L(LLNL) 106496 73.7 1900 3.8% 2

BlueGene/P(Argonne) 163840 80 1126 7.1% 3
Ranger(TACC) 62976 123 1802 6.8% 4
Jaguar(ORNL) 23412 46.8 600 7.8% 5

8.2.1 Justification and Design Rationale

A key concern about the feasibility of temporal replication is the potential space

and I/O overhead replication might incur. However, we argue that by replicating selected

“active files” during their “active periods”, we are only replicating a small fraction of the files

residing in the scratch space at any given time. To estimate the extra space requirement, we

examined the sizes of the aggregate memory space and the scratch space on state-of-the-art

supercomputers. The premise is that with today’s massively parallel machines and with

the increasing performance gap between memory and disk accesses, batch applications are

seldom out-of-core. This also agrees with our observed memory use pattern on Jaguar (see

below). Parallel codes typically perform input at the beginning of a run to initialize the

simulation or to read in databases for parallel queries. Therefore, the aggregate memory

size gives a bound for the total input data size of active jobs. By comparing this estimate

with the scratch space size, we can assess the relative overhead of temporal replication.

Table 8.1 summarizes such information for the top five supercomputers [6]. We

see that the memory-to-storage ratio is less than 8%. Detailed job logs with per-job peak

memory usage indicate that the above approximation of using the aggregate memory size

significantly overestimates the actual memory use (discussed later in this subsection). While

the memory-to-storage ratio provides a rough estimation of the replication overhead, in

reality, however, a number of other factors need to be considered. First, when analyzing

the storage space overhead, queued jobs’ input files cannot be ignored, since their aggregate

size can be even larger than that of running jobs. In the following sections, we propose

additional optimizations to shorten the lifespan of replicas. Second, when analyzing the

113

bandwidth overhead, the frequency of replication should be taken into account. Jaguar’s

job logs show an average job run time of around 1000 seconds and an average aggregate

memory usage of 31.8 GB, which leads to a bandwidth consumption of less than 0.1% of

Jaguar’s total capacity of 284 GB/s. For this reason, we primarily focus on the space

overhead in the following discussions.

Next, we discuss a supercomputer’s usage scenarios and configuration in more

detail to justify the use of replication to improve job input data availability.

Even though replication is a widely used approach in many distributed file system

implementations, it is seldom adopted in supercomputer storage systems. In fact, many

popular high-performance parallel file systems (e.g., Lustre and PVFS) do not even support

replication, mainly due to space concerns. The capacity of the scratch space is important

in (1) allowing job files to remain for a reasonable amount of time (days rather than hours),

avoiding the loss of precious job input/output data, and (2) allowing giant “hero” jobs to

have enough space to generate their output. Blindly replicating all files, even just once,

would reduce the effective scratch capacity to half of its original size.

Temporal replication addresses the above concern by leveraging job execution in-

formation from the batch scheduler. This allows it to only replicate a small fraction of “ac-

tive files” in the scratch space by letting the “replication window” slide as jobs flow through

the batch queue. Temporal replication is further motivated by several ongoing trends in su-

percomputer configurations and job behavior. First, as mentioned earlier, Table 8.1 shows

that the memory to scratch space ratio of the top 5 supercomputers is relatively low. Sec-

ond, it is rather rare for parallel jobs on these machines to fully consume the available

physical memory on each node. A job may complete in shorter time on a larger number of

nodes due to the division of workload and data, resulting in lower per-node memory require-

ments at a comparable time-node charge. Figure 8.2 shows the per-node memory usage of

both running and queued jobs over one month on the ORNL Jaguar system. It backs our

hypothesis that jobs tend to be in-core, with their aggregate peak memory usage providing

an upper bound for their total input size. We also found the actual aggregate memory usage

averaged over the 300 sample points to be significantly below the total amount of memory

available shown in Table 8.1: 31.8 GB for running jobs and 49.5 GB for queued jobs.

114

8.2.2 Delayed Replica Creation

Based on the above observations about job wait times and cost/benefit trade-offs

for replication in storage space, we propose the following design of an HPC-centric file

replication mechanism.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300

A
m

o
u
n
t
o
f
m

e
m

o
ry

 (
M

B
)

Sample points

running
queued

Figure 8.2: Per-node memory usage from 300 uniformly sampled time points over a 30-day
period based on job logs from the ORNL Jaguar system. For each time point, the total
memory usage is the sum of peak memory used by all jobs in question.

When jobs spend a significant amount of time waiting, replicating their input

files (either at stage-in or submission time) wastes storage space. Instead, a parallel file

system can obtain the current queue status and determine a replication trigger point to

create replicas for a given job. The premise here is to have enough jobs near the top of the

queue, stocked up with their replicas, such that jobs dispatched next will have extra input

data redundancy. Additional replication will be triggered by job completion events, which

usually result in the dispatch of one or more jobs from the queue. Since jobs are seldom

interdependent, we expect that supplementing a modest prefix of the queued jobs with a

second replica of their input will be sufficient. Only one copy of a job’s input data will be

available before its replication trigger point. However, this primary copy can be protected

with periodic availability checks and remote data recovery techniques previously developed

and deployed by us [53].

Completion of a large job is challenging as it can activate many waiting jobs

requiring instant replication of multiple datasets. As a solution, we propose to query the

queue status from the job scheduler. Let the replication window, w, be the length of the

prefix of jobs at the head of the queue that should have their replicas ready. w should be

115

OST0 OST1 OST2 OST3 OST4 OST5 OST6 OST7

0 1 32 4 5 76 8 9 1110 12 13 1514

0 132

4 576

8 91110

12 131514

01 32

45 76

89 1110

1213 1514

OST8

1

5

9

13

Fail

File Size = 16MB, Stripe Count = 4, Stripe Size = 1MB

obj0 obj1 obj2 obj3 obj0' obj1' obj2' obj3' obj1''

Replica (foo')

Original File

(foo)
obj0, 1, 2, 3

obj0', 1', 2', 3'

obj0, 1', 2, 3

obj0', 1'', 2', 3'Replica (foo')

Original File

(foo)

Figure 8.3: Objects of an original job input file and its replica. A failure occurred to OST1,
which caused accesses to the affected object to be redirected to their replicas on OST5, with
replica regeneration on OST8.

the smallest integer such that:

w∑
i=0

|Qi| > max(R,αS),

where |Qi| is the number of nodes requested by the ith ranked job in the queue, R is the

number of nodes used by the largest running job, S is the total number of nodes in the

system, and the factor α(0 ≤ α) is a controllable parameter to determine the eagerness of

replication.

One problem with the above approach is that job queues are quite dynamic as

strategies such as backfilling are typically used with an FCFS or FCFS-with-priority schedul-

ing policy. Therefore, jobs do not necessarily stay in the queue in their arrival order. In

particular, jobs that require a small number of nodes are likely to move ahead faster. To

address this, we augment the above replication window selection with a “shortcut” approach

and define a threshold T , 0 ≤ T ≤ 1. Jobs that request T · S nodes will have their input

data replicated immediately regardless of the current replica window. This approach allows

jobs that tend to be scheduled quickly to enjoy early replica creation.

116

8.2.3 Eager Replica Removal

We can also shorten the replicas’ life span by removing the extra copy once we know

it is not needed. A relatively safe approach is to perform the removal at job completion time.

Although users sometimes submit additional jobs using the same input data, the primary

data copy will again be protected with our offline availability check and recovery [53].

Further, subsequent jobs will also trigger replication as they progress toward the head of

the job queue.

Overall, we recognize that the input files for most in-core parallel jobs are read at

the beginning of job execution and never re-accessed thereafter. Hence, we have designed an

eager replica removal strategy that removes the extra replica once the replicated file has been

closed by the application. This significantly shortens the replication duration, especially for

long-running jobs. Such an aggressive removal policy may subject input files to a higher

risk in the rare case of a subsequent access further down in its execution. However, we

argue that reduced space requirements for the more common case outweigh this risk.

