
ABSTRACT

ZHU, YIFAN Dynamic Voltage Scaling with Feedback Scheduling for

Real-time Embedded Systems.(Under the direction of Dr. Frank Mueller).

Dynamic voltage scaling (DVS) is a promising method to reduce the power con-

sumption of CMOS-based embedded processors. However, pure DVS techniques do

not perform well for dynamic systems where the execution times of different jobs vary

significantly. A novel DVS scheme with feedback control mechanisms for hard real-

time systems is proposed in this work. It produces energy-efficient schedules for both

static and dynamic workloads. Task-splitting, slack-passing and preemption-handling

schemes are proposed to aggressively reduce the speed of each task. Different feed-

back control structures are integrated into the DVS algorithm to make it adaptable

to workload variations. This scheme relies strictly on operating system support. It

is evaluated in simulation as well as on an embedded platform. For given task sets,

simulation experiments demonstrate the benefits of this scheme with savings of up to

29% in energy over previous work. This scheme exhibits up to 24% additional energy

savings over other DVS algorithms on the embedded platform. The feedback-based

DVS scheme is further extended to be leakage aware, which considers not only dy-

namic but also static power consumption caused by leakage current in circuits. A

combined DVS, delay and sleeping scheme is proposed for architectures where static

power exceeds dynamic power in some cases. DVS is used when dynamic power dom-

inates the total power consumption, while a sleep mode is entered when static power

becomes dominant. The extended algorithm, DVSleak, shows 30% additional energy

savings on average over a pure DVS algorithm in the simulation experiment.
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Chapter 1

Introduction

Energy consumption is a major concern for today’s computer systems. For general-

purpose systems, such as desktop servers or cluster computers, energy management

is necessary due to operational cost and environment issues. For example, currently

over 25% of the total operational cost comes from air conditioning, backup cooling

and power delivery systems [48, 59]. The worldwide total power dissipation of desktop

computer processors was 160 megawatts in 1992, which increased to 9000 megawatts

in 2001 [66]. Sustained high power consumption produces excessive heat, which may

cause failure of the CPU and other hardware components. Empirical data from two

leading vendors indicates that the failure rate of a computer node doubles with every

10◦C increase [9]. The total product cost also increases since more complex cooling

and packaging designs are required to serve high energy systems. Intel estimates

that more than $1/W per CPU chip will be incurred if the CPU’s power dissipation

exceeds 35-40W [65].

For battery-powered embedded systems, efficient energy management is especially

important. Examples of such devices include Web pads, advanced personal digital

assistants (PDAs), cell phones and pocket PCs. Their peak performance demands

could exceed 500 MIPS but the power consumption of the processor core during that

peak activity should best be kept at or below 500mW [50]. Increasing battery capacity

is one solution to this problem, although no dramatic breakthrough is foreseeable right

now. Projected improvements in the capacity of batteries (5-10% annual growth rate)



2

are much slower than what is needed to support ever-increasing processor power [31].

Therefore, it becomes an urgent challenge to cut energy consumption with efficient

energy management schemes. Reducing power consumption can result in the same

order of magnitude of energy savings as the improvement of battery technology itself.

The energy consumption problem can be approached from either the hardware

perspective or the software perspective. From the hardware perspective, multiple

power states are integrated into the micro-architecture level, the circuit level, and the

device level. Some industry standards were developed, such as the Advanced Power

management (APM) specification and the Advanced Configuration and Power Inter-

face (ACPI). Today’s major microprocessor manufacturers developed their own power

management schemes in processor products, such as AMD’s PowerNow technology,

Intel’s SpeedStep technology and Transmeta’s LongRun technology. Lower power

consumption also allows more densely packed circuits, resulting in higher speed and

more affordable microprocessor chips. From the software perspective, energy manage-

ment has traditionally focused on coarse-grained power shutdown strategies, which

put the computer into a sleep or suspend state whenever the system is idle. Since

the CPU sleep state requires a high-overhead shutdown and wake-up operation, it

is not an available option in many situations. The sleep state also restricts system

functionality, resulting in slower response time for external requests. In the absence

of long idle periods in a system schedule, such a coarse-grained power management

strategy becomes infeasible. More sophisticated approaches are required, which is

one of the contributions of this thesis.

To study the power consumption problem, an appropriate power model is required.

The following power dissipation model for CMOS-based processors is widely used [48]:

P ≈ ACLV 2
ddfclk + IleakVdd + Pshort (1.1)

where P is the power dissipation, Vdd is the voltage supply, fclk is the clock frequency,

A is the activity of the gates in the system, and CL is the total capacitance seen

by the gate outputs. The first component, ACLV 2
ddfclk, is called dynamic power,

which is the power consumption of charging and discharging the capacitive load on
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each gate’s output. The second component, IleakVdd, is called static power or leakage

power, which is caused by the leakage current in the circuit. The third component,

Pshort, is the short-circuit power, which reflects the power dissipation due to short-

circuit current. Among the three components, dynamic power is the dominant factor,

while the other two can be ignored in most situations. This is the assumption of our

research, although in later chapters of this dissertation we consider systems where

the leakage power is dominant due to a trend toward lower threshold voltages.

Different solutions have been proposed to reduce the energy consumption of a

CMOS-based processor based on Equation 1.1. They include circuit redesign, clock

gating and dynamic voltage scaling [65]. Circuit redesign reduces the capacitance

CL by restructuring the logic. Clock gating partitions the circuit into different clock

domains and turns different domains on or off according to their usage requirements.

Dynamic voltage scaling lowers the supply voltage Vdd and clock frequency fclk to

reduce the dynamic power of the processor. Because of the quadratic relationship

between the supply voltage and power consumption, dynamic voltage scaling can

result in significant power reduction for processors.

1.1 Dynamic Voltage Scaling

Dynamic voltage scaling (DVS) and dynamic frequency scaling (DFS) are mecha-

nisms that dynamically change the voltage and frequency of a processor to reduce its

energy consumption. DVS and DFS are usually combined together because reduced

voltage also limits the maximum clock frequency, fmax, as shown in the following:

fmax ∝ (Vdd − Vt)/Vdd (1.2)

In this dissertation, we use DVS to refer to both dynamic voltage scaling and dy-

namic frequency scaling. Processors with DVS functionalities provide special control

registers to determine the CPU clock frequency and supply voltage. Software updates

these registers dynamically during program execution to change the CPU frequency

and voltage. Although this feature is provided by hardware, it is the software which
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decides when and how to adjust the frequency and voltage.

In contrast to previous coarse-grained energy saving solutions such as turning off

processors or I/O devices, DVS is a fine-grained energy saving mechanism. Frequency

and voltage scaling incur much less performance overhead than processor shutdown

operations. Therefore, it is possible to exploit aggressive power management policies

for DVS algorithms.

We study task-based DVS algorithms for hard real-time systems in this disserta-

tion. DVS algorithms can be either interval-based or task-based. Interval-based ap-

proaches divide the time into fixed-length intervals. DVS operation is activated only

at the beginning of each interval. Interval-based schemes are mostly used in general-

purpose systems with mixed workloads. However, interval-based DVS schemes are

not suitable for real-time systems where each task has its own timing requirement.

For example, in a periodic real-time task model, each task is described by its period

(P), deadline (d), and worst-case execution time (WCET). A violation of such timing

requirements results in either performance degradation for soft real-time systems, or

even serious consequences for hard real-time systems. Interval-based DVS schemes do

not take this per-task timing information into consideration. Deadline misses cannot

be detected until the start of the next interval. A task-based DVS approach, however,

adjusts CPU frequency and voltage on a per-task basis instead of at a fixed time in-

terval. DVS functionality is integrated into operating system schedulers so that it can

be activated each time a task is dispatched or completed. Therefore, a task-based

DVS scheme is a better solution to real-time systems than an interval-based DVS

scheme.

Real-time systems bring new opportunities as well as new challenges to DVS

algorithms. On one hand, powerful processors are often used in real-time systems

to meet the worst-case execution demands, although these demands rarely occur

in practice. System utilization is often kept at a low level to ensure operational

safety, which creates the opportunity for DVS schemes to reduce CPU frequency. On

the other hand, real-time systems expose a fundamental trade-off between energy

consumption and timing requirements. Reducing the CPU frequency results in a

slower computing speed. A specific operation may consume less power on average
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but take longer to complete. DVS algorithms need to guarantee that the timing

requirements of tasks are maintained. Power consumption is reduced while continuous

system services and quick response times are still available. In addition, frequency or

voltage switching overhead may cancel out the benefits of DVS schemes. Deploying

DVS intensively may influence the timing behavior of the system and actually result

in more energy consumption. All these issues must be considered during the design

of a DVS algorithm for real-time systems.

1.2 Motivation
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Figure 1.1: Look-ahead RT-DVS Energy for Constant/Fluctuating Workload

The potential to save energy by combining DVS techniques with operating system

scheduling has been investigated in previous work. Significant savings have been

reported for general-purpose computing systems [13, 16, 30, 40, 52, 69, 55, 15] as

well as real-time systems [19, 20, 32, 63, 53, 10, 47, 14, 2, 29]. DVS algorithms for

general-purpose systems often use various heuristics to reduce processor voltage or

frequency according to the observed system workload [69, 52, 13]. DVS for hard real-

time systems, in contrast, requires more subtle control. Timing requirements must

be considered by the DVS algorithms to determine the processor frequency.

Traditionally, hard real-time scheduling relies on a priori knowledge of the worst-
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case execution time (WCET) of a task to guarantee the schedulability of the system.

A safe upper bound on the WCET of a task can be provided through static analysis,

dynamic analysis or a combination of both [56, 51, 17, 73, 37, 18, 1, 35, 36, 12, 49, 68].

Prior experiments have shown a wide variation between longest and shortest execution

times for many actual applications. For example, actual execution times of real-world

embedded tasks are observed to vary by as much as 87% relative to their measured

WCET [68]. Budgeting for the WCET may result in excessive energy consumption

even though actual utilization is lower than the worst case.

Also, pure DVS techniques do not perform well for dynamic systems where the sys-

tem workloads vary significantly. Many of the existing hard real-time DVS schemes

are not able to adapt well to dynamically changing workloads. For example, we

compared the energy consumption of Look-ahead RT-DVS [53] between a constant

workload and a fluctuating workload, as depicted in Figure 1.1. Both workloads

contain three periodic tasks defined as T1={3,8}, T2={3,10} and T3={1,14}, where

Ti={WCET,Period} for i = 1...3. The constant workload consists of tasks whose ac-

tual execution times (denoted by c) among different jobs are 50% of their WCET. The

fluctuating workload consists of tasks with an average execution time of 50% WCET.

Their actual execution times fluctuate between 20% and 80% of their WCET (follow-

ing variation patterns similar to Figure 7.1, discussed later). Figure 1.1 demonstrates

that, in the worst case, Look-ahead RT-DVS degrades up to 40% for the fluctuat-

ing workload. More adaptable DVS schemes are required for these workloads with

dynamic changing execution times.

1.3 Contributions

In this thesis, we develop and evaluate a novel DVS technique for dynamic work-

loads, considering practical design and implementation issues. The novel contribu-

tions of this thesis over previous work include:

• A feedback-based DVS framework for dynamic workloads with hard real-time

requirements. A feedback controller is integrated into the DVS scheduler to
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achieve better adaptivity for dynamic task sets with fluctuating execution times.

The speed of the processor is adjusted dynamically by the operating system.

The feedback technique enables the system to select the appropriate frequency

and voltage settings so that energy consumption is significantly reduced. It

also helps guarantee the timing requirements of hard real-time tasks so that

deadlines are not missed. Different feedback control structures are evaluated

in our implementation. To the best of our knowledge, this is the first study of

feedback control techniques exploiting DVS for hard real-time systems.

• A combined intra-task and inter-task DVS scheme. In contrast to compiler-

directed intra-task DVS algorithms where the speed of a task is changed multiple

times during program execution, the combined intra-task and inter-task DVS

scheme presented in our work divides the execution budget of a task into at most

two portions. Keeping the first portion at a low speed makes our algorithm more

aggressive than a pure inter-task DVS algorithm. Changing the speed at most

once for each task incurs lower overhead than that of a pure intra-task DVS

algorithm.

• Slack passing and preemption-handling schemes for DVS schedulers. These

schemes ensure the timing requirements of hard real-time tasks. They follow

a greedy policy by passing as much slack as possible to scale the next running

task. It speculates on the early completion of each task to aggregate unused

slack for other tasks. When preemption occurs, the preempted task relinquishes

its remaining slack and passes it on to the next task, while reserving enough

slack in the future to avoid deadline misses. Different slack reservation schemes

are studied to ensure the schedulability of the system.

• The implementation of our feedback DVS scheme in simulation, as well as the

evaluation on a real embedded platform. For task sets with different dynamic

execution time patterns, simulation experiments demonstrate the benefits of this

scheme with energy savings of up to 29% over previous work. The evaluation

on an embedded platform exhibits up to 24% additional energy savings over
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other DVS algorithms. The comparison of synchronous and asynchronous DVS

switching shows that the energy saving under asynchronous switching is not as

significant as expected. The experimental results reveal that the V 2f power

model (Equation 1.1) works well for DVS performance analysis.

• An extension of the feedback-DVS scheme to embedded architectures where the

dynamic power is not dominant. An combined DVS and leakage control scheme

is presented to save both static and dynamic power. It automatically alternates

between a voltage-scaling mode and a processor sleep mode, according to the

execution scenario of tasks. Simulation experiments show that the combined

DVS and leakage control scheme saves 15% additional energy on average over

a pure sleep policy and 30% additional energy on average over a pure DVS

algorithm.

1.4 Dissertation Outline

The remaining chapters are structured as follows. In Chapter 2 we present related

work. Chapter 3 gives an overview of the proposed feedback-DVS framework. We de-

scribe in detail the voltage-frequency selector in Chapter 4, and the feedback controller

in Chapter 5. Chapter 6 gives an algorithmic description of the DVS framework, as

well as some examples. Chapter 7 presents simulation results to demonstrate the per-

formance of our feedback-DVS scheme under different workload conditions. Chapter

8 evaluates our algorithm on an embedded platform. Chapter 9 discusses the leakage

power issue and proposes a leakage-aware DVS scheme. Chapter 10 summarizes this

research and indicates future work.
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Chapter 2

Related Work

The proposed feedback-DVS frame combines feedback real-time control with dy-

namic voltage scaling techniques. In this chapter we describe some of the related

research work.

2.1 Dynamic Voltage Scaling

Dynamic voltage scaling has been studied by many researchers for general-purpose

systems as well as real-time embedded systems. DVS for general-purpose systems is

different from DVS for real-time systems. On one hand, general-purpose systems do

not need to maintain any workload timing requirements, which have to be guaranteed

by real-time systems. On the other hand, general-purpose systems have no knowledge

of the system’s worst-case behavior, which is usually available in real-time systems.

A DVS algorithm can be either on-line or off-line. On-line algorithms assign the

processor frequency at run-time according to the dynamic state of the system. Off-

line algorithms determine the processor frequency statically, before the execution of

the system.

Weiser et al. [69] and Govil et al. [13] are among the first researchers who pro-

pose DVS algorithms in operating systems. In 1994, Weiser et al. first proposed an

interval-based DVS algorithm to monitor CPU utilization constantly on a general-

purpose operating system. Processor frequency and voltage are adjusted at the be-
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ginning of each interval according to the CPU utilization of previous execution traces.

