
ABSTRACT

WILSON, ELLIS JOHN. Software Techniques for Improving the Accessibility and Performance
of NISQ Era Quantum Computing. (Under the direction of Frank Mueller).

Quantum programming is full of challenges on today’s quantum hardware. Not only does

one have to contend with small, error prone chips, but every type of quantum computer

requires different skills to be learned before programming them.

In this work, we provide three improvements that can be performed on an individual

problem basis using only open source software.

First, we demonstrate how measuring qubit noise immediately prior to running a small

circuit can greatly reduce noise when compared to trusting the hardware provided noise values.

This benefit comes from the process of transpilation, or the selection of which qubits to use

to run the circuit. Selecting qubits which perform better can have a dramatic impact on the

results of the circuit.

Second, we show the creation of "approximate circuits" —circuits which contain fewer

gates than a circuit designed to give a precise result. Using approximate circuits in a noisy envi-

ronment, the amount of noise is reduced which can potentially compensate for the precision

loss of the approximation. We analyze some of the factors that, if present, can lead to a benefit

from approximate circuits.

Finally, we showcase the NchooseK software package, which helps overcome the barrier

to learning to program on a quantum computer. In the case of constraint based problems,

especially constraint based optimization problems, NchooseK allows easy programming on

multiple types of quantum computers. We provide evidence for decreased complexity in pro-

gramming several NP-Hard problems, and we demonstrate the performance of NchooseK on

the DWave Quantum Annealers and the IBM gate based machines and compare the results.

This work shows that even without direct access to quantum hardware, work can and is being

done to make programming quantum computers both more accurate and more accessible.
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CHAPTER

1

INTRODUCTION

1.1 Motivations

Quantum Computing is currently in its infancy. Scientists have been studying it mathematically

and have developed theories and algorithms for decades — Richard Feynman proposed the

development of quantum computers around forty years ago [Preskill, 2023] — but physical

machines have only been around for a fraction of that time.

Because quantum computing is still a developing area, there are a number of issues pre-

venting it from seeing widespread use. Ignoring matters such as cost to run and physical size,

the largest issues are as follows:

1. Current machines produce inaccurate results. The "qubits", which store and modify the

information in a quantum computer in a way similar to bits in a classical computer, are

subject to many different forms of noise. This noise either causes the stored information

to transition to a state that differs from what it should be in theory, or cause classical

computing devices that extract information from the qubits to misinterpret their states.

2. Current machines are small in terms of the amount of information they can process at a

time. A quantum chip with 5,000 qubits, such as the DWave Advantage systems [Boothby

et al., 2021], are considered large. While they are not directly comparable, one would
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be hard pressed to find a classical DRAM memory chip with fewer than 10 billion bits

(approximately one GB).

3. Current methods of programming quantum computers are entirely unintelligible to

people who are only familiar with programming classical computers. This is true to a

much greater extent than switching from one programming language to another; the

thought process is different, leading to a high barrier to entry.

Not much can be done to address point (2) in software (it is an inherent physical prop-

erty of the machines). Yet, the other two issues can be at least mitigated through developing

software techniques. This helps to bring us closer to the theorized advantages of quantum

computing [Arute et al., 2019, Pednault et al., 2019, Boixo et al., 2018].

1.2 Background

In a way similar to how classical computing acts on bits, changing their states between 0 and 1

according to various instructions, quantum computing acts on qubits.

There are many different ways to think of a quantum program, but one of the most popular

ones is as a "quantum circuit", as seen in Figure 1.1. To understand quantum circuits, a few

other terms must also be understood.

Figure 1.1: An example of a quantum circuit. Horizontal lines represent individual qubits,
with symbols on those lines representing operations being performed on said qubits.
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1.2.1 Terminology

Quantum State: Information is stored on qubits, which can occupy the state |0〉 (often thought

of in the same way as 0 on a classical computer), |1〉, or anywhere in between. More generally,

the single qubit state |ψ〉 follows the equation

|ψ〉=α|0〉+β |1〉, (1.1)

where α and β are any complex numbers such that αᾱ+ββ̄ =1

Superposition: When α and β are anything other than one or zero, the qubit is considered

to be in a state of superposition. When such a qubit is measured, there is some probability it

will be measured in the |0〉 state and some other probability it will be measured in the |1〉 state.

On a perfect system, |0〉 would be measured with probability αᾱ. Unfortunately, error is

introduced when attempting to read the state of a qubit.

Because we can only measure these two states rather than directly measuring α and β , each

circuit is often run multiple times to give an approximate α and β — and to mitigate the effects

of readout error.

Quantum Gate: Quantum states are changed by way of operations referred to as quantum

gates. A gate can change state |ψ〉 to any other single qubit state, but gates can also act on

multiple qubits at the same time.

In practice, each time a gate is applied on a quantum device, some amount of error is

introduced to the system. The exact amount of error depends on the system, the individual

qubit, and on the gate.

Entanglement: Two qubits are considered to be entangled if the state of one qubit affects

the state of another qubit.

One of the simplest states of entanglement to understand is called the Bell State. If two

qubits are in the Bell state there is an equal chance of measuring both of them in the |0〉
state or both of them in the |1〉 state. A mixture of states cannot be measured in an error free

environment.

Circuit Depth: The number of gates that must be operated sequentially on the critical path

through a circuit is referred to as the circuit depth. Because each gate adds some amount of

error and because the longer a qubit is active the more likely it is to develop errors on its own,

circuit depth is one of the metrics for comparing circuit quality.

This depth is typically measured by the native gates of the system being used. Gates using

more than two qubits, such as the three-qubit Toffoli gate [Toffoli, 1980], are compiled down to

one and two qubit gates. Typically, even single qubit gates will also be compiled to a small set

of native gates, which can be physically realized for a given particular system.

3



A shortcut is occasionally used to estimate circuit depth in a noisy environment by only

considering the number of two-qubit gates rather than every gate, as the error introduced by

two-qubit gates is approximately an order of magnitude larger than that of single qubit gates.

1.3 Contributions

In this work, we attempt to improve quantum computing accuracy and accessibility by way of

altering the software available to the end user.

Hypothesis: We hypothesize that contemporary quantum computing devices require ad-

vances in noise reduction on both systemic and implementation levels combined with higher

level program abstractions to provide computational utility that complements classical com-

puting.

The contributions of this work are divided into three parts presented as chapters. Each

addresses a part of this need of utility.

Chapter 2 seeks to demonstrate how the amount of noise can be reduced by determining

and selecting the best performing qubits for the task at hand. In this chapter, we measure

performance of several different benchmark algorithms at different times after the performance

of individual qubits is measured. We show that assessing the quality qubits closer to when

circuits are run allows us to select “better” qubits (in terms of lower noise) and thus obtain

more accurate results.

In Chapter 3, we demonstrate the concept of approximate circuits for purposes of depth-

reduction. We evaluate these approximate circuits under different circumstances and on differ-

ent systems, and show that in the presence of noise and under certain conditions approximate

circuits outperform longer, more precise circuits.

In Chapter, 4 we present the software package NchooseK, which allows easier programming

of constraint based problems on quantum computers. We explain how NchooseK works, how

it can be programmed, and then evaluate its performance on different types of quantum

computer.
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CHAPTER

2

JUST-IN-TIME QUANTUM CIRCUIT

TRANSPILATION REDUCES NOISE

2.1 Introduction

Today’s quantum computing devices and those of the foreseeable future are referred to as

Noisy Intermediate Scale Quantum (NISQ) computers due to the noise inherent in the systems

and the small number of quantum bits (qubits) available for calculations [Murali et al., 2019a].

Even when calculations can be performed with a small number of qubits, the noise in the

quantum systems frequently produces incorrect results, which presents a challenge in using

quantum computation. Consequently, techniques to identify, mitigate, and tolerate noise and

even errors in calculations are of considerable importance for quantum computation amid

this noisy reality.

Different types of errors can be distinguished. The most commonly reported errors are:

• Readout errors: These are errors in interpreting the state of the qubit at the end of the

calculation, e.g., reading a qubit in the |0〉 state as being in the |1〉 state.

• Single qubit gate errors: These occur when applying gates to a single qubit causes small

changes in the qubit state, which can accumulate over deep circuits with long sequences
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of gates.

• Two-qubit gate errors: These result from interaction between two qubits under a two-

qubit gate operation (e.g., both qubits of a CNOT gate);

• Decoherence errors: These are due to the decay of state over time in today’s quantum

devices, and they are referred to as T1, T2, and T2* — but are not addressed in this work.

• Cross-talk errors: These result when the state of a qubit or a resonator between qubits

influences the state of another qubit or resonator in close vicinity — but are again beyond

the scope of this work.

Each of these errors can vary from one qubit to another and also from one connection

(coupling) to another; some qubits/connections experience less noise and fewer errors than

others. To make matters more complicated, the qubits themselves change over time in an

unpredictable fashion (due to the quantum nature of the qubit system), leading to a need to

re-calibrate the qubits and recalculate these errors, e.g., once per day on IBM Q systems.

One way to reduce errors in quantum computations, especially on systems with more phys-

ical qubits than necessary for the circuit in question, is to try to map the circuit onto the most

appropriate qubits during a process called “transpilation”. Transpilation traditionally considers

the mapping of logical qubits in a program onto a physical NISQ device with limited qubit

connectivity and native gate operations. This may require a high-level gate (e.g., X/Y/Z rotation)

to be translated into one or more low-level gates (e.g., U1/U2/U3 for IBM) with specific phase

angles. Transpilation may result in logical qubits being moved (via swap operations) from one

physical qubit to another throughout a circuit during its execution. More contemporary tran-

spilation considers virtual-to-physical mappings to the highest fidelity qubits and connection

between qubits to reduce the overall error [Tannu and Qureshi, 2019c, Murali et al., 2019a].

These optimizations are clearly non-trivial, as many mappings exist in this multi-dimensional

non-linear optimization space. For example, the highest fidelity qubits for one circuit may

not provide the connections for two-qubit gates of another circuit. It is therefore important

to have accurate fidelity data of the physical machine for which a circuit is being transpiled.

Different transpilers exist, each of which accept different types of statistical error values per

qubit and per coupling between qubits before attempting to provide a high quality mapping.

For IBM’s quantum computers, these error metrics are derived from calibration runs of circuits

that measure qubits and compare values with reference results. Such calibration occurs usually

once per day, and error metrics are published on IBM’s websites and can also be obtained from

the Qiskit API [Aleksandrowicz et al., 2019] for the latest calibration run.
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We have performed a series of experiments that, after an initial stable phase, uncovered a

quick deterioration in fidelity of qubit gates, measurements and couplings not too long after

calibration. These experiments included micro-benchmarks to (a) prepare an n qubit circuit

with initial state |0〉n followed by simply measuring each qubit and (b) subjecting each qubit to

a series of X (NOT) gates before measurement. When repeated hourly, no clear trend became

visible. Neither could we detect when the original calibration took place, nor did we observe

a gradual de-calibration. When employing longer and more complex circuits and directly

comparing different error values, we found that while some qubits remained stable, other

qubits showed significant variations in fidelity throughout the day.

These findings motivated us to experiment with obtaining calibration data ourselves, use

them in just-in-time transpilation, and then observe errors for this transpiled circuit compared

to one transpiled with IBM’s calibration data. Clearly, if virtual-to-physical mappings differ be-

tween just-in-time transpilation vs. default transpilation, the fidelity of results can be expected

to differ as well.

We chose to focus the investigation on readout errors and two-qubit gate errors in particular,

the most significant errors in magnitude. This is also motivated by readout errors affecting

every circuit and two-qubit gate errors consistently being about an order of magnitude higher

than single qubit gate errors, i.e., the qubit placement of two-qubit gates during transpilation

is of high importance for overall fidelity.

Readout errors were determined by immediately measuring a newly prepared qubit and

subsequently applying a single X (NOT) gate before measuring the same qubit again. We

compared the results to the expected values (of all |0〉 or all |1〉, respectively) to obtain the

percent error. Two-qubit gate errors were determined by utilizing IBM’s built-in randomized

benchmarking capability to obtain an error value. We then subjected transpilation to our error

values instead of the default IBM ones (from daily calibration). This resulted in different qubit

mappings leading to an improvement of 3-304% on average, and up to 400%.

2.2 Design

The design of our just-in-time transpilation was driven by an initial experiment followed by a

methodology to address shortcomings of the current system. While observations are specific to

IBM Q devices, the methodological approach is more generic and may transfer to other NISQ

devices.
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2.2.1 Motivating Experiments

Our first objective was to determine whether or not the fidelity of qubits varied significantly

throughout the day. If the fidelity of qubits did not vary significantly between two calibration

instances, any effort to repeatedly assess the error rates would likely not contribute to fidelity

improvements. To test our hypothesis of variations, we conducted experiments with a number

of circuits assessing reported errors throughout the day.

The main focus centered on the qualitative aspect of qubit change, i.e., do qubits provide

different results in fidelity over time between calibrations, rather than absolute errors. To

this end, experiments were limited to simple circuits to assess readout errors or errors due to

successive Pauli gates, which were repeated every hour.

The first experiment focused on readout errors without any gates, where a qubit was initial-

ized (|0〉 state) and then immediately measured. The second experiment assessed readouts

for a qubit after a Pauli X (NOT) gate., i.e., the |1〉 state. Fig. 2.1 depicts hourly measurements

(x-axis) over the percentage of correct results (y-axis) on different days (colored data series) in

2019 on the IBM Poughkeepsie device (20 qubits). The results show that qubits do not remain

stable between calibrations. This behavior was observed across qubits and different IBM Q

devices.

While readout results of these circuits usually did not change drastically from hour to

hour, they did change in an unpredictable manner, sometimes resulting in better accuracy,

sometimes in worse. This made it impossible to infer or reverse engineer when the calibration

actually took place, i.e, we did not observe a drastic change in quality for qubits when measured.

We also tested circuits with many gates in a less rigorous manner and observed similar results.

Based on prior work, we know that circuits with virtual qubits were mapped onto physical ones

via transpilation. Using IBM’s optimization level 3 (the highest level at the time of this writing)

lets one take IBM’s error data from the last calibration into account [Murali et al., 2019a, Tannu

and Qureshi, 2019c]. This led us to the new hypothesis that, when selecting physical qubits to

which circuits are to be mapped, a new set of error measurements for just-in-time transpilation

might improve the overall fidelity.

2.2.2 Error Selection

A number of different types of errors are taken into account when mapping circuits to qubits,

where some of these errors are more prevalent than others as indicated by the respective error

metrics. For example, T1 and T2 errors are significant in long circuits but not in short ones.

Gate errors will be present in all circuits, but more so in long circuits using many gates. Readout

errors need to be taken into account in all circuits. If some errors are more significant than
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Figure 2.1: Measurements with no gates on qubit 0 of IBM Poughkeepsie over time. The fidelity
of readouts for the qubit varies in a chaotic (non-predictable) manner. Results for other qubits
and |1〉 circuits are similar, figures omitted due to space.

others, those errors dominate the mapping decisions, while other, less significant ones will

only marginally contribute.

We decided to focus on two types of errors, those from readouts and those from two-qubit

gates. Readout errors affect any circuit, and their probability is relatively high on today’s NISQ

computers. Readout errors are reported to be in the order of 10−2 for IBM Q devices. We even

observed that sometimes they can be as high as 10%.

We also focus on two-qubit gate errors for the same reason: They have an equally high

error rate (both reported by IBM and observed by us). In contrast, single-qubit gate errors

are reported to be lower (10−3 for IBM Q devices), and they were also an order of magnitude

smaller than readout or two-qubit errors in our experiments.

2.2.3 Methodological Error Collection

The challenge at hand is to reliably collect error characteristics of a physical quantum device

that can subsequently be used to map circuits to physical qubits such that overall fidelity can be

increased. Readout errors are the easiest to be measured, simply by constructing a circuit that

minimizes any of the other types of errors while producing a known measurement value. To
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minimize gate and time-based errors, the qubits are measured as quickly as possible and with

the fewest number of gates. We observe that reading |0〉 and |1〉 states each have different error

rates [Tannu and Qureshi, 2019a, Tannu and Qureshi, 2019b]. Hence, we utilize two circuits

per qubit to characterize readout errors. The first circuit prepares a qubit in the |0〉 state (as

quickly as possible) and measures it, while the second one prepares the qubit in the |1〉 state

via a single X (NOT) gate before measuring.