8.3 Implementation Issues

All our modifications were made within Lustre and do not affect the POSIX file

system APIs. Therefore, data replication, failover and recovery processes are entirely trans-

parent to user applications.

In our implementation, a supercomputer’s head node doubles as a replica man-

agement service node, running as a Lustre client. Job input data is usually staged via the

head node making it well suited for initiating replication operations. Replica management

involves generating a copy of the input dataset at the appropriate replication trigger point,

scheduling periodic failure detection before job execution, and also scheduling data recovery

in response to reconstruction requests. Data reconstruction requests are initiated by the

compute nodes when they observe storage failures during file accesses. The replica man-

ager serves as a coordinator that facilitates file reorganization, replica reconstruction, and

streamlining of requests from the compute nodes in a non-redundant fashion.

Replica Creation and Management: We use the copy mechanism of the underlying

file system to generate a replica of the original file. In creating the replica, we ensure that

117

it inherits the striping pattern of the original file and is distributed on I/O nodes disjoint

from the original file’s I/O nodes. As depicted in Figure 8.3, the objects of the original file

and the replica form pairs (objects (0, 0′), (1, 1′), etc.). The replica is associated with the

original file for its lifetime by utilizing Lustre’s extended attribute mechanism.

Failure Detection: For persistent data availability, we perform periodic failure detection

before a job’s execution. This offline failure detection mechanism was described in our

previous work [53]. The same mechanism has been extended for transparent storage failure

detection and access redirection during a job run. Both I/O node failures and disk failures

will result in an I/O error immediately within our Lustre patched VFS system calls. Upon

capturing the I/O error in the system function, Lustre obtains the file name and the index

of the failed OST. Such information is then sent by the client to the head node, which, in

turn, initiates the object reorganization and replica reconstruction procedures.

Object Failover and Replica Regeneration: Upon an I/O node failure, either de-

tected by the periodic offline check or by a compute node through an I/O error, the afore-

mentioned file and failure information is sent to the head node. Using several new commands

that we have developed, the replica manager will query the MDS to identify the appropriate

objects in the replica file that can be used to fill the holes in the original file. The original

file’s metadata is updated subsequently to integrate the replicated objects into the original

file for seamless data access failover. Since metadata updates are inexpensive, the head

node is not expected to become a potential bottleneck.

To maintain the desired data redundancy during the period that a file is replicated,

we choose to create a “secondary replica” on another OST for the failover objects after a

storage failure. The procedure begins by locating another OST, giving priority to one

that currently does not store any part of the original or the primary replica file.1 Then, the

failover objects are copied to the chosen OST and in turn integrated into the primary replica

file. Since the replica acts as a backup, it is not urgent to populate its data immediately.

In our implementation, such stripe-wise replication is delayed by 5 seconds (tunable) and

is offloaded to I/O nodes (OSSs).
1In Lustre, file is striped across 4 OSTs by default. Since supercomputers typically have hundreds of

OSTs, an OST can be easily found.

118

Streamlining Replica Regeneration Requests: Due to parallel I/O , multiple com-

pute nodes (Lustre clients) are likely to access a shared file concurrently. Therefore, in the

case of a storage failure, we must ensure that the head node issues a single failover/regeneration

request per file and per OST despite multiple such requests from different compute nodes.

We have implemented a centralized coordinator inside the replica manager to handle the

requests in a non-redundant fashion.

8.4 Experimental Results

To evaluate the temporal replication scheme, we performed real-cluster experi-

ments. We assessed our implementation of temporal replication in the Lustre file system in

terms of the online data recovery efficiency.

8.4.1 Failure Detection and Offline Recovery

Before a job begins to run, we periodically check for failures on OSTs that carry

its input data. The detection cost is less than 0.1 seconds as the number of OSTs increases

to 256 (16 OSTs on each of the 16 OSSs) in our testbed. Since failure detection is performed

when a job is waiting, it incurs no overhead on job execution itself. When an OST failure

is detected, two steps are performed to recover the file from its replica: object failover

and replica reconstruction. The overhead of object failover is relatively constant (0.84-0.89

seconds) regardless of the number of OSTs and the file size. This is due to the fact that

the operation only involves the MDS and the client that initiates the command. Figure 8.4

shows the replica reconstruction (RR) cost with different file sizes. The test setup consisted

of 16 OSTs (1 OST/OSS). We varied the file size from 128MB to 2GB. With one OST

failure, the data to recover ranges from 8MB to 128MB causing a linear increase in RR

overhead. Figure 8.4 also shows that the whole file reconstruction (WFR), the conventional

alternative to our more selective scheme where the entire file is re-copied, has a much higher

overhead. In addition, RR cost increases as the chunk size decreases due to the increased

fragmentation of data accesses.

119

 0

 10

 20

 30

 40

 50

 60

 70

 80

128MB 256MB 512MB 1GB 2GB

R
ec

on
st

ru
ct

io
n

co
st

 (
se

co
nd

s)

File size

WFR w/ 1MB chunk
WFR w/ 2MB chunk
WFR w/ 4MB chunk

RR w/ 1MB chunk
RR w/ 2MB chunk
RR w/ 4MB chunk

Figure 8.4: Offline replica reconstruction cost with varied file size

0.1

1

10

100

128MB 256MB 512MB 1GB 2GB
File sizeR

ec
ov

er
y

ov
er

he
ad

 /
re

co
ns

tru
ct

io
n

co
st

 (s
ec

on
ds

)

up-front recovery overhead
mid-way recovery overhead
up-front replica reconstruction cost
mid-way replica reconstruction cost

Figure 8.5: MM recovery overhead vs. replica reconstruction cost

8.4.2 Online Recovery

Application 1: Matrix Multiplication (MM)

To measure on-the-fly data recovery overhead during a job run with temporal

replication, we used MM, an MPI kernel that performs dense matrix multiplication. It

computes the standard C = A ∗B operation, where A, B and C are n ∗ n matrices. A and

B are stored contiguously in an input file. We vary n to manipulate the problem size. Like

in many applications, only one master process reads the input file, then broadcasts the data

to all the other processes for parallel multiplication using a BLOCK distribution.

120

Figure 8.5 depicts the MM recovery overhead with different problem sizes. Here,

the MPI job ran on 16 compute nodes, each with one MPI process. The total input size

was varied from 128MB to 2GB by adjusting n. We configured 9 OSTs (1 OST/OSS), with

the original file residing on 4 OSTs, the replica on another 4, and the reconstruction of the

failover object occurring on the remaining one. Limited by our cluster size, we let nodes

double as both I/O and compute nodes.

To simulate random storage failures, we varied the point in time where a failure

occurs. In “up-front”, an OSTs failure was induced right before the MPI job started running.

Hence, the master process experienced an I/O error upon its first data access to the failed

OST. With “mid-way”, one OST failure was induced mid-way during the input process.

The master encountered the I/O error amidst its reading and sent a recovery request to

the replica manager on the head node. Figure 8.5 indicates that the application-visible

recovery overhead was almost constant for all cases (right around 1 second) considering

system variances. This occurs because only one object was replaced for all test cases while

only one process was engaged in input. Even though the replication reconstruction cost

rises as the file size increases, this was hidden from the application. The application simply

progressed with the failover object from the replica while the replica itself was replenished

in the background.

Application 2: mpiBLAST

To evaluate the data recovery overhead using temporal replication with a read-

intensive application, we tested with mpiBLAST [58], which splits a database into fragments

and performs a BLAST search on the worker nodes in parallel. Since mpiBLAST is more

input-intensive, we examined the impact of a storage failure on its overall performance.