Govil et al. compared a number of DVS policies in a simulation environment. Their

work suggested that a simple smoothing algorithm was better than a more complex

algorithm. Since then, DVS strategies were further evaluated and extended by Pering

et al. [52] and Grunwald et al. [16]. Pering et al. examined DVS algorithms through

trace-driven simulation. Grunwald et al. evaluated DVS policies through physical

measurements. Chandrasena et al. [7] incorporated the strengths of the conventional

workload averaging technique and the rate selection algorithm. System workloads

are buffered to estimate the CPU rate until the scaling factor matches the system

quantized rates. Saputra et al. [61] presented off-line compiler-directed DVS algo-

rithms based on integer linear programming to accommodate energy and performance

constraints.

The optimality of DVS algorithms is also studied in some of the previous work.

Ishihara et al. [24] proved that on a processor with a small number of discrete variable

voltages the energy consumption is minimized when the schedule contains at most two

voltage levels. The two-speed schedule is only optimal when a task’s actual execution

time can be determined statically, which is in practice not possible. When actual

execution time varies from instance to instance, a multiple-speed schedule can result

in lower energy than a dual-speed schedule. On an ideal processor with continuous

voltage and frequency levels, the energy consumption is minimized when the task runs

at a constant speed and completes exactly before its deadline. This optimality has also

been mentioned by Weiser et al. [69] and Lorch et al. [40], and been formally proved

by Yao et al. [71] and Ishihara et al. [24]. Qu [57] presented the optimality of a DVS

algorithm using a more realistic model where the voltage and frequency switching

overhead are considered. When the system’s workload requirement is known only

probabilistically, Lorch and Smith [40] showed that a constant speed is not optimal

anymore. Instead, the energy is expected to be minimized by gradually increasing the

CPU frequency as the task progresses. Xie et al. [70] explored opportunities and limits

of compile-time DVS scheduling. A mixed integer linear program formulation is used

to analyze the potential of compiler-directed DVS algorithms. One important result of

their work is that as the number of available voltage levels increase, the energy savings
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decrease significantly. Saewong et al. [60] proposed a series of voltage scaling schemes

targeting different hardware configurations and task set characteristics. Their results

show that some non-optimal schemes may be more suitable than optimal schemes

when the system has a high voltage scaling overhead.

When DVS algorithms are applied to real-time systems, timing requirements of

real-time applications pose additional challenges. Lee et al. [33] presented a branch-

and-bound algorithm to determine statically the operating frequency of real-time task

sets. Due to the complexity of the algorithm, only two frequency levels are assumed

in their model. The algorithm proposed by Liu et al. [39] derives optimal speed

functions between an upper bound and a lower bound of processor cycles. Their on-

line algorithm reclaims unused execution cycles to further reduce energy consumption.

Pillai and Shin [53] proposed a set of dynamic DVS algorithms based on traditional

hard real-time mechanisms, namely rate-monotone scheduling and earliest-deadline-

first scheduling. They extended the schedulability test of RM and EDF algorithms to

incorporate CPU frequency scaling. Static DVS, cycle conservative DVS, and look-

ahead DVS are presented. Look-ahead DVS is the most aggressive DVS scheme among

the suite of algorithms proposed. Unlike our algorithm which applies frequency scaling

to only the current task, they assumed a unified frequency scaling factor on all tasks.

In their most aggressive variant, the look-ahead technique is used to achieve extensive

energy savings by deferring as much work as possible. However, the frequency value

obtained in their algorithm is not always the lowest possible frequency for a single

task, as shown by Dudani et al. [11].

Some of the other aggressive real-time DVS schemes exploit early completion

of task executions based on statistical information of the workload under dynamic

scheduling [2] or static priority scheduling [14]. Aydin et al. discuss a series of

algorithms, which dynamically reclaim unused computation time of real-time tasks

to reduce the processor speed [4]. Energy-aware scheduling of hybrid workloads,

including both periodic and aperiodic tasks, are further investigated by Aydin and

Yang [3]. Their algorithm is based on early completion of tasks and collects idle

time up to the next task’s activation. We exploit both the idle time prior to the next

task’s activation as well as any idle slots up to the deadline of the task in the maximal
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schedule.

The idea of deriving a feasible dual-level DVS schedule from an ideal case was

first proposed by Gruian [14, 15]. It combines off-line and on-line scheduling at both

task level and task-set level. Stochastic data derived from previous task execution

traces are used to produce energy-efficient schedules. Multiple frequency levels may

be assigned to a single task. Our approach, instead, assigns at most two different

frequencies for each task. Our algorithm targets dynamic-priority scheduling while

Gruian restricts his approach to fixed-priority scheduling. Dual-speed scheduling was

also investigated by others. Zhang et al. vary the processor speed between high and

low whenever non-preemption blocking occurs [72]. Lee et al. assume an architecture

where only two physical speed levels exist [33]. Our approach considers a more gen-

eral case where multiple frequency and voltage levels are chosen by subsequent jobs of

the same task or even different tasks. Jejurikar and Gupta investigate static and dy-

namic slowdown factors for periodic tasks [26] and combine them with procrastination

scheduling [27] and preemption threshold scheduling [25]. Several of these algorithms

were compared in a unified simulation environment, SimDVS [62]. In contrast, we

measure power consumption on a concrete micro-architecture for several EDF-based

algorithms.

Last-chance scheduling without energy considerations goes back to Chetto et al.

[8]. We apply their philosophy in a DVS context. We develop a novel DVS variant

based on task splitting with exactly two parts. Such a dual-speed approach aggres-

sively reduces power consumption if the first subtask is fully utilized while the second

subtask never executes. Our feedback approach triggers this behavior, which is supe-

rior to Gruian’s step-wise increase of frequencies with a stochastic approach.

2.2 Feedback Real-time Scheduling

There have been a number of efforts of applying feedback techniques on general-

purpose control systems. Only recently did researchers begin to incorporate feedback

control to real-time scheduling theory [41, 42]. Feedback control for real-time schedul-

ing was first investigated by Stankovic et al. [64]. Real-time system performance
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specifications are analyzed systematically through a control-theoretical method. Lu

et al. [42] further proposed a feedback control real-time scheduling framework for un-

predictable dynamic real-time systems where task execution times diverge from their

worst case . Real-time system performance specifications are analyzed and satisfied

systematically through a control-theory based methodology. Dynamic models of real-

time systems are developed to identify different categories of real-time applications.

While their feedback control framework is for general purpose real-time scheduling,

our scheme focuses on feedback control schemes for reducing energy consumption of

processors.

For multimedia systems, a formal feedback control algorithm combined with dy-

namic voltage/frequency scaling technologies was first described by Lu et al. [43].

Both continuous and discrete DVS settings are exploited in their scheme to reduce

energy consumption. An adaptive set-point is used to achieve fast responses with a

stable multimedia throughput.

PID-Feedback control was also proposed for energy-aware computing in previous

work. Varma et al. [67] presented a feedback-control algorithm where the previ-

ous workload execution history is used to predict the future workload behavior by

a discrete-time PID function. The combination of the proportional, integral and

derivative parts of the PID function provides appropriate estimation across different

applications. Poellabauer et al. [54] applied a feedback loop on cache miss rates to

make more reliable predictions of future task behavior. A general energy management

scheme with feedback control was proposed by Minerick et al. [46]. An average en-

ergy usage is achieved by continuously adjusting the frequency of a processor to meet

the energy consumption goal. A PI (proportional and integral) feedback controller

is used to change the CPU frequency based on previous energy consumption. While

Varma, Lu and Poellabauer’s work target soft real-time systems and Minerick’s work

targets general purpose systems, our feedback DVS scheme focuses on hard real-time

systems where timing constraints must not be violated.
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2.3 Leakage-aware DVS Scheduling

Static power consumption caused by leakage current has incurred much attention

in recent years. Conventional DVS scheduling strategies are modified to be leakage-

aware. Lee et al. [34] proposed greedy methods to maximize the duration of idle

and busy periods based on the worst-case execution time [34]. Their algorithms are

integrated into conventional dynamic priority scheduling and fixed priority scheduling

policies. It is most useful if there are many relatively short inter-task idle periods

that can be grouped together. Since actual execution times often diverge considerably

from WCET, a conceptual busy period is interspersed with dynamic slack due to early

completion of tasks.

Quan et al. described an enhanced DVS algorithm to reduce both dynamic and

static power consumption [58]. The latest release time of each job in the task set is

computed off-line and subsequently used by an on-line scheduler. Their approach is

based on fixed-priority scheduling while ours is based on dynamic-priority scheduling.

Their online scheduler always delays the release time of a task to its latest start time

(last chance) as long as the processor is idle. Such an aggressive scheme is not always

the most energy efficient solution. In our algorithm, we make delay decisions based

upon the actual execution time of tasks via feedback, which is more energy efficient

on average.

Jejurikar at al. enhanced EDF scheduling with a procrastination algorithm [28]. A

delay interval is calculated for each task, which only considers static task information

and may result in a pessimistic schedule. Our scheme is integrated with the online

scheduler. It converts dynamic slack, generated due to the critical speed threshold or

the early completion of tasks, into idle or sleep time. Their approach also assumes

that a power manager, implemented as a controller in hardware, handles interrupts

and timers when new tasks are released. In contrast, our scheme does not require any

special hardware support except for DVS and sleep modes.

Zhang et al. presented a compiler-supported solution to reduce leakage energy

consumption [74]. Data-flow analysis is employed to identify basic blocks that do

not utilize certain functional units. Those functional units are temporarily deacti-
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vated by compiler-generated software instructions. While their solution targets micro-

architectural effects inside a processor, our approach puts the processor and all of its

resources into the sleep mode.
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Chapter 3

Feedback-DVS Framework

In this chapter, we first define the task model used throughout this work. The

architecture of the feedback-DVS framework is then described in detail for a better

understanding of the scheme.

3.1 Task Model

We use a periodic, fully preemptive and independent real-time task model [38]

in our framework. Each task Ti is defined by a triple (Pi, Di, Ci), where Pi is the

period of Ti, Di is the relative deadline of Ti, and Ci is the worst-case execution time

(WCET) of Ti, measured at the maximal processor frequency. We always assume

Di=Pi in our model. The periodically released instances of a task are called jobs.

Tij is used to denote the jth job of task Ti. Its release time is Pi ∗ (j − 1) and its

relative deadline is Pi ∗ j. We use cij to represent the actual execution time of job Tij.

Different instances of a task Ti usually has different actual execution times, which are

always bounded by that task’s worst case execution time Ci. The hyperperiod H of

the task set is the least common multiplier (LCM) among the tasks’ periods.
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Figure 3.1: Feedback-DVS Framework

3.2 Architectural Framework

Prior research on DVS for hard real-time system was primarily concerned with

guaranteeing the schedulability of the task sets while energy consumption is mini-

mized. But in a dynamic real-time environment where the task execution time varies

significantly from job to job, a DVS scheduler should be able to adapt to the ever-

changing workloads as fast as possible. One important performance metric of such a

system is how fast the DVS scheme can adjust the processor speed according to differ-

ent workloads so that energy consumption is significantly reduced. To address this is-

sue, we propose a framework called feedback dynamic voltage scaling (feedback-DVS).

In this framework, we consider the scheduling problem in hard real-time systems with

the earliest deadline first (EDF) policy. This framework is based on feedback control

that incrementally corrects system behavior to achieve its energy objective, while the

hard real-time timing requirements are still preserved. We assume that the processor

can operate at several discrete voltage/frequency levels, which reflects contemporary

processor technology with support for DVS. When there is no task running on the

processor, the processor enters an idle state at a particular voltage/frequency level,

usually the lowest voltage/frequency level on that processor.

Figure 3.1 depicts the framework of our feedback-DVS scheme. It consists of a

feedback controller, a voltage-frequency selector, and an EDF scheduler. The feedback

controller calculates the error from the difference between the actual execution time
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of a job and CA
i , the execution time of the first portion of that job (detailed in the

task-splitting scheme in the next chapter). The voltage-frequency selector chooses

a voltage/frequency level according to the error and the maximal schedule profile.

The error is used to adjust the estimation of the execution time for the next job.

The maximal schedule profile includes a running scenario of the task set from start

time 0 to the end of a hyperperiod. It is generated offline assuming each job’s actual

execution time always equals the task’s worst-case execution time. The voltage-

frequency selector uses the information in the maximal schedule profile to choose an

appropriate voltage-frequency level without causing any deadline misses. As long as

a voltage/frequency level is determined, the EDF scheduler dispatches the ready task

at that processor speed. Tasks are scheduled according to EDF policy, i.e., the task

with the earliest deadline is given the highest priority. The actual execution time of

each job is used by the feedback controller to determine the frequency and voltage for

successive jobs. The next two chapters detail the mechanism of the voltage-frequency

selector and the feedback controller in the feedback-DVS frame.
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Chapter 4

Voltage-Frequency Selector

The voltage-frequency selector is responsible for selecting a voltage-frequency pair

each time a task is scheduled. Since power consumption increases proportionally to

processor frequency and the square of the voltage [24], minimal energy consumption is

obtained by running every task at a uniform processor speed. This is only a statically

optimal solution. In a dynamic environment where a task’s actual execution time is

unknown until the task completes, it is not possible to derive the optimal uniform

speed in advance. Our objective is to approximate a close-to-optimal solution by

monitoring the actual execution time of each job. The start point of our scheme is the

following inequality, which is a modification of the standard EDF [38] schedulability

test:

α−1Ck

Pk

+
∑

i∈{1,...,n}\{k}

Ci

Pi

≤ 1 (4.1)

Here, α is a scaling factor defined as the ratio of the current processor frequency

to the maximal available frequency, i.e., α = fk/fm. Instead of scaling at a single

speed for all tasks, only the highest priority task (the task with the earliest deadline

under EDF) is scaled. All remaining tasks are modeled to execute at the maximum

frequency fm in the future with a scaling factor of 1. The motivation of scaling only

the current task is to anticipate a near-optimal solution using a greedy scheme. In the

following, we explain in detail the speed setting scheme used in our voltage-frequency
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4.1 Task Splitting

For each task, the scaling factor α depends on the total available slack when the

task is scheduled. For example, at time 0, the available slack for the first task T1

is derived from the expression 4.1 as P1(1 −
∑n

i=2
Ci

Pi
). Its α value is calculated as:

α = C1

P1(1−
Pn

i=2

Ci
Pi

)
. In order to obtain an even lower speed for each task Tk and to

make feedback control available for hard real-time systems, our scheme goes beyond

that by splitting each task into two subtasks TA and TB. These two subtasks are

allowed to execute at different frequency and voltage levels. As shown in Figure 4.1,

TB always executes at the maximum frequency level fm, while TA is able to execute

at a lower frequency level than the level without task splitting. We expect that a task

can finish its actual execution within TA while reserving enough time in TB to meet

its deadline. We can safely scale the frequency of TA using available slack before TB

executes at the maximum frequency following a last-chance approach [8]. In the next

section, we can also see that such a task splitting scheme is necessary for applying

feedback control on hard real-time systems. By splitting each task into at most two

subtasks, we incur at most one speed change to each task and therefore keep the

impact of voltage and frequency switching overhead to a minimum. Task splitting is

transparent to users. It can be implemented as a timer handler. The timer is set up

upon the dispatch of TA and triggered at the end of TA. If the task completes within
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TA or a preemption occurs, the timer can be canceled and no additional overhead will

be incurred. Only if execution cannot complete in TA will the timer go off and trigger

the DVS operation to enter the TB sub-task.

Let Ck, CA
k and CB

k be the worst-case execution cycles of task Tk and its two

subtasks, TA and TB. Let sk be the slack available to Tk when Tk is scheduled. We

have:

Ck = CA
k + CB

k ,
CA

k

α
+ CB

k = Ck + sk (4.2)

we derive α from the above equation:

α =
CA

k

CA
k + sk

(4.3)

Equation 4.3 shows that when task splitting is used, the scaling factor α depends

not only on the amount of available slack (sk), but also on the number of execution

cycles assigned to TA. In the following, we describe the methods used to determine

these two values.