Gate errors present more of a challenge to be assessed. Recall that we focus on two-qubit

gates here due to their higher error rates compared to single qubit gates. Two-qubit gate errors

are determined for each pair of connected qubits that can be captured through randomized

benchmarking, which uses randomized sequences of gates of increasing length resulting in a

known |0〉 state on qubits. By comparing actual measurements to this known value, error rates

are determined. This is described in more detail in [Magesan et al., 2011].

These error characteristics are subsequently used for just-in-time transpilation of circuits

for mapping to physical qubits with high fidelity for couplings/connections within the circuit

and high measurement quality of selected qubits.

2.3 Implementation

We decided to implement our high-level design of just-in-time transpilation for IBM Q devices

using Qiskit. This involves data collection on errors on an IBM Q device, subsequent transpi-

lation of benchmarks via Qiskit at an optimization level that takes errors into account when

mapping to physical qubits, and running these benchmarks on the same IBM Q device.

In order to test whether just-in-time error measurement improves performance over using

the daily calibrations, we need to to reliably collect data on errors and, for a fair comparison,

in a similar manner to how IBM collects data and reports errors during their daily calibrations.

Due to the nature of IBM’s qubits (and other technologies as well), the error for reading a

qubit in the |0〉 ground state state is much lower than reading a qubit in the |1〉 excited state,

which is less stable [Tannu and Qureshi, 2019a, Tannu and Qureshi, 2019b]. IBM determines

readout error rates for each state as well as the average of both, which it reports as the readout

error. These errors are relatively easily obtained. As described in our motivating experiments,

to assess errors for readouts of the |0〉 state one merely needs to measure immediately after

preparing a qubit. Similarly, the |1〉 state is read out after a qubit is prepared and subjected to a

single X (NOT) gate. The observed level of error between the single qubit gate and the readout

error, especially when in the |1〉 state, shows that the contribution of the X gate to the error is

negligible (about an order of magnitude lower than the readout error). The readout error is this

calculated as the percent of incorrect results returned from the respective circuits.
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The two-qubit error requires more complex circuits. We employ Qiskit’s randomized bench-

marking capabilities, which can automate the process of data collection. These randomized

benchmarks consist of circuits with two qubits that are generated such that their output is an

“Error per Clifford” value, which is proportional to the two-qubit error itself.

Obtaining these error metrics for each qubit is a computationally intensive task. Due to

limited compute cycles, we decided to combine many of the individual qubit measurements

into a single multi-qubit measurement. While this ignores the impact of qubit crosstalk, it still

remains useful as any circuit, including our benchmarks, also utilizes multiple qubits, often

in close physical vicinity to reduce the number of swaps in transpiled programs. We split the

two-qubit gate errors up such that only one coupler of a given qubit was assessed in terms of

error at a time. On the IBM Q devices used here, the maximum degree of a qubit is three, i.e.,

we ran a total of three jobs to capture all two-qubit errors. Once each of these errors had been

measured, we assessed the virtual-to-physical mappings. This allowed us to report errors for

each physical qubit.

As we are focusing on IBM Q devices, we decided to leverage Qiskit’s built in transpiler

using the highest optimization level available (level 3) in order to trigger an optimization for

virtual-to-physical mappings [Murali et al., 2019a].

2.4 Experimental Setup

We conducted experiments on various IBM Q devices throughout different days and different

times as well as repeatedly during a particular day. In every experiment, we first manually

measured the CNOT and readout errors and then, based on this error information, transpiled

our circuits before sending them to the devices to execute them. We kept track of the circuit

layouts post-transpilation and their performance with respect to accuracy. Next, we describe

the individual aspects of this setup.

2.4.1 Device Information

We performed our experiments primarily on two IBM Q devices, Almaden (20 qubits) and

Paris (27 qubits). The rationale was to select backends with a sufficient number of possible

virtual-to-physical qubit mappings so that the transpilation procedure could adapt mappings

to error data. Both devices allow a total of 900 circuits to be sent in one job. Availability of

these devices presents another challenge, as they tend to be busy with many jobs in the queue,

which meant that the calibration job was running an hour or more before the benchmark

jobs as the latter can only be submitted after transpilation taking errors from the former job
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into account. This assesses just-in-time transpilation in a normal user scenario with so-called

“fairshare” queuing. In addition, we conducted experiments in “dedicated” mode, available

only to select users, where calibration and benchmark jobs can be run within minutes of each

other, again after transpilation of benchmarks based on error data from immediately preceding

calibration. Figure 2.2 depicts the physical qubit topology of the two backends, Almaden and

Paris, with a snapshot of the calibration-of-the-day (COTD) data encoded as colors according

to the respective heatmap of the device.

2.4.2 Benchmarking Circuits

We selected a number of circuits for just-in-time transpilation also used in prior work [Murali

et al., 2019a]. The characteristics of the selected benchmarks were based on the ability to scale

single qubit gates, two-qubit gates, circuit depth and circuit width (i.e., the number of qubits).

These benchmarks can be parametrized by the number of qubits, n , and are:

1. bv(n): the Bernstein-Vazirani algorithm that learns an n-bit string encoded in a function

and reads out n+1 qubits;

2. hs(n): the n-bit/qubit hidden-shift algorithm that determines the constant by which the

input of one function is increased (shifted) relative to that of another function, where n

qubits are measured;

3. qft(n): the n-bit/qubit quantum Fourier transform algorithm, which is used in many

other quantum algorithms as a building block with n qubits measured;

4. toffoli(n): the n-qubit “universal” Toffoli gate that can be specialized for a number of

arithmetic operations depending on parameters, n+1 qubits are read out;

5. adder(n): an n-bit adder algorithm using 2×n+2 qubits and n+1 readouts.

Algorithms 1-3 include Hadamard gates and conditional rotational gates, yet still have

known reference outputs. Conversely, algorithms 4-5 consist of Pauli gates, C-NOT gates or

CC-NOT gates (with two conditionals), the latter of which can be transpiled into a sequence of

single qubit (Hadamard and rotational) gates and six C-NOT gates, again with known expected

outputs.

2.4.3 Qiskit Experiments

Qiskit provides an interface for sending multiple quantum circuit experiments to the device

in a single job. The maximum number of these experiments depends on the type of device.
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As an example, the Almaden device accepts a total of 900 circuits in a single job. CNOT and

readout error calibrations are performed in our experiments using the calibration circuits

detailed in previous section. These are run repeatedly at a particular time of the day, as shown

in Figure 2.3 (timestamp1, timestamp2 etc.). With the resulting error data, several benchmark

circuits are transpiled. We investigate 5 circuits representing the above benchmark codes

per run, where each circuit is executed for 4096 shots, i.e., repeated circuit executions with a

measurement. Further, we have 3 sets of these benchmarks with increasing number of qubits

as shown in the figure (low/medium/high number of qubits) in a single job. In total, a single

benchmark measurement job contains 75 circuits, i.e., 25 circuits per benchmark set and

5 circuits for each individual benchmark with exactly the same circuit and mapping since

they are transpiled together with the same calibration data using the qiskit.compiler.transpile

function. We execute several circuits for a particular benchmark, each with 4096 shots, as we

observed that for certain qubits and connections significant variations in the accuracy exist

across different circuit executions within the same job. In summary, each benchmark job that

gets submitted to the device is just-in-time transpiled with the latest error data obtained by our

measurements — instead of the default COTD data from IBM. Depending on the experiment,

these jobs are either run at different times on different days in “fairshare” queuing, or they

are repeatedly run throughout the day in “dedicated” time slots to capture the variance in the

accuracy of benchmark circuits. Notice that dedicated execution is a novel feature that became

available only in late May 2020.

2.5 Results

We first report results in the default user mode, followed by dedicated mode. We then perform

a sensitivity analysis with respect to circuit layouts before discussing overall findings and

implications.

2.5.1 Fairshare User Mode

These experiments on IBM Q Almaden consist of a first job running all benchmarks resulting

from level 3 transpilation using IBM’s error data, followed by eight instances of two jobs, one for

measurement to obtain refreshed error data and a second to run all benchmarks transpiled at

level 3 with the fresh error data. Percent accuracy relative to expected results (y-axis) is plotted

for each benchmark run (x-axis).

Figure 2.4 depicts results for Hidden Shift (hs) with 4, 6, and 8 qubits, where the x-axis

indicates the time (during the day) when the benchmark run started and the number of minutes
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prior to which error data was measured.

For hs(4), the top graph in the figure, the first data point shows an accuracy of 47% (with a

small standard deviation indicated by the whiskers) for IBM’s reference calibration 10 hours

earlier. This is the reference run (dashed line) for our experiments. The remaining data points

are showing 67-73% accuracy for our runs, spaced in 1-2 hour intervals whenever the job

queue scheduled runs, with prior error data obtained 39 minutes to nearly 2 hours earlier.

The different colors of data points indicate distinct layouts of virtual-to-physical qubits. Our

layouts differ from IBM’s layout due to the refreshed error data, which provides the benefits in

accuracy.

For hs(6) and hs(8) in middle and lower graphs of Figure 2.4, our results have an even higher

improvement in accuracy over IBM’s reference layout, with our layouts changing from hour

to hour. Overall, IBM’s accuracy is reduced from 47% to 27% to 12% for hs(4), hs(6) and hs(8),

respectively. This reflects the higher number of qubits used and longer depth of a given circuit.

With our just-in-time transpilation, the values are much higher: 70%, 58%, and 45% on an

average for hs(4), hs(6) and hs(8), respectively.

Results for other benchmarks are similar in trend, albeit with different absolute accura-

cies/improvements with figures omitted due to space. Relative improvement in accuracy ranges

from 8-48% for bv, 48-304% for hs, 45-69% for qft, 133-155% for toffoli, and 12-42% for adder,

with maximum improvements sometimes as high as 400%, i.e., a factor of four improvement

in accuracy. We also observe that toffoli, qft and adder have a higher standard deviation.

Observation 1: Just-in-time transpilation tends to improve the relative accuracy of mea-

sured results on average by 8%-304% and up to 400% in extreme cases in fairshare user

mode, with smaller benefits for smaller circuits, with high fidelity and larger benefits for

large circuits with low fidelity. Best layouts change at least hourly.

Figure 2.5 depicts results for Bernstein-Vazirani (bv) with 4 qubits on two different days.

On the first day (upper graph), trends are similar to hidden-shift, where the accuracy of just-

in-time transpiled benchmarks throughout the day is consistently higher (around 82%) than

those transpiled with using IBM’s COTD (69.5%). The difference between our measurements is

relatively small (+/-5%). But on a different day (lower figure), results are mixed as the bench-

marks transpiled with IBM’s COTD show higher accuracy (83%) while many of our just-in-time

transpilations result in lower accuracy (as little as 76%) while others are slightly better (up to

85%) than IBM’s reference. Interestingly, all the benchmarks show more significant standard

deviations (wider whiskers) in the lower graph, even though IBM’s calibration was about 10

hours prior in both cases. Closer inspection reveals that the same IBM layout mapping (blue

dot) also provides slightly better results (3rd and 9th data point), yet worse results at a different

time (8th data point).
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Observation 2: Benefits of just-in-time transpilation vary from day to day, even for the

same layouts of qubits on a device.

While we observe such variation, we actually cannot provide absolute conclusions from this

data as we only ran benchmarks with IBM’s COTD layout once, and only hours apart from our

just-in-time experiments. This led us to conduct a set of experiments in dedicated mode close

together in time, once this mode became available. This is discussed in the next subsection.

The QFT circuit (figures omitted due to space) contains a large number of two-qubit gates

and thus results in lower overall accuracy and also declining accuracy as circuits are scaled

up from 4 over 6 to 8 qubits. As before, IBM’s accuracy is generally lower than ours (30% vs.

18% for 4 qubits) but the total value becomes unreasonably low for 8 qubits (IBM: 0.85%, ours:

1.3%), even though our results are still better on one of the days. However, on another day,

only half of our just-in-time calibrations resulted in benefits over IBM’s, still with the same low

accuracy under qubit scaling. The Toffoli and adder benchmarks show trends similar to the

QFT benchmark.

Observation 3: As the number of qubits is scaled up, total accuracy drops significantly

to the point where few results remain correct, even with just-in-time transpilation. IBM’s

results remain inferior to our just-in-time method.

2.5.2 Dedicated Mode

In regular user mode, fairshare queuing [IBM, 2020] on IBM Q devices prevents a calibration

job to be run back-to-back with benchmarks as just-in-time transpilation requires the error

data from the calibration run, and typical queue delay is on the order of hours for IBM Q

Hub devices (or even days for public devices). While we showed that qubit fidelity in terms of

readout and coupling errors varies, our prior results were inconclusive with respect to the rate

at which these variations take place.

A novel dedicated queuing mode allows the reservation of time slots of fixed lengths at a

given time of the day. This allows us to reserve a slot long enough to run a calibration test to

obtain readout and coupling errors, run benchmarks using IBM’s error data while transpiling

with our newly obtained error data, and then run the just-in-time transpiled benchmarks based

on our error data. These three jobs run back-to-back within 15 minutes. This experiment was

repeated 8 times during a 24-hour period. Dedicated queuing was available on IBM’s Paris

device with 27 qubits.

Figure 2.6 depicts the accuracy for a 2+2, 3+3 and a 4+4 adder (upper/middle/lower graphs)

in dedicated mode. Black dots indicate IBM’s layout based on their COTD errors obtained 28-49

hours earlier. Notice that the device was not recalibrated during this period, which indicates

15



that IBM even calibrates less frequently than the 24 hours that are commonly cited. Each set

of (black, colored) data points runs within the same time slot and should be related to one

another in comparisons.

For the first graph, we observe that IBM runs (black) vary significantly in accuracy over

time, as much as 29-37%, i.e., a given calibration with COTD error data does not provide

consistent results. We further observe that when any IBM run (black) is followed by our just-

in-time transpiled run (colored) minutes later, the latter always provides higher accuracy.

Standard variations are sometimes higher, sometimes lower with no clear pattern. As circuit

sizes are scaled up (middle/lower graphs), this trend still holds, even as absolute accuracy

becomes smaller due to wider and deeper circuits. The benefits of just-in-time transpilation

are more pronounced in the 3+3 adder (middle graph), without any clear cause as these

three benchmarks ran back-to-back (cf. absolute times indicated on the x-axis). Just-in-time

transpilation always resulted in a different circuit than IBM’s default transpilation, and the

former resulted in notable savings — with the one exception of adder(4) in the 2nd to last

pair of (black, yellow) dots, where our benefit is smaller. Layouts change between hourly slots.

These results generalize to other benchmarks with higher (bv, hs) or lower (qft, toffoli) absolute

savings. We did see occasional outliers as discussed in the next subsection. We summarize

these findings as the following observation.

Observation 4: Just-in-time transpilation offers more significant benefits when error

data is obtained immediately prior to an application circuit, irrespective of circuit width

and depth.

We also conducted a sequence of experiments in a single 1-hour slot, where the IBM-

transpiled benchmark was run back-to-back with four instances of (a) re-calibration (obtaining

fresh error data) used by just-in-time transpilation followed by (b) executing all benchmarks.

Our method was superior in all cases except for adder(4), qft(6), toffoli(3), and sometimes

better/sometimes worse for qft(8).

Observation 5: Even when error data is obtained immediately prior to an application run,

just-in-time transpilation cannot always guarantee to provide superior results. Variations

are more pronounced long-term but also exist to a smaller extent short-term. Best layouts

change even within minutes.

2.5.3 Detailed Accuracy Improvement for Dedicated Mode

Figure 2.7 depicts the average percent improvement in accuracy for dedicated benchmark runs

on the IBM Paris device normalized to just-in-time transpilation with IBM’s transpilation as a

baseline. Each bar corresponds to a separate run in a dedicated time slot over a 24-hour period,
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i.e., 8 time slots in total. Different colors indicate different mappings.

Overall, most cases show a moderate to significant improvement with the occasional excep-

tion of an insignificant loss (a few instances of qft(4) and qft(8)) and few more significant losses

(one instance each for hs(6), hs(8), toffoli(3), toffoli(4)). In terms of absolute accuracy, there

was one data point for hs(6) where IBM’s result (59%) was better than ours (52%), and another

in hs(8) with 52% vs. 44% within the same benchmark run. We do not have an explanation

as neither hs(4) nor any other benchmark in the same run showed inferiority of our method.