The difference between the job execution times with and without failure, i.e., the recovery

overhead, is shown in Figure 8.6. Since mpiBLAST assigns one process as the master and

another to perform file output, the number of actual worker processes performing parallel

input is the total process number minus two.

The Lustre configurations and failure modes used in the tests were similar to those

in the MM tests. Overall, the impact of data recovery on the application’s performance was

small. As the number of workers grew, the database was partitioned into more files. Hence,

more files resided on the failed OST and needed recovery. As shown by Figure 8.6, the

121

0

2

4

6

8

10

12

1(3) 2(4) 4(6) 8(10) 14(16)

Number of workers (number of computer nodes)

R
ec

ov
er

y
ov

er
he

ad
 (s

ec
on

ds
)

up-front recovery overhead
mid-way recovery overhead

Figure 8.6: Recovery overhead of mpiBLAST

recovery overhead grew with the number of workers. Since each worker process performed

input at its own pace and the input files were randomly distributed to the OSTs, the I/O

errors captured on the worker processes occurred at different times. Hence, the respective

recovery requests to the head node were not issued synchronously in parallel but rather in

a staged fashion. With many applications that access a fixed number of shared input files,

we expect to see a much more scalable recovery cost with regard to the number of MPI

processes using our techniques.

8.5 Conclusion

We have presented a novel temporal replication scheme for supercomputer job

data. By creating additional data redundancy for transient job input data, we allow fast

online data recovery from local replicas without user intervention or hardware support.

This general-purpose, high-level data replication can help avoid job failures/resubmission

by reducing the impact of both disk failures or software/hardware failures on the storage

nodes. Our implementation, using the widely used Lustre parallel file system and the Moab

scheduler, demonstrates that replication and data recovery can be performed efficiently.

122

Chapter 9

Related Work

This dissertation aims to present FT techniques for MPI jobs and job input data

to realize significant advances in fault resilience of HPC jobs as presented in Chapters 2 -

8. This chapter on related work is also split into two parts: Section 9.1 presents research

related to FT for MPI jobs and Section 9.2 presents the work on FT for job input data.

9.1 Fault Tolerance Techniques for MPI Jobs

A wide range of methods and systems to support FT for MPI jobs have been

developed in the past.

Checkpoint/Restart: C/R techniques for MPI jobs are frequently deployed in HPC

environments and can be divided into two categories: coordinated (LAM/MPI+BLCR [10,

15], CoCheck [59], etc.) and uncoordinated (MPICH-V [9, 60]). Coordinated techniques

commonly rely on a combination of OS support to checkpoint a process image (e.g., via the

BLCR Linux module [15]) or user-level runtime library support. Collective communication

among MPI tasks is used for coordinated checkpoint negotiation [10]. Uncoordinated C/R

techniques generally rely on logging messages and possibly their temporal ordering for

asynchronous non-coordinated checkpointing, e.g., MPICH-V [9, 60] that uses pessimistic

message logging. The framework of OpenMPI [61, 11] is designed to allow both coordinated

and uncoordinated types of protocols.

Our focus is on LAM/MPI+BLCR, which requires a complete system restart

123

where target node information, such as IP addresses, cannot be changed and checkpoint-

ing is not fully automated. This severely limits its applicability. Prior work extended this

LAM/MPI+BLCR functionality to support migration of selected checkpoint images to new

nodes [19]. Similar work extended the HA-OSCAR (High Availability Open Source Clus-

ter Application Resources) distribution not only with compute-node failover (equivalent to

migration with a complete start) but also to head-node failover (active-standby) in clus-

ters [62]. This required modifications to LAM’s hard-coded internal addressing information

within the checkpointed file images followed by a complete job restart. Job submission

frameworks, such as Torque, are oblivious to such changes if the new job is carefully con-

structed such as to resemble the originally submitted one. In contrast to this work, we

take LAM/MPI+BLCR to yet another level with our novel job pause mechanism (as dis-

cussed in Chapter 2) that supports migration without restart, i.e., by retaining functioning

process images and rolling back to the last checkpoint. Our approach is independent and

transparent of any higher-level frameworks, such as job submission facilities. More impor-

tantly, users do not lose their allocated time of a running job, i.e., instead of requeuing the

restarted job and waiting for its execution, execution commences from the last checkpoint

without noticeable interruption.

Furthermore, conventional C/R techniques checkpoint the entire process image

leading to high checkpoint overhead, heavy I/O bandwidth requirements and considerable

hard drive pressure, even though only a subset of the process image of all MPI tasks changes

between checkpoints. With our hybrid full/incremental C/R mechanism, as discussed in

Chapter 5, we mitigate the situation by checkpointing only the modified pages and at a

lower rate than required for full checkpoints.

Incremental Checkpointing: Recent studies focus on incremental checkpointing [32, 63,

64]. TICK (Transparent Incremental Checkpointer at Kernel Level) [32] is a system-level

checkpointer implemented as a kernel thread. It supports incremental and full checkpoints.

However, it checkpoints only sequential applications running on a single process that do not

use inter-process communication or dynamically loaded shared libraries. In contrast, our

hybrid full/incremental C/R solution transparently supports incremental checkpoints for an

entire MPI job with all its processes. Pickpt [63] is a page-level incremental checkpointing

facility. It provides space-efficient techniques for automatically removing useless checkpoints

124

aiming to minimizing the use of disk space, which differs from our garbage collection thread

technique. Yi et al. [65] develop an adaptive page-level incremental checkpointing facility

based on the dirty page count as a threshold heuristic to determine whether to checkpoint

now or later, a feature complementary to our work that we could adopt within our scheduler

component. However, Pickpt and Yi’s adaptive scheme are constrained to C/R of a single

process, just as TICK was, while we cover an entire MPI job with all its processes and

threads within processes. Agarwal et al. [66] provide a different adaptive incremental

checkpointing mechanism to reduce the checkpoint file size by using a secure hash function

to uniquely identify changed blocks in memory. Their solution not only appears to be

specific to IBM’s compute node kernel on BG/L, it also requires hashes for each memory

page to be computed, which tends to be more costly than OS-level dirty-bit support as

caches are thrashed when each memory location of a page has to be read in their approach.

A prerequisite of incremental checkpointing is the availability of a mechanism to

track modified pages during each checkpoint. Two fundamentally different approaches may

be employed, namely page protection mechanisms or page-table dirty bits. Different im-

plementation variants build on these schemes. One is the bookkeeping and saving scheme

that, based on the dirty bit scheme, copies pages into a buffer [32]. Another solution is to

exploit page write protection, such as in Pickpt [63], to save only modified pages as a new

checkpoint. The page protection scheme has certain draw-backs. Some address ranges, such

as the stack, can only be write protected with application-level control if an alternate signal

stack is employed, which adds calling overhead and increases cache pressure. Furthermore,

the overhead of user-level exception handlers or, alternatively, kernel-level read/write pro-

tection changes is much higher than kernel-level dirty-bit shadowing. Thus, we selected

the dirty bit scheme in our live migration and incremental checkpointing mechanisms, yet

in our own implementation within the Linux kernel. Our hybrid full/incremental check-

point/restart approach is unique among this prior work in its ability to capture and restore

an entire MPI job with all its tasks, including all relevant process information and OS

kernel-specific data. Hence, our scheme is more general than language specific solutions (as

in Charm++), yet lighter weight than OS virtualization C/R techniques.