4.2 Static Slack Utilization

The type of slack available during the scheduling of a real-time system falls into

two categories. One is static slack due to under-utilized system workloads. The other

one is dynamic slack due to early completion of tasks. In order to exploit these

two types of slack, we consider an actual schedule and a maximal schedule. The

maximal, schedule, or worst-case schedule, is the schedule produced by a standard

EDF algorithm when the execution time of each job equals its WCET. The actual

schedule is the actual execution scenario produced by our feedback-DVS algorithm

where the execution time of each task varies from job to job. The maximal schedule is

constructed offline in O(N) complexity, where N is the total number of jobs executed

in a hyperperiod H. The static slack is exploited by adding an idle task, Tn+1, into the

original task set to fill the gap between the actual utilization and 100% utilization.

The idle task distributes the static slack throughout the entire hyper-period. Hence,
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static slack is not monopolized by a single task but evenly distributed. This also

facilitates the online computation of static slack. The idle task has a non-zero WCET

but its actual execution time is always zero. The WCET and the period of the idle

task are chosen in such a way that the total utilization of the new task set becomes

100%. In other words,

Pn+1 = P1, Cn+1 = Pn+1(1− U), cn+1 = 0. (4.4)

Notice that any other choice of idle task periods is also legal. Most notably, the

shortest period of any task, P1, and the longest one, Pn, are interesting choices. We

consider these options since they affect the amount of static slack available for other

tasks. We choose the shortest period as the idle task’s period to ensure that there is

at least one idle task being released between any task’s invocation to provide static

slack for that task. The total static slack generated by idle task Tn+1 in the interval

[t1..t2] is denoted by:

idle(t1...t2) = Σ

t1..t2

idle slots (4.5)

4.3 Dynamic Slack Passing

Dynamic slack passing is a technique to reduce the online complexity of slack

computation. It is based on the observation that slack generated by one job is usually

not exhausted when the job completes. Instead of computing each job’s slack from

scratch, the previous job passes its unused amount of slack to the next job. That slack

is further augmented by any static idle slots between the deadline of the previous job

and the next job.

When there is no preemption, we express dynamic slack passing in terms of the

release time rij of a task Tij in the actual schedule, the initiation time Ipk, and the

worst case completion time Fpk of the immediately previous task Tpk in the maximal

schedule. The slack sij available to Tij is defined as:
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Figure 4.2: Dynamic Slack Passing

sij =















Cp − cpk if rij ≤ Ipk + cpk

Fpk − rij if Ipk + cpk < rij < Fpk

0 if rij ≥ Fpk

(4.6)

An example is depicted in Figure 4.2. Let task T1 with WCET C1 and deadline

t8 execute its jth job with an actual execution time of c1j . Assume that when T1 is

invoked at time t2, it inherits a total slack of S from its previous tasks. T1 is then

scaled to a lower frequency with that slack and completes at time t4. The difference

between C1 and c1j is the new slack dynamically generated by T1. So the total slack

available at t5 is S = S + C1 − c1j. Note that the actual execution time c1j may

be less than, equal to, or greater than the worst-case execution time C1 because of

task scaling. If C1 > c1j , Equation 4.6 just adds the slack produced by the early

completion of T1 into the total slack. If C1 < c1j , Equation 4.6, in fact, reduces the

total slack because c1j exceeds its WCET in the maximal schedule (it is feasible under

DVS as long as the available slack is not exceeded). The adjusted total slack is passed

in full or in part to the next task T2 depending on T2’s release time and deadline.

Slack beyond T2’s release time and deadline cannot be used by T2 and, therefore, will

not be passed on to it.

When task preemption exists in the schedule, slack passing is handled specially.

In the next section, we derive formulas to compute the slack for a preempted task.
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4.4 Preemption Handling

Preemption handling follows a greedy scheme in that we try to pass as much

slack as possible to scale the running task. We speculate on its early completion to

aggregate more slack for other tasks. When preemption occurs, the preempted task

relinquishes its remaining slack and pass it on to the next task, just as it does when

a task completes. But there are two differences here. First, the preempted task itself

cannot generate any slack based on its own execution at the preemption point since

the task’s completion time is unknown. Hence, no additional slack is added to its

inherited total slack. Second, the preempted task still needs some time to complete its

execution in the future. The remaining execution time must be reserved in advance

to avoid future deadline misses caused by over-exploiting slack from other tasks. At

the preemption point, the expected remaining execution time, Lij, of the preempted

task is:

Lij = Ci − cij × α−1 (4.7)

where cij is the actual execution time up to the preemption point. Our slack passing

scheme promises that the preempted task will not miss its deadline by reserving the

expected remaining execution time from its slack:

sk,r = sk − Lij (future slots) (4.8)

where sk is derived from Equation 4.6 and the resulting slack sk,r is passed to the

next task.

Future slot allocation is essential to ensure the feasibility of the schedule under

DVS. Future slots will be allocated only if the maximal schedule does not have suffi-

cient slots for the preempted job between the preemption point and the job’s deadline.

We devise multiple schemes for reserving these slots.

• Forward sweep: When a task T1 is preempted and requires L1j slots in the

future, the preempting task, T2, deducts this amount from its available slack

s. If L1j > s, T2 remains without slack. If another task T3 is initiated, the

calculation repeats itself.
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Figure 4.3: Future Slot Reservation

• Backward sweep: Future slots of T1 are allocated from T1’s absolute deadline

d1 backwards. Any of the idle slots in the maximal schedule become unavailable

for other tasks, i.e., these slots are excluded in Equation 4.6.

An example is depicted in Figure 4.3. The upper time line of idle slots presents

an excerpt of the maximal schedule that depicts idle task allocations. The lower time

line shows the dynamic schedule. Upon release of T2 at time t2, T1 is preempted.

Let us assume that T1 does not have sufficient static slots (three slots) beyond t2

to finish its execution. It has to rely on future idle slots. During T2’s execution,

T3 is released. Both T2 and T3 have earlier deadlines than T1 (d2 < d3 < d1).

Subsequently, T1 only resumes after T3 completes.

Future slot allocation of T1 depends on the chosen scheme. The forward sweep

results in zero idle slack for T2 and T3 since idle slots during the tasks’ periods are

not sufficient to cover T1’s future execution budget. The backward sweep, on the

other hand, reserves the last 3 idle slots from d1 backwards. T2 and T3 have two and

one idle slots left, which makes frequency scaling still possible.

Overall, the forward sweep is not as greedy as the backward sweep in the sense

that tasks released prior to the preemption point may not be scaled due to T1’s future

slots. A forward sweep is likely to result in zero slack for the preempting task T2,

if P2 << P1, i.e., the period of T2 is much shorter than T1’s period. Fewer idle

slots are available in the forward sweep scheme, which may not suffice to cover T1’s

future requirements. The backward sweep always results in a more greedy solution

in delaying the requirements of T1 as late as possible. This is consistent with the
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observation that early completion is likely to generate slack for every task, a property

inherent to our algorithm.
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Chapter 5

Feedback Controller

This chapter first reviews the basic PID feedback control design. It then presents a

single proportional-feedback control design, a multi-input control design, and a single-

input control design for our DVS algorithm. Finally, the stability of the feedback-DVS

system is analyzed.

5.1 Basic PID Control

Equation 4.3 shows that the scaling factor α of a task Ti depends not only on the

amount of available slack but also on CA
i , the number of execution cycles assigned to

the first subtask TA. Static slack utilization and dynamic slack passing, as described

in the previous chapters, help us determine the amount of slack available for each

task. In this section, we focus on another key issue, i.e., how to determine the value

of CA
i . Since CA

i is based on the estimated worst-case execution time of the first

subtask TA, our objective is to let CA
i approximate Tij’s actual execution time cij so

that Tij can completes before it enters the second subtask TB. Most of all, when Tij’s

actual execution time cij does not exceed CA
i , all of Tij executes at a low frequency

corresponding to α. It is not necessary for Tij to switch to the maximum processor

frequency. Hence, a near-optimal energy consumption is obtained.

In real-time applications, the actual execution time cij of each task Ti often ex-

periences fluctuations over different jobs. The fluctuations may result in tendencies
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leading to higher processing demands up to some peak point and receding demands

after that point. Past work in dynamic real-time scheduling has demonstrated that

adaptive techniques derived from control theory can enhance a schedule by reacting

to tendencies in execution time fluctuations [41]. In order to devise a DVS algo-

rithm adaptive to such a dynamic environment, we integrate a closed-loop feedback

controller into our DVS systems.

Feedback control is one of the fundamental mechanisms for dynamic systems to

achieve equilibrium. In a feedback system, some variables, i.e., controlled variables,

are monitored and measured by the feedback controller and compared to their desired

values, so-called set points. The differences (errors) between the controlled variable

and the set point are fed back to the controller repeatedly. Corresponding system

states are usually adjusted according to the differences to let the system variables

approximate the set points as closely as possible.

PID-feedback control is a continuous feedback controller capable of providing so-

phisticated control response. The controlled variable can usually reach its set point

and stabilize within a short period. A PID controller consists of three different ele-

ments, namely, proportional control, integral control, and derivative control. Propor-

tional control influences the speed of the system adapting to errors, which is defined

as the difference between the controlled variable and the set point, by a pure propor-

tional gain item. Integral control is used to adjust the accuracy of the system through

the introduction of an integrator on past error histories. Derivative control usually

increases the stability of the system through the introduction of a derivative of the

errors.

The PID feedback controller can be described in three major forms: the ideal

form, the discrete form and the parallel form. Although the discrete form is often

used in digital algorithms to keep tuning similar to electronic controllers, the parallel

form is the simplest one. The integral and derivative actions are independent of the

proportional gain in the parallel form. We choose the following parallel form as the

basis of our PID feedback implementation:
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output = KP × εi + 1
KI

∫

εi dt + KD
dεi

dt
(5.1)

where KP , KI and KD are the proportional, integral and derivative parameters,

respectively, and ε(t) is the system error. The transfer function of the PID controller

in the Laplace-domain (s-domain) is given by:

GP (s) = KP + KI

s
+ sKD (5.2)

5.2 Proportional Feedback Control Design

A periodic real-time workload may exhibit a relatively stable behavior during a

certain interval of time. Thus, the actual execution time of different jobs remains

nearly constant or only varies within a very small range. For such workloads, we

use a specific PID feedback controller, which includes only a proportional control

element. We choose the value of CA
i as the controlled variable while cij is chosen

as the set point. CA
i is chosen as 50% of the WCET for the first job of each task.

While half of the task’s execution is budgeted at a low frequency, half of it is reserved

at the maximum frequency. The task can still meet its deadline, even if the worst

case is exhibited. Initially, the energy consumption may be significant and is likely to

differ from the optimal case due to inappropriate estimations of the actual execution

time. Over time, we replace CA
i with the actual execution time of the task based

on the execution time fed back after each task completion. The average value of

execution times over past executions is utilized to anticipate future CA
i portions. On

the average, this scheme allows us to complete the entire task’s budget at a low

frequency level, which closely approximates the optimal energy-saving schedule. Let

CA
ij be the anticipated worst case execution time of the first sub-task of job Tij. We

define the following equations to get CA
i,j+1, the anticipated worst case execution time

of the first sub-task of job Ti,j+1:

CA
i1 = 0.5×WCET

CA
i,j+1 = (CA

ij × (j − 1) + cij)/j, j ≥ 1
(5.3)
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where cij is the actual execution time of the jth job of task Ti. Each time a job

completes execution, its actual execution time is fed back and aggregated to anticipate

the next job’s actual execution time, which is further used to calculate an ideal scaling

factor for that task.

Although such a proportional feedback scheme only considers a pure gain adjust-

ment over the anticipated CA
i value, it works well for real-time task sets where each

task either has a constant actual execution time or it has an execution time vary-

ing within a small bounded range. For task sets with highly fluctuating execution

times, more sophisticated feedback schemes are required, which is detailed in the next

sections.

5.3 Multi-input Control Design

The proportional feedback control described in the previous section follows a pro-

portional adjustment relative to average execution times. In practice, real-time em-

bedded systems, such as audio and video playback or image processing systems, often

experience fluctuating execution times of tasks over a period of time. The fluctua-

tions may result in tendencies leading to higher processing demands up to some point

and receding demands after this peak point. In order to devise a DVS algorithm

adaptive to such a dynamic environment, more sophisticated feedback schemes are

needed. According to the objective described above, we design a feedback scheme

presented as a multiple-input (MI) control system. For every task Ti in the system,

its CA
i value is chosen as the controlled variable while its actual execution time cij

is chosen as the set point. The system error is defined as the difference between the

controlled variable and the set point, i.e.,

εij = cij − CA
ij . (5.4)

The error is measured periodically by the controller. Its output is fed back to the

feedback-DVS scheduler to adjust the value for CA
i . For n tasks in the task set, there

are altogether n feedback inputs (εij, i=1...n ) and n system outputs (CA
i , i=1...n).
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For each task Ti, let CA
ij be the estimated CA

i value for its jth job. The following

discrete PID control formula is used in our feedback-DVS scheduler:

∆CA
ij = KP × εij + 1

KI

∑

IW εij + KD
εij−εi(t−DW )

DW

CA
i,j+1 = CA

ij + ∆CA
ij

(5.5)

where KP , KI and KD are proportional, integral, and derivative parameters, respec-

tively. εij is the monitored error. The output ∆CA
ij is fed back to the scheduler and is

used to regulate the next anticipated value for CA
i . IW and DW are tunable window

sizes such that only the errors from the last IW (DW) task jobs will be considered

in the integral (derivative) term. We use DW = 1 to limit the history, which en-

sures that multiple feedback corrections do not affect one another. The three control

parameters KP , KI and KD adjust the control response amplitude and its dynamic

behavior with great versatility. It is therefore important to choose and tune these

parameters for the controller. The process of adjusting the control parameters is

compromised among different system performance metrics. For example, the system

may be tuned to have either a stable but slow control response, or an instable but

dynamic control response. What is preferred in our system is a sufficiently rapid and

stable control output during the entire scheduling process.

This multi-input model achieved significant energy savings as shown in Chapter 7,

but it also exhibited some drawbacks when we implemented it on real embedded plat-

forms. The multi-input control structure increases the total memory requirements of

the system, since the DVS scheduler needs to create an individual feedback controller

for every task in the task set. Each feedback controller maintains a queue structure in

order to store the execution time history of previous jobs, which requires additional

memory space proportional to the length of the queue as well as the total number

of tasks. Such per-task memory requirements limit the maximal number of tasks

an embedded system can sustain. Furthermore, the multi-input model manipulates

multiple inputs and multiple outputs simultaneously, which increases the complexity

of the scheduler design and implementation. Given the difficulty of precisely charac-

terizing the behavior of a control system, it also adds complexity to the theoretical

analysis of the system.
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In order to address the drawbacks brought by the complexity of the MI control

system, we transform the above MI model into a single-input (SI) control model in

the following.

5.4 Single-input Control Design

We now present a simplified design for the system model.

