
Daniel Switkin
Senior Software Engineer, Google Inc.

Android Application Development

Goal

• Get you an idea of how to start developing
Android applications

• Introduce major Android application concepts

• Walk you through a sample application in the
development environment

Agenda

• System architecture

• Hello World!

• Application components

• Practical matters

• Toolchain

What is Android?

• A free, open source mobile platform

• A Linux-based, multiprocess, multithreaded OS

• Android is not a device or a product

• It’s not even limited to phones - you could build
a DVR, a handheld GPS, an MP3 player, etc.

Android Runtime

Dalvik Virtual
Machine

Core Libraries

Application Framework

View
System

Content
Providers

Resource
Manager GTalk ServiceLocation

Manager

Activity Manager

Package Manager

Window
Manager

Telephony
Manager

Notification
Manager

Linux Kernel

Display
Driver Camera Driver Bluetooth

Driver
Flash Memory

Driver
Binder (IPC)

Driver

Power
ManagementUSB Driver Keypad Driver WiFi Driver Audio

Drivers

Libraries

FreeType

SGL SSL

SQLite

WebKit

libc

Surface Manager

OpenGL | ES

Media
Framework

Applications

Home PhoneContacts Browser ...

Hello World!

The History of GUIs

• Hardcoded to the screen

• Hardcoded to the window

• Hardcoded within a view hierarchy

• Dynamic layout within a view hierarchy

Generating GUIs

• Two ways to create GUIs: in XML or in code

• Declarative route via XML has advantages

• A lot of your GUI-related work will take place in:

•res/layout

•res/values

•@id/name_for_component gives you
handle for referencing XML declarations in code

Views

• Views are building blocks

• Examples:

• Can be as basic as: TextView, EditText, or
ListView

• Fancier views: ImageView, MapView, WebView

Layouts

• Controls how Views are laid out

• FrameLayout : each child a layer

• LinearLayout : single row or column

• RelativeLayout : relative to other Views

• TableLayout : rows and columns

• AbsoluteLayout : <x,y> coordinates

Layouts are resizable

480x320

240x320

320x240

Layouts are customizable

res/layout/share.xml res/layout-land/share.xml

Layout Parameters

• Specify many aspects of what’s being rendered

• Examples:

• android:layout_height

• android:layout_width

• Tip: start with documentation for a specific View
or Layout and then look at what’s inherited from
parent class

Application Components

Basic components

Activities
UI component typically
corresponding to one screen.

BroadcastReceivers Respond to broadcast Intents.

Services
Faceless tasks that run in the
background.

ContentProviders Enable applications to share data.

Activities

• Typically correspond to one screen in a UI

• But, they can:

• be faceless

• be in a floating window

• return a value

Intents

• Think of Intents as a verb and object; a
description of what you want done

• Examples: VIEW, CALL, PLAY, etc.

• System matches Intent with Activity that can best
provide that service

• Activities and BroadcastReceivers describe what
Intents they can service in their IntentFilters (via
AndroidManifest.xml)

Intents

GMail

Contacts

Chat

Home

Picasa

Blogger

“Pick photo”

Client component makes a
request for a specific action
System picks best
component for that action
Components can be
replaced any time
New components can use
existing functionality

Photo
Gallery

BroadcastReceivers

• Components designed to respond to broadcast
Intents

• Think of them as a way to respond to external
notifications or alarms

• Applications can invent and broadcast their own
Intents as well

Services

• Faceless components that run in the background

• Example: music player, network downlaod, etc.

• Bind your code to a running service via a
remote-able interface defined in an IDL

• Can run in your own process or separate
process

ContentProviders

• Enables sharing of data across applications

• Examples: address book, photo gallery, etc.

• Provides uniform APIs for:

• querying (returns a Cursor)

• delete, update, and insert rows

• Content is represented by URI and MIME type

Practical matters

Storage and Persistence

• A couple of different options:

• Preferences

• Flat file

• SQLite

• ContentProvider

Packaging

• Think of .apk files as Android packages

• Everything needed for an application is bundled
up therein

• Basically a glorified ZIP file

Resources

• res/layout: declarative layout files

• res/drawable: intended for drawing

• res/anim: bitmaps, animations for transitions

• res/values: externalized values for things like
strings, colors, styles, etc.

• res/xml: general XML files used at runtime

• res/raw: binary files (e.g. sound)

Assets

• Similar to Resources

• Differences:

• Read-only

• InputStream access to assets

• Any kind of file

• Be mindful of file sizes

Application Lifecycle

• Application lifecycle is managed by the system

• Application start/stop is transparent to the user

• End-user only sees that they are moving between
screens

• Read documentation for android.app.Activity

Toolchain

Emulator

• QEMU-based ARM emulator
runs same system image as
a device

• Use same toolchain to work
with devices or emulator

Eclipse Plugin
Project template

Debugging

Call stack

Breakpoints, single stepping

Examine variables

Eclipse demo

Q & A