Checkpoint Interval Model: Aiming at optimality for checkpoint overhead and roll-

back time over a set of MPI jobs, several models have been developed to determine job-

125

specific intervals for full or incremental checkpoints. Yong [21] presented a checkpoint model

and obtained a fixed optimal checkpoint interval. Based on Young’s work, Daly [67, 68]

improved the model to an optimal checkpoint placement from a first order to a higher or-

der approximation. Liu et al. provide a model for an optimal full C/R strategy toward

minimizing rollback and checkpoint overheads [69]. Their scheme focuses on the fault tol-

erance challenge, especially in a large-scale HPC system, by providing optimal checkpoint

placement techniques that are derived from the actual system reliability. Naksinehaboon

et al. provide a model to perform a set of incremental checkpoints between two consecu-

tive full checkpoints [41] and a method to determine the optimal number of incremental

checkpoints between full checkpoints. While their work is constrained to simulations based

on log data, our work on hybrid full/incremental checkpoint/restart mechanism focuses

on the design and implementation of process-level incremental C/R for MPI tasks. Their

work is complementary in that their model could be utilized to fine-tune our incremental

C/R rate. In fact, the majority of their results on analyzing failure data logs show that

the full/incremental C/R model outperforms full checkpointing. Furthermore, our reverse

scanning restart mechanism is superior to the one used in their model.

Proactive FT and Migration: The feasibility of proactive FT has been demonstrated at

the job scheduling level [30], within OS virtualization [17] and in Adaptive MPI [27, 28, 29]

using a combination of (a) object virtualization techniques to migrate tasks and (b) causal

message logging [70] within the MPI runtime system of Charm++ applications. In contrast

to Charm++, our process-level live migration solution is coarser grained as FT is provided

at the process level, thereby encapsulating most of the process context, including open file

descriptors, which are beyond the MPI runtime layer.

Two facets on proactive FT are intensively studied. First, there are a number of

research efforts on failure prediction [26, 71, 72]. These papers report high failure predic-

tion accuracy with a prior warning window, which is the premise for our process migration

mechanism proposed in Chapter 3. Second, various migration mechanisms have been stud-

ied extensively in the past [73, 74, 75, 76, 77, 78, 15]. Furthermore, MPI-Mitten [79], an MPI

library between the MPI layer and the application layer, provides proactive fault tolerance

to MPI applications. It uses HPCM [80] as a middleware to support user-level hetero-

geneous process migration. These two facets are integrated in approaches that combine

126

prediction and migration in proactive FT systems and evaluate different FT policies. In

[81], the authors provide a generic framework based on a modular architecture allowing the

implementation of new proactive fault tolerance policies/mechanisms. An agent-oriented

framework [82] was developed for grid computing environments with separate agents to

monitor individual classes or subclasses of faults and proactively act to avoid or tolerate

a fault. Sun et al. provide fault-aware systems, such as FARS [83] and FENCE [84], to

increase the accuracy of fault prediction and improve system resilience to failures with dif-

ferent fault management mechanisms including process migration. They also model the

migration cost and introduce a dynamic scheduling mechanism accordingly [85]. In their

paper, Tikotekar et al. also present a simulation framework that evaluates different FT

mechanisms and policies, including a combination of reactive FT and proactive FT to de-

crease the number of checkpoints [22], which obtained the best results among all the real

and simulated FT mechanisms and policies. These prior works with their fault models, FT

mechanisms for fault occurrences and their evaluation simulations, confirm that the process

migration is a suitable approach for proactive FT with lower cost than OS virtualization,

which reinforces the significance of our solution.

Approaches for transparent real-time performance monitoring of MPI parallel pro-

grams exploit information on wall-clock time of MPI events collected in prior work [86, 87]

with the intent to automatically detect deviations of a process from its expected behavior

and subsequently enable real-time scheduling of MPI programs. We, in contrast, contribute

a monitoring API that meshes directly with MPI applications to log overheads of time steps,

as discussed in Section 4.3.

Our proactive live migration solution orchestrates BMC/IPMI health monitor-

ing, fundamentally new BLCR capabilities and the extended communication mechanism at

LAM/MPI through a decentralized scheduler. The framework is simple and applicable to

arbitrary MPI implementations in HPC environments. Furthermore, our approach provides

a live migration mechanism that supports continued execution of MPI applications during

much of the migration time. This solution parallels live migration at the OS virtualization

layer [88], which has been studied in the context of proactive FT of MPI applications [34],

an approach that supports integrated health-based monitoring and proactive live migration

over Xen guests. We contribute process-level live migration and demonstrate its superior

efficiency to of OS-level virtualization. In HPC, process-level solutions are more widely

127

accepted than OS virtualization, not the least because of potential performance penalties of

network virtualization or additional driver development for virtualization-bypass technolo-

gies [89, 90].

9.2 Fault Tolerance Techniques for Job Input Data

Next, we will discuss related efforts in FT for job input data.

RAID Recovery: Disk failures can often be masked by standard RAID techniques [13].

However, RAID is geared toward whole disk failures and does not address sector-level

faults [52, 91, 92]. It is further impaired by controller failures and multiple disk failures

within the same group. Without hot spares, reconstruction requires manual intervention

and is time consuming. With RAID reconstruction, disk arrays either run in a degraded

(not yielding to other I/O requests) or polite mode. In a degraded mode, busy disk ar-

rays suffer a substantial performance hit when crippled with multiple failed disks [93, 54].

This degradation is even more significant on parallel file systems as files are striped over

multiple disk arrays and large sequential accesses are common. Under a polite mode, with

rapidly growing disk capacity, the total reconstruction time is projected to increase to days

subjecting a disk array to additional failures [14]. Furthermore, RAID technology cannot

handle a media error, also know as an unrecoverable read error (URE), which occurs during

dailed disk reconstruction [94]. With 50 GB SATA disk drives, MTBF is about one error

every 1014 bits (12.5 terabytes), so that a media error was very unlikely to occur. When

it does occur during reconstruction, a 50 GB disk takes only a few hours to recover from

tape. However, for terabyte disks, the disk failure plus media error scenario becomes almost

inevitable. Recovering the storage array from backup tape could take a month. To address

this problem, Panasas has implemented a significant extension, called “tiered parity” [95],

to RAID. In this model, Panasas has built “vertical parity” and “network parity” on top of

existing “horizontal parity”. With vertical parity, they have added RAID within each disk.

According to Panasas, vertical parity reduces the error rate to between one in 1018 and one

in 1019 bits written, which is 1000 to 10,000 times better than the URE rate. The extra

parity information uses 10 percent of the disk capacity. On top of horizonal and vertical

parity schemes, Panasas also adds an additional layer of network parity protection. At this

128

level, parity checking is done on the client side. Our approach complements RAID systems

by providing fast recovery protecting against non-disk and multiple disk failures.

Recent work on popularity-based RAID reconstruction [96] rebuilds more fre-

quently accessed data first, thereby reducing reconstruction time and user-perceived penal-

ties. However, supercomputer storage systems host transient job data, where “unaccessed”

job input files are often more important than “accessed” ones. In addition, such optimiza-

tions cannot cope with failures beyond RAID’s protection at the hardware level.

Replication: Data replication, a commonly used technique for persistent data availability,

creates and stores redundant copies (replicas) of datasets. Various replication techniques

have been studied [97, 98, 99, 100] in many distributed file systems [101, 102, 103]. Most

existing replication techniques treat all datasets with equal importance and each dataset

with static, time-invariant importance when making replication decisions. An intuitive

improvement would be to treat datasets with different priorities. To this end, BAD-FS [104]

performs selective replication according to a cost-benefit analysis based on the replication

costs and the system failure rate. Similar to BAD-FS, our temporal replication approach

(as discussed in Chapter 8) also makes on-demand replication decisions. However, our

scheme is more “access-aware” rather than “cost-aware”. While BAD-FS still creates static

replicas, our replication approach utilizes explicit information from the job scheduler to

closely synchronize and limit replication to jobs in execution or soon to be executed.