Instead of using CA
i (i = 1...n) as the controlled variable for each task Ti and

creating n different feedback controllers for n different tasks, we now define a single

variable r as the controlled variable for the entire system as:

rj =
1

n

n
∑

i=1

CA
ij − cij

cij

(5.6)

where j is the index of the latest job of task Ti before the sampling point. rj describes

the average difference between tasks’ actual execution times and their corresponding

CA
i values. Our objective is to make r approximate 0 (i.e., the set point). The system

error becomes

ε(rj) = rj − 0. (5.7)

where ε(rj) reflects the error of the entire task set and is not a function of a particular

task Ti anymore. ε(rj) is further fed back to the PID scheduler to regulate the

controlled variable r. The PID feedback controller is now defined as:

∆rj = KP × ε(rj) + 1
KI

∑

IW ε(rj) + KD
ε(rj)−ε(rj−DW )

DW

rj+1 = rj + ∆rj

(5.8)

where KP ,KI and KD are the PID parameters. IW and DW are the integral and

derivative window sizes.

When job Tij completes, we adjust the CA value for Ti(j+1) by CA
i,j+1 = rj×cij +cij,

which is used by the DVS scheduler to calculate the scaling factor α and to determine

a processor frequency and voltage for the next job. Such a single controller mechanism

is easy to implement because one feedback controller suffices for the entire system,

which reduces the complexity and overhead of the feedback DVS algorithm. It reduces



33

the memory requirement of the system since only one global feedback queue needs to

be created instead of n different queues for n different tasks in the multi-input feedback

scheme. Such a transformation simplifies the control system so that there is only one

system input ε(t) and one system output r. It eases the analysis and implementation

of the feedback controller in our scheduler. But a drawback of the model is that it

does not provide direct feedback of the CA
i value for each individual task. A zero

value of r may not necessarily imply that each task Ti’s CA
i has approximated its

actual execution time. It is only an imprecise description of the original scheduling

objective and may take longer to get the system into a stable status. But we expect

that this model still captures the characteristics of the overall system behavior and

leads to acceptable performance, which has been confirmed in our experiments. In

the following, we analyze the system to assess the stability of our control model.

5.5 Stability Analysis of the Single-input Feedback

Control

Stability is an important metric for real-time control systems. A control system is

stable if its controlled variables are always bounded for bounded input performance

references and disturbances. In order to analyze the stability of the above single-input

control model, we compute its transfer function in the Laplace domain. The transfer

function of the PID controller is defined as:

GPID(s) = KP +
KI

s
+ KDs (5.9)

The transfer function between rj and CA
i can be derived by taking derivative of both

sides of the equation 5.6:

Gr(s) = Ms (5.10)

where M = 1
n

∑n

i=1
1
ci

. Therefore, the transfer function of the entire closed-loop

feedback system can be computed as:
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GPID(s)Gr(s)

1 + GPID(s)Gr(s)
=

MKP s + MKI + MKDs2

1 + MKP s + MKI + MKDs2
(5.11)

According to control theory, a system is stable if and only if all the poles (the

denominator of its transfer function) are in the negative half-plane of the s-domain.

From Equation 5.11, we infer the poles of our system as

−MKP ±
√

MK2
P − 4MKD(MKI + 1)

2MKD

(5.12)

Note that −MKP +
√

MK2
P − 4MKD(MKI + 1) is always less than 0 when MK2

P −
4MKD(MKI + 1) > 0. Hence, all the poles are in the negative half-plane of the

s-domain. Therefore, the stability of the above system is ensured.
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Chapter 6

Algorithm and Its Correctness

This chapter presents an algorithmic description of the feedback-DVS scheme

in pseudo-code. Some examples are then given to explain the scenario when the

algorithm is applied on real-time task sets.

6.1 Algorithm Description

An algorithmic description of our feedback-DVS scheme with the PID feedback

control is given in Algorithm 1. The following notations are used in the algorithm

description:

• Tij: the j-th job of task Ti

• prev: the index of the previous job immediately scheduled before Tij

• now: the current time

• Pi: the Period of Ti

• dij: the absolute deadline of Tij

• Ci: the WCET of Ti (without scaling)

• CA
i : the anticipated worst-case execution time of the first sub-task (low fre-

quency portion) of Ti

• CB
i : the anticipated worst-case execution time of the second sub-task (high

frequency portion) of Ti



36

• cij: the actual execution time of Tij up to now (with scaling)

• KP , KI, KD: the PID parameters

• IW, DW : the integral and derivative window size

• Lij: the worst-case remaining execution time of Tij (without scaling)

• slack: the current slack of the system

• idle(t1..t2): the amount of idle slots between times [t1,t2]

• completed(t1..t2): slots of already completed tasks between times [t1,t2]

• slots(Tij, t1..t2): the amount of time slots reserved for Tij in the worst case

between times [t1,t2]

• f : the processor frequency

• fm: the maximal processor frequency

• α: the frequency scaling factor

This algorithm integrates the PID feedback scheme and preemption-handling with

future slot reservation. Only the MI control model is presented in the pseudo-code.

The SI model is implemented in a similar way. The online complexity of our algorithm

is O(n) for n tasks, because the length of slots in the maximal schedule during the

interval between the release time and deadline of the current task has to be updated

when a task is released or completes. The number of slots in this interval is bounded

by the number of tasks because only a constant number of jobs for each task and a

constant number of preemptions may occur in this interval.

Next, let us see some examples of applying the algorithm on real-time task sets.

6.2 Examples

Figure 6.1(i) is an example of a static maximal EDF schedule, constructed offline.

The example includes a task set of three tasks T1={3,8}, T2={3,10} and T3={1,14},
where Ti = {Ci, Pi} denotes task Ti’s worst case execution time Ci and its period Pi.

An idle task I={1,4} is also included in the maximal schedule to fill underutilized

processor time niches. Every task’s actual execution time is one except the first job
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Algorithm 1: Feedback-DVS
Procedure Initialization
begin

foreach Tk ∈ {T1, T2, . . . , Tn} do
CA

k ← Ck/2; Lk0 ← Ck; ti ← 0

U ← C1

P1

+ C2

P2

+ . . . + Cn

Pn

Pn+1 ← P1; Cn+1 ← P1 × (1− U)
cn+1 ← 0; slack ← 0

end

Procedure TaskActivated (Tij)
begin

if processor was idle for d then
slack ← slack − d

if Tprev was prempted/interrupted then
Lprev = Cprev − cprev × α′
slack ← slack − idle(dij ..dprev)
if Lprev > slots(Tprev, now..dprev) then

reserveprev ← Lprev − slots(Tprev, now..dprev)
allocate reserveprev in [now...dprev ]

else
if now > dprev then

slack ← slack − idle(dprev, now)
slack ← slack + idle(dprev..dij)

α′ ← min{ f1

fm
, . . . , fm

fm
| fi

fm
≥ CAij

CAij+slack
}

if α′ = 1 then
CA

ij ← 0
else

CA
ij ← slack × α′/(1− α′)

SetInterrupt(Ti, C
A
ij/α′)

SetFrequency(α′)
end

Procedure Taskcompleted (Tij)
begin

slack ← slack − cij + Ci

ε← cij − CA
ij

∆CA
ij ← Kp ∗ ε(ti) + 1

I

∑

IW ε(ti) + D ε(ti)−ε(ti−DW )
DW

CA
i,j+1 = CA

ij + ∆CA
ij

ti ← ti + 1; Li(j+1) = Ci

if reserveij > 0 then
release up to |reserveij |

end

Procedure SetInterrupt (Tij , C
A
ij )

begin
Set timer interrupt for Tij at CA

ij time units
end

Procedure SetFrequency (α′)
begin

f ← α′ × fm

end
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Figure 6.1: Discrete Scaling Levels for 3 Tasks

of T1, who has an actual execution time of two. All scheduling events (task release,

preemption, resumption, and completion) of the maximal EDF schedule are stored in

a look-up table to reduce time complexity.

Next, the task set is scheduled according to our algorithm (without the idle task).

Additional operations to calculate slack and to set the CPU frequency/voltage are

inserted at scheduling points. As shown in Figure 6.1(ii), when the first task T1 (with

the earliest deadline) is activated at time 0, its initial slack is assigned according

to Equation 4.6. The initial slack s1,0 is set to 0 since no previous task had been

scheduled. The value of idle(0..d1) is obtained from the pre-calculated maximal EDF

schedule. Then, a frequency scaling factor α is set according to Equation 4.3: α =

CA
k /(CA

k + sk). The CPU frequency is set to α ∗ fm. When the first task completes,

unused slack is adjusted and passed on to the next task according to Equations 4.7

and 4.8. The estimated value of CA
1 for the first task is updated according to our

feedback scheme. When the second task is scheduled, its slack is again determined by

Equation 4.6, this time with a non-zero slack on the right-hand side of the equation

(since the first task passes no unused slack). The frequency level is determined in a

similar way as the first task. For later task instances, the feedback scheme chooses

CA
i to approximate the task’s actual execution time. Hence, the entire task is scaled

at a low frequency level. Preemption handling, as described in Section 4.4, is also
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applied but not shown here to simplify the example.

The effect of the PID feedback scheme is shown in the following example. Consider

a task set of three tasks T1={12,32}, T2={12,40} and T3={4,65}. Let the actual

execution times of different jobs of a task fluctuate according to the execution time

pattern 1, as depicted in Figure 7.1. Figure 6.2(a) is a snapshot of the feedback-DVS

schedule for this task set without PID-feedback. Figure 6.2(b) depicts the feedback-

DVS schedule for the same task set using feedback with PID parameters CP=0.9,

CI=0.08 and CI=0.1.
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t

(b) DVS−EDF Schedule with PID Feedback

(a) DVS−EDF Schedule without PID−Feedback

Figure 6.2: Schedules: Simple and PID Feedback

We can see from the figures that the first job of T3 and the second job of T2 are

scheduled to run at a much lower frequency in the PID feedback schedule than the

one without PID-feedback. The first job of T3 with an actual execution time of 2.57

starts at time 524 in the schedule without PID-feedback, while it starts at time 520

in the PID feedback schedule. The PID feedback scheme gets an execution time of

3.06 for its CA
3,1 according to Equation 5. With the closer approximation of c3,1, the

PID scheduler is able to scale the task more aggressively than the one without PID-

feedback. Similarly, the non-feedback schedule only gets an average execution time

of 5.26 for the second job of T2, which has an actual execution time of 7.07. But

the PID feedback scheme obtains a CA
2,2 = 6.76, which is again closer to T2,2’s actual
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Table 6.1: Sample Task Set

Task Ti WCET Ci Period Pi ci ri

1 3 ms 8 ms 3 ms 0 ms
2 3 ms 10 ms 3 ms 4 ms
3 1 ms 14 ms 1 ms 4 ms
4 1 ms 20 ms 1 ms 0 ms

idle 1 ms 5 ms 1 ms 0 ms

execution time. This demonstrates the superiority of our feedback-DVS scheme in

adapting to dynamic workloads resulting in additional energy savings.

6.3 Correctness of the Algorithm

In traditional EDF scheduling, any job’s actual start time si is less than or equal

to its worst-case start time in the maximal schedule. But this is no longer the case

in our feedback-DVS schedule. Because feedback-DVS may extend a job’s execution

time to be longer than its WCET, a job’s actual start time may be later than its start

time in the maximal schedule. The next example shows a case where a job’s actual

start time exceeds its worst-case start time.

Consider the task set in Table 6.1. Its worst-case schedule with an idle task and

its actual schedule under feedback-DVS are shown in Figure 6.3(a) and Figure 6.3(b),

respectively. When task T3’s second job starts at time 12 in the actual schedule, its

absolute deadline is at time 18. There is only one idle slot between time 12 and time

18, which scales T3 at a 50% frequency level. Since T3’s actual execution time equals

its worst-case execution time, it runs for 2 time units and ends at time 14 with an

actual execution time of 2. When T4 starts execution at time 14, it has been delayed

by one time unit relative to its start time in the worst-case schedule.

We show the correctness of our feedback-DVS algorithm, by the following theorem.

Theorem 1. The feedback-DVS algorithm results in a feasible schedule for a set T

of tasks with periods equal to their relative deadlines if a feasible schedule exists for

T under EDF.
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Figure 6.3: Delayed Start of Tasks due to Scaling

We call the schedule produced by our feedback-DVS algorithm the actual schedule,

where the execution time of a task is variable for different task instances (jobs). We

call the schedule under EDF where each task’s actual execution time always equals its

WCET the maximal schedule. Let si and s+
i be Ti’s absolute start times in the actual

and the maximal schedule, respectively. We use the simplified shortcut Ti to denote

a certain jth job Tij of task Ti. Similarly, let fi and f+
i be the absolute completion

times of Ti in the actual and the maximal schedule, respectively. In order to prove

the theorem, we first prove the following lemma:

Lemma 1. The difference between a task’s start time in the actual schedule and the

maximal schedule is bounded in feedback-DVS by the following inequation:

si − s+
i ≤ idle(f+

i−1, di−1) +
∑

Tl∈[f+

i−1
,di−1];dl>di

Cl (6.1)

where idle(f+
i−1, di−1) is the length of all idle slots existing between [f+

i−1, di−1] in the

maximal schedule. Cl is the WCET of any task Tl in the maximal schedule with a

priority lower than Ti. f+
i−1 and di−1 are the completion time and absolute deadline

of task Ti−1, which is the most recently executed task before Ti.

Proof of Lemma 1 We will use induction to prove the lemma. First, consider the

highest priority task T1 as the base case. Since T1 always starts execution immediately

at its release time under both the actual schedule and the maximal schedule, we have,

s1 − s+
1 = 0. (6.2)
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Hence, the lemma holds for T1.

Now assume that a certain task Ti satisfies the lemma. We need to show that

Ti+1, the task with the next lower priority than Ti, also satisfies the lemma. We only

need to consider the case where si+1 > s+
i+1, since this is where feedback-DVS diverges

from conventional EDF. The only reason for Ti+1 to be delayed is that some higher

priority tasks are still running at time s+
i+1. Without loss of generality, we assume

that in the maximal schedule there are m (m ≥ 0) idle slots and q (q ≥ 0) lower

priority tasks in [f+
i−1, di−1], namely, Ik, Ik+1,...,Ik+m−1 and Tk, Tk+1,...,Tk+q−1. Their

WCETs are denoted by Ik, Ik+1,...,Ik+m−1 and Ck, Ck+1,...,Ck+q−1, respectively. We

have
∑k+m−1

l=k Il = idle(f+
i−1, di−1). Let Ih = idle(di−1, dh) and Ip = idle(dh, di). It

is also possible that Ti be preempted by a certain higher priority task Th during its

execution. Figure 6.4 shows a simplified case where only Ik,Ik+1 and Tk are shown

before di−1. Since both Ti−1 and Th have priorities higher than Ti, we have di ≥ di−1

and di ≥ dh. We note that at the time s+
i in the maximal schedule, all other tasks

with priorities higher than Ti must have completed, and all other lower priority tasks

will not be scheduled before f+
i . Only newly released high priority tasks can execute

in [s+
i , f+

i ] and may preempt Ti. Since the lemma holds for Ti, we have :

si − s+
i ≤

k+m−1
∑

l=k

Il +

k+q−1
∑

l=k

Cl = idle(f+
i−1, di−1) +

∑

Tl∈[f+

i−1
,di−1];dl>di

Cl (6.3)

Our feedback-DVS scheme moves Ik, Ik+1,...,Ik+m−1 and Tk backward to s+
i , and

moves the corresponding portion of Ti forward. These transformations are legal

since Ti still resides within [ri, di]. The high priority task Th is left untouched,
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because it can always preempt Ti at s+
h in the actual case, i.e., sh = s+

h . When

Ti is preempted at time sh, the forward slack reservation scheme in feedback-DVS

reserves Ci − (sh − si), the worst-case remaining execution time left for Ti, from

Tk, Ik+m−1,...forward. The backward slack reservation scheme reserves the above

amount of time from the Ip, Ih,...,backward. In either case, we denote the total

execution time of reserved slots by CR. At time s+
h , the frequency scaling decision

is made for Th. The scheduler collects all available idle slots and early completion

of low priority task slots in [s+
h , dh] in the maximal schedule excluding any slots re-

served for future resumption of preempted tasks. The final amount of slack available

for Th equals to
∑k+m−1

i=k+1 Ii + Ih +
∑k+q−1

l=k Cl − CR. Th uses the slack to scale itself

to a lower frequency and voltage level. It is equivalent to the transformations that

move the non-reserved portion of Ik+1,...,Ik+m−1,Ih and Tl backward and move the

corresponding portion of Ti forward. The result is shown in Figure 6.4(b). When

Ti resumes execution, it can be scaled again exploiting slack from the idle slots and

early-completed task slots before di. Similar transformations apply when moving Ip

backward and Ti forward. Ti releases all its unused slack when it completes and passes

it on to following tasks.