The same holds for the last run for toffoli(3) and toffoli(4). All these outliers have in common

that they use a never-seen-before layout, which may indicate that the error collection method

could possibly be improved on.

The overall average in improvement (over all 8 runs) is indicated by a dashed line.

Observation 6: Just-in-time transpilation tends to improve the relative accuracy of mea-

sured results on average by 3%-190% and up to 150% in extreme cases in dedicated mode,

again with high fidelity and larger benefits for large circuits with low fidelity. Best layouts

change within minutes.

In summary, Figure 2.7 reinforces the last two observations in that just-in-time transpilation

provides benefits in the majority of cases, but there are exceptions.

2.5.4 Circuit Layout Analysis

Results so far have shown that differences in accuracy are correlated to just-in-time transpi-

lation on recent error data. We investigated the benefits in a sensitivity study by considering

changes in virtual-to-physical qubit mappings. To this end, the resulting virtual layouts were

superimposed on the heatmap-coded interconnect of a quantum device. Figure 2.8 depicts

pairs of IBM/our layouts for hs(8) and adder(4). The nodes are qubits and edges are couplings.

A solidly colored qubit indicates that this qubit is used within the respective circuit. Heatmaps

range from low errors (green) over blue to high errors (red) on a scale indicated for each graph,

i.e., separately for per-qubit readouts and couplings.

Overall, we can compare the errors of the IBM model (left) with that of our error data (right)

agnostic of any circuit. The error values differ for a number of qubits and couplings, most

notably couplings 4-7, 6-7, 5-8, and 12-15, and also qubits 0, 4, 5, 8, 15 and 17. Others are

constantly good (many qubits and couplings remain green on both sides) or constantly bad

(e.g., qubit 21).

In the adder(4) example, our layout provides worse accuracy than IBM’s. First, we observe

that in Figure 2.8a coupling 4-7 within the circuit has high errors (red), and qubits 5 and 8

have mediocre fidelity (blue/purple). In contrast, all couplings in Figure 2.8d are of higher
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fidelity (green) while only qubit 8 has lower fidelity (purple). Yet, IBM’s accuracy at 10% is better

than ours at 8%. Closer inspection reveals that our lower end of the error spectrum has twice

the error value of IBM’s lower end errors for both readouts and connectors. This means the

color spectrum on the right side should be shifted toward higher errors. Another significant

difference is in the readout qubits, which are 4,7,8,9,11 for IBM’s and 8,12,13,20,22 for our

transpiled code. This accounts in part of the difference in accuracy, as will be discussed in the

next subsection.

In the hs(8) example, our layout provides better accuracy than IBM’s. We observe that the

selected qubits and couplings for the circuit appear nearly equally good in Figure 2.8c and

Figure 2.8d, with a slight bias to higher fidelity (lighter green) on the right side for qubits. As

all qubits are read out, this could explain the difference, even after taking into account the

differences in heatmap encoding. Notice that the hidden shift algorithm requires only pairs of

two qubits to be coupled, which explains the layouts of isolated qubit pairs.

Observation 7: Differences in layouts corroborate the hypothesis that there are two

classes of errors: “Persistent” errors due to low fidelity qubits and couplings that retain

high errors, and “transient” errors that vary over shorter times. However, detailed analysis

of layouts with respect to noise levels of qubit readouts and connectors remain only partially

conclusive.

2.5.5 Discussion

The detailed analysis of layouts did not provide the clarity on a case-by-case basis that we had

anticipated. It is possible that other factors have to be accounted for to explain differences

in accuracy. In particular, it would be important to compare IBM’s codes for determining

error rates with ours as we see much higher rates. This could be due to the fact that the last

calibration occurred hours ago, or it could indicate that our algorithms are more suitable to

find good layouts. Furthermore, cross talk error is known to be in the order of readout and

coupling errors. Single qubit gate errors are said to be an order of magnitude lower, as also

reported by IBM after each calibration. Another factor is the number of times a coupling is

used in conditional gates (e.g., CNOT) and, to a lesser extent, the number of single qubit gates.

While we saw “permanently” high qubit and coupling errors for a few device elements, most

of them either remain at higher fidelity or change in the medium range over time. It may be

possible to further distinguish errors within time ranges of minutes vs. hours, but we do not

have sufficient data to reliably do so.

With the results shown above, we conclude that dynamic on-the-fly error calibration helps

in taking into account the current state of the qubits. Transpiling the circuits just-in-time with
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this error information statistically produces more accurate results than those produced when

the IBM’s published error information is used to transpile the same circuits.

This work has the following implications: Our approach can help in producing better results

in circuits from a statistical perspective, but does not eliminate errors.

Recommendation 1: We suggest to first obtain fresh error data from a device before running

sensitive circuits.

This is easily done in IBM’s dedicated mode but even provides benefits when hours lie in

between obtaining error data and running the just-in-time transpiled circuit. An ensemble of

circuits could then be prepared by transpiling with the dynamically measured readout error

information, measured CNOT information, or both.

Recommendation 2: A circuit transpiled with the default error data should be included in

experiments.

Sometimes, IBM’s layout is superior, and a diversity of mappings can provide more accurate

results [Tannu and Qureshi, 2019a].

Recommendation 3: Devices should either be recalibrated more frequently, or their errors

should be assessed more often (possibly both), with results made accessible to users.

If users always prefaced their code with a fresh error data analysis, less science could be

performed on a quantum device, yet results may be of higher value. This is a subtle conundrum,

and the frequency of recalibration should be revisited by quantum backend operators.

Currently, the device properties (backend.properties() object) contain the calibration in-

formation published by IBM earlier during the day. We suggest that IBM also publish more

dynamic error information along with the accuracy of the circuits by periodically running these

error extraction circuits. The developers could then, based on the accuracy of results, decide

whether or not to exploit this dynamic error information to transpile their circuits or call their

own error measurement jobs. Furthermore, noise-based transpilation (level 3 in Qiskit) should

be the default. Finally, job dependencies and server-side transpilation should be introduced in

fairshare user mode to allow a second job to be transpiled depending on output data of the

first job that ran minutes before.

2.6 Related Work

Current NISQ machines require substantial tuning of control signals in order to compensate for

noise in individual devices. The closest related work to ours focused on noise-aware mappings

and read-out errors [Murali et al., 2019a], which is using noise data to adapt qubit mappings

during the transpilation process. This technique was later integrated into IBM’s Qiskit transpi-

lation, which uses daily calibrations for qubit mappings. As our work shows, more frequent
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noise recalibrations provide additional benefits on today’s NISQ devices.

Other techniques focus on interpreting different qubit mappings statistically and inverting

computational results to benefit from lower errors in non-excited states [Tannu and Qureshi,

2019a, Tannu and Qureshi, 2019b], hardware-specific optimizations confined to back-end

passes of the compiler across different NISQ platforms [Murali et al., 2019b], or reduction

in cross talk [Murali et al., 2020]. IBM uses pulses to further reduce noise [Bishop and Gam-

betta, 2019], a technique that was generalized to larger circuits or blocks of gates with shorter

pulses [Shi et al., 2019, Gokhale et al., 2019].

Other qubit mapping approaches were shown to be effective for smaller-scale NISQ de-

vices [Murali et al., 2019a, Zulehner et al., 2018, Tannu and Qureshi, 2019c] but often required

high time/memory consumption when scaling up, while others had more scalable algorithms

but compromised in the fidelity of the mapping [Wille et al., 2016, Siraichi et al., 2018], while

yet others focused on scalability without considering noise details at the same level of detail [Li

et al., 2019], or used dynamic assertions as a means to filter by noise [Liu et al., 2020]. These

techniques can orthogonally improve results on top of our recalibration.

2.7 Conclusion

We have contributed a methodology for on-the-fly transpilation taking fresh error data for

readouts and two-qubit gates into account. Our experiments have shown the effectiveness

of this technique on current NISQ devices resulting in 3-190% improvement of accuracy for

dedicated execution and 8-304% for shared job queues with a maximum observed improvement

of a factor of four, depending on the circuit. Improvements are best when error data was recently

obtained, leading to recommendations for adjusting operations of quantum devices to obtain

and publish error data more frequently.
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(a) IBM Q Almaden device

(b) IBM Q Paris device

Figure 2.2: Qubit connectivity with colored mappings for qubits and connections corresponding
to COTD information on a heatmap range. Source:
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Figure 2.3: Calibration and benchmark circuits as arranged in our job framework
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Figure 2.4: Accuracy of Hidden Shift for 4/6/8 qubits (upper/middle/lower graphs) at different
times during the day with prior calibration in minutes.

23



Figure 2.5: Accuracy of Bernstein-Vazirani with 4 Qubits on 5/14/20 (upper) and 5/16/20
(lower)
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Figure 2.6: Accuracy of Adder for 4/6/8 qubits (upper/middle/ lower graphs) at different times
during the day with prior calibration in minutes.
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Figure 2.7: Percent improvement of accuracy for just-in-time transpilation in dedicated mode.
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(a) IBM layout for adder(4) on Paris

readout min 1.978e-02 max 1.058e-01 cnot min 1.242e-02 max 4.638e-01 

8

9

11 14

12

13

15

16 19

20

22 25

0 1

2

4

3

7

5

10

6

18 21

17

23

24

26

         

(b) Our layout for adder(4) on Paris
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(c) IBM layout for hs(8) on Paris
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(d) Our layout for hs(8) on Paris

Figure 2.8: Circuit Layouts
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CHAPTER

3

EMPIRICAL EVALUATION OF CIRCUIT

APPROXIMATIONS ON NOISY QUANTUM

DEVICES

3.1 Introduction

Contemporary quantum computing devices are commonly referred to as Noisy Intermediate-

Scale Quantum (NISQ) computers as they are fraught by a multitude of device, systemic, and

environmental sources of noise that adversely affect results of computations [Preskill, 2018]. A

number of factors contribute to noise, or errors, experienced during the execution of a quantum

program. These include

• noise related to limits on qubit excitation time and program runtime due to decoherence;

• noise related to operations, i.e., gates performing transformations on the states of one or

more qubits;

• noise related to interference from (crosstalk with) other qubits; and
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• noise subject to the process of measuring the state of a qubit via a detector when produc-

ing a program’s output.

Efforts to reduce — or otherwise mitigate — noise are at the front of the effort to create better,

more practical quantum computers today [Murali et al., 2019b, Murali et al., 2019a, Wilson

et al., 2020, JavadiAbhari et al., 2014, Preskill, 2018, Bishop and Gambetta, 2019, McKay et al.,

2018, Zulehner et al., 2018, Tannu and Qureshi, 2019a, Tannu and Qureshi, 2019b, Tannu and

Qureshi, 2019c, Li et al., 2019, Li et al., 2020, Wille et al., 2016, Siraichi et al., 2018]. Our work

builds upon and complements these previous efforts.

All of these sources of noise have a common characteristic in that noise becomes worse

with circuit depth, i.e., the more sequential gates a quantum circuit has, as quantum states

(particularly excited states) decohere over time. Today’s NISQ devices feature qubits with

relatively short coherence times — the longer an excited state has to be maintained, the more

noise is introduced, to the point where eventually noise dominates and the original state

becomes unrecoverable. Current devices also suffer from noisy or imprecise gates, which add

imprecision to a circuit each time a gate is applied, i.e., qubit state diverges slightly from the

expected state with the application of each transformation (rotation). Depending on the type

of gate, noise varies significantly: Gates operating on two qubits are an order of magnitude

more noisy than single qubit gates. Two qubit gates also experience more cross-talk, due to

interference with other qubits in close vicinity. Finally, measurement of state (read-outs) is also

subject to considerable noise, on par with cross talk and two qubit gates, as opposed to said

single qubit noise.

A quantum program expressed as a circuit of gates operating on virtual qubits needs to be

translated into a sequence of pulses directed at physical qubits. This translation step (a.k.a.

transpilation) offers optimization opportunities to reduce noise. Besides translation of pulses,

quantum compilers consider secondary, noise-related objectives to generate optimized quan-

tum programs, e.g., by mapping virtual qubits to less noisy physical qubits (in terms of read-

outs) [Murali et al., 2019a, Tannu and Qureshi, 2019c, Tannu and Qureshi, 2019a] and their

connections (for two qubit gates) [Murali et al., 2019a, Tannu and Qureshi, 2019b], or even by

increasing the distance to reduce cross-talk between qubits for a given device layout [Bishop

and Gambetta, 2019, Murali et al., 2020, Ding et al., 2020].

Another angle to address noise is to reduce the depth of circuits. By reducing the number

of gates in a circuit, especially the number of two-qubit gates, the depth of the circuit, i.e., the

span of time during which qubits remain in excited states, is shortened, which lowers the effect

of decoherence. In fact, this may well bring long circuits within reach of short decoherence

times that otherwise could not finish on a NISQ device before losing their states. One promising

way to reduce the number of gates is to create an approximate circuit [Amy et al., 2013, De Vos
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and De Baerdemacker, 2015, Alam et al., 2020], i.e., a circuit which does not provide an exact

(theoretically perfect) transformation for a target unitary but rather a “close” fit for the unitary.

(One could make a comparison to fixed precision arithmetic in classical computation here,

which often relies on converging calculations as an approximation of exact numerical results.)

On a NISQ device, an exact quantum circuit is prone to develop large error with increasing

circuit depth. In contrast, a near-equivalent approximate quantum circuit with shorter depth,

even though subject to a slightly incorrect transformation, may have the potential to yield a

result that is closer to the noise-free (theoretically) desired output. This opens up an interest-

ing trade-off between longer-depth theoretical precision with more noise vs. shorter-depth

approximation with less noise. It is this trade-off this work aims to assess and quantify.

The task of finding an approximate circuit is similar to the process of circuit synthesis [Davis

et al., 2019, Younis et al., 2020]. Circuit synthesis is another avenue that attempts to reduce

circuit depth. Synthesis here refers to the process of what can be considered design space

exploration: Given a quantum program, expressed as an exact circuit or an equivalent unitary

matrix, other circuits are systematically constructed and then evaluated in a search for an

equivalent, shorter depth quantum circuit with the same unitary. If found, such a target circuit

can be transpiled to a specific machine layout and set of gates with shorter execution time,

which may be within the given decoherence threshold of a NISQ device.

The main difference between circuit synthesis and searching for an approximate circuit is

that instead of searching for an equivalent (functionally indistinguishable) circuit, the latter

searches for an approximate circuit of a shorter depth with a slightly different unitary. While

this leads to inferior results on a noise-free machine, the intuition is that due to noisy gates,

shorter, approximate circuits have the potential to outperform longer, more precise circuits.

There are many different metrics which can be used to determine whether two circuits

are equivalent. Quantum synthesis compilers [Davis et al., 2019, Younis et al., 2020] typically

use distance metrics between “process” representations of the program, such as the Hilbert-

Schmidt (HS) distance between the associated unitary matrices, or the diamond norm [Gilchrist

et al., 2005, Aharonov et al., 1997]. In the process view, two programs are deemed equivalent

when at distance “zero”.

In the context of this work aiming at approximation, synthesis is used to find a circuit

exceeding a distance of zero relative to the original program so that, when run on a NISQ

machine, its output is expected to be close to that of the original program. One challenge with

using approximate circuits is that of finding a suitable metric to assess the appropriateness of

a set of approximate circuits. One potential option is a process distance, such as HS, within a

certain range (threshold). Another is to instead consider output-related metrics, such as the

Jensen-Shannon Divergence or Total Variation Distance [Endres and Schindelin, 2003]. This
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remains an open question.

The novelty of this work is in its focus on the analysis of a particular use-case of approximate

circuits, namely by considering a set of approximate circuits created by quantum synthesis

software. When these offered an unworkable number of circuits, we constrained which ones

we used by a given HS distance as a threshold. We never choose an HS threshold of less than

0.1, which still results in a wide range of approximate circuits. With a large selection of circuits

we can investigate the behavior of many approximate circuits in the presence of different noise

levels.

With this work, we make the following novel contributions to the broader aim of searching

for approximate circuits:

• We demonstrate how to obtain a wide range of approximate circuits from custom modi-

fied circuit synthesis tools.