Parallel File Systems: There are two classes of parallel file systems, namely those whose

architectures are based on I/O nodes/servers managing data on directly attached storage

devices (such as PVFS [50] and LUSTRE [45]) and those with centralized, shared storage

devices that are shared by all I/O nodes (such as GPFS [105]). For the former category,

node failure implies that a partition of the storage system is unavailable. Since parallel file

systems usually stripe datasets for better I/O performance, failure of one node may affect

a large portion of user jobs. Moreover, unlike specialized nodes/servers such as metadata

servers, token servers, etc., I/O nodes in parallel file systems may not be routinely protected

through failover. I/O node failover does not help when the underlying RAID recovery is

impaired (as mentioned above) as the data is seldom replicated. Our offline and online

recovery solution for job input data mitigates these situations by exploiting the source

129

copies of user job input data.

I/O shepherding [91] introduces a reliability infrastructure for file systems by exe-

cuting I/O requests using user-specified FT mechanisms including retries, sanity checking,

checksums, and mirrors or parity protection to recover from lost blocks or disks. This work

is similar in the sense that it attempts to introduce fault-tolerant behavior into file systems

by reliably executing I/O requests. However, we are concerned with HPC job input data

and rely on external sources for I/O node failure recovery.

Erasure Coding: Another widely investigated technique is erasure coding [106, 107, 108].

With erasure coding, k parity blocks are encoded into n blocks of source data. When a

failure occurs, the whole set of n+k blocks of data can be reconstructed with any n surviving

blocks through decoding.

Erasure coding reduces the space usage of replication but adds computational over-

head for data encoding/decoding. In [109], the authors provide a theoretical comparison

between replication and erasure coding. In many systems, erasure coding provides better

overall performance balancing computation costs and space usage. However, for supercom-

puter centers, its computation costs will be a concern. This is because computing time in

supercomputers is a precious commodity. At the same time, our data analysis suggests that

the amount of storage space required to replicate data for active jobs is relatively small

compared to the total storage footprint. Therefore, compared to erasure coding, our repli-

cation approach is more suitable for supercomputing environments, which is verified by our

experimental study.

130

Chapter 10

Conclusion

The hypothesis of this dissertation was that while fault of HPC jobs increases as

the number of computing and I/O nodes in HPC environments goes up, fault resilience can

be significantly improved by employing a combination of multiple FT techniques. The work

presented in Chapters 2 - 8 has shown this hypothesis to be true in evaluating process-level

job healing and input data recovery solutions. These contributions are summarized in the

following.

10.1 Contributions

In the area of process-level job healing techniques, we provide a novel proactive

FT scheme and also significant enhancements to reactive FT, as presented in Chapters 2 -

5.

Chapter 2 presents a transparent job pause mechanism. It pauses the job when a

process fails and restarts the failing process on another processor to prevent the job from

having to re-enter the job queue. In Chapters 3 and 4, we present process-level live mi-

gration and back migration solutions for proactive fault-tolerance in HPC environments.

This complements reactive fault-tolerant mechanisms, such as checkpointing, resulting in

a reduction of the number of checkpoints when a majority of the faults can be handled

proactively. An incremental checkpointing mechanism, presented in Chapter 5, was devel-

oped and combined with full checkpointing. This reduces the overhead of checkpointing

by infrequently performing periodic full checkpoints interspersed by several incremental

131

checkpoints. All these techniques can be deployed together to (1) handle the majority of

the faults proactively, (2) reduce the number of full checkpoints required, (3) reduce the

checkpoint operation overhead, and (4) alleviate the need to requeue the jobs.

Experimental results with the NPB suite for the job pause service show that a

minimal overhead of 5.6% is only incurred in case migration takes place while the regu-

lar checkpoint overhead remains unchanged without a need to reboot the LAM run-time

environment. Experiments indicate that 1-6.5 seconds of prior warning are sufficient to suc-

cessfully trigger live process migration while similar operating system virtualization mecha-

nisms require 13-24 seconds. This self-healing approach complements reactive FT by nearly

cutting the number of checkpoints in half when 70% of the faults are handled proactively.

Experiments also indicate that savings due to replacing full checkpoints with incremental

ones average 16.64 seconds while restore overhead amounts to just 1.17 seconds.

This part of the contributed work resulted in several publications [17, 35, 110,

111, 112].

In the area of FT, techniques for job input data preservation, remote patching and

temporal replication, presented in Chapters 6 - 8, were developed to improve the reliability,

availability and performance of HPC I/O systems.

In Chapters 6 and 7, we investigate offline and online approaches for reconstruct-

ing missing pieces of datasets from data sources where the job input data was originally

staged from. The two approaches complement each other. We have shown that super-

computing centers’ data availability can be drastically enhanced by periodically checking

and reconstructing datasets for queued jobs while the reconstruction overheads are barely

visible to users. The approach provides a seamless way for a running job’s input data to be

reconstructed from its remote source in case of I/O errors. In Chapter 8, we have presented

a novel temporal replication scheme by creating additional data redundancy for transient

job input data to avoid job failures/resubmission.

Both remote patching and temporal replication will be able to help with storage

failures at multiple layers. While remote patching poses no additional space overhead, the

patching costs depend on the data source and the end-to-end network transfer performance.

It can be hidden from applications during a job’s execution. Temporal replication, on the

other hand, trades space (which is relatively cheap at supercomputers) for performance. It

provides high-speed data recovery and reduces the space overhead by only replicating the

132

data when it is needed. Our optimizations presented in Chapter 8 aim at further controlling

and lowering the space consumption of replicas.

Experimental results with I/O-intensive MPI benchmarks indicate that the re-

covery mechanism of the file remote patching imposes little overhead and scales well with

increasing file sizes. This includes three independent steps: checking all the OSTs in paral-

lel, updating file stripe metadata and reconstructing the missing data. Furthermore, online

remote patching can be overlapped with computation and communication as data stripes

are recovered. Our experimental results reinforce this by showing that the increase in job

execution time due to on-the-fly recovery is negligible compared to non-faulting runs. Ex-

perimental results also indicate the impact of data recovery from temporal replication on the

application’s performance is small since applications simply progress with failover objects

from the replicas, while replicas themselves are replenished in the background.

The work for job input data resulted in several publications [53, 113, 114].

Overall, the offline/online recovery and temporal replication approaches for job

input data tolerate a majority of the failures with storage and I/O. They are complemented

by the previously contributed process-level FT techniques to tolerate the remaining storage

or I/O failures as well as failures due to resources such as CPU, memory etc.

10.2 Future Work

The research presented in this dissertation suggests many interesting research di-

rections for future work.

Scheduling and Orchestration: We now have various FT techniques for process-

level job healing and job input data. The next direction is to systematically devise a sched-

uler to orchestrate all the approaches with the following major steps:

1. First, we deploy offline recovery of job input data for queued jobs.

2. During job execution, we deploy health monitoring and fault detection mechanisms,

maintain a temporal replica for the job input data, and collect the information about

the application, e.g., size of the write set and runtime of the timesteps.

3. Meanwhile, we issue full or incremental checkpoints saving the checkpointing files to

multi-level storage systems including memory, local disk, scratch space and remote

133

storage space (i.e., scheduling of diskless checkpoints and multi-level checkpoints).

4. Upon an I/O error, temporal replica or online recovery supports the reconstruction

of job input data.

5. For ”unhealthy” nodes, either live migration, frozen migration or a job pause plus

rollback is issued based on heuristics algorithms.

6. Then, we will apply back migration.

7. During all times, recovery mechanisms for job output data are deployed.

Fault detection mechanisms are beyond the scope of this dissertation. We simu-

lated node failures by notifying the scheduler daemon to immediately initiate the job pause

plus rollback mechanism. Since fault detection cannot be perfect in practice, one could miss

a subset failures that ultimately might lead to job execution termination. This illustrates

the need for a new task within the scheduler, i.e., in this case, to restart the whole job from

the last checkpoint using live nodes and spare nodes.