Except for the idle slots and early completion of lower priority tasks, there are

no other cases where Ti will be moved forward and thus be delayed during the above

transformations. Hence, the following inequation holds:

fi − f+
i ≤ idle(f+

i , di)− CR +
∑

Tl∈[f+

i ,di]; dl>di+1

Cl (6.4)

Because di ≥ di−1 and di ≥ dh, the aforementioned transformations never move Ti

forward beyond di. Hence, Ti will not miss its deadline after these transformations.

If the start time of Ti+1 is delayed in the actual schedule by Ti, we have: si+1 = fi

and s+
i+1 ≥ f+

i . From the above equation we get:

si+1 − s+
i+1 ≤ fi − f+

i ≤ idle(f+
i , di) +

∑

Tl∈[f+

i
,di]; dl>di+1

Cl (6.5)

Hence, inequation 6.1 also holds for Ti+1, and we proved the lemma.

Proof of Theorem 1 Lemma 1 describes a worst-case scenario. It shows that

no matter how aggressively previous tasks T1, T2,...Ti are scaled, the start time of
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the next task Ti+1 will not be delayed for more than the interval of idle(f+
i , di) +

∑

Tl∈[f+

i ,di]; dl>di+1
Cl. In such a worst case scenario, the feedback-DVS scheduler will

always set Ti+1’s speed to maximal so that Ti+1’s actual execution time will not exceed

Ci+1. Since in the maximal schedule we always have:

s+
i+1 + Ci+1 + idle(f+

i , di) +
∑

Tl∈[f+

i ,di]; dl>di+1

Cl ≤ di+1 (6.6)

From Inequation 6.5 and 6.6, we derive:

si+1 + Ci+1 ≤ s+
i+1 + Ci+1 + idle(f+

i , di) +
∑

Tl∈[f+

i
,di]; dl>di+1

Cl ≤ di+1 (6.7)

which shows that Ti+1 meets its deadline. Thus, our feedback-DVS always results in

a feasible schedule. The theorem is proved.



45

Chapter 7

Simulation Experiments

This chapter presents the simulation experiments to evaluate the performance of

the feedback-DVS scheme. Some of the experimental results are presented and the

algorithmic performance is analyzed.

7.1 Experimental Method

We evaluated the performance of our schemes in a simulation environment that

supports feedback-DVS scheduling. In order to make a comparison with our algo-

rithm, Pillai and Shin’s Look-ahead RT-DVS algorithm was also implemented [53].

We assume a processor model capable of operating at four different voltage and fre-

quency levels, as depicted in Table 7.1. Comparable frequency and voltage settings

were also used in the Look-ahead RT-DVS work [53] and the experimental work with

StrongARM processors [55]. The results discussed hereafter are also consistent in

their trends for power savings on a concrete DVS-capable architecture. In our simu-

lations, the processor enters an idle state and operates at the lowest frequency and

voltage level when no tasks are ready. We use a simplified energy model in our ex-

periment as E =
∫ t

0
fV 2. Energy values reported in the following experiments were

normalized for ease of comparison.

Altogether, 50 task sets were generated, each consisting of either 3 or 10 tasks. In

our experiments, we first investigated the performance of our scheme over fluctuating
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Table 7.1: Processor Model for Scaling

frequency voltage
25% 2 V
50% 3 V
75% 4 V
100% 5 V

workload patterns. The objective in studying different patterns is to assess the sen-

sitivity of feedback DVS to different types of execution time fluctuations, which have

been observed in interrupt-driven systems [44]. Since it is not practical to examine

every possible type of fluctuation, we constructed three synthesized execution time

patterns based on our observation of some typical real-time applications, as shown in

Figure 7.1.

In the first pattern, the actual execution time of a job starts at 50% of the task’s

WCET before spiking to a peak value cm every 10th job. The peak value cm is

randomly generated for each spike from a uniform distribution between 50% of the

WCET and 100% of WCET. After the peak value is reached, the actual execution

time of the following jobs drop exponentially (modeled as ci = 1/2(t−cm)) until it

reaches 50% of WCET again. This pattern simulates event-triggered activities that

result in sudden, yet short-term computational demands due to complex inputs often

observed in interrupt-driven systems. In the second execution time pattern, the peak

execution time cm still follows a random uniform distribution between 50% of WCET

and 100% of WCET. But the actual execution time of the following jobs initially

drops more gradually, modeled as ci = cmsin(t +π/2). This pattern simulates events

resulting in computational demands in a phase of subsequent complex inputs (with

a decaying tendency). In the third execution pattern, the actual execution time of

the jobs alternates between positive and negative peaks every 10 jobs. Both the

peak values in either direction are randomly generated from a uniform distribution

between 50% of WCET and 100% of WCET. The actual execution time of the jobs

following the peak value is modeled as ci = cmsin(t) and ci = −cmsin(t). This pattern

represents periodically fluctuating activities with gradually increasing and decreasing
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Pattern 2

Pattern 4

Pattern 3

50%WCET

50%WCET

10%WCET

50%WCET

WCET

WCET

WCET

Pattern 1
50%WCET

WCET

Figure 7.1: Task Actual Execution Time Pattern
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computational needs around peaks. For each execution time pattern, the task sets’

WCETs were uniformly distributed in the range [10,1000]. When tasks’ WCETs were

generated, each task’s period was chosen so that the worst case utilization of the task

set (i.e.,
∑

WCETi

Pi
) varies from 0.1 to 1.0 in increments of 0.1.

Both of the original multi-input (MI) feedback control model and the simpli-

fied single-input (SI) feedback control model were evaluated in our experiment. The

corresponding feedback-DVS schedulers are referred to as MI Feedback-DVS and SI

Feedback-DVS, respectively. Different combinations of PID coefficients were inves-

tigated in our experiments. It was observed that both increasing or decreasing the

proportional coefficient resulted in less accurate system estimations for CA
i . The

derivative item is less significant compared to the other two parameters. Increasing

the integral window size improves the energy saving effect in the very beginning, but

when IW becomes larger than 10, no dramatic system performance improvements

were observed. We restrict ourselves here to report results based on the PID coeffi-

cients of KP = 0.9, KI = 0.08, KD = 0.1. The derivative and integral window size

were 1 and 10, respectively.

7.2 Results

Figure 7.2 compares the energy consumption between our feedback-DVS scheme

and the Look-ahead RT-DVS scheme under the execution time pattern 1. When the

task set utilization is less than 0.3, it is observed that all schemes consume the same

amount of energy. This is because task sets with low utilization usually have enough

slack and idle slots, so that all jobs are able to be scaled to the lowest speed level. In

this case the processor always operates at the 25% frequency level and consumes the

same amount of energy for all schemes. With the increase of the worst-case utilization,

our feedback-DVS scheme started saving more energy than Look-ahead RT-DVS. MI

Feedback-DVS adapts to the changing workload better than Look-ahead RT-DVS and

costs 8% to 24% less energy than it. The maximal energy saving (24%) is observed

at 80% utilization. SI Feedback-DVS works almost as good as MI Feedback-DVS,

which shows that the simplified model still captures the dynamic system behavior
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Figure 7.2: Execution Time Pattern 1
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Figure 7.3: Execution Time Pattern 2
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Figure 7.4: Execution Time Pattern 3

and adapts to the changing workload efficiently.

Similar results can be observed for execution time pattern 2 and 3, as depicted

in Figures 7.3 and 7.4. The maximal energy saving of MI Feedback-DVS, 22% and

16%, appears at 0.5 and 0.9 utilizations, respectively. Its average energy saving over

Look-ahead RT-DVS is around 15%. SI Feedback-DVS costs a little more energy

than MI Feedback-DVS in some cases because SI Feedback-DVS usually takes longer

time to respond to tasks’ execution time variations than MI Feedback-DVS does. But

overall, SI Feedback-DVS still saves up to 20% and 19% energy over Look-ahead under

pattern 2 and pattern 3, respectively.These experiments show that our feedback-DVS

scheme is not sensitive to different patterns of fluctuating workloads.

In order to further assess the scalability of our algorithm, we generated three task

sets following execution time pattern 1, but with different baseline values. While the

pattern depicted in Figure 7.1 has a 50% WCET baseline, the other two task sets have

baselines of 75% and 25% WCET, respectively. Shifting the baseline among different

task sets also results in a change of their actual utilization. Figure 7.5 and Figure 7.6

compare the energy consumption between our feedback-DVS and Look-ahead RT-

DVS for these three task sets. The energy values are normalized to the maximal
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Figure 7.5: Multi-input Feedback-DVS, Varying Baseline
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Figure 7.6: Single-input Feedback-DVS, Varying Baseline
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Figure 7.7: 10-task vs. 3-task under Pattern 1

point of the 75% WCET baseline task set. The result shows that our scheme is able

to scale to task sets with different baselines very well. MI Feedback-DVS saved up

to 20% more energy than Look-ahead RT-DVS for the baseline of 75% WCET case.

When the baseline is 25% of the WCET, up to 29% more energy savings are observed.

The maximal energy saving appears in the task set with 25% WCET baseline since it

provides the largest range for execution time fluctuation. Similar results can also be

observed for SI Feedback-DVS. A maximum energy saving of 26% over Look-ahead

are observed at the 50% WCET baseline case. Both our schemes, MI Feedback-DVS

and SI Feedback-DVS, are able to adapt to workloads with baseline variations.

Figure 7.7 illustrates the performance of our feedback-DVS scheme by varying the

number of tasks in the task sets. We compared the energy consumption between our

algorithm and Look-ahead RT-DVS for task sets with 10 and 3 tasks. All energy

values are normalized to the maximal point of Look-ahead RT-DVS in the 10-task

set case. We notice that there is little effect of varying the number of tasks on our

scheme. Both MI Feedback-DVS and SI Feedback-DVS are able to save about the

same percentage of energy over Look-ahead RT-DVS between 10-task sets and 3-

task sets. However, a larger number of tasks tends to result in lower overall energy
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Figure 7.8: Pattern 1, Percentage of subtask(energy) in TB
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Figure 7.9: Pattern 2, Percentage of subtask(energy) in TB

consumption.

The feedback-DVS scheme obtains lower energy consumption than previous non-

feedback approaches because PID control makes most of the tasks complete within

the TA subtask without getting into the high-frequency TB portion. In order to

substantiate this claim, for each of the three task execution time patterns we measured

the percentage of jobs which get into the high frequency TB subtask, as well as the

percentage of energy consumed in the TB portion. The results, as depicted in Figures

7.8,7.9 and 7.10, show that the number of jobs which get into the high-frequency

TB portion is constrained to be less than 31% of the total number of released jobs.

The amount of energy consumed in those TB portions is even less, from 1% to 9%,

compared to the total energy consumption. When a task enters its high-frequency
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Figure 7.10: Pattern 3, Percentage of subtask(energy) in TB

TB portion, it usually completes within a very short period of time. Even if CA
k , the

execution time produced by the PID controller for the low frequency TA subtask, is

not equal to or greater than a task’s actual execution time, the difference between CA
k

and the actual execution time is still very close to its predicted value. These results

give us insight about the benefit of adding a small amount of padding to CA
k values

to improve the energy saving performance. Since most of the time CA
k is only a bit

larger than a task’s actual execution time, adding a small amount of padding on CA
k

may remove the high-frequency TB portion and reduce the task splitting overhead.

But the price we may pay for using padding is likely an increase on the total amount

of energy consumption, because padding may lead to overestimated CA
k values and

makes the algorithm less aggressive. How to choose an optimal amount of padding is

still an open question and requires further studies. Overall, these results demonstrate

the power of the PID feedback controller, which is able to adjust the system behavior

dynamically according to task workload variations.

Besides the execution time patterns listed in Figure 7.1, we also investigated task

sets with random execution characteristics, i.e., tasks’ actual execution times are

derived from a random uniform distribution. We performed this experiment in order

to assess the worst-case behavior of our algorithm for task sets with highly fluctuating

execution time patterns. Our feedback-DVS scheme resulted in similar energy savings

as Look-ahead DVS. Random execution times do not give additional benefits to our
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algorithm because the algorithm cannot supply any useful history information to the

feedback controller. This is a limitation of feedback schemes in general. Nonetheless,

even in this worst case, our feedback-DVS algorithm behaves no worse than Look-

ahead DVS.

7.3 Summary

Overall, our Feedback feedback-DVS algorithm is able to provide considerable

energy savings for different task sets. The simplified feedback control model, SI

Feedback-DVS, captures the characteristics of the overall system behavior and leads

to acceptable performance comparable with MI Feedback-DVS. Feedback control in

conjunction with DVS scheduling makes the system more adaptive to dynamically

changing workloads and saves more energy than less adaptive schemes.
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Chapter 8

Real Architecture Evaluation

In order to evaluate the energy saving potential of our algorithm in an actual sys-

tem as opposed to a simulation environment, we implemented our feedback DVS al-

gorithm as well as several other DVS algorithms, namely static DVS, cycle-conserving

DVS, look-ahead-1/2 DVS (all by Pillai and Shin [53]), DR-OTE and AGR-2 (by Ay-

din et al. [2]) on an embedded development board. Look-ahead-1 and look-ahead-2

are the original and a modified version of the look-ahead DVS algorithm in [53], re-

spectively. Look-ahead-1 updates each task’s absolute deadline immediately when a

task instance completes. Look-ahead-2 delays such updates till the next task instance

is released, which results in additional energy savings. AGR-2 follows the most ag-

gressive scheme with an aggressiveness parameter k of 0.9. In these experiments, we

use simple feedback on constant workloads and single-input PID feedback for dynamic

fluctuating workloads, if not stated explicitly. We compared the energy consumption

as well as DVS overhead of different algorithms. We also wanted to determine if the

lower frequencies and voltages chosen by our feedback scheme outweigh the higher

computational overhead required to make scheduling decisions.

8.1 Platform and Methodology

The embedded platform used in our experiment is a PowerPC 405LP embedded

board running on a diskless MontaVista Embedded Linux variant, which is based on
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the 2.4.21 stock kernel but has been patched to support DVS on the PPC 405LP.

This board provides the hardware support required for DVS and allows software to

scale voltage and frequency via user-defined operation points ranging from a high

end of 266 MHz at 1.8V to a low end of 33 MHz at 1V [50, 6, 21]. The board

has also been modified for 50% reduced capacitance, which allows DVS switches to

occur more rapidly, i.e., switches are bounded by at most a 200-microsecond duration

from 1V to 1.8V. The DVS algorithms (static, cycle-conserving, look-ahead [53] and

our feedback DVS) were exposed to the DVS capabilities of the 405LP board. The

scheduling algorithms can choose any frequency/voltage pair from the set depicted in

Table 8.1.