• We provide a proof-of-concept that approximate circuits can outperform exact circuits

on NISQ devices for small, well known algorithms — Grover’s Algorithm and the Multiple-

control Toffoli gate — as well as a specific physics application, namely the three-four

qubit Transverse Field Ising Model (TFIM).

• We show how the results of approximate circuits change relative to the noise induced

by two-qubit errors. Specifically, we assess the effect of two-qubit errors of lower-depth

circuits with different approximation thresholds vs. that of the exact, longer circuit. Ex-

periments indicate improvements in overall precision for shorter approximate circuits

over longer precise ones by up to 60%.

3.2 Problem Statement and Objectives

This work seeks to assess if approximate circuits can outperform exact circuits on today’s

NISQ devices. Utilizing approximate circuits ultimately comes with challenges posing four

fundamental questions:

1. How can approximate circuits be generated?

2. Can the search for or generation process of approximate circuits be constrained and, if

so, how?

3. Will the resulting approximate circuits outperform their equivalent original ones?

4. Can algorithms be designed to make circuit synthesis and the search of resulting circuits

scalable?
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Before investigating these problems, however, a more fundamental question should be

asked: Is there any value in approximate circuits to begin with? In other words, can any approxi-

mate circuit actually outperform the original circuit at all? It is this line of reasoning that our

work is trying to answer — before we can explore the more general challenges posed by the

four questions above.

In this work, we show that there is potential value in approximate circuits: They can outper-

form theoretically perfect circuits on today’s NISQ hardware. We also confirm that any method

of selecting appropriate approximate circuits will need to take the noise/error levels of target

devices into account.

3.3 Design

Figure 3.1: Generic workflow of using approximate circuits. The example is an approximation
of the first timestep of the TFIM circuit.

One way to find approximate circuits is to look at approximate circuits generated by the

intermediate steps of circuit synthesis programs. These programs do not typically scale to a

level which would make them an ideal way to create large approximate circuits in practice,

but are an easy way to create them as a proof of concept. Synthesis programs typically look

for the shortest circuit they can find with a distance of some kind at “zero”. As these programs

are interested in finding as short a circuit as possible, they tend to investigate many shorter

circuits before finding their target; these circuits are already nearly optimized for their layout,

making them ideal approximate candidates.

Before utilizing synthesis software to generate approximate circuits, we typically need to

alter the synthesis tools to produce as output, besides a single circuit, additional circuits that
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are farther away from the target. These tools already generate and test many circuits during the

search for an equivalent circuit, which allows our enhancements to integrate naturally with

the existing flow within synthesis tools.

Figure 3.1 shows the workflow of our process. We first need to obtain our target unitary.

Quantum operations can be represented by matrices, and the target unitary is the result of

multiplying these transforming matrices of a circuit (or subcircuit) that is to be approximated.

In IBM’s Qiskit python interface [Aleksandrowicz et al., 2019], the unitary of a circuit can be

obtained with the following command on the target QuantumCircuit object c i r c ui t :

ma t r i x =q i s k i t .q ua n t um_i n f o .O p e r a t o r (c i r c ui t ).d a t a

The second step is to use our altered synthesis software to generate approximate circuits

for our target matrix.

Third, given the the enhanced synthesis software that outputs every circuit it checks, we

need to select which approximate circuits we want to check. How to perform this selection is

still an open question. For our analysis, we intend to compare a large number of circuits, so we

select many circuits with little to no filter for pre-selecting the most accurate ones.

Finally, the selected circuits need to be run on a quantum machine or simulator. For our

study, we then compare the results with the expected output, either a known value or our

original circuit run on a simulator with no errors.

3.4 Implementation

For our exploration of approximate circuits, we use two different synthesis tools, QSearch and

QFast, both of which are part of the Berkeley Quantum Synthesis Toolkit (BQSkit).

The QSearch [Davis et al., 2019] optimal depth circuit synthesis tool builds a sequence of

circuits of increasing length and decreasing HS distance until it finds the first circuit with a

distance of “zero”, a value which can be specified but which defaults to less than 1e-10. It does

this by following the A* algorithm. Specifically, it explores different branches of the circuit

space by adding on blocks of three gates. Certain machine layouts can be taken into account by

restricting these blocks to only being placed between connected qubits. These blocks are made

up of one two qubit controlled NOT (CNOT) gate and two single qubit U3 gates on each of the

same qubits. The U3 parameters are optimized using one of a number of different numerical

optimizers, including COBYLA and BFGS, provided by SciPy 1.20, and reoptimized after each

step. This optimization ensures that, for this specific layout of CNOT and U3 gates, this circuit

is the closest possible to the target. Because it considers each option, this is guaranteed to be
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depth optimal with respect to two-qubit gates.

The QFast [Younis et al., 2020] synthesis tool likewise builds a sequence of circuits of in-

creasing length, but it has a more complicated algorithm for finding circuits of increasingly

higher quality. QFast is not guaranteed to be optimal and gives less of a choice of approximate

circuits, but handles circuits with more qubits than QSearch within acceptable search times.

In our work we enhance the QSearch software such that instead of saving only the final

circuit, it also saves every intermediate circuit during its search. We then select a portion of the

circuits, always with a maximum HS distance threshold of at least 0.1, in order to have a wide

range of circuits but none which differ entirely from the target circuit. QFast requires no source

code alteration, but it needs to be given a dictionary with the key of “partial_solution_callback”

pointing to a function to output these solutions. This dictionary is used by calling QFast with

the keyword “model_options”.

These circuits are then executed in three different methods. First, they are executed on the

IBM Qiskit [Wood, ] simulator using hardware specific (ibmq_ourense, ibmq_toronto, ibmq_-

manhattan, ibmq_rome, ibmq_santiago) noise models. These noise models are created using

error data collected from IBM’s own physical machines, creating a noisy simulator.

Second, they are executed on noise level sweeps. These use the ibmq_ourense noise model

as a base, but change the two-qubit gate noise level during a sensitivity study in order to observe

the effect of different types and levels of noise.

Finally, The approximate circuits are also executed on the ibmq_ manhattan, ibmq_toronto,

and ibmq_rome physical machines.

3.5 Experimental Framework

We selected three different algorithms for the evaluation. We start with circuits generated [Bass-

man et al., 2020, Bassman et al., 2021] for the time-dependent Transverse Field Ising Model

(TFIM). The TFIM is a quintessential model for studying various condensed matter systems,

and its time-dependent manifestation shows promise for revealing new information about

non-equilibrium effects in materials. Current algorithms for designing quantum circuits for the

simulation of such models, however, produce circuits that increase in depth with the growing

number of time-steps; circuits quickly grow beyond the NISQ fidelity budget, placing tight

limits on the number of time-steps that can be simulated. This class of circuits, therefore, stands

to greatly benefit from shorter, approximate circuits. In addition, the output for these circuits

can be condensed to a single number to easily be compared to the output of the approximate

circuits, allowing for an easy target for the approximate circuits.

We next study Grover’s algorithm [Grover, 1996] followed by the multi-control Toffoli
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gate [Toffoli, 1980] to demonstrate the general capability of our method.

We decided to focus on small circuits for this work due to NISQ and synthesis limitations.

We use the three and four qubit execution of the circuits for most of our experiments, and

scale up to five qubits with the multi-control Toffoli gate. For TFIM, we assess at the first 21

time steps of 3ns. This results in 21 different circuits for different times in the evolution of the

magnetization. All of these circuits are related, but they can also be investigated individually.

Table 3.1: Average CNOT errors on a selection of IBM physical machines as of 2021/01/18

IBM Machine Num. qubits Av. CNOT err.

Manhattan 65 .01578
Toronto 27 .01377
Santiago 5 .01131

Rome 5 .02965
Ourense 5 .00767

Table 3.1 provides a snapshot of typical CNOT error rates at the time of writing. they give

a contemporary view of the types of CNOT errors that we compare against and reflect the

constant changes of NISQ devices with different error rates on different qubit connections

even on the same device.

For our experiments using simulators we transpile under IBM’s optimization level 1 with

mappings to qubits 0, 1, 2, 3, and 4. Our experiments on physical machines are transpiled under

optimization level 3, which at the time of writing allows IBM to map virtual qubits to the best

available physical qubits. All work is performed with Python 3.8.2 and Qiskit 0.18.3, Qiskit-aer

0.5.1, Qiskit-ibmq-provider 0.6.1, and Qiskit-terra 0.13.0. Our QSearch enhancements are based

on search_compiler version 1.2.1, and we used QFast version 2.1.0.

3.6 Results

We first report experimental results for simulations under given noise models of contemporary

quantum devices subject to NISQ constraints. We then perform a sensitivity study on the effect

of noise levels, including both smaller (future) and larger (past) noise levels than seen on the

reference device, still using simulation. This is followed by experiments on IBM Q devices with

approximate circuits under default transpilation with full optimization. Finally, we perform a

sensitivity study investigating the effect of how approximate circuits are mapped to qubits on

hardware devices with respect to noise level, particularly of CNOT gates.
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3.6.1 Noise Model Simulations

We first investigate the noise and approximation quality of our approach. Figure 3.2 depicts

results for a 3-qubit TFIM problem under the Toronto (IBM Q) noise model with magnetization

(y-axis) over time steps (x-axis) in 21 intervals of 3ns each. Series “Noise free reference” shows

the result for the circuit generated by the TFIM domain generator and simulated on the ideal

hardware. This is the target for the other circuits; the closer they are to these results, the better

they are. Series “Noisy reference” shows the behavior of the same circuits when simulated with

the hardware specific noise model. “Noisy reference” behavior quickly diverges from the ideal

as circuits become more complex with increasing timesteps. Series “Minimal HS” shows the

behavior of the synthesized circuits when using process metrics (HS) as the quality indicator.

As these are much shorter (six CNOTs versus tens of CNOTs for the reference circuit) than the

baseline implementation, their results are typically closer to the ideal results.

Figure 3.2: Magnetization over 21 timesteps of selected (best/minimal HS) approximate
circuits for the 3-qubit TFIM using the Toronto error model.

The potential of approximate circuits is depicted by Series “Best approximate”, where we

select the circuits with “best” output behavior. Their CNOT depth is always shorter than the

HS=0 circuits, and so even though the process distance is greater they provide a result closer

to the noise free reference. This was also observed across other noise models.

Observation 1: Short approximate circuits can outperform long circuits with a lower

process distance in simulation under device noise models.
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Let us investigate the range of solutions generated by approximate circuits in more detail.

Figure 3.3 shares the noise free and noisy reference data series with Figure 3.2, but it additionally

includes dots representing each approximate circuit. The colors of the dots indicate how many

CNOTs were used in the approximate circuits; in this case, red dots represent two CNOTs and

blue dots represent six. It can be seen that while there was a wide difference in accuracy over

the different approximate circuits, nearly all of them performed better than the noisy reference.

Figure 3.3: Magnetization over 21 timesteps of all approximate circuits for the 3-qubit TFIM
using the Toronto error model.

We next investigate the impact of circuit width (in qubits) and depth (in CNOT gates) for

the same TFIM application. Figure 3.4 represents the four qubit TFIM circuit with the same

line graphs again. The number of CNOTs in an individual circuit in this case can range from 1

to 48, which illustrates the wide range of approximate circuits, many of which are closer to the

noiseless reference than the noisy reference is.

We now turn our investigation to the impact of circuit approximation for different algorithms

and circuits, first with Grover and then with Toffoli. Figure 3.5 depicts results for Grover’s

algorithm with a search target of ’111’ over eight boxes, where each dot represents a circuit.

The blue dots each indicate an approximate circuit, while the orange dot and the line represent

the output circuit of the hand-coded reference implementation with nine CNOTs. Figure 3.5

shows the quality of the circuits as the probability of selecting the correct box (y-axis), where

higher probability is better. Here, CNOT count is shown on the x-axis rather than indicated by
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Figure 3.4: Magnetization over 21 timesteps of approximate circuits for 4 qubit TFIM sing the
Santiago noise model.

color coding. This shows a wide array of approximate circuits, many of which outperform the

reference; only a smaller fraction (below the dashed line) underperform. The challenge here is

to select a “good” approximate circuit from the wide array of possible candidates. We observe

and investigate this challenge with different metrics but its solution is ultimately beyond the

scope of this paper.

Observation 2: To capitalize on the potential of approximate circuits, a selection method

and an associate metric are required to ensure superior performance under noise.

We further perform experiments for the Toffoli gate with different numbers of qubits. Fig-

ure 3.6 shows the results for four qubit Toffoli gate—that is, three control qubits to one target

qubit. We use the Jensen Shannon (JS) distance [Endres and Schindelin, 2003] to analyze these

circuits (y-axis), as the Toffoli gate can be programmed to represent a variety of functions,

each with different (but known) output. We test each approximate circuits for a subset of such

functions and parameters since a given circuit results in different probabilities for correct

output. The JS distance provides a composite metric to reflect accuracy (lower is better in this

case).

The four qubit results indicate that low-depth approximate circuits outperform those with

high CNOT depth. The orange dot on the dashed line represents Qiskit’s multiple-control

Toffoli gate without any ancilla bits while the red dot indicates QFast’s default result of an

equivalent circuit. The JS metric indicates that the former (orange) outperforms the latter (red).

Furthermore, many deeper approximate circuits perform worse than Qiskit’s Toffoli without
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Figure 3.5: Probability of correct result over CNOT count of approximate circuits for 3 qubit
Grover’s algorithm using the Toronto noise model. Reference circuit in red.

ancilla while shorter approximations (below the line) can provide even better results than Qiskit.

This implies that there is room for improvement even over the reference implementation of

given circuits on today’s noisy machines.

Observation 3: Approximate circuits generated from synthesis can outperform discrete

reference circuits under noise.

Figure 3.7 depicts results for a five qubit Toffoli gate, again without any ancilla qubits for

either the reference or approximate circuits. These results reinforce the earlier four qubit results:

The JS distance of the reference circuit is higher for five qubits, but some approximate circuits

have a distance even closer to zero than the best of those for the four qubit Toffoli gate. The

correlation of shorter circuits performing better is evident, but outliers exist. As the number of

CNOTs increases to the hundreds, the JS values approach 0.465. This is significant because, in

this implementation, random noise (an equal number of results of 00000 as 00001 as 00010

and so on) results in a JS distance from the target of 0.465.

We also performed experiments for a 3-qubit Toffoli gate. In this case, the 3-qubit approxi-

mate circuits performed poorly compared to the optimized hand-crafted Toffoli gate commonly

used, which uses only 6 CNOTs (graph omitted). This illustrates that simple, short circuits pro-

vide little benefit for approximations via QSearch or QFast whereas deeper and more complex

ones can benefit significantly for today’s noisy quantum hardware. It also presents a challenge

for synthesis tools as wider circuits (beyond 6-8 qubits) with corresponding depth results in

excessive search cost.

Observation 4: The benefit of using approximate circuits increases with the depth of the
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Figure 3.6: Jensen Shannon (JS) distance over CNOT count of approximate circuits for 4 qubit
Toffoli compared to the reference circuit using the Manhattan noise model. Qiskit (orange)
and QFast (red) circuits are outperformed by other approximate circuits.

reference circuit.

3.6.2 Error Sensitivity Studies

We assess the sensitivity of approximate circuits to noise. To this end, we use the Ourense noise

model as a base but change the CNOT error rate to assess how the performance of circuits

changes results in response. Figures 3.8, 3.9, and 3.10 present the approximate circuits with

increasing noise. Circuits are again color coded using their depth, with red circuits consisting

of two CNOTs and blue circuits of six. The lines of these colors represent the best performing

approximate circuits for that number of CNOT gates.

Figure 3.8 depicts simulations for a CNOT noise level of zero. It illustrates the spread of

circuits with different noise sources (with the exception of CNOT noise), and shows that CNOT

depth is not closely correlated to the quality of results with no CNOT noise.

Figure 3.9 shows the simulation for a CNOT error of 0.12, similar to that of today’s lowest

quality physical devices, and assesses the impact on performance. Note that the increase in

CNOT error is accompanied by a decrease in the observed average magnetization. Many of

the longer circuits in blue or purple, which were covered up by the red dots, become visible

showing that a diverse number of approximate circuits react differently under CNOT noise.