Scheduling of Diskless Checkpoints and Multi-level Checkpoints: The

checkpointing schemes discussed in Chapters 2 and 5 rely on disks to store checkpoint im-

ages, i.e., they require a high-bandwidth interconnect and either local storage or a highly

efficient parallel file system, such as Lustre. Thus, checkpoints are either written to local

disks of neighboring nodes (to ensure redundancy) or to the parallel file system, which itself

provides redundancy (e.g., through RAID technology). An alternate and faster option is

provided memory-based checkpointing. Such diskless (in-memory) checkpoints are an in-

teresting avenue for future research. Diskless checkpointing is also attractive in the absence

of local disks, such as on BG/L. Furthermore, disk-based and diskless checkpoint mecha-

nisms can be integrated with our full and incremental checkpointing approaches to provide

a distributed multi-level scheduling mechanism to further improve the fault resiliency for

HPC jobs.

Heuristics Algorithms for Migration: In Chapter 3, three main criteria for

trading off live and frozen migration and for precopy termination conditions are discussed:

(1) thresholds, e.g., temperature watermarks; (2) available network bandwidth; and (3) size

of the write set. Based on these conditions, a heuristics algorithm can be designed. In

future work, we could (1) create and assess applications with varying communication rate

134

and memory access pattern to measure the tradeoff between live and frozen migrations and

(2) provide heuristic algorithms to automate this task. Specifically, if the degree of urgency

neither allows live migration nor frozen migration, a job pause plus rollback to the last

checkpoint (or full+incremental checkpoints) with a spare node replacing the unhealthy

one is a next choice. This would be orchestrated by the scheduler as discussed previously.

The algorithm should cover this case and allow additional schemes, selected through a

combination of sensor and history information, to be integrated as plug-ins.

We could also support an empirical factor in the algorithm to keep a profile history

of the page modification rate and its regularity. Such model parameters could steer future

application runs during live migration / precopy in choosing a more sensitive termination

condition. This could be especially beneficial for jobs with long runtime (a large number of

timesteps) or repeated job invocations. The same approach would further aid migration in

an effort to better balance the load between nodes as downtimes would be shortened even

though the migration duration may slightly increase.

Job Output Data: The remote patching and temporal replication techniques

presented in Chapters 6 - 8 are constrained to job input data. However, during the parallel

execution, the application performs periodic I/O and writes result files every few timesteps,

which amounts to many TBs. These files are offloaded to the end-user’s local cluster.

Such job output data needs to be offloaded from center scratch space in timely fashion.

Otherwise, it is exposed to center purge policies, which make room for data of incoming

jobs. Further, a delayed offload wastes precious scratch space and increases the probability

of data losses due to storage failures. In addition, end-users need to visualize the data

within a deadline or use it as input for another job. Thus, areas of research to be explored

include the development of approaches to perform “eager offloading” for job output data.

135

Bibliography

[1] Chung-H. Hsu and Wu-C. Feng. A power-aware run-time system for high-performance

computing. In Supercomputing, 2005.

[2] C. Hsu and W. Feng. A power-aware run-time system for high-performance comput-

ing. In SC, 2005.

[3] Oak Ridge National Laboratory. Resources - national center for computational sci-

ences (nccs). http://info.nccs.gov/resources/jaguar, June 2007.

[4] Ian Philp. Software failures and the road to a petaflop machine. In HPCRI: 1st Work-

shop on High Performance Computing Reliability Issues, in Proceedings of HPCA-11.

IEEE Computer Society, 2005.

[5] J. Gray and A. Szalay. Scientific data federation. In I. Foster and C. Kesselman,

editors, The Grid 2: Blueprint for a New Computing Infrastructure, 2003.

[6] Top 500 list. http://www.top500.org/, June 2002.

[7] Message Passing Interface Forum. MPI: Message-Passing Interface Standard, June

1995.

[8] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Stan-

dard, July 1997.

[9] G. Bosilca, A. Boutellier, and F. Cappello. MPICH-V: Toward a scalable fault tolerant

MPI for volatile nodes. In Supercomputing, November 2002.

136

[10] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Andrew Lumsdaine, Jason Du-

ell, Paul Hargrove, and Eric Roman. The LAM/MPI checkpoint/restart framework:

System-initiated checkpointing. In LACSI, October 2003.

[11] Joshua Hursey, Jeffrey M. Squyres, and Andrew Lumsdaine. A checkpoint and restart

service specification for Open MPI. Technical report, Indiana University, Computer

Science Department, 2006.

[12] www.openmp.org. Official OpenMP Specification, May 2005.

[13] D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays of inexpensive

disks (RAID). In ACM SIGMOD Conference, 1988.

[14] B. Schroeder and G. Gibson. Understanding failure in petascale computers. In SciDAC

Conference, 2007.

[15] J. Duell. The design and implementation of berkeley lab’s linux checkpoint/restart.

Tr, Lawrence Berkeley National Laboratory, 2000.

[16] Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. Request progression

interface (RPI) system services interface (SSI) modules for LAM/MPI. Technical

Report TR579, Indiana University, Computer Science Department, 2003.

[17] J. Varma, C. Wang, F. Mueller, C. Engelmann, and S. L. Scott. Scalable, fault-

tolerant membership for MPI tasks on hpc systems. In International Conference on

Supercomputing, pages 219–228, June 2006.

[18] F. Wong, R. Martin, R. Arpaci-Dusseau, and D. Culler. Architectural requirements

and scalability of the NAS parallel benchmarks. In Supercomputing, 1999.

[19] Jiannong Cao, Yinghao Li, and Minyi Guo. Process migration for MPI applications

based on coordinated checkpoint. In ICPADS, pages 306–312, 2005.

[20] Andrew Wissink, Richard Hornung, Scott Kohn, and Steve Smith. Large scale par-

allel structured amr calculations using the samrai framework. In Supercomputing,

November 2001.

137

[21] John W. Young. A first order approximation to the optimum checkpoint interval.

Commun. ACM, 17(9):530–531, 1974.

[22] Anand Tikotekar, Geoffroy Vallée, Thomas Naughton, Stephen L. Scott, and Chokchai

Leangsuksun. Evaluation of fault-tolerant policies using simulation. In IEEE Cluster,

September 17-20, 2007.

[23] Hertong Song, Chokchai Leangsuksun, and Raja Nassar. Availability modeling and

analysis on high performance cluster computing systems. In ARES, pages 305–313,

2006.

[24] Sunil Rani, Chokchai Leangsuksun, Anand Tikotekar, Vishal Rampure, and Stephen

Scott. Toward efficient failre detection and recovery in HPC. In High Availability and

Performance Computing Workshop, 2006.

[25] Advanced configuration & power interface. http://www.acpi.info.

[26] R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, S. Ma, R. Vilalta, and A. Sivasub-

ramaniam. Critical event prediction for proactive management in large-scale computer

clusters. In KDD ’03, 2003.

[27] S. Chakravorty, C. Mendes, and L. Kale. Proactive fault tolerance in large systems.

In HPCRI: 1st Workshop on High Performance Computing Reliability Issues, in Pro-

ceedings of HPCA-11, 2005.

[28] S. Chakravorty, C.Mendes, and L. Kale. Proactive fault tolerance in MPI applications

via task migration. In HiPC, 2006.

[29] S. Chakravorty, C. Mendes, and L.Kale. A fault tolerance protocol with fast fault

recovery. In IPDPS, 2007.

[30] A. Oliner, R. Sahoo, J. Moreira, M. Gupta, and A. Sivasubramaniam. Fault-aware

job scheduling for BlueGene/L systems. In IPDPS, 2004.

[31] Joshua Hursey, Jeffrey M. Squyres, Timothy I. Mattox, and Andrew Lumsdaine. The

design and implementation of checkpoint/restart process fault tolerance for Open

MPI. In DPDNS, March 2007.