This set of pairs was constrained by a need to have a common phase lock loop

(PLL) multiplier of 16 relative to the 33MHz base clock, and a divider of two or any

multiple of 4. Changing the multiplier incurs additional overhead for switching, which

we wanted to eliminate in this study. A dynamic power management (DPM) facility

[6] is developed as an enhancement to the Linux kernel to support DVS features.

DPM operating point defines stable frequency/voltage pairs (as well as related system

parameters), which we experimentally determined.

In order to assess power consumption, we need to monitor processor core voltage

and current at a high rate. Hence, we used a high-frequency analog data acquisition

board to gather data for (a) the processor core voltage and (b) the processor current.

The latter was measured as a voltage level over a resistor with a 1V drop per 360mA.

Power consumption was computed by multiplying the CPU voltage with its current.

The data acquisition board allowed us to experiment with longer-running applications

to assess the energy consumption of the processor, which is the integration of power

over time. We also employed an oscilloscope for visualizing the voltages and currents

Table 8.1: Valid Frequency/Voltage Pairs

Setting 0 1 2 3 4
CPU freq. (MHz) 33 44 66 133 266
bus freq. (MHz) 33 44 66 133 133

CPU voltage (Volts) 1.0 1.0 1.1 1.3 1.7
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with high precision in readings.

We implemented an EDF scheduler as a user-level thread library under Linux on

the 405LP board. A user-level library was chosen over a kernel-level solution because

of the simplicity of its design and the fact that the operating system background

activity is minimal on the embedded board infrastructure. Different DVS scheduling

schemes were integrated into the EDF scheduler as independent modules.

8.2 Synchronous vs. Asynchronous Switch

We first assessed the overhead of different DVS techniques supported by the test

board and the dynamic power management extensions of the operating system.

A unique DVS feature supported by the IBM PPC 405LP embedded board is

that frequency switching can be done either synchronously or asynchronously. Syn-

chronous switching is the traditional approach for processor frequency/voltage tran-

sitions, where applications have to stop execution during the transitional interval.

Asynchronous switching, on the contrary, allows applications to continue execution

during the frequency/voltage transitions. Figure 8.1 depicts the changes in current

(lower curve) and voltage (upper curve) of the PPC 405LP processor core during an

asynchronous switch.

Figure 8.1: Current and Voltage Transition During Asynchronous Frequency
Switching

This unique feature of asynchronous switching is achieved by a system call that,
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when switching to a higher voltage/frequency, first reprograms the voltage to ramp

up towards the maximum as fast as possible (the 30 degree voltage ramp on the

upper curve of Figure 8.1). Meanwhile, the time to reach a voltage level at least

as high as required by the new frequency is estimated. A high-resolution timer is

programmed to interrupt when this duration expires, prior to which the application

can still continue execution. Once the timer interrupt triggers its handler (at the

peak after the 30 degree ramp on the upper curve), the power management unit is

reprogrammed to settle at the target voltage level, and the new processor frequency

is activated before returning from the handler. The voltage then settles (in case it

overshot) in a controlled manner to the new operating point. The current also settles

in a controlled manner depending on processing activity.

Table 8.2 reports the overhead for synchronous and asynchronous switching in a

time range bounded by two extremes: (a) Switching between adjacent frequency/voltage

levels and (b) switching between the lowest and highest frequency/voltage levels. Fur-

thermore, the overhead of the subsequent signal handler associated with each asyn-

chronous switch is also measured for a range of the highest and the lowest processor

frequencies. In order to make a comparison, the execution time of a system call

getpid() is also measured. The results indicate that a synchronous DVS switch has

about an order of a magnitude higher overhead than an asynchronous switch. In

contrast, the asynchronous DVS switch is almost as efficient as a null system call.

The timer interrupt handler triggered at each asynchronous switch has a negligibly

small impact on the DVS switching operation. Overall, triggering an asynchronous

DVS switch only has the cost of a light-weight system call.

Table 8.2: Frequency/Voltage Switch Overhead

sync. switch async. switch signal handler syscall
117-162 µsec 8-20 µsec 0.07-0.6 µsec 3-8 µsec
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Table 8.3: Overhead of DVS-EDF Scheduler

DVS scheduling overhead[µsec]
CPU freq. Static CC LA feedback

simple PID
SI MI

33 MHz 217 487 2296 3207 3612 3633
44 MHz 170 366 1714 2433 2943 3012
66 MHz 100 232 1112 1568 1728 1739
133 MHz 52 120 546 725 801 796
266 MHz 36 76 229 413 472 477

Table 8.4: Task Set

Task Set 1 [ms] Task Set 2 [ms] Task Set 3 [ms]
task Period WCET Period WCET Period WCET
1 2,400 400 600 80 90 12
2 2,400 600 320 120 48 18
3 1,200 200 400 40 60 6

8.3 DVS Scheduler Overhead

We compared the timing overhead of our feedback-DVS algorithm with several

other dynamic DVS algorithms. We first measured the execution time of these DVS

scheduling algorithms under different frequencies on the embedded board, as depicted

in Table 8.3. The overhead was obtained by measuring the amount of time when a task

issues a yield() system call till another task was dispatched by the scheduler. The table

shows that static DVS has the lowest overhead among the four while our PID-feedback

DVS has the highest one. This is not surprising since static DVS uses a very simple

strategy to select the frequency and voltage falling short in finding the best energy

saving opportunities. Cycle-conserving (CC) DVS, look-ahead (LA) DVS and our

PID-feedback DVS use more sophisticated and aggressive algorithms for lower energy

consumption, albeit at higher overheads. The single-input (SI) feedback scheme and

the multi-input (MI) feedback scheme have almost the same timing overhead at high

frequencies, since they require constant time to update the feedback information. But
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the single-input scheme imposes slightly less overhead than the multi-input scheme

scheme at low frequency cases.

Next, we assessed if our feedback-DVS algorithm, although incurring the largest

overhead among the four, gives the best energy saving results in the real embedded

environment. We measured the actual energy consumption of these DVS algorithms

when executing three medium utilization task sets depicted in Table 8.4 using both

synchronous and asynchronous DVS switchings. As a baseline for comparison, we also

implemented a näıve DVS scheme where the maximum frequency is always chosen

whenever a task is scheduled, and the minimum frequency is always chosen whenever

the system is idle.

The first task set in Table 8.4 is harmonic, i.e., all periods are integer multiples

of the smallest period, which facilitates scheduling. This often allows scheduling

algorithms to exhibit an extreme behavior, typically outperforming any other choice

of periods. The second and third task sets are non-harmonic with longer and shorter

periods, respectively. Actual execution times were half that of the WCET for each

task for this experiment.

Table 8.5: Energy [mW − hrs] consumption per RT-DVS algorithm

algorithm näıve static DVS(%) CC DVS(%) LA DVS(%) PID DVS(%)
Task Set 1

syn. 4.47 3.2 (28.41%) 2.38 (46.61%) 2.21 (50.56%) 2.04 (54.21%)
asyn. 4.43 3.13 (29.35%) 2.327 (47.51%) 2.12 (52.07%) 2.00 (54.70%)
savings 0.89% 2.19% 2.51% 3.92% 1.95%

Task Set 2

syn. 0.544 0.5056 (7.06%) 0.4713 (13.36%) 0.424 (22.06%) 0.4089 (24.83%)
asyn. 0.5276 0.5025 (4.76%) 0.4622 (12.40%) 0.4218 (20.05%) 0.4064 (22.97%)
savings 3.01% 0.61% 1.93% 0.52% 0.61%

Task Set 3

syn. 0.595 0.5616 (5.61%) 0.4799 (19.34%) 0.4043 (32.05%) 0.3708 (37.68%)
asyn. 0.5802 0.5496 (5.27%) 0.4547 (21.63%) 0.3912 (32.57%) 0.3671 (36.73%)
savings 2.49% 2.14% 5.25% 3.24% 1.00%

Task Set 2 vs. Task Set 3

change 9.07% 8.57% -1.65% -7.82% -10.71%
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Table 8.5 depicts the energy consumption in a unit of mWatt-hours. The näıve

DVS algorithm serves as a base of comparisons for each of the subsequent DVS

algorithms. For task set one, static DVS reduces energy consumption by about 29%

over the näıve scheme. Cycle-conserving DVS saves 47% energy. Look-ahead RT-

DVS saves over 50%, and our feedback method saves about 54% energy compared to

näıve DVS. This clearly shows the tremendous potential in energy savings for real-

time scheduling. The savings of each algorithm are lower for task set two, peaking

at 23% in our feedback scheme. As mentioned before, task set one is harmonic,

which typically results in the best scheduling (and energy) results since execution is

more predictable. Task set three lies in between the other two with peak savings

of 37% for our feedback scheme. The results also demonstrate that the overhead

for calculations inherent to scheduling algorithms is outweighed by the potential for

energy savings. This is underlined by the increasing overhead in execution time

for each of the scheduling algorithms (from left to right in Table 8.5) while energy

consumption decreases.

Another noteworthy result is the comparison between synchronous and asyn-

chronous DVS switching depicted in the last row for each task set in Table 8.5. For

each of the scheduling algorithms, we see additional savings of 1-5% on asynchronous

switch due to the ability to commence with a task’s execution during frequency and

voltage transitions. We also ran experiments with task sets that had an order of a

magnitude smaller periods and execution times. Surprisingly, the synchronous vs.

asynchronous savings remained approximately the same, even though DVS switches

occur ten times as often. We believe that the periods and execution times used in

our experiments are still large compared to the execution time of a synchronous or

asynchronous switch. If we only save about 100 µsec at each frequency switch (as

has been shown in Table 8.2) but later on spend more then 10-100 msec in running

a task, the benefit of the asynchronous DVS switching becomes insignificant. These

results seem to indicate that the benefit of continuous execution during DVS switch-

ing, although not negligible, is secondary to trying to minimize the overhead of DVS

scheduling itself.

We also compared task sets two and three in terms of their absolute energy read-
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ings, which is valid since they executed for the same amount of time (ten seconds),

the same actual to worst-case execution time ration and the same utilization, albeit

at seven times more context switches. This change is depicted in the last row of

Table 8.5 for the asynchronous case. Not surprisingly, the energy with näıve DVS is

about 9% higher for task set three than for set two due to the higher context switch

overhead of the latter. Quite interestingly, this overhead turns into a reduction in

energy as DVS schemes become more aggressive.

8.4 Impact of Different Workloads

We now examine the behavior of our DVS algorithm on different workloads in

more detail. A suite of task sets with synthetic CPU workloads was created. Each

task set contains three independent periodic tasks whose worst-case execution time

varies from 0.1 to 0.9 with an increment of 0.1. The actual execution time of a

task is determined by timing the body of each task plus the scheduler overhead (see

Table 8.3) of the corresponding DVS algorithm under the lowest CPU frequency. We

dynamically changed the number of instructions inside each task body among different

invocations (jobs) to approximate the workload fluctuation behavior of actual real-

time applications.

We still study the four synthesized execution patterns as introduced in Chapter

7, Figure 7.1, with the same feedback control settings. Asynchronous switching is

exploited in this experiment, since it has shown better energy saving performance

than the synchronous switching in previous experiments.

Figures 8.2 - 8.5 present the energy consumption of our feedback-DVS algorithm,

as well as four other dynamic DVS algorithms under the four dynamic execution time

patterns. Each task set contains three tasks. For pattern 1, we compare our simple

feedback scheme with the multi-input feedback scheme. For dynamic pattern 2, 3

and 4, we compared our single-input feedback scheme with the multi-input feedback

scheme. All energy values are normalized to the näıve DVS results under correspond-

ing task set configurations. DR-OTE and AGR-2 dynamically reclaim unused slack

up to the next arrival time of any task instance, thereby saving about 50% extra
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Figure 8.2: Energy Consumption for Set of 3 Tasks, Pattern 1

energy than näıve DVS. AGR-2 is not as good as Look-ahead-1/2 DVS in pattern 1

and 3, but beats Look-ahead-1/2 in pattern 2 and 4 for some cases. Look-ahead-1/2

is aggressive in frequency scaling, but it has to overcome the fact that the frequency

is occasionally lowered too aggressively so that it has to be subsequently raised to a

high level. We avoid such behavior in our algorithm via feedback.

In Figure 8.2, our simple feedback scheme performs almost as well as the multi-

input feedback scheme. The difference of normalized energy between our algorithm

and others ranges from an additional 5% to 15% energy savings over the best scheme

published previously. Considering the low overhead of the simple feedback scheme, it

is a good choice for tasks whose execution time does not vary over multiple instances.

In Figures 8.3, 8.4 and 8.5, our single-input and multi-input feedback schemes

save an additional 5%-18% energy over other schemes due to the algorithm’s self-

adaptation to a job’s actual execution time. Single-input feedback performs slightly

worse than the multi-input feedback scheme, because its modeling method is not as

precise as the multi-input feedback scheme. But the energy consumption differs by

about 4% for all cases between these two schemes. There are even cases, e.g., at

0.6 utilization in Figure 8.4, where single-input feedback outperforms the multi-input

feedback. In extremely low or extremely high task utilization cases, our feedback-
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Figure 8.3: Energy Consumption for Set of 3 Tasks, Pattern 2

DVS, Look-ahead DVS and AGR algorithm result in comparable energy consumption.

In these cases, tasks either have enough slack to always run at the minimum speed,

or they do not have slack at all preventing them to lower their speed. This results in

virtually the same frequency choices for a schedule irrespective of the DVS algorithm

used.

To better assess the scalability of our feedback-DVS algorithm, we further ran two

experiments. One experiment increases the number of tasks in the task set from 3

to 30, as shown in Figure 8.6. AGR-2 benefits from such a smaller task granularity

in 30-task sets and outperforms Look-ahead-1 and Look-ahead-2 in some utilization

cases. The small task granularity also reduces the gap between our feedback DVS

algorithms and the other algorithms. But we still save around 3% to 8% additional

energy than others. The second experiment fixes the execution-time pattern of the

task set, while varying the baseline (the average execution time) of different task

instances, as shown in Figure 8.7. The average execution time in Figure 8.7 is set

as 75%WCET, 50%WCET and 30%WCET, respectively. All energy values are nor-

malized to the näıve DVS values. We see from these figures that our single-input

feedback scheme scales equally well for loose (0.3WCET case) and tight (0.75WCET

case) actual execution times. In all three cases, 14% to 24% additional energy is saved
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Figure 8.4: Energy Consumption for Set of 3 Tasks, Pattern 3

over look-ahead-2 DVS. The feedback schemes show larger improvements for median

execution times than the loose or tight ones. In this range, there is enough slack to

distinguish itself from the other algorithms. When comparing our feedback algorithm

with the näıve DVS scheme, we observe even more significant energy savings. The

largest saving is shown in Figure 8.6, where up to 70% additional savings are achieved

by our algorithm over the näıve one at the 0.3 utilization case.

We also visualized voltage and current switches using an oscilloscope. Figures 8.8

and 8.9 depict the screen-shots of voltage and current obtained from the oscilloscope

for the phase just after a simultaneous release of all tasks at the beginning of a

hyperperiod. In Figure 8.8, every task has a loose WCET, which is two times of its

actual execution time. In Figure 8.9, a tight WCET equal to a task’s actual execution

time is used. Static DVS shows two levels of voltages (busy/idle time) whereas cycle-

conserving DVS differentiates three levels on a dynamic base. Even lower voltage and

current readings are given by look-ahead DVS, which not only distinguishes more

levels but also exhibits much lower power levels during load. The lowest results were

obtained by our feedback DVS, which defers execution even more aggressively than

any of the other methods. However, our feedback scheme can only reduce power

consumption occasionally as sufficient static or dynamic slack exists to be reclaimed.
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Figure 8.5: Energy Consumption for Set of 3 Tasks, Pattern 4

Dynamic slack is recovered in increasing orders by the latter three schemes.