Figure 3.10 depicts simulations for a CNOT error of 0.24, which is worse than many current

IBM machines and reinforces this trend. These results are promising. We clearly see that some
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Figure 3.7: JS distance over CNOT count of approximate circuits for 5 qubit Toffoli compared
to the reference circuit using the Manhattan noise model.

individual circuits improve, i.e., more closely approximate the error free reference, with an

increase in two-qubit error. We also see that deeper circuits are more affected by CNOT error

than shallower circuits. With a low two-qubit error, many of the deeper circuits lie on the line

corresponding to the error free reference. As this error increases, these deep circuits quickly

decline in quality, and the shallower circuits perform relatively better. This is seen as the best

of the longest circuits perform worse than the best of the shortest circuits for all timesteps; but

without CNOT noise, this is not necessarily true. Some of these circuits actually benefit from

the noise and more closely approximate the error free reference.

The takeaway from this trend is that different approximate circuits should be chosen based

on the error levels of the physical machine. A program can afford to use a long circuit on

machines with low error, but a noisier machine will benefit from a shorter, approximate circuit.

Observation 5: Beyond merely being less affected by noise than the reference circuit, some

approximate circuits perform better in the presence of noise. This performance increase is

dependent on the noise parameters of the system.

Figure 3.11 further supports this by depicting the depth of the best performing circuit for

different noise levels. A trend can be seen: the worse the error (the more red the line), the

shallower the circuits with the highest performance in general, but not under all circumstances.

A similar trend is seen with our other algorithms (figures omitted).

These results generally support the initial conjecture: as the amount of noise in the models

increases, the output quality of deeper circuits deteriorates more quickly than that of the

41



Figure 3.8: Magnetization over 21 timesteps of approximate circuits for 3-qubit TFIM using
the Ourense noise model with no CNOT error.

shallower circuits. This causes some of the shallower circuits to produce results that are closer

to the ideal results than the deeper circuits, even though the deeper circuits would perform

better on an ideal, noise-free machine. This is most noticeable with circuits that contain many

CNOTs and on noisier models. It is less noticeable with circuits which are already short or

simulated on models of low noise.

Observation 6: The greater the level of two-qubit noise on the target machine, the more

benefit is gained from short approximate circuits.

3.6.3 Results on IBM Q Hardware

Figures 3.12 and 3.13 depict results from running the three and four qubit TFIM circuits on

contemporary IBM quantum hardware devices. These results provide insight on how much

can be gained from using approximate circuits in practice today. We observe that almost all of

the approximate circuits in Figure 3.12 and the large majority of the approximate circuits in

Figure 3.13 perform better than the default circuits.

We also observe that the approximate circuits here are distributed similarly to Figure 3.9,

showing that the earlier constructed noise models are not far off from actual noise on hardware

today.

Observation 7: Approximate circuits can perform well compared to reference circuits on

real quantum hardware devices as well as on noisy simulators.
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Figure 3.9: Magnetization over 21 timesteps of approximate circuits for 3-qubit TFIM using
the Ourense noise model with a simulated CNOT error of 0.12.

Figure 3.14, similar to Figure 3.5, depicts results from experiments with the 3 qubit im-

plementation of Grover’s algorithm. As before, many (but not all) of the approximate circuits

perform better than the reference circuit. There is a minor bias to shorter circuits performing

better, but not a significant one. It should be noted that the reference circuit here had more

than 50 CNOTs and is thus omitted from the figure. The line is still at the performance level of

the reference circuit.

Figure 3.15 shows the result of the 4 qubit Toffoli and its approximates on a real machine.

At first, the result looks similar to the distribution in Figure 3.6. However, while the best approx-

imate circuits do have a much lower JS score (by 78%) than the reference circuit (orange), the

reference circuit and many of the approximate circuits actually perform worse than random

noise (as mentioned in the context of discussing Figure 3.7, random noise has a distance of

0.465).

This indicates that even the approximate circuits are still too noisy to run on the physical

machines, but we expect them to perform better than the reference circuit when run on less

noisy devices.

Observation 8: Trends indicate a continuing potential of approximate circuits to out-

perform reference circuits in the near future, even as noise levels in physical machines

decline.
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Figure 3.10: Magnetization over 21 timesteps of approximate circuits for 3-qubit TFIM using
the Ourense noise model with a simulated CNOT error of 0.24.

3.6.4 Sensitivity to Qubit Mappings on IBM Q Hardware

We further investigate the impact of mapping circuits to specific qubits with CNOT resonance

channels of different noise levels for the IBM Toronto physical quantum device using the 4

qubit Toffoli. The qubit connectivity of this machine is shown in Figure 3.16, as reported by IBM

on the day of experimentation. The nodes represent different qubits, and their color indicates

the readout error in the range depicted on the upper heatmap index to the left. The edges

represent the connection between the qubits, and their color indicates the CNOT error level

on the lower heatmap index.

Experiments are conducted with four different (manual) mappings for the approximate

circuits plus one (automatic) mapping using Qiskit’s transpiler at optimization level 3. We

depict only the circuits with the best and worst results here.

Figure 3.17 shows results for circuits mapped onto the qubits within the blue circle in

Figure 3.16. These results exhibit the shortest JS distance of ≈0.4 (best), and about a third of

the circuits lie below the reference of ≈0.47.

Figure 3.18 depicts the results for mappings into the red circle, which provided the worst

results with higher JS distance (reference: JS≈ 0.485, approximate circuits start at JS≈0.45) than

that of any other mapping. Other mappings (not depicted) lie in between these results.

Figure 3.19 shows the results of transpiling the same approximate circuits with Qiskit

under level three optimizations. As each approximate circuit was mapped individually and

automatically by Qiskit, no single mapping can be reported. The green circle shows the mapping
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Figure 3.11: CNOT depth over 21 timesteps of approximate circuits for TFIM showing the best
approximate circuits for select CNOT errors.

for the best performing circuit within that run, and yellow indicates that of the reference circuit.

Fewer circuits have a lower JS than the reference (≈ . 0.46) but they start as JS≈0.42.

These results are interesting when considering the noise levels in Figure 3.16. The yellow

reference circuit (with results in Figure 3.19) chooses two connections with relatively high

noise and utilizes about 40 CNOTs, but qubits have relatively high readout fidelity. Nonetheless,

it performs better than than the reference circuit in Figure 3.18, which has relatively good

connections and only 30 CNOTs. The results indicate that CNOT error cannot be the only

source of noise influencing results.

Likewise, the blue mapping has one bad connection, but it provides the best performing

circuits (Figure 3.17) with about the same readout fidelity as for yellow. The worst results

(Figure 3.18) contribute few (if any) good circuits, yet benefit from relatively good connections

but lower readout fidelity according to IBM’s noise data.

We know from Observation 6 that increasing CNOT error provides additional opportunities

for approximate circuits. Our mapping study is an indication that other noise sources contribute

as well, particularly read-out errors (as depicted in Figure 3.16) as well as cross-talk (not reported

by IBM but also known to be of the same magnitude). This aspect requires further investigation.

Observation 9: Sources other than CNOT error appear to contribute to the performance

of approximate circuits.
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Figure 3.12: Magnetization over 21 intervals of approximate circuits for 3 qubit TFIM on the
Manhattan physical machine.

3.6.5 Roadmap and Future Work

Noisy gates enable and encourage circuit approximations. We plan to extend this study and

correlate circuit behavior with commonly accepted hardware evaluation metrics, such as

gate, read-out, and cross-talk fidelity, and also “quantum volume” [Bishop et al., 2017]. This

will allow us to project the potential of approximations in the face of continuous hardware

evolution and decreasing noise. Metrics such as quantum volume capture the impact of the

relatively short chip coherence times. A “small” quantum volume indicates there are empirical

practical bounds on the circuit depth, where we can expect approximations to benefit. Finally,

best circuit selection is performed using simulation/execution and examining the result in

its specific context. In order to guide circuit generation and synthesis from first principles,

we are interested in a thorough analysis of the numerical value of different metrics (Hilbert-

Schmidt distance [Gilchrist et al., 2005], Kullback-Leibler divergence [Kullback and Leibler,

1951], Jensen-Shannon distance [Endres and Schindelin, 2003], etc.)

We are also looking into both deeper and wider circuits. QSearch begins to require a pro-

hibitive amount of search time when exposing it to more than four qubits. QFast is a little faster

and can typically work with up to six qubits, but is still restricted in the number of qubits it can

handle. The Berkeley Quantum Synthesis Kit recently acquired another method of synthesis,

QFactor [Younis, ], with the ability to synthesize circuits of up to eight qubits. QFactor may be

able to create approximate circuits in that range, but a new method of developing approximate

circuits is needed for even wider circuits.
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Figure 3.13: Magnetization over 21 timesteps of approximate circuits for 4 qubit TFIM on the
Manhattan physical machine.

One possible solution to consider is that of breaking a large program into pieces; it may be

possible to create a large circuit out of many small circuits, and we are interested in assessing if

approximate circuits also prove to be useful in such a context.

3.7 Related Work

While finding an approximate circuit is typically seen as less desirable than finding an exact

circuit, much work has been put in in an effort to finding approximate circuits. The Solovay-

Kitaev algorithm [Dawson and Nielsen, 2005] is well known to generate quantum gates which

have a specified accuracy.

Work on circuit synthesis [Davis et al., 2019, Younis et al., 2020, Amy et al., 2013, De Vos

and De Baerdemacker, 2015] is often classified as either “exact” or “approximate”. But even the

approximate algorithms often end up finding closer approximations for circuits than those we

are interested in; the small allowable error does not add enough wiggle room to take advantage

of short circuits. We are most interested in ε-approximate synthesis techniques, which can be

coarsened to find circuits which are “more approximate”. Closely related is the Quantum Fast

Circuit Optimizer (QFactor) [Younis, ], a newly developed piece of synthesis software being

distributed as part of the Berkeley Quantum Synthesis Toolkit, just as QSearch and QFast are. It

can handle a greater number of qubits than QSearch and QFast can, but is focused more on

circuit optimization than just synthesis, and works through tensor networks.
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Figure 3.14: Probability of correct results over CNOT count of approximate circuits for 3 qubit
Grover’s Algorithm on the Rome physical machine.

The Quantum Approximate Optimization Algorithm (QAOA) [Farhi et al., 2015] can also

be said to create approximate circuits, though it differs from the work done here in that there

is not a known target circuit. Much work has gone into optimizing QAOA circuits. Especially

interesting with relation to this work is the work of [Alam et al., 2020], which reorders gates in

order to reduce circuit length, similarly finding that approximate circuits with fewer CNOTs

tend to outperform approximate circuits with more.

Much more work is being done on other ways to reduce noise or circuit depth [Ding et al.,

2020, Murali et al., 2019b, Li et al., 2019, Wilson et al., 2020, Gokhale et al., 2020, Bishop and

Gambetta, 2019, Wille et al., 2016]. We are optimistic about these being able to work alongside

approximate circuits, though it is unclear whether the benefits of approximate circuits will

hold for process which require post-processing or manipulation of error levels, as these may

end up interfering with the noise which the approximate circuits rely on to perform better than

exact circuits.

3.8 Conclusion

Experimental results confirm that on NISQ devices approximate circuits have the potential to

outperform theoretically precise reference circuits. Even though these circuits would perform

worse on a perfect machine, if they are created to be similar to the reference circuits but have

fewer CNOT gates, these approximate circuits produce higher fidelity results.

48



Figure 3.15: JS distance over CNOT count of approximate circuits for 4 qubit Toffoli on the
Manhattan physical machine.

Because these improvements rely on reducing the number of CNOT gates, we see approxi-

mate circuits perform best relative to reference circuits in situations where the reference circuit

has many CNOT gates, namely by up to 60% in experiments.

We have shown that approximate circuits can show greatly increased performance, but

we have also shown that selecting the proper approximate circuit is more complicated than

comparing process metrics. At the very least, target machine noise levels need to be taken into

account. Finding a reliable way to determine the ideal approximate circuit remains an open

problem.

49



Figure 3.16: Noise report from IBM for their Toronto machine at the time of study. Different
circles represent different mappings.

Figure 3.17: JS distance over CNOT count of approximate circuits for 4 qubit Toffoli on the
Toronto physical machine showing the best performing mapping.
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Figure 3.18: JS distance over CNOT count of approximate circuits for 4 qubit Toffoli on the
Toronto physical machine showing the worst performing mapping.

Figure 3.19: JS distance over CNOT count of approximate circuits for 4 qubit Toffoli on the
Toronto physical machine showing mappings generated by Qiskit with optimization level 3.
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CHAPTER

4

COMBINING HARD AND SOFT

CONSTRAINTS IN QUANTUM

CONSTRAINT-SATISFACTION SYSTEMS

4.1 Introduction

Much like GPUs, which have become omnipresent in high-performance computing (HPC)

systems, quantum processing units (QPUs) are intended to accelerate computational kernels.

The difference is that QPUs offer the potential of solving computationally hard problems in

shorter time than would be possible via any form of classical computing—either by a constant

though polynomial factor (termed “quantum advantage”) or in a few cases even exponentially,

making classically intractable problems tractable (termed “quantum supremacy”). In today’s

age of noisy, intermediate-scale quantum (NISQ) computation [Preskill, 2018], practical ex-

periments are limited by the number of available qubits and their high susceptibility to noise.

Consequently, quantum supremacy in particular has been demonstrated to date on actual

QPUs only for problems or input sizes that lack practical applicability [Arute et al., 2019, Ped-

nault et al., 2019, Aaronson, 2019]. Nevertheless, the hope that future, fault-tolerant quantum

computers will usher in a new era of HPC makes quantum computing an area with significant
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research potential and relevance to the HPC community.

Quantum programming requires a way of thinking that is very unlike that of classical

programming and as such can have a high barrier of entry even for those already comfortable

with coding in a variety of classical computer languages. Furthermore, there is substantial

architectural variety among different quantum computers—analogous to CPUs vs. GPUs vs.

TPUs [Jouppi et al., 2018] vs. IPUs [Louw and McIntosh-Smith, 2021] vs. RDUs [Prabhakar

et al., 2022] and the like in the classical world—which frustrates the creation of a portable

programming model.

Currently, the two dominant architectural models for quantum computers are the cir-

cuit model and the annealing model. Most hardware vendors, including IBM, IonQ, Rigetti,

Honeywell, ColdQuanta, PsiQuantum, Quantum Brilliance, and many more, are basing their

products on the circuit model [Clarke and Wilhelm, 2008, Cirac and Zoller, 1995, ibm0, , rig,

2022, Wright et al., 2019]. At its core, a circuit-model program is an enormous (2n ×2n ) unitary

matrix, expressed as the product of tensor products of small (usually 2×2 and 4×4) unitary

matrices.

D-Wave [Boothby et al., 2021] is the lone vendor championing the annealing model, al-

though Fujitsu’s Digital Annealer [Aramon et al., 2019] represents a classical analogue (same

computational model but a classical rather than a quantum implementation). Although both

the circuit model and the annealing model are ultimately governed by the Schrödinger equation,

an annealing-model program is essentially a quadratic pseudo-Boolean function. The hard-

ware searches (heuristically) for the inputs that minimize this function [Boixo et al., 2012,Bacon

et al., 2013].

Being tied specifically to a particular type of optimization problem, the annealing model is

more restrictive than the general-purpose circuit model. However, the annealing model offers

an important engineering advantage: scalability. D-Wave has manufactured annealing devices

with about two orders of magnitude more qubits than what is available today for the circuit

model. At the time of this writing, D-Wave’s largest machine provides nearly 5,760 qubits, while

IBM’s largest machine provides only 127.

To date, there have been virtually no attempts to develop a high-level programming model

that bridges these two quantum computational models. Because of the popularity of the

circuit model, most programming systems target that. Some recent examples of circuit-model

programming languages are Twist [Yuan et al., 2022], Silq [Bichsel et al., 2020], Q# [Svore et al.,

2018], ProjectQ [Steiger et al., 2018],QWIRE [Paykin et al., 2017], Scaffold [JavadiAbhari et al.,

2015], and Quipper [Green et al., 2013]. D-Wave’s Ocean API [D-Wave Systems Inc., ] facilitates

the expression of annealing-model programs. All of these work at a fairly low level of abstraction.

The circuit-model systems provide mechanisms for juxtaposing small unitary matrices in a

53



large matrix product, and the annealing-model system provides mechanisms for specifying

coefficients for a quadratic pseudo-Boolean function.