138

[32] Roberto Gioiosa, Jose Carlos Sancho, Song Jiang, and Fabrizio Petrini. Transparent,

incremental checkpointing at kernel level: a foundation for fault tolerance for parallel

computers. In Supercomputing, 2005.

[33] Readable dirty-bits for IA64 linux. https://www.gelato.unsw.

edu.au/archives/gelato-technical/2005-November/001080.html.

[34] A. B. Nagarajan and F. Mueller. Proactive fault tolerance for HPC with Xen virtu-

alization. In ICS, June 2007.

[35] C. Wang, F. Mueller, C. Engelmann, and S. Scott. A job pause service under

LAM/MPI+BLCR for transparent fault tolerance. In IPDPS, April 2007.

[36] Ganglia. http://ganglia.sourceforge.net/.

[37] htop. http://htop.sourceforge.net/.

[38] Performance application programming interface. http://icl.cs.utk.edu/papi/.

[39] mpip: Lightweight, scalable mpi profiling. http://mpip.sourceforge.net/.

[40] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-

structured file system. In ACM Trans. on Computer Systems, Vol. 10, No. 1, February

1992.

[41] Nichamon Naksinehaboon, Yudan Liu, Chokchai (Box) Leangsuksun, Raja Nassar,

Mihaela Paun, and Stephen L. Scott. Reliability-aware approach: An incremental

checkpoint/restart model in hpc environments. In CCGRID ’08: Proceedings of the

2008 Eighth IEEE International Symposium on Cluster Computing and the Grid (CC-

GRID), pages 783–788, Washington, DC, USA, 2008. IEEE Computer Society.

[42] M. Gleicher. HSI: Hierarchical storage interface for HPSS. http://www.hpss-

collaboration.org/hpss/HSI/.

[43] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A data movement

and access service for wide area computing systems. In Proceedings of the Sixth

Workshop on I/O in Parallel and Distributed Systems, 1999.

139

[44] R.A. Coyne and R.W. Watson. The parallel i/o architecture of the high-performance

storage system (hpss). In Proceedings of the IEEE MSS Symposium, 1995.

[45] Cluster File Systems, Inc. Lustre: A scalable, high-performance file system.

http://www.lustre.org/docs/whitepaper.pdf, 2002.

[46] M. Mesnier, G. Ganger, and E. Riedel. Object-based storage. IEEE Communications

Magazine, 41(8):84–90, 2003.

[47] Ncsa gridftp client. http://dims.ncsa.uiuc.edu/set/uberftp/index.html, 2006.

[48] D. Libes. The expect home page. http://expect.nist.gov/, 2006.

[49] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. Gass: A data move-

ment and access service for wide area computing systems. In Proceedings of the 6th

Workshop on Input/Output in Parallel and Distributed Systems, 1999.

[50] P. Carns, W. Ligon III, R. Ross, and R. Thakur. PVFS: A Parallel File System For

Linux Clusters. In Proceedings of the 4th Annual Linux Showcase and Conference,

2000.

[51] X. Ma, S. Vazhkudai, V. Freeh, T. Simon, T. Yang, and S. L. Scott. Coupling prefix

caching and collective downloads for remote data access. In Proceedings of the ACM

International Conference on Supercomputing, 2006.

[52] Lakshmi Bairavasundaram, Garth Goodson, Shankar Pasupathy, and Jiri Schindler.

An analysis of latent sector errors in disk drives. In SIGMETRICS, pages 289 – 300,

June 2007.

[53] Z. Zhang, C. Wang, S. Vazhkudai, X. Ma, G. Pike, J. Cobb, and F. Mueller. Optimiz-

ing center performance through coordinated data staging, scheduling and recovery. In

Supercomputing, November 2007.

[54] Alexander Thomasian, Gang Fu, and Chunqi Han. Performance of two-disk failure-

tolerant disk arrays. IEEE Transactions on Computers, 56(6):799–814, 2007.

[55] Stephen C. Simms, Gregory G. Pike, and Doug Balog. Wide area filesystem perfor-

mance using lustre on the teragrid. In TeraGrid, 2007.

140

[56] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky. Are disks

the dominant contributor for storage failures?: A comprehensive study of storage

subsystem failure characteristics. Trans. Storage, 4(3):1–25, 2008.

[57] H. Monti, A.R. Butt, and S. S. Vazhkudai. Timely Offloading of Result-Data in HPC

Centers. In Proceedings of 22nd Int’l Conference on Supercomputing ICS′08, June

2008.

[58] Aaron E. Darling, Lucas Carey, and Wu chun Feng. The design, implementation, and

evaluation of mpiblast. In ClusterWorld Conference & Expo and the 4th International

Conference on Linux Cluster: The HPC Revolution ’03, June 2003.

[59] G. Stellner. CoCheck: checkpointing and process migration for MPI. In Proceedings

of IPPS ’96, 1996.

[60] Bouteiller Bouteiller, Franck Cappello, Thomas Herault, Krawezik Krawezik, Pierre

Lemarinier, and Magniette Magniette. MPICH-V2: a fault tolerant MPI for volatile

nodes based on pessimistic sender based message logging. In Supercomputing, 2003.

[61] B. Barrett, J. M. Squyres, A. Lumsdaine, R. L. Graham, and G. Bosilca. Analysis of

the component architecture overhead in Open MPI. In European PVM/MPI Users’

Group Meeting, Sorrento, Italy, September 2005.

[62] A. Tikotekar, C. Leangsuksun, and S. L. Scott. On the survivability of standard

MPI applications. In LCI International Conference on Linux Clusters: The HPC

Revolution, May 2006.

[63] Junyoung Heo, Sangho Yi, Yookun Cho, Jiman Hong, and Sung Y. Shin. Space-

efficient page-level incremental checkpointing. In SAC ’05: Proceedings of the 2005

ACM symposium on Applied computing, pages 1558–1562, New York, NY, USA, 2005.

ACM.

[64] Shang-Te Hsu and Ruei-Chuan Chang. Continuous checkpointing: joining the check-

pointing with virtual memory paging. Softw. Pract. Exper., 27(9):1103–1120, 1997.

[65] Sangho Yi, Junyoung Heo, Yookun Cho, and Jiman Hong. Adaptive page-level incre-

mental checkpointing based on expected recovery time. In SAC ’06: Proceedings of

141

the 2006 ACM symposium on Applied computing, pages 1472–1476, New York, NY,

USA, 2006. ACM.

[66] Saurabh Agarwal, Rahul Garg, Meeta S. Gupta, and Jose E. Moreira. Adaptive

incremental checkpointing for massively parallel systems. In ICS ’04: Proceedings

of the 18th annual international conference on Supercomputing, pages 277–286, New

York, NY, USA, 2004. ACM.

[67] J. T. Daly. A model for predicting the optimum checkpoint interval for restart dumps.

In International Conference on Computational Science, pages 3–12, 2003.

[68] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart

dumps. Future Gener. Comput. Syst., 22(3):303–312, 2006.

[69] Yudan Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and Stephen

Scott. A reliability-aware approach for an optimal checkpoint/restart model in hpc

environments. Cluster Computing, 2007 IEEE International Conference on, pages

452–457, Sept. 2007.

[70] Elmootazbellah N. Elnozahy and Willy Zwaenepoel. Manetho: Transparent roll back-

recovery with low overhead, limited rollback, and fast output commit. IEEE Trans.

Comput., 41(5):526–531, 1992.

[71] Xiaohui Gu, Spiros Papadimitriou, Philip S. Yu, and Shu-Ping Chang. Toward predic-

tive failure management for distributed stream processing systems. In IEEE ICDCS,

2008.

[72] Prashasta Gujrati, Yawei Li, Zhiling Lan, Rajeev Thakur, and John White. A meta-

learning failure predictor for BlueGene/L systems. In ICPP, September 2007.

[73] Dejan S. Milojicic, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian

Zhou. Process migration. ACM Computing Surveys (CSUR), 32(3):241–299, 2000.