8.5 Comparison with Simulation Results

When we compare the energy saving results obtained from the IBM 405LP embed-

ded board with our previous simulation results presented in Chapter 7, we clearly see

the advantage and disadvantage of simulation for power-aware studies. The advan-

tage of simulation lies in its ease of implementation and predictability of performance

trends. The energy consumption of different DVS algorithms show a consistent trend

under both simulation and the actual embedded platform. But the quantitative re-

sults differ. Our previous simulation results reported 5%-10% higher savings on aver-

age. For example, the best energy saving of our feedback DVS over look-ahead DVS

was reported as 29% in simulation while the best result we measured from the test

board is around 24%. It is non-trivial to model the actual power/energy consumption

in simulation without considering actual hardware details. This is also the case when

evaluating the overhead. Since the overhead of DVS algorithms was not included in

our previous simulation experiment, we still observed 7%-10% energy savings over

look-ahead DVS even at high utilization cases. But the actual energy measurements
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Figure 8.6: Energy Consumption for Set of 30 Tasks, Pattern 2

from the test board show only 3%-6% savings for these cases.

Overall, our experiments on the embedded platform quantitatively show the po-

tential of our feedback DVS algorithm and its ability to scale power even more ag-

gressively than previous DVS algorithms.
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Figure 8.7: Energy Consumption for Set of 3 Tasks, Pattern 4, with Varying Baseline



70

2V

1V t

0mA

360mA

(a) static RT-DVS EDF

2V

1V t

0mA

360mA

(b) cycle-conserving RT-DVS EDF

2V

1V t

0mA

360mA

(c) look-ahead RT-DVS EDF

2V

1V t

0mA

360mA

(d) our feedback RT-DVS EDF

Figure 8.8: Voltage/Current Oscilloscope Shot, Loose WCET= 2× ActualExecTime,
U=0.5
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Figure 8.9: Voltage/Current Oscilloscope Shot, Tight WCET= ActualExecTime,
U=0.5



72

Chapter 9

Leakage-Aware Feedback-DVS

In this chapter, we extend our feedback-DVS scheme considering not only the

dynamic power consumption but also the static power consumption, which is caused

by leakage current existing in a CMOS-based circuit.

9.1 Motivation

Power consumption in a CMOS-based processor consists of three elements, i.e.,

dynamic, static, and short-circuit power [45]. Static power consumption stems from

leakage current that exists even in the absence of logic operations of a circuit. The

Feedback-DVS scheme presented in previous chapters works well when dynamic power

dominates in the CMOS processors, while static and short-circuit power can simply

be ignored. This is also the assumption in most of the previous dynamic voltage

scaling work [71, 53, 4, 29, 13, 16, 52, 69]. Although this is true on traditional

CMOS-based circuits, it is not true anymore for some of the contemporary and future

processors when we consider the trends of CMOS circuit technologies. For example,

the sub-threshold leakage current, which contributes to the static power consumption

, is 0.01µA/µm for the 130nm technology and is anticipated to be 3µA/µm for the

45nm technology [28]. A five-fold increase in the leakage power is estimated with

each technology generation [5]. Static power is not ignorable and is expected to

be comparable with dynamic power. When the voltage supplied to a CMOS-based
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processor is reduced below a certain threshold value, static power exceeds dynamic

power and becomes the dominant cause of power dissipation per se. The processor

frequency associated with this threshold voltage is called the critical speed. Above the

threshold voltage, the total energy per cycle increases as the processor voltage scales

up. But below the threshold voltage, the total energy per cycle also increases as the

voltage scales down, even through only lower frequencies with lower performance can

be sustained. This result leads us to re-consider two issues in the design of a DVS

algorithm:

1. It is not energy-efficient to scale down processor voltage and frequency to an

extremely low level, if that level is below the threshold value / below the critical

speed.

2. Because of the existence of leakage power consumption, forcing the processor

into sleep mode may be more energy-efficient than keeping the system idle at a

low frequency as long as the idle period is long enough to compensate for the

shutdown overhead.

Any combined DVS/leakage policy has to take into account the above issues and

makes decisions according to the actual power consumption characteristics. These

issues have been addressed in previous work where both static and dynamic power

consumption are reduced [23, 34, 28]. These approaches either assume that all tasks

are running at the same speed to conserve static power. Or, they use off-line schemes

without fully exploiting the power saving potentials. Lee et al. [33] used a greedy

method to locally maximize the duration of alternating idle and busy periods based

on the worst-case execution time. Since actual execution times often diverge con-

siderably from the WCET, a conceptually busy period is actually interspersed with

dynamic slack due to early completion of jobs. The potential of dynamic slack re-

mains unused. Jejurikar et al. [28] assume that a power manager, implemented as a

hardware controller, handles interrupts and timers when new tasks are released. In

contrast, our scheme does not require any special hardware support beyond DVS and

sleep modes, nor does it assume execution times equal to their worst-case bounds.
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In the following, we present an on-line combined DVS/leakage control scheme that

saves both static and dynamic power. This scheme profits from our feedback-DVS

algorithm that exploits a modified earliest-deadline-first (EDF) scheduling variant. It

automatically chooses between voltage scaling and a processor sleep mode according

to the run-time execution scenario of tasks. Voltage scaling is used when dynamic

power dominates the total power consumption. A processor sleep mode is entered

when static power dominates the total power consumption. Our scheme also locally

adjusts the dispatch time of a task so that adjacent tasks are either bundled together

or scattered apart to increase the opportunity of getting into the sleep mode.

9.2 Power Model

We use the power model of a CMOS circuit first presented by Martin et al. [45].

The power consumed in a processor consists of three portions: dynamic power PAC ,

static power PDC, and short-circuit power. Short-circuit power is only consumed

during signal transitions and, in practice, is generally negligible [45]. Similar power

models are also used in related work [28, 58]. Hence, we only consider static and

dynamic power in our model.

Dynamic power is given by:

PAC = CeffV
2
ddf (9.1)

where Ceff is the average switched capacitance per cycle, Vdd is the supply voltage,

and f is the processor clock frequency. Static power consumption is given by:

PDC = VddIsubn + |Vbs|(Ijn + Ibn) (9.2)

where Isubn is the sub-threshold leakage current, Ijn and Ibn are the drain and source

to body junction leakage currents.

Static and dynamic power can be traded-off against each other in practice. It

has been shown that there exists a threshold voltage Vth, below which it is no longer

energy efficient, i.e., the processor voltage should not be scaled below this threshold

value [28]. From the threshold voltage Vth, one can derive a corresponding threshold
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frequency fth, the critical speed. Instead of operating at a speed below the threshold

value, it is more power efficient to execute tasks at or above the critical speed.

The transition into and out of a sleep mode does not come without cost. Such

a transition incurs additional energy consumption, termed sleep overhead from here

on. This overhead is mostly due to warm-up of resources (particularly caches) when

resuming execution. Hence, sleeping is only a viable option when the energy saved

by sleeping exceeds that of the sleep overhead itself.

In the following, we assume a deep sleep mode during which only the interrupt

line of a processor remains receptive. Other parts of the processor, including caches,

are turned off and will loose their state. In our model, we assume that the processor

consumes a negligible amount of energy when in sleep mode. Power consumption in

the sleep mode is documented as being three orders of a magnitude lower than the

power consumption in an active mode[22].

Transitioning into and out of a sleep mode incurs, as a side-effect, cold misses

in cache among other resource refresh overheads. Let Esd be the additional energy

per sleep overhead. Although entering and exiting the sleep mode also take a small

amount of time, we ignore it here since it can be incorporated into our sleep threshold

derived below.

Let pidle be the power consumption when the system is idle. Then, tth = Esd/pidle

defines a sleep threshold. It is energy efficient to enter sleep mode if and only if the

slack time in the schedule exceeds tth. Otherwise, the processor should remain idle

at a power-efficient DVS level. These parameters are platform dependent but are

available to the scheduler at system initialization.

In the following section, we describe the DVSleak algorithm, which is integrated

into the task scheduler and contains policies for reducing both static and dynamic

power.

9.3 DVSleak Algorithm

To make the DVS algorithm leakage aware, our feedback-DVS scheme takes into

account the impact of static power as well as the threshold voltage to consider the
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effect of static power. A näıve scheme is to mark all voltage and frequency levels

below the threshold as invalid, so that whenever the DVS algorithm wants to assign

a speed below that threshold, it uses the threshold value instead. A task then runs at

a higher speed than its original assignment. It completes earlier providing more slack

(idle time) prior to its deadline. As long as the slack is long enough to compensate for

the shutdown overhead, the DVS scheduler can put the processor into a sleep mode

during that interval to further reduce the impact of the static power consumption.

Unfortunately, such a näıve scheme does not fully exploit the energy saving poten-

tial. For example, consider the three adjacent tasks depicted in Figure 9.1(a). Task

T1 completes at time t1. Task T2 is released at time t2 and completes at time t3.

Task T3 is released at time t4. Let the lengths of both idle intervals [t1, t2] and [t3, t4]

be less than the threshold tth. Hence, the processor is kept in an idle state during

the above two intervals instead of entering a sleep mode. Both static and dynamic

power consumption exist in the idle state. The processor energy consumption in an

idle state, although lower than the energy consumption in a non-idle running state,

is still significantly larger than the energy consumed in a sleep mode.

In order to further exploit the savings for both static and dynamic power, we

adapt the schedule of the system to reduce static leakage as much as possible. Con-

sider shifting task T2 to line up with the release time of T3 in Figure 9.1(b). T2 is

now released at time t2′. The interval [t1, t
′
2] then exceeds the sleep threshold value

tth so that the processor enters a sleep state during that interval. Static power is

almost eliminated while sleeping. The only energy consumption the processor pays

is dynamic power as well as the sleep overhead. Figure 9.1(b) is the ideal case where

T2 completes exactly before the release of T3, thus maximizing the processor sleep

period. Even if T2 takes less cycles than expected and completes earlier, delaying the

release time of T2 costs less energy than the non-delay policy. As shown in Figure

9.1(c), if T2 completes earlier, the processor enters the idle state till the release time

of T3. The energy saved in [t1, t
′
2] due to sleeping makes the delay policy superior to

the non-delay schedule, as shown in Figure 9.1(a).

The above example illustrates the benefit of the delay policy in terms of reduced

leakage in a DVS-aware system. In the following, we present an algorithm that
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Figure 9.1: Combining DVS and Leakage Savings
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Figure 9.2: Speed Reduction vs. Task Delaying

combines this delay policy with dynamic slack reclamation and feedback of actual

execution times.

9.3.1 Speed Reduction vs. Task Delaying

DVS technology modulates the processor speed according to the amount of slack

or idle time in the schedule. A dynamic voltage scaling algorithm, when integrated

with leakage power saving schemes, needs to address two issues. First, it needs to

determine how to distribute the amount of slack between speed reduction and task

delaying. Second, it needs to decide if the release time of a job should be delayed.

This section focuses on the first issue while the next section addresses the second one.

Consider the example in Figure 9.2(a). Lowering the processor voltage and fre-

quency, i.e., reducing the application speed, decreases the amount of slack available in

the schedule, as depicted in Figure 9.2(b). Similarly, delaying the activation time of

a task by putting the processor into a sleep mode also decreases the amount of slack,

as depicted in Figure 9.2(c). At any point of time during execution, the amount of

slack is always a shared resource between these two competing operations. The DVS

algorithm has to define a policy to determine the distribution of the slack between

these two schemes.
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This dilemma can be solved based on the critical speed (frequency). We prefer

a lower frequency over delaying a task as long as the resulting frequency is higher

than the critical speed. Conversely, when our frequency scaling scheme suggests a

speed lower than the critical speed, we default to the critical speed and activate the

task delaying scheme. This policy reflects a best effort to reduce power as much as

possible.

According to the above analysis, whenever a task completes and a new task Ti is

released, our DVS algorithm uses a feedback-EDF scheme to calculate a frequency

level fi. The actual frequency f assigned to task Ti is defined by:

f = min(fi, fth) (9.3)

Given the actual frequency of task Ti, a corresponding voltage can also be deter-

mined. But before task Ti is released, the DVS scheduler has to decide whether or

not the release time of the task needs to be delayed. This issue is detailed in the

following section.

9.3.2 Delay Policy

The example in the motivation section seems to imply that a task should always

be delayed as much as possible against its deadline. This is also the strategy used

in previous work [28, 58]. Such an intuitive approach, however, is not always the

best solution. This is due to the variability of the actual execution time of tasks.

Figure 9.1(b) shows the case where the execution time of task T2 equals its worst-

case execution time. In the real world, the actual execution time of a task is generally

shorter than its worst-case execution time.

A schedule without delaying Ti’s release time leaves the processor idle in the

beginning. Some time later the processor enters a sleep mode, as shown in Figure

9.3(a).

Figure 9.3(b) depicts the effect of a delayed schedule, where the processor enters a

sleep mode first and later on incurs a potentially longer idle period, thereby consuming

more power than case (a). This effect is due to the delay policy, which relies on the
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Figure 9.3: Delay vs. Non-delay

WCET instead of the actual execution time of Ti to determine the delay time. When

a task completes earlier than expected, it produces additional dynamic slack, which

significantly reduces the benefit of the delay policy.

Taking this short-coming into consideration, we present the following delay policy

as part of our DVSleak algorithm. We observe that at any time t, the DVS algorithm

can infer the amount of slack st in the schedule. If the ready queue of the scheduler

is not empty, the delay policy remains inactive. As shown in Figure 9.4, the next

task Ti will be released at time tr (tr ≥ t) according to the standard EDF scheduling

algorithm. With the knowledge of st, the feedback-DVS algorithm assigns a processor

frequency fA and a scaling factor αA, as defined in Equation 4.1, for TA, which is the

first subtask of Ti in the task splitting scheme. Since the number of execution cycles

of Ti is also split into two parts, we have

CA
i

αA

+ CB
i =

Ci

αi

(9.4)

where αi is a unified scaling factor of the entire task (as if the task had not been split).

By introducing αi, the delay policy of the following task can be easily integrated into

any DVS algorithms. From Equation 9.4, we derive αi:

αi =
CiαA

CA
i + CB

i αA

(9.5)
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Figure 9.4: Rules for Task Delaying

Let ci be the expected actual execution time of Ti provided by a feedback scheme

based on the execution times of previous instances of task Ti. The latest time that

Ti can complete without missing its deadline is given by:

td = t + st + Ci (9.6)

where Ci is the WCET of Ti. Time td can also be represented as the minimum of the

absolute deadline of the task and the release time of the next task in EDF after Ti,

i.e.,

td = min(di, tri+1
) (9.7)

Notice that if the next task is released together with Ti, there will only be one idle

period prior to Ti.

We use the following rule to determine the modified release time of Ti.

1. Task Ti is released at time tr (as under standard EDF) if and only if

(a) td − t− Ci/αi ≤ tth, or,

(b) td − t− Ci/αi > tth and tr − t < tth and Ci/αi − ci ≥ tr − t.

2. Task Ti is released at time td − Ci/αi (later than under standard EDF) if and

only if

(a) td − t− Ci/αi > tth and tr − t ≥ tth, or,

(b) td − t− Ci/αi > tth and tr − t < tth and Ci/αi − ci < tr − t.