A rare example of cross-paradigm quantum programming is NchooseK [Khetawat et al.,

2019, Wilson et al., 2021]. NchooseK is a domain-specific language focusing on the domain of

constraint satisfaction problems. It seeks to work at a sufficiently high level of abstraction as to

both facilitate programming, even for quantum novices, and enable execution on both circuit-

model and annealing-model devices. The fundamentals of a simplistic NchooseK abstraction

was first used for a Grover search by Khetawat et al. [Khetawat et al., 2019] and developed

further for simple constraint-satisfaction problems in a workshop paper by Wilson et al. [Wilson

et al., 2021]. Section 4.2 elaborates further, but a small example of an NchooseK program is

nck({a ,b },{0,1})∧nck({b ,c },{1}), which is interpreted as “Neither or exactly one of a and b

must be TRUE, and, simultaneously, exactly one of b and c must be TRUE.”

This paper presents a more generalized variant of NchooseK for expressing complex constraint-

satisfaction problems. Specifically, the paper makes the following contributions:

• It introduces soft constraints—constraints, which, if broken, will incur a penalty but will

not invalidate the problem. Soft constraints are crucial for expressing minimization or

maximization problems in NchooseK.

• It evaluates a larger set of NchooseK problems, including both hard and soft constraints,

than had previous been studied.

• It compares both the complexity of NchooseK and the quality of the quadratic uncon-

strained binary optimization (QUBO) expressions used as an intermediate representation

of NchooseK, by comparing them to manually created QUBOs for the same problems.

• It evaluates quantum computations of much larger scale in today’s terms than previous

work—of up to 65 qubits on the IBM gate-based machines, utilizing every qubit on the

ibmq_brooklyn [IBM Quantum Services, ], and 1163 qubits on the D-Wave quantum

annealers, even within a range where correct answers were potentially no longer found.

4.2 Background

NchooseK is a programming paradigm based on expressing constraint-satisfaction problems

over a set of boolean variables. Each constraint in a problem specification takes the form,

“Given a variable collection of size N , a specified number of them, K , must be TRUE.” Before

elaborating we state some relevant definitions:
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Definition 1 (Variable collection). A variable collection comprises a number of Boolean vari-

ables in which variables can be repeated, but order does not matter. Its cardinality is the number

of elements (which can exceed the number of unique variables due to repetitions).

Definition 2 (Selection set). A selection set comprises a set of disjoint whole numbers, none of

which can be greater than the cardinality of a corresponding variable collection.

Definition 3 (Hard constraint). An NchooseK hard constraint, written as nck(N ,K ), consists

of a variable collection N and a selection set K . It is satisfied if the cardinality of the variable

collection whose variables are TRUE equals one of the numbers in the selection set:

nck(N ,K )≡

�

∑

n∈N

n

�

∈K ,

where n ∈{0,1} and we associate FALSE with 0 and TRUE with 1.

Definition 4 (NchooseK program). An NchooseK program is a conjunction of NchooseK hard

constraints written as nck(N1,K1)∧nck(N2,K2)∧···∧nck(Nn ,Kn ). The result of executing a pro-

gram is either an assignment of Boolean values to all variables over the variable collections

such that all hard constraints are honored or an indication that no such assignment exists.

To create useful NchooseK constraints, a programmer must focus on the relationships

among variables. For example, consider a collection containing the variables a and b . The prob-

lem formulation in which a and b must both be TRUE is given by the constraint nck({a ,b },{2}).
This indicates that exactly two of a and b must be TRUE, and therefore none can be FALSE.

If they need to have the same value but it does not matter which, this would be expressed

as nck({a ,b },{0,2}). By including two numbers in the selection set, K , this constraint will be

satisfied if two variables are TRUE or if zero variables are TRUE but not if exactly one is TRUE.

If, on the other hand, the two variables need to have different values, the constraint would

be nck({a ,b },{1}), indicating that exactly one must be TRUE, and, therefore, the other must

be FALSE. If at least one of a and b need to be TRUE, the constraint would be nck({a ,b },{1,2}).
Omitting 0 from the selection set ensures that they cannot both be FALSE.

As a more complicated example, consider satisfiability problems, discussed more in depth

in Section 4.6. A satisfiability problem accepts an expression in conjunctive normal form

(conjunctions of unions of possibly negated variables) and reports whether there exists a

variable assignment that makes the expression TRUE. “(v1∨v2∨¬v3)∧(¬v2∨¬v3∨v4)
?= TRUE” is

an example of a 3-SAT problem, which is a satisfiability problem in which each clause contains

at most three variables. For a single 3-SAT clause (x ∨ y ∨z ) to be TRUE, at least one of the three
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variables must be TRUE. This is expressed in NchooseK with the constraint

nck({x , y ,z },{1,2,3}) .

This constraint is illustrated graphically in Figure 4.1.

x

   

1, 2, 3

y z

Figure 4.1: A visual representation of a 3-SAT clause with the variables x , y , and z . The nodes
represent the Boolean variables, and the box indicates the constraint.

4.3 Related Work

A number of quantum circuit languages are being developed, either as standalone languages

or as embedded domain-specific languages. These include Q# [Svore et al., 2018], Twist [Yuan

et al., 2022], Silq [Bichsel et al., 2020], ProjectQ [Steiger et al., 2018],QWIRE [Paykin et al., 2017],

Scaffold [JavadiAbhari et al., 2015], and Quipper [Green et al., 2013]. D-Wave’s Ocean API [D-

Wave Systems Inc., ] likewise functions as a language for their annealing devices and simulators.

While not a language per se, Xanadu’s PennyLane is a quantum machine-learning software

package designed to work across a number of circuit-model systems [Bergholm et al., 2018].

In contrast to those efforts, which target a single computational model apiece, NchooseK

programs run unmodified on both annealing-model and circuit-model machines.

XACC [McCaskey et al., 2020] is a software infrastructure that can interface to multiple

hardware platforms, including both circuit-model and annealing-model systems. It enables

classical programs to embed blocks of quantum code, e.g., written in Quil [Smith et al., 2017],

and designate a quantum computer on which to run it. The primary difference with NchooseK

is that NchooseK raises the level of abstraction above that of the underlying form of quan-

tum computation, enabling true portability across computational models. XACC, in contrast,
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enables a program to integrate circuit-model-specific code that runs only on circuit-model

quantum computers and annealing-model-specific code that runs only on quantum annealers.

Despite defining its own intermediate representation, XACC is not designed to run any given

piece of code on both circuit-model quantum computers and quantum annealers. Another dif-

ference between the two systems is that one can program in NchooseK without any knowledge

of quantum computing while XACC programmers must be familiar with at least one quantum

computational model.

The closest related work to ours is Wilson et al. [Wilson et al., 2021], which introduces

NchooseK for hard constraints. However, their work lacks soft constraints, which are essential

for generalizing NchooseK’s applicability to maximization and minimization problems. Our

work not only fills this gap but also presents a problem complexity analysis, considers symmet-

rical constraints in doing so, and more thoroughly evaluates success characteristics through

an empirical study involving both quantum circuit and annealing devices.

4.4 Soft Constraints

In this work we propose a generalized NchooseK model that additionally supports soft con-

straints: constraints whose satisfaction is desired but not required. To motivate the need for

soft constraints we consider an example of a problem that cannot be expressed in the existing

NchooseK paradigm. We attempt to solve this problem first using only hard constraints and

then, after showing how that fails, including soft constraints to make the problem expressible.

4.4.1 Problem requirements and initial formulation

Minimum Vertex Cover is a well-known graph problem: Given an undirected graph G = (V ,E ),

a vertex cover is a subset of vertices W ⊆V such that each edge in E is connected to at least

one member of W . The Minimum Vertex Cover is the smallest W in cardinality that meets this

requirement.

The first step in solving any NchooseK problem is deciding what the variables should

represent. Because the solution to a Minimum Vertex Cover problem is formulated in terms of

vertices, we associate one variable per vertex such that the variable is TRUE if and only if the

corresponding vertex is in W .

4.4.2 Setting up the vertex cover

As a running example, consider the graph in Figure 4.2, which has five vertices and five edges.
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a

b
c
d
e

Figure 4.2: A graph of 5 vertices for reference

Consider first a smallest possible subgraph, e.g., the graph G ′= ({a ,b },{(a ,b )}). For G ′, we

can easily determine a minimum vertex cover immediately by expressing the problem with the

constraint nck({a ,b },{1}). This ensures that exactly one of the two variables will be TRUE and

gives W a cardinality of 1.

An inductive step is non-trivial. If we add to G ′ vertex c and edges (a ,c ) and (b ,c ), the re-

sulting constraints, nck({a ,c },{1}) and nck({b ,c },{1}), cannot both be satisfied. For instance, if

a ∈W then a is TRUE. In this case, b and c must both be FALSE by the constraints nck({a ,b },{1})
and nck({a ,c },{1}), which ensure that exactly one of the variables in the collections is TRUE,

and a must have the same value in all NchooseK constraints within the same program. This

leaves the constraint nck({b ,c },{1}) unsatisfiable.

Instead, we need to refine our original constraint to allow both variables to be TRUE if

necessary. Using nck({a ,b },{1,2}), as illustrated in Figure 4.3, not only expresses a constraint

that finds a vertex cover for our minimal subgraph but can be extended over the entire graph

to ensure that a solution can be found.

a

  

1, 2

b

Figure 4.3: A single edge in a vertex cover. Each node corresponds to a vertex in the original
graph and a variable in the NchooseK program. The box represents an NchooseK constraint.
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The refined NchooseK program for five vertices is

nck({a ,b },{1,2})∧nck({a ,c },{1,2})∧nck({b ,c },{1,2})∧nck({c ,d },{1,2})∧nck({d ,e },{1,2}) ,

and this is illustrated in Figure 4.4. Unfortunately, this program is incorrect in that it will be

a

  

1, 2

  

1, 2

b

  

1, 2

c

  

1, 2

d

  

1, 2

e

Figure 4.4: A full vertex cover representation in NchooseK. This will be satisfied by every valid
vertex cover.

satisfied by any vertex cover of the graph in Figure 4.2, not necessarily a minimum vertex

cover. The problem is that NchooseK requires all constraints to be met, but this is not generally

possible in a minimization or maximization problem.

4.4.3 Minimization via soft constraints

To find specifically a minimum vertex cover we propose generalizing NchooseK to support soft

constraints in addition to its existing hard constraints:

Definition 5 (Soft constraint). An NchooseK soft constraint, written as nck(N ,K ,soft), acts as

a desired but not required constraint.

Definition 6 (Generalized NchooseK program). A generalized NchooseK program is a conjunc-

tion of NchooseK hard and soft constraints written as nck(N1,K1)∧nck(N2,K2)∧nck(Ni ,Ki )∧
nck(Ni+1,Ki+1,soft)∧nck(Ni+2,Ki+2,soft)∧nck(Nm ,Km ,soft). The result of executing a program

is either an assignment of Boolean values to all variables over the variable collections such that

all hard constraint are honored and the number of satisfied soft constraints is maximized; or

an indication that no such assignment exists.
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In short, the semantics is that an NchooseK program execution will satisfy all hard con-

straints (or fail if this is not possible) and as many soft constraints as it can.

For a minimization problem, one wants as few variables as possible to be TRUE. To this

end, one can associate a soft constraint with each variable: nck({v },{0},soft), to indicate a

preference but not a demand that v be 0. Consequently, adding the following constraints to

our Minimum Vertex Cover program requests that the solution represent a minimum vertex

cover:

nck({a },{0},soft)∧nck({b },{0},soft)∧nck({c },{0},soft)∧nck({d },{0},soft)∧nck({e },{0},soft)

The resulting Minimum Vertex Cover program is illustrated in Figure 4.5.

a

  

1, 2

  

1, 2

 

0

b

  

1, 2

 

0

c

  

1, 2

 

0

d

  

1, 2

 

0

e

 

0

Figure 4.5: A visual representation of a minimum vertex cover represented in NchooseK. The
filled boxes with rounded corners are soft constraints and act to minimize the number of
vertices in the cover.

Conversely, if one wanted to maximize the variables in a particular problem, one could

incorporate a constraint with a selection set of one, i.e., nck({v },{1},soft). Constraints like this

are among the most common soft constraints used in solving minimization or maximization

problems, but they can take other forms as well, potentially opening up problems to more

efficient solutions. For example, with the Max Cut problem, one solution is to add an extra

variable per edge which is set up to be TRUE if and only if the edge has been cut, then add a soft

maximization constraint to each of these new variables. This works, but adds many unnecessary

variables and greatly increases the number and complexity of constraints. Another option is to

instead have a soft constraint of nck({u ,v },{1},soft) to every edge. This expresses a preference

that every edge be cut, and NchooseK attempts to maximize the number of soft constraints

which have been met. This solves the Max Cut problem more efficiently.
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4.5 Implementation

One of NchooseK’s design goals is to run problems on both circuit-model devices and annealing-

model devices. The implementation of NchooseK uses a quadratic unconstrained binary op-

timization (QUBO) format as an intermediate representation. A QUBO seeks to minimize a

quadratic equation in which every term comprises either one or two binary variables and a

real, constant coefficient. These equations are of the form

f (xxx ) =
N
∑

i=1

ai xi +
N−1
∑

i=1

N
∑

j=i+1

bi , j xi x j , (4.1)

and the objective is to find a set of values for variables xxx = x1,..., xn that minimize f (xxx ).

The challenge in creating QUBOs is determining ai and bi , j coefficients such that the

values of xxx that minimize f (xxx ) correspond to the constraints of the target problem. One

feature of QUBOs that facilitates the identification of appropriate coefficients is that QUBOs

are compositional with respect to addition. If a problem can be broken into small parts before

being translated into simple QUBOs, those QUBOs can be combined via addition to form an

overall problem QUBO. NchooseK exploits this property by translating each nck constraint

individually to a QUBO, using QUBO variables to represent the NchooseK variables, before

summing all of them into a final QUBO. The NchooseK implementation finds the coefficients

of each per-constraint QUBO by expressing the coefficients in terms of a satisfiability modulo

theories (SMT) problem, which it then solves using the Z3 SMT solver [de Moura and Bjørner,

2008].

Once an NchooseK program has been compiled to a QUBO, it can be run essentially natively

on quantum annealers. NchooseK targets D-Wave quantum annealers by passing the QUBO

directly to D-Wave’s Ocean API [D-Wave Systems, Inc., a]. For circuit-model devices, NchooseK

expresses the QUBO as a problem Hamiltonian suitable for use with the QAOA [Farhi et al., 2014]

algorithm—a software analogue of the quantum-annealing process. To run on IBM Q circuit-

model quantum computers, NchooseK currently invokes the QAOA function provided by IBM’s

Qiskit library [Aleksandrowicz et al., 2019]. In either case, each QUBO variable and therefore

each NchooseK variable is represented by a qubit, with the state of that qubit corresponding to

the value of the variable in the solution. Both of these types of machines may also use additional

qubits; this is discussed in more detail in Section 4.8.

As an example, consider the (a ,b ) edge from the minimum vertex cover, constrained by

nck({a ,b },{1,2}). We translate this constraint to

f (a ,b ) =a b −a −b , a ,b ∈{0,1} (4.2)
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which is minimized when at least one of a or b has a value of 1. If both edges (a ,b ) and (b ,c )

are constrained with nck({a ,b },{1,2})∧nck({b ,c },{1,2}), this expression will be transformed

into f (a ,b )+ f (b ,c ) = (a b −a −b )+(b c −b −c ), which in turn is minimized over a , b , and c .

Soft constraints introduce additional complexity to the implementation. There is no inher-

ent distinction between hard and soft constraints in QUBOs. To incorporate soft constraints in

NchooseK we consider another property of QUBOs: a QUBO function can be scaled by any

positive real-valued factor without altering the values that minimize it. However, when multiple

QUBOs are combined, larger-in-magnitude coefficients bias the solution towards minimizing

those coefficients’ associated variables over the variables associated with smaller-in-magnitude

coefficients.