[74] Michael L. Powell and Barton P. Miller. Process migration in DEMOS/MP. In

Symposium on Operating Systems Principles, October 1983.

[75] Marvin Theimer, Keith A. Lantz, and David R. Cheriton. Preemptable remote exe-

cution facilities for the V-System. In SOSP, pages 2–12, 1985.

142

[76] Eric Jul, Henry M. Levy, Norman C. Hutchinson, and Andrew P. Black. Fine-grained

mobility in the emerald system. ACM Trans. Comput. Syst., 6(1):109–133, 1988.

[77] Amnon Barak and Richard Wheeler. MOSIX: An integrated multiprocessor UNIX. In

Proceedings of the Winter 1989 USENIX Conference, pages 101–112, Berkeley, CA,

USA, 1989. USENIX.

[78] Fred Douglis and John K. Ousterhout. Transparent process migration: Design alter-

natives and the sprite implementation. Softw., Pract. Exper., 21(8):757–785, 1991.

[79] Cong Du and Xian-He Sun. MPI-Mitten: Enabling migration technology in MPI. In

IEEE CCGrid, 2006.

[80] Cong Du, Xian-He Sun, and Kasidit Chanchio. HPCM: A pre-compiler aided middle-

ware for the mobility of legacy code. In IEEE Cluster, 2003.

[81] Geoffroy Vallée, Kulathep Charoenpornwattana, Christian Engelmann, Anand

Tikotekar, Chokchai (Box) Leangsuksun, Thomas Naughton, and Stephen L. Scott.

A framework for proactive fault tolerance. In ARES, pages 659–664, 2007.

[82] M. T. Huda, H. W. Schmidt, and I. D. Peake. An agent oriented proactive fault-

tolerant framework for grid computing. In International Conference on e-Science and

Grid Computing, 2005.

[83] Yawei Li, Prashasta Gujrati, Zhiling Lan, and Xian-He Sun. Fault-driven re-

scheduling for improving system-level fault resilience. In ICPP, 2007.

[84] Xian-He Sun, Zhiling Lan, Yawei Li, Hui Jin, and Ziming Zheng. Towards a fault-

aware computing environment. In HAPCW, March 2008.

[85] Cong Du, Xian-He Sun, and Ming Wu. Dynamic scheduling with process migration.

In IEEE CCGrid, May 2007.

[86] Samuel H. Russ, Rashid Jean-Baptiste, Tangirala S. Kumar, and Marion Harmon.

Transparent real-time monitoring in mpi. In Springer, 1999.

[87] German Florez, Zhen Liu, Susan M. Bridges, Anthony Skjellum, and Rayford B.

Vaughn. Lightweight monitoring of mpi programs in real time. In Concurr. Comput.:

Pract. Exper., 2005.

143

[88] C. Clark, K. Fraser, S. Hand, J.G. Hansem, E. Jul, C. Limpach, I. Pratt, and

A. Warfield. Live migration of virtual machines. In NSDI, May 2005.

[89] A. Menon, A. Cox, and W. Zwaenepoel. Optimizing network virtualization in Xen.

In USENIX Conference, June 2006.

[90] J. Liu, W. Huang, B. Abali, and D. Panda. High performance vmm-bypass I/O in

virtual machines. In USENIX Conference, June 2006.

[91] H. Gunawi, V. Prabhakaran, S. Krishnan, A. Arpaci-Dusseau, and R. Arpaci-Dusseau.

Improving file system reliability with i/o shepherding. In Symposium on Operating

Systems Principles, October 2007.

[92] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gu-

nawi abd Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Iron file systems.

In Symposium on Operating Systems Principles, pages 206 – 220, October 2005.

[93] Q. Xin, E. Miller, and T. Schwarz. Evaluation of distributed recovery in large-scale

storage systems. In Proceedings of the 13th IEEE International Symposium on High

Performance Distributed Computing (HPDC 2004), pages 172–181, June 2004.

[94] Panasas Invents ‘Tiered Parity’. feature, HPCwire, 2007.

[95] Panasas tiered parity architecture. white paper, Panasas, 2008.

[96] Lei Tian, Dan Feng, Hong Jiang, Ke Zhou, Lingfang Zeng, Jianxi Chen, Zhikun

Wang, and Zhenlei Song. Pro: a popularity-based multi-threaded reconstruction

optimization for raid-structured storage systems. In USENIX Conference on File and

Storage Technologies, pages 32–32, Berkeley, CA, USA, 2007. USENIX Association.

[97] C. Blake and R. Rodrigues. High Availability, Scalable Storage, Dynamic Peer Net-

works: Pick Two. In Proceedings the 9th Workshop on Hot Topics in Operating

Systems (HotOS), 2003.

[98] E. Cohen and S. Shenker. Replication strategies in unstructured peer-to-peer net-

works. In Proceedings of the ACM SIGCOMM Conference, 2002.

144

[99] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A

scalable peer-to-peer lookup service for internet applications. In Proceedings of the

ACM SIGCOMM Conference, 2001.

[100] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn. Ceph: A scalable, high-

performance distributed file system. In Operating Systems Design and Implementa-

tion, November 2006.

[101] A. Butt, T. Johnson, Y. Zheng, and Y. Hu. Kosha: A peer-to-peer enhancement for

the network file system. In Proceedings of Supercomputing, 2004.

[102] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. In Symposium on

Operating Systems Principles, 2003.

[103] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba Shrira, and

Michael Williams. Replication in the Harp file system. In Proceedings of 13th ACM

Symposium on Operating Systems Principles, pages 226–38. Association for Comput-

ing Machinery SIGOPS, 1991.

[104] J. Bent, D. Thain, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and M. Livny. Explicit con-

trol in a batch aware distributed file system. In Proceedings of the First USENIX/ACM

Conference on Networked Systems Design and Implementation, March 2004.

[105] F. Schmuck and R. Haskin. GPFS: a shared-disk file system for large computing

clusters. In Proceedings of the First Conference on File and Storage Technologies,

2002.

[106] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to

reliable distribution of bulk data. In Proceedings of the ACM SIGCOMM Conference,

1998.

[107] J. Plank, A. Buchsbaum, R. Collins, and M. Thomason. Small parity-check erasure

codes - exploration and observations. In Proceedings of the International Conference

on Dependable Systems and Networks, 2005.

[108] Jay J. Wylie and Ram Swaminathan. Determining fault tolerance of xor-based erasure

codes efficiently. In DSN ’07: Proceedings of the 37th Annual IEEE/IFIP Interna-

145

tional Conference on Dependable Systems and Networks, pages 206–215, Washington,

DC, USA, 2007. IEEE Computer Society.

[109] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication: A quantita-

tive comparison. In Proceedings of the 1st International Workshop on Peer-to-Peer

Systems, 2002.

[110] C. Wang, F. Mueller, C. Engelmann, and S. Scott. Proactive process-level live migra-

tion in hpc environments. In Supercomputing, 2008.

[111] C. Wang, F. Mueller, C. Engelmann, and S. Scott. Hybrid Full/Incremental Check-

point/Restart for mpi jobs in hpc environments. In TR 2009-14, Dept. of Computer

Science, North Carolina State University, 2009.

[112] C. Wang, F. Mueller, C. Engelmann, and S. Scott. Proactive process-level live mi-

gration and back migration in hpc environments. In TR 2009-15, Dept. of Computer

Science, North Carolina State University, 2009.

[113] C. Wang, Z. Zhang, S. Vazhkudai, X. Ma, and F. Mueller. On-the-fly recovery of job

input data in supercomputers. In ICPP, 2008.

[114] C. Wang, Z. Zhang, X. Ma, S. Vazhkudai, and F. Mueller. Improving the availability

of supercomputer job input data using temporal replication. In ISC, 2009.