Rule 1 covers the cases where the release time of task Ti is not delayed. Conversely,

Rule 2 captures the cases where it should be delayed. Rule 1(a) applies when the total

amount of slack time in [t, td] (equivalent to s1 +s2 in Figure 9.4) is less than the sleep
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threshold tth. Task Ti is not delayed since there is not enough slack to benefit from

sleeping, regardless of whether or not the task is delayed. Rule 2(a) applies when the

total amount of slack is greater than the sleep threshold tth and the initial slack s1 is

at least as large as this threshold, which ensures that sleeping will be beneficial. By

delaying Ti’s release time to td − Ci/αi, we increase the amount of slack prior to T’s

execution as much as possible to prolong the initial sleep duration.

Rule 1(b) and Rule 2(b) capture cases where the length of the first slack s1 is less

than the threshold tth while the overall slack s1 + s2 exceeds this threshold. In these

cases, delaying the release time of task Ti does not always result in the longest sleep

duration. Figure 9.3(a) and (b) illustrates the best efforts reflected by Rules 1(b)

and 2(b), respectively. The decision is, in fact, based on the anticipated portion of

unused execution time (WCET - actual execution time). If this portion is equal or

larger than slack s1, it is beneficial to accumulate more slack (due to early completion

within Ci/αi− ci) with s2, which does not require the task to be delayed, as reflected

in Rule 1(b). Conversely, if the unused portion is less than slack s1, late slack (s2)

is merged with early slack (s1) by shifting the execution of T to the latest possible

point in time, which lengthens the beneficial sleep duration prior to the shifted task,

as reflected in Rule 2(b). This heuristic approach is relatively simple but still yields

promising results. Notice that ci, the expected actual execution time of task Ti, is

provided by the feedback controller according to previous execution history.

We combine this task delay policy with the existing DVS algorithm. By enhancing

the algorithm with the delay policy, we still guarantee the feasibility of the schedule

for the task set, as stated by the following theorem.

Theorem 2. If a feasible schedule exists for a task set under EDF scheduling, the

modified schedule after applying the delay Rules 1 and 2 is guaranteed to be feasible

as well.

Proof. For any task Ti in the task set, let di be its absolute deadline. If T meets its

deadline under the EDF, then its release time tr satisfies:

tr + Ci + st ≤ di (9.8)
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According to the above relationship and Equation 9.6, we know that td ≤ di. Delay

Rules 1 and 2 either release Ti at its original EDF time tr or at time t′r = td −Ci/αi.

In the former case, Ti will not miss its deadline since Ti is scheduled as in conventional

EDF. In the later case, let Ti’s worst case execution time after frequency scaling be

C ′
i. Then, C ′

i = Ci/αi. In the worst case, Ti will complete before

t′r + C ′
i = td − Ci/ft + Ci/αi = td ≤ di (9.9)

Since it will be activated at its new release time t′r and no other tasks are ready in

[t, td] due to Equation 9.7. Hence, Ti again completes before its deadline and the task

set can still be feasibly scheduled.

9.4 Simulation Experiment

We implemented the above leakage-aware DVSleak algorithm in a simulation en-

vironment, using the power model described in Section 9.2. We assume the processor

has four discrete frequency levels, which are 25% , 50%, 75% and 100% of fm, which

is the maximal frequency supported by the processor. We use the same approach

as in [28] to compute the corresponding power consumption as 550mW , 650mW ,

990mW and 1480mW for frequency levels 25%, 50%, 75% and 100%, respectively.

The processor enters an idle frequency whenever none of the tasks are ready. As in

[28, 58], the idle power consumption is assumed to be 240mW, Esd is at 483µJ , and

tth is 2ms. The threshold frequency level is set to 41% of fm.

In order to assess the energy saving potential of our combined leakage-aware

DVSleak algorithm, three different algorithms are implemented in the simulator.

1. A pure feedback-DVS algorithm without any leakage power saving schemes.

The algorithm does not observe trade-offs due to the threshold frequency, i.e.,

the frequency is freely scaled below this threshold.

2. A feedback-DVS algorithm with a sleep policy. This algorithm puts the proces-

sor into sleep mode whenever the idle slack in the schedule is longer than the

sleeping threshold. The algorithm exploits the threshold frequency in that no
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tasks will be scaled below that frequency. Hence, a frequency of 25% of fm will

never be used. However, this algorithm does not contain any delay policy to

postpone the release of a task.

3. DVSleak, a feedback-DVS algorithm with delayed sleep policy, as outlined in

the last section. This algorithm is the most aggressive one. It not only puts the

processor into a sleep mode, it further delays the release time of tasks according

to our delay rules. The delay rules increase the length of the sleep duration,

which saves more energy than other algorithms. Our experimental results show

that this is mostly (but not always) the case. DVSleak also exploits knowledge

about the threshold frequency.

We use the same task sets as described in Chapter 7, Figure 7.1. For each execution

pattern, the task sets’ WCETs were uniformly distributed in the range [10,1000].

When tasks’ WCETs were generated, each task’s period was chosen so that the worst

case utilization of the task set varies from 0.1 to 1.0 in increments of 0.1.

In order to make a comparison, we also calculate a lower bound on energy for

each utilization case. In the lower bound schedule, the entire task set runs at either

the ideal optimal speed or the critical speed, whichever the greater. The number of

times the processor gets into the sleeping or idle state is also minimized. We assign a

longest busy interval for the task set which equals the maximal response time of the

task with the longest period. Such assumptions make it possible to derive a lower

bound energy overhead for processor state transitions.

Figure 9.5 depicts the energy consumption of the three different algorithms with

execution pattern one, as well as the lower bound energy consumption for each utiliza-

tion case. We see significant energy savings at low utilization because of the existence

of large amounts of slack. Putting the processor into sleep mode saves as much as

80% more energy than the pure DVS algorithm, which only lets the processor idle

during the entire slack period, sacrificing both dynamic and static energy. When the

utilization increases to 0.6 and larger, the sleep policy alone is not attractive since

there is not enough ad-hoc slack in the schedule anymore. On average, only 10% more

energy is saved over pure DVS. DVSleak with its combined sleep and delay policy,
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(c) c=75%WCET

Figure 9.5: Energy Savings for 3 Tasks, Pattern One under Different Actual Execution
Times (Constant) and Utilization
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in contrast, shows its strength by saving 50% more energy on average than the pure

DVS scheme and 40% more energy on average than the pure sleep policy. It is in-

teresting to note that the delay policy performs at par with the sleeping policy for

several cases, such as the 0.1 and 0.2 utilization cases. Figure 9.5(b) and 9.5(c) also

show that the delay policy even costs more energy than the non-delay policy at 0.9

utilization, where already limited slack is further reduced by the delay policy, which

results in higher processor frequencies than that of a pure sleep policy.

Figure 9.6 depicts the energy consumption of these three DVS algorithms under

execution pattern two. In contrast to pattern one, execution times vary dynamically

among different jobs, which results in higher energy consumption than pattern one

in corresponding cases. When we look at the energy savings of the three DVS al-

gorithms, we see that DVSleak again shows its advantage under medium and high

utilization. Even with varying workloads, the delay policy generates more opportuni-

ties for sleeping than any of the other policies. It saves 40% more energy on average

than the pure DVS algorithm. For both execution patterns, the energy consumption

produced by DVSleak is also very close to the lower bound in most of the utilization

cases.

We further increase the number of tasks in a task set from 3 to 10. The increase

in number of tasks limits the effectiveness of the delay policy. It cannot produce

sufficiently long intervals to benefit from sleeping. Nonetheless, Figure 9.7 illustrates

that DVSleak exhibits stable savings in energy irrespective of the number of tasks.

It achieves almost the same amount of savings over the pure DVS as observed for 3

tasks. The energy saving over the pure sleeping algorithm is not as significant as that

of 3 tasks. Still, DVSleak saves 10% more energy on average than the sleep policy for

10 tasks. These results clearly show the adaptiveness and stability of DVSleak under

different workloads.

Figure 9.8 compares the performance of difference algorithms under three differ-

ent dynamic patterns when the ratio of average execution time to WCET is fixed.

Although the three patterns (patterns 2, 3, and 4) follow different fluctuations in ex-

ecution time, DVSleak works equally well for all patterns. It saves 15% more energy

on average than the sleep policy and 30% more energy on average than the pure DVS
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(c) Avg. c=75%WCET

Figure 9.6: Energy Savings for for 3 Tasks, Pattern Two under Different Actual
Execution Times (Variable) and Utilization
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(c) Avg. c=75%WCET

Figure 9.7: Energy Savings for 10 Tasks, Pattern Two under Different Actual Execu-
tion Times (Variable) and Utilization
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algorithm. Overall, the combined sleep and delay algorithm, DVSleak, exhibits stable

performance under different patterns due to the feedback control scheme used in our

DVS algorithm, which adjusts automatically according to workload variations.

These experiments provide a better understanding of the three policies. The

pure sleep policy and DVSleak do not show much difference under extremely low or

extremely high utilization cases. In the former case, there is always enough slack for

turning off the processor, no matter whether we delay the release time of a task or

not. In the later case, there is hardly any slack at all, no matter how the release

time of a task is delayed. Using the sleep policy alone in such a case is sufficient by

itself to achieve virtually the same reduction in energy as the combined policy, albeit

at a lower algorithmic complexity. At medium utilization, DVSleak excels due to its

combined sleep and delay policy to shows its true potential of energy savings.
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Figure 9.8: Energy Savings for 3 Tasks, Dynamic Pattern 2/3/4 when Average Exe-
cution Time = 50% WCET
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Chapter 10

Conclusion and Future Work

In this dissertation, we present a novel energy management framework for CMOS-

based processors, combining DVS technology with feedback control and leakage-aware

schemes. This framework extends the traditional real-time EDF scheduling algorithm.

It considers not only the timing requirements of real-time tasks but also energy con-

sumption issues. Both the DVS scheduler and the feedback controller are implemented

within the operating system.

We first introduce a task-splitting scheme. In order to obtain a low CPU frequency,

each job is divided into a low-speed portion and a high-speed portion. While the high-

speed portion always executes at the maximum CPU frequency, the low-speed portion

is allowed to execute at a reduced CPU frequency. Voltage scaling on the low-speed

portion benefits from the variation of jobs’ actual execution times. Early completion

of a job makes it possible to scale the entire job at a low frequency. If, however,

the job requires its full worst-case execution time, it enters the high-speed portion

with the maximal CPU frequency and voltage. Such a scheme aggressively exploits

available slack in the schedule without violating the system’s timing requirements.

We then present a preemption-handling technique. Preemption handling follows

a greedy scheme by passing as much slack as possible to scale the next running

task. We speculate on the early completion of the running task to aggregate more

slack for other tasks. Forward sweep and backward sweep strategies are discussed as

two available slot reservation methods. When preemption happens, the preemption-
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handling scheme maintains the timing behavior of the system by reserving necessary

slack in the future for those preempted tasks.

A feedback control scheme is also integrated into our DVS algorithm to improve

algorithmic performance for dynamic workloads, where the execution time of a pe-

riodic task may vary significantly from job to job. The feedback scheme facilitates

scheduling behavior so that the DVS scheduler is more adaptable to dynamically

changing workloads. With the information provided by the feedback controller, the

WCET budget of the low-speed portion of a job is able to approximate its actual

execution time. A proportional feedback structure, a multi-input feedback structure,

and a single-input feedback structure are presented in this dissertation. For dynami-

cally fluctuating execution-time patterns, the feedback DVS scheme achieves energy

savings of up to 29% over previous work. The scheme is not sensitive to partic-

ular workload characteristics, i.e., different execution-time patterns, and is equally

scalable for both small and large number of tasks.

We evaluate the proposed DVS algorithm, as well as several other real-time DVS

algorithms, not only in a simulation environment, but also on a real embedded devel-

opment platform. Real-time task sets with varying execution times are assessed under

different feedback schemes. The performance of our algorithm and its adaptability to

dynamic workloads are evaluated. Asynchronous switching, which is a unique feature

provided by the IBM 405LP embedded board, is assessed with real-time task sets.

The experiments exhibit 5% additional energy savings with asynchronous switching,

as opposed to traditional synchronous switching mechanisms. The experimental re-

sults also indicate a considerable potential for real-time DVS scheduling algorithms

with up to 70% energy savings over a näıve DVS scheme. When we compare the

feedback DVS algorithm with some of the best dynamic DVS algorithms presented in

previous work, 24% additional energy savings are observed, which clearly shows the

the strengths of our algorithm. To the best of our knowledge, this is the first compar-

ative study of real-time DVS algorithms on a concrete micro-architecture. It is also

the first evaluation of asynchronous DVS switching implemented in DVS algorithms.

We further study the potential of energy saving on CMOS-based processors when

dynamic power is not dominant. Since leakage current increases significantly with
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every generation of processor technology, static power is anticipated to be a dominant

factor in the total power consumption. Because of the existence of leakage power,

forcing the processor into a sleep mode may be more energy-efficient than keeping the

system idle at a low frequency, as long as the idle period is long enough to compensate

for the shutdown overhead. We propose a combined DVS/leakage reduction scheme to

minimizes both static and dynamic power consumption within a unified framework.

This scheme profits from our feedback-DVS algorithm with a combined DVS and

CPU sleeping policy. It automatically alternates between a frequency scaling state

and a processor sleeping state, according to the run-time execution scenario of tasks.

Frequency scaling is chosen when dynamic power is dominant. After the CPU voltage

is reduced below a certain threshold, a sleep mode is entered, which is the most energy

efficient state since static power dominates at that time. We point out that greedily

delaying the start time of a task to put the processor into the sleep mode, as proposed

in previous work, does not necessarily yield the most energy-efficient solution. The

delaying decision needs to consider a task’s dynamic execution behavior as well as its

static behavior. DVSleak, the leakage-aware feedback-DVS algorithm, is implemented

in a simulation environment. The combined sleep and delay algorithm exhibits stable

performance under different task patterns due to the feedback control scheme used in

the algorithm.

Overall, the main contributions of this dissertation include:

• A feedback-based DVS framework for dynamic workloads with hard real-time

requirements.

• A combined intra-task and inter-task DVS scheme.

• Slack-passing and preemption-handling schemes for DVS schedulers.

• The implementation of our feedback DVS scheme in simulation, as well as the

evaluation on an actual embedded platform.

• An extension of the feedback-DVS scheme for embedded architectures where

static power is dominant.
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The research presented in this dissertation also suggests many interesting research

directions for future work.

One direction for future research is to study more sophisticated PID tuning meth-

ods, such as the Ziegler-Nichols approach[75]. Those methods are necessary to deter-

mine the PID parameters for dynamic system workloads instead of a manual tuning

approach. It would further be of interest to investigate the development of feed-

back schemes for DVS algorithm with more complex execution characteristics. When

the variation of tasks’ behavior is non-linear, it cannot be handled by the classical

linear control scheme. A more advanced control system is required for building a

robust and adaptive DVS system in extremely unpredictable environments. It would

also be of interest to evaluate the leakage-aware DVS algorithm on real embedded

architectures. The leakage power on next-generation processor architectures keeps

growing with lower threshold voltages. Although the simulation experiments in this

thesis show promising results, an evaluation on real embedded platforms is required

to justify the trade-off we have made during the design of the DVSleak algorithm.

Another direction for future research is to investigate DVS scheduling algorithms

for resources-sharing tasks. This dissertation only focuses on independent task model

where different tasks do not share any resources. When the execution of tasks depends

on each other, reducing the speed of one task may influence the execution of another

task. More sophisticated DVS algorithms need to be developed to coordinate among

multiple non-independent tasks.

Instead of a CPU-oriented DVS algorithm, system-wide DVS algorithms are an-

other interesting direction for future work. With the development of new hardware

technology, CPU, memory, system buses and I/O devices are all expected to have

frequency-scaling functionality. A DVS algorithm needs to be aware of the speed

difference of each hardware component. A system-wide power model is required for

the DVS algorithm to make its scheduling decisions.
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