We exploit this property in order to strengthen hard constraints over soft constraints. When

creating the QUBO for a hard constraint, we multiply its coefficients by a factor of one higher

than the total weight of all soft constraints. Doing so ensures that meeting a single hard con-

straint reduces the overall value of f (xxx )more than would meeting all soft constraints. Nev-

ertheless, the more soft constraints are satisfied, the more f (xxx ) is further reduced beyond its

value from satisfying hard constraints alone.

import nchoosek

env = nchoosek.Environment()
verts = [’a’, ’b’, ’c’, ’d’, ’e’]
edges = [[’a’, ’b’], [’a’, ’c’], [’b’, ’c’],

[’c’, ’d’], [’d’, ’e’]]
for vert in verts:

env.register_port(vert)
env.nck([vert], {0}, soft=True)

for edge in edges:
env.nck([edge[0], edge[1]], {1, 2})

print(env.solve())

Figure 4.6: An NchooseK program to solve the minimum vertex cover for the graph shown in
Figure 4.2.

NchooseK is implemented as an embedded domain specific language written in Python.

Figure 4.6 shows the final vertex cover from Figure 4.5 as a runnable program. Other problems

have a similar code structure: the environment is set up, each variable needs to be registered,

then each constraint is added with the same syntax as described in this paper. When executed,
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Table 4.1: Sample problems, each listed with its complexity class (NP-complete or NP-hard),
number of non-symmetric (different types of) constraints, total number of constraints, and
number of terms if expressed directly as a QUBO. For Exact Cover and Minimum Set Cover, n
refers to the number of the original elements and N refers to the number of subsets.

Problem Class # non-symm. NchooseK QUBO
constraints constraints terms

1. Exact Cover NP-C n n nN 2

2. Min. Cover NP-H n nN nN 2

3. Min. Vert. Cover NP-H 2 |V |+ |E | |V |+ |E |
4. Map Color NP-C 2 |V |+ |E |n |V |n 2+ |E |n
5. Clique Cover NP-C 2 n |V |2−|E | n |V |2−|E |
6. k-SAT NP-C 2 n+m nm 2+n 2m
7. Max. Cut NP-H 1 |E | |E |+ |V |

this program produces the following QUBO:

f (a ,b ,c ,d ,e ) = −11a − 11b − 17c − 11d − 5e + 6a b + 6a c + 6b c + 6c d + 6d e

This QUBO is isomorphic in the term structure to what one might create by hand, up to the

choice of coefficients, which could be chosen differently, e.g., by multiplying by a common

positive, real-valued factor.

4.6 Complexity Comparison

NchooseK is intended to be more programmer-friendly than lower-level computational models.

We therefore compare the complexity of constructing a problem using NchooseK constraints

versus directly constructing a QUBO, which is how one would normally program a quantum

annealer or set up a QAOA problem for a circuit-model quantum computer. The set of prob-

lems considered is summarized in Table 4.1. Besides distinguishing the complexity class of

problems in column 2 (NP-hard and NP-complete), we assess at the number of non-symmetric

constraints (column 3) to demonstrate the simplicity of setting up a problem using NchooseK

as opposed the less intuitive and error-prone task of formulating a QUBO with changing co-

efficients dependent on problem size. We observe that problems either fall into the group

of (a) constant (1 or 2) or (b) linear non-symmetric constraints relative to their input, which

illustrates the ease of programming with the NchooseK abstraction.

Definition 7 (Symmetric Constraints). Two NchooseK constraints are considered symmetric
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with one another if they have the same selection set and their variable collections have the

same cardinality.

For example, the constraints nck({a ,b ,c },{0,2}) and nck({b ,c ,d },{0,2}) are symmetric, but

nck({a ,b ,c },{0,2}) and nck({b ,c ,d },{1,2}) are non-symmetric, as are nck({a ,b ,c },{0,2}) and

nck({b ,c },{1,2}).
When simpler to express a problem, we consider two-local Ising Hamiltonians, in which

the variables have values of −1 or 1, as opposed to QUBOs, in which the variables have values

of 0 or 1. A simple linear transformation maps between the two problem forms.

Columns 4 and 5 indicate the worst-case complexity of problem formulations as NchooseK

constraints vs. as QUBOs, respectively. In most cases, the number of constraints generated by

NchooseK is lower than the number of equivalent QUBO terms, often reduced by at least one

polynomial order with few a few exceptions (minimum cover, clique cover), again a reflection

of NchooseK’s conciseness as an abstraction.

4.6.1 Number of terms and number of constraints

Exact set cover The exact cover problem, which is NP-complete, is covered in depth in a

related workshop paper [Wilson et al., 2021] and will be described only briefly here. Given a

set E and a set S of subsets of E , find a subset of S such that every element of E is included

exactly once. This can be solved with NchooseK by adding a constraint for each element of E

with a variable collection containing a variable corresponding to each subset which contains

that element, and a selection set of {1}.
For an exact cover problem with n elements and N subsets, NchooseK requires n con-

straints, all of which may be non-symmetric and could have a variable collection cardinality of

up to N . To formulate the QUBO directly one can adapt the Ising Hamiltonian

HA =A
n
∑

α=1

 

1−
∑

i :α∈Vi

xi

!2

along the lines of Lucas [Lucas, 2014], where α refers to an element and Vi refers to subset i .

The factor A may be omitted (A = 1) in this context. With this equation, removing constant

terms and x 2
i terms (because xi =−1 or 1, which becomes the constant 1 when squared), we

have at least n terms, but realistically would encounter more constraints as a problem where

each element is only in one subset would be trivial.

If an element is included in m subsets, however, that element alone would introduce

m (m +1)/2 terms. This direct formulation has a worst-case complexity of nN (N +1)/2 or
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O (nN 2) compared to only O (n ) for NchooseK. Both formulations have the same best case.

Minimum set cover The minimum set cover is NP-hard and is the same as the exact cover

problem with two key differences: each element of E can be in the solution multiple times,

and the goal is to find the smallest subset of S which contains every element of E . This needs

the same number of constraints using the same variable collections as the exact set cover, with

the selection set now containing every positive integer up to the cardinality of the variable

collection. It also requires one soft constraint per subset in order to minimize the number of

subsets in the cover.

Both NchooseK and the QUBO formulation for this problem are set up initially as in the exact

cover, but require n additional terms to express the minimization; the worst-case complexity is

therefore unchanged. It should be noted that in this case these additional terms in the QUBO

can be combined, but two different coefficients for these terms need to be chosen and balanced

against each other.

Minimum vertex cover For the minimum vertex cover, an NP-hard problem described in

Section 4.4, the NchooseK solution requires |E | hard constraints and |V | soft constraints. The

corresponding Hamiltonian is formulated as the QUBO

H =A
∑

u v∈E

(1−xu )(1−xv )+B
∑

v

xv

where u and v denote vertices. This results in 3|E |+|V | terms, the same complexity as NchooseK.

The number of mutually non-symmetric constraints for NchooseK is only two; every con-

straint corresponds either to an edge of the form nck({u ,v },{1,2}) or to a vertex of the form

nck({v },{0},soft).

Map coloring The map coloring problem with n colors is another NP-complete problem

covered in depth by Wilson et al. [Wilson et al., 2021]. The solution uses one-hot encoding,

meaning it assigns n variables per vertex, with each variable indicating if the vertex has the

associated color. If vertex v has color options 1, 2, and 3, it has variables v1, v2, and v3. If v1 is

TRUE, the other two will be FALSE, and vertex v will have color 1. We need one constraint per

vertex to ensure that the vertex has only one color. The variable collection contains n variables,

one for each color, and the selection set is {1}. This problem also requires n constraints per

edge. For these constraints, the variable collection contains two variables corresponding to the

same color on each of the vertices the edge is connecting. The selection set is {0,1}, ensuring

that two adjacent vertices do not share a color: nck({ui ,vi },{0,1}). Every constraint in the map
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coloring problem will be symmetric with one of these two types.

Our NchooseK solution therefore requires |V |+n |E | constraints. A QUBO using the same

one-hot encoding scheme is

∑

v

�

1−
n
∑

i=1

xv,i

�2

+
∑

(u v )∈E

n
∑

i=1

xu ,i xv, j

This uses |V |n/2(n +1)+ |E |n terms, leading to O (|V |n 2+ |E |n ) compared to NchooseK’s

O (|V |+ |E |n ). This same trend is seen any time one-hot encoding is used; if n designations are

used between V vertices, the QUBO results in O (V n 2) terms while NchooseK uses only O (V )

constraints.

Clique cover The clique cover problem is NP-complete. It requires the coloring of a graph with

n colors such that the nodes of each color form a clique within the color. As in the map coloring

problem, the solution to this problem requires one-hot encoding with one constraint per vertex.

It also needs n constraints per edge absent from the graph to ensure that two vertices that are

not adjacent do not share a color, similar to the constraints in the map coloring problem. It

also needs only two types of non-symmetric constraints.

The clique cover solutions are nearly identical in terms of NchooseK constraints and QUBO

terms. Both depend on the number of possible edges not included in E . This is enumerated as

|V |(|V |−1)/2−|E |. In both cases, the solution requires O (n |V |2−|E |) terms or constraints.

k -satisfiability The NP-complete k -satisfiability problem establishes m constraints over

n boolean variables, each constraint of cardinality k . One or more variables per constraint

must have the value of either TRUE or FALSE specified by the constraint. This is similar to how

NchooseK constraints are built, with one major exception: NchooseK requires either twice as

many variables or much more complicated constraints. The satisfiability constraints can force

variables to be either TRUE or FALSE in their constraints without treating them any differently,

but NchooseK does not have that capability.

One solution is to create one ancilla variable per original variable, where the ancilla has the

opposite value, for example x and¬x . These need a constraint to ensure that they have opposite

values, with a selection set of {1}. Furthermore, one constraint is required per satisfiability

constraint with the same variables in the variable collection. The selection set contains every

positive integer up to and including k , as seen in Figure 4.1 for 3-SAT. Using this solution, two

non-symmetric types of constraints are used.

The other solution is to create more complicated constraints. Variables can be treated dif-
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ferently from one another by inserting additional copies of them in the variable collection. For

the satisfiability constraint {x , y ,¬z }, the NchooseK specification nck({x , y ,z ,z ,z },{0,1,2,4,5})
establishes the same constraint, as all instances of z must have the same value. This approach

requires fewer NchooseK variables and fewer constraints, but the more complicated constraints

run the risk of requiring more ancillary qubits. Copying variables in this manner also changes

the number of non-symmetric constraints, giving us a worst case of k . Copying variables further

impedes simplicity of expression, which motivated the creation of NchooseK in first place.

When considering its complexity, the dual variable setup of NchooseK for a satisfaction

problem with n variables and m constraints requires n+m constraints, while the same prob-

lem with larger variable collections requires only m constraints. QUBO formulation of this

problem is more complicated. One common solution translates the 3-SAT problem into a

Maximum Independent Set problem [Choi, 2011, Gabor et al., 2019, Lucas, 2014]. This requires

k m variables, one variable for each variable within each constraint and one term per variable.

k (k −1)m/2 terms are required between the variables within constraints. Additional terms

result from each instance of TRUE/FALSE versions of the variables—if there are i constraints

with x and j with ¬x , i j terms would be needed to ensure that a variable never has more than

one value. In the worst case, this amounts to m 2k/4, giving the QUBO a worst-case complexity

of O (k m 2+k 2m ), compared to the NchooseK worst case of O (n+m ).

Maximum cut The NP-hard max cut problem is one of the simplest to express in NchooseK:

only one soft constraint is needed per edge. The variable collection contains the vertices of

the edge, and the selection set is {1}. These soft constraints ensure that as many vertices as

possible have the opposite value to their adjacent vertices. All constraints are symmetric with

one another. The max cut problem produces an equal number of NchooseK constraints and

Ising terms: O (|E |). However, conversion from Ising to QUBO increases the complexity to

O (|E |+ |V |) for this particular problem.

4.6.2 Generated versus manually produced QUBOs

As NchooseK translates to QUBOs before solving on both gate-based and annealing devices,

an important question then is how these translated QUBOs compare to handcrafted QUBOs

for the same problem.

QUBO creation is itself computationally difficult. NchooseK uses the Z3 SMT solver [de Moura

and Bjørner, 2008] to map an individual constraint to a QUBO. For every problem discussed in

this paper with the exception of the satisfaction problem and minimum set cover, the QUBO

used in NchooseK is the same as the handcrafted QUBO for that problem. This holds regardless
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of problem size for three reasons:

• NchooseK converts each constraint individually. In most of the problems discussed here,

extending the problem means adding additional symmetric constraints (e.g., nck({a ,b },{0,1})
and nck({c ,d },{0,1})). These additional constraints will be converted to QUBOs with the

same performance as the previous ones.

• QUBOs are compositional. Two constraints which have been converted into QUBOs are

combined with simple addition, meaning that the number of constraints used has no

effect on the efficacy of the conversion.

• Constraints with a selection set of {1} are trivial to convert to a QUBO, even for large vari-

able collections. No efficacy of conversion is lost for those problems in which extending

the problem likewise extends the size of the variable collection, such as adding additional

colors in the map coloring problem or subsets in the exact cover problem.

Discussion Many problems require the introduction of ancillary variables to enable their

expression as a QUBO. For example, the NchooseK constraint nck({a ,b ,c },{1,3}) cannot be

expressed as a three-variable QUBO; it requires a fourth, ancillary variable for an additional

degree of freedom in computing the QUBO coefficients. In the minimum set cover problem,

constraints with a large variable collection and a large selection set will occasionally have

ancillary variables added, whereas there are none in the handmade QUBO for the same problem.

Even in this case, the number of additional terms is upper-bounded by O (nN 2). Satisfiability

problems exhibit a similar difference in the number of ancillary variables between NchooseK

and handmade QUBOs.

4.6.3 Ease of construction

Setting up a problem in NchooseK is simpler and more intuitive than setting up the same

problem directly as a QUBO even though the number of NchooseK constraints is often similar

to the number of QUBO terms. This is due to the fact that constraints are often symmetric across

variable sets, and their corresponding selection sets correspond to the problem specification.

That is, a constant number of constraint forms tend to be replicated over variable permutations.

In contrast, QUBO coefficients change as problem sizes change, and for some constraints

ancillary variables may be required. It is not apparent from a problem formulation how many

ancillary variables, if any, will be required.

Wilson et al. [Wilson et al., 2021] examine the difference in creating an NchooseK and

a QUBO for the equation A⊕B =C . We reiterate their conclusions here: To write an XOR
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equation c =a ⊕b in NchooseK, the constraint nck({a ,b ,c },{0,2}) can easily be obtained by

inspection of the XOR truth table. To write the same equation as a QUBO, a number of algebraic

transformations are needed. In addition, this equation requires an ancillary variable. The final

QUBO is given by

f (a ,b ,c ,κ) = a + b + c + 4κ − 2a b − 2a c − 4aκ − 2b c − 4bκ + 4cκ , (4.3)

where κ is an ancillary variable without which f (a ,b ,c ) cannot be expressed as a QUBO.

Not only are QUBOs difficult to create by hand, but, as is apparent from Eq. 4.3, QUBOs are

also not particularly human-readable. This is especially true when ancillary variables are used.

Compared to nck({a ,b ,c },{0,2}), Eq. 4.3 is complex and obtuse.

4.7 Experimental Setup

We ran a variety of experiments on IBM’s 65-qubit circuit-based machine, ibmq_brooklyn [IBM

Quantum Services, ], and one of D-Wave’s annealing machines, Advantage 4.1 [D-Wave Sys-

tems, Inc., ]. In the case of the circuit-based machines, running the program relies on preparing

a subroutine (a Hamiltonian function known as a “phase separator”) for the Quantum Approx-

imate Optimization Algorithm (QAOA) [Farhi et al., 2014]. QAOA sequentially runs multiple

circuits—in our case, 4000 times each—which produce a single result. In contrast, the anneal-

ing machines run a single circuit multiple times—in our case, 100. Each run produces a result.

For the experiments described in this section we consider only the best (lowest-energy) result.

All problems in Section 4.6 are either NP-hard or NP-complete. They fall under three cate-

gories. (1) Problems exclusively with soft constraints (NP-hard): max cut; (2) Problems with a

mix of hard and soft constraints (NP-hard): minimum vertex cover and minimum set cover;

(3) Problems exclusively with hard constraints (NP-complete): clique cover, map coloring,

satisfaction, and exact cover. Of these problems, only those without soft constraints could be

solved by the original NchooseK abstraction prior to us adding soft constraints in this paper,

and only map coloring and exact cover had been discussed in prior NchooseK work [Wilson

et al., 2021] and only for small problems.

In the world of classical computing, metrics tend to focus on execution time. In contrast,

the noise of contemporary quantum devices forces researchers to assess which, if any, of the

provided answers are correct in the first place. To this end, we establish the following terminology

for NchooseK:

Definition 8 (Optimal, suboptimal and incorrect). An NchooseK solution over h hard and s

soft constraints is optimal if all hard and as many soft constraints as possible are satisfied; it is
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suboptimal if all hard (but less than maximum soft) constraints are satisfied; and it is incorrect

if fewer than h hard constrains are satisfied.

The rationale here is that for problems only using hard constraints, an optimal solution

requires full constraint satisfaction, but more than one optimal result may exist. For mixed

hard/soft problems, suboptimal solutions still meet all hard constraints but not the maximum

number of soft ones, which provides a solution that can be considered non-minimal.

We determined if the results with soft constraints were optimal by checking against the

Z3 solver, which solves the problems classically. For mixed problems run on ibmq_brooklyn,

results were optimal at smaller scale before becoming suboptimal and then incorrect at larger

scale. That is, there seems to be a discrete barrier to optimal solutions. Exposing the same

problems to Advantage 4.1 resulted in more suboptimal solutions than optimal ones. Because

we are more interested in optimal solutions, we report how many optimal solutions were found.

Subsequent experiments focus on how complex NchooseK problems can become before

only incorrect answers are returned. Scaling up the problems from Section 4.6, we study how the

addition of variables and constraints affects the answers obtained. The clique cover problem

and map coloring problems require many more qubits than the others. Up to the limit of these

two problems, which varies depending on the physical machine, all of the graph problems

(Minimum Vertex Cover, Max Cut, Clique Cover, and Map Coloring) are performed on the same

graphs.

We ran two different scaling studies: vertex scaling and edge scaling. For vertex scaling,

each iteration adds a clique of three vertices connected to the previous iteration by two edges

up to 33 vertices. After 33 vertices the scaling continues in larger increments until the max cut

and minimum vertex cover problems use all of the qubits on the IBM machine, and correct

(optimal/suboptimal) results are no longer found on the D-Wave system.

For edge scaling, 12 vertices are used—this is where the clique cover problem fails on

the D-Wave system. The first one to fail under vertex scaling is the clique cover problem on

Advantage 4.1. This problem initially has four cliques and 18 edges. Six or seven edges are

added each time up until 48 edges, where adding a single edge between any two disconnected

vertices would allow it to be covered by only three cliques. More edges are then added up until

63 edges, at which point adding another edge would allow it to be covered by only two cliques.

In this region, the clique cover problem is run with a target of both three and four cliques for

comparison.

For the exact cover, minimum set cover, and satisfaction problems, each problem is gener-

ated randomly in increasing size with the exact cover and minimum set cover using the same

sets and subsets. The k -satisfiability problems are all 3-SAT problems, i.e., every satisfiability

constraint contains three terms. The same problems are run on each type of machine.
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4.8 Results

4.8.1 D-Wave Advantage 4.1

Figure 4.7 presents measurements the percentage of results (y axis) that are optimal (as opposed

to suboptimal or incorrect) over the number of qubits (x axis) on the D-Wave system. With the

exception of the exact set problem, the problems with soft constraints generally perform worse

than problems exclusively using hard constraints. This is due to the fact that in mixed problems

hard constraints receive a higher bias (in terms of constraint factors) than soft constraints. This

makes the energy gap relatively small between one solution and another with an additional

soft constraint satisfied. If we, instead, reported the percentage of optimal and suboptimal

results in the y axis, mixed problems would have a higher success rate (omitted due to space).

We also observed that the total number of optimal+suboptimal solutions for mixed problems

is larger than the number of optimal solutions for hard ones using similar numbers of qubits.

Figure 4.7: Fraction of optimal results on D-Wave systems versus number of qubits.

The number of qubits and the connectivity between them for D-Wave’s annealing devices

are important considerations. First, the Advantage 4.1 system has 5,640 qubits so any problem

that requires more will not be able to be run on that machine. Second, problem variables

(e.g., nodes of a graph) are often coupled to many other variables. Given the physical qubit

graph topology of a D-Wave device, a variable may need to be mapped to a chain of qubits to
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establish these couplings. Hence, the more densely connected the problem, the more qubits are

required to represent each variable. This ratio tends to become significant for larger problems.

This explains why the number of qubits used on D-Wave systems relates not only to the

number of NchooseK variables used, but also to the number of constraints, which affect the

number of connections needed on the physical annealing device. For the clique cover, 48

variables and 18 edges requires 188 qubits, but increasing the number of edges reduces the

number of constraints for this particular problem formulation. For 37 edges, optimal results are

found again as only 132 qubits are needed. At the extreme of 63 edges, still using 48 variables,

only 52 qubits are used, increasing the success rate to 65%.

In fact, reducing the number of constraints can have as great an effect on the accuracy as

reducing the number of variables does. For the clique cover again with 48 variables, increasing

the number of constraints from 24 to 36 results in a drop in success rate from 65% to 20%.

These solutions use 52 and 55 qubits, respectively, i.e., only a small increase in the number of

qubits is imposed. Instead, if we use 27 variables and 78 constraints, 57 qubits are required with

a success rate of just 39%. Decreasing the number of variables used from 48 to 27 still results in

a significant drop in success rate because the number of constraints increases dramatically,

even though the number of qubits used is similar.

Figure 4.8: Optimal (colored tics) and suboptimal or incorrect (block × tics) results of the
QAOA problems for ibmq_brooklyn vs. number of qubits used.
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Figure 4.9: Optimal (colored tics) and suboptimal or incorrect (block × tics) results of the
QAOA problems for ibmq_brooklyn vs. circuit depth. Six failed clique cover problems were
omitted for clarity; they used circuits of depth 432, 516, 537, 676, 697, and 717.

Figure 4.10: The depth of QAOA circuits with respect to the number of constraints in the
NchooseK problem.
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4.8.2 IBM Q Brooklyn

The problems performed worse on ibmq_brooklyn than on Advantage 4.1; different problems

failed to find an optimal result at a lower number of variables and constraints than used for

annealing. Despite this, it should be stressed that using QAOA a single result is returned and

found to be optimal or not, while using an annealer the problem is considered to be solved

correctly if any of the hundred solutions returned is optimal.

As with annealing devices, the number of qubits is an important consideration when

utilizing circuit-model devices. The most obvious reason is that the machine has far fewer

qubits; no NchooseK problem with more than 65 variables can be mapped onto ibmq_brooklyn.

Another factor is that some qubits and some connections between qubits are worse than others

in terms of noise. Small problems may select the best performing qubits on a given device, while

larger ones must use more error-prone ones as the fraction of utilized qubits increases. Due to

limited qubit connectivity in the physical topology, circuit-model machines cannot directly

perform two-qubit operations on arbitrary pairs of qubits. Hence, they must frequently swap

the state of adjacent qubits in sequence to move pairwise interactions to physical neighbors.

The compiler sometimes prioritizes a shorter but lower-quality (higher-noise) path of swaps.

This affects solution quality as the number of qubits and circuit depth increase.

Recall from the discussion in Section 4.6.2 that the QUBO formulation of a problem of-

ten requires the introduction of ancillary variables. This explains why the number of qubits

sometimes exceeds the number of variables in an NchooseK problem.

Figure 4.8 depicts the number of qubits used (y axis) for problems (x axis) from Table 4.1

indicating both optimal (colored tics) and suboptimal (block × tics) results. We observe that

there is a correlation between the number of qubits and obtaining optimal results. Figure 4.9

depicts results for the same programs (x axis) over the circuit depth (y axis) measured as the

number of gates in the longest path of a single QAOA circuit with the same tic mark colors

as before. While each QAOA runs around 30 different circuits (slight variations are due to

convergence properties), these circuits differ by the parameters of the gates (qubit rotation

angles), not the type or number of gates. Circuit depth is an important considerations when

experimenting with circuit model devices. This is true not only because each gate adds a small

amount of probabilistic error (noise) to a circuit, but also because a deeper circuit needs to

stay active on the machine longer, leading to an increase in chance of qubits decohering before

results can be measured.

These two figures show the trends in correctness for the different problems. Note that the

edge study and the vertex study are both included for the map problems. This explains the

low qubit failures for the vertex cover seen in Figure 4.8: Even using few qubits, a sufficient

number of constraints will add enough complexity to the problem to cause a failure. This
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relationship between circuit depth, which can be thought of as a simplistic measure of circuit

complexity, and the number of constraints is exposed in Figure 4.10, which depicts the number

of constraints (x axis) over circuit depth (y axis) for each problem type. The general trend

shows increasing depth as more variables and constraints are added during problem scaling,

albeit at different rates per problem, i.e., in a problem-specific manner. Exceptions include the

minimum vertex cover: At 30 variables and 82 constraints, it uses 32 qubits with a depth of 245.

At 33 variables and 90 constraints, only 33 qubits are used with a depth of 199. Hence, depth is

not always related to the success rate (optimality) of results. This was also visible in Figure 4.9,

where a suboptimal solution for Max Cut at depth 172 is followed by optimal solutions at 179

and thereafter. Nonetheless, these problems scale up to mid to high teens of qubits on the IBM

device (25–100% of qubit utilization) and into the hundreds of qubits on the D-Wave device

(4–6% of physical qubit utilization).

4.8.3 Timing

Given the limitations of contemporary quantum computers in terms of qubit counts, coherence

times, control precision, resilience to noise, and qubit connectivity, raw execution time is

generally not the focus of current quantum-computing research. Nevertheless, we include a

brief summary of the time taken and the bottlenecks of running a sample of our problems. The

client-side operations for experiments described in this section were performed on a 4 GHz

Quad-Core i7 processor with 40 GB memory.

For the problems run on the IBM systems, each execution of the QAOA algorithm implicitly

submits approximately 25 to 35 jobs, the number of which does not discernibly depend on the

size of the problem. Each job comprised 4000 shots, the default for Qiskit’s QAOA, and took

between 7 and 23 seconds.

We were unable to determine any correlation between problem size and time per job.

Figure 4.11 shows a box plot of job run time (y axis) versus the number of variables (x axis) in

the original NchooseK environment.

Aside from the time spent running on the quantum computer, a job also requires computa-

tion time on the IBM server. It takes a few seconds to create, transpile, and validate a job plus

an indeterminate amount of time waiting in the queue for access to the machine. All together,

our jobs spent roughly 500 seconds on IBM’s servers, not counting communication or queue

time. This time can vary greatly, depending on how full the queue is with unrelated jobs.

On the client side, some amount of time is spent generating the QUBO and working with

the optimizer. Relative to the amount of time spent in IBM’s cloud, the time spent creating

the QUBO is not only negligible—taking a second or less—but is also overshadowed by the
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Figure 4.11: The run time of QAOA circuits with respect to the number of variables used.

variance in communication and number of jobs run, not to mention the indeterminate time

spent waiting in the job queue. Finally, the classical optimization step in the QAOA process

typically takes two to three seconds per job. All together, even a small problem takes about

500 seconds plus queueing time to solve. IBM has recently started offering the option to run

QAOA more closely tied to the IBM servers through Qiskit Runtime [Johnson and Ben-Shach,

2022], which should cut down on communication time and possibly time spent on classical

optimization.

The problems run on the D-Wave systems were submitted as a single job consisting of 100

samples. According to the D-Wave documentation [D-Wave Systems, Inc., b], each job has a

single, relatively long programming step (observed to be on the order of 15ms) in addition to the

cost of the 100 samples. The cost of a sample includes the cost of the anneal itself, a parameter

that can be defined by the user (our experiments used the default of 20µs); a readout time with

a cost that is usually 3–4 times as long as the annealing time; and an added delay between each

readout and the subsequent anneal (about 20µs each). The total time for the 100 samples is

slightly less than the time than the programming step. Finally, a few more milliseconds are
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needed for post-processing. Neglecting the time in the queue, our jobs each spent about 30ms

apiece on the Advantage system.

A large cost on the client side is the conversion of constraints to individual QUBOs. This

procedure is currently under development and is not yet optimized. Specifically, it redundantly

computes QUBOs for symmetric constraints instead of caching previously computed QUBOs.

Due to this wasted computation, the total time to compile a complete NchooseK problem to a

QUBO is 40–50x the time needed for direct (non-QUBO) solution by the Z3 solver of problems

of the size covered in this paper. After constructing the QUBO, preparing it to send to a D-Wave

system takes approximately an additional 40ms.

Figure 4.12: The run time of minimum vertex cover on Z3. Each problem was run 30 times on
a circulant graph with the indicated number of nodes.

Z3 is a highly optimized classical SMT solver, and it is able to solve each of the problems

contained here in less than three seconds. It can also solve problems much larger than can fit on
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current quantum hardware, scaling quite well. The minimum vertex cover problems we ran fit

very close to a polynomial equation as shown in Figure 4.12. However, when presenting Z3 with

problems after they have been translated into a QUBO, many of them perform quite poorly:

solving a minimum vertex cover problem with 10 vertices of degree 3 takes less than a second

while 20 vertices takes a minute and a half, and 30 vertices takes multiple hours. NchooseK’s

classical Z3 back end runs faster than either of the two quantum back ends on current quantum

hardware. However, we note that the D-Wave Advantage machine completes the optimization

step proper in a fraction of a second. This suggests that there exists opportunities to close the

performance gap between D-Wave and Z3 through additional software optimizations.

4.9 Future Work

One of the current limitations of NchooseK is its reliance on QAOA for operation on circuit-

based machines. We are investigating different methods of converting NchooseK programs into

quantum circuits. This may involve abandoning QAOA entirely for an alternative variational

quantum algorithm, or it may involve devising NchooseK-specific or problem-specific cus-

tomizations to QAOA’s problem and mixer Hamiltonians. This is the basic concept underlying

the Quantum Alternating Operator Ansatz [Hadfield et al., 2019] (a refinement of the Quantum

Approximate Optimization Algorithm that is also abbreviated QAOA). The custom mixers used

in this version of QAOA seem especially appropriate to NchooseK problems with both hard

and soft constraints.

4.10 Conclusions

NchooseK is an effective and relatively simple method of expressing and solving NP-complete

problems on both quantum annealers and circuit-based quantum computers. Our contribution

is a generalization of NchooseK to include soft constraints, which widens the scope of problems

that can be expressed to include NP-hard problems. We show that NP-complete and NP-

hard problems can be solved using NchooseK on current, noisy, intermediate-scale quantum

(NISQ) devices utilizing up to 65 qubits on IBM’s devices and hundreds of qubits on D-Wave’s

annealing devices. One contribution of NchooseK is given by its intuitive problem formulation

with (typically) only a constant or a linear number of non-symmetric constraints, whereas

manual QUBO formulations are more complex and require computing different coefficients

depending on problem size. Another contribution is that NchooseK enables a transformation

even of soft constraints into QUBOs, which make a suitable intermediate representation for
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enabling portability across the circuit model and the annealing model. QUBO generation is

fully automated, and NchooseK produces QUBOs that are comparable to those painstakingly

developed by hand.
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CHAPTER

5

CONCLUSION

Quantum computing on real hardware is still in its early stages. Improving the process of

using quantum computers is a multidisciplinary undertaking. Even while hardware is being

improved, the software has to be developed to improve both the accuracy and accessibility of

quantum devices.

In this work, we first demonstrate how software can help overcome the changeability of

qubits by measuring their error rates more closely in time to actual circuit execution than is

currently standard. We recommend increasing the frequency of error measurement.

Next, we study the feasibility of using approximate circuits in an effort to reduce the amount

of noise from qubit decoherance and gate infidelity. We show how, under noise, approximate

circuits can outperform their precise counterparts, but that the synthesis and selection of

approximate circuits must be further improved before this becomes a viable option.

Finally, we show how software can make quantum computing more accessible with the

software package NchooseK. This software both allows certain types of problems to be run on

quantum hardware without requiring a steep learning curve while allowing the same problem

to be run on both quantum annealers and gate-based quantum computers without additional

effort on the part of the programmer.

In summary, we provide evidence toward our hypothesis, as we show that by changing the

approach to program quantum computers noise is reduced to more acceptable levels and can
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further lower programmatic complexity.
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